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Foreward and Introduction 

Computational Fluid Dynamic (CFD) methods based on the Euler equations have been a subject of intensive research and 
development over the past 10 to 15 years. They have now reached a stage where applications are an almost routine matter in 
most aerospace industries, research laboratories and universities. 

After the pioneering work of Lax and Wendroff in the early sixties there was a first, relatively short burst of activities 
involving Euler methods in the late sixties and early seventies. These activities were closely related to the reviving interest in 
transonic flow and supercritical wing technology in particular; they were soon to be overtaken by developments in transonic 
potential flow methods triggered by the work of Murman and Cole. 

The main reasons for this shift of attention were an apparent lack of robustness of the Euler methods that had evolved so far 
but in particular the fact that potential flow methods offered an almost order-of-magnitude reduction of computational effort. 
Given the level of computer technology at the time, the latter was mandatory if computational transonics were to become a 
practical tool for the aerospace industry. 

While the concentrated efforts on transonic potential flow methods of the seventies and early eighties led to widespread use 
of such methods in aerospace applications,* a revival of interest in Euler methods was bound to happen and indeed did take 
place around 1980, in particular through the interest created by the works of Rizzi and Jameson. The main driving factors for 
this revival were: 

- the inherent limitations of potential flow theory, in particular the inability to model vorticity; 

-the fact that computer power had increased by a factor 10 to 15 since around 1970; 

-the fact that a new generation of more efficient discretization schemes and algorithms held promise for future 
practical applications. 

Research on discretization schemes and algorithms for the Euler equations continues today; not in the least because of the 
fact that the convective (i.e. “Eu1er”-) fluxes play a dominant role in CFD methods at the next highest level in mathematical 
flow modeling, that is, the Navier-Stokes equations. At the same time however, Euler “codes” have reached a level of 
proliferation in the aerospace aerodynamic community that justifies a review of the state of the art. It is worth noting that 
Euler methods not only are being used for the simulation of flows for which the modeling of vorticity is mandatory, such as 
leading-edge vortex flows and flows involving propulsion simulation, but that they are also being used for non-vortical flows 
around complex geometries, since transonic potential flow methods for complex configurations did not fully mature. 

The objective of this AGARDograph, then, is to provide a survey of the state-of-the-art in Computational Aerodynamics 
Based on the Euler Equations. In terms of technology application, it concentrates on the numerical simulation of external 
flows about aerospace vehicles. 

Internal flows and turbomachinery applications are not extensively treated but touched upon where considered appropriate. In 
terms of “audience” this AGARDograph is, in the first place, aimed at the applied computational aerodynamicist who wants 
to get started in this field. However, it might also assist the aerodynamic engineering manager in judging whether his CFD- 
tools are sufficiently “state-of-the-art” and, if not, in what direction improvement or extension of capabilities shoud be 
sought. Finally, it might also help the research community to identify niches for further research. For those readers who 
would like to consult basic text books on CFD and Euler methods, some general references are suggested at the end of this 
Foreword and Introduction. 

Chapter 1 is intended to provide a background of the fluid and thermodynamic theory required for understanding the physics 
modelled by the Euler equations. Chapter 2 describes numerical schemes and algorithms. Although this is done from a CFD 
specialist’s point of view, the reader should be able to identify the algorithm descriptions given in this chapter with the 
methods given in the following chapter. In order to meet the objectives for this report, it was felt that the core of the 
AGARDograph should consist of a survey and description of numerical schemes and algorithms, capabilities, and limitations 
of the major Euler codes that are currently in use in the NATO countries. For that purpose, requests for information were sent 
to institutions, industries and individuals who, to the authors’ knowledge, were or had been active in this area. The response 
has been collected in Chapter 3, with examples of application given in Chapter 4. 

* A survey can be found in AGARDograph 266 “Applied Computational Transonic Aerodynamics” by T. Holst, et al. 1982. 
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The preparation of this AGARDograph has been a team effort involving scientists from both Europe and North America. 
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Avant-propos et introduction 

Les mtthodes de I’atrodynamique numtrique (CFD) bastes sur les tquations d’Euler ont fait l’objet de recherches et 
dtveloppement intensifs depuis une quinzaine d’anntes. Aujourd’hui ces mtthodes sont appliqutks de faGon quasi-courante, 
dans la plupart des industries aerospatiales, des laboratoires de recherche et des universitts. 

Les travaux d’avant-garde de Lax et Wendroff du dtbut des anntes soixante ont ttt suivis d’une premitre ptriode d’activitts, 
relativement courte, concernant les mtthodes d’Euler, & la fin des anntes soixante et au dtbut des anntes soixante-dix. Ces 
activitts ttaient ttroitement litks au regain d’inttrst qu’il y avait h l’gpoque pour les tcoulements transsoniques et les 
technologies de profil d’aile supercritique en particulier. Cependant, elles furent rapidement dCpasstes par le dtveloppement 
des methodes de calcul des Ccoulements potentiels transsoniques engendrtes par les travaux de Murman et Cole. 

Les principales raisons de ce changement de direction furent le manque de robustesse apparent des mtthodes d’Euler de 
1’Cpoque et en particulier le fait que les mtthodes de calcul des tcoulements potentiels permettaient la rauct ion du temps de 
calcul d’environ un ordre de grandeur. Considtrant le niveau des technologies de l’informatique & l’tpoque, cette rgduction 
s’imposait si l’on voulait que I’atrodynamique transsonique numCrique puisse devenir un outil pratique pour I’industrie 
atrospatiale. 

fitant donne que les efforts consacrts aux mtthodes de calcul des houlements potentiels transsoniques dans les anntes 
soixante-dix et au dtbut des anntes quatre-vingts ont conduit A la banalisation de ces mtthodes dans les applications 
aerospatiales, un regain d’inttrEt pour les mtthodes d’Euler ttait inevitable et ceci s’est produit en 1980, grace, en particulier, 
& l’inttrst suscitt par les travaux de Rizzi et Jameson. Les principaux tltments moteur de ce renouveau furent : 

- les limitations propres & la thtorie de I’tcoulement potentiel et, en particulier, la non-faisabilitt de la modtlisation du 
rotationnel; 

- le fait que la puissance de calcul avait augment6 d’un facteur de l’ordre de 10 & 15 depuis 1970; 

- le fait qu’une nouvelle gtntration de mtthodes de discretisation et d’algorithmes plus efficaces semblaient promettre 
des applications pratiques h I’avenir. 

Les travaux de recherche sur les mtthodes de discrttisation et les algorithmes pour les equations d’Euler se poursuivent 
aujourd’hui, principalement h cause du fait que les flux convectifs (c’est-h-dire ad’Eulen,) jouent un r61e prtdominant dans 
les mtthodes de I’aCrodynamique numtrique au niveau immuiatement suptrieur de la modtlisation mathtmatique de 
I’tcoulement, c’est-&-dire au niveau des Cquations Navier-Stokes. Paralltlement A ces dtveloppements pourtant, les cccodesw 
Euler ont atteint un niveau de proliftration au sein de la communautt de l’atrodynamique atrospatiale qui justifie une revue 
de l’6tat de l’art. 

I1 convient de noter, ici, que les mtthodes d’Euler ne sont pas utilistes uniquement pour la simulation d’6coulements pour 
lesquels la modtlisation du rotationnel est obligatoire, tels que les tcoulements tourbillonnaires de bord d’attaque et les 
Ccoulements avec simulation de la propulsion car, en raison du fait que les mtthodes de calcul des Ccoulements potentiels 
transsoniques ne sont jamais arrivtes A maturitb, les codes d’Euler sont utilists aussi pour les Ccoulements non 
tourbillonnaires autour de gtomttries complexes. 

L’objectif de cette AGARDographie est, donc, de donner un apequ de l’ttat de l’art dans le domaine de I’atrodynamique & 
partir des equations d’Euler. En matitre d’application de la technologie l’accent est mis sur la simulation numtrique 
d’tcoulements externes autour de vthicules atrospatiaux. Les flux internes et les applications turbomachines ne sont pas 
traitts en profondeur, mais simplement abordCs, le cas hh tan t .  

En matitre de ccpublic,,, cette AGARDographie est destinte, en premier lieu, h I’atrodynamicien concern6 par le CFD qui 
souhaite se familiariser avec ce domaine. Cependant, elle est susceptible d’inttresser aussi le manager d’Ctude et de 
conception en matikre d’atrodynamique de gtnie atrodynamique et de lui faire savoir si ses outils CFD correspondent & 
ccl’ttat de l’art, ou sinon, quelles sont les amtliorations et quelles sont les nouvelles capacitts & rechercher. Enfin, elle 
pourrait apporter une aide & la communaute des chercheurs dans l’identification de projets futurs. Pour ceux qui 
souhaiteraient consulter des ouvrages de carac t te  gtntral sur I’atrodynamique numtrique et les mtthodes d’Euler, un certain 
nombre de rtftrences sont propostes h la fin de cette Introduction et avant-propos. 
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Le chapitre 1 prtsente l’essentiel de la thtorie de la thermodynamique et des fluides ntcessaire h la comprthension de la 
physique modelte par les tquations d’Euler. Le chapitre 2 donne la description de mtthodes numtriques et d’algorithmes. 
Bien que cette description soit donnte du point de vue du sptcialiste CFD, le lecteur devrait pouvoir identifier les descriptions 
des algorithmes donntes dans ce chapitre en se servant des mtthodes donntes dans le chapitre suivant. Compte tenu de ces 
objectifs, les auteurs partageaient l’avis que l’essentiel de 1’AGARDographie devait consister en un tour d’horizon et un 
descriptif des theories numtriques et des algorithmes, ainsi que des capacitts et des limitations des principaux codes d’Euler 
actuellement utilises par les pays membres de I’OTAN. Ayant cet objectif en w e ,  des demandes ont t t t  adresstes aux 
Ctablissements, aux industries et aux particuliers, qui, h la connaissance des auteurs, ttaient, ou avaient t t t  actifs dans ce 
domaine. Les rtponses obtenues sont expostes au chapitre 3, avec des exemples d’applications au chapitre 4. 

La rtdaction de cette AGARDographie a ttt un vtritable travail d’tquipe, mobilisant des scientifiques de ]’Europe et de 
1’AmCrique du Nord. Chacun des auteurs a contribut h plusieurs, sinon h I’ensemble des chapitres. En outre, chaque auteur 
ttait responsable de la coordination des efforts consacrts h un chapitre en particulier, c o m e  suit : 

Chapitre 1 Nigel Weatherill 
Chapitre 2 Philippe Morice 
Chapitre 3 
Chapitre 4 

La rtdaction et la mise en forme ont represent6 un travail considerable. Nous tenons h remercier les auteurs de leurs efforts et 
leur enthousiasme, ainsi que leurs organisations respectives, sans lesquelles cette publication n’aurait pas vu le jour. 

Nos remerciements sont tgalement dos aux difftrentes personnes de la majorit6 des pays de I’OTAN qui ont foumi des 
informations aux auteurs. Sans leur concours, cette AGARDographie aurait t t t  moins complkte. 

Herbert Rieger et Wolfang Schmidt 
Jim Thomas et Kyle Anderson 



Nomenclature 
The objective has been to define all symbols locally in the text. 
The main symbols and notations are summarized below. 

General 

Bold 
vectors of variables indicated in bold 

matrices indicated in BOLD capitals 

overbar 
geometrical/physical vectors indicated by an overbar 

_- 
_- Bold 

tensors indicated in Bold with overbar 

A 
circumflex 
indicates quantity expressed in generalized coordinates 

U 

tilde 
denotes quantity obtained through averaging process 

speed of sound 
drag coefficient 
lift coefficient 
side force coefficient 
rolling moment coefficient 
pressure coefficient (p-p,)/OS*p U: 
Courant number 
specific heat at constant pressure 
specific heat at constant volume 
dissipation flux tensor 
= (P-P-YP- 
total energy per unit volume 
internal energy per unit mass 
Flux vector/tensor with components f,g,h (or 
F,G,H) 
force (vector) 
gravitational constant 
total enthalpy 
enthalpy per unit mass 
Cartesian unit vectors 
Jacobian of coordinate transformation 
reduced frequency 
Mach number 
normal vector 
Prandtl number 
pressure 
vector of primitive variables 
universal gas constant, residual 
Riemann variables 
Reynolds number 
position (vector) 
discontinuity surface 
entropy per unit mass 
temperature 
time 
contra-variant velocity components 

- 
U 
V 
V 

V 
- 

W 

x,y,z 

Greek 

a 
P 
r 
Y 

At 
Ax,Ay,Az 

A5,AOLr 
6 

S X  

8 

h 
P 
V 

5 

L%Lr 
P 
c 
0 

z 

Y 
n 
0 

Subscripts 

ij ,k 
min 
max 
m 
n 

T 
t 

0 

velocity of moving surface 
volume 
specific volume 
velocity vector with Cartesian components 
U,V,W 
vector of conserved variables 
Cartesian coordinates 

angle of attack 
angle of side slip 
circulation 
ratio of specific heats 

time step 

spatial steps 

finite difference (operator) 

vorticity (vector) 

weighing factor in generalized explicit/ 
implicit difference scheme (section 2.1) 
spectral radius or eigenvalue 
averaging operator 
kinematic viscosity 
weighting factor in generalized forward/ 
backward difference formulae (section 2.1) 
curvilinear coordinates 
density 
boundary of domain ZZ 
= At/Sx 
compressibility of a gas or fluid, artificial 
time 
stream function 
volume of a domain 
angular velocity, relaxation factor 

refers to spatial mesh point location 
minimum value 
maximum value 
mean value 
normal (component) 
stagnation value 
at constant temperature 
tangential component, time derivative 

components in x,y,z,/c,q,[ directions 

derivatives with respect to x,y,z&,q,I; 

00 freestream value 

Superscripts 

n iteration/time level 
T transposed (matrix) 
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Chapter 1 
Basic Theory 

1.1 FLUID, GAS AND THERM0 DYNAMICS 

A general definition of a fluid is any material that cannot sustain 
a tangential, or shearing force when at rest and that undergoes a 
continuous change in shape when subjected to a stress. This 
continuous and irrecoverable change of position of one part of 
the material relative to another part when under shear stress 
constitutes flow, a characteristic property of fluids. In contrast, 
the shearing forces in a solid, held in a twisted or flexed 
position, are maintained; the solid undergoes no flow and can 
spring back to its original shape. 

Various simplifications, or models, of fluids have been devised 
to analyze fluid flow. The simplest model, and the one primarily 
of interest in  this document, called a perfect, or ideal fluid is one 
that is unable to conduct heat or to offer any internal resistance 
to one portion flowing over another. A perfect fluid cannot 
sustain a tangential force, that is, it lacks viscosity and is called 
an inviscid fluid. 

The study of the effects of forces and energy on liquids and 
gases is known as fluid mechanics. Like other branches of 
classical mechanics, the subject subdivides into statics (often 
called hydrostatics) and dynamics (fluid dynamics, 
hydrodynamics, or aerodynamics). Hydrostatics is a 
comparatively elementary subject with a few classical results of 
importance but little scope for further development. Fluid 
dynamics, in contrast, is a highly developed branch of science 
that has been the subject of continuous and expanding research 
activity from around 1800 to the present day. 

The development of fluid dynamics has been strongly influenced 
by its numerous applications. In the area of aeronautical 
engineering and the study of flight the importance of fluid 
dynamics is obvious. 

Traditionally, fluid dynamics has been studied both theoretically 
and experimentally. The phenomena of fluid motion, as will be 
described in the following sections, are governed by known 
laws of physics - conservation of mass, the laws of classical 
mechanics (Newton's laws of motion), and the laws of 
thermodynamics. As will be demonstrated, these can be 
formulated as a set of nonlinear partial differential equations, 
and in principle one might hope to infer all the phenomena from 
these. In practice, this has not been possible; the mathematical 
theory is difficult and the nonlinear nature of the equations are 
not amenable to classical mathematical approaches. More 
recently, with the advent of high speed computers, the science 
of computational fluid dynamics has emerged which aims to 
solve the governing fluid flow equations with the use of 
numerical techniques which are carried out in the computer. 
However, the complexity of the problems associated with either 
the mathematical or computational approaches to fluid dynamics 
necessitates the continuing research in observations of fluid 
motion both in the laboratory and in  nature. 

Traditionally, liquids and gases are classified together as fluids 
because, over a wide range of situations, they have identical 
equations of motion and thus exhibit the same phenomena. 
However, in the applications to be discussed here, flow speeds 
are comparable with that of the speed of sound, where the 
density of the fluid changes significantly. This phenomena is of 
practical importance only for gases. However, throughout the 
document the term fluid will be assumed to be used in a generic 
sense, with the implied assumption of application to gases. 

Some of the issues alluded to in this introduction will now be 
considered in further detail. The intention is that, within this 
chapter, the basic formulations required in the study of 
computational inviscid aerodynamics will be presented. 

1.1.1 Compressibility of Gases 

In general terms, a compressible flow is one in which there is a 
variation in density of the fluid. This rather vague definition 
must be enhanced if i t  is to be of value. Consider a small 
element of fluid of volume V, in which the pressure exerted 
upon i t  is p. If the pressure is increased by a small amount 6p, 
the volume of the element will be compressed by an amount 6V. 
Hence the compressibility of the fluid 7, can be defined as 

which, in  the limit, can be expressed in derivative form as, 

(1.1 . l )  

The negative sign indicates a decrease in volume for an increase 
in pressure. 

Compressibility is, therefore, the fractional change in volume of 
the fluid per unit change in pressure. However, this description 
is not adequate, since when a gas is compressed the temperature 
will, in  general, change. Hence, it is necessary to introduce the 
idea of an isothermal compressibility in which the temperature 
is held constant. The definition is now extended to 

(1.1.2) 

where the subscript T denotes that the change in volume takes 
place at constant temperature. 

Alternatively, if no heat is added to, or taken away from, the 
fluid element (i.e. the compression is adiabatic) then the 
compressibility is isentropic and is defined as 

( 1 . 1  :3) 

where now the subscript S denotes that the change in volume 
takes place at constant entropy. If the fluid element is assumed 
to have a unit mass, v is then the specific volume and the density 

1 p = 7 Eq. (1.1.1) can then be expressed in  terms of the density 
in the form 

(1.1.4) 

It is evident from Eq. (1.1.4) that whenever a fluid experiences 
a change in pressure, dp, the corresponding change in density 
will be dp, where 

dp = p 7 dp (1.1.5) 

From this statement, it is clear that all fluids are compressible to 
some extent. However, some fluids have very low values of 
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compressibility. For water, m /N at 1 
atmosphere(atm), whereas, gases have a high compressibility, 

typically, for air T T = 5 x 10 m IN at 1 atm. The concept of 
an incompressible fluid is an assumption which is only true if 
density changes are negligibly small. Primarily, in this 
document flow conditions are such that changes in density are 
significant and the approximation of an incompressible fluid 
cannot be made. 

7 T = 5 x 10 

-5 2 

1.1.2 Gas Laws 

The relationships between the volume of a gas and its 
temperature and pressure are fundamental properties of gases. 
These relationships are described in the so-called gas laws: 

The first law is due to Boyle and states that the volume of a 
given quantity of gas, V, varies inversely with the pressure 
exerted on it, if the temperature is constant. From experiment the 
constant of proportionality can be found and then Boyle's law 
can be written 

V=kl/p. 

The second law is due to Charles and states that the volume of 
gas varies directly as its absolute temperature, if the pressure is 
kept constant. Again the constant of proportionality can be 
determined from experiment and then Charles's law written as 

V=k2T. 

If both pressure and temperature are changed at the same time, 
both these equations must be used to calculate the change in 
volume, pressure or temperature. A single equation can be 
derived from Boyles's and Charles's laws: the product of the 
pressure and the volume equals the product of the temperature 
and a constant, called the universal gas constant, R. This can be 
written as 

pV' = RT, (1.1.6a) 

where V' is the volume of one mole of gas. 

It is possible to also derive this fundamental gas relationship 
from the kinetic theory of gases. I t  is known that molecules 
possess a force field which interacts with neighbour molecules. 
A perfect gas is one in which these intermolecular forces are 
negligible. From this assumption it is possible to derive from 
kinetic theory the equation of state for a perfect gas. 
Historically, the equation of state was derived in the form 

pV = MRT ( 1.1.6b) 

where V is the volume of the system, M is the mass of the 
system, and is equivalent to (1.1.6a). Many different forms of 
this equation can be derived. It follows that, on dividing by the 
mass of the system, (1.1.6) can be expressed as 

pv = RT (1.1.7) 

where v is the specific volume, or, alternatively, using the fact 

that p = as 1 

p = p R T .  ( 1.1.8) 

Other expressions are also possible. 

It is worth considering the accuracy of the assumption of a 
perfect gas. Experimentally, it has been determined that, at low 
pressures (near 1 atm or less) and at high temperatures (273 
Kelvin(K) and above), the value pv/RT for most pure gases 
deviates from unity by less than 1 percent. 

An ideal gas, or perfect gas obeys the gas relation. 

However, at very low temperatures and high pressures, 
molecules are more closely packed and intermolecular effects 
can be significant. Under these conditions, the gas is defined as 
a real gas. In such cases the perfect gas relations (1.1.6 - 1.1.8) 
are replaced by more accurate relations. 

The first serious attempt to understand the behaviour of real 
gases was made by van der Waals in  1873. The van der Waals 
equation, 

(1.1.9) 

contains the two adjustable parameters a and b which are 
dependent upon the gas. Eq. (1.1.9) shows that, with molecular 
attraction, the pressure p is incremented by the term 4v2, whilst 
the finite volume occupied by the molecules reduces from v to 
(v-b). There are now over 100 emperical thermal equations of 
state available for a whole range of gases. Of the two best 
known, one contains 5 adjustable parameters whilst the other 
contains 8 such parameters. These equations can reproduce the 
complete range of pressure, volume and temperature behaviour 
from gas phase to condensation. The main use of such relations 
is that, through interpolation, the behaviour of the gas at non- 
measured values can be approximated. 

One of the most convenient ways of expressing the thermal 
equation of state for a real gas is to use the vinal equation of 
state. This can be expressed as 

a ( p +-) ( v - b ) = RT 
V2 

The quantities B(T), C(T), D(T), etc. are called the second, third 
and fourth virial coefficients, the first virial coefficient being 
unity. They are all independent of the gas pressure and density, 
and dependent upon the temperature only. Clearly for a perfect 
gas this reduces to the ideal gas law. 

In the microscopic view of a gas, individual molecules are in  
random motion, colliding with other molecules. Evidently, there 
are many forms of energy inherent to motion of this type. The 
internal energy, e, of a gas is the total sum of all these different 
energies. If the particles of the gas are in a state of maximum 
disorder, then the system of particles is in equilibrium, i.e. no 
gradients in velocity, pressure, temperature and chemical 
concentrations exist in the system. It proves appropriate to 
introduce a further property of a gas and that is enthalpy. The 
enthalpy, h, is defined, per unit mass, as 

h = e + p v  (1.1.10) 

If a gas is not chemically reacting, and intermolecular forces are 
ignored, then the resulting system is a thermally perfect gas 
where internal energy and enthalpy are functions of temperature 
only and where the specific heats at constant volume and 
pressure, cv and cp, are also functions of temperature only: 

e = e(T), h = h(T), de = cv dT, dh = cP dT. (1.1.11) 

The ratio c@. = 'y, where, for air at standard conditions, ~ 1 . 4 .  

For a real gas it should be noted that the internal energy and 
enthalpy are functions of both temperature and volume, i.e. 

e = e(T,v), h = h(T,p). (1.1.12) 

If the specific heats are constant, the system is a calorically 
perfect gas, where 

e = cv T, h = cp T. 

Useful expressions for the specific heats are 

(1.1.13) 
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YR cp =- 
Y- 1 

( 1.1.14) 
For a given &, there are many ways in which heat can be added 
and work done on the system. Some of particular interest are 

Adiabatic process - one in which no heat is added to or taken 
from the system. 

Reversible process - one in which no dissipative phenomena 
occur, i.e.. where the effects of viscosity, thermal conductivity 
and mass diffusion are absent. 

Isentropic process - one which is both adiabatic and reversible. 

The second law of thermodynamics states in  which direction a 
thermodynamic process will occur. To provide a more formal 
definition, the state variable entropy is introduced as 

and 
R cv = - 
Y- 1 

(1.1.15) 

Eqs (1.1.14) and ( 1.1.15) are valid for a thermally or calorically 
perfect gas but are not valid for either a chemically reacting or a 
real gas. 

In many compressible flow applications the pressures and 
temperatures are such that the gas can be considered as 
calorically perfect. However, it should be noted that in some 
applications associated with hypersonic flows, where 
temperatures can be high, the assumption of a calorically perfect 
gas is invalid. At excessive temperatures, where molecules start 
to dissociate, chemical reactions occur and then the internal 
energy depends on both the temperature and volume, and the 
enthalpy on temperature and pressure. As the temperature of a 
gas increases it changes behaviour from calorically perfect to 
thermally perfect. 

The behaviour of gases at high temperatures can be predicted 
accurately using statistical mechanics. Many varied forms of 
behaviour can be studied using these ideas and the fundamental 
relationships relating temperature and pressure to density and 
enthalpy can be derived. 

Air at normal room temperature and pressure is composed of 
approximately 79% nitrogen, 20% oxygen and 1% trace 
species. Hence, to a reasonable level of approximation the 
behaviour of the 2 species, oxygen and nitrogen are important. 
As the temperature is  increased to within the range 
2500K<T<9000K, chemical reactions take place between 
oxygen and nitrogen, producing not only 0 2  and N2 but also 0, 

N, NO, NO', and e-. If a fixed temperature and pressure are 
maintained, then in time the condition of chemical equilibrium is 
reached. In the case of an equilibrium chemically reacting gas, 
the chemical composition i.e. the amounts of each species, is 
determined uniquely by the pressure and temperature. In the 
time required to reach steady state, the behaviour is that of a 
non-equilibrium chemically reacting gas. 

Details of the gas laws for these different states can be found in 
appropriate texts1f2. For an equilibrium chemically reacting gas, 
in addition to the flow equations, it is necessary to determine the 
chemistry of the gas. In general, if the gas has K species and H 
elements then (K-H) independent chemical equations are needed 
together with equations for mass balance and partial pressures. 
For air, with elements 0, N and electric charge e-, and 7 
species, 0 2 ,  N2, 0, N, NO, NO', and e- this results in 7 non- 
linear, simultaneous algebraic equations. 

When non-equilibrium chemical reactions are considered, i t  is 
necessary to also determine the evolution of the chemical 
species. This is achieved by solving the appropriate chemical 
rate equations, which take the form of 

where ai are the mass fractions of the chemical species, and Qi 
are the source terms. 

It is useful at this stage to consider further definitions related to 
compressible gas dynamics. The first law of thermodynamics 
states that the heat added to a system, 69, and the work done on 
the system, 6w, cause a change in energy, and since the system 
is stationary, this change in energy, 6e, is 

6e = 6q + 6w 

where s is the entropy of the system, 6q is an incremental 
amount of heat added reversibly to the system, and T is the 
system temperature. Alternative definitions exist, such as 

(1.1.16) 

which clearly states that the change in entropy during an 
incremental process is equal to the actual heat added divided by 
the temperature plus a contribution from the irreversible 
dissipative phenomena of viscosity, thermal conductivity and 
mass diffusion occurring within the system. These dissipative 
phenomena always increase the entropy 

dsirrev > 0. 

The entropy can be computed from a variety of expressions, 
such as 

Tds = de + p dv 
and 

(1.1.17) 

T ds =dh - v dp (1.1.18) 

Above, an isentropic process was defined as adiabatic and 
reversible and hence ds = 0. i.e. the entropy is constant. 

Disturbances in fluids are transmitted through the flow field by 
molecular action. Molecules collide with their neighbours, 
transferring the newly acquired energy to others. This wave of 
energy travels through the air at a velocity that is related to the 
molecular velocity. The energy increase causes the pressure, as 
well as density and temperature, to change slightly. In this way, 
any disturbance is propagated throughout the flow field. As will 
be described, the velocity at which disturbances are propagated 
is of central importance to the field of aerodynamics. 

Consider a sound wave moving with velocity, a, through a gas. 
The flow through the sound wave is one dimensional. Applying 
conservation of mass across the wave front, leads to 

pa = (p+dp) @+dah ( 1.1.19) 

which, if products of small quantities are ignored, leads to 

( 1.1.20) 

Conservation of momentum across the wave front, can be 
similarly be expressed as 

p+pa2 = (p+dp) +(p+dp) (a + da)2 (1.1.21) 

Expanding and using Eq. (1.1.20) to find da, gives an 
expression for the speed of sound; 
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(1.1.22) 

The changes which occur across the wave front are small. This 
implies that the irreversible, dissipative effects of friction and 
thermal conduction are negligible. Further, there is no heat 
addition to the system, and hence the process inside a sound 
wave is isentropic. Hence, the rate of change of pressure with 
density is an isentropic change and hence Eq. (1.1.22) can be 
written 

(1.1.23) 
a2 = 

This equation demonstrates that the speed of sound is a direct 
measure of the compressibility of a gas. Using the expression 
for compressibility, Eq. (1.1.23 ) can be written as 

a =  dn = 5 (1.1.24) 

In turn, for a calorically perfect gas this can be expressed as 

( 1.1.25) 

It is noted that for a perfect gas the speed of sound is a function 
of temperature only. At standard sea level conditions the speed 
of sound is 

a, = 340.9 m/s = 11 17 ft/s. 

For aeronautical flows, a useful classification of flows arises if 
the local speed, q, is normalised with respect to the speed of 
sound. This normalisation introduces the concept of the Mach 
number M. defined as 

M = 9 .  (1.1.26) 

Three natural classifications of different flow regimes then 
follow; 

a 

M < 1  subsonic flow 

M = l  sonic flow 

M > 1  supersonic flow. 

The Mach number plays an important role in aeronautics, since 
the physical nature of flows is radically different dependent 
upon the Mach number. Clearly, interesting phenomena are to 
be expected if an object is travelling at a speed which is greater 
than that at which disturbances created by it are propagated. 
Further discussions on this will be given later in this document 

1.1.3 References 

1 .  LIEPMANN H. W. and ROSHKO A., Elements of 
Gasdynamics, Wiley, New York, 1957. 

2. ANDERSON J. D. Modern Compressible Flow, McCraw- 
Hill, 1989. 
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1.2 CONSERVATION EQUATIONS FOR 
INVISCID FLOWS 

The fundamental equations of fluid dynamics have been known 
for over a century. The French engineer Claude-Louis-Marie 
Navier and the British physicist George Gabriel Stokes are 
credited with the original derivation, and hence the governing 
fluid flow equations are known by their respective names. On 
the basis of a molecular hypothesis, Navier arrived in 1827 at a 
theory of elasticity of isotropic solids (solids in which elasticity 
is uniform in all directions) that contained only one elastic 
constant. Later in 1845, Stokes, using phenomenological 
concepts, produced the modern theory which invokes concepts 
of shear and bulk modulus. Careful experiments later confirmed 
the work of these two scientists. These equations govern the 
dynamics of all fluid flow and i t  is only the imposed boundary 
conditions and the physical nature of the fluid which 
distinguishes the different fluid motions. 

Before Navier and Stokes, the Swiss scientist Leonhard Euler 
had derived in 1775 a set of equations valid for a fluid assumed 
to be non-viscous and non-heat conducting. These equations are 
a subset of the Navier-Stokes equations where the viscous and 
heat conduction terms are neglected. 

The dynamics of fluid motion are governed by fundamental 
physical principles. To construct the relevant equations for fluid 
motion it is necessary to select the appropriate laws of physics 
and to apply them to a suitable model of the fluid. From these 
the governing mathematical equations can be extracted. The 
properties of a fluid will be fully defined once the velocity field 
v , pressure p, density p and temperature T are known, in the 

Eulerian sense, as functions of the space coordinate f and the 
time t so as to satisfy a sufficient set of boundary and initial 
conditions. 

All fluids satisfy the laws that mass, momentum and energy are 
conserved. The conservation of momentum is equivalent to 
Newton's laws of motion, in  particular, the force applied to a 
body is equal to the product of the body's mass and its 
acceleration. These physical laws, in  principle, are sufficient to 
enable the equations for fluid motion to be derived. However, it 
is clearly necessary, before these laws can be implemented, to 
define and describe how a fluid is to be modelled. 

- 

A fluid can be thought of in a number of different ways. For 
example, on a microscopic scale, a fluid element of volume dV 
which, although infinitesimal on a macroscopic scale, will 
contain a representative number of molecules, ndV. For a 
monatomic gas, it can be assumed that these molecules move at 
constant but widely different and independent velocities, with 
collisions between molecules taking place in a random manner. 
Application of the fundamental physical laws to this model of a 
fluid, often called the kinetic theory, would result i n  an 
appropriate mathematical description of fluid flow. 

Alternatively, a fluid can be thought of at a macroscopic level, 
and the physical laws applied to a closed small fluid element, 
which is, however, large enough to contain a very large number 
of molecules so that i t  can be viewed as a continuous medium. 
This approach invokes the continuum hypothesis on which 
many classic theories of fluid motion are based. 

Whichever model of a fluid is chosen it is to be expected that the 
resulting governing equations are equivalent. In this section the 
equations which govern inviscid, non-conducting fluids will be 
derived. 

1.2.1 Governing Equations 

Derivation f rom Kinetic Theory 

The approach relies upon the fact that the Euler equations of 
fluid mechanics can be obtained by taking moments of the 
Boltzmann equation, with a Maxwellian velocity distribution 
function. 

The Boltzmann equation from the Kinetic Theory of gases can 
be expressed as, 

afv - af 
at a x  -+  v .- = J, (1.2.1) 

where fv is the velocity distribution function which gives the 

number density, in phase space, of molecules with position x 
and velocity 7 at time t. The function, J, on the right hand side 
of the equation, represents a molecular collision term which 
vanishes in the Euler limit. The Maxwellian velocity distribution 
in 2 dimensions is given by 

- 

where P=1/(2RT), p=mass density, T the temperature, R the 
gas .constant per unit mass, v = ( v I , v ~ ) ~  is the molecular 

velocity vector, Y = ( U , V ) ~  is the fluid velocity vector, I the 
internal energy variable corresponding to non-translational 
degrees of freedom needed to force the given value of y for the 
gas consisting of pseudo particles, Io is the internal energy due 

to non-translational degrees of freedom , and y the ratio of 
specific heats. 

- 

The Euler equations can be derived by taking moments of the 
Boltzmann equation. The appropriate moment vector is defined 
as 

(1.2.2) 2 2  T 
= [l,V],V2, I + (Vl+V2)/21 

Applying the moment vector Eq. (1.2.2) to the Boltzmann 
equation, Eq. (1.2.1), leads to the Euler equations in the familiar 
differential form, 

af  
at ax, ax2 +-+ ik =o, 

where 

(1.2.3) 

(1.2.4) 

and the equations of state, with p the density, u,v the Cartesian 
velocity components, p the pressure and E the total energy per 
unit volume. The relationship between the Boltzmann and Euler 
equations can be written as 

a f ~  a f ~  a f ~  aw 
<y,,,+vl q+ v 2 3 ~ 2 >  = -+af+ ik (1.2.5) at ax, ax2 

where the moments are defined as 

m m  m 

(1.2.6) 

with V I  and v2 the components of the molecular velocity vector 

and fM the Maxwellian distribution in 2 dimensions1. It 
follows, therefore, that the following relations hold 
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The formulation presented thus involves two levels; the 
Boltzmann level, Eq. (1.2.1), and the Euler level, Eq. (1.2.3), 
with the connection given by the moments defined in Eq. 
(1.2.6). 

Eulerian Approach to the Governing Equations 

From a macroscopic continuum approach the governing 
equations of fluid motion are derived by considering the three 
fundamental physical principles that 

a) mass is conserved, 
b) force = mass x acceleration 
c) energy is conserved. 

If each of these physical laws are applied in a control volume 
formulation the governing motion of a fluid can be derived2. 

Consider an arbitrary, but stationary, control volume R, as 
shown in Fig. 1.2.1, bounded by a closed surface 2, which has 
an outward unit normal vector n at a point A on the surface. 
Let d e  be an incremental area on the bounding surface around 

point A. Define dC =n dC.  Let 7 and p be the local 
velocity and density at the point A, respectively, with 7 at an 
angle 0 to X. 

- 

Figure 1.2.1 Domain R enclosed by contour C. 

Mass Conservation 

The mass flow through any surface arbitrarily oriented in a 
flowing fluid is equal to the product of density, the component 
of velocity normal to the surface, and the area. Thus, 

_ _  
mass flow = p (Vcos 0) dC = p Vn dC = p v . n dC 

The net mass flux into the control volume R, through the entire 
control surface C, is the sum of all incremental mass flows, i.e. 

- j p u . n d Z  

The negative sign indicates that the mass flow is into the control 
volume in the opposite sense of the outward vector n. The total 
mass inside an incremental control volume is p dR. Hence, the 
total mass in R is the volume integral 

c 

R 

Since, in the absence of any mass sources or sinks, the mass of 
the fluid is conserved then, the time rate of change of the mass 

in the domain R must equal the change in mass across the 
domain boundary C. Hence, in integral form, this can be written 
as 

(1.2.8) 

This is the continuity equation, or conservation of mass 
equation, in integral form. 

Conservation of momenta 

Newton’s second law can be stated as the time rate of change of 
momentum of a. body equals the net force exerted on it. This 
principle is valid for the control volume, R and when applied 
leads to the equation for the conservation of momenta. 

Consider first the contribution to the forces. The net forces 
acting on the volume, excluding frictional forces can be thought 
of as taking two forms. Firstly, body forces acting on the fluid 
inside R. Such forces arise from, for example, electromagnetic 
or gravitation effects. If r denotes the body force per unit mass 

of fluid, then the force on an incremental volume dR is equal to 
the product of the mass and the force per unit mass, namely 
(pdR)T. For the entire control volume this is summed to give 

j p f d R  

R 
The second type of force on the fluid arises from surface effects. 
These arise from pressure and shear stress distributions over the 
surface. Since, here only inviscid fluids are to be considered, 
these latter contributions will be ignored. The pressure force 
acting on an elemental area T d Z  is - p T d C ,  where the 
negative sign indicates that the pressure acts inwards. The 
pressure effect can be summed to give a contribution to the 
forces from pressure over the complete surface in the form 

- p T d Z .  

c 
The principle of conservation of momenta can be applied within 
a control volume. The mass, in the control volume, can be 
expressed as p v .  n d Z ,  which has a momentum of 
(p v . n dC) v . The net rate of flow of momentum is, 
therefore, 

- -  
-- - 

In addition to this contribution, there can arise a contribution of 
momentum of ( p d R ) u  for an elemental volume dR,  from 

unsteady effects taking place within the control volume R. 
Hence, another contribution should be added in the form of 

n 
The conservation of momentum now gives 

(1.2.9) 



Equation (1.2.9) is called the momentum equation for inviscid 
flow and is presented here in its integral form. 

Conservation of Energy 

Finally, it is necessary to consider the equation for energy. 
Energy cannot be created or destroyed, it can only change its 
form. If the energy principles are applied to the control volume 
R then clearly, the rate of heat added to the fluid plus the rate of 
work done on the fluid is equal to the rate of change of energy 
of the fluid as it flows through the control volume i.e. energy is 
conserved. 

If the rate of heat added per unit mass is q, then the rate of heat 
added to an incremental volume with mass (pdR) is q(pdR). 
Summing all such effects with the control volume R, gives 

The pressure force acting on the elemental area dC is -pdC. The 
rate of work done on the fluid which passes through Y d E  with 

velocity 7 is therefore, (-p n dC) v . Hence, over the complete 
surface the contribution is 

_ -  

- 
The rate of work done by the body force, f per unit mass on 
the elemental volume d R  is ( p r d R ) . v  and thus the 
contribution for the entire control volume is 

The internal energy, for a stationary fluid was previously 
represented as e. If the fluid is also in motion then, in addition, 

i t  possesses kinetic energy in the form o f i y 2 .  Hence, the total 
energy per unit mass of the moving fluid is the sum of the 

internal and kinetic energies, e+ iT2. For an elemental control 

surface dC, the f lux of energy across dC is v . n dE(e+ i T 2 ) , .  
For the complete bounding surface this sums to 

-- 

- -  I p v . n ( e + i u 2 )  dC 
C 

The time rate of change of energy i n  R due to transient 
variations of the flowfield variables can be expressed as 

R '  

Hence, rearranging the integrands, and applying the law that the 
time rate of change of the conserved quantity must be equal to 
the flux through the boundary surface, together with production 
terms, leads to 

- -  d 

sr 

j(qp)dR - I p F T d C +  (p  T d Q . 7  (1.2.10) 
R C R 

It should be noted that this energy equation does not include 
work done by viscous stresses or heat added to the system due 
to thermal conduction and diffusion. Equation (1.2.10) 
represents the conservation of energy written in integral form for 
an inviscid fluid. 

The conservation equations derived above Eq. (1.2.8), (1.2.9), 
and (1.2.10) represent, in 3 dimensions, 5 equations for the 6 
unknowns p,u=(u,v,w), e and T. The system of equations is 
closed with the addition of an equation of state, namely, 

p=pRT 

These together with the thermodynamic relation e=e(T,v) which, 
as discussed previously, simplifies to e=cvT for a perfect gas, 
are sufficient equations to analyse inviscid compressible flows 
of an equilibrium gas. These equations can be written in many 
different forms, and two are worthy of note here since they will 
be used later. 

1.2.2 Governing Equations in 
Conservative Integral Form 

To standardise the equations a unified representation often used 
in computational aerodynamics is 

a; a j w d R  + j T . n d C  = d p f , d R  (1.2.1 1 )  

z 51 

The conserved variable w and the Cartesian f lux function 
are given by : 

W= [[I 
and the force vector 

0 

- _  
f . v  

E =  [ pv2+p H ]  h 

, pwH 

where, u,v and w are the Cartesian velocity components, E and 
H=h+V /2 are, respectively, the total energy and total enthalpy 
per unit volume. The temperature T is obtained from the 
equation of state which closes the system, namely 

2 

p=pRT. 
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1. Physics of Inviscid Flows 1.2.3 Governing Equations in Conservative 
Differential Form 

Integral forms of the equations, derived from an analysis of 
conservation laws within a domain, can be converted to 
representation at a point using the well known vector identities, 

jx.ndX = j ( V . G ) d R  ( 1.2.1 2) 

z R 

and 

J a d z  = J ( v 8 ) d ~  (1.2.13) 
c R 

- 
where A and 0 are arbitrary vectors and scalars, respectively. 

It can be readily shown that the application of Eq. (1.2.12) and 
(1.2.13) to Eq.(I.2.11) leads to the following differential forms 
of the governing equations of inviscid fluid motion. 

- 
$ + V . ( p v ) = O  at 

a(P4 a -&- + V.(puV)  = - g + pfx 

$ +Pfy 
%PV) -&-+ V.(pv v ) = - 

y +V.(pwV) = - 2 + pf, 

- 
(1.2.14) 

and 

- _  a (pE)+V.(pEV)=-V.(pu)+pq+p( f . v ) 

Again, the equation of state, Eq. (1.1.8) 

p=pRT 

and the energy relation 

e = e(T,v) 

augment these equations. 

1.2.4 Rotating Frame of Reference 

In many applications it is necessary to describe the governing 
equations in a rotating frame of reference. If the system is 
rotating steadily with angular velocity w around an axis along 
which a coordinate z is aligned, and w is the velocity field 
relative to the rotating frame of reference, then 

- 

- - - -  
v = w + o x r .  

The rotating frame of reference does not effect the conservation 
of mass equation, but introduces additional terms into the 
momenta and energy equations. Full details of the complete 
equations can be found in standard 

It is important to understand both in a mathematical and a 
physical sense the consequences of neglecting the viscous 
stresses inherent to any fluid. Reviewing the governing 
equations it is noted that the temperature only appears in the 
form of the equation of state and that the flow is governed by a 
system of non-linear partial differential equations of first order. 

The equations describe flows with or without rotation and it is 
appropriate to introduce a relationship known as Crocco's 
equation which, for steady flows, can be written as 

- - 
v x w = VH -TVS 

- 
where V is the velocity vector, w the vorticity vector, H the 
total energy and S the entropy. Thus, neglecting viscosity and 
heat conduction, vorticity is present i n  the field of flow 
whenever the distribution of the total energy H or the entropy S 
is not uniform. This can happen, for example, when the fluid 
starts from a state of rest but of non-uniform temperature, or 
downstream of a curved shock wave. If vorticity is present 
and/or is created, then the convective terms in the Euler 
equations ensure that i t  will be convected around the flow field. 
It also implies that once vorticity has been created it is modelled 
in a mathematically consistent form. The ability of the equations 
to admit vorticity is important i n  such applications as flows 
involving jets, flows involving propeller slip streams and 
rotating systems like propellors and helicopter rotors. 

The uniqueness of a solution derived from the Euler equations is 
ensured by imposing the additional condition that entropy may 
not decrease along a streamline (Second Law of 
Thermodynamics). This then precludes the existence of 
expansion shocks. 

The Euler equations admit 'weak' solutions with contact or 
vortex sheet type discontinuities. This raises the interesting issue 
of how the equations model lift. In the Full Potential equation it 
is necessary to introduce a cut carrying a jump in potential from 
a trailing edge to downstream infinity in order to model the 
circulation in each section of a wing. By contrast, however, 
since vortex sheet discontinuities represent possible weak 
solutions, i t  can be argued that circulation and hence lift are 
phenomena that are inherently modelled by the Euler equations. 

Much discussion has taken place on such issues and many of the 
issues have been resolved through numerical experimentation. It 
is now known that, with suitable artificial viscosity models, 
vortex sheets can be captured like shock waves and that in a time 
dependent solution approach (with artificial viscosity) the 
circulation and lift of airfoils and wings come out at the correct 
level without having to impose a Kutta condition. It is now 
thought that this situation arises because the artificial viscosity 
plays a similar role to real time dependent viscosity. S O ,  
although the Euler equations do not have a mechanism for the 
generation of vorticity, apart from at shock waves, the artificial 
viscosity inherent within the.numerical solution of the equations 
plays a role similar to the physical viscosity in the sense that it 
generates vorticity which can cause, for example, the flow to 
separate. 

It can also be argued that an inviscid shear flow negotiating a 
pressure gradient will separate when the static pressure equals 
the total pressure of the surface streamline. I t  therefore seems 
reasonable that we may expect solutions of the Euler equations 
with added artificial viscosity to exhibit separation and vortex 
sheets when i) sufficient vorticity has been generated through 
the artificial viscosity (in particular, at the surface of a 
configuration) and ii) there are sufficiently large variations in 
flow angle and/or pressure gradients. However, there is a 
general lack of knowledge on the behaviour of the mathematical 
solutions of the Euler equations near non smooth boundary 
surfaces. 
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The amount of vorticity generated by the artificial viscosity is 
dependent upon many aspects of the numerical procedure, 
including mesh characteristics and imposition of boundary 
conditions. In the case of flow around a sharp edge the positive 
and adverse pressure gradients are so large that the 'inviscid' 
separation always takes place. On smooth surfaces 'inviscid 
separation may or may not take place, depending on the amount 
of vorticity generated by the artificial viscosity and local adverse 
pressure gradient. 

Problems and issues raised here may be considered in the more 
general context of existence and uniqueness of steady solutions 
of the Navier-Stokes equations in the limit of vanishing 
viscosity. The conditions for existence and uniqueness of such 
solutions are not generally known. However, there is 
experimental evidence that for finite but high Reynolds numbers 
there may be conditions where a steady flow solution does not 
exist or where there may be multiple steady solutions. 

1.2.6 References 

1. DESHPANDE S. M. "On the Maxwellian Distribution, 
Symmetric Form, and Entropy Conservation for the Euler 
Equations", NASA TP-2583, 1986. 

2. ANDERSON J. D. Modern Compressible Flow, McGraw- 
Hill, 1989. 

3. BATCHELOR G. K. An Introduction to Fluid Dynamics, 
Cambridge University Press, 1974. 

4. HIRSCH C. Numerical Computation of Internal and External 
Flows, Wiley, 1988. 
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1.3 JUMP RELATIONS, WEAK SOLUTIONS, 
RIEMANN PROBLEM 

Discontinuous solutions of the system of Euler equations may 
exist and develop due to the hyperbolic nature of these equa- 
tions. They are actually contained in the integral conserva- 
tion laws for an arbitrary volume R bounded by a surface C 
moving with velocity Uz : 

d - I w d x +  ( F - w U z ) . E , d o = O  (1.3.1) 
dt R z 

Assuming that a discontinuity surface S moving with velocity 
US is present inside R and divides it in two volumes RI and 
R2, we apply the conservation laws separately to each 
volume and subtract the result from Eq. (1.3. l), that leads to: 

I [ ( F - w US ) . iis ] d o  = 0 (1.3.2) 

where [ Q ] stands for ( Q2 - QI ), the jump of Q through S. 

This integral being zero independently of the choice of R, we 
get : 

S 

[ ( F  - w Us ) .  ns ] = 0 (1.3.3) 

Replacing F by its expression we find the "jump relations" : 

[ p ( v - Us ) . n ] = 0 

[ p v ( v - us ) . n + p  n ] = 0 

[ p E ( v - US ) . n + p  v . n ] = 0 

(1.3.4a) 

(1.3.4b) 

(1.3.4~) 

or, after introducing v,, the normal relative velocity of the 
fluid on S 

v , = ( V - U S ) . n  

with v 
Hugoniot relations : 

and vr2 not necessarily equal, we get the Rankine 
I' 

(1.3.5a) 

(1.3.5b) 

[ p E v , + p v . n ] = O  (1.3.5~) 

Further developments follow from considering the value Q of 
the mass flow through S : 

(1.3.6) Q = P Vr = P I  Vi-, = P2 Vr2 

with the decomposition of V into : 

v , = F . i i  and T , = V - v , i i  

Then, Eq. (1.3.5b) gives : 

Q [v, I + [ P  l = O  

Q [ 5  l = O  

and Eq. (1.3%) gives : 

(1.3.7) 

(1.3.8) 

Q [ E I + [ p  v, l = O  (1.3.9) 
or 

Q [ U  ] + [ p  ]US. i i = O  (1.3.10) 

since H = ( E + p / p ). 

The discussion about the properties of a discontinuous solu- 
tion of the Euler system is based on Eq. (1.3.7-9) and 
depends on the value of Q . 

1.3.1 Contact discontinuity - Vortex sheet 

When Q = 0, the mass flow through S is zero, S acts like an 
impervious surface with continuity of the pressure since from 
Eq. 1.3.7 we have : 

[ P  l = O  

It is also clear from Eq. (1.3.9) that 

[v, l = O  

However [ 5 3 is arbitrary and we can distinguish two situa- 
tions : 

a ) [ %  1 # 0  

We have v,, = vn2 but 5 ,  # F2 and the discontinuity is a 
"vortex sheet". 

b )  [ 6 ] = 0 

Then [ 7 ] = 0, velocity and pressure are continuous across S 
whereas p, E,  s, H may have a jump through this "contact 
discontinuity". 

1.3.2 Shock surfaces 

We assume that Q # 0 then from Eq. (1.3.8) we find that 

[ V , ] = O  

The case of [ v, ] = 0 gives the trivial situation where there 
is not any discontinuity through S : 

It appears that we must have [ v, 3 # 0 so that p, p ,  E are 
discontinuous through S. From Eq. (1.3.7) and Eq. (1.3.10) 
we can calculate the normal velocity of the shock : 

- -  [ H I  us = u s .  n = ~ 

[ v . n ]  

We note also that for a steady shock [ H 3 = 0. Therefore, in 
a steady flow, H is constant on streamlines and when H is 
uniform at infinity the energy equation can be replaced by the 
Bernoulli equation : 

H 

From the second principle of thermodynamics one can write: 

d - j ps dr + j ps(V- U,).ii, d o  2 0 
dt R z 

(1.3.11) 

and as for conservation laws we derive the following condi- 
tion for the entropy jump through a shock S : 

[ p s ( u - U s ) . i i s 1 2 0  or 
Q [ s  1 2 0  (1.3.12) ! 

It can be proved that [ s ] = 0 should imply the continuity of 
all variables thus 
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The entropy must increase through a shock along the flow 
direction and from the Rankine-Hugoniot relations, we 
deduce : 

Q [ P  1 > 0 ,  Q [ p I > O .  

Only a compression can occur in a physical discontinuity and 
unphysical "expansion shocks" are ruled out by Eq. (1.3.12). 

the entropy inequality for the flowfield but also to give pre- 
cise information on the choice of the boundary conditions in 
the farfield or at the entrance and exit boundaries and on a 
wall boundary. In fact, little can be said for uniqueness of 
solutions in the large, except that the choice and the role of 
boundary conditions is very important and it suffices to look 
at the problem of a subsonic flow past an ellipse at a given 
angle of attack (T.H. Pulliam6) or at a vortical flow with 
closed streamlines in two dimensions to see the difficulty of 
this question. 

1.3.4 The Riemann problem 
1.3.3 Weak solutions and uniqueness 

The system of Euler equations in conservative differential 
form Eq. (1.2.14) has been derived from the integral conser- 
vation laws by assuming continuity and derivability of the 
physical variables. One can consider that discontinuous solu- 
tions of Eq. (1.2.14) exist only in the sense of distributions. 

To formalize this notion it is necessary to introduce a weak 
formulation of the Euler system of equations. Each equation 
in differential form is first multiplied by a "test function" $ 
infinitely differentiable, then space and time integration by 
parts allows to free physical unknowns from any partial 
derivation. We get : 

[ I  

- gi$ dx dt , for all test functions (I (1.3.13) 
Ill Q 

where gi takes into account the external forces. 

It can be checked that if S-( x , t ) = 0 is the equation of a 
surface on which w and F (w ) are discontinuous we find 
from Eq. (1.3.13) : 

as [ wi ] - + [ Fi ] vs = o  
at 

as vs 
IVS I at IVSP 

and Us = - - - and since iis = - - vs 

We obtain Eq. (1.3.3) 

[ ( F i - w i i i s ) . i i s ] = ~  i = l ,  ..., rn 

The set of weak solutions obeying Eq. (1.3.13) comprises 
discontinuous solutions with both physical and non physical 
discontinuities. As said above, the non physical discontinui- 
ties are the so-called "expansion shocks" satisfying the Rank- 
ine-Hugoniot relations, they correspond locally to a flow with 
a valid compression shock in which the direction of velocity 
should have been reversed. It is necessary, in order to discard 
these non physical weak solutions and thus to avoid non 
uniqueness problems, to take into account the entropy ine- 
quality. 

Theoretical studies have been done on hyperbolic systems of 
conservation laws in order to complement them by an entro- 
py inequality in divergence form with the definition of an en- 
tropy function and of the corresponding entropy fluxes ensur- 
ing that an entropy condition holds (Godunov' , Lax*, Har- 
ten"). Interesting consequences of these studies are the intro- 
duction of "entropy variables" mainly used in the finite ele- 
ment methods (see below Section 2.1) and recent studies on 
discrete entropy inequalities and entropic schemes (Tadmofl, 
Lerats). 

In order to discuss the uniqueness of an Euler flow solution, 
it is necessary not only to look at the discontinuities and on 

The Riemann problem consists of the initial value problem in 
one space dimension with initial data (at t = 0) given by two 
constant states { wL. wR ] separated by an arbitrary discon- 
tinuity located at x = 0. This problem is of special interest 
since it represents (with the inviscid assumption) the unsteady 
flow in a "shock tube" after the bursting of a diaphragm and 
moreover its solution can be found as a system of simple 
waves with only a single nonlinear equation to be solved. 
Another very important reason for introducing the Riemann 
problem is its current use in the design of numerical schemes 
for solving Euler equations since the pioneering scheme of 
Godunov7. 

To study the Riemann problem it is convenient to use not 
only the conservative variables but also (p, v , p )  variables. 

The initial data are : uL = ( pL, vL. p L  ) and 
uR = ( pR, v R ,  p R  ) representing respectively left and right 
constant states. 

At t > 0, the solution depends only on x / t  (it is auto-similar) 
and is made (for a typical shock tube problem with p L  > p R )  
of a rarefaction wave (I-wave), a contact discontinuity (2- 
wave) and a shock (3-wave), with : 

h l = v  - a ,  & = v ,  h 3 = v + a ,  

the eigenvalues of the Jacobian dF/dw each associated with 
a characteristic curve and a Riemann invariant. 

Two constant state: appear betwe2n ',he 5xpansion fan and 
the shock : ( p l ,  v , p  ) and ( pR, v , p ). 

Note the continuity of the velocity and pressure across the 
contact discontinuity. The behaviour of the solution is 
described in Fig. 1.3.1. 

0 

Contact 
1 - Rarefaclion Discontinuity 

\ \ \ \ \  I 3 -Shock 

x = o  

Figure 1.3.1 The Riemann problem 

The details of solving the Riemann problem for the general 
case can be found in many text books (see for example 
Courant and Friedrichs*). 

We give below only some indications on the way towards the 
solution. 
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From ( y - 1)/2 v + a = cst on a 3-characteristics and from 
s = cst on a 2-characteristics both crossing th t  rarefaction 
fan (I-wave), a relation can be derived giving v as a (non- 
linear) function of p *. 

From the Rankine-Hugoniot relations ttrough the shoclk 
another equation can be derived giving v in terms of p . 
Elimination of v *  leads to a n o n - h e y  equation to be solved 
fof p *  by, Newton iteration. Then v is calculated and also 
PL and P R .  

Finally, in the expansion fan made of straight 1- 
characteristics of slope : 6 = xlt = v - a ,  v and a are 
both constant for a given 5. 
By use of ( y - 1)/2 v + a = cst in the expansion fan, v is 
expressed as a linear function of 6 and so is a .  The pressure 
is obtained through the isentropic relation in terms of 
~2 = v 2  I a 2 .  
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M-' = 

1.4 BOUNDARY CONDITIONS 

- 1  0 0 0  

- u / p  0 l l P  0 i] (1.4.7) 
- I I / P  1IP 0 

- i i J / p  0 0 l / p  0 

The time-dependent Euler equations are a hyperbolic system 
of equations. Numerical computations must be done on a fi- 
nite mesh and, thus, waves which are incoming and outgoing 
with respect to the computational domain cross the boundary 
of the mesh. Application of the interior point algorithm at the 
boundary requires information from outside the domain, which 
is generally not completely available. A characteristic decom- 
position at the boundary indicates that the equations represent- 
ing outgoing waves can be differenced using information from 
the computational domain. The equations representing incom- 
ing waves cannot be stably differenced using only information 
available in the interior; hence, those equations need to be 
replaced by boundary conditions. Thus, the number of bound- 
ary conditions to be specified at the boundary comes from a 
straightforward characteristic analysis at the boundary. 

a = The type of boundary condition to be specified is problem de- 
pendent and as Moretti' noted: "A physically consistent model 
of the outside world must be provided." For instance, the up- 
stream boundary conditions to be specified for a subcritical 
two-dimensional converging-diverging nozzle might consist of 
the recognition that the fluid comes from a uniform reservoir 
condition, corresponding to specified total pressure and en- 
tropy conditions, as well as a specification of the direction of 
the velocity. Likewise, since the mass flow through a one- 
dimensional nozzle is known to be set by the back pressure, 
a valid downstream boundary condition is the specification of 
the pressure. The variables at the boundary can be constructed 
from these boundary conditions, supplemented by characteris- 
tic equations corresponding to the outgoing waves applied at 
the boundary. 

1 - U ,  p 0 0 0 
0 fL 0 0 l / p  
0 0 11. 0 0 
0 0 0 It. 0 

1.4.1 Characteristic Equations 

Linearized Equations 

The conservation law form of the time-dependent Euler equa- 
tions are written here as 

(1.4.1) dw aF aG aH - + - + - + - = 0  at a n :  ay a z  

The linearized form of the equations can be written as 

aw aw aw aw 
at an: ay a z  

- + A A -  + B -  + C- = 0 (1.4.2) 

where A, B, C are Jacobian matrices (i.e., A = dF/dw). 
The linearized equations can be cast in terms of a set of 
primitive variables using chain-rule differentiation as 

8 s  8 s  a s  
at . a3: a z  

M- + AM- + + C M -  = 0 (1.4.3) 

where M = aw/dq, M-' = 8q/Dw, and a=M-lAM,.  . .. 
The choice of primitive variables is not unique and is gener- 
ally selected to make the Jacobian matrices a,b,c simpler than 
their counterparts using the conserved A common 
choice is the set 

q =  (1.4.5) 

for which 

(1.4.6) 

(1.4.8) 

from which the eigenvalues of a can be easily computed as 

11,: If,, 'U,  '71, + a ,  I1 - Cl. ( I  .4.9) 

All of the Jacobian matrices have real eigenvalues and a set 
of linearly independent eigenvectors and each, individually, 
can be diagonalized, although not simultaneously since the 
Jacobian matrices do not have the same eigenvectors. The 
characteristic equations result from diagonalizing the Jacobian 
matrices as 

~ + T , A , T ; ~ - + T  aq A T- 1 8 s  - + T ~ A ~ T ; ' -  = o  
at an:  a7/ az 

(1.4. IO)  
where A, ,Ay ,A. are diagonal matrices. 

Considering a plane boundary as coincident with a surface of 
constant 3:, the derivatives i n  the two directions tangent to 
the boundary, y, z ,  can be determined from information on the 
boundary. In  general, the computation of the derivative normal 
to the boundary requires information about the state vector 
at locations outside the computational domain. Defining the 
terms corresponding to derivatives i n  the plane of the boundary 
as a source term S, the equations may be written d4 

where the :I:-subscript notation has been dropped. This can also 
be written in terms of each component of the equation as 

where 1, is the left eigenvector of the Jacobian matrix a, 
corresponding to the ith eigenvalue (and also forms the ith 
row of T-l). 

Characteristic Variables 

If a characteristic variable Vi can be defined to satisfy the 
so-called compatibility equations below 

(1K = 1, t lq  + 1,Sdt ( I  .4.13) 
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0 0 0 112 -112 

0 
T = 0 l O  0 

0 0 1  0 

then Eq. (1.4.12) reduces to a set of wave equations 

(1.4.14) 

for which the characteristic variable is constant along charac- 
teristic curves defined in the 3: - t plane as dn:/dt  = A,.*.' The 
characteristic directions arc sketched in Fig. 1.4. I for subsonic 
and supersonic flow. Positive it. is indicated; outflow condi- 

C+ 

Subsonic flow; outflow (0 > 0) 

dI 
. dii 

dt 
. _ =  

Supersonic flow, oulflow (CI > 0) 

R 1" 

Region interior lo Region exterior lo 

Figure I .4. I Sketch of characteristic directions 
at the boundary. Outflow (inflow) corresponds 

to the exterior domain described by n: > 0 (3: < 0). 

tions correspond to the exterior boundary defined by n: > 0. 
The characteristics are traced back from the new time level 
t"" for the three characteristic directions, C", C+: C-, cor- 
responding to the repeated eigenvalue X I  and A d ,  AS.  

The construction of I/, is generally not possible for the Eu- 
ler equations without assuming the diagonalizing matrices are 
constant.'.' Assuming the exterior domain is described by 
n: > 0, the characteristic form, either Eq. (1.4.12) or (1.4.14). 
indicates that outgoing waves are described by equations with 
A; >_ 0 and depend on information at and within the boundary. 
Incoming waves, representing information reaching the bound- 
ary from the exterior, are described by equations with A,  < 0. 
These wave equations cannot be differenced stably using just 
interior and boundary information since the numerical domain 
of dependence would not include the physical domain of de- 
pendence; hence, these equations need to be replaced with 
boundary conditions. 

Diagonal Equations 

The diagonalizing matrices i n  the above case are given as 

0 0 0 -l/d 

0 1 0 0 l / p a  
0 -1 0 0 l l p r 1  

T-' = [: (1.4.15) 

(1.4.16) 

Using the primitive variable diagonalization results, the con- 
served variable Jacobians can be diagonalized easily as 

A = M T A T - ~ M - ~  (1.4.17) 

Assuming no variations in the plane of the boundary and the 
diagonalizing matrices to be constant, the equations can be 
reduced to a set of diagonal equations 

(1.4.1 8) 

where the linearized characteristic variable is defined as 

(1.4.19) 

and the subscript notation denotes evaluation at a nearby ref- 
erence value. Note that the linearized characteristic variables 
can also be cast in terms of the conserved variable vector6 as 
3 = T;~M;~w. 

Homentropic Equations 

Assuming locally homentropic flow (i.e., that the entropy is 
uniform everywhere) and no spatial variations i n  the plane of 
the boundary, the equations can be reduced to 

d dz 
- ( I ) )  = 0 nlong - = I1 (1.4.20) 
dt dt 
tl t l X  

- ( I / J )  = 0 along - = 11. (1.4.21) 
dt tlt 

tl dZ 

tlt tll 
- ( R ~ )  = 0 ;Liong - = f (1.4.22) 

where the Riemann variables are defined as 

R? = 71. z t  [2a/(7 - l)] (1.4.23) 

and :I: is the local normal pointing out of the domain. The 
equations arc in a form very similar to one-dimensional un- 
steady flow, except that the tangential velocities, i n  addition 
to the entropy, arc convected along the particle path. 



15 

1.4.2 Numerical Procedures 

The equations which replace the characteristic equations for 
the incoming waves are generally referred to as the phys- 
ical boundary conditions. The procedures to determine the 
remaining variables at the boundary, which should be as com- 
patible as possible with the outgoing characteristic equations, 
are sometimes referred to as numerical boundary conditions, 
but should be more properly termed numerical treatments at 
the boundary.' 

The numerical procedures at the boundary are different than 
those used at the interior scheme. Thus, two factors of the cou- 
pled system need to be taken into account: the accuracy and 
the stability. Gustafsson7 has pointed out that the accuracy of 
the numerical procedure for a linear equation can be one order 
lower than the order of the interior scheme without adversely 
influencing the global accuracy of the solution. The stability of 
the boundary procedure can be analyzed i n  many cases using 
the analysis of Gustafsson, Kreiss, and Sundstrom.8 Generally, 
the closer the numerical scheme is coupled to the characteristic 
equations, the more well-behaved the numerical procedure. 

The equations and procedures for a stationary boundary anal- 
ysis are indicated here, where a local orthogonal coordinate 
system is assumed at the boundary. This is consistent with 
the methods in common use, although the choice of coordi- 
nate system is not unique and need not be taken normal to the 
boundary, as pointed out by Roe.' The extension to a moving 
boundary can be accomplished in a straightforward manner. 
The eigenvalues of the Jacobian matrices are changed by the 
addition of a term which is the speed of the grid normal to the 
boundary. However, the eigenvectors and, hence., the basic 
character of the equations are unchanged from those for the 
stationary generalized coordinate ~ystem.~,"' 

Characteristic Methods 

The characteristic equations dictate that the equations corre- 
sponding to the incoming waves be replaced with boundary 
conditions as 

B, = 0 j = 1, A T r  (1.4.24) 

where f\" is the number of incoming waves and iV is the 
total number of equations. Thus, numerical procedures are 
required at the boundary, in general, to solve the i lTr  physi- 
cal boundary condition equations and the AT - AT/ outgoing 
characteristic equations. Chakravarthy"'deve1oped a unified 
approach, i n  which the incoming-wave equations are replaced 
with time-dependent boundary condition equations and solved 
numerically in a way consistent with the interior point scheme. 

For example, at a subsonic outflow boundary (i\ir = l), the 
equation associated with the Xg = t L  - a eigenvalue can be 
replaced with a linearized form of a time-invariant physical 
boundary condition 

(1.4.25) 

An example and often-used boundary condition is the specifi- 
cation of pressure as: 

131 = 1, - pm = 0 ( I  .4.26) 

in which case 8131 /aq = (0,O: 0,0, 1). Thus, the character- 
istic equations become 

which can serve to define the two matrices P1,Pz as 

(1.4.28) 

(1.4.29) 

a s  8s  
at an: PI - + APZ - + Pz s = 0 

3 + PT'APz- aq + P;'P*S = 0 
at an. 

The above equation can then be differenced at the boundary 
using one-sided derivatives. It  can also be expressed as an 
equation in the conserved variables as 

aw DF 
- at + MPY'PzM-' - an: + MPY'PZS = 0 (1.4.30) 

Either equation can be advanced i n  time explicitly or implicitly 
at the boundary; generally, the choice is made on the basis of 
compatibility with the interior point scheme. 

NonreBecting Methods 

A closely related procedure is the so-called nonreflecting, or 
radiation, boundary conditions of Hedstrorn" and Thompson.' 
In this approach, the amplitudes of the incoming waves are 
taken as constant, i n  time, at the boundary. This corresponds to 
specifying that the incoming characteristic variable is specified 
at the boundary, or 

ai/, - = 0 
at 

; = 1. iv, (1.4.31) 

In  terms of the subsonic outflow condition example above, the 
characteristic equations becomc 

S = 0 (1.4.32) 

This can be written as below, where A+ is the diagonal matrix 
composed of the nonnegative eigenvalues of a: 

The nonreflecting characteristic equations can also be written 
i n  terms of conserved variables as 

aw DW - at + A + -  a:f: + MS = 0 ( I  .4.34) 

where the spatial difference can be evaluated using one-sided 
differencing at the boundary. The above equation appears as 
a nonconservative scheme evaluated locally at the boundary, 
where the strcngth of the incoming wave is defined to he zero. 
With the equations in this form, i t  is apparent that any upwind 
scheme can be used to define a nonreflecting operator at the 
boundary by defining the strengths of the incoming waves to 
be zero. 
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Rudy and Strikwerdal'recognized that this procedure, designed 
to minimize reflections from the boundary, is usually not con- 
sistent with physical boundary conditions defined on the basis 
of steady-state ideas. For example, the specification of con- 
stant pressure in the subsonic outflow case above ensures that 
a wave is reflected back into the interior. Rudy and Strikwerda 
added a parameter-dependent source term so that the solution 
to the discrete equations went to a specified value at steady 
state. More recent developments in nonreflecting boundary 
conditions arc given by Giles;13 quasi-three-dimensional ap- 
plications to internal cascade flow are given by Saxer and 
Giles.I4 Atkins and CasperIs developed a boundary condition 
procedure by connecting the boundary values to the uniform 
far-field conditions and the interior conditions through several 
simple wave fields and demonstrated an improved calculation 
for one-dimensional wave propagations using higher order dis- 
crctizations. 

Analytic Methods 

An alternative procedure has been developed by Verhoff et 
al.'6 and Hirsch and Verhoff.17 I t  is a consistent method for 
coupling linearized analytic solutions with nonlinear numer- 
ical solutions through the computational boundary condition. 
While limited to steady flow, the procedure is derived from 
an asymptotic expansion to the Eulcr equations and, thus, is 
more general than a far-field potential correction method, since 
the method can treat strong shocks and rotational flows. The 
analysis is based on a linearization about a true uniform steady 
state valid at far distances with the equations cast in terms of 
Riemann-like variables using a streamline coordinate system. 
The linearized characteristic equations representing incoming 
waves are solved i n  the exterior domain using a Fourier trans- 
form technique; the solution involves integration along com- 
putational boundaries, which arc taken as a parabola at inflow 
and a straight line at outflow. Two-dimensional procedures and 
results for internal and external flows have been obtained;'"" 
an example is given subsequently i n  this section. 

Extrapolation Methods 

Simpler procedures are also used frequently which arc based 
on honoring the domain of dependence of the characteristic 
equations. For example, the characteristic variables, evaluated 
at local conditions, are often extrapolated to the boundary 
instead of solving the characteristic  equation^.^ 

Homentropic Methods 

Assuming a locally orthogonal coordinate system where .C is 
the local normal pointing out of the domain (sketched in Fig. 
1.4.2), then the homentropic equations, Eqs. (1.4.20)-( 1.4.22). 
can be used to update the equations along the boundary at 

the new time level. For subsonic flow, for instance, R.- can 

P 

r Outer boundary 

C 

Figure 1.4.2 Sketch of local coordinate system at the 
boundary used for characteristic method i n  homentropic flow. 

be evaluated from the far field, corresponding to conditions 
outside the boundary, and R+ can be evaluated locally from 
the interior of the domain. Then, the normal velocity and 
speed of sound can be evaluated as 

(I = (R+ + R - ) / 2  (1.4.35) 

(1.4.36) n = (R+ - R-) (?  - 1)/4 

Depending on the sign of the normal velocity, the entropy 
and tangential velocities are extrapolated from the exterior or 
interior of the domain. Thus, the three velocity components, 
entropy, and speed of sound can be constructed at the new time 
level. Note that the state vector can be determined without 
an explicit construction of the tangential boundary direction 
cosines. Denoting the velocity components corresponding to 
the region from which the entropy and tangential velocities 
are extrapolated as u .  u .  t u  (these are free-stream velocities for 
inflow conditions at the boundary), the velocity vector at the 
new time level is 

Note that the procedure does not ensure the conservation of 
total enthalpy, and i n  some schemes the conservation of total 
enthalpy is an important feature of the interior point scheme. In  
those cases, some modification of the procedure is required," 
such as the redefinition of the speed of sound from Eq. (1.4.36) 
to ensure constant total enthalpy. 

1.4.3 Inflow/Outflow Boundaries 

Supersonic Flow 

For supersonic flow normal to the boundary. all of the charac- 
teristic directions are of the same sign. At inflow, all quantities 
should be specified. At outflow, the characteristic equations 
can be differenced in a one-sided manner using information i n  
the computational domain. I t  is quite common, however. to 
just honor the domain of dependence constraint and extrapolate 
the state variable to the boundary from the interior. 
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Subsonic Flow 

For subsonic flow normal to the boundary, four boundary 
conditions can be set at inflow and one at outflow. However, 
it is difficult to specify the boundary conditions accurately 
since the influence of the computed airfoil (body) is felt at 
large distances upstream and downstream; the assumption of 
uniform flow at the boundary necessitates the construction of 
a grid which extends quite far from the airfoil. By including 
the first-order effect of the circulation imposed by the airfoil to 
the state variable vector at locations exterior to the boundary, 
the boundary need not extend as far; thus, the computations 
can be restricted to a smaller domain with fewer grid points 
and/or less stretching. A far-field boundary correction is used 
in most transonic potential flow methods, derived from the 
linearized small-disturbance equation, although the early work 
of Murman and Colelg used an expansion of the nonlinear 
small-disturbance potential equation. For two-dimensional 
flow, the nondimensional velocity components in the far field 
can be given as 

71. = cos c)' + F sin 8 

11 = sin o - F cos 0 
(1.4.40) 
(1.4.41) 

where T , O  are the radius and polar angle, respectively; the 
coordinate system is located at the center of lif t  (generally 
the quarter-chord for an airfoil) and the angle 0 is defined 
positive clockwise from the chord line extended downstream 
of the trailing edge. With constant total enthalpy and con- 
stant entropy specified in the far field, the state vector can 
be constructed at regions outside the boundary of use in the 
chosen boundary condition procedure. An example of includ- 
ing this effect on the lift coefficient of an airfoil is shown i n  
Fig. 1.4.3. Assuming a locally orthogonal coordinate sys- 
tem, where f is the local normal pointing out of the domain 
(sketched i n  Fig. 1.4.2), then the homentropic equations, Eqs. 
(1.4.20)-( 1.4.22), can be used to update the equations along 
the boundary at the new time level. Subcritical and supercriti- 

NACA 0012, 192 x (40 - 60) 0 - Mesh 
Condclionr exterior Io boundary 

- Freeslream 
- - - Freestream plus point vonex correction 

M = 0.80 LI = 1.25'; Supercritical 

-30 L l l l  40 20 10 6 5 40 20 IO I 1  8 5 I 

Boundaty exlenl in chords 

Figure 1.4.3 Effect of far-field boundary 
location on lift coefficient for NACA 0012 

airfoil at subcritical and supercritical conditions. 

cal cases are shown. Using free-stream conditions to evaluate 
far-field boundary contributions, the lift  coefficient shows an 
inverse radial dependence on the boundary extent, which is the 
same functional dependence as the leading-order term in the 
far-field expansion. Updating the boundary conditions with 
the far-field contribution corrected as above, the sensitivity of 

the solution is dramatically reduced. The supercritical case 
shows a stronger dependence on the outer boundary extent, as 
expected, due to the increased lateral extent of the disturbances 
at the higher Mach number. The correction term, which scales 
on the lift, is effective i n  both cases. For subcritical cases, cir- 
culation and lift  are both constant on lines which encircle the 
airfoil; for supercritical flow, the circulation varies in the near 
field since vorticity can be generated at shocks. The three- 
dimensional extension for the perturbations due to circulation 
for thin lifting wings is given by Klunker.2') 

A sample calculation using the analytic method of Verhoff 
et al." is shown in Figs. 1.4.4-1.4.5 for the computation of 
the flow over a NACA 0012 airfoil at subcritical conditions. 
Computations were done using a baseline grid that extends 40 
chords from the airfoil and a subset of the grid that extends 
only a small distance from the airfoil. The inner portion 
of the baseline grid is shown. The pressure contours from 
computations on the inner grid using free-stream (zero-order) 
and corrected (first-order) conditions exterior to the boundary 
are compared to calculations made with the complete baseline 
grid. The pressure contours of the inner grid calculation agree 
much closer when the first-order corrections are applied with 
those corresponding to the complete baseline grid. 

1.4.4 Surface Boundaries 

At a surface, the boundary condition is usually taken as tan- 
gency, so that the inviscid velocity component normal to the 
boundary is that of the boundary, which is normally zero. This 
is consistent with the characteristic analysis since only one 
wave is incoming at the boundary. One wave is outgoing and 
the rest travel along the boundary. The flux at the boundary 
simply reverts to the specification of the pressure 

(1.4.43) 

The pressure at the boundary can be determined from thc 
outgoing characteristic relation. Alternately, the pressurc can 
be extrapolated to the surface. 

Normal Momentum Equation 

Rizzi" replaced the outgoing characteristic relation with the 
normal momentum equation at the surface to determine the 
pressure. This is one of the most accurate and commonly 
used methods for determining pressure. For thc analysis, a 
local coordinate system 

is used, where the boundary corresponds to a surface of con- 
stant 1 7 ,  for example. The normal momentum equation can 
be written in terms of the variations in the surface and the 
normal pressure gradient as 
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The contravariant velocities are below 

and the contravariant velocity T/ is zero to enforce the bound- 
ary condition. The gradient of pressure at the surface can 
be used to extrapolate accurately to the surface using the in- 
terior values. Note that the grid need not be orthogonal to 
the surface. The derivative of pressure requires the evaluation 
of metric terms and also state variables along the boundary. 
Generally, these additional state variables used to determine 
the gradient are obtained by extrapolation. For example, the 
density and total magnitude of velocity can be determined by 
extrapolating entropy and enthalpy from the interior. The di- 
rection of the velocity in the plane of the surface must also be 
extrapolated in three dimensions. 

The normal momentum equation approach generally requires 
more operations than the extrapolation approaches. It is more 
difficult to implement implicitly in a general-purpose code 
since both normal and tangential derivatives are involved at the 
boundary. For example, an implicit treatment of the normal 
momentum equation leads to a tridiagonal system of equation 
to be solved at the boundary i n  two dimensions. For this 
reason, these equations are usually solved explicitly. 

H 

Kutta Condition 

I t  is well known from exact solutions to the potential (in- 
compressible and inviscid) equations that the circulation or, 
equivalently, the lift must be set in addition to enforcing flow 
tangency on the surface.22 At a sharp or a cusped trailing edge, 
the circulation is usually set through the enforcement of a 
condition which avoids the occurrence of infinite velocities in 
the solution. This condition, known as the Kutta' or Kutta- 
Joukowski condition, sets the overall lift in good agreement 
with experimental observations;22 generally, the inviscid lift  is 
slightly greater than experiment because of the decambering 
of the airfoil associated with boundary-layer displacement ef- 
fects. For a smooth body such as a cylinder, the circulation 
has to be specified a priori. 

For numerical solutions to the Eulcr equations for sharp-edge 
geometries, the Kutta condition is usually not set directly in 
the method. Rather, the dissipation inherent in the numerical 
scheme precludes the occurrence of infinite velocities in  the 
solution. The resulting lift values agree well with compressible 
potential solutions which enforce the Kutta condition directly, 
usually through the specification of tangent flow to the trailing- 
edge bisector angle at the trailing edge. For subcritical flows, 
a single value of pressure at a sharp trailing edge results 
from the streamlines along both the lower and upper surfaces 
being brought to stagnation. For Rows which have incurred 
a loss of total pressure (e.g., through a shock), the local 
structure of the Eulcr solutions downstream of the trailing 
edge corresponds to a slip line, across which the pressure is 
continuous and the velocity is discontinuous. The velocity 
stagnates on only one side at the trailing edge; equal pressure 
at the trailing edge is attained through stagnation of the surface 

Figure 1.4.4 Computational grid of reduced size for subcritical Eulcr 
computations using zero- and first-ordcr far-field boundary conditions. 
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Figure 1.4.5. Pressure contours for NACA 0012 airfoil using zero- and first-order boundary 
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streamlines associated with the higher stagnation loss. On the 
surface of lower stagnation loss, the velocities remain nonzero 
and tangent to the local surface orientation. Stagnation on 
both surfaces is physically impossible in this case since the 
total pressures are different along upper and lower surface 
streamlines. This structure occurs i n  a local region of the 
trailing edge, and it is difficult to resolve the resulting slip line 
in numerical computations. 

The flow separation from sharp leading edges occurring i n  the 
subsonic cross-flow plane of swept wings at high angles of 
attack is also associated with a Kutta condition which enforces 
smooth flow from the surface. A number of such results are 
presented in the chapter on Applications and were obtained 
with the Kutta condition enforced by the dissipation inherent 
in the numerical scheme. For flows over smooth surfaces, the 
lift is set either by flow separation (a viscous effect) or through 
specification of the circulation i n  the far field; the results 
of Pulliam presented in the chapter on Applications pose a 
currently unresolved challenge to state-of-the-art schemes i n  
this respect. 

Transpiration and Displacement Effects 

For simulating viscous effects in Euler codes, the surface 
can be moved so that the flow is tangent to an artificial 
surface defined by projecting the boundary layer displacement 
thickness distribution normal to the ~urface.~’.’~ Equivalently, 
the surface boundary condition can be modified to specify a 
normal velocity. Both methods are used and give equivalent 
accuracy for representation of viscous effects, although the 
latter formulation is somewhat simpler since the grid need not 
be moved to simulate the boundary layer interaction. Rajz5 
used the transpiration model to effectively model the effect of 
variable flap deflections during the development phase of an 
advanced aircraft program. 

1.4.5 Propulsion Simulations 

In many applications, it  is not necessary to simulate the full 
details of the propulsion system. Rather, the propulsion system 
can be considered as a “black box” across or through which 
the solution can change i n  a manner consistent with that of a 
complete modeling. The additional energy and/or swirl addcd 
by a jet engine can be specified at a location which might 
represent a faircd-over rcpresentation of the actual geometry 
as a function of engine thrust, for example, and thus avoid 
the considerable cost and complexity associated with a full  
simulation. The inflow and outflow conditions appropriate to 
an actuator disk model arc given below. 

outjiow 

Modeling the downstream end of an engine or propeller cor- 
responds to an outflow case, since the computational domain 
is downstream and certain boundary conditions nced to be 
specified at a given location (generally on a portion of an ax- 
ial-normal or slanted plane). For a supersonic outflow, all of 
thc charactcristics which reach the actuator disk at the new 
time level originate from the engine side and, thus, all of the 
quantities can be specified. Thc total tempcrature, total pres- 
sure, nozzle pressure ratio, and directions of velocity can be 

specified, corresponding to a complete reconstruction of the 
pressure, density, and velocity profiles. 

For a subsonic outflow condition, one characteristic reaches 
the actuator disk at the new time level from the downstream 
side, Corresponding to the computational domain. Thus, one 
variable needs to be extrapolated from the computation exte- 
rior to the disk and the remaining four have to be specified. 
Generally, the total enthalpy and total pressure of the engine 
is specified, as well as the two components of velocity. There 
is some flexibility in the selection of the variable to be cxtrap- 
olated from the computational domain. For instance, pressure, 
density, or magnitude of velocity arc all valid choices. Taking 
1vI as the extrapolated variable, the temperature of the jet can 
be determined by matching total enthalpy as 

7 - 1  T = T o - -  
2(7R) 

(1.4.48) 

The pressure can be determined by assuming an isentropic 
expansion to stagnation conditions as 

( I  .4.49) 

and then density can be recovered through the equations of 
state p = p/ (RT) .  The three velocity components can be 
determined from the velocity magnitude and thc imposed two 
directions of velocity. The boundary conditions in this case 
are similar to those required at the upstream end of a wind- 
tunnel simulation, in which the total conditions and velocity 
directions are prescribed and one variable is extrapolated from 
the interior. 

The upstream end of an actuator disk generally corresponds 
to an inflow case, i n  which the interior of the computational 
domain is exterior to the disk. For supersonic inflow, all of 
the variables should be extrapolated from the interior of the 
computational domain. Thus, all of the mass which impinges 
on the disk is swallowed by the device. For subsonic inflow, 
one characteristic reaches the disk at the new time level from 
the interior of the modeled system. Thus, four quantities can be 
extrapolated from the computational domain and one variable 
specified. The pressure and all velocity components can be 
cxtrapolatcd from the computational domain interior. Since 
the mass flow should be conserved, an attractive boundary 
condition option26 is to specify the mass flow at inflow 7 i ,  to 
provide a means of specifying the density as 

(1 = r i T A , , , r ,  t/(v . nA) ( I  .4.50) 

Here, .4 is the local surface area of cells that abut the disk. 
v.n is the velocity normal to the disk extrapolated from the 
interior of the computational domain, and 

( I  .4.5 I )  

where thc summation extends over those cell areas that abut 
the inlet disk area. 
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1.5 EXACT SOLUTIONS 

Knowledge of exact solutions to the Euler equations is in- 
valuable in evaluating numerical accuracy and provides an in- 
creased understanding of the mathematical and physical nature 
of inviscid flow. Before recent advances in numerical tech- 
niques and an increase in computational capabilities, much 
theoretical work was conducted to obtain analytic solutions 
for inviscid flow. This work combines to form the fundamen- 
tal basis for our understanding of much of gas dynamics. I n  
particular, the solutions of primary importance in this category 
include shock waves, expansion fans, and contact discontinu- 
ities. 

However, in spite of several successes at obtaining analytical 
solutions such as those mentioned above, a general technique 
for obtaining closed-form solutions is not available. With few 
exceptions, further simplifying assumptions must be made i n  
order for the governing equations to be solvable in closed form. 
Therefore, much of the theoretical work is centered around the 
potential flow equations, which assume irrotational and isen- 
tropic flow. Despite the limitations of these assumptions, po- 
tential flow theory has provided many reference solutions, as 
well as valuable insight into the character of both incompress- 
ible and compressible flows. 

1.5.1 Similarity 

Before numerical solution of compressible flows became preva- 
lent, theoretical work concentrated on extending incompress- 
ible solutions to represent compressible ones and to relate 
flows at a given Mach number to those at another Mach num- 
ber. These techniques rely largely on simplified forms of the 
Euler equations. By first assuming isentropic and irrotational 
flow, the governing equations can be expressed in terms of a 
velocity potential as’ 

‘11 111 
(1 - $)m,, - 274!/2+ 1.5.1) 

where the velocities in the n:, y, and t directions are given in 
terms of the velocity potential as 

( 1  S.2)  

Equation (1.5.1) represents a nonlinear partial differential 
equation for 4 in terms of 2, y, and 2. 

Unfortunately, because this equation remains nonlinear, ana- 
lytic solutions of this equation are still not available without 
further simplifications. For example, invoking the assump- 
tion of incompressible flow (U, --t CO) immediately yields 
Laplace’s equation: a linear partial differential equation with 
well-established solution techniques such as complex vari- 
ables. Also, because the resulting equation is linear, many 
solutions can be obtained by superposition of other known 
solutions. Examples of exact solutions that reflect the incom- 
pressible assumption include sourcekink flows, vortices, and 

doublets. These fundamental solutions can be combined to 
obtain solutions over simple configurations such as circles and 
other elliptically shaped bodies both with and without circula- 
tion. I n  addition to the wealth of knowledge available to an- 
alytically solve Laplace’s equation for simple configurations, 
many numerical techniques also exist for obtaining solutions 
over complicated shapes; the predominant methods are panel 
methods that are based on Green’s function solutions. 

Because of the advantages of solving Laplace’s equation, it  
is natural to seek other assumptions that will further simplify 
Eq. (1.5.1) to make it  amenable to solution. One method 
of achieving this goal is to assume that the flow is perturbed 
only slightly from the free-stream. With this assumption, the 
velocity potential i n  Eq. (1.5.1) can be written as a free-stream 
component plus a perturbation: 

$?I(%, y, 2 )  = + df(:c,  !/, z )  ( I  .5.3) 

After substitution into Eq. (1.5.1) certain terms are discarded 
based on an order-of-magnitude analysis, and Eq. (1.5.1) can 
be written as2 

This is the so-called small-perturbation equation, which is 
valid for subsonic, supersonic, and transonic flow. 

I f  the free-stream flow is subsonic and not too close to Mach 
I ,  Eq. (1.5.4) can be further simplified to 

This can be expressed again i n  the form of Laplace’s equation 
by applying an affine transformation to this equation. This 
leads to scaling laws such as the Prandtl-Glauert and Gothert 
rules, which allow the subsonic compressible flow past a 
certain profile to be related to the incompressible flow past 
a second affinely related profile. 

If, on the other hand, the flow is purely supersonic, Eq. (1.5.5) 
can be written as 

which is a hyperbolic, second-order, linear partial differen- 
tial equation. Although this equation can not be reduced to 
Laplace’s equation, it  is, nevertheless, a linear <:quation and 
can be solved using linear techniques. 

Transonic similarity laws have also been obtained by Guderley3 
i n  1946 and by Von Karman4 and Oswatitsch’ in  1947. Ex- 
tensive review of similarity laws for compressible flow can be 
found i n  Refs. 6 and 7 as well as in several textbooks such 
as Refs. 2 and -8Considering two-dimensional flow, through 
a transformation of the form 

(1.5.7) 

the parameters Ma, y, and the thickness parameter 7 can be 
combined into a single transonic similarity parameter ii 

(1.5.8) 
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Similar solutions are obtained by keeping this parameter in- 
variant regardless of Mach number, thickness parameter, or 
ratio of specific heats. Afterward, the lift  and pressure coeffi- 
cients can be corrected according to 

( I  .5.9) 

For example, i f  the flow over a specified airfoil is known for 
air (y = 1.4) at a Mach number of 0.8, then by matching the 
similarity parameter, it is found that this solution corresponds 
to one at a Mach number of 0.814 in different gas correspond- 
ing to y = 1.1. Although the preceding discussion is for 
two-dimensional flow, three-dimensional scaling laws exist as 
well, but require modifications to the aspect ratio to maintain 
similarity? 

1.5.2 Hodograph Solutions 

For obtaining analytical solutions for purely supersonic flows, 
or for subsonic flows not too close to a unity Mach number, 
the linearized potential Row Eqs. (1.5.5) and (1.5.6) can be 
utilized as previously mentioned. However, for flows with 
mixed regions of subsonic and supersonic flow, one must re- 
sort to using Eq. (1.5.4) which is not generally solvable i n  
closed form. However, one method that has been effective 
for yielding exact two-dimensional solutions is the hodograph 
method,"' which transforms the stream-function form of the 
transonic small-disturbance equation into a linear partial dif- 
ferential equation by changing the dependent variables from 
the spatial coordinates :I: and to the flow speed I f  and the 
flow angle 6' as 

(1.5.1 1) 

Solutions to this equation are found using standard techniques 
such as separation of variables. Once a solution has bcen found 
for this equation, the physical geometry must be determined 
for which the solution applies. Although many solutions may 
not yield physically realistic shapes, several papers present so- 
lutions for the hodograph equation for which the corresponding 

erence 21 contains extensive theory, as well as application of 
the hodograph transformation while Ref. 18 presents a useful 
summary of exact solutions and relevant references. 

One of the most widely used hodograph solutions in recent 
years for validating accuracy of numerical solutions to the 
Euler equations is that of Ringleb.'X.22 Shown i n  Fig. 1.5.1, 
the physical flow corresponds to that through a curved duct. 
The Row begins subsonically, accelerates to supersonic flow 
around the "nose" of the duct, and then decelerates to subsonic 
flow without a shock. As previously mentioned, this Row has 
been used by various researchers to evaluate the numerical 
accuracy of Euler solutions by comparison with this exact 
~ o I u t i o n . ~ " ~ ~  

geometries are representative of a flow of interest.x,' 1-2". Ref- 

V =  

\v = S I  
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Figure 1.5.1 Ringleb flow 

1.5.3 Shockless Airfoils 

Although Ringleb flow is clearly a case in which the flow can 
decelerate from supersonic to subsonic flow without a shock, 
shock-free transonic flows over airfoils are rare. In  the work 
of Bauer, Garabedian, and Korn,2s numerical solutions to the 
hodograph equation have been used to obtain shock-free tran- 
sonic solutions for airfoils. A further example of a shock- 
free transonic airfoil is the NLR 7301 airfoil, which has been 
used as a standard test case for numerical methods for invis- 
cid flow. Note that these solutions are obtained by discretizing 
the hodograph equation and obtaining a solution numerically. 
These solutions are, therefore, not exact in that they have not 
been analytically obtained, but do provide solutions for tran- 
sonic Row i n  which isentropic deceleration from supersonic to 
subsonic flow is present. 

1.5.4 Nonunique Solutions 

Although nonunique solutions have bcen known to exist for 
the potential flow  equation^,^"^' until  recently, the existence of 
nonunique solutions for the Euler equations has been largely 
speculative. In fact, the Euler equations were used in the 
previous references 26-27 to validate the nonuniqueness of 
the potential assumption. During these studies, nonunique 
solutions were sought with the Euler equations; however none 
were found. 

For the potential flow equations, the nonuniqueness has been 
attributed to the breakdown of the validity of the assumptions 
inherent in the equation (namely, the assumptions of  irrota- 
tional and isentropic flow). Because the Euler equations do 
not make these assumptions, the appearance of nonuniqueness 
has until  recently been somewhat doubtful. However, i n  1991, 
Jameson2x computed nonunique solutions for four airfoils de- 
signed by an optimization method based on control theory.29 

An  example of nonuniqueness for one of the airfoils (denoted 
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as J-78) is shown in Fig. 1.5.2. This airfoil was designed 
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Figure 1 S.2 Examples of nonunique 
solutions to Euler equations. 

for a Mach number of 0.78 and a lif t  coefficient of 0.6. 
Figure 1.5.2 clearly shows the nonunique behavior of this 
airfoil as evidenced by the lift coefficient exhibiting multiple 
values at a given angle of attack. As mentioned in Ref. 
28, this nonuniqueness persists even on very fine grids and 
provides strong evidence that Euler solutions for airfoils are 
not necessarily unique. 

1.5.5 Exact Solutions for Supersonic Flows 

For supersonic flows, several exact solutions exist. Particu- 
larly, for flows without shocks, the equations are isentropic 
and irrotational and lead to solutions such as Prandtl-Meyer 
expansions. However, even for flows with shock waves, 
many solutions exists for simple wave flows such as wedges, 
cones, converging-diverging ducts, diamond-shaped airfoils, 
and flows around blunt bodies. Techniques for solving these 
problems are discussed in many textbooks on gas dynamics 
and aerodynamics.””.”’.”2 

1.5.6 Riemann Problem 

One of the most important exact solutions, which has proved 
very useful in designing numerical schemes, is Riemann’s 
initial value problem.32 This is a generalization of a shock 
tube problem in which initial conditions are specified across 
a diaphragm, but the velocity on either side of the diaphragm 
may be nonzero. At t = 0, the diaphragm is instantaneously 
broken, and the evolution of the flow-field is tracked. At a 
given time, the general solution consists of a shock wave and 
a contact discontinuity traveling in one direction with a speed 

of u+a and U, respectively, while an expansion fan is traveling 
in the opposite direction at speed ti. - n. (See Fig. 1.5.3.) 
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Figure 1.5.3 Riemann problem 

In  Fig. 1.5.3, a shock wave is traveling to the right which 
results i n  a sharp increase i n  the density, velocity, and pressure 
as it  passes. The expansion is traveling to the left and induces 
a more gradual increase in the velocity of the fluid that was 
originally to the left of the diaphragm. The contact, also 
traveling to the right, induces a jump in the density, but has 
no effect on the pressure and velocity. 
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Chapter 2 
Numerical Schemes and Algorithms 

2.1 DISCRETIZATION TECHNIQUES 

In order to describe the numerical methods currently used for 
solving the system of Euler equations, we have to begin with 
a brief presentation of the discretization techniques which al- 
low to transform the continuous problem into a system of 
discrete equations to be solved on a computer. 

Three main steps can be considered. First, the space-time 
discretization concerning the independent variables (this is 
the mesh generation problem), then the choice of a discrete 
representation of the flow variables (approximation of depen- 
dent variables) and thirdly the derivation of a set of discrete 
equations linking the flow variables on the grid in space and 
time (definition of a numerical scheme). 

Grid generation 

The mesh generation techniques have become a field of 
research and expertise which the quality of numerical results 
greatly depends on. This important subject is treated in detail 
in Section 2.2, but it is necessary to introduce here a few 
ideas for presenting the following steps of equation discreti- 
zation. 

At first, the space-time domain where the problem is to be 
solved must be discretized. Except for very special situations, 
the time and the space dimensions are treated independently 
and however complex could be the space discretization, the 
dependent variables are all represented at same time values. 

The space discretization process consists in replacing the con- 
tinuous three-dimensional domain where the flow is studied 
by a mesh or a grid made of points or nodes connected by 
edges and faces which bound cells or elements. The union of 
the cells forms a partition of the whole computational 
domain. 

The common practice in mesh generation is to use either tri- 
angular or quadrilateral cells in two dimensions (tetrahedral 
or hexahedral in three dimensions). 

The overall arrangement of these cells may be either "struc- 
tured'' or "unstructured". 

The structured grids are made of families of grid lines in two 
dimensions (2D) and of families of grid surfaces in three di- 
mensions (3D). These grid lines or grid surfaces are indexed 
by integers so that each node at their intersection is indexed 
by a set of indices. The cells with the nodes as vertices can 
be indexed in the same way. Connectivity rules are identical 
for all cells so that we can invoke a "stencil". 

In contrast, the unstructured grids consist of an arbitrary as- 
sembly of cells with only the possibility to index each one by 
a single integer and no regular pattern or relationship exists 
between cell and node numbering. The data structure 
management necessitates the definition and the storage of 
pointers and index tables. 

Besides the nodes previously described as vertices of the 
cells, it can be useful to consider other points in the grid 
where discrete dependent variables are defined. We mean for 
example mid-points of edges and centroids of faces or cen- 
troids of primary cells. It is natural to use these auxiliary 

points to build secondary cells and this will be illustrated in 
the subsection 2.1.2 about finite volume methods where the 
distinction between cell-centered and cell-vertex schemes is 
made. 

Approximation of dependent variables 

After the discretization of the space and time independent 
variables we can proceed to the discrete representation of the 
dependent or flow variables. The crudest and the simplest 
discrete representation of a scalar function of several in- 
dependent variables is limited to setting up the values of this 
function at the grid points without concern of its value else- 
where. This idea is the basis for the finite difference ap- 
proach which is almost always applied with structured 2D 
quadrilateral or 3D hexahedral grids of either Cartesian or 
more often body-fitted curvilinear type. 

The alternative for the discrete approximation of functions on 
a grid is to consider piecewise polynomials locally defined on 
each cell by a small number of values or "degrees of fre- 
dom". This topic is covered by the theory of approximation 
and interpolation in many mathematical textbooks and is par- 
ticularly important for the design of finite element methods 
and of spectral methods. 

The pointwise approximation used for finite differences could 
be included in the general theory of approximation by resort- 
ing to the Dirac measure but that is of little practical interest. 

In the class of piecewise polynomial approximations, the sim- 
plest one is the piecewise constant approximation and it is 
the basis for the finite volume methods described in subsec- 
tion 2.1.2. 

Piecewise linear approximation is generally associated with 
triangular or tetrahedral meshes, piecewise bilinear with qua- 
drilateral meshes and trilinear with hexahedral meshes. The 
approximate functions are either continuous (most frequently 
in finite element methods) or discontinuous (in finite volume 
methods). 

Higher order polynomials also deserve some attention. For 
instance, piecewise parabolic interpolation has been the 
specific device attached to the PPM method proposed by 
Woodward and Collela'. More recently, high order polynomi- 
al interpolation has been included in the "reconstruction step" 
for Essentially Non Oscillatory (ENO) schemes developed by 
Harten* and Osher3. 

Derivation of the discrete equations 

We now reach the third stage in the discretization process, 
namely the derivation of the discrete equations linking Row 
variables on the grid at different time steps. Three distinct 
routes may be taken according to the choice of a formulation 
representing the system of Euler equations. 

1 .- Finite Difference Methods: 
Starting from one system of first order partial differential 
equations (in conservation form or not), time and space 
derivatives are replaced by finite differences resulting from 
the application of Taylor series at grid points. 
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2.- Finite Volume Methods: 
The integral form of the Euler equations given by Eq. (1.3.1) 
and corresponding to the laws of conservation for mass, 
momentum and energy are applied on each cell with the as- 
sumption of a constant value for the conservative quantities 
(p ,pE,pE) whereas the definition of the fluxes on the cell 
boundary allows a considerable number of variants for con- 
trolling the accuracy, the robustness and the efficiency of 
these methods. The only mandatory rule is that the flux 
evaluation on an interface between two cells be the same for 
ensuring the conservation property. 

3.- Finite Element Methods: 
The weak formulation of Euler equations, such as the one 
given by Eq. (1.3.13) is applied after the choice of the spaces 
of approximation both for the dependent variables and the 
test functions. Triangles in 2D and tetrahedra in 3D are sys- 
tematically chosen by practitionners of finite element 
methods. However, the name of finite element method should 
be reserved to the case where test functions are at least poly- 
nomial of degree one, since the use of a test function which 
is constant by cell boils down to the finite volume approach. 

At this point it is interesting to notice that the three previous 
methods for deriving discrete equations can lead to very simi- 
lar results and it is often possible to show the equivalence of 
some finite difference and finite volume schemes on struc- 
tured grids and of some finite volume and finite element 
methods on unstructured triangular grids. Other discretization 
methods exist but are only marginally used compared to the 
three previously mentioned methods. Namely they are the 
spectral methods and fluctuation splitting approaches. the first 
one is somewhat related to finite element discretization since 
it uses continuous basis functions which are generally some 
high order polynomials but of non local support, in contrast 
with the case of finite elements. Some link can be found 
also with finite differences by the fact that the grid of collo- 
cation points is of structured type for two- or three- 
dimensional problems. The continuous approximation is not 
very suitable for solution of Euler equations with discontinui- 
ties without resorting to complicated shock-fitting or shock- 
tracking and it seems that no production code exists based on 
spectral methods. The fluctuation splitting approach is rela- 
tively recent and it can be considered as an attempt to mim- 
ic the propagation of characteristic waves in order to replace 
the rather one-dimensional evaluation of normal fluxes in 
finite volume methods by a more multidimensional concept. 

Time and space discretization 

What has been said above concerns more the space discreti- 
zation than the way the time variable influences the design of 
a numerical method. Let us assume first that we are consider- 
ing a time-dependent problem where the time evolution of 
the discrete solution must be represented accurately. It seems 
natural with present day three-dimensional problems to pro- 
pose that time and space discretization would be made 
separately. However, with one space dimension equations for 
which the early finite difference schemes where studied, it 
was logic to discretize together the time and space deriva- 
tives. 

The Lax-Friedrichs and Lax-Wendroff schemes which were 
at the basis of the numerical solution of hyperbolic systems 
of equations indeed combine time and space discretization 
(see section 2.4 below). Both are two-level explicit schemes. 
This is also the case for the family of implicit schemes 
derived by Lerat as an extension of the Lax-Wendroff 
schemes. They also combines both time and space discretiza- 
tion in a coupled manner. 

By contrast, when space discretization is made first, leading 
to what is called a semi-discretization, the resulting system of 
ordinary differential equations in time can be solved by vari- 
ous methods. Two classes of time integration methods widely 
used for solving Euler equations are the linear multistep 
methods specially studied and used by Beam and Warming 
and the Runge Kutta methods mainly developed by Jameson, 

Schmidt and Turkel b. 

2.1.1 Finite Difference Techniques 

As said before, the finite difference methods rely upon the 
approximation of a derivative by the ratio of two differences 
according to the definition of this derivative and with an ord- 
er of accuracy which is estimated by Taylor expansions. The 
simplest and largest use of finite difference discretization for 
solving the Euler system of equations actually appears in the 
approximation of the time derivative. 

For a function u ( x i ,  t )  = u i ( t )  its first derivative at time t 
is defined by: 

dui u;(t + A t )  - ui ( t )  
(2.1.1) -- - lim 

dt A(-0 At 

If we consider a uniform time discretization with t" = n At 
and U;" = ui( t") ,  this time derivative can be approximated 
by the following finite difference formulas: 

+ O ( A t )  
I=(" At 

(2.1.2) 

(2.1.3) 

1 (Au;" + Auin-l)  + O ( A t 2 )  (2.1.4) 
At 

where Af" = f"" - f " .  

These formulas are respectively forward, backward and cen- 
tral finite difference approximations at t" and are first order 
accurate for the one-sided difference formulas Eq. (2.1.2-3) 
and second order accurate for the central approximation Eq. 
(2.1.4) . However one can see that Eq. (2.1.2) is second ord- 
er accurate with respect to the value of the time derivative at 

In order to be more precise and to give an example of such 
finite difference formulas, consider the one dimensional Euler 
system of equations: 

= t n + 1 / 2  = (n+1/2) At . 

aw aF - + - = o  
at ax (2.1.5) 

It can be discretized in time (semi-discretization) by finite 
differences according to: 

aF" (1 + 5)  AW" - 5 A+-' = - A t  [e - aFn+l + (1 - e) -1 ax ax 
+ (e - 6 - 112) O(At2)  + O ( A t 3 )  

The linearization of the F"" term as introduced by Briley 
and Mc Donald can be used: 

dF F"" = F" + A t  (-)" + O(At2)  
at 

aF (E," = A"AW" + O ( A t ) ,  A = -  
at aw 

giving: 

a 
ax ( 1 + 5 + A t  e -  A")Aw" = 

- At - aF" + 5 Aw"-' + (e4-1/2) O(At2)  (2.1.6) 
ax 

with second order accuracy if 8 = 112 + 5. 
Explicit (e = 0) and implicit schemes are obtained after a 



29 

space discretization and we get the family of the Beam and 
Warming schemes if central discretization is used for the 
space derivatives (see Section 2.4.2 for a discussion of these 
schemes). 

When space and time discretizations are made independently, 
we can reverse the order of them and begin with the space 
discretization. For a function v (x), considering a uniform dis- 
tribution of points xi = iAx, with nodal values vi = v(xi), 
the approximation of the first derivative of v can be chosen 
according to one of the following finite difference formulas: 

6+V; 

x=x, 6x 
= - + O(6x); 6+~; = v;+~-v;  (2.1.7) 

6-V; 
= - + O(6x); 6-V; = v ; -v ; -~  (2.1.8) 

6 V i  

h i  x=x, 6x 
[&] = [$] = - + O(6x2); 6vi = (2.1.9) 

Direct application of these finite difference formulas to the 
derivative in Eq. (2.1.5) can be considered with a preference 
for the third one which is second order accurate giving: 

(2.1.10) 

Expressing Fi+l,Z in terms of the nodal values wi (with a 
very large number of possibilities) leads to a (non linear) sys- 
tem of ordinary differential equations to be solved by an ap- 
propriate time integration such as the linear multistep or the 
Runge-Kutta methods. 

If we restrict ourselves to the case of two- (time) level 
difference schemes, the most useful formulation of such 
schemes is: 

Awi 6hi - + - = o  
At 6x (2.1.11) 

or else: 

with a numerical flux: 

where h(f) is a continuous function satisfying the consistency 
condition: 

h(f)(w ,.., w;O ,.., 0;o) = F(w) for any w (2.1.13) 

Eq. (2.1.11) represents a discrete conservation law in a cell 
ci = [(i-1/2) 6x , (i+1/2) 6x1 if we consider wi as a local 
average: 

and as a time average of the flux accross the cell side 
x = (i+1/2)6x. 

Schemes written in the form given by Eq.(2.1.11-13) are said 
to be conservative because summation of Eq.(2.1.11) over a 
set D of contiguous cells provides, by cancellation of numer- 
ical fluxes at interior interfaces, a discrete form of the conser- 
vation law on D :  

D = U C; = [@-1/2)6~,(q+1/2)6~], 
i=p,q 

5 [w(~,(n+I)At) - w(x,nAt)]h = - At(hq+l/2 - hp-I/2) 
D 

The usefulness of conservative schemes results from their 
property of capturing discontinuities with the correct levels 
corresponding to the Rankine-Hugoniot relations. We shall 
come back on this point when discussing the finite volume 
d/scretization. 

A very detailed study of finite difference schemes for I-D 
hyperbolic problems has been presented by b r a t  with em- 
phasis on space-centered approximation. From the large class 
of schemes discussed one can extract a yet very general sub- 
class of two-level either explicit or linearly implicit schemes 
involving at most three points at the new time level: 

Aw; + 112 (T 6[Mp(Aw)]; - 114 6[P6(Aw)]; 

= - c S(pF); + 1/2 6 ( Q 6 ~ ) ;  (2.1 .14) 

where pwi+112 = 1/2 ( W ; + W ~ + ~ ) ,  and Mi+1/2, and 
Qi+1/2 are 3x3 matrices depending on the values of w at t " .  

This class of schemes contains most of two-level schemes 
such as first order upwind and TVD schemes, the second ord- 
er centered schemes of Beam and Warming and the generali- 
zation of explicit and implicit Lax-Wendroff schemes pro- 
posed by Lent9. A good representative of this family, namely 
an implicit Lax-Wendroff scheme of second order of accura- 
cy, is given below: 

Aw; - 112 o2  PA)^ ~(Aw)], 

= - CT S(pF)i + 112 o2 &[(PA) 6F]i (2.1.15) 

Until now, we have considered only one dimensional finite 
difference schemes. Extension of these schemes to the multi- 
dimensional Euler system: 

aw / at + aF / ax + aG / ay + JH / az = 0 (2.1.16) 

is relatively straightforward if a Cartesian grid is used even 
though the number of possibilities is quickly increasing for 
the approximation of higher order space derivatives, for the 
linearization of the F, G and H fluxes and for the combina- 
tion of differentiation and linearization. 

For example, direct extension of the explicit Lax-Wendroff 
scheme can be made either according to the Ni scheme using 
a predictor at the mid-cell point or according to another 
scheme with a predictor step centered at the mid-point of in- 
terfaces giving better dissipative properties. This explicit 
scheme was defined to be used in combination with the im- 
plicit step consisting of successive application of the left 
hand side of Eq.(2.1.15) in  each direction (see b r a t ,  Sides 

Use of Cartesian grids (without local refinement) is not suit- 
able for computing flows past bodies with curved boundaries 
presenting too small a radius of curvature or a complex 
geometry. Boundary conforming curvilinear meshes are much 
more preferred. 

The current procedure for applying finite differencing on cur- 
vilinear structured grids is founded upon a mapping from the 
physical space (x,y ,z) to a computational (or reference) 
space (g,q,c) equipped with a uniformly spaced Cartesian 
grid. The transformation has to be one - to - one and is as- 
sumed to be smooth enough for being differentiable. Then 
the system of Euler equations to be solved can be formulated 
in the computational space by the change of independent 
variables (space coordinates). Special care must be taken in 
order to keep a conservative formulation with Cartesian com- 
ponents of velocity as unknowns (see Viviand" and Vi- 
nokur12). With the introduction of contravariant velocity com- 
ponents as: 

'0). 

U = u t x  + "5 ,  + w e ,  

v = uqx + v q y  + w q z  
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w = uy,  + v y y  + wy,  

the system (2.1.16) can be written as follows: 

aa / a? + aF / a t  + aG / aq + a H  / ay = 0 (2.1.17) 

with: = w / J ,  and J = a(t,q,[) / a(x,y,z) , 

F = [U w + p (0, 05, O)'] I J 

G = [ V W  +p(O,  vq, O)' ]  / J 

H = [ W W  + p(0, vy, O ) ' ]  / J 

Special care must be exercised during the discretization pro- 
cess in order to satisfy requirements such as the free-stream 
or uniform flow is an exact solution of the discretized equa- 
tions. The conservative property of the final finite difference 
scheme has also to be checked. 

This induces a close dependence between the choices of the 
finite difference formulas for the dependent variables w, and 
for the independent variables x y ,I with respect to the carte- 
sian coordinates \,q,< in the computational domain. 

The alternative to a discretization in a computational domain 
after a coordinate transformation is to directly work out the 
discretization in the physical space. This is the basic principle 
for the finite volume formulation. 

2.1.2 Finite Volume Techniques 

As said above, the finite volume approach relies directly on 
the application of the integral form of balance laws. Assum- 
ing that the domain of integration is independent of time, we 
write these conservation laws for an arbitrary spatial domain 
R bounded by C: 

d ( j  w dr dy dz) / dt + @.E) d o  = 0 (2.1.18) 

where w is the vector of conservative variables and the 
flux tensor. 

If we assume that the physical domain is covered by a collec- 
tion of elementary polyhedral cells forming a partition of this 
domain, the application of Eq.(2.1.18) at the level of each 
elementary cell ensures a conservative discretization, that is 
to say ensures the validity of Eq.(2.1.18) for any unjon of 
elementary cells if the numerical approximation for (F.fi) is 
unique on the interface between iWO contiguous cells. 

To be more specific, let us consider two neighbouring cells 
R, and R,, their common interface C, with its unit normal 
f i  oriented from R, toward R,. We denote by w, the mean 
value of w on RI: 

R 2 

IQ,lw, = j whdydz 
RI 

and by F,, the mean value of the normal flux on C,, 

(2. I .  19) 

If we call N, the set of indexes of the cells surrounding R, 
and having an interface in common with it, Eq42.1.18) ap- 
plied to Q, becomes: 

Considering the set of all cells ( R, ), we get the discretized 
equations- for the whole physical domain with unknowns 
( w , )  if F/j is evaluated from a finite number of cell unk- 

nowns such as at least w, and wJ but also from wK, with 
K belonging to NI and N j  and possibly to other cells (see 
Fig. 2.1.1 in 2D for simplification). 

Figure 2.1.1 Control volumes and nodes in a general 
finite volume method. 

The set of equations resulting from Eq.(2.1.21) is clearly a 
semi-discretization with possibly a large freedom not only for 
the choice of the grid and for the definition for cells or "con- 
trol volumes" on which Eq.(2.1.18-21_) are applied but also 
for the choice of the dependency of F/j with respect to the 
unknowns ( w, ) both in space and in time. 

About the first topic, clearly both structured and unstructured 
grids are concerned by this formulation. In both cases the 
three-dimensional grid is made of polyhedra where we can 
distinguish the sets of vertices, edges, faces and cells. Three 
types of cell arrangements are used in practice: cell vertex, 
node centered and cell centered methods. 

Cell vertex methods 

Cell vertex finite volume methods seem to be the oldest ones 
(McDonald13 197 1, MacCormack and Paullay14 1972) and 
were devised for the solution of two-dimensional time- 
dependent Euler equations. They keep strong favour with 
several variants such as the Ni schemeI5 or its modification 
by Ha11I6. 

Figure 2.1.2 Cell vertex finite volume method. 

In the cell vertex methods the flow variables are assigned to 
vertices (mesh nodes) and the control volume attached to 
node I is made of the collection of elementary cells (indexed 
by the set N , )  surrounding this node. With this choice of 
control volumes, we see, for example in a two dimensional 
structured grid (see Fig. 2.1.2), that two neighbouring control 
volumes have in common one or two mesh cells and that the 
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union of all the control volumes covers four times the physi- 
cal domain since each quadrilateral belongs in general to four 
different control volumes. For an unstructured grid with trian- 
gles, each triangle belongs to the three control volumes at- 
tached to its three vertices. Any edge belongs to two control 
volumes and for conservation of physical quantities the fluxes 
must be evaluated in the same manner for both adjacent con- 
trol volumes on their interface. 

Cell centered methods 

This well known approach consists in taking elementary 
meshes as control volumes. Thus the mean value w, can be 
attached to some centroid of the mesh cell. 

For triangles or tetrahedra the centroid is normally the point 
of intersection of medians and for quadrilaterals and hexahe- 
dra it is located at the intersection of straight lines joining the 
mid-points of opposite sides. There is not much room for 
geometric variants in the cell centered finite volume schemes. 
The only dilemma is for evaluating fluxes on the interface 
between two cells. This evaluation can be either a central in- 
terpolation or an upwind formulation. 

ahedral grids, there is about the same number of control 
cells (thus of unknowns) and of flux evaluations whereas in 
the case of triangular or tetrahedral grids the number of con- 
trol volumes (thus of unknowns) is larger in  the cell centered 
approach with a ratio of about two for triangles and of about 
five or six for tetrahedra. 

This is one reason why the following third class of finite 
volume discretization has been increasingly adopted by prac- 
titioners of finite volume methods on unstructured grids. 

Node centered methods 

In the node centered approach for finite volume discretiza- 
tion, the unknowns are associated with the mesh vertices and 
a control cell is constructed around each mesh vertex without 
overlapping neighbouring cells in a manner that provides a 
complete partition of the computational domain. 

A strong motivation for this choice lies in the fact that for 
solving the Navier-Stokes equations a continuous approxima- 
tion with unknowns defined at the mesh nodes is best suited 
for central differencing of second order derivatives. The na- 
tural practice of extending Euler flow solvers to the solution 
of Navier-Stokes equations is also an explanation for the in- 
terest related to this formulation which combines the choice 
of the nodes from cell vertex with the choice of non over- 
lapping cells as in the cell centered approach. 

The construction of the control volumes is based on the 
definition of a centroid in each mesh cell. Then a "dual 
mesh" is built which connects these centroids. There are two 
possibilities: either two adjacent centroids are joined by a 
straight line ("centroid dual mesh") or a mid-point is firstly 
introduced on the common interface and is used (with mid- 
points on the edges in three dimensions) to complete the 
boundary of the control volume by median lines (or planes) 
providing the so-called "median dual mesh" (see Fig. 2,1,4). 

Figure 2.1.3 Cell centered finite volume methods. 

The first choice was taken by Jameson et aL6 and Rizzi" 
with a simple mean value of fluxes from the two adjacent 
cells, the lack of dissipative properties of the resulting 
scheme imposes to add artificial dissipation as shown in Sec- 
tion 2.3. This choice can be also identified in the explicit Lax 
Wendroff step of Lerat Sides schemesi0 but then the flux 
evaluation takes into account values of w over a larger 
number of cells (six in two dimensions on a structured qua- 
drilateral grid). 

The second possibility is related to upwind schemes of either 
first or higher order. The most typical example of such 
upwind schemes is the basic first order Godunov schemei8 
which rests on the assumption of a piecewise constant func- 
tion for representing w and on the solution of a Riemann 
problem at the mid-point of each interface between two cells. 
This Riemann problem solution provides an intermediate phy- 
sical state for the flux evaluation. 

If we compare the cell centered approach with the cell vertex 
one, it is easy to see that, in  the case of quadrilateral or hex- 

Figure 2.1.4 Node centered finite volume method: 

a) - Median dual mesh; b) . . . .Centroid dual mesh 

The first possibility is more economical as flux evaluation is 
concerned but it can lead to large inconsistency in these flux 
evaluations for very distorted and elongated meshes and the 
second choice is recommended in that situation. 

This choice of a node centered finite volume approach can be 
used with both central or upwind schemes but it is specially 
well adapted to Godunov-type methods and to unstructured 
grids made of triangles or tetrahedra. In this case, strong 
analogy can be showni9 between a node centered finite 
volume method on a median dual mesh and the cell vertex or 
the Galerkin finite element method with linear approximation 
proposed by Jameson et aIz0. 

2.1.3 Finite Element Techniques 

As indicated above, finite element methods are characterized 
by the use of a weak formulation as a basis for the discretiza- 
tion of the equations to solve. 

The subdivision of the computational domain is generally 
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achieved with simplicial elements (triangles in 2D, tetrahedra 
in 3D) which made possible a linear interpolation over each 
element. However the use of quadrilaterals or hexahedra is 
also met either in combination with simplicial elements or 
not. The only restriction on the grid arrangement is that a 
vertex, edge, or face of an element has to be also a vertex, 
edge, or face of any adjacent element. 

Finite element methods found their origin in the field of solid 
mechanics at the beginning of the sixties and their use for 
fluid dynamics appeared in the mid seventies. This extension 
was rather natural since at that time the first attempts to ap- 
ply finite element techniques to a fluid flow problem con- 
cerned elliptic partial differential equations namely the Stokes 
problem and the full potential equation. 

Variational principles are well known for the derivation of 
these equations. This is not the case for the system of the 
Euler equations of hyperbolic type, and it was early recog- 
nized that the direct use of the classical Galerkin approach in 
space-time is inefficient for these equations. 

Therefore the few finite element methods existing for solving 
the Euler system of equations have been mostly devised from 
a semi- discrete approach with only a space discretization by 
finite element techniques and often with a strong link to well 
known finite difference or finite volume schemes. The notice- 
able exception is the Galerkin Least Square or Streamline 
Upwind Petrov Galerkin (SUPG) methods which have pro- 
gressively evolved from research studies on scalar advection- 
diffusion problems to full compressible Navier-Stokes 
solvers. This approach is now presented by Johnson (under 
the name of Streamline Diffusion) as a general unified ap- 
proach to CFD2'. 

The presentation will be limited here to a simple overview of 
the main methods namely the Galerkin method with artificial 
dissipation of Jameson et al.20.22, the Taylor-Galerkin method 
studied by Peraire, Morgan, Lohner et al.23.24,2s after Donea26, 
the Richtmyer-Galerkin approach from Angrand, Dervieux et 

and the Galerkin Least Square after Hugues and John- 
son2'. 

All of these methods are based on a continuous piecewise 
linear approximation on a triangular or tetrahedral mesh 
eventhough it could be possible in theory to use higher order 
polynomials. 

Standard Galerkin methods 

We consider first the Jameson finite element method and for 
simplification we extract from the set of Euler equations one 
of the scalar conservation laws: 

aw 
at 

- + V . F = O  (2.1.22) 

This scalar equation is then transformed with multiplication 
by a test function $, space integration over the flow domain 
R and integration by parts for the space derivatives giving: 

$ d R  - f ~ ? v $ d R  + 1 I ' . rT$do=O (2.1.23) 
n R aR 

aw 
at 

We assume now that - and F are linearly interpolated on 
each element from their value at nodes and that 4 is the 
piecewise linear function with value unity at node I and zero 
at all other nodes in R. Then the last integral vanishes except 
in the case when node I is on the boundary of R. Also V$ is 
constant in every element and differs from zero only in ele- 
ments sharing the common vertex I .  In such an element R,, 
shown in Fig. 2.1.5, it is easy to show that: 

where Sk and tTk are the area and the outer normal of the 
face opposite to node I and v k  is the volume of the element. 

Thus the second integral evaluated on this element Rk is : 

and since, by summation ovec all elements with a common 
vertex I ,  we have Z Sk n k  = 0, 

we can discard the Fl term in the sum over all elements sur- 
rounding I getting from Eq. (2.1.24): 

k 

which clearly appears as a discrete approximation of : 

1 - j F.n d o  
k aRk 

Finally, Eq. (2.1.23) gives for a node I: 

1 3 -  
with & = - F ~ M  . 

M = l  

where the subscript M denotes the three exterior nodes of the 
k -th tetrahedron in the set of elements containing node I .  

J 

Figure 2.1.5 Tetrahedral element. 

If only steady solution is of interest it  is convenient to re- 
place the "Galerkin mass matrix" (the coefficients of which 
appear in Eq (2.1.25)) by a "lumped mass matrix" thus avoid- 
ing the coupling of equations: 

This formulation could as well have been found by a finite 
volume approach and this explains why it is sometimes 
difficult to make a distinction between the two class of 
discretization techniques. 

Moreover, time discretizations other than the Euler explicit 
one are often advocated by finite element practitioners. In 
particular, it is worth to mention at least Richtmyer-Galerkin 
schemes 27 and two-step Taylor-Galerkin schemes 23.24. 

These schemes are the finite element counterpart of classical 
predictor-corrector explicit schemes of Lax-Wendroff type in 
finite difference or finite volume approaches such as 
described by Lerat, Sides29 or by NilS . 



The predictor step can be understood as a first order explicit 
step of cell-centered finite volume type applied on each ele- 
ment with a time step aAt . 

J wk”*(T) dR = Jwk” d R  - a t  J F k ( w ” ) . ~  d o  
T T aT 

with wk “ - ( T )  a piecewise constant approximation. 

The corrector step corresponds to the previous Galerkin finite 
element approximation with a time step At and a blending of 
fluxes taken at time t” and at the end of the predictor step 
with a weighting factor - in order to get second order ac- 
curacy. 

1 
2 a  

41 dR = I F(w”).VQ dR + 
R 

I w “ + ’ - w n  
R At 

* 
where J means that a one point numerical quadrature is made 

on each element. 

The case 01 = 1 corresponds to Lax-Wendroff type schemes 
called Taylor-Galerkin schemes in the finite element littera- 
ture after Donea26 and coworkers. 

All these schemes give (on uniformly spaced grids) central 
space discretization and they need the addition of artificial 
viscosity in order to avoid spurious oscillations due to the 
decoupling of nodes or to the presence of strong gradients. 

Several possibilities have been studied to give a finite ele- 
ment equivalent of an explicitly added artificial viscosity. 
Some are derived from the discretization of a Laplacian 
operator, other are related to upwind schemes with Roe split- 
ting (see section 2.3) but at least one is typical of the finite 
element approximation. It is based on the observation that the 
difference between the exact Galerkin mass matrix and the 
lumped mass matrix is a diffusion operator which can be 
used in combination with a pressure switch in order to play 
the role of a second order dissipation near the shocks. De- 
tails can be found in Ref. 30 for a precise definition of this 
artificial viscosity and more generally in Ref. 25 for the class 
of finite element schemes of central differencing type with 
numerous references. 

R 

Petrov-Galerkin, Galerkin-Least-Square methods 

A class of methods more specific of the finite element ap- 
proach found its origin in the numerical approximation of 
convection-diffusion flows by Hughes and Brooks3’ with the 
Streamline Upwind Petrov-Galerkin (SUPG) schemes which 
progressively evolved towards a large family of  scheme^^**^^ 
with its theoretical analysis made by Johnson and Szepes~y’~. 

The space-time approximation has been developed but is 
mainly of interest for moving boundaries so we restrict here 
the presentation to the semi-discrete form of these finite ele- 
ment methods. 

To give an idea of the different variants in this large class of 
discretization techniques we can restrict the problem to the 
case of a scalar steady advection diffusion equation: 

LW = Z V W  - V . ( k V w )  = f 

The standard Galerkin method consists of choosing the same 
approximation space vh (generally a piecewise linear ap- 
proximation) for the approximate solution wh and for the test 
function vh : 

Find w h  E V h  such that for all v h  E V h  

b ( v h , w h )  = f ( v h )  

where by definition: 
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(2.1.26) 

b ( v h , w h )  = I(-a7vvh w h  + T v h . K V w h )  d R  

l ( v h )  = j v h f  d R  

R 

R 

Notice that here and in the following the boundary integrals 
resulting from integration by parts are discarded. 

The classical artificial viscosity approach, as described above, 
leads to replace Eq (2.1.31) by : 

b ( v h , w ” )  + & j v v h V w ”  d R  = l ( v h )  
R 

Another possibility is to choose different approximation 
spaces for the numerical solution and for the test function in 
the weak formulation. This approach is named the Petrov- 
Galerkin method. An example of such a technique is the 
SUPG concept which relies upon: 

b ( v h . w h )  + J E V v h z ( L w h  - f )  dR = f ( v h )  
R 

A related technique is the Galerkin Least Square method 
which corresponds to: 

b ( v ” , ~ ” )  + ~ L v ~ T ( L w ”  - f )  dR = l ( v h )  
R 

The choice of the parameters E and z is made from theoreti- 
cal analysis in order to enforce stability and accuracy. 

It appears that for a purely convective system, SUPG and 
Galerkin Least Square are identical. 

For the system of Euler equations, the necessary extension of 
the above formulation led to the introduction of rather corn- 
plicated non linear  operator^^^.^^. 

Another originality in the formulation of those methods is the 
use of entropy variables. Indeed, starting from the observa- 
tion that the L2(R) inner product for trying to derive a varia- 
tional statement directly from the Euler equations has no phy- 
sical meaning: 

the authors32 advocate the use of entropy variables allowing a 
symmetrization of the system of Euler  equation^^^. They give 
a formulation comprising the full compressible Navier-Stokes 
equations which accounts for a continuous approximation and 
a non divergence form of the convective terms and which can 
be written (here with repeated indices indicating summation): 

aw aw a aw 
at ax; ax; IJ axj - + A;- = -(K..---) + f 

where Kij = Kij” + Kijh , 

(2.1.27) 

and K i j ”  corresponds to the physical viscosity and Kii’l to 
the heat coefficients. 

The entropy variables are defined by: 

p L f Y )  dS U‘ = - 
dw 

where S = -p s = -p Log(-( 
P o  Po 



34 

The change of variables w = w(u) gives: 

(2.1.28) aU. - aU a - aU 
axi axi i~ ax, A, at + Ai - = -(K..-) + f 

aw 
aU where A, = - ; Ai = A i  A, ; Kij = Ki, A , .  

The coefficient matrices possess the following properties: 

A, is symmetric positive definite, the Ai are sym- 
metric and the Kij are symmetric positive semi-definite. 

A dot product of Eq (2.1.28) by U gives after integration: 

au - aU a aU 
R at ax, ax, axj 

O = ~ U '  ( A o - + A i  -- -(Kij -) - f) d R  

as a au - aU 
at axi axi !J axj = I(- + - ( u ; S )  + (-)' K . .  - 

(2.1.29) 
a - au 

axi ' J  axj - -(U' K . .  -) - u'f) dR 

that leads to a Clausius-Duhem type inequality or second law 
of  thermodynamic^^^. 

I - K ; j - d R > O  aut aU 
axi ax, 

where 4 is the heat flux vector. 

For the Euler equations Eq.(2.1.29) gives: 

aU - au 
R at axi U' (A, - + Ai -) d R  = 

showing that a Galerkin formulation based on the entropy 
variables with a continuous approximation cannot lead to an 
entropy production. 

This is a justification for resorting to a Petrov-Galerkin for- 
mulation: 

Find U such that for any t 

with 

aU - aU 
R at axi it (Ao - + Ai -) d R  = 0 

aV 
ax, " v v + T ;  -; 

(2.1.30) 

where Ti(') is a streamline diffusion matrix and Ti(') a 
discontinuity capturing operator. A precise description of 
these matrices is beyond the scope of this short presentation 
and more details may be found in the references mentionned 
above. Implementation of such Galerkin Least Square finite 
element methods has been made for complex high speed 

To conclude this subsection on finite element methods it is 
worth to say a few words about the practical use of these 
techniques. Firstly, we insist on the fact that for Euler solvers 
it is not legitimate to identify every unstructured grid method 
with a finite element one since most of the unstructured grid 
methods are of finite volume type38,39.40 specially for upwind 
schemes. The main advantage of unstructured grids is based 

on their ability to represent complex geometries however 
with a need of some effort for a priori controlling the distri- 
bution of nodes. A strong increase of interest resulted from 
the introduction of adaptive mesh techniques by local 
refinement and coarsening of the grid according to some flow 
solution error indicator. This can favourably counterbalance 
the extra cost of unstructured grid solution algorithms and 
programming techniques. 

The effectiveness of the adaptive grid methodology depends 
on the quality and accuracy which can be reached for "a pos- 
teriori error indicators" and it is in that direction that finite 
element analysis, could bring powerful promising techniques. 
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2.2 COMPUTATIONAL GRIDS 

In Chapter One the conservation laws relating to mass, momenta 
and energy were described in mathematical form. These 
conservation statements assume the continuum hypothesis, in 
which a gas is assumed to be a continuous medium, rather than 
made up from individual atoms and molecules. The mathematical 
equations are presented in both integral and differential form, but 
both forms assume that the variables are defined continuously 
through the flow domain. The conservation equations, for the 
majority of flows of interest, are non-linear and hence are not 
amenable to classical mathematical analysis. Alternative methods 
of solution have to be sought and one of these approaches is a 
numerical solution of the equations. In the previous section of 
this chapter, several of the major techniques for representing 
equations, in a form required for numerical analysis, were 
presented. All of these methods assume that the flow domain has 
been spatially discretized into a grid or mesh which consists of a 
set of points, and connections between points, called cells or 
elements. The process of spatial discretization is called grid or 
mesh generation. 

The spatial discretization plays an important role in the numerical 
analysis procedure. The distribution of points in the domain 
must, firstly, adequately represent the geometry of the region. In 
general, regions of the boundary of the domain which change 
rapidly will require a concentration of points to adequately 
represent the shape. Secondly, for accurate flow simulations, it 
is necessary that there are adequate points in  regions of the 
flowfield where there is high activity, i.e., where the flow 
variables are changing rapidly. These two major requirements 
cannot be achieved in an arbitrary way. The accuracy of the 
numerical discretizations are dependent upon the properties of 
the underlying spatial discretization. For example, the classical 
second order accurate finite difference representation of a second 
derivative is only second order in space if the grid point spacing 
is uniform. Furthermore, it can be shown that other spatial 
derivatives only achieve second order accuracy if the grid lines 
are approximately orthogonal. Hence, the spatial discretization 
of the domain must be achieved without discontinuous grid point 
spacing and without the introduction of highly skewed cells or 
elements. These restrictions make the generation of suitable 
computational grids a non-trivial problem. Considerable 
attention in the last decade has been given to the problem of grid 
generation]-7. 

Before discussing, i n  detail, some of the more popular and 
successful approaches, it is necessary to comment on different 
methodologies used in grid generation. One of the first aspects 
to cover is the spatial pattern and arrangement of points and 
cells. 

.I 

Structured and Unstructured Grids 

The basic difference between structured and unstructured grids 
lies in the form of the data structure which most appropriately 
describes the grid. A structured grid of quadrilaterals consists of 
a set of coordinates and connectivities which naturally map into 
elements of a matrix. Neighbouring points in a mesh in the 
physical space are the neig6bouring klements in  the mesh point 
matrix (Fig. 2.2.1). 

Thus, for example, a 2-dimensional array x(ij) can be used to 
store the x-coordinates of points in a 2D grid. The index i can be 
chosen to describe the position of points in one direction, whilst 
j describes the position of points in the other direction. Hence, in 
this way, the indices i and j represent the 2 families of 
curvilinear lines. These ideas naturally extend to 3 dimensions. 

However, for an unstructured mesh the points cannot be 
represented in such a manner and additional information has to 
be provided. For any particular point, the connection with other 
points must be defined explicitly in  the connectivity matrix. 
(Figure 2.2.2) 

Figure 2.2.1 Data ordering of a structured grid. 
Quadrilaterals formed by 

(qj, ri+l j, q+ l  j+ l ,  rij+l) (i=l,4, j = 1 3  

2 

7 4 

9 5@ 8 

Element, Nodes 
1 1.  5, 7 
2 1, 4 ,  2 
3 1. 2, 3 
4 1, 3, 5 
5 1 ,  7, 6 
6 1. 6, 8 
7 1, 8, 4 
8 7, 9,  6 

Figure 2.2.2 Data ordering of an unstructured grid 

A typical form of data format for an unstructured grid i n  2 
dimensions is; 

Number of points, number of elements 
X I .  y1 
x2. Y2 
x37 y3  
...... 

n l ,  " 2 ' 9  
"4, n5, "6 
"7, " 8 . 9  
. . . . . . . 

where (xi, yi) are the coordinates of point i, and ni, I=l,N are 
the point numbers with, for example, the triad ( n l ,  9 ,  "3) 
forming a triangle. Other forms of connectivity matrices are 
equally valid, for example, connections can be based upon 
edges. 

The real advantage of the unstructured mesh is, however, 
because the points and connectivities do not possess any global 
structure. It is possible, therefore, to add and delete nodes and 
elements as the geometry requires or, in a flow adaptivity 
scheme, as flow gradients or errors evolve. Hence the 
unstructured approach is ideally suited for the discretization of 
complicated geometrical domains and complex flowfield 
features. However, the lack of any global directional features in 
an unstructured grid makes the application of line sweep solution 
algorithms more difficult to apply than on structured grids. 

Boundary Conforming and Non-Aligned 
Grids  

The solid boundaries within a flowfield play a vitally important 
role. In most applications the solid boundaries create the flow 
features of interest. Hence, it is essential that the solid 
boundaries are accurately represented in the spatial grid and then 
the numerical formulation of the solid wall boundary conditions 
can be implemented accurately and efficiently. These 



requirements have resulted in the use of boundary or body 
conforming grids, in which points lie on the boundaries and grid 
lines are aligned with the geometrical surfaces (Figure 2.2.3). 

Solid Boundary 

Figure 2.2.3 Boundary conforming grid 

Such an approach, although probably the natural approach from 
the viewpoint of the implementation of the flow boundary 
conditions, places a severe restriction on grid generation 
procedures. An alternative approach8- ' I ,  is to relax this 
restriction on the grid generation and allow grid lines to pass 
through the solid boundary in a non-aligned manner (Fig 2.2.4). 

- Solid Boundary 
Figure 2.2.4 Non-aligned grid 

The problem of the accurate imposition of boundary conditions 
is then transferred to the solution algorithm and the construction 
of appropriate techniques. 

Both the non-aligned and boundary conforming approaches have 
been investigated. Today the boundary conforming strategy is 
-the most popular and most widely used. 

One of the features of constructing grid generation techniques, 
which is different from the development of flow or other 
analysis algorithms, is that there are no physical laws which 
govern grid generation. Any suitable equations or geometrical 
constructions can be used. This is reflected in the many different 
and diverse techniques which have been explored. However, 
after a period of exploration and numerical experimentation, 
several approaches are now becoming standard procedures. The 
major techniques will be discussed. 

2.2.1 Structured Grids from 
Partial Differential Equations 

Elliptic Systems 

The motivation for the use of elliptic equations as generators of 
grid points can be derived from a number of sources. The nature 
of elliptic equations is to smooth boundary data and this affords 
a most desirable property. Laplace's equation with Cauchy- 
Riemann type boundary conditions can be used to generate 
conformal mappings. In fact, the real and imaginary parts of an 
analytic transformation are harmonic functions. An alternative 
viewpoint, and one which is most appropriate in  computational 
fluid dynamics, is to note that inviscid steady incompressible 
flow is described in terms of Laplace's equation in the potential 
function and the stream function. 

A starting point for elliptic equations is to choose a system of 
Poisson equations, expressed in the form 
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(2.2.1) 

in which P, Q and R are the source functions which can be used 
to control the grid point spacing and distribution. These 
equations, as expressed in Eq. (2.2.1), are in an inappropriate 
form for grid generation, since in general, boundary data will be 
specified in terms of x, y and z and not 6,  q, and <. Hence, 
following Thompson, Thames and Mastin' 2, these equations 
are transfohed so that they are written in terms of the unknown 
spatial physical variables x,y and z with the independent 
variables 6, q, and 6.  The transformation leads to the equations 

where r = ( ~ , y , z ) ~ ,  a.. 'J = ymi ymj and yi, is the ij-th cofactor 
of the matrix 

M= (2.2.3) 

and the Jacobian J is the determinant of M. 

An interesting alternative derivation of these equations was given 
by Brackbill and Saltzman13. Working on adaptive grids, they 
introduced global smoothness as one property required from the 
mesh. Smoothness, in  a 2-dimensional domain R with boundary 
C. can be written as 

which when transformed and optimized leads to the 2- 
dimensional equations equivalent to those expressed in Eq. 
(2.2.2). Hence, the inverted Laplacian, without grid control 
functions, maximises the smoothness of the distribution of grid 
points. 

The above equations represent a non-linear boundary value 
problem. The solution of these equations can be achieved using 
any appropriate technique. However, central differences and 
relaxation schemes are commonly used. To illustrate a solution 
procedure, consider the commonly used 2-dimensional form, 
r=r(x,y)T, of the equations with the control functions set to 
zero, namely, 

where 

and 

Using central finite differences for the representation of the 
derivatives, the residual on a square mesh with 5=ih ,  
(i=0,1,2 ,..... m) and q=jh, (j=0,1,2 ,...... n) can be represented 
as 
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n n n  n n  
R.. = a . .  ( riClj - 2r.. +ri-lj) 

1J 1J 1J 

n n  n n 

n n  n n  + y..( rij+l- 2rij + rij-l) 
1J 

- 'Pij('i+ lj+l-ri- 1 j+ 1 -ri+ 

with 

n 
'J 

where r.. represents the unknown at the point ( i j )  at iteration 
level n. It is noted that in the numerical formulation a 
linearization is applied to the terms in a ,  P, and y. In practice, 
once x and y are known, at the new iteration level n + l ,  they can 

be immediately utilised in the terms aij,  pij and yn. It follows 

that the solution to the equations can be obtained using the 
stationary and linear successive over-relaxation scheme, 

n n  
1J ' 

where w is a relaxation parameter, with l<w<2. A similar 
numerical scheme can be applied to the equations, Eq. (2.2.2). 

Boundary conditions for these equations are most generally 
applied in the form of Dirichlet or Neumann conditions. Dirichlet 
conditions specify fixed (x,y) values for a particular constant 6 
or q and are used, for example, to specify aerofoil or 
outerboundary positions. Neumann conditions are used to 
specify fixed derivatives on boundaries. In the case of the grid 
equations, this type of boundary condition amounts to the 
specification of grid line directions. The positions of (x,y), on a 
boundary of constant 5 and q, are allowed to move in order to 
satisfy the slope conditions. Typically, such boundary 
conditions are applied on lines where one of the coordinates x or 
y is fixed whilst the other is computed under the Neumann 
condition. Such a boundary condition may be applied at an outer 
boundary or on a cut i n  the wake of an aerofoil. Similar 
boundary conditions are applied in 3 dimensions. 

Central to the practical use of these equations is the appropriate 
form for the  control functions P, Q and R. The inherent 
smoothing properties of Laplace's equation ensures that, in the 
absence of boundary curvature, the grid points are evenly 
spaced. However, near convex boundaries the grid points will 
become more closely spaced, whilst near concave boundaries the 
mesh spacing will be more sparse. These properties are not 
always desirable for grid generation where it is essential that the 
grid near a boundary reflects the shape of that boundary. Control 
of grid point spacing can be achieved by the source terms P, Q 
and R. 

Typical effects of the source functions, in 2 dimensions, are 
shown in schematic form in Fig. 2.2.5. 

f 5  

Figure 2.2.5. Effects of the control functions 

Negative values of Q tend to cause the q-coordinate lines to 
move in the direction of decreasing q, while negative values of P 
cause 6-lines to move in the direction of decreasing 6.  Similar 
effects occur in 3 dimensions. 

Automatic procedures for the computation of the source terms 
have been devised14. A popular approach is to derive the control 
functions from the boundary point spacing and then to 
interpolate the values into the interior. In this way, point spacing 
in the field reflects the point spacing on b o ~ n d a r i e s ~ ~ .  

To illustrate some of these ideas the equations in 2 dimensions, 
which include the control terms, are 

a(rkk+Py) - 2prg., + dr,,,,+Qr,,) = 0. (2.2.4) 

The work of Thomas and Middlecoff15 demonstrated that the 
distribution of points on boundaries of a domain can be used to 
generate the control functions so as to have the effect of 
extending the point distribution into the interior. Eliminating Q 
in Eq. (2.2.4) leads to 

(2.2.5) 

Imposing two conditions on an q=constant boundary, namely, 
zero curvature, 

and the condition for orthogonality 
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Eq. (2.2.5) reduces to 

A similarly expression can be derived for Q 

r,,+vl 
lrqP 

Q = - -  

(2.2.6a) 

(2.2.6b) 

It is noted that the evaluation of P involves the point distribution 
on a line of constant 6 ,  whilst Q involves data on a constant q. 
These forms for P and Q can thus be evaluated directly from the 
boundary point distributions. 

Once values for P and Q have been obtained for each boundary 
point the values at interior mesh points can be obtained by linear 
interpolation along lines of constant 5 and q. This procedure 
ensures that the grid throughout the  interior of the domain 
reflects the distribution of points on the boundaries. This effect 
is illustrated in Fig. 2.2.6. 

Figure 2.2.6 Effects of control functions on the spacing of 
points inside the domain. The interior point distribution 

reflects the point spacing on the boundary. 

Although this approach works well i n  many cases there are 
circumstances when local control of orthogonality in the mesh is 
important. This is particularly relevant for meshes to be used for 
viscous flow simulation. To implement local orthogonality, a 
further modification to the computation of the control terms can 
be made 4. 

For orthogonality, p = 0 and thus the grid equations become 

a(rg+Prg) + ?xr,,,+Qr,,> = 0. 

Taking the scalar product of this equation with r and r,, and 
again using the condition for orthogonality leads to 

5 

(2.2.7a) 

(2.2.7 b) 

The first terms of Eq. (2.2.7) for P and Q are equivalent to the 
control functions of Thomas and Middlecoff. However, the 
second terms are the corrective terms for orthogonality which are 
not only dependent upon the boundary points but also on the 
field points. Hence, i t  is not possible to use these equations 
without some interaction with the grid as i t  evolves in the 
solution procedure. 

The iterative procedure for the control functions then follows the 
steps:- 

1. Compute P and Q from the boundary point distribution 

2. Obtain an initial grid. 

3. Calculate the corrective terms 

4. Add to the control terms 

P = P + PI and Q = Q i Q' 

5. Solve Eq. (2.2.4) to produce a new grid 

6. Repeat steps 3,4,5 until the correction terms P' and Q' are 
zero. 

It is clear that the method adds correction terms for orthogonality 
until they are zero. Fig. 2.2.7 shows the effects of this iterative 
control of the source terms. 

Figure 2.2.7 Effect of the boundary orthogonality control. 
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Further discussions of the approach and the specification of the 
control terms can be found elsewhere14. 

Other elliptic partial differential equations have been used for 
grid generation16. Higher order systems have been used since 
they provide the flexibility for specifying more conditions on the 
boundary. In this way, it is possible to not only specify point 
spacing, but also slopes etc.. 

Hyperbolic Systems 

Computational grids can also be generated by solving hyperbolic 
partial differential equations which are marched outwards from a 
specified distribution of points on an inner boundary17. 
Differential constraints on mesh size and angles are generally 
used to determine the governing grid generation equations. 
Because the outer boundary of a grid cannot be specified in 
hyperbolic grid generation, the  method is best suited to 
applications which have asymptotic-like outer boundaries. In 
external aerodynamics, for example, the outer boundary is 
generally a farfield condition of undisturbed flow. However, 
domain decomposition methods that use overset composite 
meshes for complex field simulations can also effectively 
employ hyperbolic grid generation. For example, a number of 
recent flow simulations which employ the ' Chimera' overset 
grid method have relied almost exclusively on hyperbolic grid 
generation'8t19. 

In three-dimensional applications of hyperbolic grid generation, 
a body surface is chosen to coincide with <(x,y,z) = 0, 6 is used 
as the marching direction, and the outer boundary c(x,y,z) 

distributions of c=constant and q=constant are user-specified. In 
three-dimensions, there are three orthogonality relations to 
choose from and one cell volume constraint. Because is the 
marching direction, it  is natural to use only the two orthogonality 
relations that involve e. This leads to the governing equations 

- -cmax is not specified. On the body surface, grid-line 

with r is defined as ( ~ , y , z ) ~ .  The first two equations represent 
orthogonality relations between €, and and between q and 6, 
and the last equation is the volume or finite Jacobian constraint. 
AV can be prespecified to give appropriate point spacing. 

The equations comprise a system of nonlinear differential 
equations in which x, y,and z are specified as initial data at <=O. 
A local linearization is performed and the equations are then 
solved with a noniterative approximately factored implicit finite 
difference scheme so that the marching step size, in 6, can be 
arbitrary selected. Further details of this approach can be found 
in ~ teger l7 .  

Parabolic Systems 

Grid generation based upon parabolic partial differential 
equations can also be performed20. In general, such equations 
are constructed by modifying elliptic generation systems so that 
the second derivatives, in  one coordinate direction, do not 
appear. The solution of the parabolic equations can then be 

marched away from a boundary in much the same way as that 
previously described for hyperbolic grid generation. Here, 
however, some influence of the other boundaries is retained in 
the equations. Although some development of such schemes has 
been made, i t  has proved to be limited in its flexibility and 
applicability. 

2.2.2 Structured Grids from Algebraic 
Methods 

Algebraic grid generation distinguishes itself from other grid 
generation methodologies by the ability to provide a direct 
functional description of the coordinate transformations between 
the computational and physical domains. The roots of algebraic 
grid generation are found in conformal mapping, defined by 
explicit analytical functions of a complex variable. 

Co n f o rm a 1 Mapping 

The concept of a mapping, in 2 dimensions, is to define a 
transformation which takes a domain D, defined in the plane 
(x,y) onto a rectangular domain R on the plane (6,q). The 
geometrical relationship between D and R is described by the 
components of the metric tensor g. .  (i,j=l,2). From the formal 

definition of a conformal mapping2I i t  follows that the 
components of the metric tensor are subject to the constraint 

1J 

and as such the mapping functions x(6,q) and y(s,q) must 
satisfy the Cauchy-Riemann relations in the domain R, namely, 

y5  xk = y,, and x,, = - 

Consequently, the condition of integrability yields 

2 2 V x = 0 and V y = 0. 

It is clear from these relationships that it is not possible to fix 
both x and y on the boundary of R for the solution of the 
Laplacians. One possibility is to fix the sides €,=constant of the 
rectangle R with the value of the function of x and from the 
second Cauchy-Riemann relation the value of the derivative y 

while on the sides q=constant the function y and the derivatives 
xq are specified. Hence, it is apparent that in the case of 
conformal mapping i t  is not possible to specify the distribution 
of the grid points because of the constraint placed upon the 
metrics g l l  and 812. A slightly more flexible approach can be 
achieved if the constraint g1 l=g22 is relaxed and the relationship 
is taken as 

€,> 

where the specification of F, a dilatation function, permits a 
certain flexibility without the loss of orthogonality22. 

As an example of conformal mapping applied to grid generation, 
consider the particularly attractive method for 2-dimensional 
aerofoil configurations based upon the Joukowski mapping, 

A circle in the 5 plane maps to a so-called Joukowski aerofoil in 
the z plane. A generalisation of this to general aerofoil 
geometries is the Von Karman - Trefftz mapping 
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where z is the aerofoil plane complex coordinates, 6 the near- 
circle plane complex coordinate, I&-UK, with h the included 
trailing edge angle, z1 and zln are two singular points in the z 
plane at the trailing edge and at the midway between the nose of 
the aerofoil and its centre of curvature, respectively, and the 
parameter s1 is related to z l t  and z ln  through the relations zit= 
z l s  + ksl and z l n  = z ls  - ksl. A polar mesh with appropriate 
stretching in the radial direction generated around the near circle, 
when mapped back to the physical plane, produces a high 
quality structured mesh. The technique is computationally 
efficient and has been used to provide a suitable set of points for 
aerofoil-like geometries. An example of this is shown in Fig. 
2.2.8. 

Figure 2.2.8 A structured conformal grid 

Conformal mappings have found many early applications in the 
numerical simulation of potential flow23. Although the resulting 
grids preserve a basic cell shape, the amount of local control 
provided is not sufficient for many problems. As indicated, one 
by one, the intrinsic properties of conformal mappings must be 
dropped to provide greater flexibility. Cell shape preservation 
can be replaced by only orthogonality, thus allowing the grid to 
stretch in one or more of the coordinate curve directions. 
Shearing transformations, in turn, can overcome further 
shortcomings of the conformal mapping. Extensions to three 
dimensions can be achieved by conformal mappings in two 
dimensions followed by an algebraic stretching in the third 
dimension. 

The requirement for more general algebraic grid generation 
procedures has lead to the investigations of general uni- 
directional interpolation methods based upon Lagrange and 
Hermite interpolations, which can then be extended to multi- 
directional formulations. Shearing transformations, and general 
interpolants have been studied and effective techniques, such as 
the m u l t i ~ u r f a c e ~ ~ - ~ ~  and transfinite i n t e r p o l a t i ~ n ~ ~ q ~ ~  
procedures, have been developed. 

Transfinite Interpolation 

In its basic form transfinite interpolation can be described 
initially in tums of one dimensional shearing transformations. In 
2 dimensions consider the transformation 

which expresses the interpolation RS derived by interpolating 

between the boundaries q=constant. Similarly, for the boundary 
c=constant, the interpolant 

Rq(SJl) = (l-q)R(5,0) + qR(S,l) 

is obtained. The tensor product of RE and R, gives an 
interpolant which maps the four corners of the computational 
domain to the four corresponding corners of the physical 
domain. The remaining boundary points between the two 
domains have no correspondence under this mapping. This 
occurs because the boundaries map into line segments between 

corners. By contrast, the simple sum Re + Rq maps each 
boundary to the sum of a line segment and the actual physical 
boundary. By using the tensor product mapping to remove the 
boundary line segments, the Boolean sum is obtained 

where the tensor product is defined as 

This represents transfinite interpolation. In practice, the previous 
equation is broken down into several components. For example, 
in three dimensions the interpolant would be expressed as 

(2.2.8) 

where 6 is the computational variable in the third direction. F-F1 
represents the mismatch between the actual surface and the first 
interpolant. 

In the above description, uni-directional interpolants of the 
Lagrange form have been used. If control of local boundary 
slopes are required then these interpolants can be expressed in 
Hermite form to give 

Similar expressions can be written for the interpolants Rq and 

R6. The coefficients a i ,  i=1,4 are the blending functions with 

again corresponding equivalent terms for the q and c 
interpolants. 

It should be noted that transfinite interpolation is a direct 
evaluation of Eq. (2.2.8) and hence is computationally very fast 
and efficient. 

2.2.3 Structured Grids from Variational 
Methods 

As seen in Section 2.2.1, elliptic grid generation through the 
inverted Laplacian without grid control functions can be obtained 
by optimizing the smoothness of the distribution of grid points. 
Based on this observation, different variational techniques have 
been developed in order to minimize a global functional which 
amalgamate different  grid propert ies  to be 
optimizedl 3,3083 1t33. 

The general form of these variational methods allows a 
competitive enhancement of grid smoothness, orthogonality and 
point concentration by representing each of these desired 
properties by integral measures over the grid and minimizing a 
weighted average of them. 

The scope of the variational methods used for optimization of 
structured grids is also applicable to the optimization of 

32 unstructured grids (Section 2.2.5) . 

Among the properties considered for mesh optimization, some 
are quantified either in terms of mapping between the physical 
space x(x,y,z) and a uniformly discretized reference space (,q,6 
or in terms of mapping between the reference space k,q,c, and 
the physical space x. 
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Belonging to the first type, the global functional o used by 

Brackbill and Saltzman13 measures the grid quality as a 
combination of smoothness, orthogonality and volume control 
by the following integral: 

where cs, co, cw are the weight factors chosen in order to stress 
one of the desired properties, and w is a variable factor used to 
control the volume of the cells. Belonging to the second type, 
the method of Carcaillet, Kennon and D ~ l i k r a v i c h ~ ~  uses a 
functional that can be written, in a continuous form, as follows: 

2 2 2 
+c0[(y.xq) + (Xq.X<) + Cy."<, 1 
+cw w<5,%8 J2) d5 dq d5 

where kl,k2,k3 can be seen as variable stiffness coefficients, in 
clear analogy with a system where grid points are connected to 
their immediate neighbours by tension springs. 

In the references 33-35 a generalized measure of the mesh 
deformation between the reference space is presented. The 
deformation on a non-uniform mesh and the physical space is 
presented. The deformation characterizes the energy of an 
hyperelastic, isotropic, homogeneous material satisfying the 
axiom of frame indifference. In order to establish a well posed 
minimization problem, the functional is enforced to be locally 
convex in the neighbourhood of a rigid transformation. 

According to these mechanical and mathematical properties, the 
functional o, in a continuous form, can be expressed as 

where 

2 c 2  2 I2 = ("5 x xq) + (xq x x ) + '"6 x xg) 

J = (xg x xq).  X< 

Solution algorithm 

The basic pattern of development with variational methods 
consists in defining a pointwise positive measure gathering 
together some desired grid features, to integrate this measure 
over the field and to minimize the resulting functional. 

Two alternative approaches are commonly used for the solution 
of the minimization process: 

1. The first approach consists in expressing the optimality 
conditions known as the Euler Lagrange equations giving a 
system of partial differential equations to be discretized and 
solved by an appropriate numerical m e t h ~ d l ~ v ~ ~ .  

2. The second approach is simply the direct minimization of the 
global function o after its discretization. The most popular 
algorithms used for such an optimization problem are the 
Fletcher-Reeves and the Polak-Ribiere conjugate gradient 
methods. Further discussion of the minimization process an be 
found e l s e ~ h e r e ~ ~ t ~ ~ .  

2.2.4 The Multiblock Approach 

The techniques discussed for the generation of structured grids 
imply a mapping between the physical space, (x,y,z) and the 
regular transformed space (t,q,<). This indicates that, whatever 
the shape of the domain in the physical space, it is topologically 
equivalent to a cuboid. For general shaped flow domains this is 
a major restriction, since this can give rise to inappropriate grid 
structures and, in general, an over constraining of the grid 
generation equations. At the heart of this problem is the global 
conservation of the curvilinear coordinates. For application to 
general shapes this proves too restrictive and it is necessary to 
introduce a multiblock subdivision of the domain3-7~36~37. 

The idea behind multiblock is that, instead of utilising one global 
curvilinear coordinate system, several curvilinear systems are 
constructed and subsequently connected together. The domain is 
subdivided into regions, each of which is topologically 
equivalent to a cuboid and within which a structured grid is 
generated. The block subdivision provides the necessary 
flexibility to construct structured meshes for complex shapes. 
The approach represents a compromise between the globally 
structured grid and an unstructured grid. 

The multiblock concept has proved to be powerful in the 
construction of high quality grids for aerospace geometries. The 
arrangement of blocks defines how the local curvilinear systems 
connect and the resulting connectivities between the blocks 
define the global grid topology. It is possible to construct a wide 
range of mesh topologies for any given configuration. In 
particular, it is possible to construct 'component adaptive' mesh 
topologies to ensure that the mesh lines close to a component are 
appropriate to the geometrical shape of that component. The 
multiblock concept is not particular to any grid point generation 
technique. The generation of points can be achieved using the 
algebraic or elliptic procedure. 

The form of a structured grid is often described by the 
topological structure. The 3 basic forms are ' 0  or polar, ' H  
and 'C' grids. To achieve these different topologies, 3 different 
mappings are required. Figure 2.2.9 a, b and c show the 3 
mappings, in 2 dimensions, required for these grid structures. 
They are shown here in multiblock form, where the convention 
has been applied that there is only one grid boundary condition 
type along any edge. 

These basic mappings can be used to build different grid 
structures for any given configuration. For example, consider a 
2 aerofoil system, arranged in a tandem configuration. An ' H  
grid could be constructed local to each aerofoil in a way which is 
shown in schematic form in Fig. 2.2.10. 

Alternatively, the forward aerofoil could be favoured with a 'C' 
topology, whilst the grid around the aft component remains of 
'H' type. The schematic for this is shown in Fig. 2.2.11. In a 
more adventurous way, it may be appropriate to construct a C- 
structure around the leading edge of both aerofoils, as shown in 
Fig. 2.2.12 or a polar mesh around both aerofoils, as indicated 
in Fig. 2.2.13. Either of these grid topologies are valid, and the 
associated block structure for the 2 are shown in Figs. 2.2.12b 
and 2.2.13b, respectively. The 'C' structure requires 18 blocks 
whilst the polar mesh requires 36. 
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Figure 2.2.9 The basic mappings of structured grids. 

Figure 2.2.10 H-grid topology for a tandem 
configuration. 

Figure 2.2.1 1 C-H grid topology for a tandem 
configuration. 

Figure 2.2.12 
a) C-C grid topology for a tandem configuration. 

b) Block structure for the C-C grid topology 

U - n - 0 - 0 - 0  

Figure 2.2.13 
a)O-0 grid topology for a tandem configuration. 

b) Block structure for the C-C grid topology 

As indicated by this simple configuration, it is possible to 
construct many different grid topologies for any configuration. 
The final choice will be made on the grounds of the detailed 
geometry of the configuration and on flow conditions. 

The arrangements of blocks is defined in a way analogous to the 
connectivity matrix for an unstructured grid. One approach is to 
specify for each side of every block, 
i) The number of points on the side, 
ii) The type of boundary condition 
and 
iii) if appropriate, a) the adjacent block number 

b) the adjacent side of the adjacent block 
c) the orientation of the coordinate system 
of the adjacent block relative to that of the 
current block. 

The procedure for multiblock grid generation begins with a 
suitable subdivision of the flow domain into regions, each of 
which is topologically equivalent to a cuboid in that each has 8 
corner points, 12 edges and 6 faces. These regions are 
connected together to form the grid topology. The connections 
between blocks are specified in a topology or block connectivity 
matrix. Such connectivity matrices are of the form used to 
describe element connections in an unstructured grid. 

Once defined, the block connectivity matrix is used to derive the 
grid structure on the surface of a configuration. This is 
necessary to generate the grid on the component surfaces and 
clearly the grid structure on the surfaces must be compatible with 
the structure in the field. 

At this stage, no grid generation has been performed, only the 
connection between blocks. However, once this has been 
achieved the grid generation procedure can begin. 

The grid structure on the surfaces of the configuration is known 
and points can be generated on edges of the blocks. To ensure 
continuity of grid lines across block boundaries it is necessary to 
form the same computational molecules for all points, including 
points which are in corners, on edges of faces and on block 
boundaries. This methodology ensures that grid lines are smooth 
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everywhere, including across block boundaries. This is an 
attractive procedure since the block subdivision was utilised only 
to achieve an appropriate grid structure for the geometry under 
consideration. It would detract from this approach if, as a by- 
product, it was to produce grid lines which were discontinuous 
in slope and higher derivatives across block boundaries. The 
practical implementation of smooth lines across boundary faces 
requires the use of a halo or pointer system, but is relatively easy 
to achieve. 

The approach has proved to be very popular and successful and 
many impressive computations in aerospace engineering have 
been performed7. It has some disadvantages which are now 
widely recognised. Firstly, a criticism is the difficulty of use of 
such an approach and secondly, its applicability to all aerospace 
geometries and flow computations. The first difficulty primarily 
relates to the specification of the block connectivities. This is a 
difficult task, since it requires expert user effort and, 
furthermore, if an inappropriate grid topology is defined it is 
likely to lead to problems late in the grid or flow process. 
Automatic ways of subdividing a domain have been explored 
with limited success. Now emphasis appears to be given to 
interactive specification and grid generation using a graphics 
workstation72i73. However, although this decreases the time 
for the task it still requires expert user effort and is prone to 
mistakes. The second problem is the application of the approach 
to all aerospace geometries. For some configurations, the 
specification of a suitable block decomposition is difficult and 
even if achieved can lead to highly constrained grids of poor 
quality. Much is now understood of the mathematics of 
structured grid generation and it is likely that grid quality 
techniques will continue to improve. 

2.2.5 Unstructured Grid Methods 

Delaunay Triangulation 

D i r i ~ h l e t ~ ~  in 1850 proposed a method whereby a given domain 
could be systematically decomposed into a set of packed convex 
polygons. Given two points i n  the plane, pi and p,, the 
perpendicular bisector of the line joining the two points 
subdivides the plane into two regions, Vi and V,. The region Vi 
is the space closer to pi than to p.. Extending these ideas, i t  is 
clear that for a given set of points in the plane, the regions Vi 
are territories which can be assigned to each point such that Vi 
represents the space closer to pi than to any other point in  the 
set. This geometrical construction of tiles is known as the 
Dirichlet tessellation. This tessellation of a closed domain results 
in a set of non-overlapping convex polygons, called Voronoi 
regions, covering the entire domain. 

J 

A more formal definition can be stated. If a set of points is 
denoted by (pi), then the Voronoi region (Vi) can be defined as 

(Vi) = ( p : II p-pill < llp-p4, for all j#i ) 

i.e. the Voronoi region (Vi) is the set of all points that are closer 
to pi than to any other point. The sum of all points forms a 
Voronoi polygon. 

From this definition, it is apparent, that in two dimensions, the 
territorial boundary which forms a side of a Voronoi polygon 
must be midway between the two points which it separates and 
is thus a segment of the perpendicular bisector of the line joining 
these two points. If all point pairs which have some segment of 
boundary in common are joined by straight lines, the result is a 
triangulation of the convex hull of the set of points (pi). This 

triangulation is known as the Delaunay t r i a n g ~ l a t i o n ~ ~ .  An 
example of this construction, illustrated in two dimensions is 
shown in Fig. 2.2.14. 

J 

Figure 2.2.1 4 The Delaunay and Voronoi constructions. 

Equivalent constructions can be defined in higher dimensions. In 
three dimensions, the territorial boundary which forms a face of 
a Voronoi polyhedron is equidistant between the two points 
which it separates. If all point pairs which have a common face 
in the Voronoi construction are connected then a set of tetrahedra 
is formed which covers the convex hull of the data points. 

The Delaunay triangulation has some rather interesting 
proper tie^^^. One of particular interest is the so-called in-circle 
criterion. The vertices of the Voronoi diagram are at the 
circumcentres of the circles which pass through the three points 
which forms a triangle. In  three dimensions, the Voronoi 
vertices are at the centre of the sphere which passes though the 
four points which form a tetrahedron. It follows from the 
definition of the Dirichlet tessellation that no points, other than 
the so-called forming points which form the triangles or 
tetrahedra, fall within the circles or spheres. If a point did fall 
inside then this would contradict the basic definition. This 
geometrical property is the in-circle criterion. 

This criterion forms the basis for the most popular algorithms 
for the construction of the tessellation which were proposed by 
Bowyer4* and Watson42. 

The basic outline of the algorithm of Bowyer, which is 
applicable in 3 dimensions is;- 

i). Define the convex hull within which all points will lie. It is 
appropriate to specify 8 points together with the associated 
Voronoi diagram structure. 

i i ) .  Introduce a new point anywhere within the convex hul l  
( 1,..,8 1. 
i i i) .  Determine all vertices of the Voronoi diagram to be deleted. 
A point which lies within the sphere, centred at a vertex of the 
Voronoi diagram and which passes through its four forming 
points, results in  the deletion of that vertex. This follows from 
the 'in-circle' definition of the Voronoi construction. 

iv). Find the forming points of all the deleted Voronoi vertices. 
These are the contiguous points to the new point. 
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v). Determine the Voronoi vertices which have not themselves 
been deleted which are neighbours to the deleted vertices. These 
data provide the necessary information to enable valid 
combinations of the contiguous points to be constructed. 

vi). Determine the forming points of the new Voronoi vertices. 
The forming points of new vertices must include the new point 
together with the three points which are contiguous to the new 
point and form a face of a neighbouring tetrahedra (these are the 
possible combinations obtained from Step v). 

vii). Determine the neighbouring Voronoi vertices to the new 
Voronoi vertices. Following Step vi, the forming points of all 
new vertices have been computed. For each new vertex, perform 
a search through the forming points of the neighbouring vertices 
as found in Step v to identify common pairs of forming points. 
When a common combination occurs, then the three associated 
vertices are neighbours of the Voronoi diagram. 

viii). Reorder the Voronoi diagram data structure, overwriting 
the entries of the deleted vertices. 

ix). Repeat steps (ii-viii) for the next point. 

The Delaunay triangulation is a systematic way to connect 
together an arbitrary set of points in either 2 or 3 dimensions. It 
does not provide a technique by which the coordinates of points 
can be generated. In the early applications of the method, grid 
points were computed using a technique based on structured grid 
g e n e r a t i ~ n ~ ~ i ~ ~ .  A set of grid points was generated for each 
individual component of a configuration and the resulting 
collection of all points was then connected to form an 
unstructured grid. Points which fell inside component 
boundaries were automatically detected and then rejected. Such 
an example is shown in Figure 2.2.15. 

Figure 2.2.15 Delaunay triangulation of a structured set 
of grid points. 

This proved to be successful, but it is a clearly limited approach 
when applied to arbitrary geometries since it involved the 
definition of an auxiliary set of points. This motivated the search 
for automatic ways to generate points within the Delaunay 
triangulation procedure. Several have now been developed and 
applied to realistic  configuration^^^-^^. 
An example of a procedure to add interior grid points in  two 
dimensions in the Delaunay triangulation is p r e ~ e n t e d ~ * ~ ~ ~ .  The 
computational domain is defined i n  discrete form by the 
boundary points. It will be assumed that this point distribution 
reflects appropriate geometrical features, such as variation in 
curvature and gradient. An algorithm which creates points within 
the domain which reflects the boundary point spacing is as 
follows: 

i) Compute the point distribution function for each boundary 
point ri= (x,y), i.e. for point i 

dpi = O.S(~qrt(ri+l-ri)~ + sqrt(ri-ri-1)2), 

where it is assumed that points i+l and i-1 are contiguous to i. 

ii) Generate the Delaunay triangulation of the boundary points. 

iii) Initialize the number of interior field points created, N=O. 

iv)For all triangles within the domain, 
a) Define a prospective point, Q, to be at the centroid of the 
mangle. 
b) Derive the point distribution, dp, for the point Q, by 
interpolating the point distribution function from the nodes 
of the triangle, dp,, m=l,2,3. 
c) Compute the distances dm, m=1,2,3 from the prospective 
point, Q, to each of the points of the triangle. 

If (dm < OAP,) for any m=1,2,3 then reject the point :- 
Return to the beginning of step (iv). 
If (dm > adp,) for any m=1,2,3 then 
Compute the distance sj, (i=l, N), from the prospective 
point Q, to other points to be inserted, P., j=l,N. 

If (s, < @pm] then reject the point :- Return to 
the beginning of step (iv). 
If { sj > pdp,) then accept the point Q for 
insertion by the Delaunay triangulation algorithm. 
Include Q in the list P., j=l,N. 

J 

J 
d) Assign the interpolated value of the point distribution 
function, dp, to the new node, PN. 
e) Next mangle. 

v) If N=O go to step (vii). 

vi) Perform Delaunay triangulation of the derived points, P. J' 
j=l,N. Go to step (iii) 

vii) Smooth the mesh. 

The coefficient a controls the grid point density, whilst p has an 
influence on the regularity of the triangulation. The effects of the 
parameters a and p are demonstrated in the following examples. 
Figs. 2.2.16a and b, show two triangulations obtained from the 
boundary points which define the region between 2 concentric 
circles. 

A more realistic example of the automatic point creation 
algorithm is given in Fig. 2.2.17, where a grid is shown around 
a multiply connected airfoil system and a value of p 4 . 0 2  has 
been used. It is clear from the examples given that the 'exclusion 
zone' for point creation, which is a circle of radius pdp,, has an 
effect of controlling the regularity of the triangulation. 

The method proposed for creating points can be generalised and 
applied with a background mesh or point and line sources to 
control grid point spacing. In these cases, the local point 
distribution function is computed from a background mesh or 
distance from a source which are either specified by the user or 
derived from a previous flow computation, if grid adaptivity is 
applied. Fig. 2.2.18 shows some examples of these techniques. 
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Figure 2.2.1 6 
a) Automatic point creation a=1 .O, P=10.0 
b) Automatic point creation a=l .O, P=o.lo 

Figure 2.2.1 7 Multi-component aerofoil system. 

Figure 2.2.18 Examples of the use of point and line 
sources in the automatic point creation routine. 

The method also extends with complete generality into three 
d i m e n s i o n ~ ~ ~ , ~ ~ .  

As was briefly discussed in the introductory comments, one of 
the basic requirements of the grid is for it to be boundary 
conforming. In the,Delaunay triangulation, boundary conformity 
has to be checked and if necessary enforced by the use of special 
techniques. Given a set of points which describe a geometry in 2 
or 3 dimensions and the Delaunay connections between these 
points there is no guarantee that the resulting triangulation will 
contain edges or faces which conform to the boundary surface. 
In fact, for complicated shapes, the boundary edges and faces 
will almost certainly not be recovered. The techniques devised to 
correct the triangulation or force boundary integrity are many. In 
2 dimension,s, the given boundary edges can be recovered by 
edge swapping and does not really represent a significant 
problem. In 3 dimensions the problem is much more severe. 
Baker” chooses to introduce skeleton points to ensure 
boundary integrity whilst GeorgeS1 and Weatheri1148~49 have 
chosen to perform tetrahedral transformations to recover 
boundary faces. This problem is often overlooked in favour of 
the triangulation algorithm. However, the construction of the 
algorithm to form the connections is very well defined and can 
be relatively easily programmed. Boundary integrity is a less 
well defined problem and as such is more problematic to solve. 

Advancing Front 

A grid generation technique which is based upon the 
simultaneous point generation and connection is the advancing 
front method. Given a set of points which defines a geometrical 
boundary or boundaries and a measure of the local spacing 
required within the domain, the method extends or advances the 
boundary connectivity into the field. Grid points are generated 
and connected to other local points and in this way the grid is 
advanced away from the boundaries. The grid point density is 
controlled by the user specified parameters which is often called 
the background mesh. For a uniform distribution of points, the 
background mesh can be a single triangle with point spacing 
parameters assigned to each of the three nodes. Points in the 
interior of the domain are created to be consistent with the 
background spacing. 

The nature of the method makes i t  ideally suited to complicated 
geometries and requires a minimal input from the user. The 
approach, first discussed by George52 has been enhanced and 
extended into 3 dimensions by Peraire et a1.5315~ and 
LohneG5. 

The approach of Peraire et al. is to define a mesh parameter 6 
which controls the local node spacing and a local stretching 
parameter and the local direction t of stretching. These 
parameters allow a grid to be generated with variable sized 
elements and which are clustered and stretched in such a way 
that one-dimensional features in a solution can be captured in a 
very efficient manner. 

Before starting to generate triangles inside a domain, the body 
points are created and the initial front, containing the information 
about all the boundary sides, is initialized. The orientation of the 
boundary contours is such that the interior of the domain is 
always to the left. The initial front is defined by two integer 
vectors which have as many components as actual active sides. 
In one vector the number of the first node of each side is stored 
whereas the second node number is kept in the other vector. The 
generation front changes continuously throughout the process of 
triangulation and must be updated whenever a new element is 
formed. Thus the front changes during the triangulation process 
and reduces to zero when the end of the triangulation is reached. 
Every time a triangle is generated its sides are added as new 
entries in the front. 

In the process of generating a new triangle, the following steps 
are involved. 
1) A front side, with nodes A and B, to be used as the base for a 
triangle is selected. With distance 61 from points A and B, a 
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point C is chosen. 61 is chosen as 

si={ 0.55*AB if 0.55*AB >6 

2) Find all the nodes which belong to any of the current front 
sides and lie inside the area determined by the circle (centre C 
and radius r=3*AB) and the points A and B. Order nodes (ai, 
i=l,n) according to their distance from the point C, in  such a 
way that the first node in the list is the closest to C. 

3) Decide whether or not point C is added to the list. If 

6 if 0.55*AB<6<2*AB 

2 * A B  i f  6 > 2 * A B  

Aal < 1.5*61 

Bal < 1.5*61 
then C i s  not included. Otherwise C is placed in the first position 
of the list and the other nodes are shifted by one place. 
4)Determine the connecting point aj. This is taken to be the first 
node in the list that satisfies the two following validity 
requirements. 

i) the interior of the triangle ABa. does not contain any of 
the remaining nodes in the list (excluding C). 
ii) The segment line a,M (M midpoint of AB) does not 
intersect any of the existing sides of the front. 

J 

5 )  Form and store the new element. If C is chosen as the 
connecting point a new node is created. 
This approach can be extended to a non-uniform distribution of 
6 and also the inclusion of element stretching. 

2.2.6 Other Grid Types 

Overlaid grids 

The basic techniques outlined indicate that the generation of a 
grid around a simple geometrical shape is not too problematic. In 
fact, sufficient is now known of the mathematics of grid 
generation that high quality, controlled grids can be generated. 
Only when the geometry becomes complicated is i t  necessary to 
resort to more complex strategies, such as multiblock. The idea 
that any complicated shape can be broken into geometrically 
simple components, each of which can be gridded, is at the heart 
of the overlaid grid approach. 

The overlaid approach generates a suitable grid around 
components of a configuration and each grid is allowed to 
overlap other grids. Interpolation of flow data is then used in the 
region of overlap. This approach, which has been taken to a 
considerable degree of sophistication is often called the 
'Chimera' m e t h ~ d l ~ * ~ ~ .  The key problem in the approach is the 
accurate and conservative transfer of data between component 
grids. The approach has been used with considerable success in 
simulating moving boundary problems. 

Hybrid grids 

The hybrid grid approach is similar to the overlaid grid method 
in that a structured grid is used wherever is appropriate, but 
where the geometry becomes complicated an unstructured grid is 
used56-59. Both grid types are then connected together in a 
node-to node continuous manner. The hybrid approach can be 
utilised with a multiblock approach. A multiblock grid is 
generated around a part of the configuration, with the additional 
components gridded with an unstructured grid. The unstructured 
grid can be generated using either the advancing front or 
Delaunay technique. Fig. 2.2.19 shows a typical example of a 
hybrid grid in 2 dimensions. Fig. 2.2.20 shows a typical 

example in 3 dimensions, where the nacelle and pylon have been 
discretized with an unstructured grid which has then been 
connected to a structured multiblock grid. 

Figure 2.2.1 9 A hybrid grid in 2 dimensions 

Figure 2.2.20 An example of a hybrid grid in 3 
dimensions. 
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2.2.7 Surface Grids 

Surface mesh generation is, in itself, one of the most difficult 
and yet important aspects of mesh generation in 3 dimensions. 
The surface mesh influences the field mesh close to the 
boundary, which is often where rapid changes in flow variables 
take place. Surface meshes have the same requirement for 
smoothness and continuity as the field meshes for which they act 
as boundary conditions, but i n  addition, they are required to 
conform to the configuration surfaces, including lines of 
component intersection and to adequately model regions of high 
surface curvature. Several approaches have been suggested in 
the literature, but most rely upon a parametric representation of a 
surface. 

A suitable numerical representation of a surface involves aspects 
of geometry modelling60*61. Geometry modelling is a means by 
which a continuous surface can be defined from a discrete set of 
points. Such a description of a surface is valuable for the 
generation of surface meshes which, in  general, will not 
coincide with the original geometry definition. A parametric 
representation of a surface is straightforward to construct and 
provides a description of a surface in terms of two parametric 
coordinates. This is of particular importance, since the 
generation of a mesh on a surface then involves using grid 
generation techniques, developed for 2 space dimensions, in the 
parametric coordinates. 

In this way, surface mesh generation can be viewed as a 

transformation of the Euclidian Space, 31 to a parametric 
representation in coordinates (s,t) within which the grid is 

generated to be subsequently mapped back to 32 to give the 
surface mesh. Clearly, a key aspect of this procedure is the 
mapping between the Euclidian space and the parametric space. 

Many such transformations are available. One classic 
formulation is a due to Ferguson and can be expressed as 

3 

3 

where 

F(s) = [ l  s s2 s33 

and 

Q =  

- 3  3 - 2  - 1  
2 - 2  1 1 

The matrix Q involves coordinates, derivatives in s and t, and 
cross, or twist derivatives in s and t. The surface is represented 
by a set of quadrilateral patches and within each quadrilateral 
patch the Ferguson representation is applicable. Hence, any 
surface which is defined in terms of a network of lines which 
form quadrilateral patches can be expressed in parametric 
coordinates (s,t). The grid generation is performed in the 
coordinates (s,t) before using the Ferguson formulation to 
convert to physical coordinates. Fig. 2.2.21 shows the sequence 
involved in the process to generate a structured grid on the 
surface of a configuration. 

EOMETRY DEFlWlTlOll 

B O W  GRlD IN PARAMETRIC COORDIN&TES 

W l M I - m c I N A L D m m c r  -0 

Figure 2.2.21 The steps in the surface grid generation. 

A similar procedure is followed to generate an unstructured grid 
on a surface. 

Surface-to-surface intersections 

One aspect relating to surface grid generation which is often 
encountered is the computation of surface-to-surface 
intersections. Obviously, i t  is necessary to place grid points on 
such intersection curves. 

If two surfaces intersect and they are both represented in 
parametric form as just described then it is possible to formulate 
an equation which defines the intersection curve. 

xl= (x,y,z)' = [ s3 s2 s 11 Mi 

and 

1 Assume the two surfaces x and x2 are represented by 

t3 
t2 
t 
1 

i=x,y,z 

i=x,y,z 

The (s,t) and (u,v) are sets of parametric coordinates and Mi and 
Ni matrices containing the blending functions and parametric 
derivatives of x. For an intersection for a constant parameter, 
say vo, the following equation must be satisfied 

This results in  three non-linear algebraic equations for s, t and U 
which can be solved using the Newton-Raphson method. 
Having solved, i t  is then possible to convert these parametric 
coordinates to obtain the position of the intersection in the 
physical space, x = (x,y,z). 
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tivity Techniques 2.2.8 Grid Ada 

To resolve features of a flowfield accurately it is, in  general, 
necessary to introduce grid adaptivity t e c h n i q ~ e s ~ ~ ' ~  
Adaptivity is based upon the equidistribution of errors principle, 
namely, 

wi dsi =constant 

where wi is the error or activity indicator at node i and dsi is the 
local grid point spacing at node i. 

Central to adaptivity techniques, and the satisfaction of this 
equidistribution principle, is to define an appropriate indicator 
wi. Adaptivity criteria are based upon an assessment of the error 
in the solution of the flow equations or are constructed to detect 
features of the flowfield. These estimators are intimately 
connected to the flow equations to be solved. For example, 
some of the main features of a solution of the Euler equations 
can be shock waves, stagnation points and vortices, and any 
indicator should accurately identify these flow characteristics. 
However, for the Navier-Stokes equations, it is important not 
only to refine the mesh in order to capture these features but, in 
addition, to adequately resolve viscous dominated phenomena, 
such as the boundary layers. Hence it seems likely, that certainly 
in the near future, adaptivity criteria will be a combination of 
measures each dependent upon some aspects of the flow and, in  
turn, upon the flow equations. 

Many different physical criteria have been suggested for use 
with the Euler equations. Such measures include, 

lu.Vsl, lu.Vul, lu.Vpl, lu.Vpl, IVMI, IVpl, lvpl 

where s, U, p, p. M are entropy, velocity, density, pressure and 
Mach number, respectively. 

There is also an extensive choice of criteria based upon error 
analysis. Such measures include, a comparison of computational 
stencils of different orders of magnitude, comparison of the 
same derivatives on different meshes, e.g. Richardson's 
extrapolation and resort to classical error estimation theory. No 
generally applicable theory exists for errors associated with 
hyperbolic equations, hence, to date combinations of rather 
adhoc methods have been used. 

It is important that the  adaptivity criteria resolve both the 
discontinuous features of the solution (i.e. shock waves, 
contacts) and the smooth features as the number of grid points 
are increased. A desirable feature of any adaptive method to 
ensure convergence is that the local cell size goes to zero in the 
limit of an infinite number of mesh points7'. 

Once an adaptivity criterion has been established the 
equidistribution principle is achieved through a variety of 
methods, including point enrichment, point derefinement, node 
movement and remeshing, or combinations of these. 

Grid ref inem e nt 

Grid refinement, or h-refinement, involves the addition of points 
into regions where adaptivity is required. Such a procedure 
clearly provides additional resolution at the expense of 
increasing the number of points in the computation. 

Grid refinement on unstructured grids is readily implemented. 
The addition of a point or points involves a local reconnection of 
the elements, and the resulting grid has the same form as the 
initial grid. Hence, the same flow solver can be used on the 
enriched grid as was used on the initial grid. An example of this 
approach is given in Fig. 2.2.22. 

Figure 2.2.22 H-refinement on an unstructured grid. 

Grid refinement on structured or multiblock grids is not so 
straightforward The addition of points will, in general, break the 
regular array of points. The resulting distributed grid points no 
longer naturally fit into the elements of an array. Furthermore, 
some points will not 'conform' to the grid in that they have a 
different number of connections to other points. Hence grid 
refinement on structured grids requires a modification to the 
basic data structure and also the existence of so-called non- 
conforming nodes requires modifications to the flow solver. 
Clearly point enrichment on structured grids is not as natural a 
process as the method applied on unstructured grids and hence is 
not so widely employed. Work has been undertaken to 
implement point enrichment on structured grids and the results 
demonstrate the benefits to be gained from the additional effort 
in modifications to the data structure and flow solver. Fig. 
2.2.23 shows point enrichment on a multiblock structured grid 
together with the flow contours of pressure and Fig. 2.2.24 
shows grid refinement on a single block structured grid. 

Figure 2.2.23 H-refinement on a multiblock grid 
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Figure 2.2.25 Node movement 
Figure 2.2.24 H-refinement on a single block structured 

grid 
Grid Movement 

Grid movement satisfies the equidistribution principle through 
the migration of points from regions of low activity into regions 
of high activity. The number of nodes in this case remains fixed. 
Traditionally, algorithms to move points involve some 
optimization principle13. Typically, as indicated in Section 2.2.3 
expressions for smoothness, orthogonality and weighting 
according to the flowfield or errors are constructed and then an 
optimization is performed such that movement can be driven by 
a weight function, but not at the expense of loss of smoothness 
and orthogonality. 

An alternative approach is to use a weighted Laplacian function. 
Such a formulation is often used to smooth grids, and of course 
the formal version of the formulation is used as the elliptic grid 
generator presented earlier, Eq. (2.2.1). Written in a general 
form for both structured and unstructured grids the weighted 
Laplacian is 

M 

C C i o  
i=l 

n + l  . where r=(x,y), ro is the position of node 0 at relaxation level 
n+l ,  Ci0 is the adaptive weight function between nodes i and 0 

and w is the relaxation parameter. The summation is taken over 
all edges connecting point 0 to i, where it is taken that there are 
M surrounding nodes. In practice, this relaxation is typically 
applied over 50 cycles with a relaxation parameter of 0.1. The 
weight function Ci0 can be taken as a measure of any flow 
parameter such as pressure, density or a measure of local error. 
This approach proves trivial to implement on all mesh types, but 
yet its effects are impressive. Fig. 2.2.25 shows a 
demonstration of the method applied to both a structured and 
unstructured mesh, respectively. 

Combinations of Node Movement, Point 
Enrichment and Derefinement 

An optimum approach to adaptation is to combine node 
movement and point enrichment with derefinement7'. These 
procedures should be implemented i n  a dynamic way, i.e. 
applied at regular intervals within the flow simulation. Such an 
approach also provides the possibility of using movement and 
enrichment to independently capture different features of the 
flow. An example of combinations of these adaptive 
mechanisms is given in  Fig. 2.2.26. 

Figure 2.2.26. Combinations of adaptive strategies 
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Grid Remeshing 

One method of adaptation which, to date has been primady used 
on unstructured grids, is adaptive r e m e ~ h i n g ~ ~ .  As already 
indicated, unstructured meshes can be generated using the 
concept of a background mesh. For an initial mesh this is 
usually some very coarse triangulation which covers the domain 
and on which the spatial distribution is consistent with the given 
geometry. For adaptive remeshing, the flowfield achieved on an 
initial mesh is used to define the local point spacing on the 
background mesh which was itself the initial mesh used for the 
flow simulation. The mesh is regenerated using the new point 
spacing on the background mesh. Such an approach can result in 
a second adapted mesh which contains fewer points than that 
contained in the initial mesh. However, there is the overhead of 
regeneration of the mesh which in 3 dimensions can be 
considerable. Never-the-less impressive demonstrations of its 
use have been published and such an example is shown in Fig. 
2.2.27. 

Figure 2.2.27 Grid remeshing for inviscid flows 
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In  the above expression, the coefficients d2) and 
to the pressure gradient parameter vi 

are related 

(2.3.3) v; = I ~ i + l , j , k  - 2 1 j i , j , k  + p i - I , j , k I  

I j i + l , j , k  + 2 ~ i , j , k  + ~ i - ~ , j ~ k  

2.3 SPACE DISCRETIZATION 
- DISSIPATION 

All numerical schemes used for obtaining solutions to the Euler 
equations must contain a certain level of dissipation to prevent 
odd-even point decoupling, to maintain stability at discontinu- 
ities, and to eliminate nonphysical solutions such as expansion 
shocks. The dissipation may be explicitly added on top of 
a naturally nondissipative scheme such as pure central differ- 
encing, or it may arise naturally from the spatial discretization 
such as occurs with upwind differencing algorithms. The ex- 
act form of dissipation has a large impact on the accuracy of 
the scheme, as well as the stability and robustness of the over- 
all algorithm. While some discretizations provide some dis- 
sipation due to the coupling of the space-time discretizations, 
these schemes generally have a steady state that depends on the 
time step and are discussed elsewhere. Below, methods of ex- 
plicitly adding dissipation to central differencing schemes are 
discussed, as well as methods of achieving naturally dissipa- 
tive schemes through upwind differencing. Also discussed are 
methods of capturing sharp discontinuities without introducing 
nonphysical oscillations into the computations. 

P) t + + , l , k  = n, ( d4) - )}  (2.3.5) 

where d2) and are constants with typical values of 1/2 and 
1/64, respectively. The variable W is related to the solution 
vector w by the equation 

w = w + [n, n, n, n,p l T  (2.3.6) 

The term A i + + , j , k  is the scaling factor associated with the 
&coordinate. This scale factor is defined as 

where & is related to the spectral radii of the flux Jacobian 
matrix in the three coordinate directions as follows 

2.3.1 Artificial Dissipation Models for 
Central-Difference Schemes 

(2.3.8) 
Because the basic numerical scheme uses central differences to 
represent spatial derivatives, the artificial dissipation required 
to avoid spurious oscillations in the vicinity of shocks and to 
stabilize the scheme is implemented i n  a convenient manner 
by modifying the convective fluxes: 

The spectral radii for the E ,  1 1 .  and ( directions are 

'I In the above equations, n is the local speed of sound, and 
qE,qs, and qc are the contravariant velocity vectors in  the i, 
j ,  and k (<,s,C) directions, respectively, and are given by the 
relations 

= e.? 11. + € 1 ~  IJ + E: 1 0  

The terms dif:f,j,,k, d i , j f + , k ,  and di,j ,kf+ represent the 
dissipative terms in  the i, J, and k directions, respectively. 
Although many variations in dissipation models are presented 
i n  the literature, only two specific forms are discussed i n  this 
paper. 

Scalar Dissipation Model 
Expressions for the artificial dissipation coefficients in the j 
and k directions can be derived i n  a similar manner and take 
the form 

The basic dissipation model is a nonisotropic model, where 
the dissipative terms are functions of the spectral radii of the 
Jacobian matrices associated with the appropriate coordinate 
directions. The details of the model vary with specific re- 
searchers, and no attempt is made here to describe the many 
variations. However, the essential ingredients are described 
below, and more details can be found in many excellent ref- 
erences (e.g., Refs. I ,  2, 3, 4, 5 ,  6 and 7) 

For clarity, a detailed description of the dissipative terms for 
the i direction is given as 

d i + + , j , k  = A ; + l , j , k . - [ E ; + l , j , k ( W i + l , j , k  ( 2 )  - w i , j , k )  

- (') ( W i + Z , j , k  - 3 W i + l , j , k  (2.3.2) 
'i+ 1 ,j,~, 

+ 3 w i , j , k  - w i - l , j , k ) ]  

The pressure switch given in Eqs. (2.3.3), (2.3.4), and (2.3.5) 
serves to increase the second difference dissipation while 
switching off the fourth differences near discontinuities. This 
formulation is given by Jameson et al.' and increases the 

wanted oscillations due to differencing across the shock. 

i 
I 
I 

sharpness of the shock wave without the introduction of un- 1 
1 
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Matrix- Valued Dissipation 

The dissipation model described above is not optimal i n  the 
sense that the same dissipation scaling is used for all the gov- 
erning equations in a given coordinate direction. Reduced ar- 
tificial dissipation can be obtained by individually scaling the 
dissipation contribution to each equation, as is done implicitly 
in upwind The scalar coefficients used in the arti- 
ficial dissipation model are replaced by the modulus (absolute 
values) of flux Jacobian matrices. Thus Eqs. (2.3.8)-(2.3.12) 
can be rewritten as 

= [AI, = IBI, = IC1 (2.3.13) 

The matrices A, B, and C have very few nonzero elements and 
can be found i n  Ref. 7 i n  their entirety. The absolute value 
of these matrices, illustrated here for the matrix A, is defined 
in the following manner. Let 

A = T,A,T,' (2.3.14) 

where A, is a diagonal matrix with the eigenvalues of A as 
its elements. Then 

where 

Inel = 

The diagonal el 

.16) 

As = qe 

After considerable algebra IA( can be expressed in the fol- 
lowing manner as 

[-El+ E.: + E2 E; + E: 1 (2.3.18) 

where I is the identity matrix, and El, E*, E?, and E4 are 
given by the relations 

(2.3.20) 

1 1/,2/2 --I/, -11 -111 1 
rtT1,2/2 - ~ 1 ( 1 / ,  - I / ,  I1 - '11~'/11 '71. 

h1'?/2 - l / . I l ,  - I /  '11 - I / . I N  h 

- E x  Q€ E.,: E.,: E.,: E, Ea: E: 0 
-EvQE €,E: E V E ,  E,€: 0 Ez= [ 
--E:Qe €:E.,: E : &  E : € :  0 
--rlerre rreE.2: rreE, rreE: 0 

E l =  u1':/2 - I I U  - v u  - I I . / I I  '1) (2.3.19) 
'l/J\/:/2 --'11J 11. - i l l  '11 - I l l  111 111 

0 

I 

By taking advantage of the special form of the elements 
of [AI, one can evaluate the matrix-vector products of the 
form lAl(Wi+~,j,k - Wi,j,k) very efficiently, without ever 
evaluating IAl directly. 

In practice, XI,  XZ, Xn cannot be chosen as given by Eq. 
(2.3.17). Near stagnation points, X3 approaches zero; near 
sonic lines, X I  or X2 approaches zero. Since zero artificial 
viscosity can create numerical difficulties, these values are 
limited i n  the following manner 

(2.3.23) 

where V,, limits the eigenvalues associated with the nonlinear 
characteristic fields to a minimum value that is a fraction of 
the spectral radius, while T/, provides a similar limiter for the 
eigenvalues associated with the linear characteristic fields. The 
values for the limiting coefficients IT,, and 1'1 are determined 
through numerical experimentation such that sharper shocks 
and suction peaks are captured without the introduction of 
spurious oscillations i n  the solution while still maintaining 
good convergence properties. By setting = 14 = 1, we 
recover the scalar form of the artificial dissipation, whereas 
V,, = 14 = 0 corresponds to the use of actual eigenvalues 
without any limiters. The eigenvalues obtained from Eq. 
(2.3.23) are then modified for large changes i n  cell aspect ratios 
with the expressions given in Eq. (2.3.8). Similar expressions 
can be derived for the matrices B and C by replacing the 
contravariant velocity q t  by 411 and qc and E by 71 and (, 
respectively, i n  Eqs. (2.3.14) through (2.3.22). 

Note that if  the dissipative fluxes are interpreted as modifiers to 
the physical fluxes at the interfaces of the difference molecule, 
then the central-difference scheme with the matrix dissipation 
closely resembles the characteristic decomposition used in 
upwind schemes."'." 

A comparison of results obtained with both scalar and matrix 
dissipation is shown i n  Fig. 2.3.1. These results have been 
obtained with the code described i n  Ref. 9. The case shown 
is the inviscid flow over an NACA 0012 airfoil at a free- 
stream Mach number of 0.8 and an angle of attack of 1.25". 
This flow field is characterized by a moderate strength shock 
on the upper surface and a much weaker shock on the lower 
surface. As seen i n  the figure, the results obtained with both 
the scalar and matrix dissipation are very similar. However, 
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the solution obtained with matrix dissipation exhibits slightly 
sharper shocks on both the upper and lower surfaces. 

-2.0 

1.5 i 
0.0 0.2 0.4 0.6 0.8 1.0 

x / c  

Figure 2.3.1 Central-difference scheme 
results with scalar and matrix dissipation for 
NACA 0012 with M ,  = 0.8 and a = 1.25'. 

2.3.2 Upwind Differencing 

Flux- Vector Splitting 

For_Rux-vec_tor splitting, the fluxes i n  generalized coordinates, 
F ,  G,  and H are split into forward and backward contributions 
according to the signs of the eigenvalues of the Jacobian 
matrices and are differenced accordingly. For example, the 
flux in the direction can be differenced as 

se@ = s;@+ + s p -  (2.3.24) 

because @+ has all nonnegative eigenvalues and @- has all 
nonpositive eigenvalues. Two methods of flux-vector splitting 
are discussed below. 

The first method is the technique outlined by Steger and 
Warming i n  Ref. 12. Since the flux vectors are homogeneous 
functions of degree one in w, they can be expressed in terms 
of their Jacobian matrices; For example, considering the flux 
vector in  the direction, F can then be written as 

(2.3.25) 

A similarity transformation allows Eq. (2.3.25) to be written 
as 

@ = LG = T,A~T;'G (2.3.26) 

where the matrk A, is a diagonal matrix composed of the 
eigenvalues of A and is given by 

(2.3.27) 

The eigenvalues can then be decomposed into nonnegative 
and nonpositive components 

(2.3.29) xi = A+ + A; 

where 
(2.3.30) 

Similarly, the eigenvalue matrix A, can be decomposed into 

A, = A; +A;  (2.3.31) 

where A; is made up of the nonnegative contributions of X: 
and A; is constructed of the nonpositive contributions of A;. 
This splitting of the eigenvalue- matrix, combined with Eq. 
(2.3.26), allows the flux vector F to be rewritten as 

@ = T, (A: + A;)T;% 
(2.3.32) 

= (A+ + A - ) *  = @+ + 9- 

The flux vector @ has three distinct eigenvalues given by Eq. 
(2.3.28) and can therefore be written as a sum of three subvec- 
tors, each of which has a distinct eigenvalue as a coefficient" 

@ = @ ,  + @ 2 + @ n  (2.3.33) 

where 

and the direction cosines of the directed interface in the E 
direction are 

(2.3.36) 

where 
IVCI = J- (2.3.37) 

The forward and backward flux vectors @+ and @- are formed 
from Eq. (2.3.33), (2.3.34), and (2.3.35) by inserting A, = A: 
and A, = A*-, respectively. 



For supersonic and sonic flow i n  the ( direction (i.e., IMcl = 
Ill./nl 2 l), where C = qe/IV(I represents the velocity normal 
to a ( = Constant face, the fluxes in this direction become 

The split fluxes in the other two directions are easily obtained 
by interchanging 11 or C in  place of (. 

The fluxes split in the aforementioned manner are not con- 
tinuously differentiable at zeros of the eigenvalues (i.e., sonic 
and stagnation points). (See Ref. 14.) This is illustrated in 
Fig. 2.3.2, where the split mass flux contributions for the one- 
dimensional Euler equations, nondimensionalized by pa, are 
shown as a function of Mach number. The gradient disconti- 
nuities in the split fluxes are evident as the eigenvalues pass 
through zero. The lack of differentiability of the split fluxes 
has been shown in some cases to cause small oscillations at 
sonic points that are rarely noticeable for most aerodynamic 
applications but can be remedied by biasing the eigenvalues 
near zero to a small value.14 

X 
5 c: 
VI 
v) s 

- 

1.5 

1 .o 

0.5 

0.0 

-0.5 

-1.0 I /'" 
/ 

-1.5 I , I , I I I I I I  

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

Mach Number 

Figure 2.3.2 Variation of Steger and 
Warming split mass flux with Mach number. 

The Jacobian matrices of $+ and $- that are required for 
proper linearization for an implicit scheme do not share the 
same eigenvalues as A+ and A--defined-in Eq. (2.3.32). 
However, the Jacobian matrices of F" and F- do have eigen- 
values with the same signs as A+ and A- so that upwind dif- 
ferencing of the spatial derivatives remains appr~priate. '~ Al- 
though A* are easier to form, their uSe in implicit schemes, in- 
stead of the correct linearizations (OF*/aG), has been shown 
i n  many cases to cause severe time-step ~ i m i t a t i o n s . ' ~ . ' ~ . ~ ~  

I n  1982, a new method of splitting the flux vector was pro- 
posed by Van Leer." Here, the fluxes are split so that the 
forward and backward flux contributions blend smoothly at 
eigenvalue sign changes (i.e., near sonic and stagnation points). 
Juit as for the Steger-Warming splitting, the Jacobian matrices 
OF+/aG must have nonnegative eigenvalues and DF-/DG 
must have nonpositive eigenvalues so that upwind differencing 

can be used for the spatial derivatives. In addition, both Jaco- 
bians have one zero eigenvalue for subsonic Mach numbers, 
which leads to steady transonic shock structures with only 
two transition zones." In  practice, when second-order spa- 
tial differencing is used, shocks with only one interior zone 
are usually obtained.lx This feature is not observed with thc 
Steger-Warming flux splitting. 

The three-dimensional splittings of Van Leer are given below 
for the flux i n  the_( direction; the others are obtained similarly. 
The flux vector F is split according to the contravariant Mach 
number i n  the ( direction, which is defined previously as 
IMc1 = Ill./al 2 1. For supersonic flow (lAfel 2 l), 

F -* =-[ lV(l .J 

J cncrgy I 

b (2.3.40) 

,. (2.3.42) 
To form F*, the direction cosines c,., t V ,  and (: are given 
by Eq. (2.3.36) and C is the velocity normal to a ( = Con- 
stant face. The fluxes in the other two directions arc easily 
formed by interchanging ( with 71 or (. In Fig. 2.3.3 the 
nondimensionalized mass flux using the Van Leer splitting is 
shown as a function of Mach number for the one-dimensional 
Euler equations. The split fluxes are continuously differen- 
tiable at sonic and stagnation points; the improvement over 
the Steger-Warming splitting is apparent. 

A - -  

2 I ' I ' I ' I ' I '  
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Figure 2.3.3 Variation of Van Leer 
split mass flux with Mach number. 
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3xpansion 

An interesting numerical consequence of splitting the fluxes 
can be observed by examining the differencing of the mass 
and energy fluxes. Considering a simplified one-dimensional 
case, an approximation to the spatial derivatives of the mass 
and energy flux is given by 

/ shock Y7LI 

Because this will also equal zero at a steady state, the total en- 
thalpy will be preserved numerically as it  should be physically. 
When the fluxes are split with either the Steger-Warming or 
Van Leer method (as well as flux-difference splitting), it is no 
longer possible to obtain a similar relation because the mass 
and energy fluxes are differenced in different manners. The 
consequence is that, although mass, momentum, and energy 
are conserved by the numerical algorithm, the total enthalpy 
is not conserved. In  1987, HanelI9 modified the energy for- 
mulation for the Van Leer flux-vector splitting so that the split 
energy flux is given simply by 

(2.3.45) * * 
fenergy = f,,,H 

By defining the energy flux in  this way, the total enthalpy is 
preserved. In addition, because the total enthalpy is a constant 
at steady state, the energy flux remains degenerate so that the 
shock-capturing capabilities are not compromised. 

Godunov's Method 

A very successful scheme for solving the Euler equations that 
has led to significant improvements in the accuracy of modern 
numerical algorithms is due to Godunov (e.g., see Ref. 20). 
For this scheme, a piecewise constant approximation of the 
data in each cell is obtained, which represents the average of 
the data in the cell 

w; = w(2, t ) t h  
I s '  

(2.3.46) 

Each cell interface, located at i f 1/2,  is then considered to 
separate two regions of constant properties in the same manner 
as a diaphragm separates regions of high- and low-pressure 
gas in a shock tube. Because an exact solution exists for 
this problem, the evolution of the flow field can be easily 
determined by solving for the interaction of the resulting wave 
system, provided that waves from neighboring cells do not 
interact. Afterwards, the solution i n  each cell is averaged, 

- 
- 

and the process is repeated. The process described above is 
summarized in Figs. 2.3.4, 2.3.5, and 2.3.6. 

W i-1/2 i+1/2 

Figure 2.3.4 Average state at time t, = 11. 

W i-1/2 i+1/2 

I contact 1 

Figure 2.3.5 Solution of local Riemann problem. 

W i-1/2 i+1/2 

I I+ 

Figure 2.3.6 Average state at time t = 11 + 1. 

To advance the solution in time, the one-dimensional time- 
dependent Euler equations are integrated over both space and 
time to yield an equation that describes the time evolution of 
the cell average in each cell. For example, in cell i, 

Here, F(wi,+) represents the time average of the flux be- 
tween times n and n + l .  Recall that i n  advancing the solution 
in time, At, is chosen so that there is no interaction of the 
waves from neighboring cell faces. Therefore, the solution at 
the interface is constant over the time interval of interest. The 
solution can then be advanced i n  time by forming the fluxes 



on the faces from the data obtained by solving the Riemann 
problem and advancing the solution using Eq. (2.3.47). 

The above process can be broken down into a “projection” 
and an “evolution” stage as described by Van Leer.21 In  
the projection stage, the behavior of the data i n  each cell is 
reconstructed whereas the evolution stage refers to the solution 
of the Riemann problem. In Godunov’s method, the data i n  the 
cell are reconstructed by assuming it to be piecewise constant, 
which leads to first-order spatial accuracy. By replacing this 
approximation by a piecewise linear representation of the data, 
the accuracy of the scheme can be raised to second order.22 

Osher’s Scheme 

In Godunov’s technique, the solution of the Riemann problem 
requires an iterative procedure at each interface whenever a 
shock wave is present. To circumvent the iterative process, an 
approximate solution to the Riemann problem can be obtained 
by replacing a shock wave with an overturned rarefa~tion.~’.~~ 
Therefore, because all nonlinear waves are expressed i n  terms 
of rarefactions, explicit relations are obtained for the interme- 
diate state variables connected by each wave. 

Flux-Difference Splitting 

For flux-difference splitting, the solution of the Riemann prob- 
lem is again considered. However, the solution of the Riemann 
problem is foregone in favor of an exact solution to an ap- 
proximate problem that does not require any iteration. More 
specifically, for one space dimension, data are advanced i n  
time through a linearized version of the Euler equations given 
bv 

aw - a w  
- + A - = O  at a:c (2.3.48) 

where is a specially constructed constant matrix that satisfies 
the property that for any WL and WR (which represent the left 
and right state variables on either side of a cell face), 

~ ( w L :  WR)AW = A F  (2.3.49) 

where A(.) = - ( . ) R  (i.e. the jump across an interface). 
Note that the tilde (-) denotes that the matrix is constructed 
with a specific averaging procedure that is described below. 

Equation (2.3.49) can also be written as 
--- 
T A T - l A w  = A F  (2.3.50) 

Since the eige_nvalues represent wave speeds of individual 
waves, A q  = T-’ Aw represent jumps i n  the variables due to 
the influence of each wave. Hence, the change i n  flux between 
the left and right states is expressed i n  terms of the jumps in 
these states projected onto the eigenvectors: 

(2.3.51) 

By considering the backward-moving (xk < 0) and forward- 
moving waves (AA. > 0) separately, the flux on the face at is; 
i n  Fig. 2.3.5 can be determined through any of the following 
equations (all of which are equivalent): 

x < n  

(2.3.52) 
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Fi+; = FR - x(xcAq)T’A. (2.3.53) 
I 

x>n 

Fi+; = -(FL 1 + FR) - 5 1 x ( l x , / A q ) T ’ ~ .  (2.3.54) 
c 2 

The last form can be considered to represent a central- 
difference term plus a dissipative term. 

Note that if WL and WR are such that only a single disconti- 
nuity is present, Eq. (2.3.49) reduces to 

SAW = A F  (2.3.55) 

where S is the speed of the discontinuity and is an eigenvalue 
of A. I n  this case, the discontinuity will be resolved exactly. 

The specific detprmination of is presented in Ref. 25. 
Here, note that the flux F and dependent variables w are both 
quadratic i n  the components of a parameter vector given by 

W‘ = f i ( 1 , ? / , , ’ 1 1 , 7 / 1 ,  H ) T  (2.3.56) 

With this relation, the jumps across a wave i n  both the de- 
pendent variables and the fluxes can be expressed in terms of 
jumps in the parameter vector 

Aw = BAw‘ (2.3.57) 

A F  = ~ A w ‘  (2.3.58) 

In  Ref. 25, the exact form of B and e are shown to be rea- 
sonably simple. For example, for three-dimensional Cartesian 
coordinates, 

21u1 0 0 0 
lij, r i j  I 0 0 

B = l i j ,  0 Ir., I 0 
7ij.1 0 0 0 

!] (2.3.59) 

- ? - - I  - yrijn r=llT,, * 
-i -i 

. I T ,  I 0 0 0 

0 
0 

-. I, 
‘Ill3 ‘1112 

IT,., 

Here, the overbar denotes the arithmetic average of w’ from 
the left cnd right states. From Eqs. (2.3.57) and (2.3.58), the 
matrix A is given by 

(2.3.61) 

This matrix corresponds to the Jacobian matrix A = aF/Dw, 
evaluated at an averaged state given by 

(2.3.62) 
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A , =  

the flux is determined on a cell face located at i + with Eq. 
(2.3.54), where A q  = T;' Aw, T = T,, and the subscript E 
denotes that the matrices are formed from the vector? normal 
to a E = Constant face. The matrices, T, and T;' are 
formed with the averaged values from Eq. (2.3.62) as are 
the eigenvalues. The resulting matrices are given as 

- - I  

For three-dimensional flows in generalized coordinates, the 
flux on each face is determined in a one-dimensional manner, 
based on the assumption that the waves travel in  the directions 
of the grid lines. Considering the E direction as an example, 

I - E - &  n n n n 
n i i n n  n 
o n ii o n 
n n n i i  n 

- n n n n i i + a  

where iI is the dot product of the velocity vector with the unit  
vector normal to a cell face. 

Many researchers currently use the flux-difference splitting 
technique described above. Further, Van Leer et al."' demon- 
strate that for viscous flows, this flux function is more accurate 
than central-difference formulations with scalar dissipation, as 
well as upwind formulations based on flux-vector splitting. 
The explanation lies in  the consideration of Eq. (2.3.54) as 
a central-difference flux with an added dissipative term. By 
considering the influence of the individual waves, it  is appar- 
ent that as an eigenvalue associated with the wave vanishes, 
the corresponding dissipation also vanishes. This mechanism 
is the means through which the exact solution to a single dis- 
continuity is obtained, as shown i n  Eq. (2.3.55). For viscous 
flows, the boundary layer is considered to consist of a series 
of shear waves normal to the body. Because the velocity in 
this direction is small, the corresponding dissipation is also 
small; the result is that boundary layers are captured with very 
high accuracy. 

Observe that vanishing eigenvalues (hence artifi_cial viscos- 
ity for the wave) occur at shock waves, where XI. = ii - ( I  

passes through zero, as well as contact discontinuities, where 
XI; = ii = 0. Unfortunately, vanishing eigenvalues also oc- 
cur at sonic points at which the flow transitions from subsonic 
to supersonic flow and XI. = i - rr is again zero. This is a 
consequence of replacing the full nonlinear problem with a lin- 
earized version in Eq. (2.3.48) which considers an expansion 
to be described by a single wave instead of a series of waves. 
This can lead to expansion shocks i n  which the flow transi- 
tions from subsonic to supersonic i n  a discontinuous manner. 
To remedy the situation, the eigenvalue X P  = ii -- n is often 

- 

(2.3.63) 

(2.3.64) 

(2.3.65) 

modified slightly so that i t  does not vanish at these points. As a 
result, a small amount of dissipation is added to the scheme so 
thc wave is spread slightly over several mesh points. Although 
many forms of this modification exist, the most common im- 
plementation is to modify the eigenvalue according tozh 

An example of an expansion shock is shown in the lower 
portion of Fig. 2.3.7, which depicts the Mach number distri- 
bution through a quasi-one-dimensional converging/diverging 
nozel obtained with a first-order spatially accurate discretisa- 
tion. As seen, without the smoothing of the eigenvalue, an 
expansion shock appears as the Mach numbeypasses through 
unity. However, by restricting the value of XI; = ii - n to 
be nonzero, a smooth transition through the sonic point is ob- 
tained, and the expansion shock is eliminated. I n  practice, 
the addition of eigenvalue smoothing is often not required for 
higher order methods. However, several conditions, usually 
associated with very strong shocks, necessitate the inclusion 
of dissipation through the eigenvalue, similar to Eq. (2.3.66). 
Several researchers have independently observed these phe- 
nomena; an interesting summary of many of these conditions 
is given in Ref. 27. 
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Figure 2.3.7 Example of expansion shock 
and the effectiveness of Eq. (2.3.66). 

Several other flux functions have been developed i n  recent 
years that are not as widely utilized as those discussed above, 
but are nevertheless worthy of mention. The advection up- 
stream splitting method (AUSM)2X is a flux-vector splitting 
method that includes some of the favorable properties of flux- 
difference splitting while maintaining the computational effi- 
ciency of flux-vector splitting and is easier to linearize for use 
in implicit methods. I t  has been shown to capture contact dis- 
continuities with accuracy similar to flux-difference splitting 
but does not suffer some of the deficiencies, such as expan- 
sion shocks. Two similar methodologies are the wave/particle 
split (WPS) method recently developed and reported i n  Ref. 29 
and the convective upwind and split pressure (CUSP) scheme 
developed by Jameson.6 Both of these schemes are similar to 
the AUSM scheme and exhibit similar accuracy. Several other 
variations to flux-vector splitting have also been derived and 
are discussed in Ref. 30. These include flux-splitting schemes 
based on higher order polynomials of the Mach number, sim- 
ilar to those of Liou and Steffen." In addition, Coquel and 
LiOU323 have recently developed flux functions which com- 
bine the best features of both flux-vector splitting and flux- 
difference splitting by using flux-vector splitting for non-linear 
waves such as shocks, while using using a flux-difference split- 
ting for the linear waves. This approach simultaneously pre- 
serves the robustness associated with flux-vector splitting as 
well as accuracy i n  capturing stationary contact discontinuities. 

The characteristic flux extrapolation technique of Eberle has 
been used for computing Rows about many practical geomc- 
tries and is described in Refs. 34, 35, 36, 37, and 38. This 
method has been shown to be capable of capturing strong 
shocks and can also recover a constant total temperature. In 
Ref. 37, modifications to the flux-limiter of Van Albada" are 
also discussed, as well as the incorporation of equilibrium real 
gas. 

Multidimensional Upwind Methods 

The upwind techniques discussed above are applicable strictly 
to one-dimensional problems. To apply these techniques to 

two- and three-dimensional problems, the usual procedure is 
to assume that waves propagate normal to grid lines, which 
allow Riemann solvers to be applied i n  a one-dimensional 
manner separately i n  each coordinate direction. This approach 
leads to quite satisfactory solutions when features such as 
shock waves and shear waves are essentially aligned with the 
mesh. However, severe degradation of accuracy can occur 
when the features are oblique to the grid lines because they 
are interpreted by the Riemann solver to be composed of pairs 
of grid-aligned waves instead of a single wave. The result is 
that shocks and shear waves may be severely smeared. An 
illustration is given i n  Fig. 2.3.8 i n  which a single shear wave 
(dashed line) is misrepresented as a compression plus a shear 
wave because of the orientation of the grid (solid line). The 
consequence in this case is that an incorrect pressure difference 
across the wave is obtained, which may manifest itself i n  a 
computation as a pressure dist~rtion.~",~'  

shear compression shear 

Figure 2.3.8 Representation of an oblique 
shear wave by two waves aligned with the grid. 

In recent years, several research efforts have been aimed at 
overcoming the possible loss of accuracy attributable to the 
dimension-by-dimension approach to upwind differencing. A 
summary of some of the more promising techniques is given 
in Refs. 40 and 42. 

In  general, the approaches to multidimcnsional upwinding can 
be categorized into two groups: those based on computing 
a flux function and those that rely on fluctuation splitting. 
The first approach can further be divided into techniques that 
use a single dominant direction and those that use more than 
one direction. Flux-function methods that usc a single dom- 
inant wave direction use a frame of reference aligned with 
the assumed wave direction to compute fluxes that are then 
rotated back into the grid-aligned frame. Examples of this 
type of approach include the work by Dadone and 
Grossman,bl Goorjian,4' Hirsch et and Levy, Powell, 
and Van Leer.4x Generally, these methods show good im- 
provement over grid-aligned methods for first-order accurate 
spatial differencing. For higher order methods, the improve- 
ments are less dramatic, and convergence to a steady state is 
sometimes diffi~ult.~" 

Flux-function-based methods that utilize more than one wave 
direction include those of Rumsey et al.,4".41 Parpia and 
Michalek,5" and Powell, Barth, and Parpia." In  Refs. 41, 
49, and 50, states are obtained on either side of a cell facc 
in much the same manner as i n  the dimension-by-dimension 
approach. However the fluxes are computed by assuming that 
the states on either side of the face are connected by two 
acoustic waves and an cntropy wave, all i n  the direction of 
the velocity difference, as well as a fourth (shear) wave that is 
normal to the first three. In  Rumsey et al.?' the directions arc 
usually frozen after a certain number of iterations to cnhancc 
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i-2 

convergence. This requires that a fifth wave also be added 
because the four wave model can no longer correctly connect 
the states on either side of the face. The fifth wave is a weak 
shear wave that is assumed to be perpendicular to the velocity 
difference direction. I n  this way, the difference in states can 
be expressed as 

i-1 I i+l i+2 

(2.3.67) 

where 01; is the strength of the k‘” wave and R k  is an 
eigenvector of the matrix A cos 8 ~ .  + B sin 8 ~ .  (A and B are 
flux Jacobian matrices, and 8 k  is the propagation angle of the 
k’“ wave). The flux on the cell face is now computed by 
accounting for the influence of each wave as 

where 

Higher Order Schemes 

Up to this point i n  the discussion of upwind schemes, the de- 
termination of the left and right state variables on either side of 
a cell face has been, for the most part, left unspecified. Recall 
that for Godunov’s method, i f  a piecewise constant approxi- 
mation of the data i n  each cell is assumed, then the resulting 
scheme is first-order accurate in space. The accuracy of the 
approximation can be raised to higher order by replacing the 
piecewise constant approximation of the data with a piecewise 
polynomial approximation.22.s‘ For instance, the state vari- 
ables on the left and right side of the cell interface located at 
i + 1/2 i n  Fig. 2.3.9 can be determined as 

In  general, the success of schemes based on this methodology 
is similar to that described previously. 

Multidimensional schemes based on fluctuation splitting are 
rapidly evolving. In  general, these schemes are composed of 
three primary pieces: , 

I .  A residual calculation method for the cell (typically a 
trapezoidal numerical integration of the fluxes) 
A method for decomposing the cell residual into wave- 
like components (the “wave model”) 
A method for distributing changes caused by waves to 
the vertices of the cell, in such a way that the positivity 
of the resulting scheme is maintained. 

2. 

3. 

Perhaps the most familiar fluctuation-splitting scheme is that of 
Nis2 in which the Lax-Wendroff scheme is cast as a cell-vertex, 
or fluctuation-splitting method. More recent work in fluctua- 
tion splitting has improved this method i n  two important ways: 
the residual-distribution scheme (i.e., the method for “pushing” 
the changes to the vertices of the cell) has been improved with 
careful study of the scalar advection case42~s3~s4~ss~s6 and var- 
ious ways of breaking the residual into pieces due to planar 
waves (i.e., wave model) have been Progress 
on the residual-distribution schemes has been quite good, and 
positive, accurate methods for distributing the pieces of the 
residual have been developed and extensively tested. Many 
wave models have been developed to date, and the advan- 
tages and disadvantages of the various models have not been 
clearly established. Some of the differences among the wave 
models include the number of waves that are used (typically 
between four and six) and the directions i n  which the waves 
are assumed to propagate. 

The fluctuation-splitting schemes have been shown to work 
quite well in supersonic flows, but issues of solution conver- 
gence and accuracy i n  subsonic flows have not been thoroughly 
addressed. Current work, such as that of Paillere et al.’x is 
concentrated on these issues, and substantial progress is being 
made. 

(2.3.70) 

Equation (2.3.69) represents a one-parameter family of 
schemes. A fully one-sided approximation of the data is 
obtained by inserting t i  = -1 while i i  = 1/3 leads to a 
third-order upwind-biased approximation, and i i  = $1 yields 
a second-order central-difference scheme. All the upwind- 

Figure 2.3.9 Higher order interpolation stencil. 

biased approximations use the same number of cells for the 
residual computation as the fully one-sided scheme and may 
be implemented with only a slight increase i n  computational 
effort. The third-order scheme is strictly third-order accurate 
only i n  one-dimensional calculations. To obtain a third-order 
scheme in two or three dimensions, computation of the flux 
across a cell face on the basis of an averaged state is not suffi- 
cient because the difference between that average flux and the 
flux computed from the averaged states is a term of second 
order and vanishes only for a linear system of conservation 
laws. Nevertheless, by switching from a fully upwind approx- 
imation ( i i  = -1) to the third-order ( i i  = 1/3) scheme, the 
accuracy of smooth solutions can be increased.”’ 

A deficiency in using Eq. (2.3.69) for reconstructing the data 
at the cell faces is that new extrema can be introduccd even 
when the original data is monotone. For example, i n  Fig. 
2.3. I O ,  a nonmonotone interpolation is obtained between cells 
i - 1 and i .  I f  this profile is convected and the cell averages 
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are then reconstructed, nonphysical oscillations can result in 
the solution. 

7- 

i+l 

Figure 2.3.10 Introduction of new extrema 
using upwind-biased interpolation. 

For determining acceptable limits on the slopes, the data i n  
each cell are first represented by a Taylor series expansion 
about the center of the cell. For example, the data on the 
boundaries of cell i i n  Fig. 2.3.10 can be determined as 

1 
2 

w. 1 = w ; + -  (s) Ax = wi + -6w (2.3.71) 
t + 7 j  

1 
2 

w. 1 = w i - -  (g) Ax = wi - -6w (2.3.72) 
1-- 

where Ax is the width of the cell and 

1 
2 6~ = - ( (1  - /;,)A- + (1 + /;,)A+]; (2.3.73) 

For monotone increasing data, a sufficient bound on the size of 
A+ and A+ is obtained by requiring that the interpolated data 
on the cell faces does not exceed the values i n  the surrounding 
cells. This limit is achieved provided that 

1 
2 
1 
2 

wi + -6w 5 Wi+l * 6w 5 2A+ 

wi - -sw 2 wi-1 s. 6w 5 2A- 
(2.3.74) 

In  order to ensure a monotone interpolation, the magnitude of 
6w may have to be limited to be no larger than either 2A+ 
or 2A-: 

(6w) 5 inin (2A+,  2A-) (2.3.75) 

Equation (2.3.75) provides a guideline for reducing the mag- 
nitude of any gradient that would result i n  a nonmonotone 
interpolation. Following Van Leer,”’ the value of 6w that 
will maintain monotone interpolation will be referred to as 
( S W ) , ~ , , , ~ ~ ~ ~  and can be written as 

(6W)limited = N 4 ) S W  (2.3.76) 

where 4 = 2 and R(4)  serves to limit the size of the original 
gradient. From Eqs. (2.3.73), (2.3.75), and (2.3.76), R(4)  is 
written as 

4 
R(d) = iiiiii 

[ ( l  - t i )  + (1 + t ; ) d .  (1 - /;) + (1 + /;)4 
(2.3.77) 

In  Fig. 2.3.1 I ,  a plot of R(4) from Eq. (2.3.77) is shown, 
where I;, has been assumed to be zero (/;, = 0) in Eq. (2.3.73). 
In  the figure, the area that lies inside the curve is the region 

0.0 
0 2 4 6 a 10 

$ 

Figure 2.3.1 1 Boundary of R(d) 
for monotone interpolation. 

for which monotone interpolation is obtained. 

For 4 = 1, A+ is equal to A-, and the data in the cell appears 
linear. Because a second-order scheme should reconstruct 
linear data exactly, a basic requirement on the limiter function 
is that it  pass through unity for 6 = 1, which can easily be 
achieved by modifying Eq. (2.3.77) to read 

4 
R(4)  = min 

(2.3.78) 
In this manner, the slopes as calculated from Eq. (2.3.73) are 
left unchanged, provided the interpolations remain monotone. 

Many variations for R(4)  have appeared i n  the literature that 
preserve monotonicity and are second-order accurate. One 
of the most commonly used limiters is developed by Van 
Albada3’ and is given by 

while a limiter function of Van Leer is given by6* 

44 R(4) = ~ 

(4 + 1)’ 

(2.3.79) 

(2.3.80) 

Note that as long as R( 4) maintains second-order accuracy and 
remains within the monotone region, R(4)  does not need to 
remain below 1 in magnitude. Thcreforc, the limiter function 
can actually serve to increase the slope calculated from Eq. 
(2.3.73). An  example of such a limiter is Roc’s “superbee” 
limiter6’ 
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A plot of the Van Albada, Van Leer, and Roe's superbee 
limiters is shown in Fig. 2.3.12. Note that all the limiters 

total variation diminishing (TVD). 

Time Level n+l 

0 
0 C) a C) 

( >  

il 

...._..... Van Leer 

- 

- . 

0.0 I I I I I I I I  

0 2 4 6 a 10 

qJ 

-02 

Tl/(l.I'") = IIVt+, - W,]  (2.3.82) 
H =  -m 

Figure 2.3.12 Superbee, Van 
Albada, and Van Leer limiters. 

0 -1 1 0 . . .  0 
0 0 -1 1 . . .  0 

. . .  . (2.3.86) . .  . .  

Time Level n w 1  

L - x  

I - x  

Figure 2.3.1 3 Example of increasing total variation. 

Sufficient conditions for constructing TVD schemes were first 
developed by Harten.'* While many investigators have exam- 
ined criteria for constructing TVD schemes, (e.g., 67 and 68), 
the method of analysis given by Harth in reference 69 relies 
upon a matrix interpretation and is described below. 

shown pass through unity when i$ = 1 which maintains 
second-order accuracy. For obtaining bounds on the variation, a general form for a 

conservative difference scheme is first written as 

In the previous discussion, i t  has been assumed that the data are 
monotonically increasing: similar arguments hold for mono- 
tonically decreasing data. For nonmonotone data in which the 
sign of A+ and A- differ, ( C ~ W ) ~ , , , , ~ ~ ~ ~ ,  can be simply set to 
zero to make sure that any extrema are not magnified." In  
the work of Spekreijse,".hs general conditions are derived for 
the limiter function that will maintain second-order accuracy 
as well as monotone steady-state solutions that do not set the 
gradient to zero at the extrema. 

A , + 3 l4i = IVt+ I - IV, (2.3.85) 

By assuming a periodic domain, the definition of the discrete 
total variation can be expressed i n  of a difference mat r ix  
H as 

Another method that is useful to the design of nonoscillatory 
schemes is based on the definition of total variation. For a 
discrete one-dimensional scalar solution on an infinite domain, 
the total variation is defined at time level n as 

r -1 1 0 0 . . .  01 

In the top part of Fig. 2.3.13, for a monotone grid function, 1 ;  :I : E L 1  '1 
the total variation is determined strictly by the endpoints (i.e. 
11,~; - I , I ;?~I ) ,  H ~ ~ ~ ~ ~ ~ ,  i f  a new extrema is  introduced 
as in the lower half of the figure, the total variation will 
increase. Hence, for a scheme to remain nonoscillatory, the 

With Eq. (2.336). the total variation can be written as 

TI'(14,~) = I(HIYII I (2.3.87) 

total variation should remain the same or decrease as the 
solution is updated: where llvlll is the L I  vector norm given as 

I lVll l  = I(j,I (2.3.8 8) 

TI/ (Mi"+ I ) 5 TI/( I?'" ) (2.3.83) J 

The TVD condition can then he expressed as 

Schemes derived from these guidelines are appropriately called IIHIV"" 1 1  I 5 IIHIV" 1 1  I (2.3.89) 
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The general difference scheme, Eq. (2.3.84), can be rewritten 
with the forward-difference matrix as 

[I + O%H] Wtl+‘ = [I - (1 - B)MH]W” (2.3.90) 

where and M are matrix operators that may be nonlinear 
functions of W because the C’s and D’s in Eq. (2.3.84) are 
themselves functions of W .  For 6’ = 0, a fully explicit method 
is obtained and implicit formulations are otherwise obtained. 

Multiplying Eq. (2.3.90) from the left by the forward- 
difference matrix H and regrouping terms yields an equation 
for the evolution of the variation 

where 
(2.3.92) 

’R = [I - (1 - H)HM] (2.3.93) 

By taking the L I  matrix norm of Eq. (2.3.91) 

a sufficient condition for the scheme to remain TVD is 
l lL-lR[ll  5 1. In  addition, because l [L-t’Rl[ l  5 
~ ~ L - l ~ ~ l ~ ~ ‘ R , ~ ~ l ,  if  both llL-lll, 5 1 and ll’Rll, 5 1, the re- 
sulting scheme will be TVD as well. 

By first considering the explicit operator R, one can sum the 
elements i n  the columns by multiplying on the left by a row 
matrix s = [l, 1. ..... 11. Now, because sH = (0.0, ...., 01, Eq. 
(2.3.93) shows that the columns of R will sum to uni ty  regard- 
less of the choice of M .  The L I  matrix norm corresponds to 
summing the absolute value of each of the columns and tak- 
ing the largest of these values. Because each column sums to 
unity, a necessary and sufficient condition for 1 1  RI1 I I 1 is that 
each clement of ‘R, be nonnegative. Otherwise, when the ab- 
solute value of the individual elements is taken to compute the 
norm, the sum would be greater than uni ty  (i.e. IIRII, 2 1). 

Application of this critcria to explicit schemes results i n  iden- 
tical requirements given originally by Harten,“ as can be seen 
by considering a general explicit scheme written at a node 
point j in the form 

By subtracting the expression at node j from that at j+ l ,  an 
expression for the evolution of HIV at node point j can be 
obtained: 

If this expression is written at each mesh point and assembled 
into a matrix, then 

Now, if  each element of this matrix is required to be positive, 
then the TVD criteria given by Harten in Ref. 66 results: 

q++ 1 0  (2.3.98) 

A similar procedure can be used for implicit schemes and is 
not repeated here. 

Many schemes have been developed and applied to difficult 
aerodynamic problems that rely heavily on the TVD concepts 
discussed above. While by no means complete, a few exam- 
ples can be found i n  Refs. 24, 26, 70, 71, and 72, as well as 
i n  the references contained therein. 

The methodologies described above only achieves higher order 
accuracy for smoothly varying meshes. To obtain higher order 
accuracy on general meshes, as well as to extend the accuracy 
beyond second order, an extensive amount of research has been 
conducted for both structured and unstructured grids. An im- 
portant class of such schemes is the essentially nonoscillatory 
(ENO) schemes. Although no details arc given herc, the es- 
sential ingredients include a polynomial reconstruction of the 
data from cell-averaged data that is exact up to a specified 
order of accuracy: 

R( .c :V)  = w(x) + O ( / , ” )  (2.3.99) 

where R( .I:: W) represents the data reconstructed from the 
cell averages and w(.I:) is the exact value. The scheme 
also must be conservative in the sense that if one integrates 
the reconstructed data over the cell, then the cell average is 
recovered. The last criteria is that the reconstructed data be 
“essentially nonoscillatory.” That is, 

Tl’(R( I . : * ) )  5 TT’(w( I . ) )  + O ( / / ” )  (2.3.100) 

In order to satisfy Eq. (2.3.100) in a smooth region of a 
discontinuous solution, the stencil used i n  the reconstruction 
process is varied as the calculation proceeds. Further details 
and descriptions of thc theory, as wcll as applications of this 
type of technique, can be found in many  reference^.^'.'^.^'.^^.^^ 

Another technique to obtain higher order accuracy that has 
been particularly useful for unstructured grids is the so-called 
“k-exact” mcthod. Here, the conservation of the mean is cn- 
forced, and the reconstruction is such that a polynomial of 
degree k or less is reconstructed exactly.” In the implemen- 
tations of Refs. 77, 79, and 80, the stencil generally remains 
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fixed which results in  a somewhat lower computational ex- 
pense. However, in order to avoid oscillations, a limiting pro- 
cedure must be applied where steep gradients are present in or- 
der to avoid nonphysical oscillations. This tends to reduce the 
order of accuracy in these regions. More recently, algorithms 
have been proposed that incorporate stencil-varying techniques 
into high-order E N 0  methods for unstructured 

High-order E N 0  schemes can also be implemented in a finite- 
difference manner in which the reconstruction operator acts 
upon pointwise fluxes.” 

2.3.3 Extension to Real Gases 

Many of the flux functions discussed above have been ex- 
tended for use with real gases, including both equilibrium and 
finite-rate chemistry. In Ref. 84, for example, the Hux-splitting 
schemes of Steger-Warming” and Van Leert7 are extended for 
real-gas considerations as well as for the flux-difference split- 
ting of Roe.2s Alternate derivations that do not rely on some 
of the assumptions made in the previous reference are given 
for an equilibrium real gas in Ref. 85 for Hux-vector splitting 
and i n  Ref. 86 for Roe’s flux-difference splitting scheme. 
Additional real-gas extensions are given in Refs. 87 and 88. 
For the characteristic flux extrapolation technique of Eberle,37 
real-gas extensions have also been made and are reported in 
Refs. 34, 37, and 89. 
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2.4 TIME DISCRETIZATION 

A number of different explicit and implicit schemes which 
have been used to compute three-dimensional solutions to the 
Euler equations are reviewed below. The general process of 
discretizing the governing flow equations leads to a system of 
equations of the form 

H(w) = 0 (2.4. I )  

where w is the vector of unknowns at all grid points for a node- 
based scheme and at elements for a cell-based formulation. 
The solution of these equations can be obtained by using 
an explicit or implicit formulation for w. Algorithms of an 
explicit formulation can be written as 

while an implicit scheme can be expressed as 

H(WI’+’ ~ wI1)= 0 (2.4.3) 

Here, w” can be interpreted as the value of w 2t either time 
level or iteration level n; the particular form of H arises from 
the type of time discretization used. Most of the applications 
to date have been for steady flows, in which the role of the 
time discretization is to facilitate or accelerate convergence to 
steady state. A requirement also exists for time-accurate sim- 
ulations of the unsteady flow fields associated with dynamic 
vehicle motions or time-dependent fluid motions arising from 
separated and/or vortical flow fields. 

The time discretization methods used to solve the Euler equa- 
tions can be typed into two classes: coupled space-time meth- 
ods and semidiscrete algorithms. In  the latter approach, the 
spatial discretization is decoupled from the temporal discretiza- 
tion by first differencing the spatial derivative terms; the partial 
differential equations are thus transformed to a systcm of first- 
order ordinary differential equations i n  time. For steady flows, 
the time-rate-of-change of the spatial residual equation can be 
driven to zero, and the resulting physical solurion is indcpen- 
dent of the particular path taken to convergence or the time step 
used to advance the equations. As a consequence, the solution 
is only dependent on the spatial differencing approximation. 

Explicit schemes (predictor-corrector or Runge-Kutta, for ex- 
ample) are simpler tcchniques than implicit schcmes and 
lend themselves to extremely efficient implementations on 
either vector or parallel processing computers. The cx- 
plicit schemes have a time-step limitation, corresponding to a 
Courant-Friedrichs-Levy (CFL) number on the order of unity,  
in order to maintain numerical stability of the solution. The 
time step for a CFL number of unity scales on the distance be- 
tween the grid points; this time step limitation generally leads 
to inefficient simulations of unsteady flows corresponding to 
low reduced frequencies. In  these cases, the time step required 
for accurate resolution of the time-dependent phenomena (gen- 
erally associated with a fixed number of time steps per cycle) 
can be much larger than the allowable time step based on 
stability. 

One of the motivations for developing an implicit Euler solvcr 
is to serve as a vehicle for solving the viscous equations. For 
a diffusion-dominated flow, the allowable explicit timc step 

scales on the square of the distance between the grid points;. 
for the highly clustered grids required for the resolution of 
viscous flows at high Reynolds numbers, the maximum time 
step of purely explicit schemes is prohibitively small. Implicit 
schemes have a less restrictive time step limitation and are 
generally more versatile and efficient, especially for time- 
dependent computations. However, the implicit schemes entail 
more arithmetic operations, since the solution of a coupled 
system of equations is generally required. 

The implicit methods discussed below are restricted to the 
class of semidiscrete algorithms. Direct methods, which 
have been used to solve the accompanying large bandcd sys- 
tem of linear equations in a fixed number of operations, 
are contrasted with approximate factorization methods, which 
have been used to approximate the linear system as a prod- 
uct of simpler and more easily invertible matrices. The 
factorizations discussed, which rely on a regular ordering 
of the grid, have been widely used in structured-grid ap- 
plications. Iterative techniques are then discussed, includ- 
ing relaxation, hybrid relaxation-factorization approaches, and 
minimum-residual mcthods, such as conjugate-gradient or 
Krylov-subspace methods. The direct methods and the iter- 
ative techniques can be generalized for use as implicit solvers 
for unstructured-grid schemes. Convergence acceleration tech- 
niques, such as multigrid, can be applied to either the linear 
or nonlinear implicit schemes above, as well as to explicit 
schemes, and are discussed i n  a subscquent section. 

2.4.1 Explicit Schemes 

To illustrate the explicit procedures, consider the model prob- 
lem 

011 
-+f = 0 (2.4.4) 

where u=u(x,t) and f = f(2,11. s. t.). Equations of this type 
arise i n  many branches of continuum mechanics, for examplc, 
one-dimensional unsteady fluid flow, where the cquation 

at. 

011 a 
- + - ( / H I )  = 0 
at as 

(2.4.5) 

represents conservation of mass. 

In the application of the finite difference method, differences 
must be taken with respect to time 1 and distance x .  A grid is 
constructed over the (XJ) plane and the equation is solved 
at each mesh point or cell. A typical mesh point can bc 
represented as (xi. t”) = (jAx,nAt). The value of U at this 
mesh point is II’.’ (i.c., I I ’ !  = ii(,jAs! nAt,)), and the equation 
evaluated at (x, , t”)  is 

(2.4.6) 

Using a simple forward difference for the time derivative and 
a central difference for the space derivative, the discretized 
formulation rakes the form 

I ( + ’ =  11; - At,f((ll];.I - I I ~ - ~ ) / ~ A x , I I ~ s ~ ,  t,”) (2.4.7) 

Given the solution at time level n for j=l ,2  ,..., n, the explicit 
formulation can be used to evaluate directly the solution at 
time level n+l. As a specific example. the transport equation 

a11 011 - + a - = 0  
at, at. 

(2.4.8) 
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where “a” is a constant, can be expressed as the explicit 
formulation 

) (2.4.9) 
- 11;- 1 ( 2As 

11:+~= 11; - aAt  

A formulation of this type indicates that time can be used 
to progress the numerical solution to steady state and is often 
referred to as the method of false transients. In  such cases, Eq. 
(2.4.9) indicates that steady state can be achieved by choosing 
the time step At to be large. However, if this were true, i t  
would appear that At could be chosen to achieve steady state 
in one step. This is clearly unrealistic and can be confirmed 
by investigating the stability of the numerical formulation. 

Stability Analysis 

Two main techniques are commonly used to assess the stability 
of numerical formulations. The first is called the Von Neumann 
or Fourier method, and the second is called the matrix method.’ 

The Fourier method expresses an initial distribution (line) of 
errors i n  terms of a finite Fourier series and considers the 
growth or decay of the errors. It proves convenient to express 
the errors in terms of a complex potential form 

(2.4.10) A,, ci Plri’it 

where i = G, [0,1] is the interval throughout which the 
function is defined, and h is the grid spacing. Denote the 
errors at the mesh points along t=O, between x=O and Nh, by 
E(ph) = E,, p=O,I ,2 ,..., N. Then the (N+I) equations 

N 
E I’ - - c ~ , , ~ i B n ~ l ~  , (p = 0 , l )  . . .  ,N) 

Il = n 

are sufficient to determine the (N+I) unknowns A(,, Ai,A2 ... ,AN. 
Assuming the finite difference equations to be linear, it is 
necessary to only consider the propagation of a single term, 
such as cippl’. To investigate the propagation of this error as 
t (defined as t=qk) increases, it is necessary to find a solution 
of the finite difference equation which reduces to elPph when 
t=0. Assume 

iox n t  iopli nqli - i,Oph q E P C 1 = c  c = e  c - e  ( 

where (=enk and n, in general, is a complex constant. This 
reduces to elPph when q=O. The error will not increase as t 
increases provided that 

Hence, the stability of a scheme can be investigated by apply- 
ing a Fourier mode of the form 

ai<( t,)c’PX (2.4. I 1) 

to the discretized equations; the scheme is stable provided ak(t) 
does not increase in time for all k. 

Applying these ideas to the simple example of the transport 
equation by substituting Eq. (2.4.1 1) in Eq. (2.4.9) leads to 

which reduces to 

C 
2 

n + l  - 
‘zk - a;: - -[2i sin (pAs)]a”  

and 
, , + I  
xk = (1 - iCsin (pAs)}a; 

with C = s. The scheme is stable i f  

11 - iCsin(L3As)l 5 1 

If the amplification factor g, defined as g = y, is complex, 
then lgI2 = gg*, with g* as the complex conjugate. Hence, the 
stability condition is 

!,+I  

1 + C’ sill2 ( P A X )  5 1 

which is not satisfied for any Ax, At > 0; thus, the simple 
scheme is unstable and so not of much practical use. In  prac- 
tice the numerical errors produced would grow unboundedly 
and the numerical answer after a few time steps would be 
meaningless. I t  is clear from this simple example that it  is not 
possible to formulate arbitrary explicit schemes. 

In the above analysis no account has been taken of the effect 
on stability of the boundary conditions. The Fourier method is 
not able to take such effects into account and for such analysis 
the alternative matrix method of stability is required.’ 

Lux Schemes of First Order Accuracy 

I t  is clear from stability analysis that the method of forward 
difference i n  time and central difference in space is uncondi- 
tionally unstable. To alleviate this problem, Lax2 proposed a 
modification to give a stable explicit numerical procedure. As 
an example, consider the following form for the discretized 
transport Eq. (2.4.8): 

l l y  - ;(ll;+l + Il;-I) Il;+I - ll;-l - - 0 (2.4.12) 2 As + a  At, 

This is similar to the unstable Euler method (2.4.9), except 
that 11; has been replaced by f ( U;+ I + 11;- I ). 

A Fourier stability analysis of this formulation reveals that 

g = cos (LlAs) - iC sin (@As) 

where C = e. For stability, Igl I I ;  hence, 

1gl2 = 1 + { C’ - I} sin’ (/]AS) 

and so the scheme is stable for C I I .  C is referred to as the 
Courant number and for a given constant speed “a” and mesh 
spacing Ax, i t  determines the limit at which the numerical 
formulation can be stepped i n  time to steady state. 

I t  is well known why the Lax’s scheme is stable while the 
forward time, central space scheme is unconditionally unstable. 
The Lax formulation can be written as 



or 

which shows that the averaging of the term 14’ leads to the 
introduction of a term which is a central difference of a second 
space derivative. In  other words Lax’s scheme can be seen as 
an Euler scheme applied to a modified equation 

(2.4.13) 

where the right hand side is a term which represents an added 
diffusion-like term with a grid dependent coefficient. I t  is the 
right hand side which provides the stability. A truncation error 
analysis reveals that the scheme, for a fixed Courant number, 
is first order accurate in space and time. 

The Lax scheme can be applied to the system of Euler equa- 
tions in two dimensions 

aw af ag - + - + - = o  
at. ax dy 

to give, for a structured grid, 

1 
wf]fl= z(wI;’j +w;-lj +w;;+I +w;;-I) 

(2.4.14) 

(2.4.15) 

Schemes of this type together with many variants are classed 
as Lax or Lax-Friedrichs schemes. They have played a major 
role in  the development of numerical schemes. However, they 
are not generally applied now because of their lack of accuracy. 

Lax- Wendroff Schemes of Second 
Order Accuracy 

Schemes with second order accuracy are generally classed 
as Lax-Wendroff schemes of which today there are many 
variations on that originally proposed.? 

The major criticism of the Lax scheme is its first order accu- 
racy. The Lax-Wendroff class of techniques uses central space 
representation but achieves second order accuracy. Again con- 
sider the first order equation 

A Taylor series expansion i n  time shows 

which, using the original partial differential equation, can be 
expressed as 

where the Jacobian A E E. 
equation gives 

The discretized form of this 

(2.4.16) 

with either 
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1 
- 2  

or 
A;+: = -(Ai + A i + [ )  

This scheme requires the evaluation of the Jacobian matrix 
A, which can be costly. To alleviate this, several two-step 
schemes have been developed. 

One such scheme, which has proved to be very popular, was 
devised i n  1969 by MacCo~mack.~.~ The scheme is a two-step 
predictor-corrector method which for the equation 

takes the form 

A t> 
A X  

I’.* - 111’ - - (f; - f!’ ) 1 - 1  I -  

1 At. . 
2 Ax II;” = -(I$ + (‘j--(fi+l - f:) (2.4.17) 

as illustrated in Fig. 2.4.1 

level + 

+1 

Figure 2.4.1 Information used in 
the two-step MacCormack scheme. 

The scheme is second order accurate in both space and time. 
The scheme readily extends to both two and three dimensions; 
for example, i n  two dimensions, for the equation 

011 af a g  - + - + - = o  at, as a y  

the scheme is 

At, At. 
\I*. = lk!?-- (f!! - frPlj) - - (g!! 8J - g!? ’1-1 ) 

11;;” = -(11:; + 11:)) 
AY ’1 ‘J Ax ‘1 

1 
2 

2A1: ‘+IJ I J  2Ay 
- -((f.* At . - f.*) - A($ At 

1J+1 - 9;)  (2‘4‘ 8) 

A technique which is often used in the representation of 
general schemes is operator splitting. The one-dimensional 
predictor-corrector sequence in Eq. (2.4.17) is represented by 

1111+l = L,(Lt#) l l”  (2.4.19) 



12 

Combining i and j operators then gives 

, , l l + l  = L; (A t)Lj (At)U” (2.4.20) 

which is a representation of a 2D scheme. However, this 
unsymmetrical sequence is only first order accurate. The 
MacCormack scheme results from a symmetric split sequence 
of the form 

(2.4.21) 

In this form, it is clear how such a scheme could be used 
to advantage if for some flows the time step is limited by 
a particular direction, either Ax or Ay. In  such cases, a 
sequence could be devised which takes more steps i n  one of 
the directions so as to reduce the computational cost. 

Time Stepping Schemes 

A common practice for the solution of the time-dependent Eu- 
ler equations is to first discretize the equations in space while 
ignoring the time derivative. This semidiscrete procedure then 
results i n  a system o f  ordinary differential equations which 
must be integrated in time. For steady state problems, the 
equations are integrated in time using any appropriate integra- 
tion routine and flexibility is present for convergence accelera- 
tion techniques (such as local time stepping) to be used. Such 
schemes are independent of the time step At  at convergence 
to the steady state. 

Time stepping procedures can be based upon the schemes 
available extensively in the literature for the solution of or- 
dinary differential equations. Single-step methods can be used 
based upon Euler and Taylor series methods. Consider the 
first-order scalar differential equation 

d Y  
2 = f (x :y(s ) )  
tls 

(2.4.22) 

with the initial conditions 

Y(X0)  = yo 

The simplest numerical method for treating this initial value 
problem consists of approximating the solution curve y(x) 
by its tangent. With the step size h and the corresponding 
equidistant support abscissae 

Xk = xn + lill ( k  = 1.2. .  . . . . .) 

an approximation Y k  to the exact solution can be obtained by 
the general formula 

At each point (xk,yk), this method (named after Euler) uses 
the slope of the directional field that is defined by the given 
differential equation to determine the next approximation Yk+l. 
This procedure is obviously quite coarse and its accuracy 
is dependent upon the size of h. However, the procedure 
represents the simplest member of a one step method which 
uses only the known approximate value y k  at the support 
abscissa xk to compute the approximation y k + l  at xk+l = x k  + h. 

An alternative procedure is to note that i n  a small neighbor- 
hood of the initial point (xi),yi)), a better approximation of the 
desired solution y(x) can be obtained by means of the Taylor 
series with a remainder term 

If  the remainder term R,I is neglected, the approximate value 
of y k + l  for the step size h=(xk+l-xk) is given by the general 
formula 

Here, yp) denotes the value of the mth derivative at the 
point (Xk,Yk). This procedure requires the derivatives of the 
function y(x) and this, for general cases, can prove inaccurate 
or unwieldy to compute. However, with a slightly different 
formulation the method can be used effectively.‘ 

Various methods exist for improving these simple formula- 
tions. Since Euler’s method is of order one, an extrapolation 
can be applied. Assuming that two integrations have been 
performed, the first with step h and the second with step h/2 
and then using the principles of Richardson extrapolation, an 
improved Euler method of the form 

l i i  = f(sk,yk) 

(2.4.24) 

yl<+l = yI< + 1lk2 

can be used. This is a second order formulation; a single step 
requires the evaluation of the function f(x,y) at two different 
pairs of values. 

Other single step methods for the solution of the differential 
equations can be obtained by the use of standard definite 
integration methods. The trapezoidal method can be invoked 
to derive the formulation 

I1 

2 Yk+l = Yk + -(f(xk?yk) + f (Xk+I  3 Ykfl)) (2.4.25) 

For a general nonlinear equation this represents an implicit 
equation for the unknown Y k + l .  

In  practice such schemes can be implemented using a sequence 
of successive approximations to Yk+l, denoted as yp21. One 
such procedure, known as Heun’s method, can be written 

,,(I>) .,]<+I = !’I< + I I f ( S k ; ~ k )  

II 
~ I ; + I  = yi< + T(f(si<:yi<) + f(si,+i ; y [21 ) )  (2.4.26) 

The explicit first order Euler method (2.4.26a) is used to deter- 
mine a predictor value yp>l which is subsequently corrected 
in Eq. (2.4.26b) by means of the implicit trapezoidal method 
to obtain Y k + l .  This is called a predictor-corrector method; 
i t  is second order accurate and for practical purposes can be 
rewritten as 

k l  = f ( X k ! Y i < )  

li2 = f(X1, + 11, yi; + I lk1 ) (2.4.27) 
I 1  

2 yk+I = y1; + - - ( I i l  + k2) 
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The improved Euler method and Heun’s method are examples 
of explicit two-stage second order Runge-Kutta methods. 

The formal derivation of Runge-Kutta methods is covered in 
many standard texts on ordinary differential equations. Here, 
i t  is worth quoting the classical fourth-order Runge-Kutta 
method 

k l  = f(xl<,yI;) 

(2.4.28) 

k4 = f(SI; + 11, yI< + I l l i n )  

Yk+I = 1% + - ( k l  + 2k2 + 2kn + k.,) I1 

G 
It is clear from these formulations that to compute Y k + l  they 
require information based upon the previous approximation 
point (xk.yk). In contrast, an alternative set of methods is to 
use a multistep approach which uses information at previous 
support abscissae Xk.1, Xk.2, Xk-7 ... Xk-m. These methods are 
referred to as linear multistep methods, and they can be either 
explicit or implicit i n  time. A classical example is the method 
of Adams-Bashforth which can be expressed as 

This formulation, which assumes equal spacing h, is an ex- 
plicit, linear four-step method. I t  requires only one function 
evaluation at each step, but requires previous values fk, fk-I, 
fk-2,  fk-3. Other variants of this multistep method exist, as well 
as generalized formulations.“ 

It is clear from this discussion that multistage, two level 
schemes of the Runge Kutta type have the advantage that they 
do not require any special starting procedures, i n  contrast to 
the multistep methods of Adams-Bashforth type. In addition, 
extra stages in the multistage methods can be used to improve 
accuracy or to extend the stability region. Jameson et al.’.‘ 
have used Runge-Kutta methods to great advantage for the 
solution of the Euler equations. In general, the selection of 
a particular temporal integration scheme is closely tied to the 
type of discretization selected for the spatial derivatives. 

The extension of these ideas discussed for the one-dimensional 
model problem to the governing flow equations is straightfor- 
ward. The discretization of spacial operators i n  the equations 
leads to a system of coupled ordinary differential equations of 
the form 

d w 
- + R . ( w )  = 0 
d t. 

(2.4.30) 

where R(w) is the vector of the residuals. Let w” bc the 
numerical result after n time steps; the formulation to advance 
the solution to time level n+l is 

w(o) = W” 
,(I) = w(o)  - n-,At,R(n) 

The residual i n  the q+l stage is evaluated as 

9 

r = O  
R(”) = /3clrR(w(r)) (2.4.32) 

where 
‘I 

r = O  
Pq,=1 

Typically, three-, four-, or five-stage schemes have been ex- 
tensively used. 

The stability properties of the multistage method have been 
used to advantage in the solution of the Euler equations. 
Consider a time stepping scheme for 

tlll 

tl t. 
At,- = All 

The stability region is the region of the complex plane for 
which the scheme is stable in terms of the time step multiplied 
by the eigenvalues of A; the time step is selected so that the 
eigenvalues of the A matrix lie within the stability region. For 
a multistage scheme, 

Thus, for a complete step 

11” = g.11“ 

where the amplification factor g is a polynomial in A: 

g = 1 + 91.4 + /%A2 + 
and /31=1, /12=nk.1, ,03=n.k.IOk.2, .... The stability region IS the 
region i n  which Iglll, and we require the Fourier symbol z(() 
= z(/IAx) to lie in the region of stability for all wave numbers 
O<(<K. Figure 2.4.2 shows the stability region for commonly 
used Runge-Kutta methods. 

I 

Figure 2.4.2 Stability regions 
for explicit Runge-Kutta methods. 
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The equation 

is more typical of an appropriate model equation for the 
Euler equations, where dissipation is added explicitly to the 
convective terms. In this case, modifications to the stability 
plots can be obtained with single or multiple evaluations of 
the dissipationlike term within the multistage procedure. The 
variety of possibilities have been considered by Jameson.“’ 

2.4.2 Implicit Schemes 

In  the discussion that follows, the system of ordinary differ- 
ential equations to be solved is written as 

(2.4.33) 

where R(w)  is the discrete representation of the spatial deriva- 
tive terms evaluated as a function of the solution vector w. 
The prototype implicit algorithm considered is the backward 
time differencing equation, given as 

= 0  Aw” + + I 
.J A t (2.4.34) 

where A t  is the time step, R’l is the discrete residual 
evaluated at time level (n + 1) A t ,  and Awl‘ w”+I - w” 
is the change in the dependent variables over a time step. 
The scheme is first order accurate in time. The Trapezoidal 
scheme can be written as 

and the three-point backward-time scheme can be written as 

both of which arc second order accurate in time. The three 
schemes above can be considered as examples from the well- 
known class of linear multistep methods developed for solving 
ordinary differential equations. The stability of such methods 
can be determined from an analysis of the eigenvalucs of the 
coefficient matrix arising from linearization of the nonlinear 
terms. For discrete solutions to the Euler equations, these 
eigenvalues generally lie i n  the left half of the complex plane. 
A method without any time step stability limit i n  such a case is 
referred to as an A-stable method. I t  is known from a theorem 
of Dahlquist that: 

( I )  The order of an A-stable method cannot exceed two. 

(2) The second-order A-stable scheme with lowest trun- 
cation error is the Trapezoidal scheme. 

Generally, the three-point backward-time scheme is preferred 
for second order accuracy since the Trapezoidal method, also 
known as Crank-Nicholson, is susceptible to an odd-even 
decoupling in time of the highest frequencies i n  the solution. 

Either Eq. (2.4.34) or (2.4.36) represents a nonlinear system 
of equations to be solved at each time step and can be written 
generically as 

R= 0 (2.4.37) 

where the hatted notation denotes that the residual contains 
both temporal and spatial discretization terms. Applying New- 
ton’s method for the root of a nonlinear system of equations 
gives a linear system to be solved iteratively, 

i = 1: 2 , 3 .  ... (2.4.38) 

The linearization is about an estimate wi ,  which can be taken 
initially as w”,  and the solution converges to the solution 
at the new time level w”+I. The requirement to solve a 
linear equation arises from the linearization of the nonlinear 
spatial residual terms at the new time level. In  that respect, 
the treatment of second order accuracy i n  time is similar 
to that of the first order scheme, since the additional terms 
involved are all evaluated at time levels which have already 
been computed. Hence, restricting the discussion below to the 
first-order backward time scheme, the linear system is written 
as 

[ I + h ~ ] ’ ( w ’ + ’ - w ’ )  = - [ w ’ - w ” + h R  ( w ’91 
i = 1 , 2 , 3 ,  ... (2.4.39) 

where / I  = .JAt. For each iteration, Eq. (2.4.39) requires 
the solution of a block-banded linear system of equations with 
the property that quadratic convergence can be attained at each 
iteration i f  the approximation is sufficiently near the root of the 
equation. For large time steps, Newton’s method is recovered 
for the solution of the steady-state residual equation. 

A general block-matrix equation solved with Gauss elimination 
requires 

0 ( f \ h ? 3 )  o~,clntioll..s (2.4.40) 

where AT is the total number of equations and ~ I I  is the block 
size. A general block-banded matrix equation can be solved 
in 

0 ( f V b 2 m “ ’ )  opcrntio?rs; b = mm;(p, q )  (2.4.41) 

where 11 is the number of nonzero off-diagonals in the matrix 
at or above the main diagonal and q is the number at or below 
the main diagonal of the matrix to be solved. 

The computational work for typical structured-grid solvers 
can be estimated assuming an implicit computational stencil 
which spans three points i n  each coordinate direction. For 
a three-dimensional ordering of the unknowns by generalized 
coordinate directions. 

I\‘ = .J . Ii . L 
p = q = .J . A’ 

where .J, li, L is the number of points i n  each of the three 
coordinate directions, respectively. For a two-dimensional 
case with ordering by rows, 

hi = .7 . I; 
11 = q = .J 

Hence, the computational work scales as 

0(Ari ’3m3)  opc~cr.tion.s : 3 - D 

0 ( N 2 m 3 )  opcr rc t io~ i~s  : 2 - D 

(2.4.42) 

(2.4.43) 
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assuming equal number of points in each coordinate direction. 
In two dimensions, the relative bandwidth is smaller which 
results in a smaller operation count; since both N and in 
are usually smaller in this case, direct solutions of the linear 
system are possible with available computers,l'.12 at least for 
steady-state solutions. 

Because of the number of operations and storage involved in 
a direct solution of the linear system at each iteration, the 
complexity which can arise in linearizing the equations ex- 
actly, and the realization that quadratic convergence is only 
obtained when the approximation is near to the exact solution, 
the method as outlined above is rarely used i n  application.I2 
A number of approximate techniques have been devised. Ap- 
proximate linearizations, denoted with double tilde overscripts, 
can be used on the left side of the equation (1) to reduce the 
bandwidth of the linear system or (2) to reduce the complexity 
associated with an exact linearization, as 

i = 1 , 2 , 3 ,  ... (2.4.44) 

Since the equation is cast i n  delta form,I3 the nonlinear equa- 
tion on the right-hand side will be satisfied as long as the 
sequence of iterates converge. With an approximate lineariza- 
tion, the property of quadratic convergence at a minimum is 
lost. Furthermore, all approximate linearizations are not sta- 
ble, even if  the linear system is solved e~ac t ly . '~ . "  For ex- 
ample, Jesperson and P ~ l l i a m ' ~  show a one-dimensional sta- 

:bility analysis corresponding to steady-state convergence of a 
second-order accurate scheme; an exact linearization with a 
first-order implicit stencil was unconditionally stable. How- 
ever, with a second-order implicit stencil but an approximate 
Jacobian (linearization terms), stability was only conditional. 

Another approach is to determine a solution to the linear 
system but accept the first iteration as the solution at the new 
time level, as a so-called single-step scheme,'3.'6 i.e., 

[I + 11 E] " (wl1+' - w") = - [ h  R(w")] (2.4.45) 

The equation is now of the standard form Ax = b, where 
x Aw, and a number of iterative methods adapted from 
the study of linear algebraic equations can be applied to solve 
the linear system of equations. Note that the convergence of 
the solution to the linear system depends only on the coefficient 
matrix. The use of large time steps and the retention of the 
A-stable properties of the implicit integration scheme can be 
attained if the linear system is solved to near completion. 
However, i n  most cases, the linear equation need not be 
solved exactly, since for steady flows the ultimate objective 
is the solution to a nonlinear equation. Likewise, for unsteady 
simulations, it  is necessary only to solve the equation to a 
tolerance below that of the truncation and linearization errors 
associated with the single-step approximation. 

The two approximations can be combined, as an approximately 
linearized implicit scheme, in which the linear equation is 
hopefully much easier to solve, as 

A number of schemes are in current use which are based on 
this model. For example, since this coefficient matrix depends 
only on the left-side spatial-difference approximation of Eq. 
(2.4.45), first-order upwind differencing can often be used 
to ensure block-diagonal dominance of the coefficient matrix 
and relaxation methods can be used effectively. Also, the 
approximate factorization methods discussed subsequently are 
a special case of the algorithms described by Eq. (2.4.46). 

Direct Methods 

Direct methods can be used to solve the system of linear 
equations associated with the implicit schemes above. Direct 
methods are distinct from iterative solvers i n  that they solve 
the system of equations i n  a finite and predetermined amount 
of work. Solutions to the linear system using direct methods 
are exact if infinite precision arithmetic is used. On computers, 
direct solvers will generate solutions that are as accurate as the 
arithmetic used to generate them. 

The coefficient matrices resulting from Euler solvers are gen- 
erally sparse (i.e., composed of few nonzero and many zero 
coefficients). Linear systems resulting from structured grid 
Euler solvers will have an ordered structure of nonzero coef- 
ficients. For example, a two-dimensional first-order upwind 
scheme results i n  a pentadiagonal matrix composed of two 
"diagonal entries" clustered around the central diagonal and a 
diagonal entry farther out on either side. Adding more dimen- 
sions and/or higher order accuracy leads to a matrix composed 
of more diagonal entries. This form of sparseness is known 
as structural sparseness since it  is known a priori which co- 
efficient elements are zero and which are nonzero. The use 
of unstructured grid Euler solvers leads to implicit matrices 
with nonzero Coefficients located on the diagonal entry and 
randomly located off the diagonal entry. 

Specialized versions of Gaussian elimination are used for 
sparse linear systems to minimize storage costs and reduce op- 
eration Banded-matrix direct solvers are perhaps 
the most common approach to reducing the storage and op- 
eration count of a full Gaussian elimination. Banded solvers 
store diagonal entries of the matrix as vectors and, hence, store 
all coefficient elements of the matrix out to the last diagonal 
entry that has a nonzero coefficient in it. In large part, most 
work on banded direct solvers has been done in the structural 
finite-element field. Consequently, most banded solvers arc 
specialized for symmetric positive-definite matrices. 

Matrices that possess general, rather than structural, sparse- 
ness have nonzero coefficients randomly located i n  the array. 
Consequently, very few nonzero coefficients exist next to the 
maximum bandwidth of the matrix. Skyline solvers take ad- 
vantage of this fact by only storing row or column vectors 
from the diagonal to the last nonzero coefficient i n  each row 
(lower triangular) or column (upper triangular), respectively. 
Skyline solvers are also known as envelope, profile, or vari- 
able bandwidth solvers. 

The most common approach to solving general sparse matri- 
ces has been to renumber the grid to minimize the bandwidth 
or minimize the numerical fill-in during the solution process. 
Bandwidth minimization will make both band solvers and sky- 
line solvers much more efficient for any linear problem. Sev- 
eral methods have been proposed to minimize the bandwidth of 
sparse linear systems. The most successful and best known of 
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the bandwidth minimization algorithms is the Cuthill-McKeeIX 
ordering algorithm. This algorithm makes extensive use of 
graph theory as do most reordering algorithms. For each node 
(equation), a list of adjacent nodes can be generated from the 
graph of the matrix. If v is the node number, then Adj(71) 
is a list of the nodes immediately adjacent to 71. The algo- 
rithm takes a list of nodes and the associated list of adjacent 
nodes and generates a new list of nodes. The old and new 
list of nodes acts as a translation table for the matrix so that 
the graph of the matrix may be renumbered. The matrix as- 
sociated with the new graph of the nodes will often have a 
dramatically reduced bandwidth. 

Matrix dissection,lx-2" or nested dissection, is a method to 
renumber the graph of a matrix. The bandwidth of the matrix 
is not reduced but the numerical fill-in that occurs during the 
matrix factorization is greatly reduced. The minimum degree 
method also reduces fill-in through a minimization process and 
has proved useful for unstructured grids.20 

The principal advantage of the direct solvers is their robust- 
ness, since steady-state solutions can be generated in cases 
where iterative methods fail to converge and there are fewer 
parameters to adjust for improved convergence.'1.'2~20.21 The 
rapid convergence of the scheme allows solutions to be ob- 
tained in four to five iterations; because of the increased op- 
eration count of the direct solution, the method is generally 
only invoked after an approximate solution is generated with 
an iterative solver. 

Approximate Factorization Methods 

Within the framework of approximate factorization (AF) meth- 
ods, implicit schemes which factor spatially the unsplit ma- 
trix equation into a sequence of simpler matrix equations are 
known as alternating direction implicit (ADI) schemes",'6 and 
have been widely used. In  addition to the classical spatially 
factored scheme, a number of alternative schemes arc possible 
by factoring the implicit operator according to the eigenval- 
ues of the split Jacobian matrices and using type-dependent 
d i f f e r e n ~ i n g . ~ ~ - ~ ~  These alternate factorizations can be used to 
split the full operator into a lower (L) and an upper (U) fac- 
tor independent of the number of spatial dimensions of the 
problem, thereby increasing the allowable time step based on 
stability considerations and/or a decrease i n  the number of 
operations. These LU schemes can be used to converge dis- 
cretizations corresponding to either central or upwind schemes 
(e.g., Rieger and J a m e ~ o n ~ ~ ) .  

For the compressible Euler and Navier-Stokes equations, Beam 
and Warming" and Briley and MacDonaldlh laid the foun- 
dations of the current AD1 algorithms which are generaliza- 
tions of the alternating-direction implicit algorithms devel- 
oped i n  the 1950's for solving parabolic equations. The AD1 
algorithms approximate the left-hand implicit matrix of Eq. 
(2.4.39) as a product of one-dimensional matrices, solved in 
a series of sweeps through the mesh. The nonlinear implicit 
scheme for first-order backward-time differencing can be writ- 
ten 

I .  [I + I 1  6E ( :)]'Aw** = R (2.4.47) 

[I + h, 6< ($)I ' Aw' = Aw* (2.4.49) 

w i + l  = w i  + nwi (2.4.50) 

where R denotes the right side of Eq. (2.4.39) and 5 is a 
spatial difference operator. Each sweep requires the solution 
of a block tridiagonal or pentadiagonal matrix equation. The 
computational molecule for a three-point spatial differencing 
is shown in Fig. Since the solution on a given 
line in the grid decouples from the other lines on a sweep, 
the operations can be performed efficiently on either vector- 
processing or parallel-processing computers by simultaneous 
solution of the linear system along parallel coordinate lines in 
the mesh. On the basis that the factorization and linearization 
errors can be considered small, the algorithm is usually applied 
as a single-step noniterative scheme 

LE L,, LC (w"" - w") = - [ / I  R(w")] (2.4.5 1 ) 

for both steady and unsteady applications. The spatial factor- 
ization is largely independent of the type of spatial differenc- 
ing (i.e. central or upwind). The algorithm is widely used, 
in part because the thin-layer form of the viscous terms can 
be easily accommodated; cross-derivative terms arising from 
mixed-derivative terms are difficult to treat with the spatially 
factored algorithm, however, and are generally treated explic- 
itly or lagged in time. 

Pulliam and Chaussee" developed a diagonalized scheme in 
order to reduce the number of operations associated with the 
AD1 solution. The similarity transformation of the inviscid 
Jacobian matrix is used to derive an approximate set of scalar 
equations on each sweep, as shown for the left-hand side of 
the sweep: 

2.4.3(a). 

Tc [I + I /  6,Ac ] T;' Aw** (2.4.52) 

where A = O@/Ow zTcAeT;'. The linear system is un-  
coupled since A, is a diagonal matrix of eigenvalues; note 
that the similarity transformation matrix has been moved out- 
side the differencing operator to achieve the efficiency. The 
original block-tridiagonal or block-pentadiagonal inversion is 
replaced by scalar inversions and two matrix multiplications, 
leading to approximately a factor of two reduction i n  the over- 
all computational time of the AD1 algorithm, with generally 
no appreciable loss in convergence. 

Obayashi et have used flux splitting to simplify the matrix 
inversions further by factoring each sweep into two bidiagonal 
inversions. Applying type-dependent one-sided differencing to 
the eigenvalue-split components of the Jacobian matrix as 

6 ,  A = 6; A+ + 6: A- (2.4.53) 

where S; and S: are backward and forward difference 
operators, respectively; the left-hand side of the ( sweep can 
be represented with the LU-AD1 scheme as 

TE [I+hS;AT] 
[I + / I  S:Ac] T;' Aw** (2.4.54) 

To enhance the diagonal dominance of the equations, the im- 
plicit equation on each swccp can be factored slightly differ- 
ently following the work of Lombard et al." as 

T< [I+ (6;~: -A; ) ]  
[ I  + / I  (A: - A; ) ] - I  

[I + / I  (S:A; + AT ) ]  Tc' Aw" (2.4.55) 



where the diagonal entry of each bidiagonal inversion becomes 
D = I + It .  ( A < ( .  Termed LDU-AD1,2X the operator in each 
direction can be considered a single iteration of a symmetric 
Gauss-Seidel relaxation sweep, as discussed i n  greater detail 
later. The extension of the diagonalized methods to the viscous 
equations is not so straightforward, since these terms cannot 
be simultaneously diagonalized with the inviscid terms and are 
either ignored or represented approximately,29 as, for example, 
by approximating the viscous Jacobian with its spectral radius. 

The largest deficiency of the spatially factored approach is 
that the factored operator incurs a splitting error i n  three di- 
mensions which is proportional to the cube of the time step, 
(A t ) ’ ,  and the resulting algorithm is only conditionally stable 
at  best.*'^''' For example, South3’ has presented a proof that the 
three-factor spatially split AF scheme with central differenc- 
ing is unconditionally unstable according to a Von Neumann 
stability analysis for a scalar three-dimensional model, time- 
dependent hyperbolic equation. In  practice, the addition of 
artificial viscosity can be applied to stabilize the scheme, as 
the second-order upwind scheme (which can be viewed as a 
central difference scheme plus dissipation) is conditionally sta- 
ble. In two dimensions, the splitting error is only ( A  t ) 2  and 
unconditional stability can be attained, although the splitting 
error causes a general deterioration i n  convergence rate as A 1. 
tends to infinity. The LU schemes, on the other hand, incur 
only ( A  t ) 2  splitting errors i n  two and three dimensions and 
can attain larger stability bounds. 

Considering only the Euler equations and factoring the oper- 
ator according to the positive and negative eigenvalues of the 
split and type-dependently differenced Jacobian matrices,’* a 
two-factor scheme is 

[ I  + I r  (S;A+ + S,B+ + 6; C’) ] . 
[ I  + Ir (6:A- + 6TB- + S’C-) C ] Awl = R (2.4.56) 

Defining L -  and Lf as the factors containing the backward 
and forward difference, respectively, the scheme can be written 

L+L- nwi = R (2.4.57) 

The computational molecule is shown in Fig. 2.4.3(b), and the 
operation counts for several schemes are given in Table 2.4. I .  
The operation count for the eigenvalue-factorization scheme is 
reduced to 25 percent of that required with the AD1 scheme,3” 
since only bidiagonal inversions are required on each of the 
two LU sweeps. Originally thought to be inefficient on vector- 
processing computers, the operations can, i n  fact, be vectorized 
by simultaneous operations along i+j+k = Constant, coordi- 
nates lines.3’.’3 The algorithm is unconditionally stable in three 
dimensions. For a scalar wave equation, the eigenvalue-split 
scheme becomes a direct solver for the unfactored equations. 
The results from a linearized analysis of the coupled Euler 
equations at a Mach number of 0.8 for several schemes is 
shown in Fig. 2.4.4. The results indicate unconditional stabil- 
ity with the two-factor eigenvalue-split scheme;.”’ the spatially 
split scheme shows only conditional stability. However, as is 
true of factored schemes i n  general, the optimum damping of 
the error occurs at relatively small time steps, on the order of 
a time step of five to ten times that of an explicit scheme. 

The extension of the methodology for viscous Rows is not ob- 
vious; however, the viscous terms can be included by express- 
ing the three-point diffusion operator as the sum of a forward 
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and backward difference and factoring accordingly, although 
some form of approximation is generally required for the com- 
pressible equations. For example, a spectral radius scaling of 
the viscous Jacobian matrices is readily incorporated, simi- 
lar to that used for the diagonalized schemes. Often, as i n  
the work of Gatlin and Whitfield,” the implicit viscous terms 
are ignored without an adverse effect on the stability of high 
Reynolds number viscous flows. 

Scheme 

Three-factor 
spatially- 
split 

2-factor 
eigenvalue- 
split 

2-factor 
hybrid 

Operations per point per 
factor 

per point 

695 x 3 = 2085 

Table 2.4.1 Operation counts for solving the 
implicit approximate factorization schemes. 

Relaxation Methods 

With the development and use of upwind discretizations for the 
Euler equations, Chakrava~thy’~ and Van Leer and Mulder’s 
observed that the linearized implicit equations can be solved 
efficiently with classical relaxation methods. For example, 
with first-order upwind differencing, the coefficient matrix 
on the left side of Eq. (2.4.39) can be constructed to be 
block-diagonally dominant for any time step and standard 
relaxation techniques, such as Jacobi or line Gauss-Seidel, for 
the iterative solution of large linear systems can be used. Also, 
for supersonic flows, relaxation schemes can be constructed 
to recovcr efficient space-marehing sche~nes.””~’ For higher 
order spatial differencing, the coefficienl matrix is no longer 
diagonally dominant; i t  is more difficult to construct cflicient 
schemes, and generally symmetric Gauss-Seidel schemes are 
required.3x.3” 

Thcre are two general approaches to incorporating relaxation 
techniques for the Navier-Stokes equations. The first approach 
is to solve the linear system via relaxation to near completion 
before updating the residual equation. Thus. as mentioned pre- 
viously, using first-order upwind differencing. the coefficient 
matrix can often be constructed to be block-diagonally dom- 
inant. The second approach is to approximate the left-side 
matrix of Eq. (2.4.39) as a diagonal (Jacobi) or bidiagonal 
(Gauss-Seidel) matrix and solve for a sequence of iterations, 
with a nonlinear evaluation of the residual after cvcry pass 
through the mesh. At convcrgence, the nonlinear Eq. (2.4.34) 
is satisfied. The convergence depends on the spatial differenc- 
ing of both the left and right sides of Eq. (2.4.39).3x 

The first approach is illustrated below for the difference equa- 
tions arising from the Euler equations. Considering Eq. 
(2.4.39) as an equation to be solved at each iteration for hw‘, 

. 
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a sequence of subiterates Aw"',', 1x1 = 1 , 2 , 3 ,  ..., is computed. 
Using a symmetric point Gauss-Seidel procedure, one sweep 
through the mesh with Awn,'= 0 can be written as below 

[I + h(6;A' + 6,B' + 6;C' 
I. 

-A- - B- - C-)] Awl" = R' (2.4.58) 

The second pass becomes 

On subsequent passes, Eqs. (2.4.58)-(2.4.59) are solved re- 
peatedly, except Eq. (2.4.58) is modified to use available val- 
ues of Aw'",' from the previous iteration. If the iterations to 
the linear system are continued sufficiently far to convergence, 
Eq. (2.4.39) is classified as a quasi-Newton method, since ap- 
proximate linearizations of the right-hand-side are generally 
used to simplify the operations or ensure diagonal dominance. 
The second pass can be rewritten using Eq. (2.4.58) and the 
two passes written as below 

[ I  + h(6;A' + S,;B+ + 6;C' - 
-A- - B- - C-)] Awl" = R' (2.4.60) 

[ I  + lr(6:A- + b ;B- + 6TC- 
+A+ + B+ + C')] Aw2" =D (2.4.61) 

where D I + IL (IAI + IBI + ICl) is a 5x5 block-diagonal 
matrix i n  three dimensions. Defining E and as the diag- 
onally dominant factors containing the backward and forward 
differences, respectively, the scheme can be written as 

Thus the symmetric Gauss-Seidel, Eqs. (2.4.60)-(2.4.61), 
can be viewed as an approximate factorization,32 termed LU- 
SGS?" and consequently considered as a time accurate scheme 
for unsteady applications. The complete viscous terms can be 
easily incorporated into the algorithm, and Chakravarthy4' has 
shown that the cross-derivative terms can be differenced to 
enhance the diagonal dominance of the coefficient matrix. Of 
the schemes considered above, the relaxation scheme is the 
only one, other than direct inversion, for which the cross- 
derivative terms can be treated implicitly. Note that the relax- 
ation approach can be incorporated directly into unstructured 
grid methods since the coefficient matrix can be considered 
to be a general banded system to be solved iteratively. The 
factored schemes rely on a regular ordering of the grid and are 
not applicable to unstructured grid methods. 

The second approach, in which nonlinear residual evaluations 
are used i n  each sweep of the mesh, can be written as 

corresponding to a forward and a backward sweep. Expanding 
R' i n  a Taylor series about R" and retaining only the first- 
order terms, the total change over the two sweeps is composed 
of the sum of the two sweeps as 

Aw" = Aw" + Aw' (2.4.64) 

Combining the two sweeps into a single step-scheme, the 
scheme can be written as 

- 
L+ D-' E Ow" = R I 1  (2.4.65) 

which is very similar to the symmetric Gauss-Seidel relaxation 
Eqs. (2.4.60)-(2.4.61). 

Eberle et al.42-s3 have developed implicit solvers based on the 
use of approximate implicit Jacobian matrices and vcctorizable 
relaxation schemes. The schemes are designed so that the time 
step can be arbitrarily large for steady-state applications or 
taken as a global constant along with subiterations for time- 
accurate simulations. A number of different transformations 
from the usual conservation variables as the implicit variables 
in delta form have been used to improve the robustness of 
the procedure at higher Mach numbers. Brenneis, Ebcrle, and 
Schmatz4' show the effect of large aspect ratio in reducing or 
even eliminating the diagonal dominance of upwind schemes 
in more than one dimension; with the use of alternate variables 
this problem can be overcome. I t  is interesting to note that 
several linear upwind schemes which are unstable for model 
hyperbolic equations according to the usual Von Neumann 
stability analysis have been used routinely in applications to 
the full  Euler equations.."' In the applications, the differencing 
stencils vary because of the nonlinear limiters used to maintain 
monotonic results near discontinuities and the coefficients of 
the linearized equations change from point to point in the grid; 
both effects are neglected in the Von Neumann analysis. 

I t  is sufficient for diagonal dominance of the matrix equations 
to split the plus and minus Jacobian matrices into matrices 
with nonnegative and nonpositive eigenvalues, respectively. 
The convergence of the quasi-Newton process, howevcr, de- 
pcnds on the form of the linearization; the convergence is 
improved as the implicit Jacobian matrix approaches that of 
a true linearization of the residual equation to be satisfied at 
convergence. A true linearization is often difficult or imprac- 
tical to attain in practice, as shown for example by Barths4 
using the flux-differencing splitting of Roe. All approximate 
linearizations are not stable, as discussed carlier. A crude es- 
timate of the Jacobian matrices using the spectral radius (i.e. 
A* = ( A  f p ~ I ) / 2 ) ,  results i n  a strictly diagonal form for 
the matrix D = I + It. (PA + p~ + pc)I and, consequently, a 
reduced operation count for the LU-SGS scheme. This sim- 
ple linearization proved effective i n  the incompressible viscous 
flow calculations of Yoon and K ~ a k ; ~ "  the reduced operation 
count of the scheme with the approximate Jacobian compen- 
sates for the reduction i n  convergence per iteration. 

Hybrid Methods 

An alternate LU factorization can be derived by splitting the 
Jacobian matrices i n  a single coordinate direction, generally i n  
the direction tangential to the body surface.s' The algorithm 
can be written as 

[ I  + It (6,A' + 6,!B) 3 '  . 
[I+//(S:A-$bcC)]'  Aw' =R' - (2.4.66) 
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Figure 2.4.3 Computational molecules for advancing the 
solution in time using approximate factorization schemes. 

Figure 2.4.4 Stability analysis of three-dimensional 
approximate factorization schemes; A/r,  = 0.8; n. = U'. 
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Since the implicit spatial discretizations of two of the coor- 
dinate directions are not required to be split, either central or 
upwind differencing can be used in those directions; it  is a 
simple matter to extend the method to include the correspond- 
ing thin-layer viscous terms. The computational molecule is 
shown i n  Fig. 2.4.3(c). The linearized stability analysis of the 
coupled Euler equations3" is shown i n  Fig. 2.4.4(c); the algo- 
rithm retains unconditional stability. The operation count for 
the implicit inversion is 71 percent3" of that of the spatially 
split scheme, as given i n  Table 2.4.1, and the computations 
can be vectorized, although the vector lengths are smaller than 
the spatially split scheme. 

Hybrid relaxation-factorization schemes have also been devel- 
oped to improve the stability characteristics of the three-factor 
AD1 scheme."".' Relaxation is applied along one coordinate 
direction only (generally streamwise) and approximate factor- 
ization is applied in the other two directions. The resulting 
matrix equation to be solved i n  each crossflow plane can be 
written for relaxation in the E direction as 

where the right-hand-side indicates the nonlinear updating of 
the residual while sweeping back and forth i n  the E direc- 
tion. Each factor has the same block tridiagonal or pentadiag- 
onal form of the spatially split scheme and all the operations 
can be vectorized. The hybrid scheme, termed an AF-SPGS 
(Symmetric Planar Gauss-Seidel) scheme:6 avoids thc ( A  t )''I 

splitting error common to the three-factor schemes and is un- 
conditionally stable for a scalar wave equation. The thin-layer 
viscous terms can be incorporated easily in the two coordinate 
directions perpendicular to relaxation since the operators can 
remain unsplit in those directions. 

Minimum-Residual Methods 

A class of algorithms that can be very effective and is appli- 
cable to both structured- and unstructured-grid methods are 
minimum-residual methods. For non-symmetric matrices that 
appear i n  the solution to the Euler equations, methods such 
as Conjugate Gradient Squared (CGS)," BiConjugate Gradi- 
ent Stabilized (Bi-CGSTAB)," and the Generalized Minimum 
Residual Method (GMRES)"l are often used. One of the most 
widely used and most reliable procedures is GMRES which is 
briefly described below. 

The foundation of GMRES is the projection of the residual er- 
ror, due to an approximate solution, onto an orthonormal basis 
for the Krylov subspace which is of smaller dimension than 
the original problem. Arnoldi's method,"' which is esscntially 
a Gram-Schmidt procedure, is used to generate an orthonormal 
basis for the Krylov subspace of dimension k defined as 

Yo ,  AYo. A'Yo. .... A"-'Fo) (2.4.68) 

where rn is the residual of the initial guess (ro = Axo + b) 
and Fii = ro/llroll. The resulting vectors arc orthonormal and 
satisfy the relation 

(2.4.69) 

where Vk+l i s  a !IT X ( k  + 1) matrix formed from the k + 1 
vectors obtained after fi steps of Arnoldi's method and H is a 
( k  + 1) x I; upper Hessenberg matrix. 

For solving a linear system of !Ir equations in 11' unknowns 
the final solution is given by 

X = X ~ + Z  (2.4.70) 

where xo is an initial approximation to the solution and a is 
a correction to the initial guess that satisfies 

Az+ro = O  (2.4.7 1) 

Considering B as an approximate solution to Eq. (2.4.71), then 
the error is made to be orthogonal to all vectors in Vk+l 

VT+l (AZ + r o )  = 0 (2.4.72) 

Assuming that Z lies i n  the /i dimensional Krylov subspacc 
such that 

2 = V1;y = y ' v l  +yzv2 + ."  +J:I<Vl< (2.4.73) 

then utilizing Eqs. (2.4.69) and choosing the initial vector i n  
the Krylov subspace to be the initial residual divided by its 
magnitudc, Eq. (2.4.72) can be written as 

HY + IlroIIel = o (2.4.74) 

where el is a column vector with uni ty  as its first element and 
zero for all the remaining elements. Eq. (2.4.74) represents 
a system of 1,: + 1 equations with I,: unknowns which can be 
solved with a least squares procedure using Givens' rotations. 
Note that i f  the error had been projected onto a subspace of 
vcctors of dimension 1,: instead of I; + 1 in Eq. (2.4.72) this 
would yield a system of li equations i n  I,: unknowns which 
could be solved using standard elimination techniques and is 
referred to as the full  orthogonalization method."' However, 
the least-square approach allows an efficient stopping criteria 
since the last element i n  the right-hand-side vector after apply- 
ing the Givens rotations will represent the error i n  the solution. 

Note that VI;+' is computed during the k t "  step of the algo- 
rithm and will be nonzero unless the exact solution obtained. 
This leads to an important property of GMRES i n  that the algo- 
rithm can break down only after the exact solution is obtained. 
Another related property is that when solving an AT x !Ir ma- 
trix equation, the exact solution will be obtained i n  at most 
!Ii steps. 

The disadvantages of the GMRES algorithm arc that large 
rncmory requirements are required for the Arnoldi procedure 
because each vector must be stored i n  order to orthogonalize 
cach new vector with respect to all the previous vectors using 
a modified Gram-Schmidt process. This also increases the 
computational time as more vectors are accumulated. To 
circumvent these problems, the procedure is usually "restarted" 
by using a fixed number of vectors to obtain an approxiinate 
solution which is then used as an initial guess from which the 
process can be repeated. 

The GMRES procedure is usually applied to a "precondi- 
tioned" system of equations such as 

M ; ' A M , ' ( M ~ x )  = M y ' b  (2.4.75) 
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where M I  and M2 are called the left and right precondition- 
ers, respectively. The role of the preconditioners is to obtain 
a more favorable distribution of eigenvalues than the original 
system i n  order to obtain faster convergence so that suitable 
accuracy can be obtained while reducing the dimension of the 
Krylov subspace. In  practice, the success of using GMRES de- 
pends very strongly on the effectiveness of the preconditioners. 

The GMRES procedure. as originally developed and as de- 
scribed above, is for solving a linear system of equations. 
Wigton et al.62 have extended this algorithm for accelerat- 
ing the convergence of nonlinear equations such as the Euler 
equations with good success. This procedure is described i n  
section 2.5.5. 

Extensions to Unstructured Grids 

With unstructured grids, no regular a priori ordering of the 
grids exists such that the matrix equation can be factored ex- 
plicitly as a product of simpler matrices, as i n  the AD1 al- 
gorithms. Hence, the general approach is to solve the ma- 
trix equation with a direct method or iteratively with re- 
laxation Consider as the starting point the lin- 
earized single-step backward-Euler time differencing scheme, 
Eq. (2.4.45), written as 

[A]”{Aw}” = {R}” (2.4.76) 

where 
I DR” 

.JAt Dw 
[A]” = - + - (2.4.77) 

The solution of Eq. (2.4.76) can, in principle, be obtained 
by a direct inversion of [A]”. This technique, while quite 
successful i n  two dimensions, is currently not very feasible 
for practical calculations i n  three dimensions. 

Instead, first-order-accurate upwind approximations on the left 
hand side of Eq. (2.4.76) can be utilized i n  order to reduce 
both the bandwidth of the equations and thereby the required 
storage, as discussed previously. The resulting scheme can 
retain the desirable property of stability for large time steps, for 
either first or second order spatial differencing of the residual, 
if  the linear system is solved to a sufficiently low tolerance. 

Now consider a sample configuration of triangles i n  which 
the cells are randomly ordered, shown i n  Fig. 2.4.5. The 
corresponding form of the matrix [A]” is shown i n  Fig. 2.4.6 
where a circle represents the nonzero entries. 

5 i 11 12 7 

Figure 2.4.5 Sample Cell Configuration. 

Figure 2.4.6 Form of Matrix for Cells in Fig. 2.4.5 

A variety of relaxation schemes can be constructed in which 
the solution of Eq. (2.4.76) is obtained through a sequence 
of iterations i n  which an approximation of Aw is continually 
refined. 

To facilitate the derivation of these schemes, [A]” is first 
written as a linear combination of three matrices representing 
the diagonal, subdiagonal, and superdiagonal terms, i.e.. 

[A)” = [D]” + [MI” + [NI” (2.4.78) 

The simplest iterative scheme for obtaining a solution to 
the linear system of equations is a Jacobi type method 
i n  which all the off-diagonal terms of [A]”{Aw} (i.e., 
[M]”{Aw} + [N]”{Aw}), ire taken to the right-hand side 
of Eq. (2.4.76) and are evaluated using the values of {Aw)’ 
from the previous subiteration level i .  This scheme can be 
represented as 

[D]”{Aw}’+’ = [{R}” - [M + N]”{hw)’ ]  

= [{R)” - [O]”{Aw}‘] (2.4.79) 

where [O]” denotes the off-diagonal terms i n  the matrix. The 
disadvantage of the above scheme is that the sequence of 
Jacobi iterations may converge somewhat slowly. In order to 
accelerate the convergence, a Gauss-Seidel procedure may be 
employed i n  which values of {Aw} are used on the right-hand 
side of Eq. (2.4.79) as soon as they are available. A n  example 
of this scheme, corresponding to a sequential solution of the 
equations from the first to the last element. can be written as 

[D]{Aw}~+’  = [{RI” - [M]”{Aw}’+’ - [N]”{Aw)’] 
(2.4.80) 

where the latest values of {Aw.} associated with the subdi- 
agonal terms are immediately used on the right hand side of 
the iteration equation. A slight modification to the above al- 
gorithm i n  which the latest values of {Aw} associated with 
the superdiagonal arc used, corresponding to a sequential solu- 
tion from the last to the first element, results i n  a very similar 
scheme which is given by 

[D]{Aw}’” = [{Rj” - [M]”{Aw.}’ - [N]”{Aw)’+’]  
(2.4.8 I ) 

A symmetric Gauss-Seidel type procedure is obtained by al-  
ternating the use of Eq. (2.4.80) with Eq. (2.4.81). 

Note that thc algorithms given above by Eqs. (2.4.80) and 
(2.4.8 I )  can both be implemented by sweeping sequentially 
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through each mesh cell and simply using the latest values of 
{Aw} for all the off-diagonal terms which have been taken 
to the right hand side. This can be represented as 

[D]{Aw}'+' = [{R}" - [ ~ ] " { A W } ~ ~ ' ]  (2.4.82) 

1 + 1  

where w I is the most recent value of w and will be at 
subiteration level i+l for the cells which have been previ- 
ously updated and at level i for the cells which remain to 
be updated. The distinction between algorithms (2.4.80) and 
(2.4.81) comes about from the sequential solution of the equa- 
tions in opposite directions (forward and backward, respec- 
tively) through the elements. 

There are two disadvantages of the scheme as described above. 
The first disadvantage is that the process is not vectorizable, 
since the solution of each element must be obtained before 
proceeding to the next one. The second disadvantage of this 
scheme is that the degree of implicitness is set by the ordering 
of the elements. This can be illustrated by noting that although 
the off-diagonal terms may be updated and immediately used 
on the right-hand side, the solution of the next unknown may 
or may not depend on previously determined quantities. For 
example, as can be seen from Fig. 2.4.5, when solving for 
unknown number 2 using Eq. (2.4.80), the updated value of 
the solution at element I is not used so the solution for point 
2 remains a Jacobi step. 

Note that for structured grids i n  which the cells are ordered 
i n  a natural manner (e.g., left to right and top to bottom), 
the latest information will be used immediately for calculation 
of the next unknown. This is because the ordering of the 
cells produces a banded matrix with terms grouped along 
the diagonal. The fact that the latest available data is not 
necessarily used for updating information in unstructured grids 
is strictly due to the random ordering of the cells. 

An improvement can be obtained by simply renumbering the 
cells i n  such a way as to group terms along the diagonal of 
the matrix. In  this manner, the solution of each point will 
tend to ensure that previously updated information from the 
surrounding cells is used as soon as it is available. An ex- 
ample of this is shown in Fig. 2.4.1 where the same sample 
set of cells used in Fig. 2.4.5 is simply renumbered from bot- 
tom to top and left to right. The resulting form of the matrix, 
shown in Fig. 2.4.8, shows that the grouping along the di- 
agonal is greatly improved. The ordering of the cells in this 
way results in a faster convergence of the linear system than a 
random ordering of cells. For general unstructured-grid coef- 
ficient matrices, the bandwidth reduction algorithms discussed 
previously are effective i n  clustering unknowns along the di- 
agonal. Again, it should be noted that several variations of 
this scheme can be obtained by using various combinations of 
Eqs. (2.4.80) and (2.4.81). An important disadvantage of this 
scheme, however, is that it still suffers from the fact that the 
contribution of the off-diagonal terms to the right-hand side of 
Eq. (2.4.82) is not vectorizable. 
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Figure 2.4.8 Form of Matrix for Cells in Fig. 2.4.1 

The Jacobi, Gauss-Seidel, and symmetric Gauss-Seidel 
schemes described above have all been used in practice by var- 
ious researchers. Applications" to a circular arc i n  a channel 
indicated that the symmetric Gauss-Seidel scheme exhibited 
the fastest convergence rate of these three schemes. The sym- 
metric Gauss-Seidel algorithm of Batina,"' applied to transonic 
flow over airfoils, enhanced the grouping of the unknowns 
along the diagonal by sorting them according to the x coor- 
dinate direction. Variants of line-relaxation schcmes can be 
constructed by ordering the elements into groups of approxi- 
mately collinear elements and then updating the elements by 
groups. Note that in the particular case above corresponding 
to the use of first-order upwind implicit differencing, the re- 
laxation is applied to solve the linear system of equations and, 
as a consequence, no particular sweeping directions need be 
maintained, such as symmetric Gauss-Seidel. However, if the 
relaxation is applied directly to the nonlinear implicit equation, 
where the residual equation is evaluated at every iteration, then 
the stability of the scheme is coupled to the discretization of 
both the implicit operator and the spatial discretization. In 
that case, a Von Neumann stability analysis indicates that a 
second-order spatial differencing of the residual requires an 
alternating Gauss-Seidel scheme in order to remain stable. 

A numbering of the cells which has proved useful on vector 
processing computers is shown i n  Fig. 2.4.9. The ordering i s  
obtained by grouping cells so that no two cells i n  a given 
group share a common edge. The resulting matrix form 
for [A] is given in Fig. 2.4.10. Note that for the current 
example, only two groups are formed: the first group consists 
of the cells numbered 1-6, and the second group contains cells 
7-12. In  practice, four groups are generally sufficient for two 
dimensional calculations and five groups for three dimensional 
calculations. 

Figure 2.4.7 Sample Cells. 

Figure 2.4.9 Sample Cells. 
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Figure 2.4.10 Form of Matrix for Cells in Fig. 2.4.9. 

The solution scheme can be written as before using Eq. 
(2.4.82) and is implemented by solving for all the unknowns 
i n  a group at a time. I n  this manner, the cells in the first group 
are solved using a Jacobi type iteration while the cells in all 
the subsequent groups are obtained by using the most recently 
updated values of { Aw} from the off-diagonal contributions. 
In  this way, a Gauss-Seidel type scheme is obtained which is 
easily implemented and is fully vectorizable. The relaxation 
can be considered as a generalization of the checkerboard re- 
laxation schemes used for structured grids with a three-point 
stencil in  each coordinate directions. The points are colored 
i n  a checkerboard fashion as either red or black; all the red 
points are updated simultaneously, followed by all the black 
points, and so forth. Note that i n  the discussions above, the 
exact number of subiterations required in order to sufficiently 
converge the linear problem (Eq. (2.4.76)) has not been spec- 
ified. The optimum number of subiterations used for each 
global time step is generally determined through numerical 
experiments and is problem dependent.63 

2.4.3 References 

1 .  HIRSCH, C., Numerical Computation of Internal and Exter- 
nal Flows, Volume I .  Wiley and Sons, Chichester, UK, 1989. 

2. LAX, P. D., “Weak Solutions of Nonlinear Hyperbolic 
Equations and their Numerical Computation,” Comm. Pure 
and Applied Mathematics, 7,159-193,1954. 

3. LAX, P. D. and WENDROFF B., “Systems of Conservation 
Laws,” Comm. Pure and Applied Mathematics, 13, 217-237, 
1960. 

4. MacCORMACK, R. W., “The Effect of Viscosity in Hy- 
personic Impact Cratering,” AlAA 69-354, 1969. 

5. MacCORMACK, R. W.,“A Numerical Method for Solving 
the Equations of Compressible Viscous Flow,” AlAA Journal, 
Vol. 20, NO. 9, 1275-1281, 1969. 

6. SCHWARZ, H. R., Numerical Analysis. Wiley and Sons, 
Chichester, UK, 1988. 

7. JAMESON, A., SCHMIDT W. and TURKEL E., “Numeri- 
cal Solutions of the Euler Equations by Finite Volume Methods 
using Runge-Kutta Time Stepping Schemes,” AlAA 81-1259, 
1981. 

8. JAMESON, A., “Successes and Challenges i n  Computa- 
tional Aerodynamics,” AlAA 87- 1 184-CP, 1987. 

9. RIZZI, A. W., “Dampcd Euler Equation Method to 
Compute Transonic Flow around Wing-Body Combinations,” 
AlAA Journal, Vol. 20, No. I O ,  Oct. 1982. 

IO. JAMESON, A., “Using Euler Schemes,” AlAA Profes- 
sional Study Series, Snowmass, CO, June 1985. 

1 1. VENKATAKRISHNAN, V., “Viscous Computations Us- 
ing a Direct Solver,” Computers and Fluids, Vol. 18, no. 2, 
pp. 191-204, 1990. 

12. BAILEY, H. E. and BEAM, R. M., “Newton’s Method 
Applied to Finite-Difference Approximations for the Steady- 
State Compressible Navier-Stokes Equations,” Journal of Com- 
putational Physics, Vol. 93, 1991, pp. 108-127. 

13. BEAM, R. M. and WARMING, R. F., “An Implicit Fac- 
tored Scheme for the Compressible Navier-Stokes Equations,” 
AIAA Journal, Vol. 16, No. 4, April 1978, pp. 393-402. 

14. JESPERSON, D. C. and PULLIAM, T. H., “Flux Vec- 
tor Splitting and Approximate Newton Methods,” AlAA 83- 
1899-CP, July, 1983. 

15. ROBERTS, T. and WARREN, G., “Analysis of Implicit 
Second-Order Upwind-Biased Stencils,” AlAA 93-3379, July 
1993. 

16. BRILEY, W. R. and MCDONALD, H., “On the Structure 
and Use of Linearized Block Implicit Schemes,” Journal of 
Computational Physics, Vol. 34, pp. 54-73, 1980. 

17. STEGER, J .  L. and WARMING, R. F., “Flux Vector 
Splitting of the Inviscid Gasdynamic Equations with Applica- 
tions to Finite-Difference Methods,” Journal of Computational 
Physics, Vol. 40, No. 2, April 1981, pp. 263-293. 

18. DUFF, I. S., ERISMAN, A. M. and REID, J. K., Di- 
rect Methods for Sparse Matrices. Monographs on Numerical 
Analysis. Clarendon Press, Oxford, 1986. 

19. EISENSTADT, S. C., BURSKY, M.C., SCHULTZ, M. H. 
and SHERMAN, A. H., “Yale Sparse Matrix Package: I I  The 
Nonsymmetric Codes,” Rescarch Report No. 114, Dept. of 
Computer Sciences, Yale University, 1977. 

20. GEORGE, A. and LIU, J. W., Computer Solutions of Large 
Sparse Positive Dejnite Sysfems. Prentice-Hall, I98 1. 

21. VENKATAKRISHNAN, V. and BARTH, T., “Applica- 
tion of Direct Solvcrs to Unstructured Meshes for the Euler 
and Navier-Stokes Equations Using Upwind Schemes,” AlAA 
89-0364, 1989. 

22. RIGGINS, D. W. and WALTERS, R. W., “Direct Solutions 
for the Computation of Compressible Flows,” AlAA 88-0229, 
1988. 

23. JAMESON, A. and TURKEL, E., “Implicit Schemes and 
LU Decompositions,” Mathematics of Computation, Vol. 37, 
pp. 385-397, 1981. 

24. RIEGER, H. and JAMESON, A., “Solution of Stcady 
Three-Dimensional Compressible Euler and Navier-Stokes 
Equations by an Implicit LU Schcme,” AlAA 88-0619, Jan. 
1988. 



84 

25. PULLIAM, T. H. and CHAUSSEE, D. S., “A Diagonal 
Form of an Implicit Approximate Factorization Algorithm,” 
Journal of Computational Physics, Vol. 39, pp. 347-363, 1981. 

26. OBAYASHI, S., MATSUSHIMA, K., FUJII, K. and 
KUWAHARA, K., “Improvements i n  Efficiency and Reliabil- 
ity for Navier-Stokes Computations Using the LU-AD1 Fac- 
torization Algorithm,” AlAA 86-338, Jan. 1986. 

27. LOMBARD, C. K., BARDINA, J., VENKATAPATHY, E. 
and OLIGER, J., “Multi-Dimensional Formulation of CSCM 
- an Upwind Flux Difference Eigenvector Split Method for the 
Compressible Navier-Stokes Equations,” AlAA 83-1 895-CP, 
July 1983. 

28. NAGASU, H. and FUJII, K., “Navier-Stokes Code De- 
velopment for Transonic Flow Simulations,” Computational 
Methods in Viscous Aerodynamics, Ed. T.K.S. Murthy and 
C.A. Brebbia, Elsevier and Computational Mechanics Publi- 
cations, 1990, pp. 273-300. 

29. PULLIAM, T. H., “Euler and Thin Layer Navier Stokes 
Codes: ARC2D and ARC3D,” Notes for Computational Flu- 
ids Dynamics Workshop, University of Tennessee Space Insti- 
tute, March 1984. 

30. ANDERSON, W. K., THOMAS, J. L. and WHITFIELD, 
D. L., “Three-Dimensional Multigrid Algorithms for the Flux- 
Split Euler Equations,” NASA TP-2829, Nov. 1988. 

31. SOUTH, J. C., Jr., “Recent Advances i n  Computational 
Transonic Aerodynamics,” AlAA 85-0366, 1985. 

32. WHITFIELD, D., “Newton-Relaxation Schemes for Non- 
linear Hyperbolic Equations,’’ MSSU-EIRS-ASE-90-3, Mis- 
sissippi State University, 1990. 

33. GATLIN, B. and WHITFIELD, D., “An Implicit, Upwind, 
Finite-Volume Method for Solving the Three-Dimensional 
Thin-Layer Navier-Stokes Equations,” AlAA 87-1 149CP, 
June, 1987. 

34. CHAKRAVARTHY, S. R., “Relaxation Methods for 
Unfactored Implicit Upwind Schemes,” AIAA 84-0165, Jan. 
1984. 

35. VAN LEER, B. and MULDER, W. A., “Relaxation 
Methods for Unfactorcd Implicit Schemes,” Report 84-20, 
Delft University of Technology, 1984. 

36. CHAKRAVARTHY, S. R. and SZEMA, K-Y., “An  Euler 
Solver for Three-Dimensional Supersonic Flows with Subsonic 
Pockets,” Journal of Aircraft, Vol. 24, No. 2, Feb. 1987, pp. 
73-83. 

37. WALTERS, R. W. and DWOYER, D. L.,“An Efficient 
Iteration Strategy for the Solution of the Euler Equations,’’ 
AlAA 85-1529, July 1985. 

38. THOMAS, J .  L., VAN LEER, B. and WALTERS, R. W., 
“Implicit Flux-Split Schemes for the Euler Equations,’’ AlAA 
Journal, Vol. 28, No. 6, pp. 973-974, 1990. 

39. MacCORMACK, R. W., “Current Status of Numerical 
Solutions of the Navier-Stokes Equations,” AlAA 85-0032, 
1985. 

40. YOON, S. and KWAK, D.,“lmplicit Methods for the 
Navier-Stokes Equations,’’ Computing Systems i n  Engineer- 
ing, Vol. I ,  Nos. 2-4, pp. 535-547, 1990. 

41. CHAKRAVARTHY, S. R., SZEMA, K.-Y., GOLDBERG, 
U. C., GORSKI, J. J. and OSHER, S., “Application of a New 
Class of High Accuracy TVD Schemes to the Navier-Stokes 
Equations,’’ AlAA 85-0165, Jan. 1985. 

42. EBERLE, A., SCHAFER, 0. and SCHMATZ, M. A., 
“High Order Solutions of the Euler Equations Using Char- 
acteristic Flux Averaging,” 12th Congress of the Interna- 
tional Council of the Aeronautical Sciences, London, England, 
ICAS-86-1.3. I ,  1986. 

43. EBERLE, A. “Characteristic Flux Averaging Approach 
to the Solution of Euler’s Equations,” VKI Lecture Series 
1987-04, Von Karman Institute, Brussels, Belgium, March 
1987. 

44. BRENNEIS, A. and EBERLE, A., “Unsteady Transonic 
Flows Past Airfoils Using a Fast Implicit Godunov Type Euler 
Solver,” Proceedings of the 7th GAMM Conference on Nu- 
merical Methods i n  Fluid Mechanics, Ed. Deville M., Notes 
on Numerical Fluid Mechanics, Volume 20, Friedr. Vieweg & 
Sohn, Braunschweig/Wiesbaden, 1987. 

45. BRENNEIS, A., EBERLE, A. and SCHMATZ, M. A., 
“Verification of an Implicit Relaxation Method for Steady 
and Unsteady Viscous and Inviscid Flow Problems,” AGARD 
Symposium on Validation of Computational Fluid Dynamics, 
Lisbon, Portugal, 1988. 

46. BRENNEIS, A. and EBERLE, A., “Unsteady Transonic 
Flows Past Airfoils and Wings Using a Fast Implicit Godunov 
Type Euler Solver,” ICAS-paper 88.6.3. I ,  16th Congress of the 
International Council of the Aeronautical Sciences, Jerusalem, 
Israel, 1988. 

47. BRENNEIS, A. and EBERLE, A., “Application of an Im- 
plicit Relaxation Method Solving the Euler Equations for Real 
Unsteady Problems,’’ International Symposium on Unsteady 
Fluid Dynamics, Toronto, Canada, 1990. 

48. BRENNEIS, A. and EBERLE, A. ,  “Application of an 
Implicit Relaxation Method Solving the Euler Equations for 
Timc-Accurate Unsteady Problems,” Journal of Fluids Engi- 
neering, Vol. 1 12, No. 4, Dec. 1990, pp. 510-520. 

49. BRENNEIS, A. and EBERLE, A., “Evaluation of an 
Unsteady Implicit EULER Code Against Two and Three- 
Dimensional Standard Configurations,” AGARD Specialists’ 
Meeting on Transonic Unsteady Aerodynamics and Aeroelas- 
ticity, Paper No. 10, AGARD CP 507, 1991. 

50. EBERLE, A., RlZZl, A. and HIRSCHEL, E. H., Numer- 
ical Solutions of the Euler Equations for Steady Flow Prob- 
lems. Notes on Numerical Fluid Mechanics, Vieweg, Braun- 
schweiglwiesbaden, Vol. 34, 1992. 

51. EBERLE, A. and HEISS, S., “Enhanccd Numerical In- 
viscid and Viscous Fluxes for Cell Centered Finite Volume 
Schemes, Computers and Fluids, Pcrgamon Press, Vol. 22, 
NO. 2/3, 1993, pp. 295-309. 



85 

52. KRAEMER, E., HERTEL, J .  and WAGNER, S., “Compu- 
tation of Subsonic and Transonic Helicopter Rotor Flow Us- 
ing Euler Equations,” 13th European Rotorcraft Forum, Arks, 
France, Paper 2-14, 1987. 

53. KRAEMER, E., HERTEL, J .  and WAGNER, S., “Euler 
Procedure for Calculation of the Steady Rotor Flow with 
Emphasis on Wake Evolution,” AlAA 90-3007, 1990. 

54. BARTH, T. J . ,  “Analysis of Implicit Local Linearization 
Techniques for Upwind and TVD Algorithms,” AlAA 87- 
0595, January, 1987. 

55.  YING, S. X. ,  STEGER, J. L., SCHIFF, L. B. and 
BAGANOFF, D.,“Numerical Simulation of Unsteady, Vis- 
cous, High-Angle-of-Attack Flows Using a Partially Flux-Split 
Algorithm,” AIAA 86-2179, Aug. 1986. 

56. HARTWICH, P-M, HSU, C-H. and LIU, C. 
H.,“Vectorizable Implicit Algorithms for the Flux-Difference 
Split, Three-Dimensional Navier-Stokes Equations,” Journal 
of Fluids Engineering, Vol. I 10, Sept. 1988, pp. 297-305. 

57. THOMAS, J. L. and WALTERS, R. W., “Upwind Re- 
laxation Algorithms for the Navier-Stokes Equations,” AlAA 
Journal, Vol. 25, No. 4, April 1987, pp. 527-531. 

58. SONNEVELD, P. “CGS, A Fast Lanczos-Type Solver for 
Nonsymmetric Linear Systems,” Siam J.  Sci. Stat. Comput. 
Vol 10, No. I ,  January 1989. 

59. VAN DER VORST, H. A., “BI-CGSTAB: A Fast and 
Smoothly Converging Variant of BI-CG for the Solution of 
Nonsymmetric Linear Systems,” SIAM J .  Sci. Stat. Comput. 
Vol 13, No. 2 March 1992. 

60. SAAD, Y. and SCHULTZ, M. H., “GMRES: A Gcneral- 
ized Minimal Residual Algorithm for Solving Nonsymmetric 
Linear Systems,” SIAM J .  Sci. Stat. Comput. Vol. 7, No. 
3, July, 1986. 

61. ARNOLDI, W. E., “The Principle of Minimizcd Itcration 
in the Solution of the Matrix Eigenvalue Problem,” Quart. 
Appl. Math., 9, 1951. 

62. WIGTON, L., YU,  N .  and YOUNG, D. “GMRES Ac- 
celeration of Computational Fluid Dynamics Codes,” AI A A  
85-1494. 1985 

63. ANDERSON, W. K., “Grid Gencration and Flow Solution 
Method for Euler Equations on Unstructured Grids,” NASA 
Technical Memorandum 4295, April 1992. 

64. WHITAKER, D. L., SLACK, D. C. and WALTERS, 
R. W., “Solution Algorithms for the Two-Dimcnsional Eulcr 
Equations on Unstructured Meshes,” A l A A  90-0067, 1990. 

65. BATINA, J., “Implicit Flux-Split Euler Schemes for 
Unsteady Acrodynarnic Analyses Involving Unslructurcd Dy- 
namic Meshes,” A l A A  90-0936, 1990. 



86 

2.5 CONVERGENCE ACCELERATION 

The acceleration of the convergence rate of numerical compu- 
tations is very important when conducting grid convergence 
studies to verify the accuracy of numerical solutions. A n  in- 
tegral part of this process is the uniform refinement of the 
grid in each direction until little or no variation in the solu- 
tion is observed with increased grid size. Unfortunately, with- 
out convergence acceleration, the convergence rate of iterative 
methods severely degrades as the grid spacing is decreased 
through the grid refinement process. To mitigate the penalties 
associated with the use of fine grids, several methods of con- 
vergence acceleration have been introduced and are discussed 
below. These methods are especially important i n  three di- 
mensions, where an eight-fold increase i n  the number of grid 
points occurs when the points are doubled i n  all three coor- 
dinate directions. 

2.5.1 Local Time Stepping 

One of the simplest and most commonly used methods of 
convergence acceleration is the use of local time stepping.' 
When a steady-state solution is of interest, a spatially varying 
step size can be used for each cell independent of the other 
cells. The time step is generally based on a combination of 
the Row variables i n  each cell as well as the cell size. 

Perhaps the most commonly used method of local time step- 
ping is to base the time step in each cell on a local CFL 
number. Examples of this can be found i n  many references, 
as can be seen in the citations of the code summaries in chapter 
3, in which the time step in each cell is determined by 

where At(~;pr, ,~) is the time step required for a CFL of 
unity and may be determined with a variety of definitions for 
multidimensional problems. One form that is commonly used 
is given by 

where the integral is evaluated over the surface of each control 
volume. 
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Figure 2.5.1 Effect of local time 

An example of the effectiveness of local time stepping is 
shown in Fig. 2.5.1, where an explicit method is used to com- 
pute the flow around an NACA 0012 airfoil at a Mach number 
of 0.8 and an angle of attack of 1.25'. The effect of local time 
stepping is dramatic. By using local time stepping, the resid- 
ual is reduced I O  orders of magnitude in approximately 3000 
iterations; without local time stepping, little progress towards 
convergence is achieved. The effect is even more dramatic on 
the lift  coefficient, where, with local time stepping, the final 
lift value is obtained in about 500 iterations. The solution ob- 
tained without local time stepping has failed to reach a steady 
state after 3000 iterations. This technique is very simple and 
easily implemented and offers a clear advantage toward accel- 
eration of the solution to a steady state. 

2.5.2 Residual Smoothing 

To accelerate the convergence of explicit algorithms, one 
methodology that has been extremely effective is residual 
smoothing.233 For this method, the steady-state residual calcu- 
lated at each step is modified i n  such a way that the support 
of the scheme is enhanced, which increases the implicitness 
of the algorithm. In practice, this technique has been par- 
ticularly effective for central-differencing schemes when used 
i n  conjunction with multistage time stepping, although recent 
improvements for upwind discretizations have been rep~r ted .~  
For this reason, the general procedure is outlined below for a 
four-stage Runge-Kutta type of algorithm, applied to a one- 
dimensional model problem with central differencing. The ef- 
fect of residual smoothing on the stability is examined through 
the application of a Fourier analysis. 

Consider the model problem given by 

ut + ?I. ,  + / ~ ~ A : I ~ ~ U ~ : , ~ , , : . ~  = 0 (2.5.3) 

A four-stage Runge-Kutta type method is given by 

where I??') = & ? I , ( ~ )  +/,,Az'b,,,,:,:~~/,(') denotes the discretized 
steady-state residual formed from data at stage level i .  Note 
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stepping on convergence rate. 



that in the present form this scheme is one in which the 
dissipative term is evaluated at each stage. It is possible (and 
more economical) to use schemes in which the dissipation is 
only evaluated periodically, for example on the first and third 
 stage^.^ However, for illustrative purposes, the dissipation 
will be evaluated on each stage. 

To determine the stability of the current scheme, a Fourier 
mode is substituted for U: 

The Fourier symbol for is now written as 

where 

z = -X(isin( + 4p(1 - cos ( ) ’ )  (2.5.7) 

and X = At/Ax is the Courant number. Substitution of Eqs. 
(2.5.5). (2.5.6), and (2.5.7) into Eq. (2.5.4) yields an equation 
for the amplification factor 

which indicates the extent to which errors decrease (or grow) 
from one iteration to the next. Stability of the scheme requires 
that 191 5 1 for all 2. 

By cycling through values of 0 5 5 A,  with Eq. (2.5.7) 
used in Eq. (2.5.8), the amplification factor can be obtained 
for a fixed value of X and a dissipation coefficient IL. Figure 
2.5.2 shows the amplification factor as a function of ( with a 
“standard” set of coefficients given by Q I  = 114, a2 = 113, 
a3 = 112, and 14,  = 1/32. As shown in the figure, the 
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Figure 2.5.2 Amplification factor for standard 

four-stage scheme; X = 2.8, oI = 114, 
0 2  = 113, an = 112, and 11 = 1/32. 

algorithm with these parameters is indeed stable. If ,  however, 

the value of X is increased to 3, then the scheme becomes 
unstable near ( = 7r/2, as shown in Fig. 2.5.3. 

19 I 

0.0 
0 1 2 3 4 

Figure 2.5.3 Amplification factor for standard 
four-stage scheme; X = 3.0, crl = 114, 

n z  = 113, cyn = 112, and 11 = 1/32. 

To obtain a stable algorithm for higher values of X, the support 
of the scheme may be increased by replacing the residuals 
(. . . , Ri- I ,  Ri, &+I ~. . .) at each point with an average of the 
residuals on either side: 

- 
R.; = ~Ri-1 + (1 - 2~)R.i  + ER;+I = (1 + ~6,:,:)Ri (2.5.9) 

With this modification to the residual, the Fourier symbol Z 
is now given by 

Z = -X[isiiiC + 4/1(l  - ~os()~][l - 26(1 -cos()] 

(2.5.10) 
With the addition of the second factor, the value of X may 
be increased. An example is shown in Fig. 2.5.4 for the 
four-stage scheme described above, but X = 3 is used where 
the residual is replaced by the averaging procedure in Eq. 
(2.5.9) with f = 114. As shown in the figure, the scheme is 
now stabilized for X = 3, whereas it was previously unstable. 
Experimentation has shown that for E = 114 an increase of 
approximately 50 percent i n  the value of X can be obtained. 

0 1 2 3 4 

t 
Figure 2.5.4 Amplification factor for standard four-stage 

scheme with explicit residual smoothing; X = 3.0, 
6 = 114, nl = 114, 0 2  = 113, nn = 112, and 11 = 1/32. 

A disadvantage of the above procedure can be illustrated for 
f = 114. For this value of 6, if  the residuals exhibit an 
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odd-even type of behavior, the value of computed with 
Eq. (2.5.9) will be zero, so that no update of the dependent 
variables at each grid point would occur regardless of the value 
of Ri at that point. To overcome this difficulty and to allow 
arbitrary values of E ,  an average residual may be calculated 
from an implicit relation given by 

- 
--ER;-I + (1 + 2E)Zi + EZi+I = (1 - &)Zi = R; 

(2.5.1 1) 
In this manner, the support of the scheme can be made to ex- 
tend over the entire grid thus relaxing the time step limitation. 
The Fourier symbol of the resulting scheme is given by 

-X[isii i(+ 4p( l  - c o s ( ) ' ]  
Z =  (2.5.12) 

(1 + 2 4 1  - c o s € ) ]  

The denominator is greater than 1 for all values of ( > 0 and 
reduces the magnitude of Z so that larger time steps can be 
taken. Reference 5 shows that in  the absence of dissipation, 
stability is maintained for any value of X if  E is chosen so that 

E 2 f [ ($y - 11 (2.5.13) 

where X*  is the limit for the original scheme without residual 
averaging. 

The success of this technique is demonstrated i n  Fig. 2.5.5, 
where the value of A'  is assumed to be 2.8, which is the 
stability limit of the standard four-stage scheme without added 
dissipation ( / L  = 0). For example, to achieve stability for 

, A  = 7 ,  Eq. (2.5.13) indicates that a value of E of 1; is 
appropriate. As shown in the figure, the amplification factor 
remains below unity for all values of 0 5 ( 5 T .  
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t 

Figure 2.5.5 Amplification factor for standard four-stage 
scheme with implicit residual smoothing; X = 7, 

E = 1 2 , a  I = 114, (LZ = 113, aR = 112, and 11 = 1/32. 

To implement Eq. (2.5.1 1) for multidimensional problems, two 
prominent methodologies can be used. For structured grids 
in two dimensions, an approximate factorization procedure is 
often used, in which the implicit operator is spatially split into 
a product of two more easily invertible ones.' 

- 
(1 - ~ 6 , ~ ; ~ :  - ~6,,)Zi zz (1 - ~ 6 . , : ~ ) ( 1  - ~ 6 , ~ ) R . i  = Ri 

(2.5.14) 
This equation is solved in two steps; both steps involve the 
solution of a tridiagonal system of equations. 

Another technique for implementing residual smoothing in 
multidimensions is to solve the system of equations with a 
point Jacobi or Gauss-Seidel type of procedure. This tech- 
nique has been predominantly used for unstructured grid algo- 
rithms in which a spatial factorization is not easily achieved;" 
however, the implementation of residual smoothing into struc- 
tured grid codes has also been achieved in this manner and 
has yielded advantageous convergence properties over the fac- 
tored form.' 

As previously mentioned, the technique of implicit residual 
smoothing has been extended to include upwind discretiza- 
tions for the implicit smoothing For the one- 
dimensional model problem, the previously central-differenced 
smoothing operator given by Eq. (2.5.1 1 )  is replaced by an 
upwind operator 

- 
--ER;- I + (1 + f)Zi = R, (2.5.15) 

With this modification, a significant increase i n  the allowable 
CFL number is achieved over the central-difference formula- 
tion without destroying desirable smoothing properties of the 
high-frequency error components. While the implementation 
of this technique is not straightforward for multidimensional 
problems because of omnidirectional wave propagation, re- 
sults in  Refs. 4, 7, and 8 for two-dimensional Euler computa- 
tions indicate significant improvements over residual smooth- 
ing with pure central differencing. 

2.5.3 Vector Sequence Extrapolation 

Sequence Acceleration 

Vector-sequence extrapolation is a well-known technique for 
accelerating the convergence rate of sequences. An example 
of this is the well-known Aitken-6' method, i n  which a new 
sequence is derived from the original sequence, which hope- 
fully converges much faster than the original one.' Although 
many variants of this technique and many related algorithms 
exist, concentration below focuses on one particular method, 
commonly referred to as Wynn's E algorithm. First, a brief 
discussion of the essential ingredients of vector-sequence ex- 
trapolation methods is presented, followed by the extension of 
these algorithms to the Euler equations as well as examples. 

For the Aitken-S* method, the sequence is derived by assuming 
that the original members of the sequence s,, can be adequately 
described as 

(2.5.16) 

where .5 is the limiting value of the sequence and t i  and p are 
constants. By evaluating Eq. (2.5.16) at 1 1 ,  11 + 1, and 71 + 2, 
the limiting value of the sequence may be obtained from the 
solution of the set of simultaneous equations for s, t i ,  and p. If 
the original sequence is accurately described by Eq. (2.5.16), 
then the exact answer will be obtained. If ,  on the other hand, 
Eq. (2.5.16) does not provide a precise description of s,,, then 
application of the procedure will be only approximate. but may 
still provide a better estimate for s than is currently available. 
This estimate for the value of s is given by 

s = s,, + tip" 
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where the superscript (0) is used to denote terms i n  the original 
sequence. This new sequence may now be used to define 
another sequence given by 

1.0 

0.5 

0.8333333 

0.5833333 

0.7833333 

O.GlGGGG7 

0.7595238 

In  Ref. 11 ,  Wynn describes an algorithm for computing 
the higher order extrapolations that is more efficient than the 
process described above. In this method, a table of values is 
constructed from the original sequence with the relationship 

which may supply a further improvement to the limiting value 
of the sequence. This procedure can be applied repeatedly, 
increasing the accuracy each time over the previous estimate. 

An example of this procedure, borrowed from Ref. 9, is given 
below. The original sequence is taken to be the first nine 
terms in the series given by 

where the values of E?) are assumed to be arranged i n  a 
format shown in Fig. 2.5.7. 

E r )  

E(  I ) 

E! 1 

Pi E? 

0 

(2.5.19) 
k= I 

which is the Taylor series expansion for I n  (1 + : I ; )  evaluated 
at z = 1. 

In the current example, the solution is obtained to seven-digit 
accuracy (111 (2) = 0.6931472) at the end of the extrapolation 
procedure with only the first nine partial sums. Note that 
to obtain similar accuracy from simply summing the series 
directly would require approximately 10 million terms.9 The 
acceleration procedure is clearly very useful i n  this case. 

A shortcoming of the above technique lies in  the underlying as- 
sumption that the sequence behaves similarly to that described 
by Eq. (2.5.16). For this reason, the above extrapolation pro- 
cedure is most effective on geometric series and becomes less 
effective as the series deviates from this behavior. To over- 
come this shortcoming, Shanks“’ derived other extrapolations 
based on the assumption that the sequence may be described 
i n  the more general form 

- I  

Figure 2.5.7 F r t algorithm. rmat f 

The initial conditions are taken to be 

which is referred to as the Nt” order Shank’s transformation. 
Equation (2.5.20) is evaluated for five values of 11, resulting 
i n  a set of equations that can be used to solve for H i n  
much the same manner as to obtain Eq. (2.5.17). Although 
this higher order transformation may provide a more accurate 
representation of a general sequence, the implementation in 
this manner can be inefficient for higher order transforms. 

where s,,, represents the terms of the original sequence. Note 
that the odd numbered columns do not represent actual ap- 
proximations to the terms i n  the sequence, but are intermediate 
calculations necessary for the calculation of the even columns 
f;,,, = n , i  ,... ). 

0.6944444 0.6331633 

0.G935897 

0.6928571 

0.6933473 

9 0.7456349 

Figure 2.5.6 Illustration of Aitken-6* method. 



In this procedure, each value of E::/ shown in Fig. 2.5.8 is 
calculated from Eq. (2.5.21). 

Figure 2.5.8 Module used for the computation of E : $ .  

In Ref. 12, a relation is given that allows the computation 
of the even columns without direct computation of the odd 
columns. This relationship is given by 

where 

Note that 8 is zero for the first column and unity for subsequent 
columns; the continuous use of 8 = 0 corresponds to repeated 
first-order transformations. Although not shown, the use of 
the E algorithm as described above to the series given i n  Eq. 
(2.5.19) yields results comparable to those shown i n  Fig. 2.5.6. 

As previously mentioned, the effectiveness of the acceleration 
technique is strongly dependent on the assumption that the se- 
quence behaves i n  the manner given by Eq. (2.5.20). Because 
only N terms are included, only eigenvectors associated with 
the first AT dominant eigenvectors of the iteration scheme may 
be effectively eliminated. Therefore, an algorithm must be 
used that acts as a preconditioner, so that most of the eigen- 
values of the iteration scheme are forced to be approximately 
equal. In this way, the number of terms contained in the orig- 
inal sequence may be kept as low as possible. 

Application for  the Euler Equations 

To apply the above technique to systems of equations such 
as those that arise in Euler solvers, the c: algorithm has been 
generalized for systems by Hafez i n  Ref. 12. In this reference, 
a form similar to that i n  Eq. (2.5.23) is given by 

where 

and the inverse of a vector is defined by 

(2.5.25) 

(2.5.26) 

(2.5.27) 

(2.5.28) 

In Figs. 2.5.9 and 2.5.10, examples are presented from Ref. 
12 in which the above procedure is applied to the computation 
of a NACA 0012 airfoil at transonic conditions. For the 
computation, the explicit, multigrid, multistage time-stepping 
scheme of Jameson is used, and only five terms are included 
i n  the initial sequence. 
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Figure 2.5.9 Effect of vector-sequence 
acceleration applied after 250 time steps for 
NACA 0012 airfoil; M ,  = 0.8 and N = 1.25'. 
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Figure 2.5.1 0 Effect of vector-sequence acceleration 
applied after 100, 200, and 300 time steps 

for NACA 0012 airfoil; M ,  = 0.8 and N = 1.25". 

Shown in Fig. 2.5.9 is the convergence history obtained by 
using the c algorithm after 250 time steps. As seen, the 
residual drops dramatically at this point, which indicates the 
effectiveness of the acceleration procedure. Note, however, 
that at the point the acceleration is applied, the residual has 
been reduced by about 6 orders of magnitude, which should 
be more than sufficient for obtaining global quantities such as 
l if t  and drag. An attempt to apply the procedure earlier in  
the iteration history is shown in Fig. 2.5.10. As seen, the ! 
effectiveness of the current algorithm, when applied after 100 I 
iterations, is minimal. After 200 iterations, however, a sudden 
drop i n  the residual is observed, and a further drop is seen at 
300 iterations, where the algorithm is applied once again. 
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Although the E algorithm can be very effective at achieving 
dramatic reductions in the residuals, systematic knowledge of 
when to apply the algorithm and how often is not clear. In 
the results shown above, for example, although the accelera- 
tion is impressive, at the point the method is applied and is 
effective, global quantities such as lift and drag are likely to 
be fully converged. Further research is required to gain more 
knowledge in this area. Furthermore, the implementation of 
this technique of convergence acceleration requires storage of 
twice the number of terms included in the initial sequence; 
for the example given above in which five terms in the initial 
sequence are used, the solution would need to be stored I O  
times. For very large problems this requirement could become 
prohibitive. 

2.5.4 Multigrid Acceleration 

Introduction to Multigrid 

One of the most successful and widely used methods of con- 
vergence acceleration is multigrid. The greatest benefit of this 
method is that the convergence rate (i.e., the spectral radius 
that measures the ratio of errors at successive time steps) re- 
mains constant, independent of the mesh spacing. In this way, 
solutions can be obtained in 9 ( N )  operations (i.e., the compu- 
tational cost varies linearly with the total number of grid points 
iV). Without convergence acceleration, the computational cost 
is considerably higher because of the penalty associated with 
a deterioration of the convergence rate as the mesh spacing 
decreases. Although most of the existing theory on multigrid 
methods pertains specifically to elliptic equations, a number of 
references (for example, 3, 13, 14, 15, and 16) have shown that 
the multigrid method can greatly accelerate the convergence 
rate of numerical schemes used to solve the Euler equations. 

A brief description of the elements of multigrid is given 
below. The method is first described for the solution of a 
general nonlinear equation. The implementation of the full- 
approximation scheme (FAS) for the Euler equations is then 
discussed. 

Description of Multigrid 

The multigrid method most widely used for accelerating the 
convergence of iterative methods to solve the Euler equations 
is the full-approximation scheme (FAS) that appears i n  many 
references ' 7 ~ ' 8 ~ ' ' ) ~ 2 0  and is summarized below. First, consider 
the solution of a general nonlinear system of equations 

L(Q)  = s (2.5.29) 

where L is a general nonlinear operator, Q is the solution 
vector of iinknowns, and S represents a forcing function. 

Equation (2.5.29) is solved numerically by dividing the domain 
into discrete cells that yield a system of equations to be solved 
simultaneously at each point as 

L N ( Q N )  = SN (2.5.30) 

where Q N  is the exact solution to the discretized system and 
LN is the discrete analog of the operator L. If initial condi- 
tions are close enough to the final solution, Eq. (2.5.30) could 

be solved iteratively with Newton iteration. This approach, 
however, may be prohibitively expensive if  the number of un- 
knowns is large which typically occurs in multidimensional 
problems. Many other iterative schemes have, therefore, been 
devised that require significantly fewer operations. After a few 
iterations, however, these methods generally exhibit a slow 
convergence rate, which reduces the residuals by a very small 
amount each time.lX The reason for the slow asymptotic con- 
vergence rate is the inadequate damping of the low-frequency 
errors." 

The multigrid method efficiently damps the low-frequency 
errors by using a sequence of grids Go, GI, ..., GN,  where 
GN denotes the finest grid, from which successively coarser 
grids G N - ~ ,  G N - ~ ,  .... Go are created. In a structured-grid 
full-coarsening algorithm, the coarser grids are constructed by 
deleting every other grid line i n  each coordinate direction. In 
practice, and particularly for unstructured grids, the coarser 
grids need not be constructed as a subset of the finest grid, 
(i.e., they can be created independently of the finest grid). In 
this context, the high-frequency error components on a given 
grid are those that cannot be resolved on the next coarser mesh 
because of the increased grid spacing. If  an iterative method 
is chosen that quickly damps the high-frequency errors on a 
given grid, then after a few iterations, the remaining errors 
will be those associated with the smoother, low-frequency 
error components. Because these components appear as higher 
frequencies on coarser meshes, a sequence of coarser grids can 
be effectively used to accelerate the convergence rate on the 
finest grid. Therefore, the low-frequency errors on the fine 
grid that are usually responsible for slow convergence can be 
efficiently damped on the coarser grids. These computations 
are relatively inexpensive so the total overhead of the method 
is not excessively high. For example, the work required to 
solve the equations on all the grids in relation to that required 
to solve on just the finest grid can be estimated by 

(2.5.3 I )  1 1 1  1 1+ - + - + - +. . .  z 1- 
4 16 64 3 

1 1  1 1 1+ - + - + - +. . .  z 1- 
8 64 512 7 

for two dimensions and 

(2.5.32) 

for three-dimensional calculations. Note that the above esti- 
mates are for structured grids from which coarser grids are 
formed by removing every other mesh line in all directions. 
Also, these estimates only account for the number of unknowns 
on the various grids and do not consider the extra residual com- 
putations necessary to compute the relative truncation error. 

To use the coarser grids an equation must be obtained on the 
fine mesh that can be accurately represented by the coarser 
mesh. Neither the solution nor the high-frequency error com- 
ponents on the fine grid can generally be resolved on a coarser 
grid. The high-frequency errors, however, can be sufficiently 
damped on a fine grid by using iterative schemes specifi- 
cally designed to damp high-frequency errors in the solution, 
so that the remaining errors will be composed of only low- 
frequency components that can be adequately represented on 
coarser meshes. Because only the low-frequency errors may 
be represented well on coarser meshes, it is necessary to obtain 
an equation on the fine mesh i n  terms of the errors. 

To solve iteratively, Eq. (2.5.30) is solved approximately at 
each step as 

LN((I&) = SN + RN (2.5.33) 
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where q& is the most current approximation to QN and RN 
is the residual that will be zero only when q& = QN. Hence, 
the exact discrete solution is obtained. Equation 2.5.33 is 
subtracted from Eq. (2.5.30) to yield an equation on the finest 
grid in terms of the residual: 

LN(QN) - LN(Q&) = -EN (2.5.34) 

With the assumption that the high-frequency errors have been 
previously smoothed, the fine-grid residual Eq. (2.5.34) can 
be adequately approximated on a coarser mesh as 

-N- I LN- I (QN- I )  = I N  ( - E N ) + L N - I  P ; - ' q & )  (2.5.35) 

A 

where I"-' and I;-' are restriction operators for transferring 
both the dependent variables and the residual from the fine grid 
to the coarse grid, respectively. Here, I;-'q& serves as an 
initial approximation to the solution on the coarse mesh; QN- I 

is the exact solution of the coarse-grid problem and is the sum 
of the initial approximation and a correction.*(' Because the 
full solution is computed and stored on each grid level (as 
opposed to only the corrections, which is all that is required 
for a linear equation), this process is referred to as the FAS. 

On a sufficiently coarse grid, Eq. (2.5.35) can be solved 
exactly with a variety of numerical techniques to obtain QN- 1 ,  

from which the coarse-grid correction can be formed as 

This can then be transferred to the fine grid and used as a 
correction to qh, which is replaced by its previous value plus 
the prolongated correction 

This process yields a simple FAS two-level algorithm where 
the operations on the coarse grid (Eqs. 2.5.35)-(2.5.37) used 
to update the fine-grid solution are termed the coarse-grid 
correction. Normally, the exact solution of Eq. (2.5.35) 
can be expensive to obtain. Also, because the correction 
on the coarse grid serves only as an approximation to the 
fine-grid correction, the exact solution of Eq. (2.5.35) is 
not required. Therefore, instead of solving Eq. (2.5.35) 
to completion, several iterations can be carried out to get 
a reasonable approximation of Q N - ~ .  For an approximate 
solution q&- I of Eq. (2.5.35), a corresponding coarse-grid 
residual  EN-^ can be defined from 

-N- I 
LN- I (Q&-1 )  = IN (-EN) + L N - I  P;-'q&) + EN-I 

(2.5.3 8) 
whose solution differs from the solution of Eq. (2.5.35) 
only by the residual term E N - I ,  which will be zero when 
q&-l = QN- I .  If the errors are smooth, then subtraction of 
Eq. (2.5.38) from Eq. (2.5.35) yields an equation that can 
be well represented on a still coarser mesh G7v-2. If this 
equation is written on G N - ~ .  then 

-N-2 N-2 c LN-2(QN-2) = I N - I  ( -RN- l )  + LN-2 ( IN- I~N- I )  

(2.5.39) 
where Eq. (2.5.38) is used to determine E N -  I .  The solution 
may be obtained in one of three ways: by solving Eq. (2.5.39) 

exactly, by approximating by several iterations, or by introduc- 
ing more coarse-grid levels. On all coarse grids, one or more 
FAS cycles (smoothing followed by coarse-grid correction) are 
completed. In this manner, each of the coarse meshes is used 
to obtain a correction for the solution on the next finest mesh. 
Because only the equations for smooth error components may 
be represented well on coarser grids, only the corrections (and 
not the full solution) must be passed from a coarse grid to the 
next finest grid.lx 

By using Eq. (2.5.33);note that Eq. (2.5.35) can be recast as 

L N - I  ( Q N - I )  = SN-I + T N - I  = PN-I  (2.5.40) 

where 
(2.5.41) -N- I SN-I = I N  SN 

Here, T N - I  is the relative truncation error (or defect correc- 
tion) between the grids, so that the solution on the coarse grid 
is driven by the fine grid, and the defect correction accounts 
for the difference in the truncation error between the coarse 
and fine grids." The analogous equation for grid G N - ~  is 
given by 

LN-2(QN-2) = SN-2 + TN-2  (2.5.43) 

(2.5.44) -N - 2 
SN-2 = I N - 1  SN-I 

and 

-1v - 2 ^N-2 
T N - 2  = LN-2 I N - 1  q&-I)- IN.- l  [ L N - I  (q&-l)]+IN-j TN-I 

(2.5.45) 
Note that the relative truncation error on the N - 2 grid is 
the sum of the relative truncation error between grids iV and 
iV - 1, as well as fV - 1 and fV - 2. Thus, the equations 
solved on the coarser meshes (Eqs. (2.5.40) and (2.5.43)), for 
example, appear exactly as the original equation, except that a 
forcing function appears on the coarser meshes. The result is 
that the coarse meshes can be updated with the same scheme 
that is used on the fine mesh, with only a slight modification 
to the right-hand side. 

( N-2  

Algorithm for Euler Equations 

For the steady Euler equations that are written in generalized 
coordinates, Eq. (2.5.30) can be written as 

L N ( Q N )  = 6cF + 6,,6 + = 0 (2.5.46) 

I n  the multigrid solution process, a forcing function arises on 
the coarse grids from restricting the residual equation on a fine 
mesh to the coarser mesh. The resulting equation, to be solved 
on any mesh G;, can be written as 

where T; is equal to 0 on the finest mesh and is the relative 
truncation error on each of the coarser grids. The solution 
of Eq. (2.5.47) is generally updated by introducing a time 
derivative of the dependent variables to the left-hand side so 
that the solution can be advanced in time with methods such 
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as Runge-Kutta, approximate factorization, or relaxation meth- 
ods previously described. For implicit methods, the resulting 
scheme, written on mesh G;, is given by 

NAq: = -At(L;(q:) - T;] = -At& (2.5.48) 

where AT is the implicit operator of the considered scheme and 
L;(&)  on the right-hand side results from the linearization of 
L; (Q; )  from the backward Euler time integration. Note, as 
mentioned previously, that even on the coarse meshes, where 
T; is nonzero, Eq. (2.5.48) maintains the same form as the 
equation on the fine mesh. 

Several strategies exist for deciding when to switch from one 
grid level to another; these generally fall under the categories 
of fixed- or adaptive-cycle algorithms. The strategy most 
commonly used is a fixed-cycle strategy, i n  which each global 
cycle consists of a set number of FAS cycles on each of the 
coarser grids. Recall that one FAS cycle on any grid consists 
of a smoothing step, followed by a coarse-grid correction. A 
predetermined number of iterations are performed on each grid 
level to smooth the errors. 

The conserved variables are transferred to successively coarser 
grids each time by the rule 

Qi-1 = Ij-IQ; (2.5.49) 

where I,!-' is a volume-weighted restriction operator that 
transfers values on the fine grid to the coarser grid and is 
defined by 

The summations are taken over all the fine-grid cells that 
make up the coarse-grid cell. Restriction of the dependent 
variables in  this manner conserves the total mass, momentum, 
and energy of the fine grid on the coarser grids. In  general, the 
relative tiuncation error is calculated on the coarse grid as 

T,-I = L,-l ( I ; - ' q : )  - Z-IR (2.5.51) 

where 2-l is the restriction operator for the residual, generally 
defined as 

z-1 R; = R; (2.5.52) 

where, again, the summation is over the cells on the fine grid 
that make up the coarse-grid cell. By summing the residuals, 
the surface integral of the fluxes that cross the cell boundaries 
on the coarse grid is the same as would occur by integrating 
around the fine-grid cells that make up the coarse grid. Several 
time steps can be conducted with an iterative scheme to get an  
approximation to the steady solution on G,- I, with the right- 
hand side modified to include the relative truncation error. I f  
only one coarse grid is used to correct the finest grid, the result 
is the simple FAS two-level cycle. On the other hand, if more 
grid levels are introduced so that one or more FAS cycles 
can be recursively carried out on each subsequent coarse-grid 
level to better approximate (2,~- I ,  then a multilevel algorithm 
results. 

When only one FAS cycle is carried out for each of the coarser 
grids, the resulting global cycling strategy is termed a V-cycle, 

which is depicted i n  Fig. 2.5.1 1. Another cycling strategy of 
interest, which is shown in Fig. 2.5.12, is termed a W-cycle 
and results when two FAS cycles are used on each of the 
coarser meshes. Results will be shown in the next section for 
both types of cycles. The corrections on coarse meshes are 
prolongated to the next finest mesh with trilinear interpolation 
and no additional iteration steps between meshes. When a 
W-cycle is used, however, note that an iteration is carried out 
at the beginning of each FAS cycle correction to smooth the 
high frequencies. 

Ciid p-- GN 

E: Eulcr calculalion 
C: IlcsidunUQ collectinn 

I :  Cornmion inulrpolation 

Figure 2.5.1 1 Multigrid V-cycle. 

Figure 2.5.12 Multigrid W-cycle. 

To further clarify the multigrid procedure, the overall process 
is summarized as follows for an exemplary case, where three 
grid levels are used in a V-cycle: 

I .  Start on the finest grid and smooth the errors by completing 
one iteration of Eq. (2.5.48) with T; = 0. 

2. Calculate the residual on the fine grid from Eq. (2.5.33). 
where L N ( Q & )  is given on the right-hand side of Eq. (2.5.46) 
and SN = 0. 

3. 
G,v-I by using Eq. (2.5.49). 

4. Restrict the residual from the finest grid to GN- I  with 
Eq. (2.5.52) and calculate the relative truncation error with 
Eq. (2.5.51). 

Restrict the dependent variables to the first coarse grid 

5. Calculate the right-hand side of Eq. (2.5.48) and update 
the solution on mesh G N -  I .  (This smooths the errors on this 
grid so that a coarser grid can be introduced.) 

6. Calculate the residual on this mesh with Eq. (2.5.38). Note 
that this can be written as 

R,v-, = L , V - I ( Q ~ - l )  - TN- I  (2.5.53) 

Because T N - I  has been previously calculated, the residual is 
easily calculated by simply calculating LN-I  (q&-  from the 
most current values of the dependent variables on the mesh 
and then subtracting T N -  I .  

7. Restrict the dependent variables on GN-I  to G,V-~ by 
using Eq. (2.5.49). 
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8. Restrict the residual from Eq. (2.5.53) to the iV - 2 grid 
and calculate T N - ~  from Eq. (2.5.51). 

9. Calculate the right-hand side of Eq. (2.5.48) and update 
the solution on this mesh. Because this is the coarsest mesh 
used in the present example, three iterations of Eq. (2.5.48) 
are used to get an approximation to (2,v-z. During each step, 
the right-hand side is updated to use the most current values 
of the dependent variables in L ~ - 2 ( q & - ~ ) .  Note that T N - Z  

will not change. 

10. Calculate the correction on this mesh to give 

(2.5.54) N - 2  
1"-2 = qh--2 - IN-1 qh-l 

1 1 .  Pass the correction to the next finest mesh with trilinear 
interpolation and update the solution to give 

(2.5.55) N-l  qh- I + q&- I + I,y-2 VN--2 

Note that steps 5 through 1 1  make up one FAS cycle on 
grid IV - 1, i n  which steps 6 to I 1  constitute a coarse-grid 
correction. At this point, if a W-cycle was employed, another 
FAS cycle (steps 5 to 1 1 )  would be repeated to update q& 
further. 

12. Calculate the correction on the IV - 1 mesh as 

yv-1 = - I ,  N- I qh (2.5.56) 

13. Pass this correction to the finest mesh and update the 
solution to give 

14. Perform one smoothing iteration with Eq. (2.5.48) to 
smooth the errors. 

Smoothing Algorithms 

Many algorithms can be used to smooth the high-frequency 
errors. Both explicit and implicit algorithms have been used 
with success. For multigrid to succeed, the high-frequency 
errors must be effectively damped. The effectiveness of a 
scheme can be estimated by determining the smoothing factor 
of the algorithm with a Fourier analysis. The smoothing fac- 
tor is defined as the maximum eigenvalue of the algorithm for 
frequencies greater than 7r/2 and less than 3 n / 2 .  These fre- 
quencies represent those on a fine grid that are not resolvable 
on a coarser grid. 

Examples of explicit algorithms that have been used success- 
fully include the pioneering work done by Jameson?2.23.3.1h 
i n  which a multistage Runge-Kutta scheme was used along 
with implicit residual smoothing. In addition, the coeffi- 
cients of the Runge-Kutta algorithm have been chosen so that 
the damping of the high-frequency errors is enhanced. Vari- 
ous researchers who have used implicit algorithms including 
Anderson,'? Mulder,ls Y ~ o n , ~ ~  and Spekreijse.2' 

Examples of Multigrid Applications 

An example of the application of multigrid for the Eider 
equations is shown below for a three-dimensional transonic 
Row computation over the ONERA M6 wing." Comparisons 
are made with experimental data at a Reynolds number of 1 1.7 

which corresponds to conditions for which viscous 
effects are relatively small. The wing consists of symmetrical 
airfoil sections with a planform swept at 30" along the leading 
edge, an aspect ratio of 3.8, and a taper ratio of 0.56. A 
solution is obtained on a C-H mesh, which has a C type of 
mesh topology around the airfoil profile and an H type mesh 
in the spanwise direction. 

The effectiveness of multigrid acceleration is demonstrated for 
a computation at transonic conditions with a Mach number of 
0.84 and an angle of attack of 3.06'. Figures 2.5.13 and 2.5.14 
show the effect of using multigrid on the residual and lift- 
coefficient histories for a mesh with over 210,000 points. As 
previously mentioned, the mesh is a 1 9 3 x 3 3 ~ 3 3  C-H mesh 
that has 193 points along the airfoil and wake (1 I O  of which are 
on the airfoil), 33 points approximately normal to the airfoil, 
and 33 points i n  the spanwise direction (17 of which are on 
the wing planform). For this calculation, an implicit, upwind 
differencing method is used for smoothing the errors, with 
a V-cycle and four grid levels (one fine and three coarser 
grids). The multigrid method is very effective in accelerating 
convergence of both the residual and lift coefficients. The 
residual is reduced to machine zero i n  400 cycles, whereas 
the single-grid method has reduced the residual only between 
I and 2 orders of magnitude. The benefit of multigrid is 
especially pronounced i n  the lift-coefficient history where the 
lift-coefficient value is obtained to within 0.1 percent of its 
final value in 41 cycles. This is a dramatic improvement over 
the single-grid result, which required more than 400 cycles to 
converge to the same level of accuracy for the lift coefficient. 

Multigrid 
Single grid 

-1 0 

-12 11111 
0 200 400 600 800 

Cycles 

Figure 2.5.13 Effect of multigrid on residual history for 
ONERA M6 wing with Mm = 0.84 and O' = 3.0G". 
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(2.5.64) Pj+ I Pj+i = - 
IIPj+i II 

LL.201 .15 

.10 - 
0 200 400 600 800 

Cycles 

Figure 2.5.14 Effect of multigrid on lift history for 
ONERA M 6  wing with M ,  = 0.84 and cy = 3.0G”. 

The multigrid procedure has also been implemented into 
multiblock versions of several codes to handle complex 
geometries.27.2X..29.30,31. In addition, several examples of the 
application of multigrid to reduce the computational times re- 
quired for time-accurate calculations can be found in Refs. 
32, 33, 34, and 35. 

2.5.5 GMRES 

The generalized minimal residual (GMRES)36 algorithm for 
solving a nonsymmetric linear system of equations has been 
extended to nonlinear problems and applied to Euler calcula- 
tions by Wigton et al.37 In this implementation, the equation 
considered for solution is written as 

R(w) = 0 (2.5.58) 

where, for the Euler equations, R(w) = 0 represents the 
steady-state residual. The differential of R(w) = 0 in a 
general direction p is denoted by R(w; p) and is given by 

Analogous to the procedure for linear systems, the GMRES 
algorithm first obtains k orthonormal search directions 
p , ,  p2, ..., pk and then updates the solution as 

k 

W”+’ = wn + C ajpj (2.5.60) 
j= 1 

The orthogonal search directions are determined by a Gram- 
Schmidt process: 

(2.5.62) 

F o r j  = 1 , 2  ,..., k - 1 ,  

where b,, is the projection of R(wll; p 3 )  i n  the direction of 
P, : 

(2.5.65) 

In practice, the above process is actually applied to a “precon- 
ditioned” equation that has the same solution as the original 
problem, but has a more favorable distribution of eigenvalues. 
For the problem R(w) = 0, most computer codes generate 
an improved approximation to the current estimate of the so- 
lution as 

(2.5.66) , , + I  w = M(w”) 

where M represents some methodology such as line relax- 
ation, approximate factorization, or Runge-Kutta time step- 
ping. Convergence is achieved when w”” = W” . Therefore, 
the solution of Eq. (2.5.58) can be replaced by the equation 

R‘(w) = w - M(w) (2.5.67) 

for which GMRES is much more effective. Note, however, 
that every evaluation of R’(w) involves an evaluation of M. 

An example of results with GMRES to accelerate the conver- 
gence of an existing flow solver for a transonic calculation 
is shown in Fig. 2.5.15. Here, GMRES is applied to a two- 
dimensional central-differenced implicit Euler code denoted as 
ARC2D.3X As seen in the figure, the use of GMRES can re- 
sult in  a significant increase i n  the convergence rate. After 400 
function calls (where one function call is one evaluation of Eq. 
(2.5.67)), the residual is reduced about 4 orders of magnitude 
over that without GMRES. 

10-4r 

ARC2D 

Average 10-8 
residual 

t 
L lo-lZb 100 200 300 400 5bO 

Function calls 

Figure 2.5.1 5 Convergence acceleration with GMRES. 

2.5.6 Preconditioning 

Recent work has been undertaken to accelerate the conver- 
gence rate of iterative schemes by essentially multiplying the 
time derivative by a matrix that allows faster convergence, but 
does not alter the steady state. The motivation for this is easily 
seen by examining the one-dimensional Euler equations 

Dw DF - + - = 0  
at an: 

(2.5.68) 

After this equation is linearized and a similarity transformation 
is used, this equation can be recast into the form 

(2.5.69) 
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where A is a diagonal matrix whose entries are the eigenvalues 
of the flux Jacobian 

0 0 
A =  0 i ~ + a  (2.5.70) [: n .n.] 

The equations given by Eq. (2.5.69) are now uncoupled, so 
that each equation can be approximated separately. For ex- 
ample, simple explicit time differencing can be used in con- 
junction with first-order spatial accuracy, where each equation 
is differenced according to the sign of the eigenvalue. The 
allowable time step for stability depends on the size of the 
maximum eigenvalue as well as on the grid spacing through 
the CFL number (defined as the product of the convective 
speed and the time step divided by the grid spacing). I f  a CFL 
is maintained less than unity for the simple explicit scheme 
considered, then the numerical characteristics completely en- 
close the physical ones. If all equations are advanced in time 
with the same At,  then the CFL number for the equation whose 
convective speed (eigenvalue) is smallest may not be advanced 
nearly as fast as the stability criteria allows. For example, for 
II. = 0.5 and a = 1, the limiting condition corresponds to the 
largest eigenvalue, which is 71. + a = 1.5. This corresponds 
to determining the time step by the speed of an acoustic wave 
that is moving to the right with a speed U +a.. Note, however, 
that choosing the time step based on this eigenvalue means 
that the first equation (associated with the eigenvalue X I  = 11.) 

is advanced at a time step somewhat lower than the stability 
criteria requires. For the conditions chosen above, this restric- 
tion is not too prohibitive. However, for a low-speed Row, 
the wide disparity in the size of the eigenvalues can lead to 
slow convergence unless a time step is used separately for each 
equation, based on the individual eigenvalues. 

The basic premise of preconditioning is to advance each equa- 
tion with an optimum time step for each. For the one- 
dimensional case, this can be easily achieved by multiplying 
the right-hand side of Eq. (2.5.68) by a matrix, so that when 
the equation is diagonalized, all eigenvalues are equal: 

3w aF - + P - = O  at ax 
(2.5.71) 

Note that the preconditioning matrix does not change the 
steady state. Also note that P should be a positive definite 
matrix. Otherwise, the nature of the flow could be changed, 
as it would if  P = -I, which would correspond to marching 
backward in time. For the one-dimensional case, this matrix 
is given by 

where T and T-' are the right and left eigenvectors of the 
matrix A = dF/aw and l / A  is a diagonal matrix whose 
entries are the inverse of the eigenvalues of A. 

In the above example the criteria used in determining the 
optimum time step for each equation is based solely on taking 
the largest allowable time step for each equation. Other 
criteria can be used, such as selection of a time step to 
provide maximum damping of certain frequencies for use i n  
a multigrid algorithm. Also note that if  all the eigenvalues 
are of comparable size, such as for hypersonic flow, then no 
significant benefit would be expected. 

The simplicity of the matrix in Eq. (2.5.72) is attributable to 
the fact that the one-dimensional Euler equations are easily 
diagonalized. The complexity of devising a preconditioner 
arises i n  multidimensions because the equations cannot be 
simultaneously diagonalized (with the exception of supersonic 
flow). However, recent work at preconditioning the equations 
i n  multidimensions has been undertaken with some success. 
39.40.4 1.42.43 

In the work in Ref. 42, the preconditioning matrix is devised 
by first transforming the conservative dependent variables to 
those that yield a symmetric form for the linearized equations. 
The equations are then rotated into a coordinate system that 
is aligned with the flow direction; the resulting equations are 
given by 

a6 -86 -86 - + A -  at as + B -  871. = 0 (2.5.73) 

where 

(2.5.74) 

(2.5.75) 

and q = I L  cos 6' + II sin 6' is the magnitude of the velocity in 
the streamwise direction. 

Considering the case of supersonic Row first and multiplying 
the residual terms in Eq. (2.5.73) by l i - ' l  (equal to i-' 
for supersonic flow) yields 

Because the flow is assumed to be supersonic, this equation_can 
be sim_ultaneously diagonalized with a transformation dV = 
T- I dU to yield 

at = - (1% + A%) 
(2.5.78) 

Here, A is the diagonal matrix of the eigenvalues of i - ' B ,  
and T, T-' are diagonalizing matrices. As discussed in Ref. 
42, the wave speeds i n  the streamwise direction have been 
equalized. Unfortunately, the disparity in the acoustic wave 
speed in the direction normal to the streamlines is amplified; 
the ratio of the acoustic wave speeds to the convective wave 
speed is M/d='. 

To make the acoustic and convective waves speeds equal, the 
ratio d m / M  is used to scale the acoustic waves by 
multiplying the right-hand side of Eq. (2.5.78) by the matrix 
X, which is defined as 

(2.5.79) 



where r = d m / M .  After converting back to symmetry 
variables, the preconditioned system of equations in stream- 
lined coordinates, which is valid for supersonic flow, is given 
bv 

(2.5.80) 

where 

0 0 1J 
(2.5.81) 

p = d m ,  and r = d w - .  
Difficulties arise for subsonic Row because the equations are no 
longer able to be simultaneously diagonalized. By assuming 
that the preconditioning matrix has a structure similar to Eq. 
(2.5.81), a preconditioning matrix can be obtained by requiring 
the convective waves be unchanged and that the acoustic 
waves travel at the flow velocity in the limit of zero Mach 
number. The final preconditioning matrix in the stream-aligned 
coordinate system in symmetry variables is identical to Eq. 
(2.5.81) except for subsonic flow: 

p = r = d i T i F  M < 1  (2.5.82) 

Recall that the preconditioning matrix given by Eq. (2.5.81) is 
for the stream-aligned coordinate system and symmetry vari- 
ables; this matrix must be transformed back into the variables 
that will be solved numerically. For example, i f  the dependent 
variables are the conservative variables, the final precondition- 
ing matrix, which simply multiplies the steady-state residual, 
is given by 

(2.5.83) 
- a w a q a u  a i j a u a q  

aq a u  a u  a u  aq aw p =  ---p--- 

where is the Jacobian matrix for transforming from 
primitive to conservative variables, aq/aU transforms the 
symmetry variables to primitive ones, and aU/ao  relates the 
symmetry variables in  the stream-aligned coordinate system to 
those in a Cartesian system: 

r 1  0 0 0 1  

p/"  0 0 -1/2 
3-  [ 0  1 0  0 ]  
a u  - 0 0 1  0 

(2.5.84) 

(2.5.85) 

(2.5.86) 
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To devise flux formulas for computing the steady-state resid- 
ual, the artificial viscosity must be modified for certain formu- 
lations. In particular, for Roe's approximate Riemann s0lver,4~ 
Refs. 42 and 43 show that the dissipation matrix must bc mod- 
ified in order to maintain the full benefits of preconditioning, 
both in stability and in accuracy. 

An example from Ref. 42 is shown in Fig. 2.5.16, in which 
the preconditioning discussed above is applied to obtain the 
Row field around a NACA 0012 airfoil at a low Mach number 
(0.05). The numerical scheme used for this calculation is 
an explicit two-stage Runge-Kutta scheme, which uses Roe's 
approximate Riemann solver for discretization of the residual. 
The preconditioning dramatically decreases the number of 
iterations required to obtain a fully converged solution. 

l.O c 
without preconditioning --c- ------ - -_____ 

-1 1 .o 

-13.0 0. 429. 857. 1286. 1714.2143.2571.3000. 
Iterations 

Figure 2.5.16 Convergence history with and 
without matrix preconditioning from Ref. 42. 

2.5.7 Enthalpy Damping 

The last method to be discussed for accelerating the conver- 
gence of numerical schemes to solve the Euler equations re- 
quires a modification of the governing equations that does not 
alter the steady-state solution. For a steady-state solution, be- 
cause the total enthalpy is constant, a term proportional to the 
difference H - H ,  may be used as a forcing function to ac- 
celerate convergence. This technique has been introduced in 
Ref. 45 and is referred to as enthalpy damping. 

A source term is simply added so that the governing equations 
are given by 

n ( , l l 2 + , ' )  - % + ()1: + e + n p u (  H - H,) = 0 

$ + % + + n p u ( H  - H,) = 0 
(2.5.87) 

+ + + n p H ( H  - U,) = 0 

where a typical value of n is 0.25. Because H is equal to 
H m  at convergence the steady-state solution is not altered. 
Note that this technique is only applicable for flows with a 
constant total enthalpy and, therefore, may not be used for 
some simulations where propulsion effects are accounted for 
through specification of variations i n  total enthalpy. 
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2.6 SPECIAL METHODS 

This section is devoted to several variants in the solution of 
the Euler equations. These non conventional methods are: 

1) Space-marching techniques for supersonic steady flow 
problems. 

2) Shock-fitting techniques in which a shock wave is con- 
sidered as a true discontinuity of the flow field represented 
either as an internal curve or surface in the computational 
mesh (floating shock tracking) or more often as a boundary 
of the computational domain (bow-shock fitting). 

3) Inverse and design techniques which can be interpreted as 
the fitting of a vortex sheet (or a stream-surface in the steady 
case). This surface may be considered either as an interface 
between two flow fields both computed by solution of the 
Euler equations or, more generally, as the external boundary 
of one flow domain on which a pressure condition is 
prescribed (for a free-surface flow like an isobaric jet or for 
design purpose). 

These methods are valuable alternatives to the use of the 
time-dependent, shock-capturing and direct (in the sense of 
fixed-boundary) solution of the Euler equations. 

Indeed, the classical unsteady approach, described in the 
above subsections of this chapter, can be applied to special 
problems such as the steady-state solution of fully supersonic 
flows comprising or not internal and bow shocks or such as 
the design of a wall boundary to be iteratively modified by 
numerical optimization. However, in these special circon- 
stances, it may be interesting to benefit from large savings in 
computing time (space-marching or inverse design methods) 
and from a noticeable increase in accuracy (shock-fitting 
techniques). 

The discussion on the relative merits of standard and special 
methods is made more difficult by the uninterrupted progress 
of researchers finding new techniques which succeed in 
filling the gap between two opposite strategies. This is the 
case for example of the space-marching technique where the 
old method with the marching solution of the steady Euler 
equations (which in general requires a standard method for 
setting upstream conditions at a blunt nose) can be replaced 
efficiently by pseudo space-marching techniques using a 
modified unsteady Euler code (see below in subsection 2.6.1). 
This is also the case when combining shock-capturing for 
internal shocks and shock-fitting for the bow shock. Another 
example is given with the shock-fitting technique being even- 
tually replaced by shock-capturing in association with mesh- 
fitting and adaption of either algebraic or variational type. 
Lastly, inverse techniques can be devised which make use of 
slightly modified direct solvers with a good efficiency (see 
below subsection 2.6.3). 
In the following, we give some details on the special tech- 
niques mentioned above but it is remarkable that there are 
many common features and affinities between them and prob- 
ably the more clear reason for that is their use of quasi-linear 
or characteristic forms of the Euler equations. 

Therefore, after the presentation made in Chapter 1, we begin 
by a complement to the description of some characteristic 
forms of the Euler equations in order to describe the numeri- 
cal treatment of the boundary conditions for shock-fitting and 
inverse design techniques. 

Starting from the conservation law form: 

(2.6.1) aw JF aG - + - + - + - = o  
at ax ay aZ 

the quasilinear form (given in Eq.( 1.4.2)) is: 

(2.6.2) aw aw aw aw 
at ax a y  az - + A  - + B  - + C  - = O  

We define the matrix A,, as a linear combination of the Jaco- 
bian matrices A , B , C formed with the components of E ,  
an arbitrary unit vector: 

A,, = n,A + n,B + n,C (2.6.3) 

and to introduce a IocaLorthonormal basis made of E and of 
two other unit vectors 5 and so that a Cartesian derivative 
is expressed (locally) in terms of derivatives in the new basis: 

(2.6.4) 

Due to the hyperbolicity of the Euler system of equations, the 
matrix A,, has real eigenvalues hi and a set of linearly in- 
dependent left eigenvectors mi.  

To get the required characteristic form of the equations (also 
called the compatibility relations), we form the linear combi- 
nations of Eq.(2.6.2) obtained by multiplication with each 
eigenvector: 

giving through the use of Eqs(2.6.3-4): 

m i T ( - + h i  aw - ) + m i T R = O  aw 
at an 

(2.6.6) 

where R involves only derivatives of w in the plane 5 ,  q. 

Assuming that these derivatives are known, Eqs.(2.6.6) can 
be interpreted as transport equations for a plane wave moving 
with velocity hiE.  

The expression for the eigenvectors mi is more complicated 
than for the eigenvectors I; attached to the use of the primi- 
tive variables q = ( p , V , p ), as described in section 1.4. 
With the slightly modified notations of Eqs.(2.6.6), we have 
here: 

as aq l i T  ( - + hi - ) + l;T s = 0 
at an 

(2.6.7) 

An important difference with Section 1.4 is that we have to 
consider a boundary moving with the velocity K X .  The nor- 
mal relative velocity of the fluid on C is: 

v , = ( V - K , : ) . F  = v,, - U , :  (2.6.8) 

The discussion for the number of numerical boundary condi- 
tions to use rests on the sign of ( hi - u z  ) and on the value 
of the normal relative Mach number on X: 

M,' = v, I a (2.6.9) 

Discretization of characteristic relations 
Concerning the discretization of the characteristic relations 
given by Eqs.(2.6.6-7), it is convenient, like for the internal 
node discretization, to separate the spatial discretization from 
the time discretization. In fact, it is preferable to have a rath- 
er similar treatment for internal and boundary nodes, even 
though space derivatives in outgoing wave characteristic rela- 
tions are necessarily one-sided and in general one order less 
accurate than for interior schemes. 

A practical matching technique based on characteristic rela- 
tions' which is of special interest for the fitting of discon- 
tinuities and quite easy to implement at least for explicit time 
stepping schemes, is described below for the case of cell- 
vertex or node-centered discretization schemes. 

Two steps are considered. First a provisional value w *  is 
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computed on I: at time (n + 1) from a complete discretized 
Euler system on R and I: without taking into account any 
boundary condition. For simplicity, we restrict the presenta- 
tion to a boundary treatpent which is only of first order ac- 
curacy in time so that w can be written: 

W* = w" - At (SF, I SX,)' (2.6.10) 

where SF, / Sx, is a discrete approximation of aF, / ax, on 
I: (obtained using only the discrete values of w" in R and on 
I: ). 

The second step rests on the use of the characteristic relations 
of type (2.6.6) which are written in discretized form on I:: 

(miT)" ( w " + ' - w * ) = O ,  i = l ,  ..., 5 (2.6.11) 

where we have used Eq.(2.6. IO). 

However, due to the complicate expression of mi, it is con- 
venient to replace these characteristic relations by those based 
0; thz n?n-conservative variables. After having deduced 
p , v , p directly from w*,  the system corresponding to 
Eq.(2.6.7) is the following: 

- 

a )  A' = v, ; @ , + I  - p * )  - (a2)" (p'*+' - p*) = 0 

b )  h, = v, ; - v i  1 = 0 

d )  h4 = v, + a ; @ " + I  - p * )  + (pa)" (V,"" - %*I = 0 

e )  h, = v, - a  ; @'*+I  - p * )  - (pa)" (v;+l - V,*) = 0 

c )  h, = v, ; (V\+' - v; ) = 0 (2.6.12) 

The characteristic relations for which (hi - u z  ) 2 0 have to 
be used whereas those correponding to hi - u X  < 0 should be 
replaced by physical boundary conditions from the outside of 
R. 

These equations will be used below for shock-fitting and in- 
verse methods. 

2.6.1 Space-marching techniques 

Steady supersonic flows have been studied numerically for a 
long time with a strong impetus given to the development of 
finite difference methods at the beginning of the 70's (after 
early studies based on the method of characteristics) by the 
first three-dimensional computations of flow fields past the 
Space Shuttle2. 

The governing Euler equations for the steady supersonic 
flows are hyperbolic with the flow direction as a time-like 
direction. Thus the numerical solution can be obtained by 
marching by plane in this direction (say the z-direction). For 
solving such a three-dimensional steady supersonic flow 
problem, it is natural to use a numerical method quite similar 
to those concerning the solution of a two-dimensional un- 
steady flow problem with time-dependent boundaries (either 
known or to be partly computed as a free-boundary). There- 
fore, a space-marching method can afford a considerable 
reduction in computer storage and in computer time in com- 
parison with the unsteady approach in three dimensions. 

Finite difference methods were first devised in non- 
conservative form with rimitive variables p. V , p  , or with 
characteristic variables4, 9 '6: 

P =In@), F ,  S = y l n ( T ) - ( y - l ) P  

For those methods, not only the bow shock but also internal 
shocks have to be fitted. 

By contrast, other finite difference  method^^.^.^.', mainly with 

capturing 'of internal shock waves, were developed based on 
the conservation law form of the Euler equations. They are 
generally written in cylindrical coordinates adequate for com- 
putation of flows past slender bodies which we choose here 
as a typical application- of these techniques. 

With U ,  v ,  w as components of F in z ,  r ,  0 coordinates, the 
equations write: 

au  aP aQ - 
aZ ar ae - + - + - + R = O  (2.6.13) 

U = ( p u  ? p + pu2,  puv , puw )T 

P = ( pv , puv , p+pv2, pvw )T 

Q = 

(2.6. 
1 

( pw , puw , pvw , p+pw2 )T 

The steadv character of the flow permits the replacemen1 

4) 

of 
the consehation law for total eneigy by the Behoulli equa- 
tion: 

The shock layer is bounded by the given body surface, 
r = b(8 ,  z), and by the bow shock wave r = c ( 0 ,  z ) ,  which 
is an unknown surface to be determined. 

This flow domain (between two plane sections z o  2 z I z 
can be mapped into a computational region z o  I Z 5 z I ,  
( X ,  Y )  E [0 , 112 with: 

x = X ( Z  ,r $3) 

Y = Y ( z  ,r ,0) 

z = z  

where X ,  Y are curvilinear grid coordinates stretched in ' 

each Z plane according to the flow features. 

The governing equations Eqs.(2.6.13) when transformed in 
this computational space become: 

au ap aQ 
az ax a y  

- + - + - + R = O  (2.6.15) 

with: U = U l J  

The system of Eqs.(2.6.15) is hyperbolic in Z and it can be 
discretized in a same manner as an unsteady two-dimensional 
problem. A very common approach has been a discretization 
by finite differences and a solution with MacCormack explicit 
s ~ h e m e ~ . ~ . ~ . ~ ~ .  Another more recent possibility is a discretiza- 
tion by finite volume techniques with a Godunov method'' or 
with other upwind schemes. Solution with an explicit scheme 
proceeds by starting from a known solution at plane Z and 
computing a new solution in plane Z +U with boundary 
 condition^'^^'^ taking into account the evolution of the body 
shape and the change in the shock wave position by satisfy- 
ing the Rankine-Hugoniot relations (see next Subsection). 

One problem related to the use of the conservation law form 
is that the unknowns (conservative fluxes in the Z-direction) 
need to be "decoded" into the physical variables 
p. U ,  v ,  w ,  p in order to evaluate the transverse fluxes and 
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the source terms. For a perfect gas, this decoding reduces to 
a simple root finding problem. Starting from: 

U , = p u ,  u , = p  + p u 2 ,  u 3 = p u v ,  u q = p u w  

we get: 

1 

P 
p = U ,  - u , u  , - = U I U ,  , v = U 3  111, , w = U ,  I U ,  

and by substitution in Bernoulli equation we obtain a second 
degree equation for U : 

(ytl)U&2 - 2yu,u lu  + (y-I)(2U?Hw - U ;  - U:) = 0 

Only the largest root is meaningful, giving: 

U =  
1 

( p l ) U ,  (yu2 
+ 

Another question related to the space-marching technique is 
the step size limitation in the Z-direction associated with an 
explicit scheme. 

A CFL condition links AZ to the space step size in the 
cross-flow plane, typically: 

AZ 5 A x / o ( M )  

with o is the maximum of local eigenvalues of a matrix M 
of the form C-' A with the notations of Eq.(2.6.2). This 
limitation in the step size for marching in space is not too 
severe in zones where the body section has fast variations but 
it can be considered as too costly when the flow is very 
smooth in the Z-direction like in the case of nearly conical 
flows. 

The use of implicit stepping for space-marching schemes is 
not in general use for solving the steady Euler equations 
when the bow shock is fitted. Indeed, there is a limited in- 
terest in using an implicit scheme for interior points if an ex- 
plicit treatment of the bow shock positioning yet restricts the 
maximum step size in the marching direction. 

Fully implicit treatment of both the interior point calculation 
and the bow-shock adjustment was shown to be very efficient 
on a one-dimensional flow in a variable area duct with an 
internal shock wave which was com uted for a steady solu- 
tion via a time asymptotic approach'. Such a method could 
clearly be used for a supersonic conical axisymmetric flow. 
Extension to one more space dimension should be directly 
applicable to the solution of conical flows for example past 
conical wings at angle of attack, but should not be so much 
necessary for non conical bodies where accuracy in the Z 
direction cannot be obtained with too large values of AZ. 

If the bow shock is captured and the wall boundary condition 
is treated implicitly, an implicit scheme for space marching is 
very efficient and it appears even more useful for the solution 
of Parabolized Navier-Stokes (PNS) equations due to the 
severe CFL restriction on the AZ with an explicit scheme and 
the very small grid spacing needed at the wall. 

In the case of a blunt body, a supersonic space-marching 
code must be completed by an other one capable of comput- 
ing the subsonic flow region between the detached shock 
wave and the body nose, thus providing the necessary initial 
solution of the space-marching procedure. 

Moreover, realistic high speed flight vehicle configurations 
often give rise to subsonic pockets inside the shock layer. 
The conventional space-marching method then fails for such 
flows and it can be necessary to combine a space-marching 
technique for supersonic parts and an unsteady Euler solver 
for subsonic parts with delicate problems of different grid 
systems to be coupled. 

Space-marching procedures by local iteration 

To avoid this coupling, several authors have proposed a 
"unified approach" based on unsteady Euler equations with a 
plane by plane strategy and local or global iterations accord- 
ing to the fully supersonic or mixed character of the flow. 

Although some investigations about this idea were led in the 
70's with the conventional MacCormack scheme, the full 
development of this technique found its actual start in the 
middle of the ~ O ' S ' ~ - ' ~  in relation with upwind discretization 
and relaxation methods for implicit time-stepping2'V2'. 

These now well-established techniques have revealed to be 
both efficient for obtaining numerical solutions over realistic 
configurations and very easy to implement in a 3-D code. 
They provide the possibility of building the three-dimensional 
mesh system before the flow calculation, which can be of in- 
terest for a better control of the grid stretching or adaption. 
Besides that, the further development which consists in tak- 
ing into account a discretization of viscous terms to be added 
to the Euler code is rather straightforward; this development 
leads to a PNS-like approximation. We will focus our atten- 
tion hereafter on these "pseudo space-marching'' techniques 
based on the unsteady Euler equations. 

Space-marching techniques making use of the unsteady Euler 
equations have mainly been developed using the finite- 
volume TVD discretization. They are based on either expli- 
cit or implicit time differencing, and suppose a "plane by 
plane" organization of the computation. 

Explicit Approach 

The simplest approach is based on an explicit upwind scheme 
as described in Ref. 19. The space-marching procedure simply 
amounts to run out, until convergence, the 3-D time- 
dependent explicit scheme plane after plane, with the 
upstream conservative variables in the plane k-1 fixed at their 
previously computed value, and with the downstream values 
in the plane k+l extrapolated from the upstream and current 
values. 

Basically, in the notations of Eq.(2.6.2) with Cartesian coordi- 
nates, the explicit algorithm can be written as: 

+ (H,,,,,)' - (Hk-,/2)' = 0 ; 1 = 0, 1, ..I,,, (2.6.16) 

where w is the solution vector of the conserved quantities, 
F, G ,  H are the numerical fluxes at the sides of the control 
volume ( i J , k )  including metric terms, and k is the marching 
direction. Clearly, Eqs.(2.6.16) represent an iterative process 
which, if converged, provides a discretized solution of the 
steady Euler equations. Since the F and G flux evaluation 
depends explicitely on w:, the only delicate point is the 
definition of (H,+,/,)'. In order to get conservation, the flux 
(Hk-'/,)' has to be computed with the same formula as the 
one used for (Hk- ' / , )*  at the previous k-1 plane calculation 
(a '*' denotes here a frozen upstream quantity). 

We assume that a flux vector splitting (FVS) scheme is used 
for the numerical flux evaluation: 

with wL and wR the left and right values for the i , j , k + l / 2  
cell face. Actually, the second term remains at zero for a ful- 
ly supersonic flow. Therefore, we can get: 

a) a first order scheme with 



103 

b) a second order scheme with 

1nitializ:tion for w:'! follows easily either simply with 
w j  = wk-1 or from a igher order extrapolation. 

In contrast with a pure space-marching scheme, the stability 
of the process depends not only on but also from Atk 
which remains limited by a CFL condition for a small mk 
but permits an increased M k .  

This local iteration with an explicit time-stepping permits 
significant gains in efficiency with respect to a global itera- 
tion and improvements in accuracy, robustness and program- 
ming simplicity with respect to a classical pure space- 
marching scheme. 

Implicit Approach 

This a p p r ~ a c h ~ ~ ~ ' ~ . ~ ~ * ' *  rests on a planar Gauss-Seidel relaxa- 
tion scheme combined with an approximate factorization in 
the plane zk . It can be derived from: 

4- (Hk+1/2 - Hk-1/2)'+' = 0 (2.6.18) 

Using a "delta" formulation, an implicitation of only the first 
order terms and a linearization of the Jacobians, Eq.(2.6.18) 
leads to the following matrix system to be solved: 

l/&k AW;jk + A;AW;-l,j,k + D;AW,jk + B;AW;+l,j,k 

+ AjAWij-1 .k  + DjAW;jk + BjAW;,j+l,k (2.6.19) 

4- A,AW;,j,k-l DkAW;jk + BkAWi,j.k+l = RHSijk 

Aw = w'+I - w'. 

1 
where RHS represents the explicit part of the scheme and 

The pseudo space-marching approximation leads to: 

AW;,j,k-l = 0 and Aw;,j,k+l = AWi,j,k, 

which amounts, in Eq.(2.6.19), to cancel the term A, and to 
add the term Bk to the diagonal D,. In order to get a sym- 
metric formulation in the case of subsonic pockets, the term 
Bk is cancelled according to Ref.15. 

The overall implicit approximate factorization procedure can 
be summed up, in matrix formulation, as: 

(I + 6;' Mi) (I + 6;' Mj) Aw = 6;' RHS (2.6.20) 

shere Mi, Mj represent the matrix terms along the crossflow 
directions, and 

Dk = I/Atk + Dk 

Realistic configurations require the use of multi-domain tech- 
niques. For relatively simple configurations the multi-domain 
gridding can be restricted to the marching (supersonic) direc- 
tionIg. The general multi-domain gridding associated with 
the implicit approach opens the door to the computation of 
complex supersonic flows such as a vortical structure at the 
leeward of an hypersonic delta wing22 or vehicle 
configurations such as a realistic fighter configuration or the 
Space Shuttle Orhiter" . 

2.6.2 Shock-fitting techniques 

Shock-fitting techniques are founded on the choice of 

representing a shock wave as a boundary of the computation- 
al domain or eventually as an interface between two such 
domains. They are used when the presence and the general 
shape of a shock is a priori known as a key feature of the 
flow solution. This can be the case in a divergent choked 
nozzle and even in a transonic or supersonic external flow 
past an airfoil, however the most frequent use of shock-fitting 
corresponds to the fitting of a bow-shock in front of the nose 
of a vehicle or of a projectile in supersonic flight. Another 
interest of such techniques, when no other shock is present 
inside the computational domain, is the possibility of choos- 
ing a convenient non-conservative set of equations ( in place 
of the conservative formulation needed for shock-capturing). 
However, this possibility has been mainly used in two dimen- 
sions. 

We describe here a general methodology to treat the fitting of 
such a shock wave surface C. 

Let R I  be the upstream domain, with unit normal i i, pointing 
downstream with iiz. El  the normal velocity of the shock. 
For R I ,  C is a supersonic outflow boundary ( MLI > 1)  
whereas for R (the downstream domain, with normal ii 
pointing outwards of R), it is a subsonic inflow boundary 
( - 1 < M,' < 0 ). Therefore, on the upstream side of C, all 
the flow quantities either are com uted from the full set of 
the discretized Euler equations y;' = 9; or they are given 
by the freestream supersonic flow conditions in the general 
case of bow-shock-fitting. 

On the downstream side of C, only Eq.(2.6.12-d) must be 
used: 

( P  - P * ) + ( p a ) "  (v,, -.,*,=(I (2.6.2 1) 

omitting the superscript (n+l)  on p and v, . 
The supplementary conditions are the Rankine-Hugoniot 
jump relations (Eq.(1.3.5)) with u x  = Ex . E :  

(2.6.22) 

where the superscript (n+l)  has been omitted on all vari- 
ables. 

These jump relations together with Eq.(2.6.21) appear as a 
system of 6 equations for the 6 unknowns p, V ,  p ,  u p  This 
non-linear system is solved by an iterative method based on 
successive approximations of u x  (thus of Q )  starting with the 
known value ux". For a given Q ,  the values of p and v, 
are determined from Eq.(2,6.21) and Eq.(2.6.22 b). Tangen- 
tial velocity components are given by Eq.(2.6.22 c,d). Then 
Eq.(2.6.22 e) is solved for p (after expressing E in terms of 
the non-conservative variables) and a new value u x  is deter- 
mined from Eq.(2.6.22 a) leading to a new iterative step. 

In the case of fitting a bow-shock upstream of a body, the 
computational domain R can be meshed with a body-fitted 
grid moving like a concertina between the bow shock and the 
body with all nodes sliding along fixed lines roughly normal 
to the body and the shock. This family of normal lines has to 
be generated in a preprocessing step by any method giving a 
regular body-conforming mesh system between the vehicle 
and an outer surface which must be far enough from the 
body to be upstream of the bow shock. The normal family 
of grid lines is replaced by smooth curves obtained by piece- 
wise polynomial interpolation with an explicit parametriza- 
tion. 
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The trace of the shock on each of these curves provides a 
definition of the boundary moving at each time step at a 
velocity calculated according to the method indicated above. 

A straightforward implementation of the interlaced grid mo- 
tion and solution evolution is given below. 

For a steady flow, calculation of the solution until conver- 
gence consists, at each time step A t ,  in successively execut- 
ing the three following stages: 

i) The flow solution at time in+' is obtained from values at 
time t" by applying the basic numerical scheme in a fixed 
mesh M" which coincides with the moving mesh at time t" . 
ii) The new boundary is determined by using the normal. 
velocity of the shock calculated as indicated above. Then in- 
terior nodes are defined giving the mesh M"" at time t"". 

iii) The Row quantities at time t"" on the mesh M" are pro- 
jected onto the mesh M"" using a first order Taylor expan- 
sion: 

$(t"+' ,  M"+') = $ ( t " ,  M " )  + At V$(t"+',  M").U (2.6.23) 

where $ is any Row variable and where U denotes the mesh 
point velocity which is tangent to the given mesh lines. 

Due to the independence between the stages ii)-iii) and the 
stage i), this process is easy to implement in an existing code 
written with an explicit scheme for a fixed grid. 

Other techniques have been used for the bow-shock fitting 
problem and in particular the coordinate transfonnation 
method which consists in using the mapping of the moving 
physical domain to the fixed computational domain and 
working directly on the transformed equations in these fixed 
coordinates and on the non-linear boundary conditions on the 
image of the shock boundary to iterate towards a steady solu- 
tion. 

A detailed discussion of the relative merits for different pos- 
sibilities of mixing the use of an explicit or an implicit 
scheme for interior nodes with the weak or strong coupling 
between flow solution and shock tracking can be found in 
Ref. 14. 

2.6.3 Inverse design and free-surface flows 

Free surface flows, shock-fitting methods, inverse and design 
problems all belong to the same mathematical class of free- 
boundary problems as opposed to the more usual fixed- 
boundary problems. 

For all those flow problems, a part of the boundary limiting 
the domain occupied by the fluid is a priori unknown and has 
to be found during the solution process. 

By comparison with a fixed-boundary problem, it is clear that 
the relaxation of the parameters defining the position of the 
flow domain boundary yields a larger class of solutions 
among which the selection of a particular one may result ei- 
ther from the optimization of some criterion or from the 
prescription of a supplementary boundary data (in principle 
the pressure) in order to get uniqueness. 

The first case corresponds to optimum design problems, 
whereas the second is usually named an inverse problem. A 
detailed classification of the various methods for solving 
these problems can be found in Ref. 23 whereas several of 
them are described in Refs. 24 and 25. 

Optimum design problems are generally solved by coupling a 
"direct solver" (a solver with a given fixed boundary), a 
boundary shape and grid updating algorithm and a numerical 
optimization code allowing to progressively modify the boun- 
dary shape until an optimum is reached. The definition of the 

criterion to be minimized opens many possibilities based ei- 
ther on physical or mathematical principles. In numerical op- 
timization techniques for optimum design the direct solver is 
most often used as a "black box" and the qualities that a 
good design requires for such a solver are: short time 
response, low sensitivity to its numerical discretization 
parameters and high sensitivity to the aerodynamic design 
parameters. 

Therefore numerical optimization is not yet frequently used 
with Euler direct solvers. Indeed, for the design of a transon- 
ic transport wing, i t  is often said that full-potential equations 
with a simple quasi three-dimensional integral boundary layer 
correction is adequate for solving this problem . However, 
for the case of purely supersonic flows, Euler solvers can be 
used with benefit has shown in Section 4.8 where design ap- 
plications by SchoneZ7 and by RiegerZ8 are presented. It is 
quite clear that with the progress of Euler codes as analysis 
tools, their usefulness will be increasing for design problems 
treated by numerical optimization. 

The second category of free-boundary problems results from 
the specification of a flow quantity on the unknown boun- 
dary. We shall concentrate the present discussion on this kind 
of problem and its discretization. 

We consider the problem of a fluid flow in a domain Q with 
a boundary r which comprises a slip-line or slip-surface Z, 
not a priori known and which must be found as a part of the 
solution process. This boundary surface is considered as a 
material surface. In other words, if a fluid particle is on the 
free surface it forever remains on it. Let assume that C can 
be represented by a single-value function: 

(2.6.24) 

Then the above assumptions mean that there is a kinematical 
boundary condition holding on C: 

(2.6.25) 

The other condition is a pressure condition: 

p = T C ( x  , y  . t )  on C (2.6.26) 

The simplest case is TC = constant for a free-surface flow like 
in the hydrodynamic ship wave problem studied in Ref. 29 or 
for an engine jet with external flow at rest 30.31. 

The case TC = f ( x  . y )  can correspond to an inverse design 
problem where a pressure distribution isgrescribed on a part 
C of a body limiting the flow domain Q3 36. 

As in the previous Subsection on shock-fitting, there are two 
main possibilities for treating the moving mesh problem with 
curvilinear body-fitted grids: 

1)  Working in the physical moving domain Q with three 
stages at each time step towards a steady state solution3'. 

2) Working in the computational domain after a transforma- 
tion of coordinates from x ,  y ,  z to 5,  q, 6 and solving the 
transformed flow equations and free-surface conditions in al- 
ternate stages at each time step 29. 

It is also possible to replace the alternate stages of solving 
the flow equations with a given provisional boundary shape 
and then of updating the position of the boundary, by a 
simultaneous solution in a strong coupling between these two 
stages but at the cost of a more complex solution method. 
This is the case for the Newton solution of the mixed inverse 
method of Drela and Giles 32. 

The most important points are in any case the choice of the 
boundary conditions and of the updating method for the posi- 
tion of the material surface C. 
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Coming back to 1.(2.6.12), we are in the situation where the 
relative fluid vel ity is zero (v, = ux) and only the charac- 
teristic relations corresponding to h, = v, - a has to be re- 
placed by the pressure boundary condition Eq.(2.6.26), in- 
dependently of the subsonic or supersonic character of the 
flow in the tangential direction in SZ along C. 

At each time step, the flow solution can be solved with these 
boundary conditions on C, then from the relation b),c) and d) 
in Eq.(2.6.12) and from the known value of pn+' ,  the fluid 
velocity is obtained at time n+l .  Thus a new value of 8, is 
available which can be used with Eq.(2.6.25) to get a new 
position of Z at time n + l .  

This system of equations for the unknown free surface is 
discretized in a straightforward manner but must include a 
dissipation term at least in the flow direction (or an upwind- 
ing differencing) in order to avoid decoupling of the solution 
with purely centered differencing 2 9 9 3 1 .  
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Chapter 3 

Survey of Major Individual Euler Codes and their Capabilities 

The increasing importance of computational aerodynamic meth- 
ods, based on the Euler equations, in  industrial design work is 
evident from the widespread development activities in all major 
aerospace industries. 

In the following sections an attempt is made to gather all pub- 
licly available information on relevant Euler codes currently in 
industrial use in the NATO countries. Other countries, with the 
exception of Sweden and Switzerland, have not been considered 
and were not in the scope of this publication. Although a great 
deal of time was invested in accumulating this information we 
realize that other codes may exist in industrial sectors and re- 
search establishments that we are not aware of. Nevertheless, 
we believe that most of the codes are represented, which en- 
ables us to call this collection an Euler-code compendium. 

In addition to a short overview of the capabilities of the individ- 
ual codes, the essential characterisitics are also compiled in ta- 
bles. Related references are pointed out and a person serving as 
point of contact (POC) for questions is listed for each code. We 
have tried to keep the list as concise as possible. The presenta- 
tion is focused on general purpose codes with respect to their 
capability in treating 3-D complex problems in a regime that 
ranges from subsonic to supersonic flow. Based on recent pro- 
jects in the United States and Europe, many codes also have the 
capability to handle hypersonic flow problems and can address 
gas states in  chemical and thermodynamical equilibrium and 
in non equilibrium. 

The following codes focus mainly on external aerodynamics, 
but some of them are also applicable for internal flow, espe- 
cially on turbomachinery flow problems. Although the basic 
theory for treating numerically inviscid flow problems is out- 
lined in previous chapters it has to be pointed out that a thor- 
ough treatment of the specific aspects of turbomachinery flow 
simulation can be found in the publication of another AGARD 
working group under the editorial supervision of Prof. Ch. 
Hirsch, VUB-Brussels. 

A high percentage of codes are based on structured multiblock 
grid approaches that rely on a conservative finite-volume dis- 
cretization technique, a numerical approximation scheme being 
outlined in the late 70's. The success of the methodology in the 
aerospace industry can  be attributed to the fact that a discretiza- 
tion and time integration scheme was made available early 
which proved to be robust, simple and accurate enough to be 
accepted in industrial environments. Therefore, the landmark 
paper of Jameson, Schmidt and Turkel' stood as initial baseline 
for many first efforts in the field of inviscid flow simulation by 
solution of the Euler equations. In the meantime the concepts 
for numerically approximating the convective terms in the gov- 
erning equations have been improved and refined and have 
been implemented in many advanced general-purpose codes. 

Essential to the success of numerical field methods for solution 
of the steady-state inviscid flow equations is the invention of 
the so-called multigrid technique as one of the most effective 
and cost-efficient convergence acceleration methods known to- 
day. The improvements in  performance of computer hardware 
over the last 20 years together with such algorithmic quantum 
steps, has enabled the introduction of Euler methods into rou- 
tine industrial design and optimization cycles. 

However, as the strength of the codes continue to increase with 
respect to their ability to treat geometrically complex flow 
problems, structured multiblock mesh generation appears to be 
the costly bottleneck in the Euler flow-simulation business. 

In the face of high investments in sufficient cost-efficient grid 
generation systems, strong efforts in the development of 
unstructured-grid approaches have been supported to circum- 
vent a possible deadlock between industrial task requirements 
and costs. An early view of emerging problems have led to the 
systematic development of finite-element methods for fluid 
flow problems at INRIA in France. However, it seems now that 
unstructured approaches, based on finite-volume schemes, are 
likely to achieve a similar success and acceptance in industry 
as the structured multiblock approaches have both now and in 
the past. In this context it may be of some interest that past and 
future trends in numerical techniques are discussed in recent 
over view^.^*^ 
The inviscid methods in industrial use today have reached a 
sufficient maturity and can be applied with confidence. There- 
fore, in Chapter 4 we have provided a limited but representa- 
tive selection of simulation results that spans a fairly wide field 
of practical applications. 

Highly accurate 2-D datum solutions past airfoils (section 4.1) 
and 3-D computational results of flows around wings (section 
4.2) are presented as well as the capability of the Euler equa- 
tions to capture vortical flows (section 4.3). The challenging 
aim of the 80's to treat complete air-vehicle configurations 
(section 4.4) has  been achieved by some of the codes described 
subsequently. Euler simulations address also many relevant is- 
sues to propeller and propulsion flow problems as outlined in 
section 4.5 and are of importance for design support of space 
transportation systems that operate at hypersonic speeds (sec- 
tion 4.6). Applications for 3-D unsteady flows are emerging 
(section 4.7) as well as early attempts at integrating Euler solv- 
ers into optimization procedures to improve the design for rele- 
vant design parameters (section. 4.8). 

It has to be pointed out that all results presented have been 
gained by the methods and codes described subsequently. De- 
spite the fact that the results obtained so far are impressive, in- 
dustrial needs and pressure to reduce costs will push develop- 
ments of those methodologies that no longer require the 
permanent interaction of CFD experts and, therefore, can be 
operated directly by the design team. Evidence that support this 
conclusion can already be seen in the code compilation. 

1. JAMESON A., SCHMIDT, W. and TURKEL, E. "Numeri- 
cal Solutions for the Euler Equations by Finite Volume Meth- 
ods Using Runge-Kutta Time Stepping Schemes", AIAA Paper 
81-1259, June 1981. 
2. "CFD - Part I ,  An Assessment of Critical Technologies," 
Aerospace America, pp. 16-61, January 1992. 
3. JAMESON A. "Numerical Wind Tunnel - Vision or Real- 
ity," AIM-Paper 93-3201, 1993. 
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3.1 CODES FROM NORTH AMERICA 

3.1.1 Overview 

This section tabulates computer codes that are being used to 
solve the Euler equations in the United States and Canada. The 
codes are developed and are available through university, gov- 
ernment, and industrial organizations. The majority of the algo- 
rithm developments have occurred at government research 
laboratories and through government-sponsored university re- 
search; the resulting codes, often general-purpose algorithms, 
are in the public domain and are widely disseminated. The 
codes developed by industry are often tailored to a specific 
need and are usually proprietary software. A general discussion 
of the distinguishing capabilities of the codes are discussed be- 
low. 

Discretization Technique 
In their basic discretization, the majority of the codes use the 
finite-volume technique or the closely related Galerkin finite- 
element method; the rest are finite-difference discretizations. 
Approximately half of the codes solve for the flow variables as 
cell-centered quantities, as opposed to cell-vertex or node- 
centered variables. For codes designed for unsteady flow simu- 
lations, the cell-centered finite-volume approach is most com- 
monly used. 

Grids 
In terms of grids, the recent trend has been toward the develop- 
ment of unstructured grid methods; for 2-D Euler applications, 
these methods are sufficiently developed that to be the method 
of choice, largely because of the generality and simplicity of 
the grid generation. For 3-D Euler applications, the 
unstructured-grid codes are demonstrated to be competitive 
with the structured-grid methods. The adaptive-grid method is 
incorporated in several of these codes (NS72, FUN2D, LaRC- 
1, WLLeggo) to increase the efficiency of the unstructured- 
grid codes considerably. The adaptive-grid codes generally use 
tetrahedral cells in three-dimensions, although the WL/Leggo 
code adapts through the continual refinement of hexahedral 
cells. The LaRC-1 code incorporates both temporal and spatial 
adaption capabilities for the time-accurate simulation of 3-D 
flows. 

The structured-grid methods have been under development and 
in use longer than the unstructured-grid methods for aerody- 
namic applications and are highly evolved. However, the gen- 
eration of a multiblock structured-grid generally requires con- 
siderably more man hours than the computer time required to 
generate the solution to either the Euler or Navier-Stokes equa- 
tions on the resulting grid. The majority of the codes listed are, 
in fact, multiblock structured-grid codes. The multiblock 
structured-grid codes are also those that form the basis for most 
general-purpose codes for solving the Euler or Navier-Stokes 
equations. The patched grid method is used in several general- 
purpose codes (CFWDE, F3D, UTRC-1) to simplify the task 
of grid generation for complex configurations and is used in 
several of the space-marching solvers (EMTAC-MZ, 
CFL3DE). The overset-grid method is less frequently available 
and is included in only two of the codes listed. The monoblock 
structured-grid codes are generally special-purpose codes, such 
as the shock-fitting GAUSS2D code or the finite-rate chemistry 
SPARK3D code. 

SpacelTime Discretization 
The majority of the codes use the method-of-lines technique to 
decouple the spatial discretization from the temporal discretiza- 
tion. The advantage to this approach is that the steady state is 
independent of the time step. The coupled space/time discreti- 
zation methods are predictor-corrector MacCormack schemes. 
The SPARK3D code is a predictor-corrector scheme with 
second-order-accurate temporal differencing and second- or 
fourth-order-accurate spatial accuracy. It is the only code listed 
with a spatial accuracy greater than second order. The temporal 
accuracy of the codes listed is no greater than second order. 

The spatial differencing methods of the codes can be roughly 
equally divided into central or upwind-biased discretization. 
The dissipation of the central difference schemes is universally 
patterned after the second- and fourth-difference operators in- 
troduced by Jameson, Schmidt, and Turkel. This discretization 
is used in the FLO-57/FLO-67/AIRPLANE series of codes de- 
veloped by Jameson, which are widely used in the aircraft in- 
dustry and form the basis of many of the codes listed, such as 
the TEAM and TLNS3D codes. The dissipation model most 
frequently used is a scalar (spectral radius scaling) type with 
coefficient similar to those introduced originally. The coeffi- 
cients have been modified in some codes to improve the shock- 
capturing performance at hypersonic speeds (TLNS3D), and 
several codes have the option of using dissipative operators de- 
signed on the basis of maintaining total-variation-diminishing 
(TVD) features for improving the capture of strong shocks 
(TEAM, MDTSL3D). The matrix dissipation technique is used 
in codes that also serve as Navier-Stokes solvers, such as in 
TLNS3D, in order to improve the resolution of the viscous lay- 
ers. 

The upwind-biased discretizations generally use the MUSCL 
approach of Van Leer. A coordinate-by-coordinate decomposi- 
tion of the hyperbolic equations is used in all of the codes 
listed. The locally 1-D Riemann problem solved at the interface 
is generally accomplished with the flux-vector splittings of 
either Van Leer or Steger-Warming, or the flux-difference 
splitting of Roe. The ZEUS code solves the full, locally 1-D 
Riemann problem at the interface. The flux-difference-splitting 
approach is preferred for codes that also serve as viscous solv- 
ers because the resolution of the boundary layers is improved. 

The use of shock-capturing schemes is nearly universal. Only 
one floating-shock-fitting code (GAUSS2D), which uses the 
nonconservative split-coefficient method as the basic discreti- 
zation, is listed for 2-D airfoil flows. The SCRAM code is also 
a nonconservative discretization that uses Riemann variables, 
but uses a shock-fitting technique for the bow shock wave. 
Several other space-marching codes (SWINT, ZEUS) use 
shock-fitting of the bow shock wave to improve the resolution. 

A hybrid discretization is used in several codes (MIM3D, F3D, 
LeRC-1) that combines central differencing in two directions 
with upwind differencing in a single direction. The hybrid dif- 
ferencing of MIM3D is designed to facilitate space-marching 
solutions by using an upwind discretization and an explicit 
space-marching schemes in the supersonic streamwise direc- 
tion; in the crossflow direction, a central-differencing discreti- 
zation with a Runge-Kutta explicit scheme with convergence 
acceleration is used. In the F3D and LeRC-1 codes, the upwind 
differencing is done in a single generalized-coordinate direc- 
tion in order to facilitate the introduction of two-factor implicit 
schemes. 

Nearly all of the codes listed are implicit schemes, if one ad- 
mits that the Runge-Kutta explicit schemes with residual 
mooting are actually implicit schemes, because the solution to 
a system of algebraic equations is required to advance the solu- 
tion in time. The Runge-Kutta scheme introduced by Jameson, 
Schmidt, and Turkel with residual smoothing and enthalpy 
damping is used widely in the central-difference codes listed. 
Other implicit codes use an approximation to the direct solu- 
tion of the linear system arising from backward-time discretiza- 
tion; the approximations arise from spatial factorizations 
(CFWD, USA, ARC3D, PARC3D, NASTD, FDUDI), eigen- 
value factorizations (EAGLE, CENS3D), or hybrid factoriza- 
tion relaxations (F3D, CFWDE, EMTAC/EMTAC-MZ, 
LeRC-1). Several codes listed use the diagonalization method 
of Pulliam and Chaussee to reduce the block inversions to sca- 
lar inversions for the tridiagonal or pentadiagonal equations as- 
sociated with the approximate factorizations (AF). In only two 
codes (ISES and FEMSAPZD) are direct solver used and both 
are limited to 2-D flows. 

Convergence Acceleratwn 
All of the codes use local time stepping to accelerate conver- 
gence to steady state. The multigrid technique is incorporated 
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CODE 

in many of the central-difference Runge-Kutta codes (FLO-57, 
FLO-67, TLNS3D, MIM3D), patterned after the methodology 
of Jameson which uses the full approximation scheme (FAS). 
The residual smoothing, enthalpy damping, and Runge-Kutta 
coefficients have been designed such that convergence has 
been demonstrated in O(N) operators for both inviscid and vis- 
cous flows. This basic approach is also used in the 
unstructured-grid code (NS72) developed by Mavriplis and in 
the FUN2D scheme. The multigrid scheme is also incorporated 
in the Lax-Wendroff UTRC-1 code, the MGFD code from 
Canada, and the implicit approximately factored CFWD code, 
all of which are multiblock structured-grid codes. 

Several of the codes (LaRC-1, CFL3D, EAGLE, FDWDI, 
AutoFEM) offer the option of local subiterations to improve 
the initial approximations to the linear systems that arise from 
single-step factorizations or relaxations. This feature is gener- 
ally used for codes that are used to solve unsteady flows. For 
codes that incorporate finite-rate chemistry models, the source 
terms that arise are treated implicitly to accelerate convergence 
and to overcome restrictive time-step limitations. 

Special Features 
The special features of the codes indicate unique or extensive 
application areas, flow models, boundary conditions. and/or so- 
lution algorithms. Many of the special features are highlighted 

DISCRET. GRIDS SPACWIME 
TECHNIQUE DISCRET. 

3.1.2 Presentation of Individual Codes 

ARC~-D 

F3D 

CENS3D 

in  the applications section that follows. The inclusion of vis- 
cous effects is generally accomplished through incorporation of 
the Navier-Stokes terms. The resulting discretization uses the 
methodology of the baseline Euler solver to treat the convec- 
tive and pressure terms; the viscous shear and heat transfer 
terms are treated with central differences. A number of these 
general-purpose codes are listed. As exceptions, the ISES code 
uses an integral boundary-layer model and can accommodate 
mildly separated flows through coupling of the integral equa- 
tions with the direct Euler solution method. The UTRC-l code 
uses a surface shear stress model to approximate viscous ef- 
fects. Several codes that have evolved from space-marching 
Euler algorithms also can serve as parabolized Navier-Stokes 
solvers (LaRC-2, CFLSDE); two codes (USA, GASP) are suf- 
ficiently general to allow time-dependent solutions to both the 
Euler and Navier-Stokes equations and supersonic space- 
marching solutions to the Euler and parabolized Navier-Stokes 
equations. The codes SPARK3D, USA, GASP, SCRAM, and 
MDNS3D have generalized equations of state and/or finite-rate 
chemistry capabilities that were developed for applications to 
high Mach-number flows. 

The majority of the codes are designed to recover steady-state 
solutions to the Euler equations. The ability to simulate un- 
steady flows, including dynamic forced-oscillation and aero- 
elastic coupling motions, are available in the codes F3D, 
CFL3D, LaRC-1, EAGLE and AutoFEM. 

3-D, multiblock-structured central differencing, 
finite-difference implicit three-factor AF 

scheme with diagonal or 
block inversions 

finite-difference patched and overset differencing in crossflow 
grids direction and flux-vector 

splitting in streamwise 
direction, implicit 
two-factor AF scheme 

3-D, multiblock-structured central differencing with 
finite-difference flux limited dissipation, 

3-D, multiblock-structured, hybrid: central 

implicit two-factor 
LU-SGS (symmetric 
Gauss-Seidel) scheme 

TECHNIQUE DISCRET. ACCELERATION FEATURES 

CONVERGENCE 
ACCELERATION I FEATURES 

residual smooihi6. 
multigrid 

local time stepping I Euler/Navier-Stokes I 33 

system, supersonic 
flow, fighter aircraft 
design applications 

solver I 

AIRPLANE 

local time stepping I EulerlNavier-Stokes I 34 

TECHNIQUE DlSCR ET. ACCELERATION FEATURES 
3-D, unstructured, central differencing, local time stepping, 30, 
finite-element, tetrahedrons Runge-Kutta explicit residual smoothing, 31 3 
cell-vertex scheme enthalpy damping 

solver 

- 
POC 

1 

- 

COMPANY / INSTITUTION: Grumman CorDorate Research Center 

finite-volume, 
cell-vertex 

MIM3D 

ing and implicit scheme 
in streamwise direction; 
central differencing, and 
Runge-Kutta explicit 
scheme in crossflow 
directions 

7 

2 
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1 TECHNIQUE 1 DISC R ET. I ACCELERATION I FEATURES I I I 

Runge-Kutta explicit 
scheme 

residual smoothing, 
enthalpy damping , 
multigrid 

multiblock-structured central differencing, local time stepping, 
Runge-Kutta explicit residual smoothing, 
scheme enthalpy damping , 

multiarid 

13, 
14 4 

finite-volume, 
cell-vertex 

FL0-67 

3 

- 

solver 

I: Lockheed Aeronautical Systems Company 
GRIDS S PAC VT IM E I CONVERGENCE I SPECIAL I REF. I POC 

FEATURES 
Euler/Navier-Stokes 
solver, turbine 
applications 

TECHNIQUE 

finite-volume, patched grids scheme or upwind residual smoothing, 

Runge-Kutta explicit 
scheme 

I I 

:OMPANY I INSTITUTION: NASA Langley 
CODE I DISCRET. I GRIDS CONVERGENCE 1 SPEC I A L I TECHNIQUE I DISCRET. ACCELERATION I FEATURES 

upwind biased 
(flux-difference-splitting) 
differencing, Runge-Kutta 
explicit scheme , 

3-D, unstructured, 
USM3D finite-volume, tetrahedrons 

cell-centered 

3-D, multiblock-structurec 
finite-volume, patched and/or 

CFUD cell-centered overset grids 

3-0, unstructured, 
NS72 finite-element, tetrahedrons, 

cell-vertex Spatially adaptive 

local time stepping, advancing-front grid 
residual smoothing generation 

local time stepping, 
multigrid 

upwind-biased 
(flux-vector- or 
flux-difference-splitting) 
differencing , t h ree-factor 
AF scheme with diagonal 
or block inversions 
central differencing, 
Runge-Kutta explicit 
scheme 

upwind (split coefficient 
method), implicit 
(diagonal) AF 
Predictor-corrector: 
second-/fourth-order 
spatial differencing, 
second-order temporal 
differencing 

Euler/Navier-Sto kes 
solver, aeroelastic 
applications 

local time stepping, 
residual smoothing, 
multigrid 

local time stepping floating shock 
fitting, porosity 
boundary conditions 

local time stepping, Euler/Navier-Stokes 

. . .  
2-0, monoblock-structure( 

GAUSS2D finite-difference 

3-D, monoblock 
finite-difference structured 

SPARK3D 
implicit source terms solver, finite-rate 

chemistry,extensive 
applications to 
corn bustordnoules 
EuledNavier-Stokes 
solver, aeroelastic 
coupling 
applications 
aeroelastic coupling 
applications 

5 

- 

local time stepping, 
residual smoothing, 
enthalpy damping, 
multigrid 

3-D, multiblock-structurec 
TLNS3D finite-volume, 

central differencing with 
scalar or matrix 
dissipation, Runge-Kutta 
explicit scheme 
upwind-biased 
(flux-vector- or 
flux-difference-splitting) 
differencing, Runge-Kutta 
explicit scheme or implicit 
Gauss-Seidel schemes 

cell-centered 

3-D, unstructured, 
finite-volume, tetrahedrons, 

(LaRC-1) cell-centered spatially and 
temporally adaptive 

finite-difference monoblock-structure( 
(LaRC-2) 

local time stepping, 
residual smoothing, 
enthalpy damping, 
subfierations 

upwind 
(flux-difference-splitting) 
differencing, explicit 
space marchinq 

local time stepping supersonic Euler or 
parabolized Navier- 
Stokes solver, 
axisvmmetric oDtion 

unstructured, 
triangles, spatially 
adaptive 

______ 

upwind-biased 
(flux-vector- or 
flux-difference-splitting) 
differencing, implicit 
red-black Gauss-Seidel 
schemes 

2-D, 
finite-volume, 

FUN2D cell-vertex 
multigrid solver 
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unstructured, 
tetrahedrons 

central-differencing with 
scalar or flux-corrected- 
transport dissipation, 
Runge-Kutta or 
Lax-Wendroff explicit 
scheme 

upwind-biased 
(flux-vector- or 
flux-difference-splitting) 
differencing, two-factor 
LU implicit scheme 

local time stepping, Euler/Navier-Stokes 
discrete solver, unsteady 
Newton-relaxation and aeroelastic 

applications, 
propeller models, 
turbine applications 

COMPANY 
CODE 

NASTD 

SCRAM 

MDTSWD 

MDNS3D 

MDFENS 

INSTITUTIO 
DISC R ET. 

TECHNIQUE 

finite-volume, 
cell-centered 

3-0, 

- 
POC 

- 

6 

SPECIAL I REF. CONVERGENCE 
ACCELERATION 

local time stepping 

FEATURES 
EuledNavier-Stokes 15 
solver 

predominantly 16 
supersonic space- 
marching scheme, 
fitted bow shock, 
real-gas equation of 
state 
Euler/Navier-Stokes 1 
solver 

(flux-difference-splitting. 
three-factor AF scheme 

scalar or TVD dissipation 
Runge-Kutta explicit 

3-0, 
finite-difference 

local time stepping 

3-D, 
finite-volume, 
cell-centered 

local time stepping, 
residual smoothing 

local time stepping 3-D, 
finite-volume, 
cell-centered 

3-D, 
finite-element, 
cell-vertex- 
based Galerkin 

local time stepping 

COMPANY / INSTITUTION: Mississippi State University I 
CODE I DISCRET. I GRIDS SPACVTIME CONVERGENCE SPECIAL I REF. I POC I 

TECHNIQUE I DISCRET. 1 ACCELERATION I FEATURES 
3-0, 
finite-volume, 
cell-centered 

mutiblock-structured 28, 
29 

7 EAGLE 

ational 
CODE I DISCRET. 1 GRIDS CONVERGENCE I SPECIAL SPACVTIME 

DISCRET. ACCELERATION I FEATURES 
upwind-biased (flux- 
difference-splitting) 
differencing, three-factor 
AF implicit scheme with 
diagonal or block 
inversions or explicit 
Runge-Kutta scheme 

local time stepping Euler/parabolized 
Navier-Stokes/ 
Navier-Stokes 
solver 

finite-volume, 
cell-centered 

USA 

upwind-biased (flux- 
difference-splitting) 
differencing, two-factor 
AF implicit scheme 

local time stepping predominantly 
supersonic Euler 
space-marching 
solver, finite rate 
chemistry 

monoblock-structure( 
finite-volume, 

upwind-biased (flux- 
difference-splitting) 
differencing, two-factor 
AF implicit scheme 

local time stepping predominantly 
supersonic Euler 
space-marching 
solver, finite rate 
chemistry 

multiblock-structured 

2OMPANY / INSTITUTION: United Technologies Research Center 
CODE I DISCRET. 1 GRIDS SPACVTIME I CONVERGENCE I SPECIAL I REF. I POC 

TECHNIQUE I 
13-0, I multiblock-structured 

FEATURES 

turbines &cascades 

ACCELERATION 
local time stepping, 
multigrid 

DISCRET. 
central-differencing, 
Lax-Wendroff explicit 
scheme cell-vertex 
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DISCRET. I GRIDS 1 CONVERGENCE 1 SPECIAL S PAC Vr l M E 

muitiblock-structured 

DISCRET. ACCELERATION FEATURES 
upwind-biased local time stepping, Euler/parabolized 
(flux-vector- or implicit source terms Navier-Stokes 
flux-difference-splitting) solver, finite-rate 
differencing, chemistry 
explicit/implicit relaxation 
scheme with block or 
diagonal inversions 

3-D, 
finite-volume, 
cell-centered 

multiblock-structured upwind-biased local time stepping Euledparabolized 
patched grids (flux-vector- or Navier-Stokes 

flux-difference-splitting) solver 
differencing, hybrid 
implicit relaxation 
scheme 

CODE 1 DISCRET. I GRIDS SPACVTIME I CONVERGENCE I SPECIAL I REF. I POC 

(LeRC-1) 

TECHNIQUE DISCRET. ACCELERATION 
3-D, multiblock-structured central-differencing, local time stepping 
finite-difference hybrid explicit/implicit 

scheme 

GRIDS SPACWIME CONVERGENCE 
DISCRET. ACCELERATION 

nonoblock-structured central-differencing, local time stepping, 
implicit three-factor AF subiterations 
with diagonal or block 
inversions 

nonoblock-structured 

unstructured, 
hexahedrons, 
adaptive capability 

upwind-biased local time stepping 
differencing (flux-vector- 
or flux-difference- 
splitting), Runge-Kutta 
explicit scheme or 
implicit-line Gauss-Seidel 
scheme 

upwind (Roe, Harten, 
Yee WO), Runge-Kutta 
explicit scheme 

local time stepping 

TECHNIQUE 
3-D, 
finite-volume, 
cell-centered 

GASP 

CFL3DE 

FEATURES 
aeroelastic and 
propellor 
amlications 

COMPANY / INSTITUTION: Naval Surface Warfare Center 
CODE I DISCRET. I GRIDS S PAC E i l  I M E 1 CONVERGENCE I I TECHNIQUE I I DISCRET.~ 1 ACCELERATION 

I I multiblock-structured explicit MacCormack local time stepping I predictor-corrector I space-marching, 
cylindrical coord., 
appl. to thin fins, 
fitted bow shock I Scheme 

13 
space-marching, 
fitted bow shock 

3-D. multiblock-structured second-order Godunov local time stepping 
ZEUS finite-volume predictor-corrector 

scheme 

SPECIAL 
TECHNIQUE FEATURES 
3-0, 
finite-difference 

Euler/Navier-Stokes 
solver FDWDI 

3-D, 
finite-volume, 
cell-centered 

Euler/Navier-Stokes 
solver 

FDL3DEl 

WULeggo 
3-D, Euler/Navier-Stokes 

solver finite-volume, 
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3-D, 
finite-volume, 
cell-centered 

COMPANY / INSTITUTION: Ecole Polytechnique / CERCA - Canada 1 

marching 

unstructured, 
moving, adaptive splitting, explicit time 

CODE I DISCRET. I GRIDS I SPACWIME -CONVERGENCE I SPECIAL 1 REF.1 POC I 

CODE 

I TECHNIQUE I I DISCRET. I 

DISCRET. GRIDS SPACErrlME CONVERGENCE SPECIAL REF. POC 
TECHNIQUE DISCRET. ACCELERATION FEATURES 

2-0, multiblockstructured central-differencinq. local time stemin9 EuledNavier-Stokes 55 

MC3 

finite-difference 
. .  I 

implicit two-factor AF solver 16 
scheme with diagonal 
inversions 

ACCELERATION 

local time stepping 

MGFD 

FEATURES 

evolving topology, 
electric arc 
interaction 

TECHNIQUE DISCRET. ACCELERATION FEATURES 
finite-volume, multiblock-structured power-law discretization, multigrid EuledNavier-Stokes 17 
cell-centered implicit scheme solver 

CODE I DISCRET. I GRIDS 

UTMBSD 

SPACWIME I CONVERGENCE I SPECIAL I REF. 1 POC 
TECHNIQUE 

3-D, 
finite-volume, 
cell-centered 

DISCRET. ACCELERATION FEATURES 
structured central-differencing, local time stepping, 45, 

Runge-Kutta, explicit residual smoothing, 46 18 
scheme enthalpy damping, 

multiarid 

COMPANY 
CODE 

CODE 1 DISCRET. I GRIDS 

FLO67WB 

SPACWIME I CONVERGENCE I SPECIAL I REF. I POC 

MBTEC 

FEMSAP2D 

' INSTITUTION: CANADAIR - Canada 
DISCRET. I GRIDS SPACWIME I CONVERGENCE I SPECIAL 1 REF. I POC 

- ~- ~ - ~~ 

TECHNIQUE DISCRET. ACCELERATION FEATURES 

2-D, monoblock steady equations, marching in artificial Euler/Navier-Stokes 
Galerkin unstructured, Newton linearization and viscosity solver, 19 

TECHNIQUE 

cell-vertex 

finite-element 

scheme 
multigrid 

bilinear elements direct solver axisymmetric coord. 
option 

I I I 

3-D, multiblock-structured central-differencing, local time stepping, 
finite-volume, (H-H), wing-body Runge-Kutta, explicit residual smoothing, 

CODE I DISCRET. 1 GRIDS 

I cell-vertex 

S PAC Wl M E I CONVERGENCE I SPECIAL I REF.] POC 

scheme 

Gresho's formulation with 
operator splitting 

enthalpy damping, 
multigrid I 

preconditioned- time-accurate 

solver elements 
conjugate gradient option, hierchical 20 

r MGAERO 

I I TECHNIQUE I I DISCRET. I ACCELERATION I FEATURES I I I 
unstructured, 

elements, 
tetrahedra or 
triangular elemens 
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3.1.3 Points of Contact 

Point of Contact (POC) No. 1: 

Code(s): ARC3D, F3D, CENS3D 
Name: T. Pulliam 
Dept.: Fluid Dynamics Division 

Mailing Address: NASA Ames Research Center 

Moffett Field, CA 94035-1000 
Tel.-Company: (415) 604-6417 
Fax-Company: (415) 604-1095 
References: 33 - 35 

Tel.: (415) 604-6417 

MS 202A-2 

Point of Contact (POCI No. 2: 

Code(s): MIM3D 
Name: F. Marconi 
Dept.: Aero Science Directorate 

Mailing Address: Grumman Corporate Research Center 

Tel.-Company: (516) 575-2228 
Fax-Company: (516) 575-7716 
References: 7 

Tel.: (516) 575-2228 

MS A08-35 
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3.2 CODES FROM FRANCE, BELGIUM, ITALY 
GREECE AND TURKEY 

3.2.1 OVERVIEW 

Among the 3-D Euler codes used in industry for complex con- 
figurations, a majority of them is of the multiblock structured 
grid type and practically all codes are derived from a finite- 
volume discretization. These codes, developed either directly 
by industrial companies or by research institutes, are generally 
implemented together with an independent grid generation sys- 
tem. 

It is noted that in France and in Belgium upwind schemes have 
been largely favoured for many years and that, for the case of 
space centered differencing, classical variants of the Lax Wen- 
droff scheme (SESAME, AEROLOG) or a more original one 
(WAVES) have been preferred over the Runge-Kutta central 
schemes of Jameson et a1 (e.g. Ref. 3.0,l). By contrast Jameson 
schemes are favoured in the 3-D codes used by industry in It- 
aly. 

However, the tendency for most of multi-application codes has 
been to progressively incorporate variants which are added to 
existing capabilities in order to provide the users with a larger 
choice according to their needs. Indeed, the different objectives 
of robustness, accuracy or low computer costs can strongly in- 
fluence the choice of the options available in a general code for 
various applications. 

Another common tendency is the extension of Euler codes to 
Navier-Stokes solvers by including viscous terms and turbu- 
lence models. 

After these general statements we will survey the various codes 
developed to solve the Euler equations by different companies 
or research laboratories. 

In France at ONERA (French National Aerospace Research 
Institute) several different Euler codes have been worked out. 
The SESAME code is a multidomain’** solver with or without 
overlapping of blocks based on a Lax-Wendroff-Ni finite- 
volume method of cell vertex type with a multigrid accelera- 
tion It has been recently completed with a Runge- 
Kutta time stepping scheme in a cell-centered discretization 
making the multiblock boundary treatment easier. Both internal 
(t~rbomachinery~’~) and external (transport aircraft7) flows can 
be computed with this code which has a closely related Navier- 
Stokes extension (CANARI). The WAVES code is more spe- 
cific and it is founded on the implicit Lerat scheme which has 
the unique feature of bein a centered scheme without any 
added artificial vis~osity.~~~’Its domain of application has been 
mainly helicopter rotor flows.’ Its fusion with the SESAME 
code has been recently achieved. 

Two other codes have reached a level of industrial use, both in 
the class of upwind methods. Firstly, the FLU3C code was de- 
veloped in close cooperation with the Missiles Division of 
AEROSPATIALE** specially for supersonic apptications.’3”6 
Mainly developed at ONERA and much more general with its 
multiblock capability and its large number of options (various 
numerical fluxes in a MUSCL approach, different multizone 
techniques, implicit time stepping, Navier-Stokes extensions) 
and its efficiency particularly for supersonic and hypersonic 
flows (space-marching, real gas effects), the FLU3M 
has a structure which allows both complex applications and the 
implementation of new modules at the research or development 
level. Other Euler codes can be quoted which are developed at 
ONERA in the Structures Department for aeroelasticity 
(EF3Dz7-=) and in the Propulsion Depart~nent.’~”’ 

AEROSPATIALE uses Euler codes provided by ONERA 
(FLU3C, SESAME, FLU3M) but has also made some develop- 
ment of codes such as CELGR3D in the Space and Defence 
Division. This solver is of unstructured type with hexahedra 
and upwind schemes and finds its domain of application in su- 
personic or hypersonic f l o ~ s . 3 ~ ” ~  

A Lax-Wendroff-Ni scheme was the basis of the development 
of a multiblock structured grid code, the AEROLOG code at 
MATRA DEFENSE34”’. This code with acceleration by multi- 
grid and implicit residual smoothing is used for steady or un- 
steady flows past missiles. 

The Euler code EUGENIE developed at DASSAULT AVIA- 
TION is the result of joint research studies374 with INRIA on 
unstructured grid methods and upwind schemes in a finite- 
volume node centered formulation. Multigrid and implicit ap- 
proach are combined in order to improve convergence. Mesh 
adaption either by displacement or refinement and hypersonic 
capabilities are available. It is worth to mention here the strong 
impetus given through Europe to the research on hypersonic 
flow solvers through the Hermes programme and the wokshops 
on h ersonic flows for reentry problems held at IN- 

Two research centers have been concerned in Belgium with the 
development of CFD codes, namely the von Karman Institute 
( V U )  and the Free University of Brussels (VUB). 

Many 2-D research codes were developed at VKI both for un- 
s t r u c t ~ r e d ~ ~ . ’ ~  and ~tructured’~”~ grids with a 3-D Euler code 

containing several options in particular with different 
upwind and various time stepping schemes. A noteworthy ac- 
tivity at VKI is the development of genuinely multidimensional 
upwind  scheme^'^"^. 
The EURANUS4B’o code developed at VUB in cooperation 
with FFA for ESA appears as a general software system capa- 
ble of solving both Euler and Reynolds-Averaged Navier- 
Stokes equations. This structured multiblock code includes 
both upwind TVD and central Jameson schemes with the FAS 
multigrid method. Special care has been paid to the data man- 
agement in order to give flexibility in the choice of the com- 
puter used. 

In Italy, industrial codes are developed by ALENIA in the To- 
rino and Naples centers. In ALENIA Defence Aircraft Divi- 
sion, the UES3D594* code is based on a generalization of a cen- 
tral differencing scheme of Jameson type for unstructured 
grids, using a node-centered finite-volume approach. Explicit 
Runge Kutta time stepping is used with convergence accelera- 
tion by local time stepping, residual averaging and enthalpy 
damping. Grid generation is done with the unstructured mesh 
generator M3DU giving the code the capability to calculate a 
complete aircraft. Another 3-D code is in use at ALENIA DAD 
which is of multiblock structured type. This code (MES3D62“3) 
contains a cell-centered scheme with central differencing and it 
is built with the same options as those described above for 
UES3D. 

A code in use at ALENIA GAT is ENSOLV.which has been 
developed in cooperation with NLR. This code is described in 
section 3.4 and offers features rather similar to those mentioned 
for MES3D. 

CIRA has also a 3-D Euler code ETF3D, a monoblock struc- 
tured grid solver with Jameson type scheme, dedicated to the 
calculation of transonic wing flows. The 2-D multiblock ver- 
sion of this code has been coupled with an integral boundary 
layer method in direct or inverse modem4’. Several other 2-D 
solvers have been developed upon upwind schemes with the 
BorelliPandolfi Rieman-solver in a finite-volume cell-centered 
formulation. These research codes are aimed at solving super- 
sonic or hypersonic flows with real gas  effect^.^^-^' 
In the same line of studies for hypersonic problems it is worth 
mentioning the research codes developed at the University of 
Roma. These 2-D Euler codes are based on upwind schemes of 
different types, a generalization of the Moretti scheme with ap- 
plication to reactive flows 71-74 a hybrid of non-conservative 
and conservative  scheme^^'-^^ and a Godunov-type scheme in 
predictor-corrector form~la t ion .~~ 

In Greece at the National Technical University of Athens 
(NTUA) several Euler codes have been developed aiming on 

~1~.1~~9.31,32.51.Mi ,70,72 

M3D55-57 
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external as well as internal (turbomachinery applications) aero- 
dynamic flow problems. 

The 2-D single-block, structured finite-difference EU2D78-80 
code is mainly used for investigations of unsteady, internal and 
external flow problems in the range from the subsonic to super- 
sonic regime. The code is based on a central discretization 
scheme including an artificial dissipation operator providing 
the necessary upwind bias. Both, time and space discretization 
are of 2nd order accuracy. An alternating direction implicit 
(ADI) procedure is used for time integration. The code has a 
moving mesh capability to treat appropriate unsteady problems. 

As a further development the 2-D multiblock finite-volume 
code NSWIND81-85 is mentioned. The code has various discre- 
tization options like a modified upwind flux vector splitting as 
well as the flux difference splitting method including the 
Godunov-type Riemann-solver approach of Eberle (see also 
Ref. 3.3,22-31). By a multi-level mesh sequencing and multi- 
grid technique convergence is accelerated to steady state. A 
composite zonal solution technique, in which for various flow 

SPACVTIME I CONVERGENCE I SPECIAL I REF. I POC 

3.2.2 Presentation of Individual Codes 

multiblock-structured 
overlapping 
subdomains 
(Chimera technique) 

regions different governing equations are solved is also noted. 
The code is also able to operate in time-accurate mode. The im- 
plicit operator is inverted by an unfactored method using 
Gauss-Seidel relaxation for solution. 

A 2-D and 3-D multiblock finite-difference code ATHENAM 
essentially based on Jameson’s central-differenced operator for 
convective terms including the blended second and fourth dif- 
ference dissipation operator is applied mainly for turbomachin- 
ery flows. For time integration an explicit fractional step or an 
implicit AD1 method may be used. The code has also a Navier- 
Stokes capability. 

upwind explicit/implicit local time stepping 
MUSCL schemes (van 
Leer, Roe, Osher, 
Approximate Riemann 
solvers), block implicit 
AD1 factorization scheme 

In Turkey a 3-D, cell-vertex, finite-volume code, called 
ER3D8’, is developed at the ROKETSAN company, which is 
based on a hexahedral elementary control volume and an un- 
structured data structure to enhance flexibility. Time stepping 
is based on second order accurate Lax-Wendroff scheme. Ap- 
plications are covering the subsonic to supersonic flow regime. 

EuledNavier-Stokes 
solver, space 
marching capability, 
equilibrium real gas, 
two species gas 

1 3-21 

1 TECHNIQUE I I DISCRET. I ACCELERATION I FEATURES I I 

DISCRET. I GRIDS 

SESAME 

WAVES 

SPACVTIME I CONVERGENCE I SPECIAL I REF. I POC 

either Lax-Wendroff-Ni or 

cell-centered stepping scheme 

TECHNIQUE 
3-D, 
finite-volume, 

finite-volume, 
cell-centered 

DISCRET. ACCELERATION FEATURES 
monoblock, second order upwind local time stepping space marching 22-26 
structured explicit MUSCL scheme capability for 

Lax-Wendroff-type (Lerat 
extension) , implicit stage 
with AD1 factorization 

node centered 

local time stepping, 
multigrid (Ni-method) or 
implicit residual 
smoothing (Lerat) 

local time stepping 

with van Leer flux vector 
splitting industrial application: 

supersonic flows, 

missiles, launchers, 
etc. 

I 1-7 
Navier-Stokes I extension: CANARI 

FLU3M 

3-D. 
finite-volume, 
node centered 
or cell-centered 

1 

COMPANY 

I 
FLU3C 

CEWGR 

3-D, 
finite-volume, 
cell-centered 

1 

- 

I: Aerospatiale - France 
GRIDS SPACElTlME I CONVERGENCE I SPECIAL I REF. I POC 

I DISCRET.- I ACCELERATION I FEATURES 1 I 
hexahedra Sanders-Prendergast 

flux splitting scheme or 
Osher Riemann solver, 
time stepping by two step 
Runge-Kutta or linearized 
implicit Jacobi relaxation 

time stepping I equiibrium real gas 
option 

32-33 IT 
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CODE I DISCRET. I GRIDS SPACElrlME I CONVERGENCE I SPECIAL I REF. I POC 

3-D, Galerkin 
formulation, 
finite-volume, 
node centered 

unstructured upwind MUSCL 
multielement, mesh extension, 
refinement and generalized implicitly 
mesh deformation linearized Osher 
capability Riemann-solver 

multigrid reactive flow 
simulation option, 
edge based data 
structure 

34-35 3-D, multiblock-structured Lax-Wendroff one step multigrid (Ni-method), steady or time 
finite-volume, explicit scheme, steady implicit residual accurate mode, 

AEROLOG cell-vertex or time accurate mode smoothing (Lerat) inertial or non- 
inertial frame of 
reference, two 
species capability 

3 

~~ I I TECHNIQUE I I DISCRET. I ACCELERATION I FEATURES I ~ I I 
36-47 

EUGENIE 4 

COMPANY 
CODE t GRIDS 

TECHNIQUE DISCRET- I SPECIAL CONVERGENCE I 
DISC R ET. 

Roe upwind TVD, Yee 
symmetric TVD or central 
Jameson scheme with 
blended second and 
fourth difference 
dissipation operator, 
explicit Runge-Kutta and 
SOR / SLOR implicit 
relaxation time stepping 
schemes 

ACCELERATION 
local time stepping, 
multigrid (FAS), 
implicit residual 
smoothing for 
Runge-Kutta 

FEATURES 
EuledNavier-Stokes 
solver, 
node coincidence at 
block interfaces 

3-D, I multiblock-structurd 
finite-volume, 

EURANUS 

I: Alenla Aeronautica, DAD - Italy 
GRIDS SPACE/TlME I CONVERGENCE DISCRET. 

TECHNIQUE 
SPECIAL 

FEATURES DISC RET. ACCELERATION 
unstructured, local central Jameson scheme local time stepping, 
mesh refinement with blended second and residual smoothing, 

fourth difference enthaly damping 
dissipation, explicit 
Runge-Kutta time 
stepping scheme 

multiblock-structured central Jameson scheme local time stepping, 
with blended second and residual smoothing, 
fourth difference enthaly damping 
dissipation, explicit 
Runge-Kutta time 
stepping scheme 

3-D, 
finite-volume, 
node-centered UES3D 

3-D, 
finite-volume, 
cell-centered MES3D 
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, ENSOLV 

I 

COMPANY / INSTITUTION: Alenia Aeronautica G.A.T. - Italy 1 
3-D, 
finite-volume, 
cell-centered 

I CODE 1 DISCRET. I GRIDS SPACWIME CONVERGENCE SPECIAL I REF. I POC I 
TECHNIQUE I DISCRET. I ACCELERATION I FEATURES 

multiblock-structured 
block-to-block mesh 
refinement and 
adaptation 

central Jameson scheme 
with blended second and 
fourth difference 
dissipation, explicit 
multistage Runge-Kutta 
time stepping scheme 

local time stepping, 
implicit residual 
averaging, enthalpy 
damping, multigrid -full 
& semi-coarsening 

EuledNavier-Stokes 
solver, 
part of CFD system 
ENFLOW 
(see section 3.4) 

in 
sect. 
3.4: 
21 -41 

8 

DISCRET. I GRIDS SPAC W l M  E 
TECHNIQUE DISCRET. 

finite-volume, with blended second and 
cell-centered fourth difference 

dissipation, explicit 
Runge-Kutta time 
stepping scheme 

CONVERGENCE I SPECIAL I REF. I POC 
ACCELERATION FEATURES 

FAS multigrid 64-65 

2OMPANY / INSTITUTION: National Technical University of Athens (NTUA) - GREECE 
CODE I DISCRET. I GRIDS SPACE/TIME I CONVERGENCE I SPECIAL I REF. 1 TECHNIQUE I 1 DISCRET. 1 ACCELERATION I FEATURES 1 

EUPD 

2-D, axisymm., single block- second order central 
finite-difference structured discretization, artificial 

dissipation scheme, 
approximate factorization 
procedure, ADI, second 
order time accuracy 

time accurate code, 
moving mesh 
capability 

78-80 

I 

2-D, axisymm.. multiblock-structured, upwind flux vector (WS) local time stepping, time accurate 81 -85 
finite-volume, block-by-block grid splitting and flux multi-level procedure, option, zonal 
cell-centered refinement, difference splitting (FDS) multigrid 

NSWIND discretization, Eberle’s 
Riemann-solver, second 
order MUSCL scheme, 
implicit unfactored 
Gauss-Seidel relaxation 

with blended second and 

dissipation, explicit 
fractional step and 
implicit AD1 time 
inteqration scheme 

2-0, 3-D, and multiblock-structured central Jameson scheme local time stepping 
quasi 3-D, 
finite-difference fourth difference ATHENA 

methods capability, 
real gas option 

solver, 
quasi 2-D 
streamtube turbo- 
machinery option 

- 
86 

3.2.3 Points of Contact 

Point of Contact (POC) No. 1: 

Code(s): SESAME, WAVES, FLU3M, FLU3C 
Name: J.P. Veuillot 
Dept.: Aerodynamics Department 
Tel.: (+33) 1 46 73 42 68 
Mail ing Address: ONERA 

BP 72 
F-92322 Chlt i l lon Cedex 
France 
(+33) 1 46 73 40 40 
(+33) 1 46 73 41 41 

Tel.-Company: 
Fax-Company: 
References: 1 - 26 

Point of Contact (POC) No. 2: 

Code(s): CEL3GR 
Name: F. Dubois 
Dept.: Applied Mathematics Department 
Tel.: (+33) 1 34 92 28 57 
Mailing Address: AEROSPATIALE Espace et Defense 

BP 2 
F-78133 Les Mureaux Cedex 
France 
(+33) 1 34 92 12 34 
(+33) 1 34 92 39 15 

Tel.-Company: 
Fax-Company: 
References: 32 - 33 

10 

- 



122 

Point of Contact (POC) No. 3: 

Code(s): AEROLOG 
Name: M. Bredif 
Dept.: Aerodynamics Department 
Tel.: f+33) 1 34 88 37 47 
Mailing Address: hlk4 DEFENSE 

37 Avenue Louis Breguet 
F-78146 Velizy Cedex 
France 
(+33) 1 34 88 30 00 
(+33) 1 34 65 12 15 

Tel.-Company: 
Fax-Company: 
References: 34, 35 

Point of Contact (POC) No. 4: 

Code(s): EUGENIE 
Name: B. Stoufflet 
Dept.: Aerodynamics Department 
Tel.: 
Mailing Address: DASSAULT AVIATION 

78 Quai Marcel Dassault 
F-92214 Saint Cloud 
France 
(+33) 1 47 11 40 00 
(+33) 1 47 11 49 01 

(+33) 1 47 11 34 22 

Tel.-Company: 
Fax-Company: 
References: 36 - 47 

Point of Contact ( P O 0  No. 5: 

Code(s): EURANUS 
Name: C. Lacor 
Dept.: Computational Fluid Dynamics Group 
Tel.: (+32) 2 641 23 79 
Mailing Address: Vrije Universiteit Brussel (VUB) 

Pleinlaan 2 
B-1050 Brussel 
Belgium 
(+32) 2 641 23 91 
(+32) 2 641 28 80 

Tel.-Company: 
Fax-Company: 
References: 48 - 50 

Point of Contact (POC) No. 6: 

Code(s): M3D 
Name: H. Deconinck 
Dept.: Computational Fluid Dynamics Group 
Tel.: (+32) 2 358 19 01 ext 237 
Mailing Address: Von Karman Inst. for Fluid Dynamics (VKI) 

72 Chaussee de Waterloo 
B-1640 Rhode - St - Genese 
Belgium 
(+32) 2 358 19 01 
(+32) 2 358 28 85 

Tel.-Company: 
Fax-Company: 
References: 55 - 57 

Point of Contact (POC) No. 7: 

Code(s): MESSD, UES3D 
Name: M. Borsi 
Dept.: Defence Aircraft Division 
Tel.: (+39) 11 718 1017 
Mailing Address: ALENIA 

Tel.-Company: (+39)11718 1789 
Fax-Company: (+39)11718 1078 
References: 59 - 63 

Corso Marche 41 
1-10146 Torino 

Point of Contact (POC) No. 8: 

Code(s): ESOLVB 
Name: P. L.Vitagliano 
Dept.: G.A.T. 
Tel.: (+39) 081 845 3459 
Mailing Address: ALENIA 

Tel.-Company: (+39) 081 845 3459 
Fax-Company: (+39) 081 845 2142 
References: 

Viale dell' Aeronautica 
1-80038 Pomgliano d'Arco (NA) 

(see sect. 3.4, ref. 21 - 41) 

Point of Contact (POC) No. 9: 

Code(s): ETF3D 
Name: P. de Matteis 
Dept.: Aerodynamics 
Tel.: (+39) 823 623311 
Mailing Address: C.I.R.A. 

Tel.-Company: (+39) 823 623111 
Fax-Company: (+39) 823 622060 
References: 64,65 

Via Maiorise 
1-81043 Capua 

Point of Contact POC) No. 10: 

Code(s): EU2D, NSWIND, ATHENA 
Name: S. Tsangaris 
Dept.: Aerodynamic Laboratory 

Mailing Address: National University of Athens (NTUA) 
Tel.: (+30) 1-77-13060 

P.O. Box 64070 
157 10 Zografou 
Greece 

Tel.-Company: (+30) 1-77-13060 
Fax-Company: (+30) 1-77-06545 or 1-77-84582 
References: 78 - 86 
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3 3  CODES FROM GERMANY AND 
SWITZERLAND 

3.3.1 Overview 

In the following the essential Euler codes from Germany and 
Switzerland are presented. Most codes being developed in in- 
dustry follow a structured approach whereby either a flexible 
monoblock or a general multiblock strategy is applied to ac- 
complish the treatment of complex geometries including full 
configurations of aircraft, missile and space vehicles. To 
achieve a reasonable level of productivity with respect to flow 
computations most industries have interfaced their codes to a 
dedicated grid generation system providing all necessary 
block-interface informations for the solver. Another observa- 
tion which can be made is the fact that almost all general pur- 
pose Euler-codes can also be used for viscous simulation by 
solving the Navier-Stokes equations. 

Research and development of new approaches concerning dis- 
cretization schemes and solution techniques take place mainly 
at universities and research establishments. From there a broad 
variety of codes are reported which mostly are limited in their 
ability to treat geometrically complex problems or physical 
models. 

To characterize the major individual Euler-codes from industry 
and research institutions by their underlying basic schemes and 
the intended range of applications corresponding short descrip- 
tions are provided below. The presentation is ordered accord- 
ing to the institutions where codes were developed. 

MELINA: 
At the DASA Airbus Division company essentially the codes 
developed at the DLR-Institute for Design Aerodynamics in 
Braunschweig are used and implemented as the code baseline. 

However further development and refinement for production 
purposes takes place within the company. 

The finite-volume cell-vertex code MELINA is the result of 
these efforts. The code is multiblock-structured and is applied 
mostly to transonic problems for transport aircraft de~ign ."~  
MELINA is based on an explicit 5-stage Runge-Kutta time 
stepping scheme and a cell-centered discretization combined 
with the blended artificial dissipation operator as proposed by 
Jameson et a1.4 Convergence acceleration is provided by a full 
approximation (FAS) multigrid method whereas increased spa- 
tial accuracy can be achieved by a block-oriented local grid re- 
finement capability. Recently the code was extended to a 
Navier-Stokes solver. 

Apart from routine tasks as the flow simulation around wings 
and wing/body configurations emphasis is on support for lami- 
nar wing design, integration of propulsion systems and flap 
track fairing design. 

Grid generation is tailored to design oriented tasks and is pro- 
vided by the INGRID system, an in-house development. 

IKARUS : 
At the DASA Regional Turboprop Division, which is formed 
by the Dornier Luftfahrt company, the general purpose code 
IKARUS is in continuous development since 1984. The code 
development was initiated from and based essentially on the 
work of Jameson and The 3-D version of that basic 
approach was Jameson's FLO-57 from which an early mul- 
tiblock version was derived by Jameson and Leicher' forming 
the basis for Dornier's IKARUS code. 

The structured multiblock code IKARUS is based on a cell- 
centered, finite-volume discretization for solving the steady 
and unsteady, compressible 3-D Euler and Navier-Stokes equa- 
tions in integral form, thus providing numerical solutions to in- 
viscid and viscous flow problems in almost arbitrary geome- 

tries. The treatment of complex geometries is facilitated by an 
advanced multiblock techniqui: allowing a general segmenta- 
tion of block faces leading to a high flexibility concerning the 
application, the connection and the built-up of any types of grid 
block topologies. Explicit and implicit integration schemes are 
available based on the same cell-centered spatial discretization 
assuring identical steady state results. 

Explicit integration is performed by a linear multistage Runge- 
Kutta-type time-stepping scheme. Convergence acceleration is 
provided by several techniques like local time-stepping, im- 
plicit residual averaging, enthapy forcing and a FAS multigrid 
scheme, offering V- and W-cycle options. 

Implicit steady state solutions are also enabled by an approxi- 
mate Newton-method operating on the steady state equations. 
The corresponding relaxation method is called the LU-SSOR 
scheme which can be used together with the multigrid option to 
enhance convergence. 

From early 3-D flow simulations past wings and wingbody 
 combination^"^ the code was also a lied to inviscid flow 

as vortical flows past delta%&?-16 Moreover IKARUS was 
successfully applied for great number of flow problems ranging 
from in the low subsonic (incompressible) up to the hypersonic 
flow range" which includes also simulations based on the 
equilibrium real gas as~umption.'~*'~ 

The flow solver IKARUS is logically complemented by an in- 
teractive grid generator called DOGRID which allows a fast 
and easy generation of complex blockstructured 

problems around inlet'"" fan RP configurations as well 

EUFLEX, INFLEX. ROTFLEX: 
Essentially based on the work of Eberle at DASA Military Air- 
craft Division (formerly MBBRJF) a 3-D Euler code, called 
EUFLEX, is continuously developed since 1984. In the mean- 
time the code has achieved a high level of theoretical sophisti- 
cation. For these reasons the code is applied with great success 
in practical aerodynamic project work as a general purpose de- 
sign tool not only in the military aircraft division but also at the 
corresponding missile, helicopter and propulsion divisions of 
DASA. 

EUFLEX is based on a monoblock, finite-volume method for 
solving the integral form of the conservation laws for inviscid 
flow. A "Godunov-type" differencing approach is followed, 
enforcing the efficient solution of the Riemann problem at each 
cell face for definition of interface states. 

Because of the very special approach some essential aspects of 
the method are described in more detail. The basic theory2'-" 
starts the development by considering the Riemann problem in 
the non-conservative, differential form of the Euler equations 
resulting in an exact, iteration-free solution to the Riemann 
problem. However the basic approach has the disadvantage that 
into the corresponding solution of the primitive solution vector 
at the interface also entropy values from right or left states en- 
ter. In practical computations this fact lead to non-negligible 
entropy errors. To overcome that problem an successful at- 
tempt is made to find a solution of the Riemann-problem in 
terms of the conservative variables. In the development of the 
so-called "homogeneous" Riemann-solver properties and as- 
sumptions of acoustic wave theory are exploited. Essentially 
the isentropic transport of entropy along streamlines is used to 
define appropriate interface pressure values. Using the homo- 
geneous property of the Euler fluxes then allows the transfor- 
mation to the corresponding Riemann solution in terms of con- 
servative variables. 

Into the relations defining the conservative variables at the in- 
terface as a solution of a locally one-dimensional Riemann- 
problem, values for the conservative variables associated with 
the individual eigenvalues have to be determined. This is per- 
formed by a third order interpolation between left and right 
states, A symmetric weighted average of corresponding eigen- 
values between left and right states are taken. By that the 
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scheme is kept fully differentiable, preventing any glitches in 
the solution whenever eigenvalues are changing sign. This 
process is called the "characteristic flux averaging" scheme. 
Higher order accuracy is achieved by the MUSCL-approach in 
concert with an improved van Albada-flux limiter. Correspond- 
ing non-oscillator extrapolation formulas are given and tested 
up to fifth order.' 

In the original version of the code time integration to steady 
state was performed by an explicit scheme supported by the lo- 
cal time stepping technique. Acceptable convergence rates, 
however, could only be realized with point relaxation 
schemes.'6 Some problems are reported concerning possible 
singular implicit block operator matrices for high aspect-ratio 
cells.25 As a remedy a local transformation to non-conservative 
variables is proposed, which avoids this ill-conditioning prob- 
lem. 

The scheme outlined so far was applied to a number of real life 
test cases, with the simulation of the inviscid flow around a 
complete fiEhter aircraft as an exceptional highlight at the time 
published.- A special effort was made to increase code robust- 
ness for hypersonic  application^?^^'^"^ This was due to the ob- 
servation that the method produced pre-shock spikes during the 
shock movement process for very strong shocks resulting in 
possible negative pressures. This is overcome by a generalized 
flux formulation in which the Riemann-flux vectors and the 
Beamwarming split flux vectors are combined such, that at 
strong shocks the Riemann-fluxes are switched off smoothly 
and the more stable Beamwarming fluxes are activated. The 
success of the proposed approach is demonstrated by results of 
intake" and nozzle29v30 flow computations. A comprehensive 
description of the overall azproach is given in the textbook of 
Eberle, Hirschel and Rizzi. 

The treatment of complex configurations is enabled by a 
monoblock technique in which for each cell the desired bound- 
ary conditions are specified. Also available is multiblock ver- 
sion of the EUFLEX-code. A Navier-Stokes version, derived 
from the EUFLEX-code is developed as NSFLEX3*. 

Code development was also extended to the time-accurate 
treatment of unsteady flow problems. These efforts led to the 
unsteady version, called INFLEX. 3-D applications were made 
to oscillating, but rigid wings in pitching m~t ion .~ ' "~  For time 
integration an implicit unfactored relaxation scheme is em- 
ployed, which allows a dramatic shortening of computation 
time as compared to the explicit scheme. Careful studies are 
conducted concerning the effect of different convergence crite- 
ria controlling the iteration process during one time step on the 
so1ution.3~ 

2 

At the EUROCOPTER Deutschland company, a joint company 
of AEROSPATIALE and DASA in the helicopter business EU- 
FLEX is modified and adjusted to rotorcraft  problem^.^'*^^ The 
resulting ROTFLEX code includes an unsteady and time- 
accurate computation capability.36 

DAINV-SPACE, DAINV-SPLIT. DAVIS-VOL 
In the DASA Space Infrastructures Division the corresponding 
aerodynamic department is working for more than a decade on 
inviscid flow problems essentially related to supersonic exter- 
nal and nozzle type flows. In recent years strong emphasis is on 
hypersonic reentry and cruise problems. Hypersonic flow prob- 
lems are emerging from the European and national projects fo- 
cussing on the reentry vehicle HERMES and the two-stage 
space transportation system SANGER. Continuous efforts have 
led to the development of a series of Euler codes, called 
DAINV-SPACE, DAINV-SPLIT and DAVIS-VOL, which 
will be characterized subsequently. 

DAINV-SPACE37-40 is being developed since many years and 
belongs to the class of supersonic space-marching codes. The 
numerical approach, originally based on a central-difference 
scheme, has been developed to a split-matrix finite difference 
method solving the quasiconservative and steady-state form of 
the inviscid conservation laws. The outer shock wave is fitted 

to the outer computational region (shock fitting approach) 
whereas shock waves embedded inside the shock layer are cap- 
tured. The code is able to deal with perfect and equilibrium gas 
 condition^.^' An upwind discretization approach is used relying 
on sign-splitting of the associated flux Jacobians. Some efforts 
are made to accomplish the eigenvalue decomposition with an 
appropriate set of eigenvectors. Originally space integration 
was performed with an explicit Runge-Kutta scheme. For sta- 
bility reasons each space integration step is now considered as 
the steady state solution of a time-dependent problem. Some 
emphasis is put on the formulation of the wall boundary condi- 
tion, which is carried out in the frame of characteristic com- 
patibility relations. Results are presented for supersonic flows 
past a cone at incidence as well as for a delta wing and a ge- 
neric configuration of a hypersonic space transportation sys- 
tem.39'40 

The DAINV-SPLIT"'48 code is based on a finite-difference 
method for solving the time-dependent and quasi-conservative 
form of the 2-D and 3-D Euler equations. A diagonalisation of 
the flux Jacobians is performed to allow the proper implemen- 
tation of a second order upwind scheme according to the sign 
of the associated An explicit multi-stage 
Runge-Kutta time integration scheme is used in concert with 
local time stepping to achieve steady state solutions. Solid wall 
boundary conditions are based on characteristic compatibility 
relations. The code has the capability for shock and shear layer 
fitting and can  treat flows under perfect, equilibrium as well as 
non-equilibrium gas conditions. First applications of the 
method are reported to nozzle flow problems4 and flow simu- 
lations past the forebody as well as complete configurations of 
a reeentry vehicle under equilibrium real gas ~onditions.4'.~ 

The DAINV-SPLIT code is also extended to account for non- 
equilibrium c h e r n i ~ t r y . 4 ~ ~ ~ ~  Chemical non-equilibrium condi- 
tions add to the conservation equations for inviscid flow addi- 
tional equations accounting for the mass conservation of the re- 
acting gas species. For low pressures, representative for reentry 
situations, the specfic enthalpy of the various species can be 
considered as only depending on temperature, whereas the 
mixture of reacting gases is assumed to behave according to 
Dalton's law. So formally the non-equilibrium code option has 
been developed along similar concepts .already proved for ideal 
or equilibrium real gas applications. The well-known Park's 5 
speciedl 7-reactions model without ionization is used and inte- 
grated by an explicit multistage time-stepping scheme. How- 
ever, if in the chemistry model the various reaction time scales 
are smaller by orders of magnitude compared to the character- 
istic time scales of the locally frozen mixture then the chemis- 
try is determining locally the time step size for the whole sys- 
tem of equations. In this situation the code switches to a 
point-implicit scheme for time integration of the source term 
appearing in the species mass conservation equations. 

Interestingly DAINV-SPLIT has an option to operate also with 
an enthalpy correction technique improving the convergence 
rate to steady state as well as code robustness in transient solu- 
tions stages. This is due to the fact that a constant freestream 
total enthalpy is enforced in the whole flowfield. An additional 
option is called "pseudo space marching". By that acronym the 
possibility is understood to march over the flowfield in stream- 
wise direction with a stack of several grid planes. This tech- 
nique provides a steady state solution for a specific grid plane 
in the middle of the stack. Assuming supersonic flow and a 
proper implementation of a pure upwind scheme the final 
steady state flowfield solution should be identical to a global 
solution approach where at each time step a sweep over the 
whole solution domain has to be carried out. Results are pre- 
sented for non-equilibrium flows past a cylinder azd a sphere 
which are compared to available experimental data. 

For shock fitting a general formulation of the Rankine- 
Hugoniot relations was developed valid for ideal, equilibrium 
and nonequilibrium real gas in a co-moving coordinte system.@ 
A procedure is outlined to reduce the general shock relations 
resulting in an efficient numerical scheme. Results are pre- 
sented for the flow past a complete HERMES configuration 
under non-equilibrium conditions at Mach 
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DAVIS-VOL49 is a numerical method for solution of the 2-D 
and 3-D strong conservative form of the integral conservation 
laws. The approach follows the finite-volume time stepping 
concept. The numerical fluxes are evaluated according to a 
symmetric TVD scheme essentially proposed by Yee with the 
definition of the eigenvector matrices at the cell faces accord- 
ing to Roe. An implicit point or line Gauss-Seidel relaxation 
scheme is adopted for time integration. In the associated im- 
plicit operator the fluxes are approximated to first-order accu- 
racy using the Roe-averaged, sign-splitted flux Jacobians. 

To accelerate convergence to steady state the local time step- 
ping technique is applied together with a so-called "switch-off" 
scheme, which controls the iteration process such that only 
those cells are updated where a change of the solution vector 
beyond some prescribed criteria can  be anticipated. As an op- 
tion for supersonic flow problems the DAVIS-VOL code is 
also able to operate in the "pseudo-marching'' mode (described 
previously), leading to a considerable gain in computational ef- 
ficiency for approppriate problems. This is demonstrated for 
the flow past a HERMES forebody under ideal and equilibrium 
real gas, assumptions. Using the pseudo-marching technique a 
gain of a factor 10 is claimed compared to the global solution 
approach. Applications are also presented for the 3-D interact- 
ing flow of a two-fin model configuration. 

The natural extension of the scheme is also presented to handle 
viscous flow problems by solution of the Navier-Stokes equa- 
tions!' 

MTU-EULER 
In the DASA Jet Engine Division (MTU Munich) quasi 3-D 
fin S1 blade-to-blade and S2 hub-to-ti0 olanes) as well as full 
3-D Euler codes are under developmeni dnce 1985. 

The quasi 3-D approach as described by Happel et al.50 is based 
on the 2-D approximation of the conservation laws along 
stream surfaces taking into account the streamwise mean radius 
of curvature of the surface as well as the stream tube thickness. 
For flow simulation past rotor blades the conservation laws are 
formulated in a rotating frame of reference The numerical 
scheme is based on a finite-volume cell-vertex discretization 
in which the convective fluxes are approximated to first order 
in space. An explicit first order time-stepping scheme is used to 
integrate the unsteady equations to steady state. Convergence 
acceleration is provided by a local time-stepping and by a mul- 
tigrid technique. A so-called "damping surface technique" is 
applied to provide a post-correction of the results to enhance 
the spatial accuracy. The method is applied to transonic flow 
problems past turbine stator and rotor blades as well as to com- 
pressor cascades. 

A full 3-D code extension is presented by Happel and Stu- 
berts" aiming on flow simulations past complete blade rows. 
Interesting comparisions between experimental data and results 
from 3-D Euler and Navier-Stokes computations in the cascade 
rig of an inlet guide vane of a low pressure turbine are reported 
by Niehuis et al.52 

CATS, CEVCATS: 
In the German Aerosoace Research Establishment IDLR) svs- 
tematic development kork on Euler codes as tools kor airo6y- 
namic design is performed mainly at the DLR-Institute for De- 
sign Aerodynamics in Braunschweig. 

Euler code development has started there in 1983/84 and was a 
major focus point for theoretical work over the years. The basic 
ap roach was the finite-volume concept outlined by Jameson et 
al.& which led to a 3-D, block-structured, cell-centered and 
central-differe ced code, called CATS, described by Radespiel 
and K ~ O I I ? ~ ~ ~ '  Convergence acceleration of the baseline 
Runge-Kutta-type linear multistage time-stepping scheme for 
steady state problems is achieved by local time-stepping, en- 
thalpy damping and implicit residual averaging techniques. 
Flexibility of the blockstructured code has been increased sub- 

sequently by introduction of a mesh embedding technique al- 
lowing the change of mesh density by a factor of 2 for portions 
of a mesh block. Corresponding improvement of the method 
concerning efficiency in terms of computer time for specified 
accuracy was demonstrated by RadespieP4 for a transport air- 
craft wingbody combination. 

A cell-vertex variant of the CATS-code, called CEVCATS, 
was introduced by RossowS6 and Rossow et al.57 CEVCATS 
has been developed further to a general purpose fluid simula- 
tion package for the whole speed range, also handling viscous 
flows as a Navier-Stokes solver. Application examples are 
found in Kroll et al? where a variety of aerospace configura- 
tions are analyzed operating in the transonic as well as super- 
sonic flow regime. Transport aircraft type wingbody as well as 
generic canard-delta wing configurations were treated success- 
fully in subsonic and transonic flow, whereas a generic fighter 
type forebody, a waverider type delta wing and an early con- 
figuration of the European HERMES reentry vehicle were 
studied at supersonic flow conditions. 

A FAS multigrid technique for acceleration of convergence to 
steady state is implemented into CEVCATS based on the work 
of Radespiel and Swanson5'. A discussion on experiences with 
multigrid techniques applied to hibh supersonic flow fields 
(Ma<lO) can be found in Kroll et al. A method for proper im- 
plementation of the baseline multigrid techniques in the multi- 
block framework of CEVCATS is discussed by Atkins.6' 

In recent years CEVCATS has found widespread application in 
aerodynamic design problems. The work of Schone et 
reflect this effort whereas CEVCATS and an implementation 
of the symmetric TVD discretization scheme of Yee is com- 
pared6' with respect of accuracy and shock resolution issues for 
a flow around blunted biconic at Mach 6. A comparison of two 
Euler codes, namely CEVCATS and FLU3C, is presented in 
Schone et al? FLU3C is developed at ONERA and is based on 
a flux-vector splitting technique according to van Leer. Exten- 
sive and detailed comparisons have been made for supersonic 
flow computations around a vertical tail alternate reentry vehi- 
cle configuration to the baseline HERMES concept. 

Another topic of continuous research are transport aircraft de- 
sign problems. Due to increasing importance of optimal air- 
frame integration of present and future high bypass ratio jet en- 
gines systematic -experimental and theoretical studies were 
conducted to investigate the position as well as the influence of 
thrusted and unthrusted jet engine oeration on aerodynamic 
wing characteristics. Hoheisel et al. used a turbo-powered 
simulator for low speed experiments at Mach 0.17 for basic in- 
vestigations. A corresponding theoretical study taking into ac- 
count a future ultra high bypass jet engine with considerable 
higher nacelle diameter as compared to existing engines was 
analyzed by Rossow". The inviscid simulation of an isolated 
thrusted high-bypass jet engine was considered by Rudnik.66 
Whereas in such inviscid simulations the influence of py- 
lon/nacelle combinations on aerodynamic wing performance 
due to pure displacement effects can be studied quite success- 
fully, interference effects due to viscous jet stream mixing 
processes are neglected. An integrated attempt of several com- 
putational tools including CEVCATS for possible design of a 
laminar flow nacelle is reported by Radespiel et aI.6' 

Research on inviscid flow analysis for slender wings by Euler 
methods is a major topic since 1986. Kumar and Das@ studied 
subsonic and transonic flow around a cropped delta wing con- 
figuration defined for purpose of Euler code validation as part 
of the UsEuropean vortex flow experiment project. The CATS 
code was applied to investigate sharp and round leading edges 
up to high angles of attack producing vortex flow breakdown. 
Extensions of that work to a coupled canard/delta configuration 
using CEVCATS is presented subsequently by Scherr and 
Das.69 In an attempt to clarify the role of dissipation in Euler 
solutions of different codes for vortical flows over delta wings 
Longo'" made systematic comparisons concerning the effect of 
mesh density and level of artificial dissipation in the CATS/ 
CEVCATS codes, respectively the level of truncation errors in 
the EUFLEX code on global and local data. Detailed compari- 
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sions between experimental and theoretical results for close- 
coupled canard-wing and double-delta wing are presented by 
Longo and Das7’. It was demonstrated that primary vortices 
shed from leading edges are captured quite well. However 
cross-sectional total pressure surveys show distinct quantitative 
differences between simulation and experiments which may be 
attributed to viscous effects and missing resolution of vortex 
sheets. 

Thorough discussions on the most suitable numerical formula- 
tions related to rotating frame of reference for flow simulations 
past propellers and hovering rotors can be found in K ~ o I I . ~ ~  The 
corresponding rotorcraft version of the CATS code was applied 
to steady state problems around two-blade  propeller^.^^ 

An optimum design method where the CEVCATS code was 
coupled to an optimization algorithm has been developed by 
S ~ h O n e . ~ ~  The method was applied to the design of conical and 
general 3-D wings at supersonic speeds. 

Recent efforts at DLR are related to the enhancement of spatial 
accuracy by the use of high resolution  scheme^^"^^ and grid re- 
finement ~ t r a t e g i e s . ~ ~  Systematic work is underway concerning 
the improvement of the various algorithmic elements of the 
multigrid technique.” 

Beside development efforts directed to the CEVCATS code 
some e orts aiming on unstructured methods have to be men- 
tioned. JJ 

GRIDS 

Euler-Codes from Research Institutions and Universities 

DLR-Institute for Theoretical Fluid Mechanics: 
At the DLR-Institute for Theoretical Fluid Mechanics in Got- 
tingen no continuous efforts are made for development of a 
general purpose Euler-code. However basic work on high reso- 
lution discretization schemes by Muller et aLm and correspond- 
ing applications to hypersonic waverider problems“ are re- 
ported. 

3-D, 
finite-volume, 
cell-vertex 

3.3.2 Presentation of Individual Codes 

multiblock-structured, 
blockwise mesh 
refinement 

MELINA 

central differencing, 
Jameson’s second and 
fourth difference 
dissipation operator, 
explicit Runge-Kutta 
scheme 

local time stepping, Euler/Navier-Stokes 
implicit residual solver, 
smoothing, enthalpy actuator b.c., 
damping, multigrid shock capturing 

IKARUS 

COMPANY / INSTITUTION: DASA - RegiOF 

3-0, multiblock-structured, 
finite-volume, blockwise mesh 
cell-centered refinement, arbitrary 

block face 
segmentation 

1 CODE I DISCRET. I GRIDS 
TECHNIQUE 

EPFL-Ecole Polvtechnique Federal de Lausanne: 
At the EPFLInstitut des Machines Hydrauliques et de 
Mechanique des Fluides in Lausanne cooperative efforts to- 
gether with CERFACS (France) are made towards the develop- 
ment of a 3-D general purpose multiblock finite-volume Euler 
codes2 including equilibrium and non-equilibrium real gas ca- 
pability?3-85 The cell-centered discretization approach is based 
on Jameson’s aritificial dissipation operator4 and for time inte- 
gration an explicit linear multistage time-stepping scheme is 
applied. Another. direction of Euler-code application concerns 
incompressible flow simulation problems in water turbines.86s8 

lnstitut fur Strahlantriebe und Turboarbeitsmaschinen. RWTH- 
Aachen: 
At the RWTH-lnstitut fur Strahlantriebe und Turboarbeits- 
maschinen efforts are made for development of a general pur- 
pose finite-volume code aimin at steady and unsteady turbo- 
machinery flow  application^!^-^^ Besides structured also 
unstructured codes are under d e ~ e l o p m e n t . ~ ~  

lnstitut fur Aero- und Gasdvnamik, Universitat Stuttgart: 
At the Institut fur Aero- und Gasdynamik main efforts are di- 
rected to development of a finite-volume Euler code aiming at 
rotorcraft flow  application^?^'^^ Basis for development is the 
EUFLEX code from the DASA Military Aircraft Division. 

Institut fur Raumfahrtsvsteme, Universitat Stuttgart : 
At the Institut fur Raumfahrtsysteme main efforts are directed 
to development of a 3-D finite-volume Euler code aiming at 
turbomachinery flow 

Institute for Commter Anplications. Universitat Stuttgart: 
At the Institute for Computer Applications serious efforts are 
underway for development of a general purpose finite-element 
EulerMavier-Stokes code includin uilibrium and non- 
equilibrium real gas capabilities.98.’ F z u s  point are reentry 
flow applications related to the European reentry vehicle pro- 
ject HERMES. 

Division / Bremen - Germany I 
SPACE/TIME CONVERGENCE SPECIAL 1 REF. I POC 1 

DISCRET. 1 ACCELERATION 1 FEATURES 
1-3 

1 

SPACE/TIME CONVERGENCE SPECIAL REF. 
DISC R ET. ACCELERATION FEATURES 

central differencing, 
Jameson’s blended 
second and fourth 
difference dissipation 
operator, Runge-Kutta 
explicit or LU-SSOR 
implicit scheme 

local time stepping, Euler/Navier-Stokes 
implicit residual solver, 
smoothing, enthalpy actuator b.c., 
damping, multigrid shock capturing, 

equilibrium real gas 
option 

7-21 
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2-D & 3-0, 
finite-difference 

2-0 & 3-D, 
finite-difference 

>OMPAN! 
CODE 

EUFLEX 

GRIDS 

single block, 
structured 

mulliblock-slructured 

INFLEX 

local time stepping 

local time stepping 

' INSTITUTION: DASA - Military Aircraft Division / Ottobrunn - Germany 
DISCRET. I GRIDS SPACVTIME I CONVERGENCE 

shock fitting, 
quasi-conservative 
Euler formulation, 
perfect gas, 
equilibrium and 
non-equilibrium real 
gas option 
Euler/Navier-Stokes 
solver, 
equilibrium real gas 
option 

TECHNIQUE DISCRET. ACCELERATION 
3-D, 
finite-volume, flux vector and Godunov 
cell-centered -type) differencing, point 

monoblock-structured upwind (combined Steger local time stepping 

Gauss-Seidel implicit 
scheme 

CODE I DISCRET. I GRIDS 

3-0, monoblock-structured upwind (combined Stegei 
finite-volume, flux vector and Godunov 
cell-centered -type) differencing, point 

Gauss-Seidel implicit 
scheme, 1st order Euler 
backward time operator 

SPACVTIME I CONVERGENCE 1 SPECIAL I REF. I POC 

SPECIAL 

I TECHNIQUE I 

FEATURES 

DISCRET. I ACCELERATION I FEATURES I 

Navier-Stokes 
version: "NSFLEX", 
shock capturing, 
equilibrium real gas 
option 
time accurate 
version of EUFLEX 

finite-volume, 
cell-centered 

flux vector and Godunov 
-type) differencing, point also time-accurate 
Gauss-Seidel implicit version available 

blockwise mesh Jameson's blended 
refinement second and fourth 

difference dissipation 
operator, explicit 
Runge-Kutta time 
stetmina scheme 

COMPANY 

DAINV- 
SPACE r SPLIT 
DAINV- 

finite-volume, 

SPACVTIME 
DISCRET. 

upwind flux-vector 
splitting scheme, 
Runge-Kutta explicit 
space/time integration 
scheme 
upwind (flux-vector 
splitting) differencing , 
Runge-Kutta explicit time 
stepping scheme / point 
Gauss-Seidel implicit for 
species source terms 

central (symmetric WO) 
differencing, implicit Euler 
backward time stepping, 
symmetric Gauss-Seidel 
relaxation 

unn - Germany 
CONVERGENCE I SPECIAL 1 REF. 
ACCELERATION FEATURES 

method, shock 
fitting, equilibrium 
gas option 

41-48 

- 
49 

- 

- 
POC 

- 

5 

CATS 

implicit residual - 
smoothing, enthalpy 
damping, multigrid 

. "  

7 
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(ITS-EZ~~~) 

TECHNIQUE DISCRET. 
3-0, multiblock-structured. central (Jameson's 
finite-volume, blockwise mesh blended second and 
cell-vertex refinement fourth difference 

3-D, single block, upwind (Harten-Yee) local time stepping shock capturing 80,131 
finite-difference structured TVD scheme, 3-factor AF 8 

implicit Beam-Warming 
scheme 

CEVCATS 

DISCRET. I GRIDS 

dissipation operator, 
symmetric TVD scheme) 
and upwind differencing, 
explicit Runge-Kutta time 
steppina scheme 

SPACWIME I CONVERGENCE I SPECIAL I REF. I POC 

ACCELERATION 
local time stepping, 
implicit residual 
smoothing, enthalpy 
damping, multigrid 

multiblock-structured 

solver, 
actuator bc., 
shock capturing, 
equilibrium real gas, 
general config. 
capability 

central differencing, 
Jameson's blended 
second and fourth 
difference dissipation 
operator, explicit 
Runge-Kutta time 
stepping scheme 

7 

shock capturing, 
equilibrium and 
non-equilibrium real 
gas option 

I I I I 

82-88 

- ~- - ~~ 

TECHNIQUE I I DISCRET. I ACCELERATION I FEATURES I - I - -  
3-D, 
finite-volume, 
cell-centered 

local time stepping, 
residual averaging 

9 

33.3 Points of Contact 

Point of Contact (POC) No. 1: 

Code(s): MELINA 
Name: S. Rill 
Dept.: EFlO 

Mailing Address: Deutsche Aerospace Airbus GmbH 
D-28183 Bremen 
Germany 

Tel.-Company: (+49) 421-538-01 
Fax-Company: (+49) 421-538-3320 
References: 1 , 2  

Tel.: (+49) 421-538-4499 

Point of Contact (POC) No. 2: 

Code@): IKARUS 
Name: 
Dept.: LREV3 

Mailing Address: Dornier Luftfahrt GmbH 
D-88039 Friedrichshafen 

H. Rieger / S. Leicher 

Tel.: (+49) 7545-84203 1-84819 

Germany 
Tel.-Company: (+49) 7545-80 
Fax-Companv: (+49) 7545-8441 1 

Point of Contact (POC) No. 3: 

Code(s): EUFLEX, INFLEX 
Name: A. Eberle 
Dept.: LME211 

Mailing Address: Deutsche Aerospace AG 
Tel.: (+49) 89-607-24912 

Military Aircraft Division 
D-81663 Munchen 
Germany 

Tel.-Company: (+49) 89-607-0 
Fax-Company : (+49) 89-607-26481 
References: 22 - 34 

Point of Contact (POC) No. 4: 

Code@): ROTFLEX 
Name: H. Stahl-Cucinelli 
Dept.: DEE41 

Mailing Address: Eurocopter Deutschland GmbH 
Tel.: (+49) 89-607-23681 

D-81663 Munchen 
Germany 

Tel.-Company: (+49) 89-607-0 
Fax-ComDanv: 89-607-26888 References: . i - 2i 
References: - %,36 
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Point of Contact (POC) No. 

Code(s): DAINV-SPACE, DAINV-SPLIT, 
DAVIS-VOL 

Name: C. Weiland 
Dept.: RIT73 

Mailing Address: Deutsche Aerospace AG 
Tel.: (+49) 89-607-28473 

Space Infrastructures 
D-81663 Munchen 
Germany 

Tel.-Company: (+49) 89-607-0 
Fax-Company: (+49) 89-607-26481 
References: 37 - 49 

Point of Contact ROC) No. 6: 

Code(s): MTU-EULER 
Name: H.-W. Happel 
Dept.: EWTS 

Mailing Address: MTU Motoren- und Turbinen-Union 
Munchen GmbH 
D-80991 Munchen 
Germany 

Tel.: (+49) 89-1489-2535 

Tel.-Company: (+49) 89-14 89-0 
Fax-Company: (+49) 89-150 2621 
References: 50 - 52 

Point of Contact POC) No. 7: 

Code(s): 
Name: 
Dept.: 
Tel.: 
Mailing Address: 

Tel .-Company: 
Fax-Company : 
References: 

CATS, CEVCATS 
N. Kroll/ R. Radespiel 
Numerische Aerodynamik 

Deutsche Forschungsanstalt fur 
Luft- und Raumfahrt e.V. (DLR) 
lnstitut fiir Entwurfsaerodynamik 
Lilienthalplatz 7 
D-38108 Braunschweig 
Germany 
(+49) 531-295-0 
(+49) 531-295-2320 
53 -75  

(+49) 531-295-2440 / -2488 

Point of Contact (POC) No. 8: 

Code(s): ITS-EULER 
Name: W. Kordulla 
Dept.: 
Tel.: 
Mailing Address: Deutsche Forschungsanstalt fur 

(+49) 551 709-2274 or -2275 

Luft- und Raumfahrt e.V. (DLR) 
Inst. fur Theoretische Stromungsmechanik 

Bunsenstrde 10 
D-37073 Gottingen 
Germany 

Tel.-Company: (+49) 551 709-1 
Fax-Company: (+49) 551 709-2446 
References: 80,81 

SM-SM 

Point of Contact (POC) No. 9: 

Code(s): EPFL-EULER 
Name: C. Bergmann 
Dept.: 
Tel.: (+21) 693-3503 or -3504 
Mailing Address: Swiss Federal Institue of Technology 

Institut de Machines Hydraulique 
et de MCchanique des Fluides 
BLtiment DME 
EPFL-Ecublens 
CH-1015 Lausanne 

Switzerland 
Company: (+21) 693-1111 

References: 82 - 88 
Fax-Company: (+21) 693-3646 or -2525 

Point of Contact (POC) No. 10: 

Code(s): RWTH-EULER 
Name: H.E. Gallus 
Dept.: 

Mailine Address: Rheinisch-Westfalische 
Tel.: (+49) 241 80-5500 

Y 

Technische Hochschule Aachen (RWTH) 
Institut fur 
Strahlantriebe und Turbomaschinen 
Templergraben 55 
D-52062 Aachen 
Germany 

Tel.-Company: (+49) 241 80-5504 
Fax-Company: (+49) 241 8888-229 
References: 89 - 92 

Point of Contact POC) No. 11: 

Code@): IAGS-EULER 
Name: S. Wanner - 
Dept.: 
Tel.: 1+49) 71 1-685-3580 
Mailing Address: Univ'eritat Stuttgart 

lnstitut fiir Aero- und Gasdynamik 
Pfaffenwaldring 21 
D-70569 Stuttgart 
Germany 

(+49) 71 1-685-3438 or -3500 
Tel.-Company: (+49) 711-685-1 
Fax-Company: 
References: 93 - 95 

Point of Contact (POC) No. 12: 

Code(s): IRS-EULER 
Name: H.-H. Friihauf 
Dept.: 

Mailing Address: Universitat Stuttgart 
Tel.: (+49) 71 1-685-2382 

Institut fur Raumfahrtsysteme 
Pfaffenwaldring 31 
D-70569 Stuttgart 
Germany 

Tel.-Company: (+49) 711-685-1 
Fax-Company: (+49) 711-685-3596 or -3500 
References: 96 - 97 

Point of Contact (POC) No. 13:. 

Code(s): 
Name: 
Dept.: 
Tel.: 
Mailing Address: 

Tel.-Company : 
Fax-Company : 
References: 

ICA-EULER 
J. Argyris 

Universitat Stuttgart 
Institut fur Computer-Anwendungen 
Pfaffenwaldring 27 
D-70569 Stuttgart 
Germany 

(+49) 711-685-3669 or -3500 
98,99 

(+49) 711-685-3594 

(+49) 711-685-1 
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3.4 CODES FROM GREAT BRITAIN, 
THE NETHERLANDS and SCANDINAVIA 

3.4.1 Overview 

The majority of solution techniques routinely used to solve the 
Euler equations are based upon the Lax-Wendroff (structured 
grids), Taylor-Galerkin (unstructured grids), and Jameson ex- 
plicitly added artificial dissipation with Runge-Kutta time step- 
ping methods (structured and unstructured grids). Structured 
grids are primarily used but recently there appears to be grow- 
ing interest within industry for the use of unstructured grids 
with their inherent advantages for adaptation techniques and 
flexibility for complex geometrics. 

Major uses of the multiblock grid and flow procedure for com- 
plex three-dimensional geometries .include the National Aero- 
space Laboratory (NLR), The Netherlands, with the code 
ESOLVB, British Aerospace (BAe - Commercial Aircraft) with 
the code EJ83, SAAB, Sweden, with the code MULTEUL and 
CFD noway, Norway, with the code ThreeFlow. For the solu- 
tion techniques it is interesting to note that they all use the clas- 
sic Jameson'.' procedure with the main features of cell- 
centered central differencing, explicit local time stepping, 
added artificial dissipation with combinations of second and 
fourth order differences. 

In the United Kingdom, the British Aerospace code EJ833 has 
multigrid convergence acceleration and a viscous capability 
with options for viscous simulation with a coupled boundary 
layer based upon 2D strip theory or full 3D boundary layer the- 
ory. In addition to their multiblock code, British Aerospace 
have developed a suite of codes using the Jameson solution 
technique for particular applications. The code EJ61, which is 
applicable to two-dimensional aerofoils has a full adaptation 
capability with both point refinement and node movement, 
EJSO and EJ53 are specifically used for intakes and forebody 
geometries, EJ63 and EJ65 for wing/body configurations. The 
latter two codes, in  common with the multiblock code EJ83, 
have a viscous coupled capability. 

The Defence Research Agency (DRA), Farnborough, UK have 
developed several different codes for the solution of the Euler 
equations. The technique used to simulate the flows over iso- 
lated wings is based on the work of Ni4 and enhanced by Hall' 
and relies upon the Lax-Wendroff method with a multigrid ca- 
pability. Their unsteady capability uses an implicit Beam and 
WarmingG scheme with central differencing approximations 
and an artificial dissipation approach. 

Oxford University, UK have developed Euler solvers for both 
two and three-dimensional geometries which utilise a two pa- 
rameter Lax-Wendroff time stepping with node based multigrid 
and Jameson artificial viscosity  term^.^.^ The solvers are appli- 
cable to single block grids, in particular, C-H grids for isolated 
wings. 

In isolation within the survey, Swansea University and Compu- 
tational Dynamics Research, Swansea, UK have developed the 
codes BRITWD, FLITE3D, TG and HYBRID each of which is 
based upon unstructured triangular and tetrahedral grids."-" 

The code BRITE3D and FLITE are both based upon the Jame- 
son and have a face and side based data structure 
implementation, respectively. BRITE3D contains a tetrahedral 
grid generator based upon the Delaunay and 
the FLITE3D has an advancing frontIgenerator. The FLITE3D 
solver also has a multigrid capability . Both have grid adapta- 
tion capabilities based upon the methods of grid remeshing, 
point refinement and the use of sources. The code TG is based 
upon the Taylor-Galerkin formulation on unstructured 

All the codes BRITE3D, FLITE3D and TG are appli- 
cable to a wide range of aerodynamic configurations. The code 
HYBRID" has a cell-centered Runge-Kutta time stepping al- 
gorithm which is applicable to unstructured, structured and hy- 
brid grids. These grids can be automatically generated and both 

the grid and flow are executed through a menu driven MOTIF 
user interface. The code also has a viscous capability with op- 
tions of a Baldwin-Lomax and k-E turbulence models and grid 
adaptation on any grid type can be implemented using point re- 
finement, point derefinement, remeshing, source adaptation 
and point movement. It is primarily used in the research envi- 
ronment. 

In The Netherlands, at the National Aerospace Laboratory 
NLR, the software system ENFLOW for the calculation of 
Euler flows around complex aerodynamic configurations is 
available. The system may also be used for the calculation of 
Navier-Stokes flows. In particular, ENFLOW is applied for the 
computational analysis of the aerodynamics of flows around 
transport aircrafts, including the aerodynamic effects of propel- 
lers and/or jet-engines. Based on early technical concepts-'-" 
the system was implemented in cooperation with FOKKER of 
The Netherlands. ALENIA and CIRA, both of Italy, partici- 
pated in the development of an early version of the system. 
ENFLOW as a CFD user environment is operational on a di- 
versity of hardware and available in various releases for indus- 
try and research institutions. 

To treat the aerodynamic flow simulation task efficiently with 
the ENFLOW system a decomposition into five subtasks has 
been accomplished. By such a design it became possible to iso- 
late critical topics like geometry manipulation and grid genera- 
tion from the other CFD 

The five subtasks are the geometric surface modelling and ap- 
propriate modification of aerodynamic surfaces, the decomn- 

the software ENDOMO, the multiblock mesh genera- 
the flow calculation with the flow solver EN- 

so~v29.30.32,35,37,38 and finally the graphical interactive data 
analysis and flow vis~al izat ion.~~ The various code elements 
within the system are interfaced by standarized file formats. 

The multiblock grids which are accepted by the flow @v,e; 
ENSOLV should have the following characteristics.- 
Blocks are patched to each other, without gaps or overlaps. 
Block-faces are allowed to be sub-structured or segmented, 
which gives additional flexibility concerning the handling of 
complex boundary conditions. The code ENSOLV has also the 
capability for a block-by-block grid adaptation using point re- 
finement. 

ENSOLV is based on a cell-centered finite-volume discretiza- 
tion using explicit second and fourth difference dissipation op- 
erators for treatment of convective terms according to Jame- 
son1q2. Integration to steady state is performed by various 
multi-stage Runge-Kutta schemes. Convergence speed is es- 
sentially accelerated by a multigrid procedure offering full or 
semi-coarsening options. As much as 14 different kinds of so- 
called external boundary conditions are accepted, including in- 
let, outlet and propeller boundary conditions, the latter being 
modelled as actuator disk. Second order accuracy is maintained 
also across discontinuous block interfaces by special block- 
coupling routines. 

The ENFLOW system has been applied successfully to a mani- 
fold of inviscid flow problems. Reported are simulations Tast 
transport aircrafts4' including propeller slipstream effects OS3' 
and past delta 

NLR is developing also an unstructured flow solver, called 
D2EULU. It is based on a finite-volume cell vertex discretisa- 
tion with flux difference ~ p w i n d i n g ~ ~  and second order accu- 
racy extension according to the MUSCL ~cheme.4~ Grid gen- 
eration based on triangles is automated and requires minimal 
user interaction. The code is highly vectorized and is planned 
to be extended to a 3D capability. 

The Aerospace Faculty of Delft University of Technology, The 
Netherlands, has developed an Euler solver for three- 
dimensional g e ~ m e t r i e s , ~ ~  which is an extension of a 2D 
solver* from CWI, The Netherlands. This code4' uses several 

sition of the flow domain into subdomains or b l o ~ k s ~ ' - ~ ~ ~ ~ ' + '  by 
tion2S.?G,27,28 
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coupling to 2D b.1. 

upwind-biased discretization techniques (van Leer, Osher and 
Roe) and an unfactored relaxation method within a multigrid 
solution procedure. The solver is applicable to single block 
structured grids. 

In Sweden, SAAB relies essentially on their multiblock code 
MULTEUL47 for the treatment of general three-dimensional 
complex configurations. The code is able to handle general 
flow simulations past complete missile, aircraft and aerospace 
vehicles. As indicated by the name, the MULTEUL code has 
built in a multigrid convergence acceleration technique. Mesh 
generation is based on a commercial system, called ICEM- 
MULCAD. It should be noted that MULTEUL has also a vis- 
cous option enabling Navier-Stokes simulations. 

In addition to MULTEUL a general space-marching code, 
called GEMINI'@ is in productive use at SAAB for treatment of 
supersonic flow problems. According to a specific time/space 
integration technique the code circumvents the integration step 
size restrictions posed by stability reasons. Essentially the un- 
known steady state at the new space position is determined by 
solution of a time-dependent problem. Which means that the 
originally hyperbolic problem in space is converted to a prob- 
lem being hyperbolic in time. This approach leads to improved 
algorithmic stability and makes the extension to parabolized 
Navier-Stokes solver straightforward. The grid is structured 

3 

3.4.2 Presentation of Individual Codes 

difference dissipation 
operator, explicit 
multistage Runge-Kutta 
scheme 

and is automatically generated plane-by-plane with an alge- 
braic interpolation procedure at each section, as needed. There- 
fore, the code GEMINI is applied for inviscid and viscous flow 
simulations past general missiles and aircraft configurations 
with emphasis on aerodynamic flows around wings, rudders, 
inlets and diverters. 

In Norway a key institution in the field of flow simulation is 
the company "CFD norway as". The company has developed a 
complete package consisting of grid generators, flow solvers 
and visualization tools for the treatment of 2-D and 3-D flows 
in complex geometries that are based on a structured mul- 
tiblock approach. 

The grid generation package uses algebraic and elliptic-type as 
well as combined techni ues for generating blockstructured 
grids!' The flow solvers are based on a cell-centered finite- 
volume discretization using the switched second and fourth or- 
der dissipation operators according to Jameson' for approxi- 
mating the convective terms. Time integration is performed 
with a linear 3-stage Runge-Kutta scheme. The flow solvers in- 
clude also options for solving either the thin-layer or the full 
Navier-Stokes equations with several zero-equation and two- 
equation eddy viscosity turbulence models. Options for operat- 
ing the code in a rotating frame of reference as well as with 
real gas assumptions are available. 

5 3  

central differencing, 
Jameson-type and fourth 
difference dissipation 
operator, explicit 
multistage Runge-Kutta 
scheme 

2OMPANY / INSTITUTION: BRITISH AEROSPACE (BAe) - Commercial Aircraft Division / United Kingdom 

local time stepping 

CODE 

€5550,563 pure 
Euler, €563,€565 
viscous coupling to 
2D strip theory and 
full 3-D b.1. 

W61 

3 EJ5O 
EJ53 
EJ63 
EJ65 

multiblock-structured 

EJ83 

central differencin , 
Jameson-type an] fourth 
difference dissioation 

local time stepping 

DISCRET. 
TECHNIQUE 

CODE 

2-0, 
finite-volume 

DISCRET. GRIDS 
TECHNIQUE 

3-D, 
finite-volume 

SPACVTIME 
DISCRET. 

Riemann solver. explicit 
multistage Runge-Kutta 
scheme 
explicit Lax-Wendroff 
scheme 

explicit Lax-Wendrofl 
scheme 

3-D, 
finite-volume 

CONVERGENCE SPECIAL 
ACCELERATION FEATURES 

local time stepping 

local time stepping, isolated wing 
multigrid applications 

local time stepping, 
multigrid 

b c of jet orifice 

REF. 

- 
4, 5 

- 
4, 5 

- 
6 

- 
4, 5 

time stepping 

POC 

2 

ROWUlTON 
2-0, single grid, 
finite-volume structured, 0-type 

operator, explic'it 
multistage Runge-Kutta 
scheme 

EM JR 
3-D, single grid, 
finite-volume structured 
cell-vertex cartesian box 

explicit Lax-Wendroff 
scheme 

HALL- I3-D, I single grid, 

L n O N  
SALMOND. finite-volume, structured, C-H type 

cell-vertex 

local time stepping, 
multigrid 

I I 
12-Dl3-D I structured 

multiblock-structured 

SPECIAL 1 REF. I POC 
FEATURES 

viscous coupling to 
2 0  strip theory and 
full 3-0 b.1. 1 

central differencing, 
Jameson-type second 
and fourth difference 
dissipation operator, 
implicit Beam-Warming 
scheme 

1 

airfoils (2-D) and 

app ications (3p) 
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: OXFORD UNIVERSITY / Oxford - United Kingdom 
GRIDS SPAC VT I M E CONVERGENCE 

DISCRET. ACCELERATION 

COMPANY / INSTITUTIC 
CODE I DISCRET. 1 

~~ 

SPECIAL 
FEATURES 

EuledNavier-Stokes 
solver 

I TECHNIQUE 
central differencing, local time stepping, 
Jameson-type second multigrid 
and fourth difference 
dissipation operator, 
explicit Lax-Wendroff 
scheme 

single block, central differencing, local time stepping, 
H/C-type Jameson-type second multigrid 

and fourth difference 
dissipation o erator, 
explicit Lax-&endroff 
scheme 

Euler/Navier-Stokes 
solver 

I: SWANSEA UNIVERSITY / Swansea - United Kingdom 
GRIDS S PAC VTI M E I CONVERGENCE I SPECIAL I REF. I POC DISCRET. I I TECHNIQUE I DISCRET. I ACCELERATION I FEATURES 

solver 

unsteady 2-D 
version available 

- 

4 

local time stepping unstructured, central differencing, 
adaptation with Jameson-type second 
mesh refinement and fourth difference 
and remeshing dissipation operator, 

multistage Runge-Kutta 
scheme 

3-0, 
finite-volume, 
cell-vertex BRITE3D w finite-element I I unstructured, I Taylor-Galerkin local time stepping 

adaDtation with finite-element formulation I mesh refinement 
and remeshina 
unstructured with central differencing, local time stepping, 
mesh refinement explicit, multistage multigrid 
and remeshina Runae-Kutta. 

edge based data 
structure 

13-17 

,RY (NLR) / Amster 
CONVERGENCE 
ACCELERATION 

:OMPA I: NATIONAL AEROSPACE LABORAT 
CODE DISC R ET. 

TECHNIQUE 
SPECIAL 

FEATURES 
local time stepping, 
implicit residual 
averaging, enthalpy 
damping, multigrid -full 
& semi-coarsening 

Euler/Navier-Stokes 
solver, 
part of CFD system 
ENFLOW, 
propeller and jet 
propulsion options 

21 -41 

- 
42-44 

3-0, 
finite-volume, 
cell-centered ENSOLV 

5 

- 

local time stepping 
finite-volume, 

I: SAAB - SCANIA A.B. / Linkiiping - Sweden 
GRIDS SPACVTIME I CONVERGENCE I SPECIAL I REF. I POC 

I I TECHNIQUE I DISCRET. I ACCELERATION I FEATURES I I I 
I 

Euler/Navier-Stokes 1 47 
solver 

solver, 
general missile 
and aircraft 
configurations 

- 

6 

multiblock-structured central differencing, local time stepping, 
Jameson-type second explicit and implicit 
and fourth difference residual averaging, 
dissipation operator, multigrid 
multistage Runge-Kutta 
schme 

structured, space/time marching local time stepping, 
automatic grid scheme, time int ration eigenvalue extrapolatior 
generation plane by by explicit Rung3utta Itechniaue 

pe scheme, space !J iscretization by Roe flux 
plane 

difference splitting 
upwind scheme 

finite-volume, 
cell-centered 

GEMINI 

COMPANY p INSTITUTIO 
DISCRET. 

TECHNIQUE 

I: CFD noway as / Trondheim - Norway 
GRIDS SPACVTIME I CONVERGENCE 

FEATURES 
Euler/Navier-Stokes 49 
solver + DISCRET. ACCELERATION 

Jameson-ty e second 
and fourth kerence 
dissipation operator, 
explicit 3-stage 

I 2-D, 
finite-volume, 
cell-centered TwoFlow 
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CODE I DISCRET. I GRIDS SPECIAL I REF. 1 POC SPACElTIME I CONVERGENCE I 

ThreeFlow 

3.4.3 Points of Contact 

TECHNIQUE DISC R ET. ACCELERATION FEATURES 
3-0. multiblock-structured central differencing, local time stepping Euler/Navier-Stokes 49 
finite-volume, Jameson-type second solver, 
cell-centered and fourth difference rotating frame of 7 

dissipation operator, reference option 
explicit 3-stage 
Runge-Kutta scheme 

Point of Contact (POC) No. 1: 

Code(s): 
Name: A. Pagano 
Dept.: Aerodynamics 

Mailing Address: British Aerospace Ltd. (BAe) 

EJ51, EJ50, EJ53, EJ63, EJ65, EJ83 

Tel.: (+44) 272-693831 

Airbus Division 
P.O. Box 77 
Bristol BS99 7AR 
United Kingdom 

Tel.-Company: (+44) 272-693831 
Fax-Company : (+44) 272-362828 
References: 3 

Point of Contact (POC) No. 2: 

Code(s): ROE/LI'ITON, HALWSALMOND, 
EMJET SERIES, UNSTEADY EULER, 
ECUMB2D 

Name: B. Williams 
Dept.: Aerodynamics 

Mailing Address: Defence Research Agency (DRA) 
Tel.: (+44) 252-392576 

Aerodynamics Department 
Farnborough 
Hants, GU14 6TD 
United Kingdom 

Tel.-Company: (+44) 252-24461 
Fax-Company: (+44) 252-375890 
References: 4 - 6 

Point of Contact (POC) No. 3: 

Code(s): CV-FLOW2, THREE FLOW 
Name: K.W. Morton 
Dept.: 

Mailing Address: Oxford University Computing Laboratory 
Tel.: (+44) 865-273885 

11 Keble Road 
Oxford, OX1 3QD 
United Kingdom 

I 

Tel.-Company: - 
Fax-Company: (+44) 865-273839 
References: 7 - 9 

Point of Contact POC) No. 4: 

Code(s): BRITUD, TG, FLITE3D, HYBRID 
Name: 0. Hassan 
Dept.: Aerodynamics 

Mailing Address: Computational Dynamics Research 
Innovation Centre 
University College of Swansea 
Singleton Park 
Swansea, SA2 8PP 
United Kingdom 

Tel.-Company: (+44) 792-295625 
Fax-Company: (+44) 792-295613 
References: 10 - 18 

Tel. : (+44) 792-295625 

Point of Contact (POC) No. 5: 

Code(s): ENSOLV, D2EUL 
Name: J.W. Boerstoel, B. Oskam 
Dept.: Theoretical Aerodynamics Department 

Mailing Address: National Aerospace Laboratory NLR 
Tel.: (+31) 20-511 3357 

P.O. Box 90502 
1006 BM Amsterdam 
The Netherlands 

Tel.-Company: (+31) 20-511 3113 
Fax-Company: (+31) 20-511 3210 
References: 21 - 44 

Point of Contact POC) No. 6: 

Code(s): MULTEUL, GEMINI 
Name: B. Arlinger 
Dept.: Aerodynamics 

Mailing Address: SAAB SCANIA A.B. 
Tel.: (+46) 1318-2583 

Saab Aircraft Division 
Military Aircraft Sector 
581 88 Linkoping 
Sweden 

Tel.-Company: (+46) 1318-0000 
Fax-Company: (+46) 1318-1802 
References: 47,48 

Point of Contact POC) No. 7: 

Code(s): 
Name: 
Dept.: 
Tel.: 
Mailing Address: 

Tel.-Company : 
Fax-Company : 
References: 

TwoFlow, ThreeFlow 
N. Kubberud 

(+47) 73-54-0340 
CFD norway as 
Teknostallen 
Professor Brochsgt. 6 
N-7030 Trondheim 
Norway 

49,50 

(+47) 73-54-0340 
(+47) 73-94-3861 
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Chapter 4 

Applications 

4.1 AIRFOILS 

The Euler equations have been extensively applied to and 
correlated for the flow over two-dimensional airfoils. The 
early method developments centered on oscillation-free shock- 
capturing schemes, either through incorporation of adaptive 
dissipation coefficients or upwind discretizations. The recent 
trend has been towards the incorporation of general-geometry 
adaptive-grid schemes for the treatment of complex configura- 
tions, such as the multielement airfoil solutions shown below. 
These adaptive-grid methods have gained popularity due to 
their potential to provide highly accurate solutions with rela- 
tively few grid points. This gain in popularity owes in large 
part to the difficulty in modeling complex three-dimensional 
geometries with globally refined “structured” grids. Several 
typical solutions over the NACA 0012 airfoil are shown be- 
low, as well as several reference (datum) solutions which serve 
as well-defined test cases for the evaluation of schemes. The 
computational challenge posed by Pulliam in numerical so- 
lutions to the Euler equations for the subcritical flow over a 
smooth body is also discussed. Finally, an example of the use 
of Euler equations to scale the results obtained in a gas with 
nonideal behavior to that of air is reviewed. 

4.1.1 NACA 0012 Airfoil 
The flow around a NACA 0012 airfoil at Mm = 0.8 and a 
= 1.25 deg is shown in Fig. 4.1.1 using an extension of the 
1985 implicit scheme of MacCormack developed at Deutsche 
Airbus (DA).’ The pressures indicate an upper surface shock 
and a weaker lower surface shock. Results include second- 
and third-order-accurate flux vector splitting formulations to- 
gether with a second-order treatment of the surface boundary 
condition. The results demonstrate the sensitivity to discretiza- 
tion and boundary conditions; the first-order results reveal 
strongly disturbed isoMachlines near the surface of the model 
over several layers of finite volumes associated with exces- 
sive total pressure losses generated in the region of strong ac- 
celeration near the leading edge. The pressure distribution is 
most influenced by the truncation error of the scheme, whereas 
the entropy error is most influenced by the boundary condi- 
tion treatment. Third-order accurate spatial discretization and 
second-order surface boundary condition lead to the entropy 
variation to be expected, with small losses except for the jump 
at the upper shock. A small rise of total pressure loss in the 
field occurs at the transition from subsonic to supersonic flow 
and is commonly observed in flux vector splitting results. 

The flow field and convergence history for the inviscid super- 
sonic flow past a NACA 0012 airfoil (Mm = 3, a = 7 deg) 
is shown in Fig. 4.1.2. All computations were carried out 
using the same explicit multistage second-order upwind TVD 

scheme.2 Standard V-type multigrid cycles were applied. The 
upwind implicit residual smoothing method (UIRS) is com- 
pared to the widely used central implicit residual smoothing 
(CIRS) method. The CPU times were measured on a sin- 
gle processor CRAY Y-MP. The CIRS method performed best 
with a (3,2)-scheme (3 stages, 2 dissipation evaluations). The 
UlRS method performed best with a (3,3)-scheme. The UlRS 
scheme took more iterations, but the total time to converge 5 
orders of magnitude was approximately 35 seconds for either 
of the schemes with residual smoothing. Further extensions of 
the residual smoothing concepts are presented by Zhu et al.3 

4.1.2 Datum Solutions 

In 1985 the AGARD Working Group 07 completed the work 
on the evaluation of numerical results obtained for specified 
test cases by inviscid flow field methods. The aim of the effort 
was to compile the state-of-the-art capabilities for computing 
two- and three-dimensional numerical solutions of the Euler 
equations for airfoils and wings. Solutions from many rc- 
searchers of well-known institutions and companies were sub- 
mitted and subsequently compared with respect to various cri- 
teria concerning local and global flow field properties. An 
evaluation strategy was developed to determine the “best” nu- 
merical solution(s) for each test case. Judgments of quality 
were on the basis of comparisons with known solutions and 
numerical sensitivities, including grid density, far-field bound- 
ary location, and entropy error variations. Datum solutions 
which can be used as high-quality reference solutions for the 
comparison of methods are presented in Ref. 4. Two transonic 
cases from that study are shown i n  Figs. 4.1.3-4.1.6. Recent 
adaptive-grid computations for a third test case from that study 
are shown in Fig. 4.1.7; these more recent computations re- 
solve the large spread in the originally contributed results. 

NLR 7301: M, = 0.721, Q = -0.194 deg 

As a remarkable example of the solution accuracy which 
could be obtained at that time, the Mach number contours 
from the numerical results of Schmidt/Jameson4 for their two- 
dimensional computation around the NLR 7301 airfoil sec- 
tion at “shock-free’’ design conditions are presented in Fig. 
4.1.3. Euler computations around the NLR 7301 profile with 
the specified flow conditions pose a special difficulty as an 
“exact” hodograph solution by Boerstoel and Huizing‘ exists 
which indicates the development of a supercritical shockless 
flow. Many contributors were unable to compute a shockless 
flow and, therefore, failed to predict accurate global forces 
and moments. The shock-free solution is an isolated design 
point, and slight variations i n  geometry or angle of attack will 
cause a single or double shock to appear on the airfoil. The 
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Source 

Salas 
/South 

Jameson 
/Schmidt 

shock-free solution was generated from a hodograph solution 
which, unfortunately, is not without some discretization er- 
ror, as particularly evidenced in the pressure variation near the 
occurrence of the first sonic point. The airfoil itself is only 
defined discretely at a large number of points. It  is difficult to 
retain the shock-free feature as the grid is refined.6 There is 
some question whether this is due to: slight errors in the hodo- 
graph solution, or the extrapolated infinite-grid solution being 
computed on a geometry which is inconsistent with a shock- 
free case because of limitations in the geometry specification. 
The accuracy of the solution is probably best judged by mon- 
itoring for convergence of the global forces and moments as 
the grid is refined uniformly with well-posed boundary condi- 
tions and by checking for inconsistencies in the solution, such 
as entropy losses upstream of shocks. 

Two numerical solutions, namely those by Rizzi and 
SchmidUJameson, were considered as numerical reference so- 
lutions according to their high q ~ a l i t y . ~  I n  Fig. 4.1.5, the 
surface distributions of pressure and total pressure loss of 
SchmidUJameson are depicted together with the curves ac- 
cording to the "exact" hodograph solution (E). The overall 
agreement is very good except at the leading edge, where a 
disagreement is noticed in the representation of the suction 
peak. This defect seems to be systematic in nature and can 
be found in all numerical solutions presented to the working 
group. Also, minor deviations from the hodograph solution 
are evident on the upper and lower surfaces wherever stronger 
pressure gradient changes occur. Considering the total pressure 
loses, all values are well below 1 percent. With the exception 
of the suction peak region and the area around the midchord 
lower side, very small or almost zero values underline the 
high numerical standard achieved. 

Mesh cr, cr, Cn.1 

192x39 0.3472 0.0557 -. 1 167 
0-type 

320x64 0.3584 0.0580 -.I228 
0-type 

Source CL 

0.597 

0.594 

0.594 

I Rizzi I 160x32 
0-type 

C D  CM 

0.0002 -0.130 

0.0005 -0.132 

0.0005 -0.130 

Table 4.1.1 Aerodynamic 
coefficients for NLR 7301 test case. 

The forces and moments from the two datum solutions are 
compared to the exact solution in Table 4.1. I ; the variations 
are very small. A full discussion of the variations between 
eighteen solutions for global forces and moments are summa- 
rized in Ref. 4, including useful information regarding solution 
features, such as mesh extent and grid topology and density. 

NACA 0012: M, = 0.85, a = 1 deg 

Fig. 4.1.4 shows the Mach number distribution from the datum 
solution of SchmidUJameson.4 A n  analysis of all seven con- 
tributions concerning global forces and moments is provided 
in Ref. 4; there was a relatively high scatter of 16 percent i n  
lift and 36 percent in  moment coefficient. The reasons for that 
behavior are attributed to the uncertainty in the determination 

of the shock positions. The outer boundary distance and nu- 
merical properties (such as artificial viscosity, truncation error, 
or convergence) were important influencing factors. 

The results of Salas/South and SchmidUJameson were selected 
as the best two contributing  solution^.^ The coefficients from 
these two datum solutions are shown in Table 4. I .2 and indi- 
cate close agreement. Both solutions are plotted in Fig. 4.1.6 
as surface pressure and total pressure loss distributions. The 
latter solution shows extremely small total pressure variations 
over almost all the upper and lower side, with the exception 
of some minor excursions at the shock positions. The errors 
i n  both methods are small enough that either can serve as nu- 
merical reference solutions. 

Table 4.1.2 Aerodynamic coefficients for NACA 
0012 test case; Mm = 0.85 and n. = 1 deg. 

NACA 0012: M, = 0.95, a = 0 deg 

This test case, originally considered by the AGARD working 
group: is characterized by an oblique shock structure emanat- 
ing from the trailing edge, with a weak normal shock i n  the 
wake as shown in Fig. 4.1.7. The contributed computations 
showed wide variations i n  the predicted location of the sonic 
point on the downstream chord-line extension, from 1.4 to 3.1 
chords downstream from the trailing edge, associated with the 
large cell sizes downstream of the airfoil. 

The normal shock is relatively weak with a Mach number 
of less than 1 . 1  ahead of the shock. An analysis indicates 
that the location of the downstream normal shock wave is 
very sensitive to the resolution of the expansion waves i n  the 
supersonic zone above the airfoil, since that sets the oblique 
shock angle at the trailing edge.7 The normal shock location 
is quite sensitive to small errors because the length of the 
oblique shock emanating from the trailing edge to the shock 
triple point is about five chord lengths. 

The correct location of the normal shock downstream of the 
trailing edge has been determined through a grid convergence 
study7 performed using a structured-grid code. The grids 
utilized include 65 x 25, 129 x 49, 257 x 97, and 2049 x 765 
0-type grids. The effect of grid density on the location of the 
normal shock is shown in Fig. 4.1.7, where the shock location 
is measured downstream of the trailing edge. The infinite-grid 
normal-shock location obtained in this manner is about 3.35 
chords from the trailing edge. Corresponding mesh-refinement 
results using the GAUSS2D method of Hartwich8 are also 
shown and indicate a similar shock location of approximately 
3.32. 

The ability of adaptive methods to obtain accurate results 
is examined using two different Euler solvers in  Ref. 7. 
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The two solvers corresponded to upwind-biased methods: a 
fully unstructured-grid method using triangular cells and a 
semiunstructured-grid method using quadrilateral cells. The 
adapted grids from these two methods are shown in Fig. 4.1.7. 
The adaptive grids demonstrate that the shock features can be 
resolved well at large distances from the airfoil since small 
cell sizes can be maintained all along the shock waves. The 
accuracy, however, is determined more by the resolution of the 
smooth portions of the flow than by the resolution of the more 
prevalent flow features, such as discontinuities. The results 
presented used an adaption criteria which led to consistent 
results i n  normal-shock position as the number of points is 
increased. The adaption criteria used repaired inconsistencies 
in several commonly used methods of adaption. 

4.1.3 Multielement Airfoils 

The capability to compute flows over complex geometries is 
extremely important to the aerodynamic designer. As alterna- 
tives to block-structured grid methods, the unstructured grid 
methods have greatly expanded the capabilities in  that direc- 
tion using both Euler and Navier-Stokes equation sets. These 
methods are natural as a framework for the accommodation of 
arbitrary geometries and the incorporation of adaptive mesh- 
ing techniques. 

Results from the computations of Mavriplis and Jameson'."' 
for a two-element airfoil (slat and main airfoil) are shown i n  
Fig. 4.1.8. The method uses triangular and adaptive grids, 
and the results shown were some of the first which demon- 
strated the power of the unstructured grid method in aero- 
dynamic applications. A node-based central-difference finite- 
volume scheme is used, which has been shown to be equiva- 
lent to a Galerkin finite-element method, with a lumped-mass- 
matrix term."" Several of the computational grids which are 
used in the solution process are shown in the top half of Fig. 
4.1.8; the grids shown are the finest adapted mesh and three of 
the coarser grids used in the mesh sequencing and multigrid 
acceleration processes. The grids have been generated inde- 
pendently of each other, thus decoupling the grid generation 
process from the multigrid acceleration scheme. Finer grids 
can be obtained by global refinements or by adapting previ- 
ous coarser grids; the grids communicate through an efficient 
tree-search algorithm. The lower half of the figure shows the 
pressures on the slathirfoil and the convergence rate of the 
algorithm using single and multiple grids. The pressures have 
been compared elsewhere' to experimental and potential re- 
sults for unadapted meshes at slightly different conditions with 
generally good results. The convergence rate shown is com- 
parable to that attained in structured-grid multigrid codes and 
substantially improved over that attainable with only a single 
grid; comparisons (not shown) of the unadapted and adapted 
grid solutions indicate that higher accuracy can be obtained 
with fewer points in  the latter approach. 

The flow over a three-element NLR 422 airfoil computed with 
an unstructured finite-volume, vertex-centered code12 is shown 
i n  Fig. 4.1.9. A second-order-accurate upwind flux-difference- 
splitting algorithm" is solved to steady state using an explicit 
Runge-Kutta scheme. The far-field and near-field views of the 
grid indicate a gradual enlargement of the grid away from the 
surface. The grids are generated i n  an automatic way, driven 
by overall user-defined parameters, like maximum allowable 
grid spacing and curvature. The pressure distributions over the 

slat, main element, and flap at a subsonic condition (M, = 
0.20, o = I O  deg) indicate excellent correlation with a potential 
flow method. This particular case was chosen in order to 
make a comparison of Euler computations with a potential 
flow result. Other adaptive-grid computations for a similar 
case are given by Dimier and R0n~heimer.I~ 

4.1.4 6:l Ellipse 

Numerical solutions of the Euler equations obtained for sub- 
sonic airfoils with sharp trailing edges have faithfully repro- 
duced the expected solutions obtained for viscous flow, namely 
smooth flow at the trailing edge. Euler solutions have, with 
grid refinement, returned those of potential theory with a Kutta 
condition imposed at the trailing edge. For a smooth trailing 
edge, Pulliam's has presented a currently unresolved problem: 
the inviscid subcritical flow over a 6.1 ellipse section. The 
potential flow solution is unique up to the specification of the 
circulation or, equivalently, the rear stagnation point on the 
surface. Assuming irrotational initial and boundary conditions, 
the inviscid solution should remain irrotational. However, the 
discrete Euler solutions obtained by Pulliam with a central- 
difference finite difference solution and by several others with 
different formulations return an arbitrarily large value of lif t  
for any combination of grid and/or angle of attack which is 
nonsymmetric. The resulting solutions, however, agree closely 
with potential flow solutions with a circulation imposed equal 
to that obtained in the discrete Euler solutions, as shown i n  Fig. 
4.1. IO.  The Euler solutions are sensitive to solution parameters 
such as grid refinement and stretching, boundary conditions, 
dissipation coefficients, convergence level, etc. However, no 
consistent explanation of the discrepancy obtained with the dif- 
ferent discrete Euler solution could be found. Winterstein and 
Hafez16 show the numerical interplay of the dissipation forms 
and the boundary conditions for blunt bodies. For viscous al- 
gorithms which use Euler formulations as a building block for 
the convective and pressure terms, the issue is not considered 
to be relevant as the viscous separation at the trailing edge 
serves to set the lift  coefficient. 

4.1.5 Heavy-Gas Airfoil Computations 

The capability to conduct three-dimensional wind-tunnel tests 
at full-scale Reynolds number has long been an important aero- 
dynamic need. Full-scale tunnels are only available at low 
speeds because of size and power constraints; high Reynolds 
number ground-based testing is generally achieved through 
combinations of high pressure, cryogenic temperatures, or al- 
ternate test gases. The cryogenic temperature approach enables 
Mach number to be varied independently of Reynolds num- 
ber, but testing is expensive and complex. Heavy gases, such 
as sulfur hexafluoride (SFh), are an attractive alternative to 
air because of the increased Reynolds number available due 
to lower viscosity and increased density, for fixed length and 
velocity. In  addition, power consumption and model loads 
are less than that for air at a constant Mach number. Un- 
fortunately, most heavy gases behave as nonideal gases, and 
the results obtained have to be correlated with those for air, 
since the ultimate objective is the performance of the tested 
configuration in a high-Reynolds number air flow. 

The difficulty introduced by the nonideal gas behavior is shown 
i n  Fig. 4.1.1 I ;  the pressure distribution over a NACA 0012 
airfoil at Mm = 0.8 and n = 1.25 deg is shown for air and for 
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a heavy gas, sF6, at various pressures.17 The air results would 
be the same independent of the pressure since air behaves as an 
ideal gas. The pressure distributions shown are quite different 
because of the nonideal behavior of the sF6. As the pressure 
is increased, the upper surface shock moves forward relative 
to air and the lower surface shock disappears. A numerical 
scaling procedure was developed17 based on the use of the 
Euler equations and the transonic small disturbance equations. 
Using the transonic scaling procedure in which an equivalent 
gamma is determined based on both temperature and pressure, 
the pressure distributions are shown in Fig. 4.1.1 1 for air and 
for sF6 at various combinations of pressure and temperature. 
Note the Mach number for the SFg calculations is different 
from that in  air in order to match the transonic similarity 
parameter. The procedure closely correlates inviscid results i n  
sF6 to those in air. The viscous scaling between air and SFs 
introduces additional complications, especially at transonic 
speeds; the inviscid scaling procedure used above leads to 
different shock locations in viscous flow at high Reynolds 
numbers. Further details and references to earlier works in 
this area are given in Ref 17. 
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Figure 4.1.2 Mach contours and convergence history for the supersonic flow past a NACA 
0012 airfoil; M, = 3, a = 7 deg. 
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Figure 4.1.7 Adaptive-grid Euler computations for NACA 001 2 airfoil; M, = 0.95, (I = 1 .O deg. 



I 152 

-2.0 

-1.0 

CP 

0.0 

1.0 

Sequence of four adaptively generated meshes 

Mesh 3: 790 nodes Mesh 4 1631 nodes 

- 
, 

' 

' 

Mesh 5: 3107 nodes Mesh 6: 4697 nodes 

o.or Convergence rate Surface pressures 

I 'Multigrid 

-10.0- 
0 200 400 600 600 

Work units 

* Upper surface 
. Lowersurface 

[-: 
1 

Figure 4.1.8 Adaptively-refined grids, computed pressures, and convergence rate for 
unstructured-grid computations of a two-element airfoil (main airfoil and slat): M, = 0.7, a 
= 2.8 deg. 



153 

Slat 
12.00 lo.ol 

X P  2.00 

1 .oo 
0.00 

-1 .oo 

k 8.00 
&OO 
4.00 - c P  - c p  2.00 

2.00 1 .oo 
0.00 0.00 

-1 .oo -2.00 

I I -2.00 ; 
4.20 4.10 0.00 0.10 0.20 0.00 0.20 0.40 0.60 0.80 0.100 0.80 0.90 1.00 1.10 1.20 

WC WC WC 

Figure 4.1.9 Unstructured-grid Euler method applied to multielement airfoil; Mm = 0.2, a = 10.0 
deg. 



154 

Nonlifting solution 

.... .... ..... 
..... 
..... .... 

.... 

0 .2 .4 .6 .8 1.0 
WC 

2.0 : . : . . . .  lw7 . , . .  ...... ...... ...... ...... tilting solution 
- m 3 ...... 

gl*,, .... ... 
. .  . . . .  . . . .  .- 

U . . . .  . . . .  . . . .  
lo-': 25msmm1am12sm 0 m s r m m 1 a m 1 2 s m  0 .2 .4 .6 .8 1.0 

X/C Iteration Iteration 

Potential solutions Euler solutions 

Figure 4.1.10 Inviscid subcritical flow about a 6:1 ellipse from analytic solutions to the potential 
equations and numerical solutions to the Euler equations: a = 0.0 deg. 

-2.0 

-1.2 

cp -.4 

.4 

1.2 t 
0 25 .SI .75 1 .oo 

X/C 

p,, atm T,,"F M, 
-SF, 10 70 0.822 

-2.0 

-1.2 

cp -.4 

.4 

1.2 
0 25 .50 .75 1 .oo 

X/C 

Figure 4.1.11 Effect of non-ideal gas behavior on the pressure distribution for a NACA 0012 
airfoil; M ,  = 0.8, 01 = 1.25 deg. 



4 2  WINGS 

Applications are shown helow of Euler codes applied lo at- 
tached flows over wing components. These types of computa- 
tions can he done routinely with modern computers and algo- 
rithms. Without the modeling of viscous terms. the solutions 
to the Euler equations generally overestimate the experimen- 
tal lift and, at transonic speeds, pmduce shock locations which 
are generally too far aft of high Reynolds number experimental 
data. Calculations for the ONERA M6 wing are shown be- 
cause it is a widely used test case for the comparison of Euler 
codes, using both structured and unswctured grids. The other 
three examples are comparisons of the capabilities of differ- 
ent codes for a transport-type wing and two lower aspect-ratio 
fighter-type wings. The examples include comparisons he- 
tween different Euler methods and with irrotational methods, 
such as nonconservative and conservative potential methods. 

4.2.1 ONERA M6 Wing 

The ONERA M6 wing at transonic conditions (hf, = 0.84 
and a = 3.06 deg) has been used extensively as a test case 
for the verification of Euler methods. The results shown 
in Fig. 4.2.1 are typical of those that are attainable with 
finite-volume codes. in this case an upwind-hiased implicit 
scheme' using the flux-vector splitting of Van Leer. At these 
conditions. the predicted shock is slightly aft of the measured 
experimental data, obtained at a Reynolds number of I I .7 
million? The pressures are shown far a 97x17~17 C-0 mesh 
and a 193x33~33 C-0 mesh; the differences between the two 
structured meshes are limited to the regions of the upper 
surface shocks. The surface pressures are shown at the right 
of the figure for a C-0 mesh and a C-H mesh; the resolution 
of the C-0 mesh at the tip is considerably better and leads to a 
greatly improved resolution of the pressures in the tip region. 

In Fig. 4.2.2, thegrid and Mach contours from the unstructured 
cell-vertex method of Mavriplis" is shown. The grid is adapted 
to the shock patterns on the wing and plane of symmetry. For 
the nonadaptive case. the lift coefficient on meshes of 9.428 
cells, 53,961 cells. and 357.900 cells was 0.2713. 0.2872, and 
0.2923. With adaption. the lift coefficient was 0.2901 with 
173,412 cells. close to that of the finest mesh with better 
resolution in the shock and leading-edge regions. The full 
multigrid method is used to accelerate convergence of the 
scheme, with an order of magnitude benefit in efficiency. 

The results of Mavriplis demonstrated that complex ge- 
ometries could be solved on unstructured grids with sim- 
ilar multigrid performance to that attained with structured 
grids. The computer resources for the scheme were some- 
what higher (approximately 100 worddvertex and 75-100 
microseconddmultigrid-cycldvenex on the CRAY-YMP com- 
puter) compared with the structured-grid codes (40 wordslcell 
and 30 microseconddmultigrid~ycldcell on the CRAY- 
YMP computer). The additional resources required hy the 
unstructured-grid scheme are offset by the ease in which the 
grid can be adapted to the local features of interest. 

42.2 DFVLR F4 Wing 

In order to increase the understandtng of the prediction accu- 
racy for the flow around general aerodynamic configurations. 
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a detailed study was made under the auspices of the Eum- 
pean GARTEUR Action Group AGO5 regarding the predic- 

es of a number of different codes for the flow 
over a simple wing! The wing selected was the D N L R  F4 
wing, shown in Wg. 4.2.3 at two conditions: one subsonic 
( M ,  = 0.30, (Y = 0.84 deg) and one transonic ( M ,  = 0.75. 
n z 0.84 deg). Ten methods were applied. which included 
nonconservative and conservative potential methods and three 
Euler methods. Studies were made and reported of conver- 
gence characteristics, grid refinement. and grid extent. A few 
selected results from the study arc shown. 

For the subsonic case. the global lift and drag predictions in- 
crease from nonconservative potential to conservative potential 
to Euler; somewhat surprisingly. the variations also decrease in 
the same manner, although some of this effect may be because 
the three Euler solvers were closely related central-difference 
schemes, The largest discrepancies occurred outboard on the 
wing, principally due to different modelings of the wing tip. 
The pressure distributions from all of the contributions at a 
semispan location of 0.821 are shown and indicate "essentially 
the same pressure distribution in a fairly narrow hand." thus 
lending high confidence to their validity in predicting pressure 
variations due to configurations changes. 

The global lift and drag coefficients for the transonic case, 
however, indicate substantially larger differences than for the 
subsonic case. The nonconservative potential codes predicled 
the shock position too far forward in relation to conservative 
potential or Euler codes, attributed to the lack of mass conser- 
vation in the former ciass of schemes. The predictions from 
the latter two classes are shown at the semispan location of 
0.821 and indicate that the variations in  lift coefficients are 
largely attributed to variations in shock position. Additional 
computations for this case includes the embedded grid compu- 
tations of Radespiel' and the grid refinement computations of 
Leicher? As pinted out in the reference: the results indicate 
only a '"snapshot" of capability existing in 1986; advances in 
computational capability have occurred since that time which 
have allowed greater confidence for engineering computations 
of transonic flows with the Euler equations. 

4.2.3 RAE Wing-Fuselage 

Accurate prediction of transonic and supersonic wave drag is 
critical in fighter aircraft design optimization. The flows are 
complex and highly nonlinear, the Euler equations, although 
neglecting viscosity, with consequent errors in s h y k  position 
and strength, can be used to predict overall configuration ef- 
fecu including rotational flows due to shock curvature or free 
vortices. Three different Euler solvers were compared for tran- 
sonic flow field computations on a wing-fuselage configura- 
tion by Agrawal et al? The three schemes compared were the 
explicit central-difference K O 6 7  code. the implicit upwind- 
biased code CFL3D, and a nonconservative upwind code ET2. 
The three codes were compared on two configurations and 
were evaluated with respect to accuracy and convergence. A 
sample calculation is shown in Fig. 4.2.4 for the transonic flow 
over an RAE wing-fuselage geometry at AIm = 0.9 and n = 
i deg. The results predicted by the three methods are similar. 
except for differences in coarse-grid regions and near shocks. 
The upwind finite-volume code predicted shock waves with 
the best resolution and was least sensitive to grid refinement. 
The best convergence was ohtained with the central-difference 
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E 0 6 7  code using local time stepping and full multigrid ac- 
celeration. The latter code was particularly robust in this range 
of application; its predictions generally suffice for flows near 
design conditions where shockmoundar-layer interaction ef- 
fects are small. 

4.2.4 F5 Wing 

As part of a code validation study? a number of transonic 
computations were made using the implicit upwind Euler 
code C E 3 D  and the transonic small-disturbance code CAP- 
TSD for both steady and unsteady applications. The small- 
disturbance code incorporated both entropy and vorticity cor- 
rections, thereby extending its applicability into regimes where 
shock strength normally precludes its use. The purpose of the 
evaluation was to determine the accuracy and applicability of 
the methods by performing detailed studies to assess the influ- 
ence of several parameters in the numerical modeling of the 
solution. The F-5 wing was used as a test case; it has a panel 
aspect ratio of 1.58, a leadiog-edge sweep angle of 31.9 deg, 
and a taper ratio of 0.28. The calculations are compared with 
the experimental pressure data from Tijdeman et al? Unsteady 
comparisons are shown in a subsequent section. 

Three-dimensional steady flow computations at M ,  = 0.95 
and a = 0.0 deg are shown in Fig. 4.2.5. Comparisons between 
the Euler and potential flow pressures shown indicate excellent 
correlation for all three- span stations. Along the upper surface 
of the wing, there is a mild shock wave that is predicted by 
both the Euler and potential codes, although it is not evident 
in the experimental data. Euler computations were made using 
three grids with approximately (1) I.wO,wO ;(2) 250.000; and 
(3) 140,wO grid points. The finest grid and the medium grid 
resulted in essentially identical results. 
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(a) Pressure distribution at 0.60 semispan location. 
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(b) Surface pressure contours. 
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4.3 VORTICAL FLOWS 

Vortical flows play an important role in the high-angle-of- 
attack aerodynamic performance of aerodynamic configura- 
tions, especially contemporary military aircraft. The growth, 
interaction, and decay of these vortices are highly nonlinear 
with angle of attack and are difficult to predict accurately with 
numerical methods. Current design practices rely extensively 
on experimental test programs. 

For thin lifting surfaces, the Euler equations can model the 
principal features of the interactions, in that primary separa- 
tions arising from sharp leading edges can be predicted; suf- 
ficient artificial viscosity is introduced to faithfully model the 
effects of the true viscosity. Secondary separation arising from 
boundary-layer separations, as well as from primary separation 
arising from round leading edges, is common in practice and 
must be modeled by incorporation of boundary-layer effects 
in the Euler model or by considering the Reynolds-averaged 
Navier-Stokes equations. The solutions from the Euler equa- 
tions can be regarded as limit solutions of the viscous equations 
at high Reynolds numbers, in which boundary-layer interac- 
tions are small. These solutions, accounting for the principal 
interactions, can be especially useful for configuration effects. 
For bodies, the primary vortices are shed from flow separations 
on smooth surfaces; thus, some form of viscous modeling (ei- 
ther a boundary-layer or prescribed-separation model) must be 
incorporated for the Euler equations to be of use. 

4.3.1 Delta Wings 

The flows over simple delta and double-delta wings have 
been studied extensively, both experimentally and computa- 
tionally. The overall physical structure of the subsonic flow- 
field over a low aspect ratio delta wing at angle of attack is 
well understood.14 The characteristics of the flow field are 
dominated by the two counterrotating primary vortices which 
form over the wing because of separation along the leading 
edges. The flow reattaches close to the leeward symmetry 
plane of the wing; as the flow proceeds outboard, it  expe- 
riences an adverse pressure gradient, leading to a secondary 
separation-induced vortex. The secondary vortex can in turn 
lead to a tertiary vortex underneath and inboard of the sec- 
ondary vortex. The influence of turbulence is to delay the 
secondary separation to a more outboard position and gener- 
ally to eliminate any tertiary separation. 

At supersonic speeds, the now classical work of Stanbrook and 
Squire' revealed that the boundary between attached and sepa- 
rated flow patterns could be classified readily in terms of Mach 
number and angle of attack, both measured normal to the lead- 
ing edge. Their original experimental work was extended fur- 
ther in  a number of experimental studies"* to identify regions 
associated with shock-induced separations, separation bubbles, 
and crossflow shocks. McMillin et al.' performed a system- 
atic computational investigation of the parametric experiments 
of Miller and Wood: including computations with both Eu- 
ler and Navier-Stokes algorithms. The flow classification of 
Miller and Wood was refined near the boundary between at- 
tached and separated flows based on a reexamination of the 
experimental data in the light of the additional insight obtained 
with the computational methodology; the resulting classifica- 
tion is shown in Fig. 4.3.1. For Mach numbers normal to the 
leading edge less than 1, the variation of the separated flow 

patterns with angle of attack is similar to that found at subsonic 
speeds. For supersonic normal Mach numbers, the flow tran- 
sitions with increasing angle of attack from attached flow with 
an inboard crossflow shock to separated vortical flow with an 
inboard crossflow shock located above the vortex. 

For supersonic flows, the reduction in computational work as- 
sociated with the conical equations has been used to advan- 
tage in computations for vortical flows over conical bodies 
and wings, both for Euler and Navier-Stokes equations. With 
an adaptive conical-flow solver, Powell et al."'*' I has studied 
extensively the total pressure losses in vortical flows simu- 
lated by the Euler equations over sharp leading edges. An 
example is shown in Fig. 4.3.2 for the flow over a 75-deg 
swept delta wing at a Mach number of 1.95 and I O  deg an- 
gle of attack. The pitot pressures computed with an adaptive, 
central difference solver for the conical Euler equations are 
compared to the experimental results of Monnerie and Werle" 
at a Reynolds number of 0.95 million, based on root chord. 
The flow field induced by the primary vortex is very similar 
between the Euler calculation and experiment. The secondary 
separation underneath the primary vortex leads to a secondary 
vortex which is not modeled in the Euler equations; a cross- 
flow shock, rather than a secondary separation, is predicted 
under the primary vortex. 

McMillin et al.9 have made extensive comparisons with both 
Euler, laminar, and turbulent flow models for parametric vari- 
ations in wing sweep, angle of attack, and Mach number. A 
comparison of pressure between Euler, laminar Navier-Stokes, 
and experiment is shown in Fig. 4.3.3 for sweeps of 75, 67.5, 
and 60 deg over a range of angles of attack. The predominant 
features of the experiment are captured by the Euler calcu- 
lations, especially as the angle of attack is increased. Based 
on these and other parametric computations, McMillin et aL9 
produced the envelope of conditions, shown in Fig. 4.3.4, 
where Navier-Stokes and Euler solutions give similar results 
for the primary vortex flow structure. The envelope corre- 
sponds to regions where the flow is either clearly separated 
at the leading edge (through a subsonic leading-edge condi- 
tion or a high angle of attack) or regions where the flow is 
clearly attached (through a supersonic leading-edge condition 
at low angle of attack). At intermediate angles of attack for 
supersonic Mach numbers, both measured normal to the lead- 
ing edge, the vortical/separated flow structures lie close to the 
surface and shows a marked sensitivity to the viscous model. 
In  fact, as the Mach number was increased, the laminar flow 
computations tended to agree best with the nominally turbu- 
lent experiments of Miller and Wood, believed to be associated 
with an incomplete transition to turbulent flow at the model 
trailing edge for the higher Mach numbers. In  all cases, the 
Euler computations were incapable of predicting any of the 
secondary flow features such as secondary vortices or separa- 
tion induced by a shock. 

4.3.2 Delta Wing in Yaw 

The adaptive method of Powell et al."'." has been applied to a 
series of delta wings tested parametrically by Miller and Wood, 
including effects of flap deflection and yaw. The general trends 
of the experiments are well predicted. An example is shown 
in Fig. 4.3.5 for the flow over a 75-deg swept delta wing 
in sideslip (Mm=l.7, a=12 deg, /3=8 deg). The refinement 
possible with the adaptive mesh in the region of the leading 
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edges is evident. The grid corresponds to an equivalent mesh 
of 256 x 128. The pressures show an asymmetrical flow 
pattern, corresponding to a stronger shallower vortex on the 
port side relative to a weaker more circular vortex on the 
starboard side. The pressures agree well with experiment, 
although both vortices are predicted too far outboard and the 
suction levels are overpredicted. 

4.3.3 Double-Delta Wing 

Longo and Dasi3 numerically investigated the vortical flow 
past a double-delta wing at moderate angles of attack. For this 
study, the DLR multiblock Euler solver CEVCATS was used. 
The selected configuration is a thin flat plate double-delta wing 
with sweep angles of 80 deg and 60 deg for the strake and the 
wing, respectively. A body-fitted mesh with an 0-0 topology 
is used to discretize the physical domain. It contains 56 cells 
in the chordwise direction, 112 cells in  the spanwise direction, 
and 48 cells in  the normal direction. Solutions are evaluated 
for the subsonic case M, = 0.30 at cy = 7 and 11 degs by 
correlating with available experimental data.I4 

The numerical results in  Fig. 4.3.6 indicate that at a = 7 deg 
(sequence of left side figures), two vortices are formed on each 
side of the wing which originate from the wing apex and from 
the wing leading-edge kink. Downstream of the leading-edge 
kink, the strength of the inner vortex decreases because it is 
no longer fed with vorticity. On the other hand, the whole 
vorticity shed from the rear part of the leading edge is fed 
into the outer vortex. Thus, its strength increases downstream. 
The two vortices with the same sense of rotation tend to move 
around each other. Since the outer vortex is stronger, the 
tendency leads to an outward and downward movement of the 
inner vortex. At cy = 1 1  deg (sequence of right side figures), 
the two vortices merge over the wing. Due to the influence 
of the outer vortex, the weaker inner vortex moves outwards 
and joins to the outer vortex. At the wing trailing edge, only 
a single vortex can be identified. The Euler solution predicts 
the general changes of the vortices structure in good agreement 
with the experimental data. Discrepancies between computed 
and measured location of the merging vortices are due to the 
neglect of secondary vortices on the numerical solution. 

4.3.4 Vortex Breakdown 

For delta wings, the maximum lift generally occurs at an- 
gles of attack above that corresponding to the onset of vortex 
breakdown at the trailing edge of the wing; with increasing 
sweep, the maximum lift becomes coincident with the occur- 
rence of vortex breakdown at the trailing edge. Vortex break- 
down computations have been made by Agrawal et aLi5 using 
Euler and both laminar and turbulent Navier-Stokes equations 
for a 70-deg swept delta wing. Streamwise vorticity contours 
in  the pre- and post-breakdown regions of the wing at a=30 
deg are shown in Fig. 4.3.7. The experimental data obtained 
using Laser Doppler Velocimetry (LDV) is compared to Euler 
and laminar, turbulent, and embedded laminar Navier-Stokes 
computations. The predicted contour levels in  the primary vor- 
tex are similar, although peak levels are much higher in the 
experiment, which can be attributed to the diffusion associated 
with the numerical truncation of the scheme. Secondary vortex 
structures are evident in  the viscous computations and experi- 
ment, as expected. The vorticity levels in  the post-burst posi- 
tion are much smaller, in relation to pre-burst levels, for both 

computation and experiment. The computations are asymmet- 
ric with respect to the vortex core, attributed to the inability 
of any of the computations to model the increased levels of 
turbulence associated with the burst vortex region, as shown 
by LDV data. The progression of vortex breakdown position 
with angle of attack for both Euler and Navier-Stokes compu- 
tations was shown to be consistent with the experimental data. 
The turbulent flow calculations showed breakdown upstream 
of both laminar and Euler computations and, in  general, at 
angles of attack where breakdown approached the apex of the 
wing, either viscous calculation showed significantly improved 
agreement with experimentally observed breakdown locations. 
Hitzel’”’* presents extensive studies of the vortex breakdowns 
computed with the Euler equations for a swept delta wing. 

4.3.5 IEPG Vortex Flow 
ComputatiodExperiment 

To assess the capabilities of computational methods for sim- 
ulating the flow around a typical military aircraft planform, 
a collaborative program among four nations (United King- 
dom, Germany, Italy, and the Netherlands) was started in 1987 
under the auspices of the Independent European Programme 
Group (IEPG).” The isolated sharp-edged cropped delta wing 
planform shown in Fig. 4.3.8 was modeled through compu- 
tations with the Euler and Navier-Stokes equations and com- 
pared to results of an experiment conducted by Elsenaar and 
Hoeijimakers.’’ The section of the wing is an NACA 64A005 
section which is blended into a bi-convex section ahead of the 
maximum thickness location. The case selected was a tran- 
sonic flow case (M,=0.85, a=10 deg) corresponding to a full- 
span leading-edge vortex flow with weak shocks only. Vortex 
breakdown over the wing occurs experimentally at angles of 
attack greater than 20-22 degs. 

The IEPG effort is actually a follow-on to an earlier Interna- 
tional Vortex Flow Experiment on Euler Code Validation,21s22 
which was conducted from 1983-1987 with the express intent 
of obtaining and comparing detailed experimental data, espe- 
cially at transonic speeds, for a 65-deg swept cropped delta 
wing with existing computational methods. The participating 
organizations included the FAA, NLR, AFWAL, DLR, MBB, 
DORNIER, and the technical universities at Delft and Braun- 
schweig. The experimental and computational data base form 
this rather successful program is summarized in Ref. 21 and 
the entire program is reviewed in Ref. 22. The planform 
chosen for the IEPG effort was similar to that in the earlier 
effort; the experimental data base was enlarged, especially in 
the transonic range, and computations included both Navier- 
Stokes and Euler solvers. 

Euler solutions were obtained using a single body-fitted grid of 
approximately 300,000 points with seven different Euler codes. 
The dissipation coefficients were reduced as much as possible 
within the constraint of obtaining a converged solution. The 
results indicated that the pressure distributions were predicted 
reasonable closely for all of the methods; the differences 
were most noticeable in the apex, leading-edge, and trailing- 
edge areas. There were significant differences between the 
various total pressure predictions attributed to the magnitude 
of the truncation errors on a single, fixed grid. However, 
the correlations of the Euler solutions with experimental data 
show much larger differences because of the neglect of the 
boundary-layer-induced secondary separation effects in  the 
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Euler method. The lift coefficient differences between the 
predictions was 5 percent; the average Euler-predicted lift 
values were 12 percent larger than in the experiment. 

The surface pressure contours and lateral pressures at two lon- 
gitudinal stations are shown in Fig. 4.3.8. Only two of the 
seven Euler solutions, which are representative, are compared 
to results from a experiment and with the Reynolds-averaged 
(turbulent) Navier-Stokes computation of DLR-Gottingen on a 
grid of about 2 million cells. The Euler results show the single 
suction peak corresponding to a primary separation from the 
leading edge. The secondary separation at x/c,,~ of 0.6 and 0.8 
occurs experimentally at 81 and 83 percent semispan, respec- 
tively; the Navier-Stokes calculations predict secondary sep- 
aration at 78 percent at the same longitudinal locations. The 
secondary separation induces a secondary suction peak out- 
board of the primary and is noticeably stronger in the compu- 
tation than experiment. The results of the Reynolds-averaged 
Navier-Stokes method demonstrate an improved correlation of 
theory and experiment. 

4.3.6 Wing Canard 

The Euler equations, i n  accounting for the primary leading- 
edge vortices, can be used to determine the principal inter- 
actions between components, including the interaction of free 
vortices with lifting  surface^.^^*^^ An example of the correla- 
tion with the finite-volume Euler TEAM code and experiment 
for a wing canard at transonic conditions (A4,=0.9, a=4 deg) 
is shown in Fig. 4.3.9. The wing pressures are shown with and 
without the canard surface. The influence of the canard is to 
decrease the wing leading edge pressures. The pressure com- 
putations agree well with the experimental values, except in  
the immediate vicinity of the wing upper surface trailing edge, 
attributed to a local shocWboundary-layer interaction. The in- 
crement in  pressures from canard off to canard on is predicted 
more closely than the wing pressures, as is generally expected. 
Scherr and DasZs draw similar conclusions from Euler com- 
putations of a slender canard-delta configuration at high angle 
of attack. More demonstrations of the capabilities of Euler 
methods in free vortex simulations can be found in Ref. 24. 

4.3.7 Asymmetric Cone Flows 

The flow over a cone at high angle of attack is dominated 
by the vortices which arise over the leeward side of the body 
from boundary-layer crossflow separations. These vortices ex- 
ert considerable influence on the local pressure distributions 
and can interact with other components downstream. Exten- 
sive experimental investigations have revealed that for sub- 
sonic crossflow conditions, the flow field remains symmetric 
until the value of angle of attack exceeds approximately 2-3 
times that of the nose half-angle.2h The flow then is charac- 
terized by a markedly asymmetric pattern of vortices, giving 
rise to large side forces and lateral instabilities. Since these 
vortices arise from viscous separations over a smooth surface, 
computational studies require direct account of viscosity (i.e., 
the Euler equations need to be augmented with a boundary- 
layer or empirical separation model). 

Because of the reduced computational cost and the ability 
to perform parametric studies easily, considerable insight has 
been gained through the use of inviscid methods with pre- 
scribed separations. Fiddes2' and Fiddes and Smith" assumed 

incompressible, small disturbance flow and modeled the vorti- 
cal flow over a circular cone as either a concentrated line vor- 
tex or a vortex sheet. With prescribed symmetric separation 
points, two families of solutions were found at angles of attack 
beyond twice the cone half-angle: a symmetric solution and 
a pair of mirror-image asymmetric solutions. The side force 
variations from the asymmetric solutions were i n  reasonable 
agreement with experimental results, thus providing evidence 
that the origin of the asymmetry is inviscid in nature. Also, 
with asymmetric separation points prescribed from experiment, 
two stable families of asymmetries were found: one with a 
small side force and a slight asymmetry and the other with 
a large side force and a pronounced asymmetry. The larger 
asymmetry family produced side force values which were on 
the order of the side force values measured experimentally. 

Marconiz9 solved the Euler equations at supersonic speeds us- 
ing the conical equations and a prescribed-separation model, 
thus removing the small disturbance limitation of Fiddes. The 
results obtained were i n  substantial agreement with the previ- 
ous findings of Fiddes, in that a pair of mirror-image asym- 
metric solutions were found at angles of attack greater than 
twice the cone half-angle. The results for a 7 4 e g  half-angle 
cone at A[-= 1.6 are shown in Fig. 4.3.10. The streamlines 
and surface pressures at alpha=23 deg indicate the asymmet- 
ric flow pattern; one vortex is located closer to the body and 
farther from the plane of symmetry than the other. The on- 
set of asymmetry is shown versus angle of attack for 7-deg 
and 5-deg cones. The 5-deg cone computations were made 
with symmetrical separations prescribed at 120 and 150 de- 
grees; the prescribed separation location of 150 deg shows 
better agreement with the experiments. Beyond the point of 
asymmetry, complete agreement would not be expected since 
viscous effects would asymmetrically change the separation 
locations from those prescribed. In  contrast to the findings of 
Fiddes, Marconi found that in the range where asymmetries 
occurred, the symmetric solutions (obtained with symmetry 
imposed) were unstable and always evolved to asymmetric 
solutions. Thus, the Euler computations have yielded valuable 
insights into the nature of the asymmetric flows; further stud- 
ies, including Navier-Stokes computations, are summarized in 
Ref. 30. 
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Figure 4.3.4 Envelope of conditions at which the Euler codes predict correctly the primary flow 
structure in supersonic wing design. 
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Figure 4.3.5 Comparison of adaptive conical-flow Euler with experiment for yawed 75 deg swept 
delta wing: M, = 1.7, U = 12 deg. p = 6 deg. 
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Figure 4.3.6 Euler predictions of flow over a double-delta wing at subsonic conditions. 
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4.4 AIR-VEHICLE CONFIGURATIONS 
The representative capabilities of Euler solvers to predict the 
inviscid flow over general air-vehicle configurations are de- 
scribed below. The configurations able to be treated are geo- 
metrically complex, including representations of wings, bod- 
ies, pylons, nacelles, flap-track fairings, flaps, elevons, em- 
pennage, etc. The examples shown use both structured- and 
unstructured-grid methods, which are tailored to the appli- 
cation areas of interest. The use of Euler methods to treat 
engine-airframe integration studies is widespread, as shown 
for the subsonic transport examples. The capabilities of Eu- 
ler solvers for fighter-type configurations are demonstrated in 
several applications. An example from the advanced tacti- 
cal fighter (ATF) development illustrates an application of an 
Euler solver to an aircraft design which proved useful in  com- 
plementing wind-tunnel experiments and uncovering some de- 
ficiencies early in the design cycle. An example application of 
the sonic boom signature for a supersonic transport aircraft is 
shown; the Euler equations are necessary to supplement linear 
theory methods as the Mach numbers approach 3. A com- 
plete cruise missile simulation with a counterrotating propfan 
propulsion system is shown; time-accurate simulations were 
used to determine model loads before construction of a large- 
scale powered test model. Application to the prediction of 
store carriage flow fields are shown with both structured- and 
unstructured-grid methods. For reentry configurations, the ap- 
plication of multiblock structured-grid Euler solvers to the 
prediction of flap loads for a Hermes reentry configuration is 
shown, as well as computations for the US. Space Shuttle 
configuration. 

4.4.1 Subsonic Transport Aircraft 

Structured-Grid Applications 

Several examples which demonstrate the capabilities of Eu- 
ler solvers to calculate transonic flows over jet transport air- 
craft are shown below. At Deutsche Airbus GmbH (DA),' the 
multiblock multigrid Euler integration algorithm MELINA, to- 
gether with the INteractive GRID generation system INGRID 
and the Practical Interactive Solution Analysis system PISA for 
post processing, forms the tool package for three-dimensional 
inviscid compressible flow analysis. Problems of complex ge- 
ometry (body/wing/pylon/engine) and of jet or nacelle flow 
can be solved. The Euler code MELINA is a Jameson-type, 
explicit, multiblock, multigrid, cell-vertex code and is contin- 
uously upgraded and adapted for the applications which are of 
interest to the transport aircraft designers at DA. 

With the interactive algebraic grid generator INGRID, several 
tasks can be tackled. It serves as a geometry definition and 
manipulating system to create the configuration to be evaluated 
from given input data. At any stage of the construction, user- 
defined curves describing the geometry can be graphically dis- 
played for error checking and judgment of the configuration. 
In a second step, the surface is covered with a surface grid 
with full user control of the node distribution. Then a global 
multiblock mesh can be generated for a wing-body configura- 
tion. In order to add further components like pylon, engine, 
tail etc., local blocks are then cut out of the global mesh and 
reconfigured corresponding to the components. 

The CFD system described above is used alongside other ap- 
plications to analyze the problems arising with engine/airframe 

integration. Two different calculations are compared with each 
other and with wind tunnel measurements: a bodylwing con- 
figuration and a body/wing/pylon/naceIle configuration of a 
modem transport aircraft. 

Plate 4.1 shows the general arrangement of the configuration 
with pylon and nacelle. The distribution of the pressure coef- 
ficient is projected onto the surface. The spanwise stations, at 
which experimental pressure data near the pylon were avail- 
able, are depicted in Fig. 4.4.1 together with the surface grid 
on the lower wing side. Comparisons of the computed pres- 
sure distributions for the configuration with and without pylon 
and nacelle and the corresponding experimental data show a 
good correspondence in all cases, considering that the code is 
inviscid. The flow at the leading edge is modelled with high 
accuracy, which is a consequence of the correct angle of at- 
tack in the Euler calculation. The wing was decambered to 
account for boundary layer effects; thus, there was no need to 
modify the experimental angle of attack for the inviscid flow 
calculation. The residual discrepancies between experiment 
and simulation occur in the region behind the shock, at the 
lower wing side, and at the trailing edge. The problems at 
the shock (shockhoundary-layer interaction) and the trailing 
edge are a consequence of lacking boundary layer thickness 
modeling in the code. Some differences at the lower wing 
side mainly result from flap track fairings that were mounted 
on the wing in the experiment and were not modelled in the 
simulation. 

In order to find out whether the engine installation effects are 
predicted accurately with the Euler code MELINA, the pres- 
sure distribution of the engine mounted configuration and the 
clean wing case were subtracted from each other (Fig. 4.4.1). 
It was expected that due to the subtraction the uncertainties, 
inherent in both the method (simplified viscous effects) and 
the experiment could be eliminated and that the effect of the 
flap track fairings which were not present in the numerical 
simulation could be filtered out. Positive and negative Cp val- 
ues correspond to deceleration and acceleration of the flow 
due to the engine installation, respectively. There is an ex- 
cellent correlation between the interference effects of theory 
and experiment. 

In view of the development of ultra-high bypass (UHB) en- 
gines, the aerodynamic interference between airframe and en- 
gine becomes more and more important. Figure 4.4.2 shows 
the capability of Euler solvers to simulate the flow field 
around the DLR-ALVAST wing-body combination' with dif- 
ferent wing-mounted engines. The CFM-56 engine represents 
the conventional engine and the UHB engine corresponds to 
the DLR-CRUF simulator.3 The geometry of the wing-body 
combination represents a typical modern wide-body transport 
aircraft of Airbus type. The flow field computations for the 
different configurations have been performed by the use of the 
DLR Euler-code CEVCATS. This code is written in a block- 
structured form using a multigrid acceleration technique and 
allows an arbitrary application of boundary conditions on the 
block faces4 

The first step in the multiblock approach for complex con- 
figurations is to decide on a global grid topology. In case 
of a wing-body-engine-pylon (wbep) configuration, an H-type 
structure in the streamwise direction is used; an 0-type struc- 
ture is used i n  the spanwise direction for the wing-body grid 
and in the circumferential direction for the engine (Fig. 4.4.2). 
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A three-dimensional view of the field grids for the different 
engine types is also shown. Both field grids consist of 11 
computational blocks with a total of approximately 600,000 
mesh cells. 

Transonic pressure distributions (M, = 0.75 and a = 0.84 
deg) at different spanwise sections for both engine types are 
compared to those of the wing-body configuration. The pres- 
ence of the engine results in  a forward movement of the shock 
and influences the complete upper surface of the wing. On 
the lower side of the wing, the influence is more local and 
the closer position and the larger geometry of the UHB en- 
gine causes a stronger interference. Due to the movement of 
the shock caused by the propulsion system, lift is considerably 
decreased, as shown in the lift versus semispan comparisons. 
In case of the UHB engine, an additional loss of lift occurs in 
the region around the engine location. 

Computational time for a single flow calculation is about half 
an hour on a CRAY-YMP. Comparisons between calculated 
and measured pressure distributions demonstrate the capabil- 
ity of the CEVCATS code to predict essential interference ef- 
fects due to the propulsion system.'" The capabilities shown 
above are typical of the geometric complexities which can be 
analyzed with multiblock structured-grid 

Unstructured-Grid Applications 

The unstructured-grid methods have also been applied to 
complex transport configurations, as shown below for a 
generic McDonnell Douglas Corporation (MDC) Tri-Jet 
configuration." Generally, in  this latter approach, considerably 
fewer manpower resources are expended to generate the field 
grids. The surface triangulation and the pressure contours of 
the under-wing engine at transonic conditions of M ,  = 0.825 
and cy = 1.0 deg are shown in Fig. 4.4.3. The conditions corre- 
spond to unforced flow through the engine-cowl components. 
The grid and solutions were computed with the AIRPLANE 
program developed by Jameson and Baker." The surface defi- 
nition required two days; the flow field mesh contains 384,914 
nodes and over 2 million tetrahedra. The grid is determined by 
triangulating a series of graded-refinement Cartesian meshes; 
the flow solver advances in time using Runge-Kutta time step- 
ping in combination with a central-differenced residual with 
explicitly added dissipation terms. 

The pressure distributions on the wing at 24 and 32 percent 
semispan show good agreement with experimental measure- 
ments. The pressure peaks and general behavior are predicted 
well with a slight discrepancy near the shock on the wing 
upper surface. The capability to study component interfer- 
ence is also shown through wing pressures with and without 
the under-wing engine. On the lower wing, the retardation 
effect ahead of the pylon and the acceleration over the aft 
end closely matches the experimental trend. In addition, the 
changes in pressures due to the nacelle and pylon compare 
well. In this case, less than one man-minute of editing was 
required to remove the engine assembly from the configura- 
tion; the resulting field-grid generation required 18 minutes on 
a single-processor CRAY-YMP supercomputer. 

The transonic flow over a transport configuration computed 
with an unstructured-grid Euler method" is shown in Figs. 
4.4.44.4.5. The unstructured surface-grid modeling is de- 
tailed and includes the wing-body-pylon-nacelle geometry as 

well as the coverings of the flap-deployment mechanisms at 
four semi-span positions on the wing. The engine is mod- 
eled as an actuator disk: inflow and outflow conditions are 
specified at upstream and downstream cross-sectional stations. 
The pressure contours over the configuration are shown at a 
transonic cruise condition: M ,  = 0.801 and cy = 2.738 deg; 
the longitudinal pressure variations at a circumferential posi- 
tion located 22 deg outboard from the centerline of the na- 
celle shows excellent agreement with experimental data. On 
the wing, the Euler computations at the semispan location of 
0.293 indicate an upper surface shock located further aft than 
the experimental results, as expected because of boundary- 
layer interaction effects. On the subcritical lower surface, the 
chordwise variations due to the presence of the pylon-nacelle 
and the streamwise flap-track fairings are substantial and are 
well predicted by the inviscid method. 

A similar capability is shown in Plate 4.2 for a Dassault Avi- 
ation transport c~nfigurat ion~~.~ '  with fuselage-mounted na- 
celles and vertical and horizontal control surfaces. The Mach 
contours are shown at a transonic condition15 (Moo = 0.85, 
a = 3.0 deg). The surface triangulation shown is the result 
of two successive refinements and has 40,000 nodes. The 
numerical formulation uses upwind approximations based on 
Osher's approximate Riemann solver and MUSCL interpola- 
tion. The time advancement is implicit and is combined with 
adaptive mesh refinement and unnested multigrid acceleration 
techniques. The solutions were obtained after a three-order- 
of-magnitude reduction in the steady-state residual equations, 
corresponding to 300 iterations at a Courant number of 20. 

4.4.2 Supersonic Transport Aircraft 

Recently, new initiatives towards the design of a follow-on 
to the Concorde supersonic transport have begun. Studies 
have focused in the area of configuration design for sonic 
boom minimization in order to mitigate the noise associated 
with the sonic boom and determine the feasibility of overland 
supersonic flight. The sonic boom signature for two supersonic 
transport configurations was studied by Siclari and Darden.I6 
A central-difference finite volume method in the cross-flow 
planes and an implicit upwind finite difference technique in 
the marching direction was used to solve the three-dimensional 
unsteady Euler equations. 

Computer codes used in the design and analysis of low boom 
configurations have traditionally been based on Whitham's 
modified linear theory analysis, l 7  which was extended to apply 
to lifting bodies by Walkden." Studies have demonstrated 
that the traditional modified linear theory methods become 
inaccurate as the free stream Mach number approaches 3. At 
higher Mach numbers, stronger shocks are generated and the 
assumption of isentropic flow becomes invalid. Thus, Euler 
and Navier-Stokes methods applicable to the area of sonic 
boom prediction and minimization at Mach numbers above 2.7 
are needed. These near-field prediction methods can provide 
detailed flow field information for guidance in component 
integration or provide flow field input for nonlinear or modified 
linear theory extrapolation methods. 

Two low boom aircraft concepts," designed for low sonic 
boom at Mach 2 and Mach 3, which were designed, built, and 
tested at NASA, are schematically shown in Fig. 4.4.6. The 
Mach 2 configuration has a flat platypus nose and the Mach 
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3 concept has a needle nose. Both have highly swept leading 
edges inboard with cranked lower sweep outboard wings for 
improved low-speed performance. Both concepts were studied 
without engine nacelles; the corresponding wind-tunnel data 
were also available for comparison. 

Approximately 850,000 points were used to compute the flow 
in the vicinity of each aircraft, and approximately 1.1  million 
points were used to compute the flow to 15 body lengths 
downstream of the aircraft. The computational surface model 
and computed aft pressure contours at M, = 3.0 and a = 
1.97 deg for the Mach 3 low boom configuration are shown 
in Fig. 4.4.6. The cranked wing generates a strong shock as 
indicated by the isobars. The computed isobars in a plane at 
the end of the sting show a strong shock in the leeward region, 
attributed to the coalescence of the wing trailing-edge shock 
and sting attachment shock. On the windward side, a strong 
shock occurs due to the wing crank; the circular isobars just 
to the right and left to the sting are vortices generated by the 
wing tips expansions. 

The computed pressure signatures are compared to recent 
wind tunnel model data for both the Mach 2 and Mach 3 
configurations. Both models were U300 scale or about 12 
inches in length. The wind tunnel model data were converted 
to full scale in  feet to compare to the computations. The 
wind tunnel data were taken at two different distances below 
the aircraft for each configuration. For both configurations, 
good correlation with the data is shown for both distances for 
the forward half of the signature. At WP = 0.5, the Mach 2 
data show a series of shocks and expansions in the last half 
of the signature. The computation shows a single shock and 
expansion. At h/P = 1 .O, slightly better correlation is achieved. 
The data stills show a series of shocks and expansions with 
a very large, final, expansion twice that of the computation. 
Virtually the same type of correlation is shown for the Mach 3 
configuration. Further studies16 indicate that it is necessary to 
consider three-dimensional effects in  the design of low boom 
concepts, since the Mach 2 concept showed sonic booms along 
the side of the ground footprint with magnitudes as much as 
40 percent greater than those directly along the flight path axis. 

4.4.3 Fighter Aircraft Configurations 

In  1986, Eberle and Misegades2” presented some of the first 
inviscid solutions of a complete fighter aircraft using a high- 
resolution Euler code. The underlying numerical method uses 
a Godunov-type averaging procedure based on the eigenvalue 
analysis of the Euler equations; the fluxes are evaluated at 
the finite volume faces, thus generating separate constant sets 
of flow variables on either side. The procedure is third-order 
accurate on equidistant meshes (in one dimension) and locally 
monotonicity preserving, which seems to avoid the drawbacks 
of global TVD schemes.” 

The grid generation for complex configurations like a fighter 
aircraft is performed from solutions of linear biharmonic equa- 
tions in which only one parameter is necessary to be pre- 
scribed. H-type grids are used in a monoblock approach where 
specific coordinate planes are made coincident with certain 
surface elements of the configuration at hand. With this pro- 
cedure, dummy grid points are generated inside the configu- 
rations which have to be blanked out. The resulting code can 
be run for steady state solutions by using either an explicit 

time stepping integration scheme or a point-implicit relaxation 
scheme; the latter scheme is implemented as a point Jacobi 
extrapolation procedure. 

The aircraft model studied was based on design studies for the 
early MBB-ACA fighter conducted in 1985. The computations 
were carried out on a CRAY-XMPl2 computer using a mesh 
with a total of 520,000 grid points for modelling the complete 
configuration. 

Plate 4.3 shows the pressure distribution on the aircraft for 
the following flow conditions: M ,  = 0.85, N= 7.5 deg, 
p = 5 deg. To enable a realistic simulation, mass flow 
through engine intakes and nozzles was allowed based on the 
following parameters: pj,,/pin,akc= 1 ,  mie,lmin,;lkc= 3, Minl;*c = 
0.75. The windward side (due to yaw) is the left side of the 
aircraft. Shocks can be detected at the canard and the wing 
trailing edges. Plate 4.4 shows temperature contours over the 
aircraft and i n  the region downstream of the engine exhaust at 
transonic conditions. A good estimate of the accuracy achieved 
with the Euler solver applied to a complete airplane can be 
obtained by checking the total pressure distribution. Although 
not shown here, the windward surfaces of the configuration 
do not exhibit total pressure variations except at part of the 
fuselage underside; the errors i n  this region were traced to a 
triangular interpolation between input points which was too 
disparate. 

F-18 Aircraft 

A demonstration of the complete vehicle modeling capability 
available with unstructured-grid methods22 is shown in Fig. 
4.4.7. The surface geometry of a complete F-18 fighter con- 
figuration is described by 37 surface components and 87 line 
components. The surface mesh extends into the engine inlet 
and exhaust and the half-domain discretization consisted of 
nearly 500,000 tetrahedral elements and 100,000 nodal points. 
The inlet conditions took the form of a specified Mach num- 
ber of 0.4 and the exit conditions specified a jet pressure ratio 
of 3. The pressure distribution at a transonic Mach number 
of 0.9 and 3 deg angle of attack is shown. The results shown 
were obtained in 19902’ and were initial demonstrations of the 
power of the unstructured-grid methods for aerodynamic appli- 
cations; the entire time from surface geometry demonstration 
to flow solution was less than two weeks. 

Advanced Fighter Configuration 

Another example of the unstructured-grid Euler capability 
for complex configurations is the application IO an advanced 
fighter configuration developed by Alenia Aeronautica, shown 
in Fig. 4.4.8. The results are from a validation study to assess 
the capability of Euler methods, with emphasis on the transonic 
regime, for a new generation of fighter aircraft.2’ The grid was 
generated using the advancing-front grid generation of Peraire 
et al.24, which allows highly anisotropic meshes (i.e., meshes 
where the elements can be stretched along arbitrarily-oriented 
directions) and is tightly coupled to an existing CAD system. 
The geometric modeling is detailed, includes the inlet, exhaust, 
control surfaces, flaptrack fairings, store pylons, and tip pods. 
The definition of the surface consists of 154 CAD surfaces and 
the construction of the surface mesh required one week. The 
generation of the volume mesh was done overnight using an 
engineering workstation. The grid consisted of 141,339 nodes 
and 763,566 tetrahedrons. 
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The pressure contours at a transonic speed in slight yaw 
( M ,  = 0.80, a = 4.0 deg, p = 2 deg) were computed with 
the UESSD code, which is an explicit node-centered finite- 
volume-based central-difference spatial discretization. The 
flux balance is done by a summation over the faces of the 
tetrahedrons in the volume, with each face being by two tetra- 
hedrons. The engine simulation imposed a given mass-flow 
rate. The scheme requires 45 microseconds per grid point per 
iteration on a CRAY-YMP-2E single-processor computer and 
70 words of storage per node. Solutions can be obtained in 
an hour of CPU time. A modification of the geometry and 
the corresponding flow field can be obtained in less than a 
day, indicating the numerical strategy can be used profitably 
in the industrial environment. Although not shown here, com- 
parisons of the computations with detailed pressure measure- 
ments made during wind-tunnel tests have been reported and 
have shown good accordance.2’ 

Advanced Tactical Fighter (ATF) Aircraft 

Application of the multiblock structured-grid TEAM code to 
the complete advanced tactical fighter prototype configuration 
(for which surface pressure contours at transonic speeds are 
shown in Plate 4.5) began in earnest i n  1988.2s-27 This aircraft 
features multiple lifting surfaces, twin tails, and an integrated 
airframe/propulsion system. Based on the capabilities of the 
code at the time and the schedule constraints of the project, 
only an inviscid Euler analysis of this complex configuration 
was considered feasible i n  order to have an impact on the 
design. Solutions were obtained for several transonic and su- 
personic Mach numbcrs and angles of attack for both flow- 
through and powered nacelles under symmetrical and asym- 
metrical flight conditions. Powered conditions were simulated 
by prescribing mass-flow .ratio values at the nacelle face. The 
TEAM code” was used in a truly predictive mode for a new 
design. The computational solutions were obtained before the 
wind-tunnel pressure-model data were available. No attempt 
could, therefore, be made to adjust the grid or the code to im- 
prove correlations with data. Many valuable lessons learned 
from this exercise are summarized i n  Refs. 26-27. 

Generating a grid on this configuration was a tedious and very 
time-consuming task. A few hundred man-hours and several 
weeks were expended to construct a 43-zone H-H type grid 
with about 1.5 million grid points for half the configuration. 
Such slow turnaround was a major impediment in evaluating 
the impact of numerous geometric changes on aerodynamic 
performance. TEAM’s inability to accurately predict absolute 
drag levels was another disappointing aspect for the project 
personnel. On the other hand, detailed surface pressures pre- 
dicted by the code proved valuable i n  estimating airloads for 
the structural analysis of the vehicle as well as for the ther- 
modynamic analysis. Until data from a wind-tunnel pressure- 
modcl test became available, this capability was particularly 
helpful in expediting structural analysis using more realistic 
transonic and supersonic flow data than could be obtained us- 
ing potential flow methods alone. TEAM’s application to the 
ATF configuration was quite helpful to its developers also since 
it uncovered early i n  the design cycle some deficiencies which 
have since been rectified. 

In  Fig. 4.4.9, TEAM Euler predictions of lif t  coefficient at a 
transonic Mach number and three angles of attack are corre- 
lated with the wind-tunnel data. (The vertical axis is deliber- 
ately left blank). Good agreement is clearly seen. Correlations 

of computed and measured surface pressures at two stations 
on the wing for one condition (one close to mid-span and the 
other close to the tip) are also shown. In  examining these cor- 
relations, caution must be exercised because: ( I )  the computed 
solutions, being inviscid, do not account for viscous effectsni 
and (2) even minor geometric differences between the compu- 
tational and wind-tunnel models can produce relatively large 
changes at transonic Mach numbers. For the present case, no 
special effort was made to minimize any surface profile mis- 
match between the computational and wind-tunnel models due 
to time and resource constraints. The data were not collected 
for TEAM validation but to meet the project needs. The pre- 
dicted loads were more consistent with high Reynolds number 
limit solutions (since boundary-layer effects are not modeled), 
although vortical flows from sharp leading edges are predicted. 
The Reynolds number for the wind-tunnel test was typically 
an order of magnitude less than its value in flight; thus, dif- 
ferences between wind-tunnel and flight pressures would be 
expected i n  regions when the flow exhibits shock-induced sep- 
aration. The Euler analyses proved quite useful as one of the 
tools to provide information regarding configuration modifi- 
cations during the evolution of the design. A summary of 
the CFD usage in the F-22 development program has been 
compiled by Bangert et al.;27 the complete airloads prediction, 
including control surface variations over a range of Mach num- 
bers, angles of attack, and sideslip was done using the TEAM 
Euler code and consumed 4.5 months of dedicated supercom- 
puter usage, corresponding to 1600 CPU hours. 

4.4.4 Missile Configurations 

Cruise Missile 

The solution depicted i n  Plates 4.6 and 4.7 is a single time 
frame (snapshot) of the unsteady pressure field around a prop- 
fan cruise missile. The geometry is essentially a complete 
cruise missile (as modeled in the wind tunnel) with a coun- 
terrotating propfan propulsion system operating at cruise con- 
ditions of M, = 0.7 and four degrees angle-of-attack. Re- 
searchers at Mississippi State University were contracted to 
simulate the unsteady Row field of several potential design 
concepts prior to the wind tunnel testing to help estimate the 
material strength of the wind tunnel model to maintain struc- 
tural integrity. The project, a formal cooperative effort be- 
tween the U.S. Department of Defence (Navy and Air Force) 
and the NASA Ames and NASA Lewis Research Centers, is 
sponsored by the Cruise Missile Project in Washington, D.C. 
Its purpose is to help determine the applicability of propfan 
propulsion for stand-off weapons using advanced unsteady 
aerodynamic codes2x-3s and a large-scale power-model wind 
tunnel test. 

A complete animation of this configuration (with the blades 
moving) can be formed from a collection of flow-field snap- 
shots (a total of ninety-six for this particular configuration). All 
ninety-six solutions were used to predict the unsteady forces 
and moments on all the appendages (wings, fins, and blades) 
prior to the wind tunnel test. There was concern about the 
placement of the fins, so a fins-forward (of the propfan) config- 
uration and a fins-aft configuration were analyzed using CFD 
prior to the wind tunnel experiment. CFD simulations were 
not limited to nondeflected fins, as in this case, but included 
cases involving fin deflections of five degrees. The analyses 
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gave an indication of the material strength necessary to with- 
stand the unsteady aerodynamic loading on the wind tunnel 
model. The flow-field analysis required 4 million words of 
internal memory and 32 million words of solid-state storage 
device (SSD) on a CRAY-XMP, consuming nearly eighteen 
hours of CPU time to produce the solution shown. Presently, 
the CFD solutions and the data collected from the wind tunnel 
(NASA Ames) are undergoing comparative scrutiny. 

ANS Missile 

Applications of the Euler equations to an air-breathing missile 
project (ANS) studied by Aerospatiale and MBB is shown in 
Plate 4.8.36 The configuration is powered by a ramjet propul- 
sion with 4 circular air intakes and is a follow-on to the EXO- 
CET family of missiles. The surface grid is composed of about 
16,000 nodes for half of the configuration and uses a CAD 
surface definition. The surface pressure coefficients shown 
correspond to a supersonic condition ( M ,  = 2.0, cy= 4.0 deg, 
/3 = 0 deg), with open air intakes operating in the supercrit- 
ical regime. The computations were made with the FLU3C 
code, and are representative of the capability at Aerospatiale 
to calculate missile aerodynamics in an industrial environment. 
The methodology tightly couples the CAD surface genera- 
tion and the mesh generation schemes and uses two numerical 
procedures: a space-marching procedure for supersonic flows 
and a multizonal approach for transonic and subsonic flows. 
Applications to several missiles, an Ariane 5 plus Navelle 
Hermes configuration, and a supersonic transport are shown 
elsewhere.” 

4.4.5 Store Configurations 

A good understanding of the fluid mechanics associated with 
carriage and release of stores from an aircraft is of primary im- 
portance to the aircraft designer. The flow field encountered 
on stores in the presence of an airframe is usually complex be- 
cause of the many aerodynamic interactions which occur. Tra- 
ditionally, the designers have relied on extensive experimen- 
tal wind-tunnel tests to estimate interference effects. Recent 
progress in unstructured-grid methods is beginning to have an 
impact on that progress. For example, an extensive wing- 
pylon-store computation is reported in Ref. 37. The method- 
ology consisted of an advancing-front grid generation scheme 
closely coupled to an upwind, finite-volume scheme. System- 
atic comparisons of the interference effects were made with 
experimental data3’ for the baseline (instore) position and two 
other store positions at Mach numbers of 0.95 and 1.2. The 
surface geometry is shown in Fig. 4.4.10 and the longitudi- 
nal variations of pressures for three store positions at M ,  = 
0.95 are compared with experiment in Fig. 4.4.1 1 .  There is 
a substantial effect of the store position on the pressures and 
the comparison with experiment is excellent at all three posi- 
tions. The comparisons presented in Fig. 4.4.1 1 are typical 
of the others presented in Ref 37. The demonstrated accuracy 
and the fast grid generation makes the approach attractive as 
a preliminary design/analysis tool. 

At MBB, monoblock structured-grid codes have been used 
since the early beginnings of field method applications. Now 
they have reached a high level of maturity and universality. 
Configurations of very high complexity can be efficiently mod- 
elled; CAD-tools like CATlA and DOGRID-5.339 are used as 
preprocessors. The resulting monoblock-structures are used 

i n  different flow solvers, but especially for Euler (EUFLEX, 
INFLEX) and for Navier-Stokes (NSFLEX) computations. A 
new technique based on smart-cell structures in monoblocks 
recently led to two efficient  application^:^' 

multiple overlapping monoblocks (MOM) 

dynamically overlapping grid (DOG) 

MOM is an EUFLEX-type solver and is applied for steady 
and rigid multiple body configurations. DOG is a combination 
between a INFLEX-type time accurate algorithm with the SSP 
code4’ for the adequate time accurate representation of flight 
mechanically described motions and simultaneously occurring 
commanded control deflections. 

In  the present stage, both codes are able to handle two over- 
lapping monoblock structures. The basic approach to describe 
the exchange of flow informations between both flow regions 
have been derived from descriptions of the Chimera method4* 
whereby the synchronization of time between the blocks is 
regulated similarly to the ESE te~hnique.~’ MOM and DOG 
are highly suitable for store integration investigations. As seen 
in Fig 4.4.12, two typical trajectory positions are shown for a 
missile separating from an aircraft, which has not been fully 
represented geometrically due to the supersonic flight condi- 
tions. 

The accuracy of such predictions has already been success- 
fully demonstrated for subsonic and supersonic cases for a 
variety of complicated store geometries. A good correlation 
between flight test (IT), wind tunnel (WT), and MOM results 
for a store-wing configuration has been obtained; isobars are 
shown in Plate 4.9 for Mm = 0.9. The correlated rolling 
moments, well-known as most sensitive to misrepresentation, 
agree closely, as shown in Fig. 4.4.13. These results have been 
achieved with only 60,000 cells in  both monoblocks together. 

The application of such an approach is very universal. The 
present code, uniquely designed for store integration studies 
can be easily extended to other completely different problems, 
even such as to the flow around a complete helicopter i n  
forward flight inclusive ground effects, for high speed vehicle 
flow with realistic ground/wall effects and other nontrivial 
boundaries. 

4.4.6 Reentry Configurations 

HERMES 

Computations of Rieger et al!4 are shown for the HERMES 
1 .O configuration in Plates 4. I O  and 4.1 1 and in Fig. 4.4.14. 
Because of the size and specific position of controls on the con- 
figuration, the performance of the control system is strongly 
influenced by flow field effects through large gaps and slits be- 
tween body flap, elevons, and winglet flaps. This is important 
insofar as the size of the controls are by far not small com- 
pared to the overall size of the vehicle. For purpose of inviscid 
flow field simulations, a mesh system was constructed by use 
of the interactive mesh generation system DOGRID developed 
at Dornier which consists of 7 mesh blocks and i n  the finest 
mesh possesses some 1.5 million grid points. The various 
mesh blocks are interconnected by use of segmentation tech- 
niques which allows the arbitrary connection of block faces 
or parts thereof. Particle traces are shown i n  Plate 4. IO;  Plate 
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4.1 1 displays some flow features in form of Mach number dis- 
tributions on the body surface, in  the symmetry plane, and in a 
specific cross-section. The interesting point is the behavior of 
the flow jet coming up on the leeside wing through the gap be- 
tween elevon and winglet flap. Because of high velocities and 
low pressure level of the wing leeside flow, the gap jet with 
high pressure acts approximately like a rigid body, which pro- 
duces an additional shock system that is indicated by the blue 
spot (low Mach number) in  the fuselage end section. In  the 
body flap end section, the interaction between the expansions 
around the trailing edges of the windward flow and the cross- 
flow phenomena, including the gap shock system, evolves to 
a highly complicated flow structure. The computations were 
performed with the block-structured code supporting a regular 
data 

Reference 45 describes the application of the DLR code CEV- 
CATS with central discretization and the upwind scheme used 
by ONERA’s code FLU3C in order to validate inviscid flow 
calculations for reentry vehicles at supersonic conditions. The 
coordinate mesh used for this study is displayed in Fig. 4.4.14. 
Pressure contours in  Fig. 4.4.14 show that the flow fields pre- 
dicted by both codes are almost identical. The only difference 
in the results is a slightly better shock resolution by the up- 
wind scheme. Detailed comparisons of computed global forces 
and moments with wind-tunnel measurements indicate that lift, 
drag, and pitching moment are in very good agreement. The 
differences for roll and yaw moments are somewhat 
Nevertheless, the effect of Mach number and angle of attack on 
lateral and directional stability is well predicted. Other com- 
putations for HERMES-like configurations have been made by 
Pfitzner4’ and Menne and Wieland:’ a general survey of in- 
dustrial applications to reentry and hypersonic configurations 
is given by Rieger, Stock, and Wagner.M 

Space Shuttle 

The numerical computation of an inviscid flow field about a 
very complex airplane and reentry spacecraft is of consider- 
able interest to the research and designer. A unified approach 
to efficiently solve the Euler equations for the entire Mach 
number range has been developed (Euler Marching Technique 
for Accurate Computations (EMTAC) code) by Chakravarthy 
and S ~ e m a . ~ ’ ~ ~ ”  The approach is based on the unsteady Euler 
equations; an infinitely large time step and a space-marching 
technique is used in the supersonic flow region. The large 
time step makes the transient terms of the discretized unsteady 
equation vanish. In  the subsonic flow region, a finite time step 
and a relaxation method are used and the steady state is ap- 
proached asymptotically. A finite volume implementation of 
high accuracy (up to third order in one dimension) TVD dis- 
cretizations is used, and thus the method is more accurate and 
reliable than other Euler space- and time-marching techniques 
based on central difference approximations. More recently, a 
multi-zone version of the code has been developed (EMTAC- 
MZ) as a superset to the single zone EMTAC. In the following 
text, the name EMTAC is used to denote either code. A similar 
modified space-marching approach is used by Rieger.” 

Single-zone grid generation for a very complex geometry, such 
as the mated Shuttle orbiter with external tank (ET) and solid 
rocket booster (SRB), is difficult and requires some configura- 
tion approximations. To avoid these geometry modifications, 
a multizone technique is applied to solve the flow field for 
this type of geometry. 

Fig. 4.4.15 illustrates the multibody interaction problem of 
the Shuttle orbiter in  a mated configuration with the ET and 
SRBs. The cross-section grids at various constant x-locations 
are also given. The solutions are obtained at A[, = 1.8 and 
a= 0.0 deg. Fig. 4.4.15 shows the pressure contours from x 
= 200 in. to x = 1780 in.; five zones are used in this region. 
The SRB and Shuttle Orbiter are treated as a point, and the 
zero flux boundary condition is applied to these points. At x 
= 220, the conical solution of the ET is obtained, and rhe bow 
shock is formed. 

The solutions are very smooth and continuous across the zonal 
boundaries despite a very unconventional three-sided computa- 
tional grid. The expansion wave from the surface at x = 400 in. 
can be clearly seen in this figure. The apex of the SRB starts at 
x = 425 in. and produces an attached bow shock. This shock 
expands and finally hits the ET surface, as can be seen at x = 
610 in. Notice that a very symmetric solution is generated by 
using this unsymmetric grid. The orbiter nose is at x = 640 in. 
The detached shock and subsonic flow field behind the shock 
are calculated by using the relaxation method. The reflected 
orbiter bow shock on the external surface is clearly evident 
at x = 810 in. At x = 1670 in., the embedded wing shock is 
indicated which wraps around the leading edge of the wing. 
Another detached shock is formed further downstream by the 
orbital maneuvering system (OMS) pod. Since the subsonic 
pocket is big and the Mach number is almost zero near the root 
of the OMS pod, a total of 20 relaxation marching sweeps are 
required to give a good converged result. The OMS pod and 
vertical tail shocks are clearly shown in this figure at x = 1780 
in. The relaxation method is used to calculate the subsonic 
flow field and detached bow shock. The chordwise pressure 
distributions on the upper surface of the wing at several span 
stations compare well with experimental data, including in the 
region where OMS pod shock interacts with the wing surface. 
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Figure 4.4.1 Euler simulation of transonic flow over a twin-jet transport aircraft. 
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Figure 4.4.2 Engine-airframe integration for a transport aircraft with an ultra-high bypass engine. 
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Figure 4.4.3 Unstructuredqid applications to a McDonnell-Douglas Tri-Jet configuration at 
transonic speeds; M ,  = 0.825, OL = 1.0 deg. 
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Figure 4.4.4 Unstructured surface grid and pressure contours for a transport configuration; M ,  
= 0.801, a = 2.738 deg. 
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Figure 4.4.5 Comparison of streamwise pressure distributions along nacelle and wing surface 
between Euler and experiment; M, = 0.801, a = 2.738 deg. 
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Figure 4.4.7 Unstructured surface grid and pressure contours for an F-t 8 aircraft configuration; 
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Figure 4.4.8 Surface grids and pressure contouffi from an unstructured-grid computation of an 
advanced fighter configuration. 
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Figure 4.4.9 Multiblock structured-grid Euler computations for advanced tactical fighter config- 
uration. 
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Figure 4.4.1 1 Surface pressure comparison on the store of a wing/pylon store configuration, 
M, = 0.95. 



Two typical MOM grid configurations during store separation 

Figure 4.4.1 2 Two typical multiblock structured grids developed during the simulation of a store 
separation from a forebody configuration. 
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Figure 4.4.13 Comparison between Euler (MOM), flight-test (FT), and wind-tunnel test (WT) for 
angles of attack and sideslip; M ,  = 0.9. 
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Figure 4.4.15 Multi-zone Euler marching method applied to the Space ShuHle orbiter-tank- 
booster configuration; M ,  = 1.8, OL = 0.0 deg. 
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4.5 PROPULSION SIMULATIONS 

Applications of the Euler equations to simulate propulsion flow 
fields are shown below. The Euler equations have been used 
extensively in propulsion simulations and propulsion-airframe 
integration studies. These equations admit vorticity and, thus. 
can be used to simulate the aerodynamic performance (ne- 
glecting boundary-layer effects) of rotating machinery such as 
propellers, rotors, or turbines. Simulations of propeller, rotor. 
cascade, and fan blade passage calculations are shown below. 
including simulations in which an approximate model is used 
to determine the inflow conditions to a local Euler solution 
and several more detailed computations in which the entire 
flow is modeled. Because of the geometrical complexity of 
the three-dimensional, generally unsteady flow fields. and the 
difficulties i n  resolving free wakes in the flow field, the com- 
putational demands associated with the latter classes are high; 
such calculations are yet in their infancy. The modeling of 
the propulsion system is often done using an actuator disk 
model, admitting specified Changes in total pressure, enthalpy. 
and rotation, and an example for a twin tractor configuration 
is shown; several other airframe-integration examples shown 
previously also used actuator disk modeling. Euler computa- 
tions for nonrotating machinery. such as inlets, nozzles, and 
nacelles are comparatively much more evolved; several de- 
tailed computations are shown, including a nacelle analysis 
system which has been extended into the design stage (Sec- 
tion 4.8) and several higher Mach number applications. At 
high Mach numbers, simulations of inlets and nozzles associ- 
ated with high-speed aircraft must consider the Euler equations 
at a minimum since the potential equations are inadequate. 

4.5.1 NACA Propeller 

Figure 4.5.1 shows results',* of a calculation for a NACA 
propeller with M- = 0.56, an advance ratio of ,I = 0.73, and 
a blade lip Mach number of MI,, = 0.96. Lines of constant 
pressure are plotted in four crossplanes perpendicular to the 
blade in the upper part of the figure. A shock can be seen in 
the outward planes for zJZ > 0.7. where Z denotes the radial 
position of the blade tip. This shock is getting stronger and its 
position is getting closer to the trailing edge with increasing 
radius z. This effect is clearly represented in the lower part of 
Fig. 4.5.1, which shows the lines of constant pressure on the 
blade's upper surface. The comparison between calculated and 
measured pressure distributions along the chord for the same 
case at four selected cross sections shows good agreement. The 
calculation produces a shock that is stronger and its position 
is more downstream than the experiment. which is attributed 
to viscous effects. 

4.5.2 Hovering Rotor 

Approximate Wake Model 

Figure 4.5.2 shows a comparison between computation1.' and 
experiment' for a two-bladed rotor with untwisted rectangular 
NACA 0012 blades in hover. The blade tip Mach number M,,, 
is 0.194 and the collective angle of attack 0 is 8 deg. The pres- 
sure distributions along the chord at four different cross sec- 
tions are presented. These flow conditions produce B transonic 
flow in the region of the blade tip. The agreement between 
computation and experiment is good i n  all four sections. The 

position and strength of the shock are well reproduced by the 
numerical algorithm. Other computations are given by Stahl? 

Complete Wake Model 

In the model described above, only a small region around the 
blade has to he discretized since a wake model is used to set 
the inflow conditions for the blade. Consequently, the flow 
induced by the advancing blade is not the flow that impacts 
the following blade. This leads to large savings in computer 
time but the solution is dependent on the wake model used. To 
remedy this deficiency, the physical domain can be extended 
so that the complete rotor disk is enclosed. This ensures that 
the Following blades are exclusively exposed to an induced 
flow that is calculated by the pure Euler procedure itself. 
The problem associated with this is a further increase in the 
number of grid cells and. consequently, in the computational 
expense. On the other hand, the main function of the cells 
inside the expanded regions is only to provide the essential 
distance between the blade and the far field boundary Since 
the flow gradients that are expected in these regions are less 
substantial than in the blade's vicinity and their influence on 
the blade is small, the discretization can he much coarser than 
i n  the interior. 

Using this approach, Kramer et al.' found that if the grid is 
too small. especially in the radial and downward directions, 
the development of the m o r  wake is obstructed significantly. 
To overcome this deficiency, the dimensions of the original 
grid (twelve blade chords, which is twice the blade length. in 
the radial direction, and eight blade chords above and below 
the rotor disk) were enlarged by a factor of 2-3 in the radial 
and 3-4 in the normal direction. The original grid is actually 
used as an inner component of the extended grid, generated 
separately by a simple analytical algorithm. An example for 
an 0-0 grid generated in this manner is given in Fig. 4.5.3. 

An Euler calculation based on a free stream initial condition 
corresponds to the physical situation of a helicopter rotor stan- 
ing instantaneously from rest. The flow behavior associated 
with the beginning of rotation is very complex and character- 
ized hy a long transient period before a steady state is reached. 
As lift develops, the starting vortex created by the rotor blades 
plays a dominant role. The formation and the further temporal 
evolution of the rotor wake within the starting phase is known 
from several experimental investigations. 

Figure 4.5.3 shows the results obtained in terms of the circula- 
tion per unit area using an expanded 0-0 grid. The temporal 
evolution of the wake within the starting phase is plotted at 
different iteration levels. The figures clearly show the move- 
ment of the tip vortex, as well as that of the vortex arising 
at the inner blade root. The reproduction of the inner vortex 
and the highly three-dimensional interference between the in- 
ner and the outer vortex is not possihle unless the physical 
domain completely extends to the rotor axis. If the region of 
small radii was not considered, as is often done in practice, 
these effects would be ignored. 

The results of the Euler procedure show the typical phenomena 
of the starting process as in the experiments: initially, the 
vortex ring remains located near the tip. being continuously fed 
with circulation. Likewise, its geometric extension continues 
to grow. After some time, the vortex begins lo descend 
and new vortices arise. This is indicated by the isolines 
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which allows the representation of a discontinuity in the tan- 
gential velocity field far simulation of vorticity effects. 

The numerical results are compared with experimental data 
in Fig. 4.5.4. The profiles of the compressor cascade were 
equipped with five pressure transducers on the pressure side 
@I-D5) and six pressure transducers on the suction side (SI- 
S6). For these locations. experimental and numerical data in 
the form of the dynamic pressure distributions are pl,otted as a 
function of time. The comparison with computed results shows 
very good agreement in amplitude and phase except for DI. 
Unfortunately, the pressure transducer SI was out of order. 
The acceleration measured in the experiment shows a second, 
higher frequency corresponding to the first torsional mode. 
Therefore, all measured data exhibit a high oscillation. The 
difference at point DI is caused by the relatively warse grid. 
The good calibration between measurement and numerical 
simulation with respect to phase shifts can be examined by 
the correspondence of acceleration data. 

Other Euler computations of the internal flow in cascades, 
turbines. and ducts are reported by Saxer et al.,"' Happel et 
al.,"." Lecheler et al.," and Leicher.14 

becoming more and more elongated. With the extended grid, 
however, there is no impeding boundary and the movement 
prcceeds undisturbed. Some time later, one can see that the 
isolines are directed inwards, which is a typical sign of the 
beginning contraction of the newly arising vortices. This 
process intensifies as the starting vortex ring retains its radial 
position. In the last frame. the starting vortex is approximately 
I5 blade chords beneath the rotor disk. At this distance, any 
influence on the blade has been lost. 

A quantitative proof of the agreement between calculation and 
experiment can only be performed for the time-asymptotic 
State because a steady code was used to calculate the transition 
phase and, therefore, time consistency does not exist. The 
geometric locations of the outer tip vortices for the steady case 
corresponding to a collective pitch of 5 deg and a tip Mach 
number of 0.815 is plotted into the isoline diagram of the final 
iteration state. These results are in a very good qualitative 
agreement with the experiments. The agreement between the 
numerical and the experimental data is very good, except at 
the very tip, where the tip release is overestimated. The 
reason for this is not yet clear, since the discrepancy could 
not be improved by using the expanded grid and was also 
unaffected by any grid refinement, geometric tip modeling, or 
other measures of that kind, 

Figure 4.5.3 also shows the results obtained in terms of 
the pressure distribution for the two-bladed model rotor of 
Caradonna and Tung' for a tip Mach number of MUp = 0.815 
and a collective pitch angle of 8,  = 5 deg. The measured 
pressures agree closely with the predictions. 

4.5.3 'hrbine and Compressor Cascades 

The reliability of modern axial-flow turbomachines is partic- 
ularly influenced by flow-induced vibrations. They may be 
caused through blade row interactions, turbulence, stall, inlet 
distortion, and self-exited blade vibrations. 

Based on the explicit predictorlcomtor MacCormack 
scheme." a numerical method has been established for two- 
dimensional computation of unsteady inviscid subsonic flow 
thmugh oscillating compressor and turbine cascades by the Eu- 
ler equations?" As a typical result for an unsteady oscillating 
blade application of the numerical method. the travelling wave 
mode (TWM) of a compressor cascade in bending motion is 
investigated and compared to corresponding measurements. In 
TWM, all blades vibrate at the same frequency and amplitude. 
but a circumferential constant phase lag exists between each 
blade and its neighbors. 

A computational mesh (51x17 points) typical for such an 
application is shown in Fig. 4.5.4. The geometry presented 
corresponds to the standard configuration no. 4 as defined 
for the 1986 workshop' on "Aeroelasticity in Turbomachines" 
organized by the EPFL-Lausanne. In the numerical procedure. 
the H-type mesh is smoothed at each time step by an elliptic 
operator in order to improve convergence characteristics. 

The location of the various numerical boundaries with special 
algorithmic treatments are depicted in Fig. 4.5.4. As indi- 
cated. the following boundary types have to be distinguished: 
inflow (Bl) and outflow (BZ), wall (B3, B4), slip (B5, 86). 
and periodical boundary in circumferential direction (87, 88). 
Downstream of the blade, a slip-line leaves the trailing edge 

4.5.4 Fan Stage Passage 

A cooperative program between Mississippi State Univer- 
sity and the National Aeronautics and Space Administration 
(NASA) has bcen in place for 6 years to develop software 
capable of the timeaccurate analysis of wmplex rotating 
machinery.'s18 Recently, NASA's interest has shifted toward 
ducted rather than unducted advanced turboprop designs; con- 
sequently the computational fluid dynamic (CFD) effort was 
steered to extend the Row analysis software developed for 
the time-accurate simulation of unducted gwmetries (prop 
fans) by incorporating additional domain decomposition mech- 
anisms to enable the simulation of unsteady ducted propfan 
flows (i.e., combined external and internal flow)." This ef- 
fort uses computational techniques and experience gained in 
computing unsteady flows about complex geometries using 
dynamic multiblock grids (i.e., relative-motion suhdomains). 
Although initially intended for the numerical solution of ro- 
tating machinery problems, the computational tools that were 
developed at Mississippi State essentially comprise a SINC- 

tu& multiblock flow solver and have been used fur the flow- 
field simulation of a complete aircraft configuration, such as 
the propfan powered m i s e  missile shown in a previous sec- 
tion. The references cited present a detailed discussion of 
the numerics of the Row solver which includes the equation 
formulation (finite volume), the numerical Rux at cell faces 
for this cell centered scheme (flux-difference split with Roe 
averaging), and the implicit solution algorithm (block LU ap- 
proximate factorization with iterative refinement). along with 
a discussion of the dynamic multiblock grid approach. includ- 
ing techniques that have been developed for this particular 
type of problem involving rotating hlocks. One configura- 
tion presently undergoing investigation is a 1.15 pressure ratio 
fan stage extensively tested by NASA.m The 225x52~15 H 
grid was used to model one-twelth of the geometry. one rotor 
passage, and three stator passages (benefitting from solution 
symmetry). The configuration operates at an advance ratio of 
2.86 with a free slream Mach number of 0.75. The predicted 
surface pressure contours of the present Euler flow solver are 
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shown in Plate 4. I .  Other three-dimensional Euler computa- 
tions for a propeller are given by'Bocci et al?' 

4.5.5 Propeller Slipstream 

An example" indicating the use of Euler equations to model 
propeller-slipstream effects is shown in Fig. 4.5.5. The surface 
grid for a high-wing transpon aircraft configuration intended 
for subsonic flight is shown; two wing-mounted propellers 
mounted in the tractor position provide thrust The propeller is 
modeled as an actuator disk io the computations and generates 
a slipstream having swirl and increased total pressure. The 
calculations were done using a multiblock grid consisting of 
1.2 million cells and solved with an explicit central-difference 
discretization. A top view of the surface pressure contours 
from two computations, with propellers off and propellers on, 
is shown at a Mach number of 0.3 and an incidence of two 
degrees; the block boundaries of the surface blocks appear 
as lines in the figure. The pressure distribution on the wing 
and also on the horizontal tail surface is modified due to the 
presence of the propeller. The total pressure contours in the 
vertical plane of symmetry of the nacelle indicate the total 
pressure is practically constant in the entire flow field except in 
the region downstream of the actuator disk. The actuator disk 
model allows the assessment of slipstream-induced effects on 
the aerodynamic performance, stability, and control for general 
aerodynamic configurations. without the expense of computing 
the details of the rotating propeller flow. 

4.5.6 arbofan Nacelle Analysis System 

A three-dimensional turbofan nacelle design system based on 
CFD has been in use at General Electric Aircraft Engines for 
several years?3 The system was created to assist nacelle de- 
signers in the efficient assessment, modification, and improve- 
ment of design concepts. The grid generation. flow solution, 
and post processing are highly integrated in the system and 
tailored to the design applications of interest; the improved 

es have reduced the design cycle time for the nacelle 
design process. While the code has the capability to model 
viscous effects by including the Reynolds-averaged Navier- 
Stokes terms, the Euler equations are generally solved in or- 
der to reduce the computational time. The engine is modeled 
as an actuator disk and the specification of the mass flow is 
equivalent to setting the lift coefficient for an external flow 
application, so that Euler computations would be expected to 
be very accurate outside the areas where significant viscous 
separation occur. An example of the validation studies which 
have been conducted for extensive applications at design and 
off-design conditions is shown in Fig. 4.5.6: the schematic of 
the nacelle geometry and the computational grid illustrate the 
multiblock structured-grid approach. The operating conditions 
for the computation corresponds to a typical cruise condition 
( M ,  = 0.82, MFR = 0.65, m = 0 deg). The parameter MFR 
is the ratio of the captured free stream tube area to the in- 
let area and is representative of the engine mass flow ratio. 
The ideal Mach number is a commonly used design parame- 
ter and is computed using the local surface pressure and the 
free stream total pressure value. The longitudinal variation of 
the ideal Mach number indicates excellent agreement with the 
experiment. The entire computational time for a case is 30 
minutes: 5 minutes for grid generation. 15 minutes for flow 
solution, and 10 minutes for post processing and initial design 

evaluation. Extensive computations are summarized in Ref. 
23 for more than fifty cases, representing cruise, off-design, 
and rake-off conditions, which have produced similar levels of 
agreement with experimental data. 

4.5.7 Inlets 

From the designer's point of view, an intake design delivers a 
specified mass flow with specified flow conditions at the engine 
face. An optimal design would provide these flow conditions 
with losses as low as possible. In particular. for hypersonic air- 
breathing vehicles, the specific intake design can be governed 
by the overall performance of thevehicle (Le., i t  may no longer 
be possible to select an intake that is optimized by itself). 

Therefore, flow simulation is an attractive tool to support 
intake design by providing detailed information on the flow 
structure which is necessary for the shape optimization process 
of all configurational elements and which is normally not 
provided by wind tunnel testing. Also, the scaling of wind 
tunnel data to realistic Mach and Reynolds numbers can be 
carried out by the help of flow simulation information, thereby 
lowering considerably uncertainty margins. 

The application of Euler methods for intake design may he 
of high interest for all those cases where viscous effects are 
expected to be small. Another is the question as 
to whether the underlying inviscid approximation scheme of a 
Navier-Stokes method is able to provide Euler solutions with 
a minimum of numerical dissipation. 

Although the calculations of scramjet flows presented in Ref. 
25 demonstrated quite clearly the capability of the EUFLEX 
code to cope with flow phenomena in hypersonic intakes, these 
calculations also showed room for enhancements. This experi- 
ence and insight led to further improvements of corresponding 
flux and limiter formulations. The benefits of these effons 
are demonstrated by calculations for realistic two-dimensional 
airbreathing engine (turbo or RAM) intakes. The type of grid 
system used for corresponding computations is shown in Fig. 
4.5.7. The grid depicted is called the fine mesh and consists 
of 301 grid points in x-direction and 107 grid points in z- 
direction. There are 52 cells spanning the height of the intake 
duct. The length of the intake duct behind the throat is some- 
whatshorterforthe finegrid than forthemediumgrid (161x65 
points) which was also considered. Some crude shock fining 
has been attempted by arranging the surface grid points such 
that the point of the leading edge of the third ramp corresponds 
to the point on the tip of the intake lip. 

The Mach number distribution for the Euler calculations on 
the fine grid is shown in Fig. 4.5.7. This finer grid produces 
sharper shocks in comparison to the coarser mesh; the third 
ramp shock for which the grid is adapted best is extremely thin 
in the fine grid solution. However. as a result of this '"shock 
fitting" approach. the shock originating at the intake lip appears 
to be thicker than expected. The dislribution of the mass flow 
deficit has been improved by the increase in grid points. From 
the computation, it is evident that the external ramp shocks 
merge outside the intake just below and behind the tip of the 
intake lip. On the outside of the intake lip, an expansion wave 
is generated which interacts with the slip stream behind the 
intersection point of the external ramp shocks and the shock 
formed by coalescence of all these shocks. Additional ah- 
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3. CARADONNA. F. X. and TUNG, C.. "Experimental and intake computations for aircraft at transonic an 
speeds have been made by Buers et al." and Gr 

4.5.8 Scramjets 

supersonic 
hoff." 

In 1990, Eherle et  al.= made improvements to an earlier Eu- 
ler scheme with the intent to enable the accurate and robust 
treatment of hypersonic flows. Emphasis was on improved ca- 
pabilities of the characteristic-based method to capture shocks 
of any strength, to represent lee-side flows, and to represent 
base flows past vehicles cruising at any speed, particularly for 
hypersonic flow applications. An application of this general- 
ized method is presented in Fig. 4.5.8. where high resolution 
results rue shown for a Mach 3 scramjet problem quite often 
used to demonstrate inviscid code performance. The complex 
flow pattern exhibiting shocks, expansion fans, and slip lines 
is well resolved as can he deduced from the Mach contour 
and density contour plots. The numerical approach, which 
is based on a sophisticated flux formulation, may be viewed 
as an alternative to heuristic twls such as local grid enrich- 
ment or similar approaches. Although the shocks are far away 
from being aligned with grid lines, the capturing property of 
the characteristic-based method is god. It should be pointed 
out that the axial massflux error monitored is very small, and 
for most portions is well below one permille. Other calcula- 
tions for nozzle flow fields are reported by Reidelhauch and 
Weiland?' 

4.5.9 Nozzles 

Euler codes intended for nuzzle simulations at high Mach num- 
bers require a high degree of numerical robustness. The EU- 
LFLEX algorithm includes an accurate Riemann solver, to- 
tal temperature-preserving split flux vectors, as well as dif- 
ferentiable switches and interpolations. For preserving pres- 
sure/density positiveness at hypersonic s@~, an efficient im- 
plicit update procedure is proposed. Specific mauix precon- 
ditioning techniques are introduced tu circumvent singularity 
effects of the associate Jacobian matrices. An applicationzg 
in which all these items have proved beneficial is the invis- 
cid flow simulation past a twdimensional twin jet nuzzle 
(Fig. 4.5.9). This configuration is a candidate design for a 
hypersonic aircraft. Computations are shown for the nozzle 
operating over a range of Mach numbers. The lower nozzle is 
that of a turbine, whereas the upper nozzle corresponds to a 
ramjet exhaust. At high Mach numbers ( M ,  = 6.8), only the 
ramjet is running. At medium supersonic Mach numbers ( M ,  
= 3.5). both engines are in operation; at transonic speeds ( M ,  
= 1.2). the ramjet is off and acts as a boundary layer ejector. 
In each case, the Mach number isoplots reveal extraordinarily 
sharp resolution of the flow structure. 
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Figure 4.5.1 Euler calculation for propeller. 
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Figure 4.5.2 Euler calculation for hovering rotor. 
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Figure 4.5.3 Euler calculations for hovering rotor with complete wake model showing grid, 
pressure distributions, and temporal evolution of starling process in terms of circulation per unit 
area contours. 
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Figure 4.5.4 Euler computations for a turbine cascade showing grid and comparisons between 
calculation and experiment for cascade bending in TWM: 0 = 180 deg, v = 132 Hz, 
M1 = 0.228. 
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Figure 4.5.5 Actuator disk modeling of propeller slipstream effects for a high-wing subsonic 
transport aircraft. 
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Figure 4.5.7 Fine grid, lines of constant Mach number, and mass flow axial variations for Euler 
computations of a mixed compression inlet; M, = 5.25. 
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Figure 4.5.8 Mach contours, density contours, and local massflux errors from Euler computa- 
tions of a scramjet flowfield. 
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Figure 4.5.9 Grid and Mach contours Of a twin nozzle computation for a hypersonic aircraft 
at different operating conditions. 
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4.6 HYPERSONIC FLOWS 
Because of recent renewed interest in the development of 
hypersonic air-breathing aircraft, such as the National Aem- 
Space Plane in the US., there has been aetive research and de- 
velopment of Euler solvers for hypersonic flows. The emphasis 
has been principally in two areas: the design of oscillation-free 
schemes capable of capturing strong shocks and the incorpora- 
tion of gas models more sophisticated than a perfect gas. Both 
are central ingredients of an algorithm able to operate at high 
Mach numbers reliably that could form the framework for a 
hypersonic, viscous algorithm. Several examples of the im- 
proved shock resolution available through either adaptation or 
improved dissipation models are shown below for the case of 
a plane shock intersecting a blunt body at hypersonic speeds, 
corresponding to a shock-shock interaction problem. The hy- 
personic flow over a double ellipsoid body was computed ex- 
tensively with different Euler solvers at the INRIA Workshop 
on Hypersonic Rows fot Reentry Problems;' two examples are 
shown: a pe-fect gas and a real gas computation. The proceed- 
ings of the workshop provide a summary of the methodology 
which currently exists for applications to hypersonic flows. An 
application of Euler solvers to the equilibrium and nonequilib- 
rium flow over a Hemes  configuration is also shown. 

4.6.1 Blunt Cylinders 
Algorithmic details and general capabilities for the simulation 
of inviscid hypersonic flows in  chemical non-equilibrium con- 
ditions are given by Pfitzner?.' The flow solver is based on 
a quasi-conservative split matrix method with upwind-biased 
space discretization coupled to a Runge-Kutta time-stepping 
scheme. The chemistry source terms are treated either explic- 
itly or (point) implicitly. The chemical kinetics are based on 
the 5-species 17-reaction model according to Park? For simu- 
lation of nonequilibrium reenuy air flows at heights above 50 
km, explicit treatment of source terms was sufficient. 

Figure 4.6.1 shows a comparison of fringe patterns for inflow 
of partially dissociated nitrogen about a 2-inch diameter cylin- 
der at the following flow conditions: M, = 6.14. p ,  = 
2910 Pa. T, = 1833K, urn = 559074.5, c g  = 0.073. 
Corresponding experiments were conducted by Homung? 
Whereas the shock position is reproduced well, the fringe pat- 
terns differ somewhat due to the one-temperature model used 
which does not allow for an appropriate delay of chemical re- 
actions by thermal nonequilibrium in the vibrational degrees 
of freedom. 

Figure 4.6.1 displays a comparison of temperature contours of 
a flow about a 114 inch sphere in air at free stream conditions 
of: M, = 15.3, pm = 664 Pa, T, = 293 d c g 6 ,  U, = 
5280na/s. The results illustrate the effects of ideal, equilib- 
rium and chemical nonequilibrium real gas assumptions. Also 
shown (top right of Fig. 4.6.1) is a comparison of the resulting 
shock contours with the experiment of Lobb." The experimen- 
tal shock standoff distance is slightly larger than the calculated 
one due to thermal non<quilibrium effects. 

4.6.2 Shock-Shock Interactions 

Adaption Effects 

The adaptive-gnd method can be used to resolve multiple- 
shock interactions computed with shock-capturing methods. 

An example (shown in Fig. 4.6.2) uses an unstructured data 
management scheme allowing flexible grid adaptation with lo- 
cal refinement in one or two coordinate directions. Special- 
ized adaption criteria account for the expected phenomena in 
super- and hypersonic flows, for example, smng shocks and 
slip lines. The Euler equations are solved using a second 
order upwind discretization'.' according to Hanen and Yee'. 
The scheme is a finite volume method based on quadrilateral 
meshes. 

Fig. 4.6.2 presents a complex example which permits an 
evaluation of the effectiveness of unidirectional cell division! 
This study uses a Mach 8.03 shock-shock interaction' as a 
test case. This example is well suited for comparisons of 
methods since the flow field complexity stems from the gas 
dynamic interaction and not from some arbitrarily chosen 
boundary. Additionally, the solution demands resolution of 
many different and disparate convective length scales and 
contains both sub- and supersonic regions. 

Taking the origin at the center of the cylinder. the problem 
is completely specified by a Mach 8.03 free stream containing 
an impinging shock which follows a prescribed line (y=0.3271 
x + 0.41471). Figure 4.6.2 contains two discrete adapted- 
grid solutions to this problem (each was converged with a 
constant global time step for 25.0 characteristic times). The 
top solution did not make use of unidirectional cell division, 
and the mesh shown contains 12869 nodes. The Mach contours 
displayed maintain an increment of 0.25 and the Mach 1 line 
is marked. The bottom solution used directional adaptation 
at the finest level, and resulted in 8510 nodes. Inspection of 
this case reveals that the bow shock. the slip lines that bound 
the supersonic jet, and the supersonic region near the upper 
portion of the cylinder are adapted unidirectionally. Prior to 
the final division sequence, both meshes were identical and 
contained 5500 nodes. 

Upwind Discretization Effects 

The effect of upwind discretization is shown for this same test 
case in Fig. 4.6.3; a sketch of the flow field is also shown. The 
CEVCAT code was modified and extended for the calculation 
of super- and hypersonic flows, which are characterized by 
strong nonlinearities. l i e  shocks, slip lines, and shock-shock 
interactions. The central spatial discretization of the convec- 
tive fluxes has been better adapted to the artificial dissipative 
operator." In connection with a special boundary treatment 
of the discretization at the walls, the robustness of the cenml 
method was significantly improved and solutions with strong 
shocks at high Mach numbers and high angles of attack were 
computed. For a better resolution of discontinuities, the up- 
wind TVD discretization according to Hanen and Yee' was 
implemented." Figure 4.6.3 shows the comparison between a 
central and an upwind weighted discretization.12 In contrast to 
the central scheme, the upwind scheme resolves shocks within 
2 grid cells and gives B g w d  prediction of the complex flow 
with shock-shock interaction. Further comparisons between 
schemes are compared systematically by Kmll et al." for this 
shock-shock interaction. 

4.6.3 Double Ellipsoid 

Perfect Gas 

The flow over a double ellipsoid shape (representative of the 
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outennost bow shock and a capturing approach for all other 
embedded shock waves. 

The configuration with deflected elevon flaps in different per- 
spective views is shown in Fig. 4.6.6. The surface mesh 
reveals a different mesh stmcture for the forebody and aft 
fuselage region indicating a mesh refinement in the circumfer- 
ential direction to improve the flow resolution past the fuselage 
in the region of the main wing and winglet sections. Becaux 
the shock-fitting approach used mesh adaptation capabilities. 
the volume mesh is divided into two blocks (as displayed for 
the last mesh cross-section). The inner mesh block is fixed in 
time whereas the outer boundary of the second mesh block can 
be adjusted to the bow shock shape according to the Rankine 
Hugoniot conditions. 

Euler solutions are presented for equilibrium and chemical 
nonequilibrium real gas conditions for the following flow con- 
ditions: M, = 25, 01 = 30 deg, @ = 0 deg. Fig. 4.6.6 
shows corresponding Mach number distributions on the vehi- 
cle surface. Contour lines are clustered on the leeside wing 
and the upper fuselage, as well as in front of the canopy sec- 
tion. Whereas the canopy region is exposed to a recompression 
shock due to the ramp effect of the forebody geometry. on the 
leeside of the wing a strong expansion around the round wing 
leading edge takes place. This expansion leads to a cross flow 
recompression shock near the winglfuselage intersection. The 
same effect is responsible for the Mach contour clustering on 
the upper fuselage near the symmetry plane. Although the 
same free-flight conditions are used in  both computations. it is 
interesting to note that under the assumption of chemical non- 
equilibrium. the fwtprint of the leeside wing cross flow shock 
is changed dramatically and also affects the winglet sections. 

Whereas inviscid flow solutions show interesting gas dynamic 
effects one, viscous interaction effects can alter any conclu- 
sions drawn from inviscid flow resulls. However. for deter- 
mining the bandwidth of results for global forces and momenls 
and the identification of effects due to basic physical assump- 
tions. Euler simulations are quite valuable for direct design 
support. 

forward section of a hypersonic vehicle), computed with an 
adaptive unstructured-grid is shown in Fig. 4.6.4. 
The conditions correspond to M, = 8.15 and (I = 30 deg; 
the case is one of the test conditions defined for the Workshop 
on Hypersonic Flows for Re-Entry Problems' and has been 
extensively computed by a number of different contributors. 
The mesh and pressure contours are shown for the surface, 
the longitudinal plane of symmetry, and a lateral plane at the 
end of the body for an initial solution and aa adapted mesh 
solution. The bow shock is positioned very close to the body 
at this Mach number and is resolved much more sharply with 
the adapted mesh, owing to the clustering of points near the 
body and a thinning of points outside the bow shock. The 
cross flow shock is similarly much better resolved. 

, 

Real Gas 

At higher Mach numbers, the density distributions in the cross- 
flow and in the symmetry plane are qualitatively very simi- 
lar between real gas and perfect gas computations. However, 
there are some major differences within the Mach number dis- 
tribution, as shown in the computations by Donmann" (Fig. 
4.6.5). where the temperature distribution and the mole frac- 
tion distribution of molecular oxygen is given. The conditions 
correspond to M ,  = 25 and (I = 30 deg, corresponding to 
another of the conditions prescribed for the INRlA Workshop 
on Hypersonic Flows for Re-Entry Problems.' On the wind- 
ward side, the complete oxygen dissociation takes place within 
or shody behind the bow shock. On the leeward side, the 
temperature jump across the bow shock is not as strong and 
the dissociation occurs within a small layer which emanates 
from the bow shock near the nose and follows a plane of con- 
stant temperature. T=2500 deg K. This relatively rapid change 
within the gas mixture leads to a sudden change in the speed 
of sound, which influences the Mach number. The same effect 
due to nitrogen dissociation can he observed on the windward 
side following a plane of constant temperature with T=5000 
deg K. However. the dissociation is not complete since the 
temperature level is not high enough. 

4.6.4 Hemes 
National and European projects supporting manned space ac- 
tivities have initiated over the last years considerable efforts 
aiming on the improvement of simulation tools as essential ele- 
ments for a cost-effective design procedure for manned reentry 
vehicles. The pacing item of that development is the need to 
reduce uncertainty margins from the aerothermodynamic data 
set. Uncertainties can be reduced considerably if certain ex- 
trapolation rules relating experimental to free flight data are 
verified, as could be done with the use of validated flow sim- 
ulation methods. Increased uncertainty results especially from 
the fact that for the most critical pans of a typical reentry tra- 
jectory, an application of simple similarity laws does not allow 
one to relate gmund-based measurements to free-Right data. 

Those numerical methods which could contribute to the simu- 
lation of relevant fluid mechanical phenomena during reentry 
have been systematically developed the last years. One of 
the Euler codes enabling three-dimensional inviscid flow sim- 
ulation under equilibrium and nonequilibrium conditions was 
developed by Weiland and Pfit~ner). '~ and applied by Hart- 
mann and Weiland" to a configuration of the Hermes reentry 
verbicle. The d e  is built around a quasi-conservative split- 
matrix formulation relying on a shock-fitting technique for the 
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Figure 4.6.1 Blunt body ideal, equilibrium, and nonequilibrium gas Euler computations. 



212 

Two-dimensional adaptation 

Mach contours 

Unidirectional adaptation 

851 0 nodes 

Figure 4.6.2 Mach contours for shock-shock interaction computed with (lower: 8510 nodes) and 
without (upper: 12,860 nodes) unidirectional adaptation applied at the finest adaptive level. 
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Central discretization Upwind discretization 

Figure 4.6.3 Comparison of Mach numbers for shock-shock interactions with central and 
upwind discretizations. 
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First mesh 
119,440 elements 
22,032 points 

Adapted mesh 
275,536 elements 
49,715 points 

Figure 4.6.4 Initial and adapted unstructured mesh and pressure contours for the hypersonic 
flow over a double ellipsoid; M, = 8.15, a = 30 deg. 
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Isotherms (left, T,= 205.3K) and Iso-Mole Fraction of 0, (right) Symmetry plane 

Euler solutions, M, = 25, a = 30°, double ellipsoid, reactive equilibrium flow 
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Figure 4.6.5 Real gas effects on a double ellipsoid at hypersonic speeds: M, = 25. a = 30 deg. 
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Figure 4.6.6 Euler computations for HERMES 1 .O configuration. 
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4.7 UNSTEADY FLOWS 

A general review of the current Status of computational meth- 
ods for unsteady aerodynamics and aeroclasticity is given by 
Edwards and Malone in Ref. 1. The demands imposed on the 
computation of aeroelastic applications such as flutter bound- 
ary predictions are intensive. so much so that linear and po- 
tential methods are used almost exclusively in the current air- 
craft design cycle. For example, Edwards and Malone’ show 
for transonic, low-a dynamic computations for a wing that a 
nearly two-orders-of-magnitude computer time penalty is ex- 
pected when advancing from the vansonic small-disturbance 
(TSD) potential equations to the Euler equations: Navier- 
Stokes solutions require yet another order-of-magnihlde io- 
crease. Euler and Navier-Stokes methods are being steadily 
improved into tools usable to the aeroclastic designer, through 
the incorporation of more efficient and stable time-integration 
algorithm and the advent of faster computers. Validation com- 
putations to assess the viability of using the Euler equations 
as opposed to the potential equations have been made; ex- 
amples of forced oscillation computations for the F-5 wing 
made with two different Euler solvers are shown below in Figs. 
4.7.1-4.7.2. A recent three-dimensional flutter calculation us- 
ing an unstructured-grid Euler method is also shown. The use 
of spatial and temporal adaptive-grid schemes are expected 
to have a significant payoff in this area, and one example is 
shown below for two-dimensional flow. 

4.7.1 Forced Oscillations 

F-5 Wing 

Unsteady calculations have been performed for forced sinu- 
soidal pitching motion for the F-5 wing (sketched in Fig. 4.7.2) 
pitching harmonically about a line perpendicular to the mot 
midchord. The pitching motion is described by a = no + 
aicos (wt), whereas ao represents the mean value of angle 
of attack and ai  corresponds to the amplitude. The reduced 
frquency k is defined a s k  = wd(2U,), where c is based on 
the mean aerodynamic chord length. The Euler computations 
of Ref. IV.2.8 wrrespond to ao = 0. deg, n~ = 0.109 deg and 
k = 0.274. Fig. 4.7.1 shows the real and imaginary compo- 
nents of the unsteady pressure distributions at the same three 
span stations as the steady results shown previously for Euler 
and modified TSD solvers. On the upper surface, there is a 
shock pulse in the calculated pressure distributions near 50-60 
percent chord, which is produced by the motion of the shock 
wave. The experimental data (Ref. IV.2.9) does not show a 
shock pulse in the pressures at the two inboard stations, com- 
mensurate with the absence of the shock at these stations in 
the steady computations. On the lower surface. there are pos- 
itive and negative spikes in the real and imaginary pressure 
distributions, respectively, which are much more pronounced 
in the outboard region of the wing. These spikes are produced 
by an embedded region of supersonic flow. In general, the 
two sets of calculated pressures agree well, except near the 
upper surface shock pulse and in the midcbord region along 
the lower surface. These differences may be attributed to the 
sharper shock-capturing ability of the Euler code. Also. com- 
parisons with the experimental data are qualitatively good for 
both the Euler and potential results. 

Generally favorable agreement between the Euler and TSD 
calculations incorporating both entropy and vorticity correc- 

tions have been found. For TSD calculations, the grid re- 
mains fixed for calculating both steady and unsteady flows so 
that cornputations over complex configurations are relatively 
straightforward. Similar calculations with the Euler equations 
are complicated by the need for new grids at each time step. 
Also. since the solution of the three dimensional Euler equa- 
tions involves five unknowns at each grid point. the computer 
time required for the Euler calculations is much higher than 
that required by the solution of the TSD equation, For the 
Euler code used in the present study. the computational rate 
for three-dimensional calculations was approximately 60 mi- 
croseconddgrid poinViteration; the TSD code required only 
5 microseconddgrid poinVileration. Both the Euler and TSD 
calculations were done on a CRAY-2 supercomputer at the Na- 
tional Aemdynamic Simulator facility located at NASA Ames 
Research Center. 

The INFLEX code’” was also applied to the problem of the 
harmonically oscillating F-5 wing in pitching motion and com- 
pared 10 corresponding measurements. The EUFLEX method 
was extended as a time-accurate inviscid simulation method, 
called INFLEX. by Brenneis and Eberle.’ The method is char- 
acterized by corresponding Godunov-type flux formulations 
known from the basic Eberle Euler method and a firs-order 
accurate backward Euler-type time discretization. Time ink- 
gration is performed by solving the unfactored implicit op- 
erator by a point Gauss-Seidel relaxation method using con- 
sistent Jacobi flux matrices. The baseline implicit formula- 
tion is secured against singularity effects during inversion of 
the corresponding block-diagonal matrix by a suitable matrix- 
conditioning procedure combined with local transformation of 
conservative to nonconservative variables. 

The F-5 wing planform, the surface mesh and the airfoil geom- 
etry (modified NACA 65-A-004.8 section) is outlined in Fig. 
4.7.2. Because the experimental data revealed large aeroelas- 
tic deformations during the pitching cycle, the assumption of 
a rigid body motion was dropped, and the measured aemlas- 
tic mode shape (Ref. N.2.9) was used to simulate the real 
body motion. 

The calculation of the transonic test case (M = 0.95, k = 
0.132, a0 = 0.0 deg, ai = 0.523 deg) was performed on a 
grid with 106x54~58 points and a CFL. number equivalent 
to 100 AVcycle. The comparison between the computed 
mean surface pressure distribution and the experimental one 
is favorable at all span stations (Fig. 4.7.2). The suction 
peak at the leading edge on the lower surface due to the 
droop nose is reproduced exactly. Both shocks on lower 
and upper surfaces are overpredicted and shifted aft of the 
experimental positions, as expected from inviscid simulations. 
Conseqoently, the peaks in the real and imaginary parts of the 
pressures are overpredicted and too far downstream. Except 
for these small deviations, the results from computation and 
measurement correlate very well. 

LA“ Wing 

An application of the INfXEX code to a typical transport- 
aircraft type supercritical wing with an aspect ratio of 7.92 
(known as the LA” wing“’) is found in Ref. The 
wing was experimentally investigated at the NLR facilities 
and performs harmonic rigid solid body pitching oscillations 
about the axis normal to the wing mot section. The oscillation 

6. 
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is characterized by the mean angle of attack a. = 0.6 deg. the 
amplitude ai = 0.25 deg, and a reduced frequency k = 0.132. 

Delails of the planform with the location of the six spanwise 
sections for the pressure evaluations and details of the wing tip 
surface mesh arc shown in Fig. 4.7.3. The supercritical root 
profile section and the wing tip section are also displayed. The 
pitching axis is located at 62.1 percent of the root chord from 
the wing apex. The position of the wing inside the compu- 
tational domain is sketched, the calculations were performed 
on a H-type mesh with 80x38~46 grid points. where on the 
wing 18 grid lines are place in the spanwise direction and 50 
grid points are used to discretize the lower and upper side of 
the profile section. 

The mean pressure distributions of individual wing sections 
indicate thal except for a slight overprediction on the upper 
surface behind the shock, the overall agreement of numerical 
results to experimental data is quite good. The computation of 
further tests cases confirm this statement. However, at higher 
Mach numbers, shock boundaylayer interaction effects are 
responsible for systematic deviation of the shock positions 
from experimental findings. 

Spatial and Temporal Adaption 
In order to reduce the computational time associated with 
aeroelastic solutions, adaptive grid methods that are adaptive 
in both space and time can be used.’.8 Two-dimensional calcu- 
lations are shown in Fig. 4.7.4 for one such adaptive method 
applied to a pitching NACA 0012 airfoil. The baseline Eu- 
Ier method is an upwind, explicit finite-volume scheme. The 
computational grid and the density contours at several points in 
the cycle of oscillation are shown. The mesh adapts spatially 
and temporally to the aerodynamic response to the oscilla- 
lion; the comparison with experiments and other established 
schemes for this case indicates that highly accurate solutions 
can be obtained with a significant savings in computer time 
over standard global time-stepping schemes. 

, 

4.7.2 Flutter Predictions 

The flutter predictions from a time-marching aeroelastic 
procedure? which couples an implicit, three-dimensional. up- 
wind, unstructured-grid Euler code to the structural equations 
of motion, IS shown in Pig. 4.1.5. The unstructured-grid for 
the 45-deg sweptback wing was developed using an advancing- 
front method. The mesh deforms during the calculation due 
to aerodynamic loading and is modeled as a spring network 
where each edge of the tetrahedra represents a spring with a 
stiffness proportional to the edge length. As the surface mesh 
moves, static equilibrium equations are solved to determine 
the interior grid points. The implicit scheme is a Gauss-Seidel 
scheme in whch the relaxation is implemented by ordering 
the elements in a downstream-to-upstream pattern. Large time 
steps selected on the basis of temporal accuracy of the simu- 
lation are possible. 

The wing is an AGARD standard aeroelastic configuration 
which was tested in the Transonic Dynamic Tumel’O at NASA 
Langley Research Center. The wing is modeled structurally 
using the first four natural vibration modes. The experimental 
flutter speed index and the nondimensional flutter ffequency 
as a function of free-stream Mach number define a typical 

transonic flutter dip with the bottom of the dip near sonic con- 
diuons. The computed results agree well with the expenmen- 
tal data at M, = 0.499 and 0.678 in flutter speed index and 
in frequency. Near the transonic flutter dip. the computations 
differ from experiment in flutter speed index, but agree reason- 
ably well in flutter frequency rauo. Robinson et al.” present 
Euler computations using a structured-grid code for this case, 
whch agrees closely with that presented. Other results for a 
supersonic transport configuration are gven elsewhere? 
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4.8 DESIGN APPLICATIONS 

Examples of design applications using the Euler equations are 
shown below. A summary of aerodynamic design methods is 
given by Sloofl and Dulikmvich? Much of the design process 
of aircraft is conducted using repeated analyses of candidate 
geometries constructed through the background knowledge and 
experience of the designer. In such an approach, the turn- 
around for analysis must be rapid and, until recently, the design 
of aircraft components at transonic speeds was done almost ex- 
clusively using potential methods coupled with boundary-layer 
schemes. Euler methods were used to assess component inter- 
ference problems and to address flows at higher Mach num- 
bers, where the potential equations are inadequate. With faster 
turnaround of the Euler and Navier-Stokes solvers, these meth- 
ods are being used more frequently? The parametric approach 
is shown below for the design of a poms airfoil at tran- 
sonic speeds. Of automated approaches, there are two general 
methods that are being used currently: ( I )  global optimization 
methods in which a number of trial shapes arc examined to 
arrive at a minimum of an objective function and (2) inverse 
design procedures in which the local geometry is changed in 
order to match a prescribed variation of the pressures. The op 
timization approach is shown fur the design of conical wings 
and lowdrag bodies; the inverse approach is shown for the 
design of a supercritical airfoil and an engine nacelle. 

4.8.1 Airfoils 

kupercritkal Aidoil 

Drela4 developed a two-dimensional mixed inverse procedure 
where the pressure is prescribed over a portion of the geometry, 
denoted as a freewall segment, and the geometry prescribed on 
the other. The procedure is an extension of an analysis method 
which uses a direct solver for the Euler equations coupled to 
an integral boundary-layer method. An example of this ca- 
pability is shown in Fig. 4.8.1. in which the wave drag is 
reduced for a transonic airfoil by weakening the shock wave 
in the flowfield. A mixed inverse calculation was performed 
for the RAE 2822 Case 6 airfoil' with the freewall segment 
encompassing nearly the entire suction surface. Staning with 
the analysis pressure distribution, a smoothed-out pressure dis- 
tribution was somewhat arbitrarily specified over the freewall 
segment. 

The mixed inverse calculation was started from the analysis 
solution, and required five additional Newton iterations to con- 
verge to machine zero. The boundary layer coupling option 
was retained for this calculation. The resulting pressure distri- 
bution from the inverse output differs slightly from the inverse 
input because the geometry is constrained ts be continuous at 
the freewall segment endpoints. Fig. 4.8.1 shows the geome- 
try comparison between the original and modified airfoils and 
the Mach number contours for the original and modified so- 
lutions. The shock has indeed been eliminated, resulting in a 
substantial drag reduction. 

Porous Transonic Aidoil 

In the early 1980's. a number of experimental and compu- 
tational studies were conducted to look at the advantages of 
delaying the drag rise of airfoils by venting the shock through 
a porous surface? as shown schematically in Fig. 4.8.2. The 

porous surface induces a separation bubble in the vicinity of 
the upper surface shock and an oblique compression wave 
forms which decreases the strength of the terminating normal 
shock. The drag rise is reduced when the resulting energy loss 
associated with the normal shock and the separated boundary 
layer is less than that for the nonporous airfoil. 

Hiutwich' studied computationally the effect of shock vent- 
ing for the NACA 0012 and a supercritical-type section. The 
surface boundary conditions were modeled to induce a normal 
velocity determined by the difference between the surface pres- 
sure and the cavity pressure. In general, this velocity would be 
determined by viscosity and the porosity of the surface. but the 
approximate boundary condition and the Euler equations were 
used in lieu of viscous solutions because of the uncertainty 
associated with current turbulence models. The porosity level 
n was varied for both airfoil sections. A typical pressure dis- 
tribution for the porous and nonporous NACA 0012 section is 
shown. The lift is increased, in some instances by 65 percent. 
The liR and wave drag indicate that an order of magnitude 
reduction in wave drag a1 constant lift has been attained for 
overspeed conditions (low lift levels). The supercritical section 
results also demonstrated a reduced drag at constant lift. The 
extents of porous areas used are greater than those considered 
previously; the results demonstrate a potential for designing a 
transonic airfoil for reduced drag at multiple design points. 

4.8.2 Engine Nacelles 

A fast, efficient and user-friendly inverse design system for 
three-dimensional nacelles is in use at General Electric." The 
system allows the fan cowl designer to modify either all or 
a portion of the three-dimensional fan cowl. The designer 
specifies the target pressure distribution on the crown, side, 
and keel cuts of the nacelle, as in Fig. 4.8.3. A modification of 
the predictorlcorrector design approach' enables the geometry 
to be altered based on the difference between the calculated 
and target pressures, A number of example applications for the 
design of both axisymmetric and three-dimensional nacelles is 
given in Ref. 8. 

The design method' uses two design algorithms, one for sub- 
sonic flow and the other for supersonic flow. The supersonic 
algorithm is blended with the subsonic algorithm to design re- 
gions of transonic flow. Both algorithms assume that AC, is 
proportional to the change in geometry. The subsonic algo- 
rithm is based on the assumption that changes in curvature are 
directly proportional to changes in pressure coefficient. The 
relationship used to express the change in curvature as a func- 
tion of change in pressure coefficient is: 

A . c = A c , , A ( ~ + c ~ ) ~  

where 

C is the curvature 

C,, IS the pressure coefficient 

A = +I/-]  for the upperllower surface 

B = input constant ranging from 0.0 to 0 5 

The change in curvature is converted to a change in 1.'' through 
a relation valid for small changes in the surface slope, 
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Ar" = ACA 1 + r ( ' ' > 1 ' 5  

where r ,  r' and r f f  are the surface radius, slope, and curvature, 
respectively. 

The supersonic algorithm is based on supersonic thin airfoil 
theory. Based on relations between the pressure coefficients 
and surface slope the expression 

Ar'= KAC, 

can be derived? Differentiating this expression gives the fol- 
lowing relationship between r f f  and AC,. 

The value for the constant K is 0.05 and is used to under relax 
the changes in the geometry during each design iteration. 

The required change in curvature is thus calculated at each 
point along the fan cowl. To ensure geometrical closure at the 
downstream station, the procedure of Lin et al.'" is used. A 
sine function is added to the target pressure with the maximum 
modification at the center of the design region and zero at 
the ends. The amplitude of the sine function is iteratively 
determined to close the geometry by modifying the target 
pressure distribution. 

The results for the three-dimensional test case shown in Fig. 
4.8.3 correspond to a design range starting at the nacelle 
leading edge and ending 10 inches upstream of the nacelle 
trailing edge. The Mach number distributions along the crown, 
side and keel cuts of the original nacelle as well as the desired 
target Mach number distribution are shown. The target Mach 
number distribution was achieved after 40 design iterations; the 
resulting modified geometry is shown on an enlarged vertical 
scale. 

4.8.3 Supersonic Conical Wings 

A procedure for the design of wings at supersonic speed based 
on a numerical optimization technique" coupled with a solu- 
tion scheme for the Euler equations is given in Ref. 12. The 
wings considered can be either conical or three-dimensional 
delta wings with a straight leading edge. The surface is given 
by a set of Legendre polynomials. The coefficients of this set 
are the design parameters in the optimization task; the object 
function is the lift-to-drag ratio. Results of the optimization 
are shown for conical wings at an onflow Mach number of 
M, = 4.8. The convergence of the optimization process is 
monitored as a function of the number of numerical UD com- 
putations and the number of design variables. The influence of 
geometrical and aerodynamic parameters on the optimization 
result is examined in Fig. 4.8.4. An example for the design 
of a three-dimensional wing is given in Ref. 12. 

4.8.4 Low-Drag Bodies 

The optimization code COPES'* was combined with an Euler 
space-marching method by H. RiegerI3 for the analysis of 
two- and three-dimensional bodies in supersonic flow. The 
fundamental equations to be solved are the conservation laws 
in integral form. By restriction to purely supersonic flows the 

problem becomes hyperbolic. By use of the balance of flux 
values across the surfaces of finite volumes, all flux values of 
one finite volume layer normal to the stream direction can be 
deduced from the values of the preceding layers. This allows 
the application of a Runge-Kutta integration method to the flux 
values in downstream direction. 

Although the present method can be used for more general 
three-dimensional bodies,I4 here only bodies of revolution 
are considered. These are of special interest because Mielel' 
presents some optimized shapes derived under special assump- 
tions (linearized potential equation, slender body simplifica- 
tion). To convert the contour optimization into a parameter 
optimization problem, the radius of the body of revolution is 
represented by the superposition of a constant and Legendre 
polynomials. The coefficient of this superposition are take as 
design variables. Only the constant and the last Legendre co- 
efficient are analytically determined in order to get a pointed 
nose and a desired base radius. 

To demonstrate the efficiency of the combined code, the fol- 
lowing optimization problem was examined: 

design objective: Find a closed and pointed body of revolution 
with minimum wave drag coefficients CO (referred to actual 
cross section area). 

constraint: Least volume V/c3 2 0.005. 

design variables: The contour is approximated by superposi- 
tion of the first five Legendre polynomials. The first four coef- 
ficients are used as design variables, while the fifth is adapted 
for the base radius zero. 

constant value: M = 3.0. 

start-up design: The starting contour is a parabola with the 
thickness 2 rmJc = 0.1 and the volume V/c3 = 0.00419, shown 
in Fig. 4.8.5. 

For this starting design the computational grid was selected 
fine enough to give reasonable accuracy concerning the wave 
drag. The corresponding pressure distribution is shown on the 
left side. The integrated wave drag is CO = 0.07289. In order 
to save computation time, at the beginning the analysis code 
was run with a coarser grid and later continued with the fine 
grid to find the best design. Increasing the body volume, which 
is too small at the beginning, leads to a growing wave drag. 

In Fig. 4.8.5, the resulting optimum body is compared to the 
Sears-Haack body which is the optimum under the assumption 
of a linearized potential equation and slender body simplifica- 
tions. For M = 3.0 there are some differences. For M = 1.5 
the above mentioned assumptions are violated less and so the 
present method optimum is much nearer to the Sears-Haack 
body. 

As the Sears-Haack body has a vertical tangent and therefore 
a small subsonic flow area at the leading and trailing edge, 
it cannot be calculated by the present Euler space-marching 
method. At M = 3.0 some modifications were possible to 
get the drag value nevertheless. It is considerably higher (3.6 
%) than for the best design found even with the restrictions 
implied in the superposition formula. 
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Figure 4.8.1 Mixed redesign of supercritical airfoil. 
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Plate 4.1 Pressure distribution on wing-body-pylon-nacelle configuration with flow-through na- 
celle. 1 Bottom view 

I 

Side view 

Plate 4.2 lsomachlines of unstructured-grid computation of the Dassault Falcon 
aircraff;M, =0.85, a=3.0deg. 
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' 74 ---- Plate 4.3 Pressure distributions over a complete fighter configuration. 
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Plate 4.4 Temperature contours over a fighter configuration with propulsion simulation. 
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Plate 4.5 Surface pressure contours for an advanced tactical fighter configuration. 



Plate 4.7 Details of aft region for a cruise missile configuration. 

I ,  

Piate 4.8 Surface grid and pressure coefficient for a missile configuration; .If, = 2 0, 0 = 4.0 deg. 

1 

A 
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Plate 4.9 Isobars for pylon-mounted store configuration: split-line 50% between store and wlng - 

L 

\ \Y 

Plate 4.10 Mach contours for HERMES 
1.0 configuration with non-deflected 
flaps. 

A 

7 
Plate 4.12 Surface pressure contours for Euler 
computation of fan stage passage. - 



237 

Concluding Remarks 
O u r  aim has been to  give a survey of the state of the a r t  of 
Computational Aerodynamics Based on the Euler 
Equations as of 1993. Numerical schemes, algorithms, grid 
generation, physical and numerical aspects, as well as a 
wide range of applications have been presented from 
different points of view. 

It has been our intention that the AGARDograph would 
provide a balanced picture covering fundamental, 
technicallnumerical as well as engineering application 
aspects. For this reason we have sought for (and found!) a 
team of authors with different backgrounds ranging from 
Academia through Research Establishments to  Industry. 
We think the authors did an excellent job  in representing 
the points of view of each of these communities. 

We believe that, as reflected in Chapter 1, the physics of 
inviscid flow and the mathematics of the Euler equations 
a re  reasonably well, but not yet fully, understood. O u r  
knowledge on the existence, uniqueness and behaviour of 
the mathematical solutions of the Euler equations is not 
complete and the related question of how the Euler 
equations model flows with separation, circulation and 
vortices is still subject of discussion. It is suggested that 
there is (still) room for considering such problems and 
issues in the more general context of existence and 
uniqueness of (steady) solutions of the Navier-Stokes 
equations in the limit of vanishing viscosity. It is also 
suggested that the choice and the role of the boundary 
conditions and their numerical iniplication are  crucial in 
this context. 

With respect to numerical schemes and algorithms the 
picture emerging from chapters 2 and 3 is the following: 
- the great majority of codes is based on finite volume 

(cell-centered or  cell-vertex) formulations 
the principle division between codes is between those 
using (block-)structured grids and those with 
unstructured grids. The main trade-off factors are  
efficiency of grid generation and efficiency of flow 
solver. Although unstructured (adaptive) grid methods 
seem to gain in importance, in particular for complex 
geometries and/or for complex flows, block-structured 
grid methods are, as yet, the most common 
most "production-type" codes for subltransonic flows 
use central difference type space discretization. A 
substantial fraction of codes, in particular those 
intended for supersonic and hypersonic applications, 
use some form of upwind discretization technique 
Explicit time stepping schemes of the Runge-Kutta type 
are  characteristic for most codes, in particular those 
with central difference space discretization. However, 
implicit features in the form of residual smoothing, 
have been added in many cases. Other implicit schemes 
a re  also represented. 
Convergence acceleration in the form of local time 
stepping is a feature of all codes. Several if not many 
production-type codes also use multi-grid (as well as 

- 

- 

- 

implicit residual smoothkg). 
It is the editors impression that in several cases 
improvements in solver efficiency should be possible. 
Further research into the possibilities of relatively 
novel techniques like GMRES and Preconditioning 
(Chapter 2) is also recommended. 

The chapter (4) on Applications illustrates that by now 
Euler methods a re  recognized and used in practice as 
engineering and research tools for the analysis and design 
of aerospace vehicles in the complete range of speeds from 
low subsonic to  high supersonic and hypersonic. Although 
different groups of people in the NATO countries have 
followed different strategies, schemes and algorithms, it 
seems that all of their methods can provide good results 
for either specific or  more general applications. 

The big limitation of Computational Aerodynamics Based 
on the Euler Equations is, ofcourse, in the absence of 
modelling of viscous effects a t  finite Reynolds number. 
Euler methods are  therefore being overtaken rapidly by 
methods based on the Reynolds-averaged Navier-Stokes 
equations. This is illustrated by the fact that several of the 
codes listed in Chapter 3 can be run in Euler as well as in 
Navier-Stokes mode. (It also leads to the suggestion that 
the Fluid Dynamics Panel of AGARD should undertake the 
publication of an AGARDograph on Reynolds-averaged 
Navier-Stokes methods before the turn of the century!). 
It is important to note that proper functioning in Euler 
mode is a prerequisite for Navier-Stokes codes because of 
the dominance a t  high Reynolds numbers of the inviscid, 
advective terms in the greater part of the flow field. Hence 
the "Euler technology", subject of this ACARDograph, is 
equally important for Navier-Stokes codes. It is, in spite of 
the current shift in emphasis from Euler to Navier-Stokes, 
also not to be expected that Euler codes will vanish from 
the aerodynamicist's tool box in due course. The reason is 
that the computational effort (and probably also the 
manpower) involved with Euler computations is 
significantly smaller than for Navier-Stokes. This makes 
Euler methods more attractive for preliminary design 
studies. 
It is in the nature of this AGARD publication that no 
information is contained about work that has been done in 
Russia or  other non-NATO countries. We probably also 
missed significant work from people within the NATO 
community that did not come to our notice. All of those, 
please accept our apologies. 

Finally, we would like to thank again all authors and 
colleagues from Universities, Research Establishments, and 
Industries, who contributed and helped to  put together this 
AGARDograph. 

Joop Slooff, 
Wolfgang Schmidt 
Editors, 
Fluid Dynamics Panel 
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