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Multi-Sensor Multi-Target Data Fusion, 
Tracking and Identification Techniques 
for Guidance and Control Applications 

(AGARD AG-337) 

Executive Summary 

The aim of this AGARDograph is to provide a quick overview of practical advances in multi-sensor, 
multi-target tracking (MSMTT) technology and applications. In order that this AGARDograph could 
serve as a useful reference for those involved in the design, development, simulation, and applications 
of the techniques and technology, we have encouraged our authors to take, as much as possible, a 
tutorial approach. This will provide the general summary of the MSMTT techniques and technology 
with emphasis towards practical implementation. 

Many examples of sensor fusion involve the methodology of merging various track files taken from 
different sensors. This allows for more consistent, accurate, and reliable tracks than might be possible 
with any of the individual systems acting alone. Section I relates to the important use of sensor fusion 
prior to establishing a firm track file. By combining raw sensor information, greater discrimination of 
targets from background may be possible from the augmented body of available information. 

Tracking and fusion with multiple sensors deals with integration and correlation of data from diverse 
sources in order to arrive at the best possible situational assessment. In Section 11, we present the 
tutorial on representative data association and filtering techniques, and also address some of the key 
initiation issues, approaches and track management methodology that simplify and enhance the 
practical implementation. 

Section Ill presents different types of classification algorithms, Bayesian Belief Networks, and Neural 
Networks covering the complete Automatic Target Recognition process, including fusion, segmentation 
and classification, that are very promising for real-time, or quasi-real-time systems applications. 

Section IV covers the handling of Automatic Target Recognition (ATR) test data, deals with an 
effective tool to support the development of precision guided munitions, and presents a study of target 
acquisition and sensor cueing in air-to-air environment. The last Section presents several practical 
examples of MSMTT applications. 
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Les techniques de poursuite et d’identification 
multi-cibles B base de fusion multi-senseur 

appliqukes au guidage et au pilotage 
(AGARD AG-337) 

Synth&se 

Cette AGARDographie offre un bref aperqu des avanckes concrktes rCalisCes dans le domaine des 
technologies et des applications de la poursuite multicible/multisenseur (MSMTT). Nos auteurs ont ktC 
encouragks B adopter, dans la mesure du possible, une approche, afin que cette AGARDographie puisse 
servir d’ouvrage de rkfkrence B tous ceux qui sont associCs B la conception, au dkveloppement, B la 
simulation et aux applications des diffkrentes techniques et technologies mises en jeu. Ainsi, cet 
ouvrage fournit un rCsumk gknkral des techniques et des technologies MSMTT en mettant l’accent sur 
les modalitts pratiques de leur mise en oeuvre. 

Dans beaucoup de cas, le fusionnement des senseurs fait appel B une mithodologie qui permet le 
regroupement de certains fichiers de poursuite obtenus de differents senseurs. Cette technique permet 
d’obtenir des pistes plus homogknes, plus fidkles et plus fiables que celles obtenues par un quelconque 
systkme particulier, fonctionnant seul. La section I concerne l’application trks importante du 
fusionnement des senseurs en vue de l’ktablissement d’un fichier de poursuite validC. Le volume accru 
d’informations rksultant de la fusion des donntes brutes des senseurs permet souvent une meilleure 
discrimination de la cible par rapport au bruit de fond. 

La poursuite et la fusion B l’aide de senseurs multiples consistent dans l’intkgration et la corrClation de 
donnkes de sources diverses afin d’aboutir B la meilleure Cvaluation possible de la situation. La 
section I1 prCsente un cours sur les techniques d’association et de filtrage des donnCes representatives et 
examine en m2me temps certaines questions clCs concernant l’initiation B la gestion de la poursuite, les 
diffkrentes approches B adopter et la mkthodologie permettant de simplifier et faciliter sa mise 
en oeuvre. 

La section I11 prksente difftrents types d’algorithmes de classification, de rkseaux de croyances de 
Bayes, et de rCseaux neuronaux couvrant l’ensemble du processus de reconnaissance automatique de la 
cible, y compris la fusion, la segmentation et la classification. Ces ClCments s’annoncent trks 
prometteurs pour des applications systkmes en temps rkel ou quasi-rCel. 

La section IV couvre le traitement des donnkes de test des systkmes de reconnaissance automatique de 
la cible (ATR). Un outil efficace d’aide au dCveloppement des engins guidCs de prCcision est prksentC, 
ainsi qu’une etude sur l’acquisition de la cible et l’alignement des senseurs en environnement air-air. La 
dernikre section prksente un certain nombre d’exemples concrets d’applications MSMTT. 
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GENERAL INTRODUCTION 

Even though in recent years there have been numerous conferences and books published on this subject, this 
AGARDOGRAPH has the advantage of having been able to identify contributions from government, defence, academic, and 
industrial establishments within all NATO nations. Therefore this AGARDOGRAPH has attempted to present specific 

which we would love to have included, but we were constrained by a limited budget and a fixed schedule for publication. 
I 
I 

advances and applications made in recent years on both sides of the Atlantic. There are many other excellent contributions 

Startling advances in stealthy, high speed, accurate weapon and target systems have imposed stringent requirements on the 
performance of advanced surveillance, detection, tracking, identification, and classification systems to support military 
guidance and control applications. The effectiveness of advanced weapon systems as well as the defence against them will be 
highly dependent upon the timely availability of accurate battle-sphere sensor and intelligence information. The utilization of 
any single sensor will no longer be sufficient to cope with increasingly demanding operational requirements and challenging 
mission environment. The effective use of multiple and multi-spectral sensors has become increasingly important for 
situational assessment, planning support and command and control operational decisions. The importance of timeliness and 
accuracy requirements was clearly demonstrated in Desert Storm operations. 

Therefore the development and fielding of effective multi-sensor, multi-target tracking (MSMTT) systems together with the 
associated classification and identification systems becomes essential for effective detection, tracking and identification of 
increasingly sophisticated targets in challenging threat environments. 

The aim of this AGARDOGRAPH is to provide a quick overview of practical advances in this broad but important area of 
MSMTT technology and applications. In order that this AGARDOGRAPH could serve as a useful reference for those 
involved in the design, development, simulation, and applications of the techniques and technology, we have encouraged our 
authors to take, as much as possible, a tutorial approach. This will provide the general summary of the MSMTT techniques 
and technology with emphasis towards practical implementations. 

This AGARDOGRAPH is organized into the following five Sections: 

- Section I: Multi-Sensor Phenomenology and Sensor Signal Processing; 

- Section 11: Data Association and Tracking Techniques; 

- Section 111: Pixel and Symbol Level Image Fusion, Target Classification and Recognition; 

- Section IV: Simulation and Performance Evaluations; and 

- Section V: Data Fusion for Guidance and Control Applications. 

The Editorial Committee consists of Dr. Steve Butler of the U.S., Dr. Carlos Garriga of Spain, Dr. David Liang of Canada, 
Dr. Bruno Mazzetti of Italy, Mr. Thierry Uring of France, and Dr. Heinz Winter of Germany. 

Dr. David F. Liang 
Head, Space Systems and Technology 
Defence Research Establishment Ottawa 
Department of National Defence 
Shirley Bay, Ottawa 
Canada KIA OD. 



SECTION I 

MULTI-SENSOR PHENOMENOLOGY AND SENSOR SIGNAL PROCESSING 

INTRODUCTION 

by 
Dr. Steve Butler 

Technical Director, HQ AFM/EN 
4375 Chidlaw Rd, Ste 6 

Wright-Patterson AFB, OH 45433-5006 
USA 

Many examples of sensor fusion involve the methodology of merging 
various track files taken from different sensors. This allows for more 
consistent, accurate, and reliable tracks than might be possible with any 
of the individual systems acting alone. This chapter, however, relates to 
the important use of sensor fusion prior to establishing a firm track file. 
That is, to merge sensor inputs prior to establishing the separation 
between target and background at each sensor. By combining raw sensor 
information, greater discrimination of targets from background may be 
possible from the augmented body of available information. 

The classic example is the multispectral imager. CO-boresighted images 
are formed with each image representing a different optical passband. 
Each image provides spatial information and contrast in each passband. 
New images formed by the ratio of two scenes may highlight features 
unrecognized in either original. This is widely used in agricultural 
analysis of overhead imagery. Crop conditions appear in ratio images 
with much higher contrast than in individual scenes. In this case, the 
“target” is lost in the background in each independent image but is 
statistically separated from background when the images are fused. The 
air-to-air seeker works in this fashion to separate targets from decoys. A 
reticle used to chop the signal for tracking purposes can be produced to 
pass different infrared passbands in alternating spokes. The signal 
formed on the detector is, in effect, a result of the fusion of two signals in  
two passbands. This difference signal provides greater target 
discrimination possible with a single reticle. Aerosol chemical agents are 
detected using a ratio or subtraction technique similar to decoy 
de tec t ion .  

Many fail to recognize these simplistic techniques as sensor fusion. If the 
concept is taken a step farther, i t  may be more clearly seen as a form of 
pre-detection fusion. 
boresighted Infrared and Millimeter wave detectors, the Constant False 
Alarm Rate (CFAR) thresholds of each detector might depend on (or be a 
function of) the other sensors output. That is, the radar might be 
alerted to possible target existence by the infrared sensor. The 
convergence of signals in both bands might create a “product” signal 

In the case of a dual mode sensor comprised of 
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with greater contrast or discriminatory ability than either sensor acting 
alone. Many combinations of sensors might act in this fashion where 
one sensor provides information which helps set gains, offsets, thresholds, 
filter parameters, or in general, focuses the hypotheses which are tested 
in the search for a target. The signal processing parameters are modified 
according to the information gathered and optimize the performance of 
each sensor by taking advantage of information gathered by other 
sensors. 

The basic phenomenology of some targets lend themselves well to this 
approach. Examples include the radiance and reflectivity of a hard 
body. The infrared signature might be reduced by lowering the 
emissivity of the target coating. 
an active emitter in the same band (e.g. laser radar), the lowered 
emissivity naturally causes a higher reflectivity. A potential target cell 
which elicits a high velocity feature from a radar sensor would be 
expected to have a measurable infrared feature. The lack of correlating 
features might indicate a countermeasure or false alarm. Scalar signals 
from acoustic and seismic sensors might indicate the presence of a 
tracked vehicle. 
information (range) which was not present in either signal 
independent ly .  

However, if the sensor is equipped with 

The two signals can be fused to create a new 

While this discussion might be applied to the broader use of sensor 
fusion, it is intended here for the case when no detection or track has 
been established. The sensors work together to test all target hypothesis 
(all pixels could be the target). 
the existence of a target, is a detection noted and a track file established. 
Such pre-detection fusion is an important area of research but is less 
common in the literature. The work at Rome Laboratory is widely 
published and comprises a significant portion of the pre-detection 
research in the United States. Mr. Watson’s paper represents the great 
interest in the Army and Air Force to use fused signals from low cost 
millimeter wave radars and infrared sensors to detect targets with the 
same fidelity associated with considerably more expensive single mode 
devices. 
of the significant work ongoing in the Navy to improve long range 
detection ability through the use of fusion technologies. Mr. Coat’s 
paper is similarly demonstrative of a greater body of work at Thorn EM1 
in the United Kingdom where fusion has demonstrated its ability to 
increase performance synergistically. The papers in this chapter 
highlight applications of such fusion but are not intended to distract 
from diversity of possibility. 

Only after the fused information yields 

The paper from the Naval Surface Warfare Center is an example 
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MULTI-FREQUENCY PHENOMENOLOGY FUSION VIA AN ULTRA-BROADBAND 
HYBRID SENSOR TECHNOLOGY ENHANCING SURVEILLANCE AND TARGET 

CLASSIFICATION/ID PERFORMANCE 

Robert F. Ogrodnik 

Rome Laboratory (RWOCTM) 
26 Electronic Pkwy 

GAFB N Y  USA 13441-4514 
Tel: 315-3304431 

SUMMARY 

Target phenomenology has observables which occur across 
the electromagnetic spectrum, and, are linked in their 
multispectral characteristics through time in the multi- 
frequency observation space, making target 
phenomenology an ideal candidate for detection domain 
level signal fusion. That is, given the ability to 
multispectrally observe target activity, as well as target 
phenomenon (i.e. missile multispectral launch transits, or, 
target vehicle body parts which may be dimensionally 
comparable with the surveillance wave length employed, 
etc.), an ideal surveillance approach, which supports 
detection domain fusion, would be to implement a 
broadband multispectrum surveillance sensor technology 
which could optimize its surveillance sensitivity and 
operating spectrum simultaneously on differing 
multispectral phenomena throughout the scenario life 
profile of the target. This paper addresses such a 
surveillance technology which exists today at Rome 
Laboratory. It is based on the integration of passive signal 
awareness monitoring combining real time signal 
parameter processing, and, passive coherent radar. This 
technology readily provides multispectral signal fusion by 
exploiting in real time background multiple ambient signal 
sources in order to synthesize a passive radar surveillance 
capability simultaneously at multiple carrier frequencies 
(as many diverse spectral sources as there are which 
constitute the electromagnetic ambient background in the 
target domain). This allows the target and its associated 
phenomena to be observed simultaneously in a 
multispectral fashion, optimizing detection performance 
whenever an optimal, or near optimal signal .source is 
available for the purposes of enhanced detection and target 
classification. 

1, INTRODUCTION 

The focus of this work is on the benefits and the results of 
simultaneous multispectral signal observables fusion, and 
the merits which are derived from a broadband sensing 
technology which preserves critical exploitable signal 
components as well as the characteristics of these signals 
in support of detection enhancements and target 
characterizatiodID operations. Target phenomena can be 
key in high confidence target classiticatiodID as well as 
the means for selective (template) signal component fusion 

processing to enhance interferencelnoise rejection, and, 
consequently improve small signal target surveillance 
sensitivity. The fusion of multispectral, multifrequency 
signal phenomenology, and the resulting sensing benefits 
provided by means of a very broadband sensor technology, 
are addressed here, both from a test data results aspect as 
well as from a sensor technology and signal domain fusion 
aspect. 

The sensing technology is the integration of all signal 
awareness monitoring with passive coherent radar. This 
hybrided passive sensor technology merges multispectral 
signal phenomenology by multispectral sensing and multi- 
frequency signal fusion processing techniques. The 
principles of the broadband passive sensor technology 
addressed here are shown in Fig. I as a multi-mode 
operating sensor system. The first primary principle is the 
ambient signal or illuminator awareness is afforded by a 
passive signal intercept and waveform parameter analysis 
mode. This mode provides ambient illuminator 
monitoring, cataloging and selection for the passive radar 
exploitation (based on radar functions governed by 
waveform ambiguity properties versus desired passive 
radar operations, and, general surveillance operations). 
The secondary principle of this multi-mode passive sensor 
is its passive radar (broadband, multi-frequency 
noncooperative) which receives the illuminator selection 
controls from the signals awareness mode and coherently 
exploits its direct path for target echo processing. This 
processing produces real-time measurements of target 
range, range rate (and higher order target kinematics) and 
angular position. These measurements directly support 
real-time multiple target tracking and positional display. 
In order to explain the broadband nature of this sensor 
technology, examine Fig 2. where the signal awareness 
signal domain is displayed on a three-axis information 
graph. Fig 2. shows multiple ambient background signals 
cataloged along the signal power (Z-) axis, the angular or 
bearing (X-) axis, and the carrier frequency (Y-) axis. 
The signal domain shown here is composed of a high 
power level signal (at 9.4 GHz) and several associable 
target echoes (target retlections of this strong signal 
distributed along the Azimuth angle X-axis but lying close 
to the direct path frequency axis, 9.4 GHz) as well as 
several spurious non related background signals which 
could represent co-channel interference. All signals in this 
informational signal domain are digitized, stored in a 



4 

digital Radio Frequency memory (DRFM) and cross 
correlated with themselves, which leads to the direct 
measurement of target range, velocity and angle from all 
coherent direct path and target echo combinations which 
are randomly present. The output is a Planned Position 
Indication (PPI) track display giving the air situation 
report, or data such as that displayed in Fig 3.This figure 
shows the real time track display performance for the 
hybrid sensor equipment mounted in an airborne testbed 
flying over the Delaware MD area, where the exploited 
background signal was on the ground and the target echoes 
processed were from aircraft flying in the vicinity of the 
testbed. 

2. TEST RESULTS FOR SIGNAL 
PHENOMENOLOGY FUSION 

Several tests were conducted with this hybrid sensor 
technology to determine its multispectral 
phenomenological performance and potential support to 
detection signal domain fusion. Fig. 4 shows the hybrid 
sensor system simultaneous processing multi-frequency 
target returns for the purpose of contrasting radar cross- 
section results at differing near resonant and non resonant 
frequencies. Here in this figure the target radar cross- 
section (RCS) with target aspect angle is measured 
simultaneously at different carrier frequencies at UHF (495 
MHz) and at VHF (175 and 205 MHz). Notice these RCS 
polar plots provide target shape information and directly 
support target typing operations. They reveal the 
scattering nature of the target surface at differing 
frequencies simultaneously. 

The passive sensor technology was tested against a singular 
noncooperative target which possessed a rich target 
phenomenology observable set, namely a solid propellant 
missile during its launch (boost phase) stage. This was 
done at a test range where several tracking radars were 
netted to provide highly calibrated ground truth data for 
sensor data calibration and analysis purposes. The hybrid 
sensor exploited both background low frequency signals as 
well as the high frequency radar tracker signals. Fig 5 .  
shows the multitude of sensor observables afforded by this 
missile target. These observables have their own and 
separately optimal signal domain set with very little 
commonality. Therefore, jointly they collectively demand 
a very broad sensor operating frequency domain if all 
these observables were to be simultaneously exploited for 
target typing and optimized detectionltracking operations. 
This broadband operation is easily met by the broadband 
sensor technology we are addressing here, as long as there 
is a broadband ambient illuminator set available to be 
exploited in the region and accessible to the missile launch 
site. Two widely separated illuminator frequencies were 
available for this purpose at the range site, namely VHF 
and C-Band ambient background illuminations. This 
diversity and frequency region was ideal to exploit launch 
phenomenon (see Fig 6. and Fig 8.  for vertical axis 
acceleration observables, namely missile staging events 
versus powered flight and ballistic periods). The VHF 

sensor missile velocity tracking data is shown in Fig 7. 
(individual data dots) versus missile test range derived 
ground truth data (solid curve). From Fig 6. ,  the velocity 
data (Fig 7.) extends over the first stage powered flight 
period, into its booster engine cut-off (BECO) event 
(occurring at 24 seconds) and through its ballistics region 
(26 seconds through 40 seconds), and finally second stage 
firing (40.6 seconds) seen in Fig 6. as the acceleration 
period beginning at 40.6 seconds). BECO is accurately 
measured by the missile kinematics measurements 
displayed in Fig 8. Note there the fairly steady 
acceleration from 20 to 23 seconds, with acceleration 
profile showing a strong downward trend at 25 seconds up 
to 40 seconds (the ballistics period). If we note the 
sensor-target geometry as depicted in Fig 9 in reference to 
the target aspect angle, as well as the radar range equation 
containing the on-site realized surveillance parameters, we 
can use these relationships to determine the target RCS 
with target aspect angle. Target measured RCS is shown 
in Fig 10. versus time from launch. Overlayed on this 
RCS data (data dots) is the missile acceleration profile with 
time from launch (solid curve derived from missile test 
range ground truth data). Note target RCS (missile with 
plume) remains retatively constant for a time period of 10 
through 24 seconds, following the steady relatively 
constant acceleration profile of the missile first stage up to 
24 seconds. After this time event the acceleration falls to 
ballistic values (0 m / s / s  at 25 seconds, -13 m/s/s at 29 
seconds), with the target RCS falling also and following 
the overall trend of the first stage power profile (see Fig 
IO.).  If we return to Fig 9 to note the target aspect 
geometric relationships in this passive sensor versus target 
setup, we can replot the missile RCS and acceleration 
profile versus target aspect angle. We do this in Fig 11. 
and add target predicted RCS (lower solid curve, methods 
of moments procedure used here for target 40 degree role 
and for this VHF frequency case 111) in order to compare 
the missile hardbody RCS without plume effects 
(predicted) versus the plume plus hardbody RCS (actual 
measured data). Notice (with reference to the acceleration 
profile versus aspect) the hardbody plus plume measured 
data remains invariant over a 20 degree aspect angle 
change, suggesting that during the powered flight the RCS 
is dominated by plume effects. Compared to the predicted 
missile only RCS, the measured RCS data shows and 
cross-section enhancement of nominally IO to 15 dB over 
the hardbody only. Fig 1 1 .  strongly suggests that 
observing this solid propellant missile target at VHF a 10 
dB detection improvement is realizable via ambient 
illuminator exploitation. Note in Fig 11.  the measured 
RCS at the ballistic phase falls back down to the hardbody 
only prediction results ( 1  12 through 122 degrees aspect 
angle interval. The range tracking performance at VHF 
for this passive sensor technology is shown in Fig 12. 
(measured data as dots, ground truth data as solid curve). 
The performance differed from ground truth by only 10 to 
20 meters (for times earlier than 70 seconds). Similar 
range performance data exploiting a much high frequency, 
namely the on range C-Band trackers is shown in Fig 13. 
This higher frequency results supported better target 
kinematics detection and resolution. as it would be 
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expected as one goes up in frequency. Finally, the 
measured misslie plus plume data (measured data dots) at 
C-Band is shown in Fig 14., giving a much lowere RCS 
result, namely o dbsm, which compares favorably with 
predicted data (see solid curve in Fig 14.). The overall 
target RCS templates which are useable for rocket motor 
typing is shown in Fig 15, along with other typing 
observables. 

and C-band background ambient illumination in order to 
optimize detectivity and to analyze observables like 
kinematics based BECO and RCS measurements during 
launch transient periods (rocket motor characterization). 
This research will continue, focusing on automating many 
analysis operations as well as fusing the results at the 
detection domain rather than at the after track combining 
domain (were much of the data phenomenology is lost). 

3. CONCLUSION 
4. REFERENCES 

The passive sensor technology which can observe targets 
at multiple frequencies simultaneously, can optimize the 
detection and analysis of target phenomenology, which is 
demanding in its frequency coverage. A broadband sensor 
suite, which is very broadband in nature, exploited VHF 

[l] I .  W. Crispin, et al. "A Theorectical Method for the 
Calculation of Radar Cross Section of Aircraft and 
Missiles", Univ of Michigan R a d i a t i o n  L a b ,  
2591-1-H, July 1959. 
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INTERACTIVE INTEGRATION OF PASSIVE INFRARED AND RADAR 
HORIZON SURVEILLANCE SENSORS TO EXTEND ACQUISITION AND 

FIRM TRACK RANGES 

S.R. Horman, R.A. Stapleton, K.C. Hepfer, R.M. Headley and J.K. Stapleton 
Naval Surface Warfare Center, Dahlgren Division 

Dahlgren, VA 22448-5000 

1.0 SUMMARY 
The interactive integration of sensors has shown 
great promise as a means of significantly 
improving the range at which ships can detect 
and acquire high-speed, low altitude Anti-Ship 
Cruise Missiles (ASCM). Modest sensors, 
designed for the purpose, have been developed 
and successfilly tested in a field environment. 
Near-horizon clutter was measured, producing 
some surprises. A real time integration system 
has been built and successfidly field tested with 
sensors which had most of the desired 
characteristics against representative targets. In 
addition, an unprecidented capability has been 
developed to measure low altitude propagation 
to high fidelity as a hnction of frequency, time, 
target altitude, radar antenna height and target 
range, and to measure dynamic infrared 
refraction effects. This provided a dramatic 
means to better understand the performance of 
multi-sensor systems when operated in the field 
under conditions that produced anomalous 
propagation. Improvements in firm track ranges 
were commensurate with our predictions. A 
FY95 real time demonstration is planned using a 
radar with an agile beam antenna. 

2.0 PREFACE 
The low altitude, high speed, reduced radar 
cross section ASCM has evolved as a means to 
exploit intrinsic vulnerabilities of shipboard radar 
surveillance systems. When a threat is at low 
altitude, and near the horizon, propagation losses 
are severe, reducing the amplitude and thus the 
signal to noise of the reflected return. In 
addition, the target is embedded in sea clutter, 

which displays characteristics similar to targets. 
The demands on radar systems are fbrther 
exacerbated by target maneuverability, 
Electronic Countermeasures (ECM) and, in 
littoral environments, returns from land clutter 
that can appear to be at much closer ranges. 
Traditional solutions to these problems have 
been to increase radar power-aperture products 
(and cost) to increase the amplitude of the return 
and to use Moving Target Indication (MTI) or 
doppler waveforms and signal processing to 
suppress clutter. The extremely low altitudes at 
which current and projected ASCM can fly, 
coupled with other countermeasures to radar, 
produce a threat class that will stress affordable 
radar-only surveillance systems beyond both 
current and projected capabilities. Present ship 
combat systems are dependent on radar-only 
solutions for Anti-Aircraft Warfare (AAW) 
surveillance leading to engagement of ASCM. 
As a consequence, the late detection and track of 
such fast, low threats would result in greatly 
compressed engagement timelines, often 
resulting in single round intercepts at 
dangerously short ranges or complete loss of 
engagement capability using surface-to-air 
missile systems. For example, some ASCM may 
impact their target less than 30 seconds after 
crossing the radar horizon. The resulting 
requirements placed on detection time, threat 
evaluation and weapons assignment, missile 
preparation time, and missile flight time are 
great. Therefore, relaxation of these timelines by 
even a few seconds produce both a significant 
increase in battle space and substantially reduced 
demands on the entire combat system. The use 
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of Multi-Sensor Integration and Control 
(MSI&C), to make sensors interactive and 
mutually supportive, has demonstrated great 
promise in countering the low altitude threat. 
This performance increase results from the use 
of a horizon surveillance and track radar and an 
Infrared (IR) horizon surveillance sensor, both of 
modest performance, cost and weight, compared 
to a radar-only solution. The operative principle 
is to utilize the IR surveillance sensor to detect 
high speed, low altitude threats at or near the 
horizon. The radar, which also provides 
independent horizon suweillance, is then 
directed to interrogate the detected threat with a 
pulse-doppler waveform of approximately 12-20 
dB greater energy than that of the normal 
surveillance waveform. This greater dwell 
energy provides the required signal to noise, 
while improved radar stability and doppler 
processing is required to suppress clutter. The 
result has often provided a dramatic increase in 
initial firm track range. Under fluctuating 
propagation conditions, a significant increase in 
firm track range and track continuity has also 
been obtained through the use of multi-sensor 
processing to establish and maintain tracks by 
combining intermittent IR and radar detections. 

3.0 DESCRIPTION OF INVESTIGATIONS 
The Office of Naval Research has supported an 
exploratory development MSI&C task by the 
Naval Surface Warfare Center, Dahlgren 
Division with the support of the Naval Research 
Laboratory since 1988. ['*'I This task is focused 
on demonstrating increasing radar firm track 
range through real time MSI&C of Infrared (IR) 
and radar horizon surveillance sensors designed 
for interactive operation. To differentiate this 
objective from the numerous other potential 
benefits of Multi-Sensor Integration (MSI), the 
task is titled Multi-Sensor Detection (MSD). 
The most stressing projected ASCM threats Will 
fly at low altitude, utilize high speed and 
maneuverability, have reduced radar cross 

sections and will operate in the countermeasures 
environment created by standoff and 
self-screening jammers. Advances in radar 
design have produced surveillance radars which 
have adequate to excellent performance against 
mid to high altitude threats, even against the 
most stressing of such threats in an ECM 
environment. Conversely, IR sensors often have 
severely degraded performance at elevation 
angles above about one degree. This is because 
there is a 50% worldwide probability that 'a 
cloud may mask a threat flying above 1000 feet, 
and the effects of cloud clutter become 
pronounced above 1 degree elevation. 
Therefore, the MSD task was hrther focused to 
address the most stressing combination of threat 
characteristics and ECM environments over a 
narrow range of elevation angles about the 
horizon. This provides the potential for 
maximizing IR sensor performance in the region 
where surveillance radars need the most help, 
and where IR systems perform best. This focus 
on the horizon and the use of sensor interaction, 
while leaving volume surveillance to other 
sensors, provides the basis for projecting 
significant performance improvements to the 
combat system using affordable sensors. 

Before an MSI&C system could be built, a 
number of hndamental questions needed to be 
answered through measurements and 
experiments. These questions concerned 
phenomenological as well as technological 
issues. The most basic were: 

a. Can a modest horizon surveillance radar 
using special confirmation waveforms: 

Provide sufficient clutter rejection, and 
Detect a low altitude, low observable target at 
the required range while maintaining a 
realistic False Alarm Rate (FAR)? 
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Figure 1. S/N vs. altitude at 10 nmi 

b. Can an affordable IR horizon surveillance 
sensor: 

Detect the target at the horizon a useh1 
percentage of the time, and is this range 
greater than the radar's detection range when 
using its standard search waveforms, 
Detect the target at or near the optical 
horizon while rejecting severe ambient sea 
clutter, and 
Detect the target against land clutter with an 
acceptable FAR? 

c. Will the combination of IR and radar sensors, 
properly integrated and designed for the 
purpose, provide performance superior to that 
provided by them operating independently? 
These questions as well as less fbndamental 
technology and engineering issues have shaped 
the planning and execution of the work 
described below. This paper is intended to 
provide a quantitative rationale for the use of 
MSI&C and to.provide a snapshot of our present 
status and plans. Numerous analyses, 
experiments and measurements by a number of 

scientists and engineers are discussed below. 
Therefore, for purposes of clarity, the paper is 
organized by design drivers and associated data 
and analyses rather than by chronological order 
or individual investigations. 

4.0 PHENOMENOLOGICAL DRIWRS 
Volume surveillance radars provide surface 
combatants a critical sensing capability . 
However, such sensors are designed to provide 
long range detection and track of threats at 
altitude. Detection of low altitude, high speed 
threats at or beyond the optical horizon is 
needed to provide adequate combat system 
response time. When near-horizon threats fly at 
2-5m above the sea surface, they are well 
embedded in the radar diffraction region. In this 
case, propagation is highly dependent on both 
target and radar altitudes as well as radar 
frequency and the specific environment along the 
path. Threat studies have shown that low, fast 
(Mach 3) ASCM with cross sections of -XXX to 
-YYY dBsm can be expected in the 2010 
timeframe [31. Figure 1 shows the signal to noise 
vs. target altitude that would be obtained by a 
nutiunal S band volume surveillance radar for a 
-ZZZ dBsm missile at 10 nmi (1 8.52 km), under 
nominal propagation conditions. The shape of 
this fimction is the figure's salient feature. Signal 
to noise can be changed through changes in 
radiated power, antenna gain or other radar 
design parameters. On the other hand, the 
propagation induced loss of S/N as a knction of 
target altitude constitutes a fbndamental 
phenomenological limitation for any fixed radar 
frequency, if all other factors are held constant. 
The vertical dotted line denotes the signal to 
noise (S/N) required for this radar to detect the 
target under benign clutter and 5 m evaporative 
surface ducting conditions. In this particular 
case, at 10 nmi, the target could be detected at 
an altitude of approximately 5 m or greater. 
However, if the radar observed the same target 
flying at an altitude of 2 m, a S/N of 16.3 dB 
below the detection threshold would result. One 



can see, therefore, that if a given missile were to 
fly at 2 m rather than 5m at 10 nmi, this 3 m 
drop in altitude would result in a reduction of 
this radar's S / N  equal to that resulting from a 
16.3 dB reduction in missile radar cross section 
(were the missile flying at 5 m), a very dramatic 
effect. One can as readily calculate the increase 
in radar energy on target required to extend 
detection range, with all other variables fixed. 
This provides another way to look at the 
problem. Figure 2 shows the propagation loss 
as a function of range for the same notional 
radar and the same target flying at 2 m. The 
dashed curve represents free space propagation 
loss, the solid line, that for a target at 2 m. The 
dotted line represents the radar's detection 
threshold. One can see that this target can first 
be detected by this notional radar at 8.3 nmi. To 
extend the detection range by 3 nmi, an 
additional 14 dB energy on target would be 
required. A 4 nmi increase would require nearly 
20 dB. To increase the average power of a 
capable surveillance radar by 14 to 20 dB would 
be extremely costly. To increase the 
power-aperture product of the radar to provide 
the required S / N  would be costly and would 
likely result in significant increases in sensor 
weight and size. Significantly increasing the 
energy on target through use of longer 
surveillance dwells would result in unacceptably 
long search frame times, given constant radar 
average power. However, if one were to design 
the radar such that it performed surveillance with 
a conventional waveform, and could occasionally 
change its waveform on command to provide a 
single confirmation dwell (with 12 to 20 dB 
greater energy than the surveillance waveform) 
in the direction specified by a cue, a large 
performance increase in that direction could be 
obtained with a much smaller impact on radar 
search fiame time and power-aperture product. 
Naturally, this capability would only be usefbl if 
another sensor were able to reliably detect the 
target at or beyond the desired firm track range, 
and be able to provide a timely cue to an 
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Figure 2. Propagation Loss vs. Range 

accuracy of a fraction of the radar's beamwidth. 
In addition, the cueing sensor would have to 
provide false cues at a sufficiently low rate to 
limit the extra loading to the radar to an 
acceptable limit, such as 25-30% of the total 
energy budget per search frame time. The 
optimal percentage of the total energy budget 
will be a function of environment and the 
knowledge of it resident within the sensor 
resource manager. This question will be future 
addressed in future testing, and the answer and 
its fidelity will probably continue to evolve for 
years. The ability to remotely sense the 
environment and adapt a multi-sensor system to 
it for optimal operation is the focus of a new 
ONR task, Interactive Adaptation of Fire 
Control Sensors to the Environment. Based on 
findings to date, the total allocation of energy to 
this purpose, and the energy used as a function 
of bearing will ultimately be governed by existing 
propagation and clutter conditions, and the 
confidence of the combat system in its 
knowledge of them. Some candidate sensors 
that could provide useful cues are passive IR 
surveillance sensors, precision electronic support 
measures (PESM) Radio Frequency (RF) 
sensors and sensors located on other platforms. 
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The compressed timelines associated with the 
high speed, low altitude ASCM require that a 
confirmation dwell be requested shortly after the 
target is detected. Therefore, an IR surveillance 
sensor would be of most use if it were able to 
provide designations to targets upon initial 
detection (at the contact level), rather than 
waiting to develop a track file. In the case of 
slower ASCM, with lower signatures, it may be 
necessary to develop a firm IR track to have 
sufficient confidence to request a confirmation 
dwell. However, since the threat is slower, 
under many cases, track level integration of 
sensors will still provide enhanced radar firm 
track ranges. In the case of very fast or highly 
maneuverable targets, the radar would also need 
to be able to transmit the confirmation waveform 
before the target elevation and bearing could 
move a ponderable fraction of a beamwidth. 
Therefore, for tactical surveillance applications, 
where no firm track of the target exists, the radar 
generating the confirmation dwell must use an 
agile beam antenna, such as a phased array. 
Such a properly designed suite of interactively 
integrated sensors could provide the necessary 
S/N to significantly increase radar firm track 
ranges. However, adequate S/N is a necessary 
but insufficient condition for establishing a firm 
radar track. 

S/N is frequently not the dominant factor 

limiting radar performance against low altitude 
targets. The radar must have sufficient stability 
and signal processing capability to suppress 
residual clutter to the noise level to achieve the 
gains described above. A horizon surveillance 
radar must be pointed at or near the horizon, 
maximizing the potential for sea clutter and/or 
land clutter to degrade the radar's performance. 
One means to improve S/N against low altitude 
targets is to utilize a higher transmitted 
frequency. Figure 3 shows the difference in 
pattern propagation factor (PPF) between two 
notional radars which are identical except that 
one operates in S band, the other in X. The 
improvement in PPF, and therefore S/N, for a 2 
m target at 10 nmi would, under the assumed 
conditions, be 22 dB. However, this 
improvement would come at the expense of 
greatly increased clutter, which would have to be 
suppressed to realize the benefits of the 
improved S/N. In addition, propagation as a 
hnction of target height and range frequently 
becomes highly structured in time and space as 
the operating band of a radar increases in 
frequency. Shipboard experience, as well as 
carehlly controlled field measurements, have 
shown that the requirement for clutter 
cancellation is often the strongest driver when 
searching for small low targets. This is hrther 
complicated by the non-stationary nature and 
azimuthal anisotropy of propagation and 
background clutter. [41 

Supersonic ASCM can traverse 3-4 nmi in a 
matter of 6-8 seconds. It is reasonable to 
question the true value of this additional time 
and battlespace. This can be addressed 
quantitatively only through detailed analysis of 
every element of the combat system and how it 
would react and perform against specific threats 
and scenarios. However, the relative benefits of 
increased firm track range can be quickly 
illustrated through use of a greatly simplified 
model of the combat system, including the 
weapon, and a well behaved, but stressing target. 
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Figure 4. Notional Combat System Performance against a 2600 @s ASCM 

Consider the case shown in Figure 4. The 
probability of kill as a fbnction of intercept 

The probability of kill of a typical AAW missile 
falls off dramatically near minimum intercept 

range of this notional weapon against the 
notional, non-maneuvering ASCM was 
determined though detailed Monte Carlo analysis 
and is outside the scope of this paper. Of 
primary interest is the shape of this fbnction. 

Pk (CUM) AS A FUNCTION OF FIRM TRACK RANGE 
( M W  MISSILE REUABlUlY = 1.0) 

FIRM TRACK RANGE. 8.3 nmi 

8.3 ml DETECT ASCM 

4.8 ml 1.1 MISSILE AWAY 

4.4 mi 2nd MISSILE AWAY 

1.7 mi 1.1 INTERCEPT 
P, = 0.72 

1.4 mi 2nd INTERCEPT 
P, 10.88 

P,(CUM) 0.810 

P,(IASCM) 0.88 

FIRM TRACK RANGE- 12.3 nmi 

123 mi DETECT ASCM 

8.8 mi 1.1 MISSILE AWAY 

8.4 mi 2nd MISSILE AWAY 

3.7 mi Id INTERCEPT 

3.5 mi 2nd INTERCEPT 
P.4.88 

P, 9 0.85 

P,(CUM) 0.889 

P,(4 ASCM) 0.858 

Figure 5 .  Notional Combat System Performance 
against a 2600 f p s  ASCM 

range. Therefore it is important to take this into 
consideration when engagement timelines are 
highly compressed. In this example, a fixed 
combat system delay time of 8 seconds between 
establishment of firm track and first missile 
launch was assumed, along with interceptor 
flyout and P, characteristics as shown. Also, 
optimistically assumed for simplicity, was that a 
shoot-shoot-look-shoot doctrine was used, all 
interceptors were perfectly reliable, interceptors 
could be launched at 1 Hz, 1 second was 
required to assess kill and launch the third 
missile, there was never a shortage of illuminator 
assets and attacking missiles were sufficiently 
spaced in time that multiple engagements did not 
interfere with each other through competition for 
combat system assets. Figure 5 compares the 
result of engagements where the initial firm track 
range was 8.3 and 12.3 nmi. In each case, the 
probability of raid annihilation against a single 
missile and 4 missile raid is shown. The 
difference is quite dramatic. Increasing the firm 
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track range from 8.3 to 12.3 nmi decreased the 
probability of a "leaker" from 32% to 4.4%. 
Removing the simplieing assumptions greatly 
complicate such an analysis, and generally result 
in lower estimates of combat system 
performance. However, significant benefits can 
be shown in most cases. The ability of a combat 
system to successfblly counter an attack is 
strongly a fbnction of the performance of every 
one of its elements. However, given that the 
combat system can engage a threat successfblly, 
if provided sufficient warning, initial firm track 
range is clearly a critical driving factor. 
Interactive integration of IR and RF sensors is 
one way of achieving this extra battlespace. 

Passive IR surveillance sensors have the ability 
to provide extremely accurate designations to 
supersonic targets. In addition, they perform 
very well near the horizon, the environment 
where radar performance degrades. They cannot 
detect threats through clouds or heavy fog and 
rain, however. IR sensor performance degrades 
under adverse weather conditions due to 
molecular absorption by the atmosphere and 
scattering by aerosols (dust, haze and fog). In 
addition, like RF, IR radiation is subject to 
refractive ray bending. This can reduce or 
increase the range at which low altitude targets 
become obscured by the horizon. Low elevation 

refractive effects in the IR are due primarily to 
temperature gradients close to the water surface. 
A positive air-sea temperature difference tends 
to extend the horizon, a negative difference 
moves the horizon closer to the sensor. There 
are benefits and limitations associated with each 
refractive condition. These will be discussed 
below. Where atmospheric extinction vs. 
refraction limits the range at which a given IR 
sensor can detect a particular ASCM, the threat's 
IR signature is a critical factor. Figure 6 shows 
the IR spectral signatures of three ASCM that 
roughly bracket existing threats. One can see 
that there are approximately three orders of 
magnitude variation in IR signatures between 
these threats. In addition, atmospheric 
extinction can easily vary by another three orders 
or more of magnitude. The dominant sources of 
IR emission are blackbody radiation from the 
ASCM skin and emissions from the plume. 
Carefbl design can limit a missile's plume 
signature, but operation at supersonic speeds 
creates substantial, unavoidable skin heating. A 
modest IR horizon surveillance sensor can be 
built that has sufficient sensitivity to detect a 
supersonic ASCM at the horizon, under all but 
the worst weather conditions. To provide this 
performance against very slow, low signature 
ASCMs would require a much more capable and 
costly IR sensor. However, the greatest stress 
to the combat system is created by high speed 
threats. Therefore, for purposes of the MSD 
exploratory development task, only supersonic 
or high IR signature threats have been 
addressed. Given the ability to detect a threat, 
clutter can be an even more serious limitation to 
IR surveillance sensor performance than it is to 
radar sensors, since no range resolution is 
available to assist in clutter rejection. The 
angular separation of a low altitude missile from 
the horizon is small. Figure 7 shows that no 
low altitude ASCM ever exceeds 1 mrad 
elevation angle above the horizon, when viewed 
from a typical shipboard IR surveillance sensor 
height, and that a large fraction of them never 
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exceed a few hundred pad.  For example, 
Figure 8 is a high resolution (88 prad detector 
angular subtense) mid-IR image showing a 
missile-like target at an altitude of 12 feet at a 
range of 10 nmi. This image was gathered 
during testing at Wallops Island in 1992. 
The largest angle above the horizon observed 
for this target at any range was approximately 
200 pad .  Inspection of Figures 8 and 9 also 
shows that sea clutter can be extensive and of 
amplitude much greater than near-horizon 
threats. Previous analyses and measurements 
showed that IR sea clutter fell off quickly near 
the horizon, suggesting that it might be benign at 
the horizon. This belief was founded on 
extensive previous clutter measurements with 
sensors of modest resolution. ['A~I It was also 
predicted and observed that the location of the 
optical horizon was often ambiguous and that 
targets frequently appeared above the apparent 
optical horizon.['l The 1992 measurements 
performed at Wallops Island with the above high 
resolution IR sensor showed that clutter was 
often significant up to the horiz~n.[~*~] This is 
easily seen through inspection of Figure 9. This 

Range in Km 

Figure 7. Threat elevation angle relative to 
the horizon as a fbnction of altitude 

figure shows an example of the measured 
standard deviation of clutter, measured in sensor 
A/D counts, as a fbnction of elevation angle for 
a representative sea background of moderate 
clutter. Detector count starts at the bottom of 
the field of view. The relatively flat, low 
amplitude "clutter" observed above the horizon 
is actually the noise floor of the sensor. 
Inspection of Figures 7, 8 and 9 clearly shows 
that an IR horizon surveillance sensor does not 
require a large vertical angular coverage, but 
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Figure 8. The Threat in its Environment Figure 9. Background Clutter vs. 
Elevation Angle 
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Figure 10. Low Altitude Threat as Seen 
by a Volume Surveillance IRST 

must have high resolution to separate 
near-horizon threats from sea clutter. The 
requirement for high vertical resolution would 
increase a volume IR surveillance system's signal 
processing load as well as providing the 
opportunity for producing more clutter 
detections. Limiting vertical coverage to a 
small angle about the horizon is a highly 
effective means to reduce both demands on the 
sensor. To illustrate the importance of high 
resolution, it is useh1 to compare the 
performance of the above horizon surveillance 
IR sensor to a traditional IR Search and Track 
(IRST) volume surveillance sensor. IR volume 
surveillance sensors typically have detectors of 
large vertical angle subtense, about 1 mrad. This 
is driven by the need to provide 10-30 degrees of 
elevation coverage with a reasonable number of 
detectors. These detectors would necessarily 
couple large amounts of below horizon clutter, 
when it is present, with the target contribution, 
resulting in unacceptable performance. In 
addition, the unresolved target would lose 
contrast even in the absence of intense clutter. 
This effect can be demonstrated by processing 
the image in Figure 6 to replicate the output of a 
typical volume surveillance IRST. Figure 10 

shows what an IRST with a detector angular 
subtense of 0.3 X 1.2 mrad would "see." The 
target is completely obscured by near-horizon 
clutter, and becomes undetectable, even to 
sophisticated signal processors, on a single look 
basis. The conclusion that an IR horizon 
surveillance sensor must have high vertical 
resolution is, therefore, driven by experimental 
data as well as theory. Such an IR sensor design 
is a major departure from traditional design 
approaches. 

Using validated computer models, the effects of 
refraction and atmospheric transmittance on an 
IR sensor's performance can be calculated using 
the calculated or measured IR signatures of the 
targets of interest, a complete description of the 
atmospheric conditions and sea temperature and 
a description of the background. Although 
general agreement on the accuracy and precision 
of atmospheric transmission models has existed 
for some time, the effects of refraction are 
calculated[lO.l 1 . I  2.1 3.141 

disagree. Additionally, they all have serious 
limitations in their ability to predict refractive 
effects under conditions with positive air-sea 
temperature differences. In the past, 
interpretation of the statistical impact of 
refraction effects to IR sensor performance 
varied significantly within the surveillance sensor 
community. A substantial minority maintained 
that the effects of refraction would unacceptably 
reduce the range of IR horizon surveillance 
sensors a majority of the time. In addition, most 
of the data from which these models were 
derived were obtained through visible band 
radiation measurements. A widely held 
perception was that a negative air-sea 
temperature difference would reduce the range 
to the visible horizon and would therefore be 
"bad" for an IR sensor, and the converse would 
apply to positive air-sea temperature difference 
conditions. Although the refractive effects in the 
mid-IR and the visible should be nearly identical, 
based on theory and measured indices of 

with models that sometimes 
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refraction, one documented experiment in the 
Long Wave IR (LWIR) measured the effects of 
refraction to have virtually no dependence of the 
maximum intervisibility range on air-sea 
temperature difference.["] Therefore, carehlly 
instrumented and controlled measurements of 
the maximum range at which a low altitude 
target could be seen by a shipboard IR sensor, 
mounted at a representative height, were 
necessary to develop a statistically significant 
body of data to validate or correct refraction 
models and to demonstrate the utility of IR 
sensors for multi-sensor horizon surveillance. 
This body of data necessarily required a wide 
range of air-sea temperature differences to 
provide a basis for conclusions. 

The Naval Surface Warfare Center, Dahlgren 
Division, assisted by the Naval Research 
Laboratory and the Applied Physics Laboratory, 
performed the above referenced simultaneous 
IR/RF refraction and clutter measurements at 
Wallops Island in March-April, 1992. A target 
that had the mid-IR signature characteristic of a 
very small supersonic missile, 20 watt-si' ,was 
mounted 12 feet above the water on a boat. 
Since the projected intensity of a Mach 3 
seaskimmer is nominally 300 watt-si', this 
comparatively small target provided a substantial 
conservative margin for extrapolation of test 
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Figure 1 1. IR Sensor Refraction Limited 
Range vs. Time. 

results. During IR and RF measurements of sea 
and near-horizon background clutter, the boat 
was sent outbound until the IR sensor could no 
longer detect it. The range at which this 
occurred was the Maximum Intervisibility 
Range (MIVR). This measurement was 
sometimes performed several times per day. 
Figure 11 shows the observed MIVR for a 
period of 5 weeks. During this period there 
were three days where the IR sensor had 
inadequate performance due to rain and fog. 
The quasi-periodic variation of the data is the 
result of the passage of air masses and frontal 
activity. Cold days resulted in negative air-sea 
temperature differences, warm ones trended 
toward positive differences. In addition, as the 
day progressed, and the air warmed, the range at 
which the boat could be detected increased since 
the beneficial effects of refraction moved the 
horizon out. Although a very wide variation of 
air-sea temperature difference was observed, and 
this range is representative of most 
environments, it did not cover the hll range 
possible. Extreme refractive effects were 
observed by Takken, et. al. when viewing the 
horizon in cold weather while looking over the 
Gulf Stream.[I6] Here the intense negative 
air-sea temperature difference foreshortened the 
horizon an unknown, but large amount. In 
addition, very large positive air-sea temperatures 
can extend the horizon so far that the target may 
first be observed against the sea surface. [I7] This 
was observed a number of times during 
additional subsequent testing of interactively 
integrated sensors at Wallops Island during the 
period of December 1993 to April 1994. It was 
determined that while a negative air-sea 
temperature difference reduced the range to the 
visible horizon, the horizon was almost 
invariably crisp, and the target appeared above 
the horizon, and was therefore quite easy to 
detect with relatively simple signal processing. 
In addition, for a brief period of time after 
crossing the horizon, the apparent intensity of 
the target was enhanced by refraction. In the 



24 

Figure 12 . Probability of Detection of a TLX Towed Target by HISS from Wallops Island 
Test (Comprehensive Target Metric =O. 1 1) 

case of positive air-sea temperatures, the target 
generally first became detectable against the sea 
surface, and was therefore embedded in sea 
clutter. The signal processing utilized included 
multiplicative terms associated with target 
elevation angle relative to the horizon, density of 
adjacent clutter and target spatial characteristics. 
The output contacts were assigned an associated 
Comprehensive Target Metric (CTM) based on 
those characteristics. With a CTM of 0.1 1, the 
IR sensor produced a false designation rate that 
averaged about 1 Hz, the maximum projected to 
be tolerable. With an adaptive CTM, the false 
designation rate was typically 0.01 Hz, and first 
detection ranges were reduced by about one nmi. 
The details of the relevant IR signal processing 
and sensor performance are the focus of several 
reports and papers. 
air-sea temperature differences, there was no 
obvious dependence of IR sensor performance 

[I ~ ~ ~ 9 , 2 0 , 2 ~ ~ 2 % 2 3 . ~ ]  With negative 

on target altitude, while under positive 
temperature difference conditions, the detection 
range of the lowest targets was degraded 
somewhat, since they first became detectable 
against sea clutter. At extended ranges, the 
apparent intensity of the targets were reduced 
below what might otherwize be expected by 
refractive effects, and some significant mirage 
effects were observed, although acquisition 
ranges remained acceptable. A useh1 measure 
of the performance of the integrated system of 
sensors was obtained through testing with an 
aircrafi towed target, the TLX. This target had 
a measured in-band intensity of 10 watt-si’, and 
was controlled by an altimeter to fly at low 
altitudes. Performance of the IR sensor against 
the TLX Towed Target is shown on Figure 12. 
The IR-enhanced version of the TLX towed 
target is shown on Figure 13. The average 
range improvement obtained through interactive 



Figure 13. TLX Towed Target 

integration of disparate sensors during the test 
was 20-25%. Figure 14 shows an example from 
a typical test run. For purposes of this test, a 
near real time comparison of the performance of 
the radar with and without the cued waveform 
was obtained through allowing the radar to 
accept a cue only every eight seconds. If an 
acquisition was made, this was indicated on 
Figure 14 by a plus sign (+). Once firm track 
was established, the system automatically 
terminated track and resumed operation in its 
normal surveillance mode. When acquisition 
was obtained through use of the surveillance 
waveform, this was indicated by an "0". One 
can see that in this case, the use of interactive 
integration produced an increase in initial firm 
track range of 2 miles. In other test events, the 
improvement ranged from 1.4 to 5 nmi. 

depending on propagation conditions. This is in 
good agreement with the theory developed 
previously at NSWCDD. 

In summary, the effects of compressed 
engagement timelines, severely degraded radar 
performance and the demonstrated high 
availability of IR horizon surveillance sensors 
designed to compliment horizon surveillance 
radars provide a strong motivation for usiig 
interactive integration of these dissimilar sensors 
to improve combat system performance.'ZIm 
Both analytical prediction and measurement of 
RF and IR propagation and clutter support the 
use of sensors designed for the purpose. It has 
been shown above that the IR surveillance 
sensor must have high resolution, and need not 
have a large vertical field of regard. The radar 
must use an agile beam antenna and be designed 
to be interactive to support the generation of 
confirmation dwells as well. These requirements 
and others create the engineering challenges of 
MSI&C. 

5.0 ENGINEERING DRIVERS 
Phenomenological drivers and target 
characteristics constrain the design of the 

I 
Figure 14, Fm Track Range Improvement Through Interactive Integration of Sensors 
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sensors. Other system level drivers further 
constrain the sensors and the MSI&C system 
which controls them and processes their data. 
Although the potential for improvement in 
combat system performance through interactive 
sensor integration is clear, abundant evidence 
exists that an incorrect selection of sensors or 
implementation of the integration can result in no 
improvement or even significant degradation in 
overall system 

The integration of multiple sensors is widespread 
on U.S. Navy ships. When integration of sensor 
data is performed, it is usually performed at the 
track level. In other cases, integration may 
occur as a result of a voice or teletype 
communication link. Virtually all contact level 
integration is performed using data from similar 
sensors. The integration of dissimilar sensors is 
complicated by a significant number of factors. 
The most important are: 

a. Dissimilar Information. A radar may produce 
2-D or 3-D detections and tracks, i.e. bearing 
and range or range, bearing and elevation. IR 
surveillance sensors do not measure range, only 
bearing and elevation. Therefore, correlation 
and association of contacts is complicated by a 
limited number of common observables. An 
unavoidable consequence of the integration of 
dissimilar data is the potential for association 
(and the formation of a single declared track) of 
different objects, objects with clutter, or of 
disparate clutter. Any MSI&C system must 
cope with these fundamental issues. Failure to 
do so can result in greatly increased system 
loading and/or inappropriate engagement 
decisions. 

b. Dissimilar Information Oualitv. The 
precision with which disparate sensors perform 
measurements significantly impacts the 
integration process. The resolution of a horizon 
surveillance sensor may be on the order of 100 

pad, that of a horizon surveillance radar is at 
best several milliradians. This mismatch results 
in an association window that is dominated by 
the radar's limitations. 

c. Static and Dvnamic Misalimnent. 
Inaccurate alignment of sensors can result in 
improper associations, track degradation and 
improper direction of confirmation dwells. 
Static misalignment is a hnction of the 
installation and periodic alignment process. 
Dynamic misalignment results from improper 
stabilization, ship flexure, gyro inaccuracy and 
sensor artifacts. When any of these unavoidable 
factors become large enough to create 
significant beam shape losses during the 
confirmation dwell, system performance will 
degrade, unless active compensation techniques 
are employed. Unless sensors are mounted in 
close proximity, and on a stiffened portion of the 
superstructure, ship flexure alone can exceed 
acceptable  limit^.'^^^"^"^^'^ 

d. Dissimilar Detection Ranees. The primary 
benefit of interaction is derived from exploiting 
the dissimilar ranges of disparate sensors in 
specific environments. However, this mismatch 
can create problems as well. Against low 
altitude, high speed targets, the detection range 
of a horizon surveillance IR sensor may greatly 
exceed that of the radar, even when a 
confirmation waveform is used. This can be 
exacerbated by anomalous propagation and 
ECM. One challenge to the MSI&C system is 
deciding when (and how long) to ignore an 
apparently high priority threat that is persistent, 
but cannot be detected by the radar. When 
multiple, similar candidate threats exist, a 
process to determine how long to wait before 
attempting another confirmation dwell against 
the same contact is needed. The details of this 
process have not been determined to date 
analytically or empirically. An additional 
tradeoff is required for this situation, and that is 
the allocation of energy to the confirmation 
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Figure 15. Typical variations in clutter and propagation. 

dwell. It may, under some circumstances, prove 
better to reduce the energy in each confirmation 
dwell and increase the rate of interrogations. 

e. Sensor Resource Management. The potential 
benefits of MSI&C come at a price. In addition 
to the additional system complexity required to 
support interaction, interactive operation will 
result in degradation of at least the radar's 
performance as a stand-alone sensor. For 
example, every confirmation dwell places 
demands on the total timdenergy budget of the 
radar. Therefore, some time and energy that 
could be dedicated to stand-alone operation, 
must be reserved for interactive support to the 
MSI&C system. The optimum balance of design 
for stand-alone operation vs. operation to 
optimize overall combat system performance has 
not yet been established. It will almost certainly 
vary with environmental conditions, the state of 

combat alertness and the existence and location 
of threat sectors. Under many conditions, 
propagation and clutter will vary widely with 
bearing.['*] Examples of the extreme variability 
of propagation and clutter at sea can be seen in 
Figure 15. This figure shows four azimuth 
scans with a powerful radar at Kwajalein. Each 
range ring corresponds to 32 KM, and each gray 
scale corresponds to 5 dE% change in volume 
backscatter corrected for range. Conditions 
ranged from well behaved ducting at the upper 
left, to virtually no ducting on the lower left, to 
the nearly chaotic variability seen on the right. 
Therefore, the use of different surveillance and 
confirmation waveforms as a hnction of bearing 
will be necessary to achieve optimum 
performance. To achieve this, the combat 
system must either sense, or be provided, a 
detailed clutter and propagation map for each 
sensor. This information would then be used to 
determine the optimum surveillance, track and 



confirmation waveforms as a function of bearing. 
Adaptive resource management will be a major 
focus in the ultimate design of any MSI&C 
system. 

f. Data Latencv. Data latency, and the similar 
effects of delayed sensor response, can degrade 
the system by creating confirmation dwell beam 
shape losses. During the delay between the time 
that the IR sensor detects the target and a 
confirmation dwell is transmitted, target angular 
motion and uncompensated ship flexure will 
result in a misalignment of the radar beam and 
the target. In addition, since the primary means 
of obtaining increased energy in the confirmation 
dwell is to increase its duration over a 
surveillance dwell, the target may become 
M e r  misaligned with the beam during the 
period of transmission. In practical terms, the 
total latency budget to be allocated to IR sensor 
response time, data transmission, MSI&C 
processing and radar response runs from tens to 
a few hundreds of milliseconds, depending on 
the threat. 

6.0 SYSTEM DESIGN 
The requirements for low latency, coupled with 
the large amount of data that must be processed 
has driven the architecture of the system 
presently being developed at NSWCDD. A high 
level diagram of this architecture is shown on 
Figure 16. Data is transmitted to and fiom the 
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Figure 16. MSD System Architecture 

sensors by a commercially available fiber optic 
local area network (Lw that utilizes replicated 
memory. This LAN, SCRAMNET, provides 
low data latency and this latency is deterministic, 
simplifying algorithm design. Data processing is 
performed on both 68040 processor boards and 
i860 programmable vector processors, all 
mounted on a VME backplane. The is60 
processors perform the required vector 
calculations at about 200 times the speed of the 
68000 processors. Rapid communication 
between the i860 processors is obtained through 
use of a separate VSB bus, thereby reducing the 
loading of the VME backplane. Standard 
workstations connected to the 68000 boards via 
ETHERNET are used for control and displays. 
At present there is significant room for growth 
on the backplane. The open architecture and 
design of the software will allow later use of 
additional backplanes linked via the 
SCRAMNET LAN ifrequired. 

Since the focus of the MSD task is to increase 
available battlespace through extending the 
radar's 6rm track range, the multi-sensor track 
filters u t i l i  are only sufficient to minimize 
inappropriate track and contact associations. 
However, since there is a significant mismatch in 
radar and IR sensor resolution, there is only one 
strong common observable, bearing. Therefore, 
a multi-hypothesis test is iterated on aU tracks to 
prune out inappropriate associations. The 
computer program architecture is shown at a 
high level in Figure 17. Initiation of cues 
utilizing individual high priority contacts 
produces the maximum obtainable performance. 
When this is possible, the data flow runs from 
the upper left to the lower right, resulting in 
confirmation dwells as well as surveillance and 
track dwells. However, this is not always 
possible, due to environment or the existence of 
numerous simultaneous high probability 
contacts. Contacts not associated with active 
tracks are passed into the multi-sensor, 
multi-hypothesis track initiation and cue request 
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Figure 17. MSD Computer Program 
Architecture 

processor, here shown enclosed by a bold 
rectangle. This processor can initiate tracks 
directly from multi-sensor contact data or 
recommend confirmation dwells to the sensor 
resource manager. 

7.0 STATUS AND PLANS 
All the programs have been tested against both 
real and simulated multi-sensor data, in the lab 
and through real time interactively integrated 
sensor field testing. They have performed well. 
The open architecture shown in Figure 17 readily 
allows the insertion of recorded data and/or 
sensor simulators into the system, greatly 
simplifylng computer program development and 
testing. All interfaces are designed to allow 
direct substitution of sensor emulators for 
sensors, and to substitute recorded data where 
needed. In the latter case, sensor interaction is 
lost. All initial real time coding was completed 
and tested against recorded data in July, 1993 . 
A complete real time system interfaced to a 
horizon surveillance radar and to an IR horizon 
surveillance sensor was tested against 
representative targets at Wallops Island between 
December, 1993 and April, 1994. The range 
was heavily instrumented with ground truth 
equipment to provide better understanding of the 
test results and to provide a basis for 

extrapolation to other systems. Along with a 
robust suite of meteorological instrumentation, 
provisions for detailed measurements of radar 
and IR propagation was in place. In addition, a 
differential Global Positioning System (GPS) 
was utilized to localize targets to high accuracy 
and precision. 

8.0 SUMMARY 
Significant advances have been made in the 
development and application of interactive 
Multi-Sensor Integration (MSI) technologies to 
counter the high-speed, low altitude Anti-Ship 
Cruise Missile (ASCM). Special pulse-doppler 
waveforms that can detect and track such threats 
at tactically usefbl ranges have been developed 
and demonstrated in a marine environment using 
a radar of modest power-aperture product. The 
capability of a high resolution IR surveillance 
sensor to reliably detect such threats at required 
ranges has also been demonstrated in a marine 
environment. Simultaneous measurements of 
sea clutter using the above sensors have been 
made, and initial representative data reduced to 
determine spatial dependencies and RF/IR clutter 
correlation. The algorithms that implement 
single contact MSI&C have been tested with 
both simulated and real multi-sensor data in real 
time on a real time system. The more 
generalized algorithms required to perform 
MSI&C have been developed and demonstrated 
in a simulated environment. They are presently 
being converted to real time code and baselined 
on the multi-sensor detection processor 
developed in-house for the purpose. System 
integration testing began in July, 1993 and a real 
time demonstration with representative sensors 
and targets is scheduled for the latter part of 
FY95. 
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SUMMARY 
This chapter covers the topic of the application of 
multi-sensor fusion, in a modem fighter aircraft, with 
the objective to improve the performance of pointing 
and tracking systems. It deals specifically with various 
techniques, including the use of other sensor ,data to 
improve the performance of a passive IR Search and 
Track (IRST) system to provide an enhanced tracking 
solution for targets at all ranges, from low observability 
long range stealth targets to short range pop-up targets. 

detector measures the radiated energy that is naturally 
emitted by all objects. The radiated energy covers a 
frequency spectrum, the peak of which is dependant 
upon the temperature of the object, in accord with 
Plank's law [ref 21. Additional energy will come from 
sources such as conduction and reflection. Atmospheric 
attenuation limits the use of the infrared waveband to 
two "windows" at 3-5pm and 8-llpm. 

The timing is particularly appropriate in that Pilkington 
Thorn Optronics is the Technical lead partner in the 
European International Consortium responsible for the 
development of the IRST/FLIR system [Ref 13 for 
Eurofighter 2000 (European Fighter Aircraft). It is one 
of the first airborne passive Electro Optic (EO) 
detection systems, in Development, capable of 
simultaneously detecting and accurately tracking 
multiple targets. It will also have a passive ranging 
capability. It will be the first time that such a high 
performance passive target acquisition and tracking 
system will be available in a modem fighter aircraft. 
The availability of such systems presents a unique 
opportunity to combine this information with other on- 
board sensing systems to obtain a pe r fombce  "force 
multiplier". 

1. INTRODUCTION 
The IRST is a relatively new sensor system which can 
provide an airborne platform with an increased 
capability in roles such as surveillance, target 
acquisition and gun fire control. Its intrinsic high 
spatial resolution is a vital requirement to interface with 
modem armaments, such as; to cue hit to kill weapons, 
to point directed countermeasure systems to extremely 
high line of sight accuracies and to allow reliable 
passive target engagements at extremely long ranges. 

An IRST sensor gathers information by repeatedly 
scanning a wide field of regard, typically 1500 x 600, 
by means of a multi-element infrared detector. The 

As indicated in the picture above, the total energy 
incident on the IRST detector from any external object 
is a complex combination of components from many 
sources. These components are not just related to the 
object temperature, but varying with its surface texture, 
its surface attitude and its surroundings. If the object 
is a distant aircraft then it will probably be viewed 
against a sky background, which might contain clouds 
and the likelihood that it will appear to radiate the same 
energy as its background is very remote. The apparent 
temperature difference between the target object and its 
surroundings is the signal that the IRST system can 
exploit. 

It is very difficult, if not impossible, to employ stealth 
techniques to prevent an aircraft from being "seen" by 
an IRST system. Unlike radar, it is not relying on 
detecting its own returning emitted radiations, which 
could feasibly be attenuated or dissipated by stealth 
techniques. Also, unlike radar, if it were possible to 
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totally eliminate all radiations from the target, it would 
actually present a more detectable signature, since it 
would appear as a "black hole" against the natural 
background emissions. The only way for a target to 
prevent itself from being seen would be to maintain its 
level of emissions at precisely that of its background 
as viewed by the IRST sensor, clearly an impossible 
task. Even if it were possible to invent a method of 
rapidly varying an aircraft IR signature, it would not be 
known at what level to set it to exactly match its own 
apparent background. The IRST viewed background 
might be sky, cloud or even ground features and may 
well be many kilometres beyond the target. 

In addition, the IRST system's ability to detect the 
target is not degraded by any of the ECM devices 
traditionally used to defeat radar systems. 

Thus as a passive target detection system, the IRST has 
many operational advantages. However, it also has a 
number of performance limitations which usually limit 
its long range detection capability, particularly with 
adverse weather conditions. 

A modem aircraft platform will contain many sensors, 
operating in different wavebands. It is logical to 
consider the use of information from these to improve 
the performance of the IRST system. From a 
theoretical viewpoint it would be ideal to consider the 
fusion of all sensor data in some "central processor" 
which could optimally combine all information to 
ensure the best possible utilisation of sensor assets. 
However, such a scheme requires both considerable 
processing power and the ability to distribute vast 
volumes of high speed data. 

A radical change in both component technology and 
avionic system architectures is required before this ideal 
data fusion system can be fully realised. 

This paper concentrates on the use of other sensor data 
within the realistic constraints of available avionic 
architectures and data distribution systems to give a true 
picture of currently achievable performance. 

The paper is broadly divided into two parts; the first 
dealing with the need for sensor fusion as a 
performance multiplier and the second describing its 
potential application, in a modem fighter aircraft, to 
improve the performance of an IRST system. 

2. THE NEED FOR SENSOR FUSION 

2.1. Introduction 
The rapid advances in both weapon and platform 
technology have lead to the requirement to be able to 
detect the enemy platform at increasing ranges. 

The likely combat environment of tactical aircraft in the 
near future is likely to be increasingly more hostile, 
particularly with regard to the increasing numbers of 
hostiles and their improving capabilities. It is generally 
assumed that the future pilot will often be faced with 
situations where he is numerically outnumbered, by at 
least two to one. Given this situation, it is of 
increasing importance that emphasis be placed on the 
ability to detect and engage the enemy at Beyond Visual 
Range (BVR) where the benefits of superior weapon 
delivery systems can be exploited. 

In addition, since close engagements Within Visual 
Range (WVR) are traditionally decided in favour of the 
force with the numerical advantage, it is of increasing 
importance that systems are developed that can rapidly 
acquire and accurately designate medium/close range 
targets to provide the tactical "edge" to combat the 
increased numbers of hostiles. 

As well as the tactical issues , there are the technical 
issues resulting from the increased capability of hostile 
forces. Some of the more significant of these are 
covered in the following sections; 

2.2 Stealth Technology 
Over recent years there has been a significant advance 
in the techniques of signature reduction. By the 
judicious use of materials, coatings and structural 
design, this new "stealth" technology has resulted in a 
considerable reduction in the observability of all types 
of targets in all wavebands. Recently, particular 
emphasis has been placed on reducing the equivalent 
radar reflecting areas of targets. 

However, this technology is not simple and is not cheap 
to implement. Its effectiveness has been demonstrated 
at radar frequencies and in selected EO wavebands, but 
the achievement of a target which is completely stealthy 
across the whole electromagnetic spectrum is not a 
practicable proposition within the foreseeable future. 

Hence, the more that effective use can be made of 
target emissions across wider regions of the 
electromagnetic spectrum, through the use of multi- 
sensor fusion, the more detectable the target will be. 

2.3 The Modern Battlefield 
The effect of a loss in detection range is made worse by 
both the longer engagement ranges achieved by new 
missile systems and the increase in the speed with 
which modern battles are fought. New generation 
missiles will contain highly sensitive multiwaveband 
sensors and sophisticated target detection and tracking 
systems enabling them to autonomously acquire targets, 
after launch, detect them at long ranges and track them 
through evasive manoeuvre and countermeasures. 
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These factors lead to the requirement to maintain (or 
even improve on) the long range target detection and 
tracking capability, when operating against targets of 
low observability. 

2.4 Sensor Technology Limitations 
There are fundamental and physical limitations to the 
design of individual sensors which prevents the 
achievement of the large Performance improvements 
necessary, for an individual sensor to reliably detect 
and track a low observability target at a strategically 
significant range. For example, whilst the achievement 
of a very low aircraft radar cross-section has been 
shown to be technically viable, increasing the 
performance of the radar system, to regain the required 
detection range, presents significant practical, and 
technical, problems. 

Similarly, limitations in detector technology and 
available optical apertures will prevent significant 
performance increases in individual EO sensors. 

2.5 The Benefits of Sensor Fusion 
The required step increase in detection performance will 
not come from either significant technical developments 
in existing sensors nor from the discovery of 
revolutionary new sensors. It will lie in the more 
efficient use of the sensors that already exist. The 
combination, or fusion of data from several sensors has 
the potential not only to greatly increase the overall 
target detection performance but has the potential to 
provide many other additional benefits, such as: 

- EXTENDED COVERAGE FROM MORE SENSORS 

- IMPROVED CONFIDENCE IN DETECTION AND 
DECISION MAKING 

- IMPROVED DETECTION AND TRACKING 

- IMPROVED RELIABILTY THROUGH MULTIPLE 
REDUNDANCY 

- INCREASED COUNTERMEASURE RESISTANCE 

- IMPROVED ALL-WEATHER PERFORMANCE 

- BETTER PERFORMANCE AGAINST STEALTH 
TARGETS 

3. CURRENT LIMITATIONS TO THE 

As stated in Section 2, there are clear benefits to be 
derived from the application of sensor fusion 
techniques. 

APPLICATION OF SENSOR FUSION 

However, although the potential for such performance 
improvements is clear, the practical achievement of 

them, in the near future, is limited by a number of 
practical problems. The more significant of these are 
discussed in the following sections. 

3.1 Sensor Design 
It is usually the case that individual sensors are 
designed separately, generally without fusion in mind. 
Each sensor is designed to exploit its own waveband 
and usually has its own dedicated signal processing 
chain, its own dedicated aperture and is often separately 
mounted, independently of other sensors. 

Ideally, to allow the benefits of sensor fusion to be fully 
realised, consideration must be given, at the very outset 
to issues such as; co-location and/or shared apertures of 
sensor systems and the exploitation of information 
synergy to allow the fusion of data within the 
processing chains of individual sensor systems. 

3.2 Data Rates 
Considering some typical sensors, such as IRST, Radar 
and ESM, the front-end video signal is usually at a very 
high data rate. However, within this raw video will lie 
all of the relevant information that the sensor system 
can produce. Hence, the availability of this data, at the 
point of any combined sensor fusion operation, would 
ensure the least loss of information. However, in 
practical terms this option is not very attractive. The 
volume of data from one sensor, at this level, is very 
high, that from two or three sensors would be 
excessively high, typically in the Gbits/s region. 
Moreover, at the raw video level, little commonality 
will exist between the structure of the data from the 
various sources and the fusion process would be 
extremkly difficult to implement. 

It is generally considered to be both more practical and 
more effective to combine data at an information level 
further down the processing chain of each sensor, 
where the type of information being combined is likely 
to have a greater degree of commonality. However, it 
is essential to trade off the reduced complexity of the 
fusion process, when applied to higher level sensor 
data, against the inevitable loss of information within 
the individual sensor processing systems. 

Thus, it is clear that the achievement of effective sensor 
fusion will require the distribution and combination of 
a wide range of significant volumes of sensor data. 

3.3 Avionic System Architectures 
Consideration of the requirements of sensor data 
distribution, as outlined in Section 3.2, lead to the 
inevitable conclusion that a radical improvement in 
avionic system architectures is necessary before the full 
benefits of sensor fusion can be realised. 

Current data highways and distribution systems severely 
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limit the quantity, variety and rate of data distribution. 
Additionally, they also restrict the common access to 
high speed data and signal processing hardware. 

3.4 Summary 
It is clear that avionic platform system architectures and 
the associated hardware and software implementations 
need to be designed with sensor fusion in mind from 
the outset. 

The radical changes required include; improved parallel 
data distribution systems and distributed, reconfigurable 
processing hardware and software. A recommended 
approach, for future systems, is outlined in [ref 31. This 
will only be achieved in the long term. 

However, in the shorter term, some significant benefits 
can still be obtained by the use of sensor fusion 
technology, even though it must be implemented within 
the constraints of the platform architecture. 

Section 4 considers the design of a modem IRST 
system and outlines the benefits and performance 
improvements that can be obtained by the fusion of data 
from other sensors, implemented within the defined 
practical architecture constraints. 

4. SENSOR FUSION IN A MODERN IRST 
4.1 Introduction 
This section considers the detection and tracking 
processes employed in a modem IRST and shows how 
the application of fusion with other information can 
significantly improve the acquisition of targets. 

There are significant operational advantages to be 
obtained from a sensor that can passively locate targets 
at very long ranges. 

There is increasing emphasis on being able to engage 
targets Beyond Visual Range (BVR) and many of the 
future weapon systems will need accurate and reliable 
BVR target detection and tracking information. 

However, there are also equally important requirements 
to detect targets appearing at medium/close ranges and 
to accurately track nearby targets for close-in 
engagements. 

It is possible to use an IRST system very effectively in 
both situations. But it is important to note that the 
processing requirements for distant target detection are 
quite different from that of close-in encounters. 

The following sections consider both the long range and 
medium to short range target acquisition processing in 
an IRST system. 

4.2 Long Range Detection and Tracking 
At long ranges, the target size and its differential 
signature will be very small and a detection system with 
high thermal and spatial resolution is required to 
reliably locate it. 

Typically an IRST system will have an instantaneous 
field of view (IFOV), or resolution cell, of better than 
lmrad. In search mode it operates in a non-imaging 
wide angle scan mode, much like a Plot-While-Scan 
radar and targets will usually subtend less than the 
IFOV. As with all detection systems the IRST requires 
a gathering lens with sufficient aperture to resolve the 
target. 

Table 4.1 shows the range at which a 2m x 2m target 
(head-on aircraft) matches the IFOV, for typical IRST 
resolutions. It also shows the required aperture for a 
Modulation Transfer Function (MTF) of 0.75, in both 
IR windows [Ref 41. 
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TABLE 4.1 Limiting Pixel Resolution Range 

Clearly, the higher the resolution, the better the range 
performance, but the greater the aperture needed to 
achieve it. 

There is an additional problem in that it is desired to 
scan as wide an overall Field of Regard (FOR) as 
possible in as short a time as possible, to achieve good 
performance with a moving host platform. Ideally, a 
1500 x 600 FOR should be covered in at least 1 
second. 

Table 4.2 shows the output video data rate for various 
IFOV values, assuming a 1500 x 600 FOR scanned in 
1 second, at maximum efficiency. It can be seen that 
with current data transmission limitations, the 
achievement of a very low IFOV is not possible. 

Thus, practical design limitations on aperture size and 
scanning the required wide FOR mean that a head-on 
aircraft target, at long range, must be detected when at 
sub-resolution. 
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FIGURE 4.1 Target Detection in Noise TABLE 4.2 IRST Video Data Rates 

The problem resolves into the detection of a consistent 
signal relating to a specific object in the scanned field. 
This signal will usually be mixed with both random 
noise and with structured background "clutter". 

The area under the target distribution, to the right of T,  
represents the probability of target detection, the area of 
the target distribution to the left represents the low 
observability targets lost. The area under the noise 
distribution to the right of T,  shown hatched, represents 
the probability of false alarm. Much work has been done on this aspect, generally by 

taking the work done by the Radar processing 
community as a starting point and adapting those 
principles to IRST systems [Ref 51. 

It can be seen that, for a given signal to noise ratio, 
there is a trade-off, dependant upon the setting of T,  
between the probability of detection and the false alarm 
rate. This work has concerned the detection and subsequent 

tracking of small signals. The basic objective is to 
partition the sensor data into sets of observations, 
obtained over a period of time, derived from the same 
source. 

The threshold level is usually fixed by the desire to 
limit the number of false alarms (FA). This is a crucial 
parameter and a high number of FA can render an 
IRST system useless. 

The following are the basic elements of an IRST 
tracking system: The minimum level of threshold is determined by the 

Threshold to Noise Ratio (TNR); 
1. Detection 
2. Correlation 
3. Filtering/prediction 

TNR = T/u, 

where U, = standard deviation of the noise 
The following sections consider these in turn: 

The TNR value is set for a given value of False Alarm 
Rate (FAR). 4.2.1 Detection Processing 

For the purposes of calculation, it is generally assumed 
that for a small point size, long range target, viewed 
against a high altitude sky background, then both the 
noise and the target signals can be approximated to a 
Guassian distribution. 

The operating Signal to Noise Ratio (SNR) is the 
separation of the two distributions and is fixed by the 
required Probability of Detection (Pdet); 

such that: 
Example noise and target distributions are illustrated in 
Figure 4.1. SNR = T N R +  QS 

The separation of these distributions is the target signal 
to noise ratio. 

where the value of Qs is set by the desired Pdet. 

For instance: 
The detection operation usually consists of setting a 
threshold level T such that when the signal amplitude is 
greater than T a target is declared present. 

for Pdet = 90%, Qs = 1.28 
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Consider the example of the host aircraft, with IRST 
system, and target aircraft, on a co-altitude approach 
path. The IRST system and target details are assumed 
to be as follows; 

IRST System Details 

Host platform altitude 6km 
Field of Regard 1500 x 600 
Scan time 1.0 second 
Instantaneous FOV 0.25 m a d  
Aperture 100 mm 
Wavebands 8-1 lpm and 3-5pm 
NETD 0.0130 (8-llpm) and 0.050 (3-5pm) 
D*pk 6.0 e10 @ 7.5-10pm 
D*pk 1.5 e l l  @ 3.4-5pm 

Target Details 

Target Altitude 6km 
Equivalent radiating area 2m x 2m (head on 
Aircraft) @ M0.9 and M2.0 
Emissivity 100 % 
Background radiation is mid latitude summer 
@ 261K 

NB It is assumed that no exhaust plume or hot 
engine parts are visible and the only radiation 
is due to the target skin temperature rise. A 
mid latitude summer temperature and absorber 
vertical profile is assumed with ground level 
visibility of 23km. Target skin temperature 
rise is assumed proportional to (Mach No)*. 

FIGURE 4.2 Detection Range vs. Pdet 

Figure 4.2 shows the detection range performance with 
varying Probability of detection, assuming a FAR of 
lhour .  The performance for both 3-5pm and 8- l lpm 
wavebands is shown from which it can be seen that, for 
low observability targets, the 8- l lpm band has a 
superior range performance under the defined 
conditions. Two speeds of target aircraft have been 
assumed. At M2.0, the increased aerodynamic heating 

gives a greater detection range and there is :ss 
difference between the performance in the two 
wavebands. 

The simple thresholding operation used discriminates on 
amplitude only and assumes that the target is among the 
"hottest" signals. In the presence of large areas of high 
emission background, the threshold will have to be 
raised to preserve a low false alarm rate and small dim 
targets will not be detected. 

The detectability of small targets is improved by the use 
of a 2-Dimensional Matched Filter which will reject 
large, intense areas and will optimise the small point 
target to background noise ratio, as follows; 

H(f). = s*o . . . . . . .(4.1) 
Wf-Y 

where: H(f) = Filter Transfer Function 
S*(f) = Target Frequency 
bJ(f)12 = Background Noise Power 

Spectrum 

In the spatial domain; 

ACF(x)*h(x) = S(X) ........ (4.2) 

where the autocorrelation function ACF(x) is the 
Fourier Transform of the background noise power 
spectrum which is convolved with S(x) to give the 
impulse response of the matched filter 

Equation (4.2) is a continuous function whereas, in 
practice, the signal will be digitised and hence, in 
sampled data form. 

[HI = [S].[ACF]" . . . . . . . (4.3) 

[HI is the set of spatial filter tap weights and for a sub- 
resolution target, the target signal [SI will be the total 
effective point spread function of the IRST system. 

It can be seen that the background noise is an important 
consideration in obtaining the optimum matched filter. 

In imaging sensors the background will often be highly 
structured and will vary considerably over the sensor 
field of regard. Hence, optimum performance cannot 
be achieved over the whole field with a single filter. 
Thus, in practice, an adaptive filter is used which 
analyses the local background statistics and selects the 
co-efficients [HI (equation 4.3) for the optimum local 
filter. Thus, as the FOR is scanned, in real-time the 
filter statistics are altered to best extract the target from 
its immediate background signal. 
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This process has been described previously, by THORN 
EM1 (now Pillrington Thorn Optronics), for use in 
IRST systems [Ref 51. 

However, there is still a limit on detection range 
performance as a result of the need to set a high 
threshold value to limit the number of false alarms. 
Random noise will not be spatially correlated whereas 
targets at long range will maintain a spatial consistence 
from scan to scan. 

This can be exploited to further reduce the noise 
detections by the process of correlation. 

4.2.2 Correlation Processing 
The IRST sensor gathers information by repeatedly 
scanning its FOV and the detection operation is 
performed anew for each scan, producing a stream of 
detections. 

The purpose of correlation is to decide whether an 
observation (detection) belongs to an established track 
or whether it is a new target. In the case that the 
observation belongs to an existing track then an 
assignment is made and that track file is updated by the 
new observation characteristics. 

The assignment process traditionally uses gating 
procedures to eliminate the more unlikely observation- 
to-track pairings. The gate size is chosen based on the 
anticipated relative targetlsensor sightline velocity and 
the sensor scan update rate. Circular gates would be 
optimum for equal target manoeuvrability in azimuth 
and elevation, ellipsoidal gates could be used for non 
equal target velocities but, in general, it is 
computationally more efficient to use rectangular gates. 

The gating system is fine for situations when object 
spacing and frequency is such that a single observation 
falls within a single track gate. However, in a dense 
object environment conflict situations can occur. For 
instance, an observation might fall within the gates of 
multiple target tracks or multiple observations might fall 
within the gate of a single track. This leads to the 
requirement for additional logic to address the conflicts. 
The simplest solution is to use Nearest Neighbour (NN) 
logic. In conflict situations, the closest observation to 
the predicted position is used to update the track. This 
is clearly subject to error. 

It is possible that the observation was due to system 
noise. In this case a gate is established, but the track 
would be unlikely to be propagated by further 
observations. However, it is possible for genuine 
tracks to have missed detections, especially at long 
detection ranges. 

A more modem approach uses a posteriori 

probabilities, calculated using Bayes' Rule, for 
Hypotheses concerning the observed data. These are 
used as the a priori probabilities for use on receipt of 
the next data set. Thus as each subsequent data set is 
received, the probabilities for each hypothesis, for a 
given data association, is updated. Genuine tracks will 
establish high probability values whilst false 
assignments will generate low values as the logical 
progression of the track is not continued. In effect, this 
operation postpones difficult decisions, allowing the use 
of later measurements to resolve association conflicts. 

Reid [Ref 61 has presented a Multiple Hypothesis 
Tracking (MHT) structure, known as Reid's Algorithm 
to perform this process. 

This is shown diagrammatically, in Figure 4.3, as a 
"Multiple Hypothesis Tree". 

The notation is as follows; 

FA = Observation is a false alarm 

NT1 = Observation is the first detection of a new 
track number 1. 

T1 = Observation is associated with existing track 
number 1. 

The first scan (data set 1) is assumed to have two 
detections y,(l) and y,(l). The hypotheses are derived 
as follows; 

On receipt of yl(l) ,  in the absence of any other data, it 
can only be either a false alarm (FA) or the first 
observation of a new track (NT1). Thus the first two 
hypotheses are; 

HI: y,(l)  = FA H,: y , ( l )  = NTl 

On receipt of the second observation, further 
hypotheses are generated. It is possible that the two 
previous hypotheses are false alarms, thus H, and H, 
become; 

HI: y,(l)  = FA; y,(l) = FA 
H,: yl( l )  = NT1; ~ ~ ( 1 )  = FA 

It is assumed that a single target produces no more than 
one observation per scan hence, there is no possibility, 
at this stage, for an association with an existing track. 
Thus the only two remaining hypotheses are that new 
tracks are started, as follows; 

H,: yl( l )  = FA; y,(l) = NT2 
H,: yl( l )  = NT1; ~ ~ ( 1 )  = NT2 

Thus after the first scan, with only two observations, 
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FIGURE 4.3 Multiple Hypothesis Tree 

After the second scan, with two further observations, 
additional hypotheses are added, giving a total of 34 
hypotheses. 

It can be seen that the same track will appear in more 
than one hypothesis and it is necessary to cross 
reference which hypotheses contain what tracks and 
which tracks are contained in what hypotheses. 

The addition of only one more data set with two further 
observations, increases the number of hypotheses to 
over 500. 

Clearly, in any realistic target scenario, after a few 
scans, the escalation of hypotheses would lead to an 
unacceptably high computational load. 

Also, if it is required to detect targets at very long 
ranges, then, as has already been noted, it is necessary 
to operate at very low detection thresholds, which will 
result in larger numbers of FA’S thus exacerbating the 
problem. 

H9 
H3 
H25 
H29 
H21 
H2 
H24 
H27 
H16 
H4 
H19 
H6 
H28 
H15 
H12 
H22 

However, there are methods for pruning and combining 
hypotheses to allow for a reasonable implementation. 

For instance, if it is assumed that the primary aim is to 
detect a low contrast, distant target, then specific rules 
can be generated to eliminate hypotheses, as follows; 

Assuming an (earth axis) stabilised sightline, then 
distant targets will exhibit very low (or zero) sightline 
motion and subsequent genuine target observations will 
be highly spatially correlated. 

Thus a gating technique can be used to restrict the 
window size, specifically for the case of distant target 
detection. For this case all hypotheses falling outside 
the gate distance are rejected. 

In addition, for each scan, the probabilities associated 
with each hypothesis are recalculated. The probabilities 
for each hypothesis, which fall inside the gate, can be 
weighted based on a distance function. 

In operation, a 7x7 pixel gate is defined, centred on 
each observation, with Bell Function probability weights 
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as n own in Figure 4. 

FIGURE 4.4 Hypothesis Probability Weights 

In subsequent scans, hypotheses are generated, for 
association possibilities with all new observations within 
the gate only and for each of these, the hypothesis 
probability is weighted according to its pixel position. 

Additionally, it is assumed that only one target track 
will exist in the detection gate. Thus the hypotheses are 
limited to two as follows; 

H,: Observation comes from a dim target 
H,: Observation is a FA 

In some cases, it can be further assumed that the target 
is near stationary within the stabilisation accuracy of the 
IRST scanning system. 

Limitations on currently available processing power 
prevent these processes from being applied over the 
whole of the IRST FOV. 

4.2.3 Filtering/Prediction Processing 
The practical application of these techniques requires 
the system to be cued as to the likely local regions 
within which distant targets might appear. This 
information may come from other on board sensors, or 
from external intelligence or from knowledge of likely 
threat trajectories. 

In practice, the distant target location processing 
described in Section 4.2.2 would be camed out in 
conjunction with more conventional association and 
tracking techniques. The assumption of a near 
stationary target is only valid for the long range 
detection, sightline stabilised, scenario. It is necessary 
to have a tracking system that is also capable of dealing 
with manoeuvring targets and sightlines. 

This is accomplished by more conventional techniques 
employing wider tracking gates and filtering/prediction 
processing. The problem of associating detections is 

different for wider gate sizes and manoeuvring targets. 
To obtain a high tracking accuracy with a manoeuvring 
target, it is necessary to make intelligent use of the past 
track history to optimise the parameters of the tracking 
system. This makes it easier to resolve conflict 
situations and reduce the association problems. 

Filtering and prediction methods are used to estimate 
present and future target kinematic quantities such as 
position, velocity and acceleration. They are usually of 
the "fading memory" type, which can be implemented 
recursively. Data received in the past are included in 
the present estimates, and therefore all data are utilised, 
but forgotten at an exponential rate. 

There are two common approaches, using fixed 
coefficients and Kalman filtering. 

The Fixed Coefficient filters have the advantage of ease 
of implementation and use fixed parameters for the 
filter gains. 

The most common of these is the a-B Filter. This is 
used when only position measurements are available. a 
defines the position prediction measurement gain and R 
defines the velocity prediction measurement gain. 

An extension of this approach includes an estimate of 
acceleration. This filter hypothesises constant 
acceleration. Thus it will follow a ramp input with no 
steady state error. 

The choice of the gain terms depends on the response 
required from the filter. Decreased values will lead to 
a less responsive filter. The choice of gains must 
reflect an overall compromise between noise and 
dynamic (manoeuvre) performance. Initially the 
coefficients would be chosen to ensure steady state 
noise performance assuming the target to be on a 
straight line trajectory. A movement detector could be 
used to determine when the target departs from the 
straight line trajectory and increase the tracking 
coefficients accordingly to follow the target manoeuvre. 

In a complex multi-target situation, better performance 
can frequently be obtained by the use of the Kalman 
Filter [Ref 71. This is the general solution to the 
recursive, minimised mean square estimation problem 
within the class of linear estimators. 

The use of the Kalman Filter will minimise the mean 
squared error so long as the target dynamics and the 
measurement noise are accurately modelled. The 
problem with using the Kalman filter in an IRST system 
is that without range information, it is essentially a 2- 
Dimensional "bearings only" situation and problems can 
arise when using the Kalman Filter [Ref 81. 
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In P rati n, the Kalman Filter uses a sequence of 
observations of the co-ordinate position to initialise and 
maintain both the estimated state vector and covariance 
matrix, both of which are usually updated at each scan 
for the various tracks. The absence of range 
information can lead to conflicts with nearby or 
crossing targets, which can lead to erratic tracking, or 
in extreme cases, results in covariance collapse and 
solution divergence. Additionally, certain observation 
conditions can result in poor initialization performance. 

These problems often lead to the Kalman Filter solution 
being rejected in favour of simpler, though less 
effective, tracking techniques. 

The use of data from other sensors, particularly those 
with range information, can allow the reliable use of 
Kalman Filter techniques in IRST systems. This will 
result in increased track accuracy and reliability. 

The predicted positions from the tracking filter are used 
to define the regions for association on the next scan. 
The size of these regions will depend on the anticipated 
target sightline motion. They may initially be quite 
large, with no knowledge of track statistics, but can 
usually be reduced, on subsequent scans as more track 
history becomes available. This process acts to reduce 
the residual FAR over a number of scans, allowing the 
initial detection operation to be performed at a low 
threshold level thus enabling more distant target 
detection, as follows; 

FAR = N(Pfa)"W,W,W, ..... W, 

where; N = Pixels per scan 
Pfa = Probability of FA 
W, = Window size at scan n 

To further improve the detection range performance, 
techniques are being considered that involve processing 
prior to thresholding. Some of these techniques require 
prior knowledge as to likely target location to reduce 
the processing complexity. It is also possible to use 
them to verify an initial detection. 

One possibility is to integrate the local pixel values 
from a number of scans before the thresholding 
operation. Clearly, for this to be successful, all pixels 
must be exactly spatially correlated, which, given the 
limits of stabilisation accuracy, is not likely to be 
achievable directly. However, the processing to 
remove the structured background false alarms 
(described in Section 4.3) generates a background scene 
"clutter map" which can be used to electrically correct 
for sightline drift. Since the clutter map consists of 
many features and pixels across the whole FOV, an 
integrated sightline stabilisation accuracy of better than 
one pixel, in the short term, is achievable. 

However, the target may I ill vary marginally in 
position as a result of small movements and the fact that 
it may not exactly line up with the scanned pixel "grid". 
Its peak signal might vary between adjacent pixels. 
Thus is necessary to allow for a *l  pixel positional 
drift variation of target position. This is achieved by 
allowing for the integration of every possible 
combination of adjacent pixels during the integration 
operation. 

It is assumed that the target can either stay on its 
current pixel, or move one pixel in any direction. 
Hence there are 9 possibilities at each scan. 

The combinations increase rapidly with the number of 
scans of integration, at the rate 9, data rates and 
computational limitations restrict the area and number 
of scans over which this can be performed. 

FIGURE 4.5 Long Range Target Detection 

Figure 4.5 shows the calculated performance of the 
IRST system of Figure 4.2 assuming the use of MHT 
dim target processing, tracking over 4 scans and pre- 
threshold integration over 4 scans. 

It can be seen that a significant increase in long range 
detection performance is obtained compared with that of 
the traditional processing method. 

However, it does need both information as to the local 
area in which the target will lie and a considerable 
increase in processing power. 

4.3 Medium/Short Range Target Detection and 

The mediumhhort range detection and tracking problem 
is quite different from the longer range requirements, 
considered above. In particular, the target will usually 
present a high thermal signal level and the low 
observability processing will not be needed. Indeed the 
application of some the processing techniques described 
in Section 4.2 would actually reject a close-in target, 
subtending a number of pixels, in that it would be 

Tracking 



42 

regarded as an extended source and be removed by the 
2-Dimensional matched filter. It is possible to employ 
a larger area matched filter which would have some 
performance in detecting bigger objects, but it would 
certainly reduce its capability at rejecting extended 
background clutter when looking for distant targets. 

Thus for optimum performance it is necessary to 
employ a separate processing technique to deal with 
mediudclose range targets. 

Experimental results from the THORN EM1 (now 
Pilkington Thorn Optronics) "Air Defence Alerting 
Device" (ADAD) [Ref 91, which is a ground based 
IRST system, currently in service with the British 
army, together with extensive simulations, have 
indicated that with a hypothetical system having an 
instantaneous FOV of about 0.25 m a d ,  good 
performance can be obtained, using the low 
observability matched filter processing, employing a 
5x5 mask, down to ranges in the general region of 1- 
2km. Below these ranges, reliable detection requires 
specific processing algorithms directed at detecting 
resolved objects and obtaining information about them. 

The major difference between acquiring and tracking 
medium/close range targets as opposed to long range, 
low observability ones, is that they are resolved and 
will comprise a cluster of pixels, often with some detail 
within, dependant upon range and scenario. There is 
thus a far wider range of possibilities for the form of 
the target video and it may change quite rapidly during 
tracking. The techniques to be adopted can be 
categorised in terms of range, or target size. 

Consider the scenario of a target unmasking at medium 
range, and closing. At first detection, such a target 
might consist of a cluster of pixels with some contrast 
with respect to its immediate background. However, 
it's one distinctive feature is that it will comprise a 
closed object, newly entering the scene. A technique 
that has been found to be particularly effective in 
locating such targets is that of edge detection and closed 
contour processing. The aim is to extract "edge 
contours", or local regions of large temperature slope. 
The result of the edge detection process will show some 
discontinuities within the edges and edge contour logic 
is applied to "join up" related edges based on 
associating adjacent edges by means of comparing their 
direction, intensity and shape. The edge detection 
process defines edges as amplitude discontinuities 
between different local regions of the IR scanned scene. 
It makes use of 3x3 masks, convolved with the scene 
video. However, instead of using standard symmetric 
tap weights, which are equally responsive to any edge 
direction, directional mask operators are used. 

W, and W, below; 

wx = 

- 
1 0 -1 ::j w y =  [ 1 0 -1 

-1 -1 -1 1 0 -1 
- - 
-1 -1 -1 
- 1 1 0 -1 wy=L - 

W, will give a maximum response to vertical intensity 
changes, whilst W, will give a maximum response to 
horizontal intensity changes. 

Prewitt [Ref 101 has shown that it is possible to 
generate a simple set of compass gradient masks by 
rotating Wx and Wy. 

In practice they are rotated through the eight principle 
directions on the compass grid, as shown in Figure 4.6. 

FIGURE 4.6 The Eight principle Compass Directions 

The output from each of the eight direction gradient 
masks is evaluated for each edge point. 

Comparison of the gradient mask giving the maximum 
output, allows any edge point to be "coded" in terms of 
its orientation. 

In practice, a real IRST video signal will contain noise 
which can cause edge jitter when using these simple 
masks. 

Work carried out on trials IR video signals has shown 
that better performance can be achieved, in a noisy 
signal environment, by the use of alternative masks. 

For instance, consider the "x" and "y" gradient masks 



The improved set of compass gradient masks can be 
obtained by rotating the functions M, an My below; 
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the closed contour regions. This is shown 
diagrammatically in Figure 4.8. 

Mx = 

- - 
1 2 1  

0 0 0  

-1 -2 -1 
- 

My = 

- 
I 0 -1 

2 0 -2 

1 0 -1 
- - 

These masks approxii 1 the partial derivatives in 
the "x" and "y" directions respectively, and the zero 
weights in the centre assist in suppressing the jitter on 
the line where an edge might occur. 

Thus, rotating the partial derivative mask functions will 
produce the eight directional gradient masks 
corresponding to the eight compass points. These are 
shown in Figure 4.7. 

0 1 2 3 [:::I -1 -2 -1 [::-:I 0 -1 -2 [z] [:"::] 2 1 0  

4 5 6 7 

-1 -2 -1 -2 -1 0 -1 0 1 0 1 2  [:::I [;::I [::::I [:::I 
FIGURE 4.7 8 Compass Gradient masks 

In operation, the image is processed with the edge 
masks, only those points exceeding a local threshold are 
deemed to be edges and a gradient picture is produced 
by taking the maximum gradient magnitude at each 
point. The mask which yields the maximum gradient 
value determines the direction of the edge (coded 0-7). 
Thus a two dimensional array of numbers is generated, 
related to the edge direction. 

This map is used to determine local connectivity of 
edge points to isolate closed regions. 

The directions of edges are compared with succeeding 
and preceding points, allowing for edge vector 
variations of + 1  or -1 to determine a connectivity 
relationship between edge points. A rule based logic 
system rejects extended, non connected edges, to leave 

FIGURE 4.8 Closed Region Connectivity 

As the target closes its image expands and may change 
aspect, as a result of manoeuvres. The closed contours 
in the edge map will expand and also change shape, but 
they will always remain as closed contours because of 
the natural contrast between the target and its 
background. Thus it is possible to maintain track very 
reliably, under these conditions. However, the situation 
described is quite benign, the real world presents a 
number of additional problems. 

One major problem is that the background may also 
contain many closed contour features, such as clouds, 
the sun and terrain (if visible). 

The general problem of eliminating background false 
alarms is one that is common to all autonomous 
detection systems. An IRST system has a particular 
problem resulting from its inherent advantages as a 
sensing system. The same factors causing the scene 
contrast that allows it to detect targets, day and night, 
also produces large signals from a wide variety of 
background sources. These signals are non linear and 
uncorrelated, thus traditional "noise reduction" 
processes are ineffective. 

Over 500 man years of specialist processing and 
algorithm development have gone into the achievement 
of the low false alarm rate of the THORN ADAD 
passive ground based IRST system, and it has been 
necessary to conduct many hundreds of hours of trials 
under many varieties of background conditions, in all 
parts of the world, to achieve success. 

The premise behind the success of background false 
alarm suppression is similar to the manner in which a 
human might operate. It is necessary to generate a 
"model of the world", in which the scene is broadly 
divided into objects, which are then analyzed, 
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categorised and tracked, whilst they exist in the field of 
view. This is necessarily a continuous process and 
occupies much of the processing power of the system. 
New objects entering the scene are placed in context 
with existing objects through rules of 'association. 
Streaming vectors are used to relate object distance and 
to predict object tracks. This model of the world is 
used to produce a continuously updated background 
"clutter map" of related objects that will not be 
regarded as targets. 

All new detections, which are shown to form 
contiguous tracks, are compared with this background 
clutter map to establish whether they are related to 
background objects or are new, distinct entities, which 
might present threats. 

Clearly, the model of the world and associated clutter 
map require some substantial processing power to set 
up and maintain, updated at each scan. If the host 
platform moves, it is necessary to change the axis co- 
ordinates of the model of the world, such that it 
remains correlated with the IRST FOV. It is also 
necessary to detect and analyze new objects entering the 
scene as the sightline shifts. In the past the available 
processing power has limited the ability of these 
algorithms to respond to rapidly changing scenes, thus 
applications have been limited to stationary ground 
based IRST systems, such as ADAD. However, with 
the advent of new, high speed, processing devices 
(DSP's) and improved architectures, it will be possible 
in the new future generation of IRST systems, currently 
being developed, to achieve both reliable long detection 
ranges and very low false alarm rates, with a moving 
host platform. 

In operation, the new closed contour detections are 
compared with the clutter map and a rule base logic 
process is used to allocate the detection to either 
background or target categories. 

An additional problem with tracking targets arises when 
they become obscured by local background objects. The 
usual technique employed in such circumstances is to 
"coast" the track, allowing it to continue on the same 
path at the same velocity until, hopefully, it is 
reacquired, at some point, when it emerges from behind 
the obscuration. This is a somewhat "hit and miss" 
process offering little confidence in its outcome. 
However, the existence of a model of the world allows 
for a better reaction to this situation. In the first 
instance, comparing the detection track with objects in 
the clutter map allows the anticipation of potential 
obscurations. Although the lack of precise range data 
limits "in front of" and "behind" inferences, it is known 
that when two objects become co-located one can be 
expected to "disappear" behind the other. Also, the 
outer closed contour of the obscuration will define the 

extent of the loss of track and allow prediction of the 
likely point of re-acquisition. A similar technique is 
used to rapidly categorise "pop-up" targets that may 
suddenly unmask at relatively close range, say from 
behind clouds. 

Information from other sensor sources can be used to 
improve the operations described above. It particular 
they can be very valuable in developing and maintaining 
an accurate model of the world. In some cases it is 
possible to improve the model of the world, in the case 
of radar data being available, this would establish a 
third dimension (depth), which could be exploited not 
only by the IRST system, but by all on-board sensors, 
to validate and confirm targets. 

Very close range targets present additional problems in 
that at some point the complete outline of the target 
may not be visible. Operational scenarios dictate that 
the IRST system should be able to accurately track 
targets down to less than 200m. At these ranges, the 
extra detail within the target renders the edge tracking 
system sub-optimal and the precise "aim point" of the 
tracker will "wander". A better method, in this 
situation, is to employ "image correlation tracking". 
The image correlation technique allows a chosen feature 
within the target (such as the cockpit) to be tracked (if 
visible) independently of the outline, or aspect, of the 
target. This is shown diagrammatically in Figure 4.9 

m 

CORRELATION 
SURFACE 

FIGURE 4.9 Image Correlation Tracking 

The image correlation technique compares the stored 
image of a selected patch within the target with new 
video images from subsequent scans. The stored 
"reference" patch is correlated with a similar size patch 
of the new scan, at all points in the image, to find the 
best match. This position is used to update the track. 
Periodically the stored image of the aimpoint is updated 
by a new patch of video from the current scan. By 
tracking on a specified part of the target image a high 
aim point accuracy can be obtained. This can be useful 
in close combat situations where it can be used to cue 
weapons rapidly and accurately on to specific parts of 
the target. 
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The fusion of information from other sensors can be 
used to improve this process. In particular, for close in 
engagements, covertness is less important and the radar 
could provide both target confirmation and range 
information to the IRST system. This would then be 
used by the IRST to provide very accurate, confirmed, 
aiming co-ordinates for on-board weapon systems. 

Some researchers have indicated that the availability of 
a resolved image of the target can be used to improve 
the motion estimates in tracking systems to enhance 
tracking accuracy [Ref 111. In particular, the outline of 
the target from the edge contour processing can be used 
to derive an aspect angle measurement, which can then 
be used to provide a reduced "envelope" of likely future 
target positions. This would be based on maximum 
manoeuvrability along an axis perpendicular to the wing 
plane. 

This technique could also be used to prime sudden 
target direction changes, which would be preceded by 
a drastic alteration in target aspect ratio, to further 
improve close-in combat performance. 

5. CONCLUSIONS 
This paper has presented some methods for the 
detection and tracking of airborne targets in an airborne 
IRST system. Techniques have been presented to deal 
with both long range, low observability, targets and 
shorter range, "pop-up" targets. 

Current limitations on data rates and realistic aperture 
sizes mean that very long range targets will always be 
sub-resolution and specific low observability processing 
is required to achieve any useful performance gains. 

The very high processing requirements needed to 
achieve the long range detection and tracking mean that, 
with current processor technology, it is not possible to 
carry out such processing over the whole of the scanned 
FOR of the IRST system in real time. 

Thus the practical implementation of these methods 
requires some a priori knowledge as to the local region 
in which such targets might appear within the IRST 
FOR. This information could be gained from pre- 
mission intelligence, or it is possible that data obtained 
from other on-board sensors could be used to cue the 
IRST low observability processing search region. 
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Clearly, targets can appear at any range and those 
appearing locally at shorter ranges could well be of 
higher priority, being a more immediate potential 
threat. Such targets may well be spatially resolved and 
the processing specific to the low observability long 
range targets would be non-optimum in such a case. 
Thus, there is a need for further specific detection and 
track processing to cater for mediudshort range 
targets. This paper has presented some processing 
options in this respect. 

Ideally, both long and short range target processing 
must operate in unison within the same IRST system to 
achieve the desired all round performance. 

Figure 5.1 is a generic block diagram of the processing 
that could be employed on a modem IRST system to 
permit the accurate and reliable detection and tracking 
of targets over a wide span of ranges. It contains a 
number of parallel processing paths, with associated 
decision logic to ensure optimum operation under all 
target engagement conditions. Matched spatial filters 
and low observability detection and tracking logic allow 
for very long range acquisition and tracking. Edge 
detection and area correlation processes allow for 
accurate and reliable acquisition and tracking of targets 
unmasking at shorter range. An analysis of the scene 
background is used to generate a Model Of the World 
(MOW) which is constantly updated with newly 
entering scene data. The reference axes of the MOW 
are constantly recalculated in accord with the changing 
line of sight of the IRST using both aircraft navigational 
data and, for fine corrections, by correlation of scene 
features from scan to scan. The MOW is used to 
generate a background clutter model, which contains the 
major objects in the background. This is used to 
categorise the detections and tracks obtained from the 
long and short range target processors to eliminate 
background related objects. In this way a very low false 
alarm rate is achieved under all background conditions. 

The use of simple fusion of other sensor positional data 
has been described, with the purpose of both improving 
the performance of the IRST processing and to reduce 
its computational requirements. 

However, although a useful level of performance 
improvement is possible, by the use of sensor fusion, 
the benefits that might be obtained are severely limited 
in application by the restrictions imposed by current 
aircraft data distribution systems and avionic 
architectures. It is considered that more emphasis will 
need to be placed on this aspect in future systems. 
Future avionic sensing systems must be designed with 
fusion in mind from the outset, in order to achieve 
optimum pointing and tracking performance. 

become more covert, faster and more accurate, human 
reaction time will become a very significant factor in 
the time to respond to an attack. In some situations it 
will only be possible to provide an effective 
countermeasure by reacting to a threat automatically. 
An operationally viable autonomous system will need to 
demonstrate a very high probability of accurate target 
detection, classification and tracking with a very low 
false alarm rate. The combination of information from 
a number of independent sensor sources may well be 
essential in order to achieve the requisite performance. 

Additionally, a fully integrated multi-sensor suite would 
have the ability to optimise the available sensor 
deployment, by intelligent sensor allocation, to improve 
the overall system scope and performance in any given 
operational role or task. For instance, it may be 
important to maintain passivity, hence preference would 
be given to passive sensors such as IR. Under close 
battle conditions passivity may be of secondary 
importance to say range estimation when active sensors 
such as radar and laser would assume greater priority. 

An IRST system will contain a powerful and highly 
sophisticated processing architecture which could well 
form the basis of a sensor data fusion "engine" 
providing significant performance improvements and 
resulting in increased operational benefits. 
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ABSTRACT 

The precision guidance of autonomous 
weapons to fixed high value targets (HVTs) 
and critical mobile targets (CMTs) in high 
clutter backgrounds under adverse weather 
conditions represents one of the largest 
challenges facing the tactical Air Force 
weapons development community today. 
Such weapon systems will deny the enemy 
the cover of weather, just as infrared 
systems have eliminated the cover of night. 
One technology that is being explored as a 
means of addressing this mission is 
millimeter wave (MM W)/Infrared (IR) 
sensor fusion. The Armament Directorate of 
the U.S. Air Force Wright Laboratory has 
been sponsoring research in the area of 
MMW/IR sensor fusion for tactical weapon 
systems since the mid 1980's, much of 
which was accomplished under joint 
sponsorship with the U.S. Army Missile 
Command (MICOM). The purpose of this 
paper is to address the state of development 
of tactical Air Force MMW/IR sensor 
systems, and to demonstrate the results of 
current risk abatement efforts. 

1.0 INTRODUCTION 
The smart weapons employed so 
spectacularly against fixed high value 
targets during Operation Desert Storm 
actually represent late 1960's/early 1970's 
technology. The laser guided bomb, for 
example, had been successfully employed 
during the Vietnam war. For both of these 
conflicts, however, the friendly forces held 

complete air superiority. It is questionable 
whether an equivalent degree of 
unchallenged dominance of the air battle 
space will be so easily achieved in future 
conflicts. Additionally, improvements in 
enemy surface-to-air weaponry will require 
greater standoff capabilities for strike 
aircraft. The operational concept of having 
one aircraft designate a HVT while the other 
delivers the weapon will no longer be viable. 

To many post Gulf Crisis evaluators, a 
particularly distressing determination was 
the frequent occurrence of inability to fly 
precision strike missions due to poor 
weather conditions. The number of sorties 
canceled was more than double the pre- 
Desert Storm estimates. An even clearer 
lesson learned was the extreme difficulties 
associated with finding and successfully 
attacking critical mobile targets. The 
coalition air forces flew some 5,500 sorties 
over Iraq without a single confirmed kill of a 
mobile SCUD [l]. This experience further 
demonstrated the need for an all-weather 
weapon system capable of acquiring and 
tracking CMTs. 

It is very likely that the requirements 
specified for the next generation of smart 
air-to-surface weapons will be driven by the 
lessons learned during Operation Desert 
Storm. As a minimum these new weapons 
will incorporate a high degree of all-weather 
autonomous search, acquisition, and track- 
to-impact capability. However, achievement 
of high probabilities of target kill under all- 
weather conditions, even with newly 
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emerging weapon systems, is highly 
unlikely. All of these emerging systems still 
have limitations; their sensors are either 
blind at night, blinded by weather, or simply 
can't "sense" very well. 

2.0 BACKGROUND 
There has also always been a military need 
to find targets. This "sensing" can take 
many forms, some not quite so obvious. For 
example, sensing often takes the form of 
detecting and analyzing the signature of the 
object, whether it be seismic, acoustic, 
electromagnetic, or of some other origin. 
Even though the signature is not the object 
itself, if it can be uniquely attributed to the 
object with a high degree of confidence, 
then sensing the signature is equivalent to 
seeing the object. But, all such one- 
dimension a1 signature approaches to 
automatic target recognition have proven 
inadequate. Therefore, to be able to achieve 
an all-weather two-dimensional imaging 
capability, various schemes have been 
considered involving active micro or 
millimeter wave radar with electro-optical or 
imaging infrared sensors. 

Millimeter Wave/Infrared sensor fused 
systems offer several advantages over their 
unitary sensor counterparts. They provide 
for an all-weather capability, allowing for 
operation in fog, rain, and smoke, while 
retaining the high resolution imaging 
capability of the IR sensor. This higher 
resolution is required for both improved 
target classification and aimpoint guidance 
accuracy thereby minimizing collateral 
damage. Countermeasure hardness is 
inherent to the dual-band design since 
unitary deceptive or denial methods are no 
longer effective. In addition, the two 
independent signal sources result i n  
improved detection performance. 

Fusion of the information from the two 
sensor types is accomplished in the signal 
processing algorithms. A common aperture 
can be utilized to ensure channel 
registration, but separate detection devices 
are required to sense the energy in the two 
spectral regions. Once collected, the two 
signals are then fused by the signal 
processing algorithm. In general, three 

distinct levels of sensor fusion are utilized: 
pixel, feature, and decision. At pixel-level 
fusion, the raw data is merged before being 
subjected to processing. This type of fusion 
is not plausible for MMW/IR weapon 
systems because the angular resolution 
differences between the two sensor types is 
commonly as high as 1OO:l. At the next 
level, feature-level fusion, preliminary 
processing is performed on the raw data in 
order to derive descriptive attributes (such as 
radar cross section or IR spatial ex,tent) 
which are then  subjected to fur ther  
processing. A third form of fusion is 
decision-level in which each channel is 
processed independently and the results 
combined through some higher level logic to 
determine target presence. 

Research has shown that feature-level fusion 
provides the greatest increase in 
performance for the sensor configuration 
considered. As previously mentioned, 
IWMMW pixel level fusion is not possible, 
and decision level fusion has been found to 
mimic the performance of the worst sensor 
of the pair and offers no real improvement. 

A number of efforts have been conducted 
over the past decade to characterize the 
detection and classification improvement 
provided by MMW/IR sensor fusion. For 
example, an algorithm which simply 
performs an AND on single channel 
detection has the effect of reducing false 
alarms but at the same time lowering 
detection performance. The probabilities are 
given by: 

pfa=pfal*pfa2 where pfal,2 is the 
probability of false alarm 
of the individual channels. 

Pd=Pdl*pd2 where Pd1,2 is the 
probability of detection of 
the individual channels. 

More complex fusion concepts have 
demonstrated the more desirable feature of 
increasing detection performance while 
reducing the number of false alarms through 
testing. However, a general characterization 
of these performance gains has yet to be 
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developed, largely because of the non- 
linearity of such devices. 

2.1 History of Development 
The fact that sensors from the electro-optical 
and radio frequency spectral regions are 
complementary was known early on, but it is 
difficult to determine just when the concept 
for sensor fusion was first postulated. An 
early example of sensor fusion where 
millimeter wave was first closely coupled 
with imaging infrared, albeit crude, can 
probably be traced to the 1970's 
development of target activated munitions 
(TAMS) such as the Sense and Destroy 
Armor Munition (SADARM). 

A later and somewhat more sophisticated 
approach to hardware design and 
development of sensor fusion algorithms by 
General Dynamics (GD) Corporation stirred 
up considerable interest [2]. During this 
early 1980's effort, GD demonstrated a 140 
GHz/3-5 p MMW/IR seeker for the 4-inch 
diameter Terminally Guided Submunitions 
(TGSM). The pseudo-imaging IR sensor for 
this unpowered gliding mini-missile 
employed four fiber optic coupled detectors 
in a rosette scan mode. Impressive results 
were obtained during captive flight test 
demonstrations, particularly in terms of 
countermeasure resistance. 

By 1984, a memorandum of agreement had 
been signed by the Directors of the U.S. Air 
Force Wright Laboratory Armament 
Directorate and the U.S. Army Missile 
Command to jointly develop Dual Mode 
MMW/IR technology. Shortly thereafter 
four study contract awards were let to 
Honeywell, General Dynamics, Hughes, and 
Texas Instruments. The objective of these 
studies was to define a seeker with the 
widest degree of target and delivery system 
applicability. If a common seeker, 
applicable to both Air Force High Value 
Targets and Army Ground Mobile Targets 
(GMTs) could not be achieved, then as much 
commonalty as possible was the new, 
admittedly vague, goal. Results from these 
studies were presented at a NATO 
Symposium on Terminally Guided Weapons 
[31. 

A number of commonality issues were 
identified during these studies. Some of the 
issues of greatest concern were those 
associated with search area requirements. If 
a common search area could not be 
achieved, then it was believed that a variety 
of aperture sizes and gimbal designs would 
be necessary. Fortunately, these studies 
revealed that a maximum search width of 
approximately one kilometer was sufficient 
for the seeker applications considered. 
Downrange search requirements varied, but 
these did not appear to present any 
significant design difficulties. This meant 
that a common aperture size and gimbal 
could be achieved. Another, somewhat 
significant outcome of the studies was that 
the seeker target detection and acquisition 
algorithms for Air Force HVTs could be 
somewhat simpler in concept than that 
required for Army GMTs. As such, the Air 
Force requirements could be considered to 
be a subset of Army requirements. This 
latter result led to much better focused 
follow-on development effort oriented 
primarily toward the ground mobile suite of 
targets. 

In June of 1986, two technology 
demonstration contracts were awarded, one 
to Westinghouse and one to Textron 
Defense Systems. The purpose of this 
program was to fabricate and integrate a 
MMW/IR test bed, collect coincident 
MMW/IR data with this test bed, and to 
develop and assess target acquisition 
algorithms using these data. As part of this 
effort, free flight designs of the DMS 
systems were developed and used as the 
basis for configuring the data collection test 
beds. A MMW/IR common aperture was 
developed and successfully demonstrated. 
A limited number of tower and captive flight 
tests were also conducted. 

At the conclusion of the Dual Mode Seeker 
program in 1989, three contracts were 
awarded (Westinghouse, Boeing, and Alliant 
Techsystems) to perform additional 
algorithm development and data collection. 
Both tower and captive flight data were 
collected under these efforts. Several of the 
algorithms were also refined during this 
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period. The last of these efforts concluded 
in 1991. 

The focus of sensor fusion research shifted 
at the conclusion of the seeker 
demonstration effort in 199 1 from hardware 
demonstration to technology exploration. 
Some of these programs are discussed in the 
following section, along with the technology 
risk issues they are intended to address. 

3.0 CURRENT RESEARCH EFFORTS 
Since the conclusion of the Dual Mode 
Seeker program, several research efforts 
have been initiated aimed at addressing the 
technical issues identified during earlier 
hardware demonstration efforts. Table 3-1 
summarizes some of these programs along 
with which specific issue they are intended 
to address. A brief summary of the 
objectives and status of some of these 
programs is also provided. 

3.1 MACET Sensor Fusion Testbed 
MACET is intended to be a user friendly 
software system to support the rapid 
prototyping and evaluation of air-to-surface 
acquisition and aimpoint selection 
algorithms. In order to facilitate this 
function, the following design requirements 
were specified for MACET: minimum 
training time, rapid prototyping capability, 
compatibility with existing data, capability 
to accept existing algorithm components, 
algorithm evaluation shell, multi-sensor 
algorithms, emulation of target acquisition 
and aimpoint selection algorithms, Sun 
Workstation platform, nominal development 
costs, generation of standard algorithm 
performance metrics, flexible graphical 
output, and data probe placement [5]. 

From these design requirements, it was 
determined that MACET would be 
constrained to execute on a Sun Workstation 
and must utilize existing software 
platform(s) in order to maintain nominal 
development costs. Other required 
capabilities include: a graphical user 
interface, the establishment of a standard 
data format, a computer aided algorithm 
design capability, and an ethernet interface. 

The MACET concept is illustrated in Fig 
3.1-1. A Sun SPARC Station 2 serves as the 
host platform for MACET. An ethernet is 
used to link the Sun with VAX systems 
located within the Radar Signal Processing 
Laboratory (RSPL) and Imaging Processing 
Laboratory (IPL) where existing data 
reduction and analysis utilities reside. 
Measured data from the TABILS database, 
laboratory tower and captive flight test 
exercises are used to exercise the prototype 
algorithm configurations. MMW and IR 
synthetic data from signature prediction 
codes, such as Irma, are also used for this 
purpose [6]. MACET will also contain a 
library of algorithm components generated 
during previous research efforts under 6.2, 
6.3, and Small Business Innovative 
Research (SBIR) programs such as the 
Advanced Tactical LADAR Seeker 
(ATLAS), Low Cost Anti-Armor 
Submunitions (LOCAAS), Joint Adverse 
Weather Seeker (JAWS), Dual Mode Seeker 
(DMS), and others; thereby providing on- 
line access to over a decade of research in 
the area of autonomous acquisition 
algorithms for air-to-surface guidance. A 
graphical user interface is employed to 
minimize the system training time required 
of engineers and analysts to use the tool. 

The MACET system is developed upon the 
Paragon Image Logic and Khoros 1.0 
software platforms. The Paragon Image 
Logic was modified to support the top-level 
functionality of the MACET architecture 
including the user interface. Signal and 
image processing routines from Khoros are 
used to provide lower level library and 
functional routines for the purpose of 
algorithm prototyping and output display. 
This configuration was selected for MACET 
development because Paragon was found to 
have the better graphical interface and 
offered better user support at that time. 
However, given the similarity of the Khoros 
and Paragon environments, subsequent 
releases of these two software packages 
have been closely monitored in order to take 
advantage of any increased functionality. 



52 

Tab1 

ISSUE 
Acquisition Algorithm Performance 

MMWAR Registration 
MMW/IR Database 

3-1. Research Programs Aimed at Addressing 
Dual Mode Seeker Technical Issues 

RESEARCH 
Sensor Fusion Algorithm Performance Metrics Study 
Modular Algorithm Concept Evaluation Tool (MACET) 
Superresolution Processing 
Irma Multi-Sensor Model 

Mission Planning 
Tracking Algorithm Performance 

Application of Model-Based Vision to Sensor Fusion 
Multi-Sensor Tracking Filter 

ALGORITHM 

LIBRARY 

SIGNATURE 

I R V A  . I / 

TESTING 

- - _ _ _ -  

Figure 3.1-1. 

The MACET architecture is illustrated in 
Fig 3.1-2. As shown in this graphic, 
MACET consists of six major functional 
areas. These functional areas include: 
ground truth editor, data selection/format 
conversion,  a lgori thm select ion,  
performance evaluation, output selection, 
and utilities. The ground truth editor 
provides the capability to tag targets in the 
data scene before injection into the signal 
processing algorithm in order to facilitate 
performance scoring. The data 
selection/format conversion function allows 
the user to select a data set for algorithm 
testing and will convert all selected data to a 
format compatible with other MACET 
functions. The algorithm selection function 
facilitates algorithm prototyping using either 

MACET Concept 

existing algorithms or algorithm components 
provided in an on-line library or by 
providing the capability to define new 
elements. Once the algorithm has been 
defined and the data selected, the 
performance evaluation function can be 
activated. The purpose of this function is to 
compute defined algorithm performance 
metrics (such as probability of 
detection/probability of false alarm) or user 
defined metrics via probe placement. Upon 
completion of algorithm testing, the 
resulting metrics can be viewed using the 
output selection function. Both graphical 
and text output are supported. Lastly, a 
utilities function is provided for workspace 
manipulation and accessing lower level 
MACET data processing routines. 
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Development of the MACET system is well 
underway with significant progress being 
realized in the areas of data conversion, 
ground truth editor, performance evaluation, 
and output selection. Incremental versions 
of the MACET will be delivered as 
additional channels (sensor types) are added. 
This incremental development approach will 
result in a comprehensive active/passive 
IlUMMW version, capable of emulating 
either unitary or sensor-fused systems, to be 
delivered at the conclusion of the Data 
Analysis and Modeling (DAAM) contract in 
November 1995. This simulation will 
provide the flexible non-realtime emulation 
by which to rapidly prototype and evaluate 
unitary and sensor fused algorithms. 

A passive IWactive MMW detection and 
classification algorithm has been 
demonstrated using the MACET platform [4]. 
A block diagram of the dual-mode algorithm 
is shown in Fig 3.1-3, and the corresponding 
MACET implementation in Fig 3.1-4. The 
pictograph or glyph labeled "mmwcat" 
concatenates four dwells of MMW data 

which constitute a frame co-registered with 
the IR frame. The "input" glyph brings in 
the corresponding IR data. Characteristics 
of the MMW beam are specified in the 
glyph labeled "beamgen" which generates 
an approximate intensity beam pattern to be 
convolved with the MMW data. 
Normalization and convolution operations 
are performed by "prefilt" which outputs an 
enhanced version of the original image. 
Statistics of this image are computed 
including the location of the peak within the 
image. This information is used by 
"extractir" to determine a small (64x64) 
region of interest to be extracted from the IR 
image for further processing. Here the 
extracted IR image sub region is scaled and 
correlated with sets of target images at 
various orientations using multiple copies of 
"correlate", one for each target image set. In 
the present implementation, three targets 
were considered at twenty-four regularly 
spaced orientations. The results of the 
correlations could be input to decision logic, 
but for the example at hand are only output 
as plots of correlation versus orientation. 

I 

Figure 3.1-2. MACET Architecture 
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Figure 3.1-3. Dual Mode ATR Algorithm Block Diagram 

Figure 3.1-4. MACET Implementation of Dual Mode Algorithm 
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The three candidate targets are shown in Fig 
3.1-5: a T62 tank, BMP, and ZIL. These are 
synthetic IR signatures generated by the 
Irma Signature modeling code [5,6]. The 
actual target is a T62 tank as seen by the IR 
detector described above. Fig 3.1-6 shows 
an example plot of the correlation of the 

actual target with candidate targets versus 
orientation. 

This algorithm was developed entirely 
within the MACET environment without the 
necessity of writing any additional code. 

I 

Figure 3.1-5. Candidate Targets: T62; BMP; ZIL 

C.ndld.1. Target 0riant.tlon 

Figure 3.1-6. Plot of Correlation vs Orientation 
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3.2 Irma Multi-Sensor Predictive Model 
The Irma code was originally developed 
during FY78-80 for the US. Air Force 
Wright Laboratory/Armament Directorate. 
This simulation represented one of the first 
high resolution synthetic IR target and 
background signature prediction models to 
be developed for tactical air-to-surface 
weapon scenarios. 

During the 1980s. several improvements 
were made to the Irma code. These included 
the addition of models of Ground Mobile 
and High Value Targets, a higher fidelity, 
more realistic thermal response model, a 
sensor effects post processor, effects of heat 
flow through target surfaces, and a user 
interface. These enhancements culminated 
in the release of a new version of the code in 
1989, designated Irma 2.1. 

During the early 1990s, an active/passive IR 
version of the code was developed, and an 
enhanced scene generator was incorporated 
into Irma. To provide a target laser 
signature capability, models from the 
Defense Laser Target Signatures 
@ELTASmcTM) code were adapted to 
execute within Irma and to generate 
representative air-to-surface seeker outputs. 
This code was released in 1990 as Irma 3.0. 
The enhanced scene generator, the 
Grumman Scene and Sequence Generator 
(SSG), added the capability to model 3-D 
backgrounds, correlated frame-to-frame 

imagery, and generalized quadric surface 
descriptions. Released in 1992, the code 
was designated Irma 2.2. In 1994, Irma 3.2 
was released which added a passive MMW 
channel, polarimetric IR, and enhanced 
treatment of solar and terrain reflectance. 

Currently, efforts are underway to 
incorporate both active and passive channels 
for both IR and MMW into Irma 4.0. 
Approaches to the development of these 
channels have been addressed in several 
studies [6,7,9,10]. Implementation of the 
passive MMW channel was accomplished as 
part of the development of a passive 
MMWAR version of Irma (Irma 3.2). A 
working version of the Irma active MMW 
channel has been demonstrated as part of the 
Irma 4.0 prototype. Irma 4.0, the 
active/passive MMWAR version of the code, 
is slated for release in October 1995. A 
working prototype is currently undergoing 
testing. 

A complete summary of the various versions 
of Irma is presented in Table 3-2. 

The planned architecture for Irma 4.0 is 
illustrated in Fig 3.2.1. Separate signature 
channels will be implemented to generate 
images in the four spectral regions. External 
interfaces will be designed to be compatible 
with the WLlMNGA weapon system 
simulation standard to permit its use in 
larger simulations. 

Table 3-2. Irma Model Versions 
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Figure 3.2-1. Irma 4.0 Model Configuration 

In order to ensure upward compatibility of 
the Irma releases, existing elements of 
current model versions will be adapted to 
execute in the environment illustrated in Fig 
3.2- 1. Primarily these include the ENVIRO 
thermal response model (Irma 2.2), the 
SEEKER/DELTASNRC~ modules (Irma 
3.1), and the Irma 3.2 passive MMW 
signature channel. The interface and scene 
generator functions represent the areas 
requiring the most change and are subject to 
replacement. 

The basic architecture of existing Irma 
software is shown in Fig 3.3-2. The thermal 
response model, ENVIRO, computes the 
surface temperatures and thermal radiances 
as a function of time, accounting for such 
effects as environmental heating, material 
properties, and internal heating. ENVIRO 
incorporates a single dimensional heat flow 
model to perform these computations which 
represents the inner surface temperatures as 
a thermal reservoir coupled through a 
medium with a fixed R-factor. The time- 
dependent temperature at the surface and 
within the material is calculated using either 
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a f in i te  difference Crank-Nicholson 
technique, or for thermally thin material, a 
fast-running uniform temperature model. 

The image generator module converts the 
three dimensional signature maps into two 
dimensional imagery. Sensor and 
atmospheric effects are introduced in the 
image generator. Examples of such effects 
include sensor spectral response, sensor 
optical blurring, fixed pattern noise, shot 
noise, and scan effects. 

The Irma interface, IRMINT, is a user- 
friendly, menu-driven program which 
facilitates setting up, running, and 
examining the outputs of both ENVIRO and 
the image generator. IRMINT is machine 
specific since it makes use of numerous 
system utility programs to perform such 
tasks as present menus , spawn jobs, and 
read directories. The Irma interface is 
available for VAX systems and Sun 
workstations. 
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Figure 3.2-2. Existing Irma Simulation Architecture 

The last released version of Irma, Irma 3.2, 
provides the user with the capability of 
modeling polarized, passive millimeter wave 
and infrared signatures. The Irma passive 
IR model, Irma 2.2, was modified to provide 
a passive MMW signature prediction 
capability. Upon examination of the 
phenomena associated with both reflected 
and self-emitted radiation in the MMW 
spectral region, it was concluded that these 
processes were very similar except in the 
following areas: (1) targetlbackground 
emissivities, (2) sensor resolution, (3) 
polarimetrics, and (4) the contribution of 
reflected radiation in the imagery. An 
approach was developed to include these 
effects [7,8]. Irma 3.2 has been used to 
model signatures in the UV and visible 
regime where the signatures are all 
reflective, in the IR regime where the 
signatures are primarily emissive, and in the 
MMW regime where the signatures are both 
reflective and emmissive. 

The Irma 4.0 prototype, the version to 
generate passive MMW, IR, Ladar, real- 
beam radar, and SAR, is currently 
undergoing testing and has been 
demonstrated to generate registered four 
channel imagery. Its design consists of 
tightly coupled passive channels, standalone 
active channels, and an X-windowing user 
interface. All four channels utilize the same 
geometrical representation, thereby ensuring 
channel registration. Once completed, it 

will serve as one of the cornerstones in 
multi-sensor precision guided munitions 
research. 

3.3 

To examine the feasibility of a multi- 
spectral model-based vision system, the test 
configuration depicted in Fig 3.3-1 was 
constructed. MMW/IR captive flight data 
collected during the Autonomous 
Acquisition Dual Mode Seeker (AADMS) 
program was reduced and used to test both 
classical and model-based vision 
classification approaches. The detection and 
discrimination stages of a prototype 
algorithm under development to demonstrate 
MACET were used to identify and register 
the MMW and IR Regions of Interest 
(ROIs) within these scenes. Candidate 
targets were then subjected to both classical 
(Quadratic Bayesian) and model-based 
vision classifiers. MMW and IR data from 
the Target And Background Information 
Library System (TABILS) were used to train 
the quadratic classifiers. Synthetic scenes 
were simulated using a prototype of the 
Infrared Modeling and Analysis (Irma) 
version 4.0 code. Both types of classifiers 
operated on the registered MMW and IR 
scenes independently. The resulting 
classification metrics were then fused using 
a weighted linear transformation. The 
elements of this test configuration are 
described in detail in Reference 4. 

Application of Model Based Vision 
to MMW/IR Sensor Fusion 
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An example of the output from the MMW as the test anc, training profiles were 
model-based classifier is shown in Fig 3.3-2. circularly convolved. These results 
In this test case, the classifier was exercised demonstrate the difficulty the classifier had 
against measured APC, tank, and truck in distinguishing between the tank and the 
signatures. The lowest scores represent the APC. This is consistent with the 
best fit for this example since a minimum performance of classical MMW realbeam 
distance algorithm is employed by the classifiers. 
classifier. Fig 3.3-2 illustrates this distance 
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Output from the IR model-based classifier is 
shown in Fig 3.3-3. The target-to- 
background contrast was found to be 
relatively poor in all the scenes processed. 
Thus intensity resolution in the target 
regions of interest was not as fine as would 
be desired. Another source of error for the 
IR classifier occurred when the average 
intensity level in the image was not 
relatively constant, or when there was a non- 
target area of higher intensity than the target 
region. In that case, the classifier tends to 
operate on the region of highest intensity 
with a stronger weight. A technique, 
described previously, to normalize the 
correlation to help discount intensity levels 
on a region basis proved successful. 

- - __ - -I __  - _ _  - - - - -- - . 1 
IR IR MMW MMW Dual Mode Dual Mode 
Model-based Quadratic Model-based Quadratic Model-based Quadratic 
0.25 0.375 0.375 0.5 0.3 125 0.4375 
1.0 1 .o 0.5 0.75 0.75 0.875 
0.5625 0.375 0.75 0.375 0.65625 0.375 

The results of the MMW/IR feature fusion 
are shown in Table 3.3-2. The scores shown 
in this table have been weighted by the 
contrast ratios. These scores were produced 
by exercising 3 test scenes (tank, truck, 
APC) against the two classifier types trained 
with tank data. Both classifiers, statistical 
and model-based, selected the APC over the 
tank. As mentioned previously, this result is 
consistent with other algorithms. The chart 
also indicates that the model-based classifier 
tended to favor the truck over the tank; 
however, examination of the unweighted 
scores demonstrated a higher score for the 
tank. Further examination uncovered that 
the MMW tank contrast ratio was low and 
tended to bias the dual-mode scores. 

Figure 3.3-3. IR Model-based Classifier Performance for Tank 

Table 3.3-2. Classifier Comparisons 

I I Classification Method i 
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Pr liminary results indicated that the 
performance of such a system is comparable 
to that of classical methods. This would 
indicate that a model based approach has 
merit since it greatly reduces the complexity 
of the mission planning task. However, the 
data set on which these findings were based 
was too limited to conclusively support this 
statement. 

3.4 Low Cost Dual Mode Seeker 
With the changing emphasis from 
preparation for global warfare to 
involvement in regional conflict with the 
desire to inflict minimum collateral damage 
'0 civilian populace and property, precision 
guided weapons have taken on a new order 
of importance. Previously, Dual Mode 
MMWAR seeker development was oriented 
towards thwarting Follow-on Force Attack. 
This was a many-on-many concept wherein 
long-range delivery vehicles, such as. the 
Multiple Launch Rocket system, would 
dispense terminally guided submunitions to 
attack massed armor. This particular 
scenario is now much less likely. The more 
probable scenario is the one-on-one, close- 
in,  aircraft delivered precision guided 
weapon to a specified target. This latter 
scenario invokes other practical 
considerations, such as aircraft survivability, 

INrl)ARtD VrnC"' - 
Ae 

which demands weapons delivery from 
stand-off ranges and autonomous guidance 
to permit launch and leave maneuvering. 
These and many other requirements are 
currently being addressed and implemented 
in the USAF Aeronautical Systems Division 
(ASD) Joint Direct Attack Munition 
(JDAM) program. 

Various programs are developing improved 
guided bombs capable of all weather 
operation by integrating Global Positioning 
System (GPS) guidance with an improved 
Inertial Navigational System (INS). Even 
so, this union of GPS and INS will still not 
provide the desired degree of precision for 
select targets. Various terminal guidance 
schemes have been proposed for the silent 
target application such as Synthetic Aperture 
Radar (SAR), Dual Mode MMWAR, Ladar, 
other multi-spectral, and stand-alone MMW 
or IR based solutions. However, since the 
GPS/INS guided bomb itself eliminates any 
requirement for wide area search, 
comparatively simple antenna scanning and 
tracking systems could be employed. For 
example, Fig 3.3-4 depicts a prototype of a 
low cost MMW/IR seeker developed 
specifically an earlier version, Inertially 
Aided Munition program. 

nroomLn 1 

Figure 3.3-4. Low Cost Innovative Dua ,de Target Sensor 
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The MMW sensor utilized in this system is a 
frequency-modulated continuous wave 
(FMCW) high range resolution radar with a 
94 GHz center frequency. It is configured 
of two antennas arranged in a symmetric "L- 
shaped" layout. Each of the orthogonal 
antennas generates a long, narrow fan beam. 
These beams may be frequency-steered to 
perform target search and two-axis angle 
track functions. The imaging IR sensor is an 
uncooled, commercially purchased, off-the- 
shelf pyroelectric vidicon-based camera that 
is sensitive to radiation in the 8-14 pm 
spectral region [ 111. 

4.0 CONCLUSIONS 
The U.S. Air Force Wright Laboratory/ 
Armament Directorate has been involved in 
the development of MMW/IR sensor fusion 
technology for tactical weapons application 
for over a decade. Significant resources 
were devoted, jointly with the Army, to 
hardware demonstrations in late 1980's. 
Under these efforts several milestones were 
demonstrated including the fabrication of a 
common MMW/IR aperture, and the flight 
test of a data collection instrument 
configured with this aperture. The hardware 
demonstration efforts also served to identify 
several issues associated with MMW/IR 
fused sensors: namely, the optimum design 
of the target acquisition algorithms and the 
lack of data and phenomenological models 
to support the development of these 
algorithms. Since 1990, significant 
resources have Seen devoted to resolving 
these issues through a number of programs 
with the most concentrated effort being 
performed under the Data Analysis and 
Modeling (DAAM) program. Under this 
effort, basic research is being performed in 
the area of MMW/IR signature modeling 
and data analysis, as well as algorithm 
evaluation tools and techniques. 

The early indications of the benefit of Dual 
Mode MMW/IR seeker technology implied 
that there might be as much as a four-to-one 
improvement in detection performance per 
dollar cost over standalone MMW or IR 
systems. For the large production 
requirements anticipated prior to the end of 
the cold war, that degree of improvement 

represented savings of several billions of 
dollars. However, the end of the cold war 
and changing requirements resulting from 
Desert Storm led to down-scoping and, 
somewhat later, termination of a proposed 
$25 million dollar advanced development 
effort. As has been seen in this paper, the 
goal of 4:l improvement will be extremely 
difficult to achieve. But, the requirements 
have changed and the area of warfare 
regions has been reduced by orders of 
magnitude. Additional technology, such as 
satellite based cueing, is available to assist 
with target location, and GPS can navigate 
the munition to the target. Much work 
remains, however, in the areas of target 
detect ion, cl ass if ic at ion, and acquisition. 
Current laboratory research programs will 
establish the base to minimize the 
performance risks associated with the 
acquisition and tracking algorithms. 
Combined with recent hardware advances, 
MMW/IR sensor fusion systems should be 
considered a low risk and affordable 
technology by the late 1990's. 
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SECTION I1 

DATA ASSOCIATION AND TRACKLNG TECHNIQUES 

INTRODUCTION 

Dr. David F. Liang 
Head, Space Systems and Technology 

Defence Research Establishment Ottawa 
Department of National Defence 

Shirley Bay, Ottawa 
Canada K1A 024. 

Tracking and fusion with multiple sensors deals with integration 
and correlation of data from diverse sources in order to arrive at the best 
possible situational assessment. The developments of data association 
and tracking algorithms have been driven by improved sensors, 
demanding mission requirements, target low observability, processor 
hardware limitations, severe clutter environment and challenging threat 
scenarios. 

In general, there are two distinct approaches to the Data 
Association problem. The simpler approach is a deterministic one which 
includes nearest neighbor (NN) and global nearest neighbor data 
association. It takes the most likely of several possible "associations," 
and completely ignores the possibility that this selected "association" 
may be inappropriate. The alternative is the probabilistic approach 
based on Bayesian framework, which includes Probability Data 
Association (PDA), Joint Probabilistic Data Association (JPDA) and 
Multiple Hypothesis Tracking (MHT). S .  S .  Lim and D. F. Liang have 
provided a practical overview of multiple target tracking algorithms, 
including instruction for step by step implementation. The advantages 
and limitations of these techniques were summarized. For practical 
implementation of the algorithms, i t  is important to select them based 
on target dynamics, processor throughput, clutter environment, etc. 

Then we deal with a track initiation problem of a ballistic missile 
using angle-only measurements. This problem is normally constrained 
by poor target-motion observability resulting in a very ill-conditioned 
estimation problem. M. Yeddanapudi, Y. Bar-Shalom, K. R. Pattipati and 
S .  Deb have presented estimation algorithms that can handle far greater 
ill-conditioned problems than before and are more robust to errors in the 
initial estimates. Expressions for the Cramer-Rao lower bound (CRLB) on 
the covariance are presented with or without prior information. The use 
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of data from more than one satellite has been shown to significantly 
improve both target observability and trajectory estimates. 

Air defence tracking problems using multi-radar defence systems 
have been known to be more complex than single sensor systems. Two 
separate procedures are presented. S . S .  Blackman, R.J. Dempster and T.S. 
Nichols have presented a method for converting multi-radar plot data to 
a common stereographic coordinate system. They provided the 
mathematical basis and the implementation logic for the track-oriented 
MHT algorithms. This includes a discussion on clustering, pruning and 
merging methods that have made real-time processing implementable. 
The simulation results presented here based on the MHT approach, are 
shown to have superior track confirmation and maintenance capability 
than similar solutions using the conventional single hypothesis tracker. 

On the other hand, K.C. Chang and Y. Bar-Shalom have proposed a 
track-oriented approach based on a form of "greedy" nearest-neighbor 
and multiple model algorithms. Data collected from multiple sensors are 
pooled together in  a centralized fusion architecture. Tracks are initiated 
based on a single measurement and a probabilistic track score is 
calculated based upon the associated measurement history using a 
multiple model algorithm with an underlying Markov chain. Tracking 
results with multiple MTI radars are presented to demonstrate the 
feasibility of the algorithm. 

In order to combine diverse data from sensors, weapons subsystems 
and other command and control sources to form a wide-area 

surveillance picture, it is crucial to have effective track correlation and 
management schemes. M.P. Dana and J.L. Dana have presented a track 

management method for a distributed, multiple sensor tracking systems. 
To avoid ambiguous or conflicting decisions at distinct C2 and weapon 

subsystems, it is important to maintain a common data base of high 
quality track information at multiple, distributed subsystems. They have 

provided a top-down system analysis approach to the design of track 
correlation and maintenance logic for multiple radar surveillance 

systems. This is illustrated by design problems derived from NATO air 
defence systems. The analytic technique permits statistical performance 

evaluation in terms of random, systematic and system errors. 
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A PRACTICAL OVERVIEW OF 
MULTIPLE TARGET 

S. S. Lim 
System Concept Inc. 

112 Grassy Plains Dr. 
Kanata. Ontario 

Canada, K2M 2M5 

SUMMARY 

Multiple Target Tracking (MTT) in cluttered 
environments has been addressed in numerous 
military aerospace defence and civilian air 
traffic control studies [ 1979-present]. Most 
MTT methods employ models based on 
simplified assumptions. In this paper, a 
practical overview of three algorithms for MTT 
is presented: these are the Nearest-Neighbor 
(NN), Multiple Hypothesis Tracking (MHT), and 
Joint Probabilistic Data Association (JPDA) 
methods. The advantages and limitations of 
each technique  a re  summar ized  and 
suggestions presented for  implementation 
considerations. It should be noted that an 
efficient Modified MHT applied to Air Defence 
Tracking  is  a l so  presented  in  th i s  
AGARDOGRAPH. 

1. INTRODUCTION 

1.1 Background 

Typical sensor systems, such as radar, are 
subject to noisy measurements from diverse 
sources ,  i.e., targets  of interest  and 
background noise sources such as radar ground 
clutter. The tracking problem involves the 
processing of measurements from targets of 
interest and produces, at each time step, an 
estimate of the target's position and velocity 
vectors. A common and versatile approach to 
such a problem involves an assumption that the 
target dynamics and measurements are both 
corrupted by addi t ive,  white,  possibly 
Gaussian noise. The solution can be obtained 
from the Kalman f i l ter ,  whereas the  
uncertainties in the target motion and 
measurement data (modeled as additive random 
noise) 'lead to corresponding uncertainties in 
the target state estimate. 

TRACKING ALGORITHMS 

D. F. Liang 
Defence Research Establishment 

Ottawa 
Department of National Defence 

Ottawa, Ontario 
Canada, K1A 024 

There are additional uncertainties regarding 
the source of the measured data, which may 
include measurements from the target(s) of 
interest, interfering targets or random clutter. 
This leads to the problem of data association, 
where tracking performance depends not only 
upon the noise covariances, but also upon the 
amount of uncertainty in the measurement 
origin. Clearly, in this situation the tracking 
effort for N targets can be computationally 
more demanding than N times the effort for a 
single target, because it is not trivial to 
establish appropriate correspondence between 
targets and measurements. In [ 13, Blackman 
presents the state of the art algorithms that 
have been implemented in Multiple Target 
Tracking applications.  Bar-Shalom and 
Fortmann's book [2] presents the mathematical 
tools underlying various algorithms for  
measurement association and Multiple Target 
Tracking. Two recent books edited by Bar- 
Shalom [3, 41, present various applications and 
current advances in data association and MTT 
as well as sensor fusion. 

Although there are a number of algorithms that 
deal with the data association problem, two 
sets of algorithms have been derived based on 
fundamentally different models. The first is a 
deterministic model, i.e.. one that takes the 
most likely of several "candidate" associations 
and treats them as if they were correct pairing, 
ignoring the fact that they may not be 
appropriate. The results of the deterministic 
association are then used in a standard state 
estimation algorithm. Examples include the 
Nearest Neighbor Standard Filter (NNSF) and 
the Track Splitting Filter (TSF) algorithms [5, 
61. The second model is a probabilistic model, 
utilizing a Bayesian framework in which the 
probabilities of individual associations are 
computed and then used in suitably modified 
state estimation algorithms. The examples are 
the Multiple Hypothesis Tracking (MHT) 
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approach and the Joint Probabilistic Data 
Association Filter (JPDAF). In the MHT, a 
number of candidate hypotheses are generated 
and evaluated until a correct decision can be 
made as more data become available. 

The sequential nearest neighbor standard filter 
(NNSF) is the most simple and intuitive 
approach. It goes for unique pairings, so that, at 
most, one nearest observation can be used to 
update a given track. The assignment is made 
irrevocable after each scan of data is received. 
Although NNSF is simple, the major problem 
with choosing the nearest neighbor is that, with 
some probabili ty,  it is not the correct 
measurement  while  be l iev ing  that  the  
assignment has been correctly made. This is 
because the filter calculated error covariance 
does not account for the possibility of 
processing an incorrect measurement, and it can 
lead to the subsequent loss of track. 

The MHT approach makes use of the assignment 
constraint and the formation and evaluation of 
alternative correlation hypotheses. In this 
approach, as each measurement is  being 
received, data association hypotheses are 
generated together with the computation of their 
probabi l i t ies .  By genera t ing  associat ion 
hypotheses and deferring the decision until 
more measurements are available, the MHT 
algorithm can improve the problem of mis- 
correlation and loss of tracks. This leads to the 
more accurate and much more complex 
algorithm. Further, the MHT is capable of 
initiating tracks, accounting for missing or 
false reports, and of processing sets of 
dependent reports. In this regard, the MHT has 
been recognized as  the "best" technique 
throughout the target tracking community. 
However, a major drawback to the MHT algorithm 
is its computational complexity due to the large 
number  of hypo theses ,  which  grow 
exponentially with time. Hence, an MHT 
implementation is limited by the extent of 
effective pruning of unlikely hypotheses [7-101. 
It should be noted that in Section V of this 
AGARDOGRAPH, a modified MHT has been 
developed and shown to be effective in air 
defence radar surveillance system tracking 
assessments .  

For the JPDA approach, all the reports in the 
vicinity of a given track are employed to form a 
weighted average and the result is used to 
update the track. The JPDA algorithm is a non- 
scan back approach, meaning that all 
hypotheses are combined after the computation 

of probabilities, for each target at each time 
step. Therefore, any given tracking filter will 
likely be assigned with a high weighting 
several "correct" measurements. However, it 
will also be assigned to  the "incorrect" 
measurement with a low weighting. Since all 
reports are used in computing the track 
update, it implies that incorrect measurements 
are routinely used by the tracking filter, 
albeit with a lower weighting than that for a 
correct measurement. As well, the JPDA 
approach does not provide a track initiation 
procedure.  

1.2 Description of Targets and Measurements 

For . a  target being tracked, the discretized 
equations of motion may be modeled by 

x ( k + l ) =  F(k)x(k)+  G ( k ) u ( k )  (1 )  

where x ( k )  is the n dimensional state vector of 
the tracked targets at the k-th sample time, 
F ( k )  is the transition matrix, and u ( k )  is an m 
dimensional state excitation vector to account 
for both maneuvers and modeling errors and is 
generally assumed to be white Gaussian with 
zero mean and covariance Q ( k ) .  In a track- 
while-scan system, the k-th sample will occur 
approximately at time kT, where T is the scan 
interval of the sensor. The measurement 
e q u a t i o n  r e p r e s e n t i n g  v a l i d  s e n s o r  
observations of the targets being tracked has 
the form 

y ( k )  = W ) x ( k )  + v(k) (2) 

where y ( k )  is the m dimensional sensor 
measurement, vector, H is the measurement 
matrix and v(k) is white Gaussian measurement 
noise with zero mean and covariance R ( k ) .  The 
measurement equation for extraneous sensor 
reports resulting from thermal false alarms, 
clutter. and other targets is assumed to satisfy 

y(k )  = H(k):(k,k-l)+ w(k) ( 3 )  

where w ( k )  is assumed white and uniformly 
distributed over some volume V of the 
measurement space centered about the 
predicted measurement 

j ( k , k - l )  = H(k) i (k ,k -1 )  (4)  

The number of such extraneous reports in any 
volume V obeys a Poisson distribution with 
mean V. where is the unnormalized extraneous 
report density. 

The tracking filter provides a state estimate 
;(k,k) and one - scan - predicted state 
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i ( k + l , k )  given all measurement data up to the 
time k .  The basic fi l ter  equations are 
described in the following Sections. 

2. THE NEAREST NEIGHBOR STANDARD 
FILTER ALGORITHM 

2.1 Introduction 

The nearest neighbor algorithm assumes that 
the best correlation is the one that associates 
reports and tracks closest to each other. A 
given observation can only be paired once, to 
either a previously established track or to 
initiate a new track. The report can be 
abandoned as noise if the measurement-to- 
track pairings cannot satisfy a preliminary 
gating test. The NNSF algorithm presented 
here is based on the modified Munkres optimal 
assignment method, as modified by Burgeois 
and Lassalle [8]. 

2.2 NNSF Algorithm 

STEP 1: Start with k = 1 and initialize all the 
system parameters: F, H ,  R,Q. 

STEP 2: Simulate target trajectories and 
sensor measurements 

STEP 3: M e a s u r e m e n t  v a l i d a t i o n :  A 
measurement is considered valid if 

M k )  - Xk ,k  -l)}'5-1(k) b(k) -Wy k -1)) 5 2.  
where "g- " forms an elliptical gate. (5) 

STEP 4: The elements of the assignment 
matrix are equal to the normalized distance 
function associated with the assignment of 
each of Nob measurements assigned to each 
of Ne tracks. If the measurements do not 
fall within the gate. the measurement-to- 
track pairing can be penalized by giving it a 
very large distance assignment. 

STEP 5: T h e  modified Munkres optimal 
assignment algorithm presented in the 
subsequent Section can be adopted to solve 
the Assignment Matrix by minimizing the 
normalized distance function. 

STEP 6: Measurements are to be correlated to 
the tracks using the optimal assignment 
matr ix .  

STEP Apply the ilman filter to update and 
predict the state vectors (tracks) using : 

A( k) = P(k, k - I)I-r(k)[H(k)P( k ,k - 1)" (k) + R( k)r' 

2(k,k) = i ( k , k - l ) +  A ( k ) [ y ( k ) - H ( k ) i ( k , k -  l)], 

( 7 )  

P(k,k)= ( I -  A(k)H(k))P(k,k -1). ( 8 )  

i ( k  +l,k)= F(R)i(k,k). (9)  

P(k+ l ,k )=  F(k)P(k,k)F'(k)+ G(k)Q(k)G'( k). 

(10) 

STEP 8: If k = k, tracking to be stopped. 

Otherwise, set k = k + 1, and output the 
results and go to STEP 2. 

2.3 The Modified Munkres Optimal Assignment 
Algorithm. 

The practical advantage of this algorithm is the 
fact that the assignment matrix need not be 
square. For the convenience of presentation of 
the algorithm, the rows and columns of the 
matrix may be distinguished by being starred 
(*) or primed('). 

The Optimal Assignment Algorithm [8]: 

STEP 1: Let v = min. ( No. of columns, No. of 
rows]. Initially, no lines are covered; no 
zeros are starred or primed. 

STEP 2: If the number of rows is greater than 
the number of columns, go to STEP 5. 

STEP 3: For each row of the matrix (a i j ) ,  
subtract the value of the smallest element 
from each element in the row. 

STEP 4: If the number of columns is greater 
than the number of rows, go to STEP 6. 

STEP 5: For each column in the matrix, 
subtract the smallest element of the column 
from each component of the column. Then 
go to STEP 6. 

STEP 6: 1) Find a zero, Z, of the matrix. 
2) If there is no starred zero in its column 
nor its row, star Z. 
3) Repeat for each zero of the matrix. Go to 
STEP 7. 
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STEP 7: 1) Cover every column containing a O*. 
2) If all columns are covered, the starred 
zeros form the desired independent set. 
The algorithm is now completed. Otherwise, 
continue to the next step. 

STEP 8: 1) Choose a noncovered zero and 
prime it; then consider the row containing 
i t .  
2)  If there is no starred zero Z in this row, 

3 )  If there is a starred zero Z in this row, 
cover this row and uncover the column of 2. 
4) Repeat until all zeros are covered and 
then go to STEP 10. 

go to STEP 9. 

STEP 9: There is a sequence of alternating 
starred and primed zeros constructed as 
follows: 
1 )  Let 20 denote the uncovered 0'. 
2 )  Let Z1 denote the O* in the column of 
20 (if any). 
3 )  Let 22 denote the 0' in the,row of Z1. 
4) Continue in a similar way until the 
sequence Stops at a 0'. z2k, which has no O* 
in its column. 
5 )  Unstar each starred zero of the 
sequence. 
6) 
7) Erase all primes and uncover every 
l ine .  
8) Go to STEP 7. 

Star each primed zero of the sequence. 

STEP 10: 1 )  Let h denote the smallest 
uncovered element of the matrix; and it will 
be positive. 
2 )  Add h to each covered row. 
3) Subtract h from each uncovered column. 
4) Go to STEP 8 without altering any stars, 
primes, or covered lines. 

3. MHT ALGORITHM FOR MULTIPLE 
TARGET TRACKING 

3.1 Introduction 

The multiple hypothesis tracking algorithm 
was first proposed by Reid in 1979 [9]. In the 
MHT, instead of trying to resolve a difficult 
association immediately or sequentially, all 
possibilities are enumerated as hypotheses. 
The probabili ty of each hypothesis is 
computed, and ideally, all hypotheses are 
maintained until there is enough data to make 
a decision as to the correct one. This algorithm 
contains a number of advantages over the 
sequential techniques discussed above. Some 

of these advantages are that: (1) track 
initiation is an integral part of the algorithm, 
(2) maneuver detection can be easily handled 
within the basic algorithm, and (3) one of the 
hypotheses must be the correct one. Its main 
drawback is that it does not generate a single 
best solution which can be returned to the 
operator directly but rather recommends a set 
of alternative solutions with different quality 
which must be evaluated outside of the 
algorithm. Another problem is that the 
algorithm is extremely demanding in computer 
resources because it must maintain all 
hypotheses to arrive at an optimal solution. 
Most often, a sub-optimal implementation 
which includes a mechanism for pruning 
unlikely hypotheses is considered [2, 3, 7, 9- 
103. Recently Lim, Liang and Blanchette [ l l ]  
proposed a modified MHT (MMHT) algorithm 
which has been extensively tested against 
numerous sets of real radar data. In this 
Section an algorithm based on the MMHT is 
presented.  

3.2 Flow Chart. 

The main part of the algorithm consists of 
clustering, hypothesis generation, pruning by 
dynamic thresholding and N scan back 
approach. The cluster (CLUST) subroutine 
associates measurements with the previous 
clusters. A cluster is a group of hypotheses 
containing associated tracks that do not 
interact with any other group of hypotheses 
within other clusters. The hypotheses within a 
cluster will not share measurements with the 
hypotheses of any other clusters. The basic 
goal of clustering is to divide the large 
tracking problem into a number of smaller 
ones that can be solved independently. The 
hypothesis generation (HGEN) subroutine 
creates new data association hypotheses for the 
set of validated measurements of each cluster. 
The probability of individual hypothesis is 
then computed in the PROB subroutine. Both 
the clustering and hypothesis generation 
procedures use the pruning subroutine to 
reduce the number of hypotheses which grow 
rapidly with time. The hypotheses satisfying 
certain qualifications will remain and all the 
unlikely hypotheses are eliminated in the 
PRUN subroutine. Every N scan, only the most 
likely hypotheses are selected and the other 
hypotheses are all eliminated from the 
subsequent considerations, as explained in the 
above. As part of the pruning process similar 
hypotheses may be combined into one. The 
subroutine FILT computes the estimate of each 
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e and a n W track based on the previous estimz 
measurement using a standard Kalman filter. 
The major distinction of the MMHT from Reid's 
MHT is with the two pruning schemes, i.e., 
dynamic thresholding and N-scan back 
pruning (the subroutine PRUN in Fig. 1). 

7 

k : scan number 

1 
k=k+l 

T 
(* MEAS 

6 hypotheses generation 

4 PROB 

4 PRUN 

hypothesis probability 

Hypotheses Pruning 

Track Management 
& 

filtering 

stop 

Fig. 1 The Multiple Hypothesis Test algorithm. 

3.3 Detailed MHT Algorithm 

STEP 1: Set k = 1 and initialize all the 
system parameters: F, Q, H, R .  

STEP 3: Simulate measurements. (when it 
is implemented, the data are received from 
the sensor.) 

STEP 4: F o r  e a c h  h y p o t h e s i s  h,. 
1 I h, I L ( k - l ) ,  compute (from STEP 10): 

P,(k,k -1). Kf(k--1). $(k, k-I) ,  P(k ,k  -1). 

P,(k- 1). 

STEP 5 :  Validate measurement using the 
elliptical gating test of Equation ( 5 )  to 
select Nk sensor reports for use in filter 
update.  

STEP 6: 1) Set new hypotheses h,, for 
1 I ht I (1 + N k ) L ( k  - 1). 
2) Compute P,(k) of the hypothesis h, with 
measurement Y' = ( Y o ) . Y ( ~ ) .  ..., Y ( k ) ]  using 

P,'(k) = P,(hf(k) lYk)  

L m=l J 

The c is a normalization constant and 
P,'(k- 1) is the probability of the hypothesis 
hf(k-l). N ( x , S )  denotes the normal 
distribution given by 

N ( x , S )  = exp(-0.5x8 S-'x / d w ) .  
S=HFH + R (12)  
where P is the error covariance of the 
target estimate for the prior hypothesis 
h,(k-l) and R is the measurement noise 
covariance. 

STEP 2: Simulate target trajectories. 
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or if  no measurement of the target was 
received 
in the gate, 
Kh(k,k-  1) = K,(k,k-1), (15)  
P,(k, k - 1) = P,(k,k - 1). (16)  

STEP 8: For each hypothesis h,, 
U k )  

Compute ~ ( k )  = [eh (k)K,, (k,k- I)]. ( 17) 

Compute P,(k,k)=P,(k,k-l) (18)  
Compute K h ( k , k ) =  Kh(k,k-1)-A(k). (19)  

h=l 

STEP 9: Calculate the new estimates: 
?(k,k)= ;(k,k-l)+A(k) (20)  
Compute error covariance: 

STEP 10: Prediction for the next update: 

Compute Kh ( k  + l , k )  = F(k)Kh(  k,k) (22)  
P, (k+ 1,k) = F ( k ) P ,  ( k , k ) F ' ( k ) +  G(k)Q(k)G' (k )  

(23)  
Compute i ( k +  1,k) = F ( k ) ; ( k , k )  (24)  

(25)  

Compute 
P( k+l ,k)  = F ( k ) P ( k , k ) F ' ( k ) + G (  k )Q(k)G' (k )  

STEP 1 1 :  If k = k, (end of tracking), stop. 

Otherwise, set k = k + 1 ,  output the results 
of tracking, and go to STEP 3. 

Remark: Equation (11) was derived by Reid 
[9] under the assumption that the number 
of such extraneous reports in any volume C 
obeys a Poisson distribution with mean b C ,  
where b is the normalized extraneous report 
density. Further, the formula is valid for 
type 1 sensors such as radar. If type 2 
sensors are assumed, some modifications 
have to be made as given in [9]. Similar 
expression for  the computa t ion  of 
h y p o t h e s i s  p r o b a b i l i t i e s  in  t h e  
nonrecursive form can be found in Bar- 
Shalom [23. 

4 .  J O I N T  P R O B A B I L I S T I C  DATA 
A SS 0 CIA T I  ON FILTER 

The JPDA algorithm belongs to all-neighbor 
class of target tracking techniques, since all 
measurements reasonably close to a given track 
position are incorporated to form a weighted 
average, and the result is used to update the 
tracks. The  weights are based on the 
probability that the report originating from 
the target is a statistical function of report-to- 
track distance for all observations within the 
validation region. In fact, the JPDA algorithm 
can be interpreted as a one-scan memory, track 
oriented with no new target assignments and 
non-measurement oriented merging to one 
hypothesis. Further, this is a target-oriented 
approach, in the sense that a set of established 
targets is used to  form gates in the 
measurement space and to compute posterior 
probabilities, in contrast to the measurement- 
oriented algorithm such as the MHT. 

4.2 JPDAF Algorithm 

The JPDAF algorithm [2] is presented as follow: 

STEP 1: Set k = 1 (time index) and initialize 
all the system parameters: F ,  H. R,  Q. 

STEP 2: Simulate target trajectories. 
STEP 3: Simulate measurements. ( when it is 

implemented, receive the data from the 
sensor.)  

STEP 4: Validate the measurements using "g- a 
ellipsoid" gating test (Equation (5) ). 
Set the validation matrix W ( 77) [13]: 

W(77) = IwO'.t; 77); 
for j=1,2 ,..., Nm; t=1,2 ,...., N,) (26)  
w(j.t; 77) = 1 if the event " 77" occurs (if 

measurement J falls within 
the gate of target t ) ,  

= 0 otherwise.  

STEP 5: Compute the residual for  each 
t=1,2 ,...., N,: 
$(k)= Y p ) - m  (27)  

where j'( k) = H ( k ) i ,  (k,k - l), corresponding 
to the target t. (28)  

STEP 6: Compute the covariance of $k): 

q k )  = H ( k ) P ( k , k - l ) I - r ( k ) + R ( k ) .  (29)  

STEP 7: Compute the joint event probabilities 
using Bayes' formula: 

4.1 Introduction 
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(30 )  
where S-'is the inverse of S$k) at scan k. 

STEP 8: For t=O, compute: 

For each target t=1,2 ..... N I .  compute 

STEP 9: For each t = 1.2 ,....,NI, compute 

(33)  

STEP 10: Compute the filter gain A ( k ) :  
A ( k )  = P(k,k-l)H'(k)S-'(k) (34 )  

STEP 11: The state and covariance update for 
each t = 1, 2, ..., N,. 
i ( k , k )  = i (k ,k- l )+A(k)j ' (k)  (35)  
P ( k , k )  = P(k,k-1)- A(k)S; (k)A'(k). (36 )  

STEP 12: State and covariance prediction: 

P( k + 1 , k) = F ( k )  P( k, k) F'(k)+ G( k)Q(k)G' (k) 
i (k + 1, k) = F ( k ) i ( k , k ) ,  (37)  

( 3 8 )  

STEP 13: If k = k. (end of tracking), stop. 

Otherwise, set k = k + 1 ,  output the results, 
and go to STEP 3. 

Remark: The joint event probabilities are 
computed from Equation (30), derived from 
the assumption that the probability mass 
function (PMF) of the number of false 
measurements (clutter points) is given by 
the Poisson density [2, p. 1681: 

p( E) = exp (-A V)- (WE 
E! 

(39 )  

where E i s  the number of false 
measurements, 2 is the spatial density of 
false measurements (i.e., the average 
number per unit volume), and V ( k )  is the 
volume of the validation region. * V ( k )  is 
the expected number of false measurements 
within the gate. Thus If the PMF is 

uniformly distributed, then the probability 
should be modified accordingly ([2], p.228). 

5. SUGGESTIONS 

This paper has presented three algorithms 
based on NNSF, MHT, and JPDA methods for 
m u l t i p l e  t a r g e t  t r a c k i n g  in  c l u t t e r  
environments. For practical implementation of 
the algorithm, it is important to compare these 
algorithms in view of the target dynamic 
models and clutters: 

1) In a dense target environment, the NNSF 
algorithm suffers severe performance 
degradation, since it forces miscorrelation 
by choosing (or pairing) a nearest report as 
the correct track for a target. The greatest 
advantage is its ease of implementation and 
its computational efficiency. 

2 )  One of the greatest advantages of the MHT 
algorithm, i s  i ts  intrinsic ability to 
initiate tracks, and to account for missing 
or false reports. Its major drawback is its 
computational complexity due to the 
number  of hypo theses  that  grow 
exponentially with time. Hence, the MHT 
implementation depends on effective 
pruning of unlikely hypotheses [2. 3, 7. 9- 
121. 

3 )  The greatest drawback of the JPDA 
algorithm is its inability to initiate tracks 
automatically. This is a non back-scan (or 
zero-scan) a lgori thm, in  which all 
hypotheses are combined into one in every 
scan. This approach is more cost-effective 
than an n-scan algorithm, especially in a 
heavy clutter environment. 

Therefore ,  for  pract ical  implementa ion  
involving targets in a dense environment, one 
should look for an effective way of combining 
both JPDA and MHT. 
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APPENDIX: NOT AT IONS 

k ;  time or scan index. 

k, ; final time of tracking 

N ( x , S )  E exp(-0.5~' S-'X / 4(2n)"lSI) 

dimension of the state vector x .  
dimension of the measurement vector 
Y 
the number  of measu remen t s  
associated with the prior targets. 
the number  of measu remen t s  
associated with false targets. 
t he  number  of measu remen t s  
associated with new targets. 
the number of previously known 
targets within the area of coverage of 
the sensor. 
probability of detection. 
density of false targets. 
density of previously known targets 
that have been detected. 
the normalization constant and given 
by summation of all the hypothesis 
probabi l i t ies .  
probability of a hypothesis at time k 
given probabili ty of the prior 
hypothesis .  
total number of hypotheses at k and 
given by ( l + N , ) L ( k -  1) 
for N, the number of sensor reports 
that fall within the gate at scan k .  

P,(k,k-l) covariance of the estimation error 
given observations through scan k-1 
and given track hypothesis " t " .  

K, (k ,k-1)  mean of the estimation error 
given observations through scan k -  1 
and given track hypothesis " t " .  

ph (k ,k- l ) .&(k- l ) ;  t he  P k k , k - l )  and 
Kkk - 1) analogs corresponding to the 
hypothesis " h " .  

i (k ,k- l )  estimated state a t  scan k given 
hypothesis up to time k -  1.  

P (k,k) covariance of the estimation error 

given observations up to scan k .  
A ( k ) ;  the optimal tracking filter correction 

vector for MHT filter. 
A ( k ) ;  the optimal tracking filter gain for 

NNSF. 
77; the event that an observation j 

belongs to a target t .  

Yk ; the set of measurements up to time k .  
N,,, number of measurements. 
N t ;  number of targets. 
N , ( j )  ;number of targets associated with the 

observation j except for the false 
alarms (false targets). 

Ntd ( t ) ;  number of observations associated 
with the target t 

(see Equation (12) 



N , ( t )  ; number of observations not associated 
with the target r .  

Nc,; (No. of columns of W (  q ) )  x (No. of 
rows of W ( q ) ) ,  where W ( q )  i s  
validation matrix given by Equation 
(26). 
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1. SUMMARY 
This chapter presents an algorithm to initiate tracks 
of a ballistic missile in the initial exoatmospheric 
phase, using line of sight measurements from one or 
more moving platforms (typically satellites). The 
major feature of this problem is the poor target 
motion observability which results in a very ill- 
conditioned estimation problem. 
The  Gauss-Newton iterative least squares minimiza- 
tion algorithm for estimating the state of a nonlinear 
deterministic system with nonlinear noisy measure- 
ments has been previously applied to  the problem 
of angles-only orbit determination using more than 
three observations. A major shortcoming of this ap- 
proach is that  convergence of the algorithm depends 
strongly on the initial guess. By using the more so- 
phisticated Levenberg-Marquardt method in place of 
the simpler Gauss-Newton algorithm and by devel- 
oping robust new methods for obtaining the initial 
guess in both single and multiple satellite scenarios, 
the above mentioned difficulties have been overcome. 
In addition, an expression for the Cramer-Rao lower 
bound on the error covariance matrix of the estimate 
is derived. 
We also incorporate additional partial information as 
an extra pseudo-measurement and determine a mod- 
ified maximum likelihood estimate of the target state 
and the associated bound on the covariance matrix. 
In most practical situations, probabilistic models of 
the target altitude and/or speed a t  the initial point 
constitute the most useful additional information. 
Monte Carlo simulation studies on some typical sce- 
narios were performed, and the results indicate that 
the estimation errors are commensurate with the the- 
oretical lower bounds, thus illustrating that  the pro- 
posed estimators are efficient. 

2. INTRODUCTION 
In this chapter we consider the estimation of the state 
of a target - a ballistic missile - a t  a specified time 
instant during the initial phase of its exoatmospheric 
flight. During this (ballistic) phase of the target’s 
flight, the predominant force acting on the target is 
Earth’s gravity, while the effect of atmospheric drag 
and the gravitational forces due to  other celestial 

*Research supported by AFOSR Grant F49620-95-1-0229 
and ONR/BMDO Grant N00014-91-J-1950. 

bodies can be ignored. Under these assumptions, 
the equations of motion of the target are given by 
the laws of Keppler [l]; hence, the target dynamics 
are described by a zero input deterministic system. 
The state of the target is a six dimensional vector 
comprised of the three position and the three veloc- 
ity components. Since the target dynamics are com- 
pletely deterministic, the estimation of the target’s 
exoatmospheric trajectory is equivalent to  the esti- 
mation of the state of the target at some reference 
time instant t o .  
The measurements originate from sensors which are 
strategically located so as to  detect the target in the 
early stages of its exoatmospheric flight. These sen- 
sors could be ground-based observatories, airborne 
early warning systems or low-altitude Earth satel- 
lites. The sensors could be either passive, which can 
measure only the line of sight direction, or active, 
which also measure the distance. In this chapter we 
focus on line of sight (LOS) measurements made from 
passive sensors located on low-altitude Earth satel- 
lites. A line of sight measurement is a unit vector 
which can be represented using two angles: azimuth 
and elevation of the target as seen from the sensor. 
We need a t  least three LOS measurements to  esti- 
mate the six dimensional state of the target’. 
An important consideration in this problem is the 
observability of the target through the LOS mea- 
surements. In general, the sensors are at quite a 
long distance from the target such that  a significant 
change in the target position (over a period of time) 
is reflected only as a slight variation in the LOS mea- 
surements. This results in poor observability of the 
target motion. Consequently, the Maximum Like- 
lihood (ML) trajectory estimation problem is very 
ill-conditioned [ a ] .  While an initial state estimate 
might be obtained from the boost phase, this is not 
assumed to  be available in the present problem for- 
mulation. 
Previous work by Chang [3] proposed the use of a 
Gauss-Newton iterative least squares minimization 
algorithm for the problem of angles-only orbit de- 
lerrniriation using more than three observations. A 
major shortcoming of this approach (which is an in- 

‘Of the three (or more) LOS measurements at least two 
should be at different time instants; otherwise, the tar- 
get velocity would remain unobserved and, hence cannot be 
estimated. 
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herent limitation of the Gauss-Newton algorithm) 
is that  the convergence of the algorithm depends 
strongly on the initial guess. In addition, the method 
for obtaining the initial guess suggested by Chang is 
applicable only for the single satellite scenario. A 
more recent paper by Danis [4] deals with the ap- 
proximate evaluation of errors associated with the es- 
timation of the launch point of a target from two LOS 
measurements and other trajectory information. 
The  main contributions of this chapter are: 1) The 
trajectory estimation algorithms can handle far more 
ill-conditioned problems than before and is more ro- 
bust to  errors in the initial estimate, 2) Trajectory 
estimation with partial prior information, 3) Expres- 
sions for the Cramer-Rao lower bound (CRLB) on 
the covariance of the target state with or without 
prior information, and 4) The actual covariance is 
shown to be commensurate with the CRLB. 
The  problem is formulated in Section3- Section4 
deals with the ML trajectory estimation. The prob- 
lem of trajectory estimation with probabilistic prior 
altitude and speed information is considered in Sec- 
tions. Results of computer simulations performed 
for some typical scenarios are presented in Section 6- 

3. PROBLEM FORMULATION 
It is assumed that Earth’s gravity is the predominant 
force acting on the target. In addition, if the non- 
spherical nature of the Earth is neglected, then the 
dynamics of the target are described by the following 
equation: 

where 1 1  . 1 1  denotes the Euclidean norm and ( ( t )  = 
[&(t) <,(t) &(t)]’  is the target position vector a t  time 
t in the inertial geocentric equatorial (GCE) coordi- 
nate system and p is the Earth’s gravitational con- 
stant.  Let x( t ) ’  = [((t)’ i(t)’] be the 6-dimensional 
target state vector a t  time t .  The state propaga- 
tion equation can be represented, using the state 
xb = [ t b  eo] a t  the reference time t o  (i.e., x( to )  = X O )  

* I  

as 
x ( t )  = f ( x o , t o , t )  (2) 

An algorithm for evaluating f ( . ) ,  (i.e., state propaga- 
tion) is given in Appendix A. A LOS measurement 
made a t  time t k  by sensor s ( k )  can be represented 
by a 2-dimensional vector z(k). Let N ,  be the to- 
tal number of sensors, indexed 1 through N ,  and the 
number of LOS measurements be M .  Then the mea- 
surement equation at time t k  (discrete time k) can 
be written as 

z(k) = h (tk’t0, xo ,  V , ( k ) ( t k ) )  + W , ( k ) ( k )  

k = l ,  . . . ,  M l < s ( k ) < N ,  (3) 

where w,(k)(k) is the measurement noise vector in 
sensor s ( k ) .  These noises are modeled as zero mean, 
white Gaussian random variables with known covari- 
ance matrices Rs(k).  The two components of the vec- 

tor h (tk, t o ,  X O ,  ~ , ( ~ ) ( t k ) ) ,  which subsequently will 

be denoted by hk(x0)  for simplicity, are the azimuth 
d k ( x 0 )  and the elevation O k ( x 0 )  of the target as seen 
from sensor s ( k ) ,  namely, 

= I  I (4) 

In the above equation, the vector ~ , ( . ~ ) ( t k )  = 

sor s ( k )  at  time t k  and is assumed to  be known for 
all k; p k ( x 0 )  is the distance between the target and 
sensor s ( k )  a t  time t k ,  i.e., 

[ v s ( k ) , ( t k )  v,!k),(tk) v5(k), ( t k ) l ’  is the position of sen- 

P k ( X 0 )  = I l r o ( t k >  - V S ( k ) ( t k ) l l  (5) 
The problem of ballistic trajectory estimation is then 
the estimation of the parameter x o  given the set of 
measurements ZM = {z(k), k = 1 , .  . . , M } .  

4. MAXIMUM LIKELIHOOD ESTIMA- 
TION 
The conditional probability density of the measure- 
ment z(k), given that the target state at time t o  is 
xb = [E; ibl, is 

Pk [ z ( ~ ) l x o l  = p a ( k ) J - f  

exp { -f [z(k) - hk(x0)1’R,(:) [z(k) - ht (xo) l }  (6) 

The  measurement noises of a sensor at different times 
as well as those of distinct sensors are all assumed to 
be mutually independent. The  likelihood function 
A z M ( x 0 )  of x o  based on the measurement set ZM is 
then the product of the individual probability density 
functions 

1 1 *  -- [z(k) - h k ( X 0 ) I ’  R& - h k ( X 0 ) I  (7) 
k = l  

2 

Let v ( x 0 )  be the 2M x 1 vector of normalized mea- 
surement residuals, i.e., 

K(i) [z(l)  - h l ( X 0 ) l  

R&) [z(M) - h M ( X 0 ) l  

1 (8) 4 x 0 )  = 

Using v ( x 0 )  in the expression for A z M ( x 0 ) ,  and re- 
placing the constant terms in Eq. (7) by c, we obtain 

A z M ( x 0 )  = c .  exp - - v (xo ) ’v (xo)  } { :  (9) 

The maximum likelihood estimate of the target state 
x f L  is obtained by minimizing the squared norm of 
v ( x 0 )  over all possible values of x o  E s6, i.e., 



78 

where f(x0) is the squared norm of v(x0) 

4.1 Covariance of the Estimates 
In addition to the estimate xrL, we also need to ob- 
tain the covariance associated with it.  An expression 
for the covariance is obtained as follows. Let the 
2M x 6 matrix r(x0) be the Jacobian’ of the vector 
4x0  1 
qxo) = [VX,~(XO)’l’ 

-R,(t) [VX,hl(XO)’I’ ] (12) 

= [  -R& [VX,hM(XO)’]’ 

An algorithmic procedure for evaluating the Jaco- 
bian r(.) is given in Appendix B. Note that r(x0) is 
independent of the actual measurements z(k). The 
CRLB on the covariance, P C R L B ,  for an unbiased es- 
timator (evaluated at  the true value, x ; ~ ~ ~ ,  of the 
parameter being estimated, i.e., the target state a t  
t o )  is 

P 2 L B  = 
~ ~ ~ ~ x o ~ z , ~ ~ o ~ l ~ ~ x O ~ Z ,  (XO)I’}Xo=X;fRUE (13) 

where the expectation E{ .} is over the measurement 
set ZM , and XZ, (XO) is the log-likelihood function 

XZM(X0)  = ~og~z,(xo) 
1 
2 

= --V(XO)’U(XO) + loge (14) 

The r.h.s. of Eq. (13) can be simplified to yield 

PF~LB = [r(x0)‘r(XO)]xo=x~RuE (15) 

The above result can be obtained in a straightfor- 
ward manner by substituting Eq. (14) into Eq. (13) 
and using 

E{Y(xo)}X~=X;~RUE = 0 2 ~ x 1  (16) 

E{Y(XO)Y(XO)’}~~=~,TRUE = 1 2 ~ x 2 ~  (17) 

The actual covariance PML associated with the ML 
estimate x rL is quite difficult to evaluate. In the 
linear case, it can be shown that the ML estimator 
is both unbiased (i.e., E{xrL} = xZRUE) and effi- 
cient (i.e., PML = PCRLB) [5]. In the present nonlinear 
situation, we may approximately assume that these 
properties of the ML estimator still hold. Further- 
more, PCRLB requires the knowledge of xZRUE, which 

’Denoting the gradient of a scalar as a column vector, the 
gradient of a scalar z with respect to a n dimensional vector x 
is defined as the n x 1 vector Vxz whose j’h component is *. 
Extending this notation to  the derivative of a vector, we define 
the Jacobian of a n  m dimensional vector y with respect to an  
n dimensional vector x as the m x n matrix [V,y’]’ whose 
( i , j ) t h  term is %. 

oz, 

is available only in simulations. Otherwise, we can 
evaluate an approximate PML via 

P i ;  = [r(xo)’~(xo)Ixo=x~L (18) 

4.2 The Minimization Algorithm 
The ML estimate is the solution of a nonlinear least 
squares (NLS) minimization problem as indicated by 
the r.h.s. of Eq. (10). This problem can be solved 
using a variety of iterative minimization algorithms. 
The performance of these algorithms is affected by 
two major factors. The first factor is the condition 
number of the Hessian VxVkf(x), of the cost func- 
tion f(x), at  the minimum and at  points in its neigh- 
borhood. The second factor is the choice of the initial 
point used to start the minimization algorithm. 
For well conditioned problems3, the performance of 
most algorithms is very good, in the sense that they 
converge rapidly to the minimum and the rate of 
convergence is not sensitive to the initial point used 
to start the algorithm. On the other hand, for ill- 
conditioned problems, the performance of almost all 
the minimization algorithms is critically dependent 
on the initial starting point. As stated earlier, the 
minimization of the cost function f(x0) in Eq. (11), 
associated with the ML target state estimation from 
LOS measurements, is very ill-conditioned because 
of poor target motion observability. Hence, a robust 
minimization algorithm is required for this problem. 
The Levenberg-Marquardt algorithm, which is spe- 
cially designed for the minimization of NLS func- 
tions, has been found to perform well for the present 
mimization problem and is described below. 
Consider the cost function f(x0) given Eq. (11) 
which is to be minimized. Denoting the estimated 
minimum at  the nth iteration by XO,,, the vector of 
normalized measurement residuals by v ( x o , ~ )  = U, 
and the Jacobian by r(xo,,) = I?,, we can form an 
affine approximation w,(xo) to v(x0) as 

Using the above equation, we can form a local 
quadratic model qn(xo) for the cost function as 

Under the assumptions that this quadratic model 
qn(xo) is a good approximation to  the actual cost 
function f(xo), the Gauss-Newton a.lgorithm would 
update the estimate to the minimizer of this local 
quadratic approximation, i.e., 

x:,: = arg min qn(xO) 

3The conditionnumber of a matrix is the ratio of the largest 
and the smallest singular values. If the condition number of 
the Hessian of f ( x )  is less than lo3, then both the Hessian 
and the associated cost function f(x) can be said to be well- 
conditioned. 
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I t  can shown that  this Gauss-Newton update, x:,:, 
is obtained as the least squares solution of a set of 
2 M  linear equations, i.e., 

The  Gauss Newton iterative algorithm, though very 
straightforward to  implement, is not globally con- 
vergent. Convergence is assured only if the initial 
starting point x0,O is quite close to  the global min- 
imum. Quite a few modifications to this algorithm 
have been proposed to  make it globally convergent. 
A class of algorithms that  fall into this category are 
based on a modification to  the Gauss-Newton algo- 
rithm suggested by Levenberg [6] and Marquardt [7]. 
This algorithm (i.e., the Levenberg-Marquardt algo- 
rithm) also updates the estimate a t  the nth itera- 
tion by trying to  minimize the local quadratic model 
qn(xo) a t  each iteration, but  this updated estimate, 
X O , , + ~ ,  is constrained to  lie within a hyper-ellipsoid 
centered around XO,,, i.e., 

XO,,+I = arg min qn(xo) (23) 

i-2 = {xo : xo E @, IID, (xo - XO,n)ll I 6,) (24) 

XOEn 

where D, is a 6 x 6 diagonal scaling matrix and 6, 
is the radius of the “scaled model trust region”. I t  is 
easy to  see that  if the Gauss-Newton update is feasi- 
ble, i.e., IID, (.:,E - XO,,) 11 5 6, then it is accepted 
as the estimate X O , , + ~  = x;,:. In general, however, 
x:,: may lie outside the trust region; in such a case, 
the updated estimate is obtained by solving the fol- 
lowing min-max problem: 

X O , , + ~  = arg min max 
X,.lEW XER 

where A is the Lagrangian multiplier, which in the 
present context is called the Levenberg parameter. 
I t  can be shown that  given a value of A, we can solve 
for a xo,,(A), (i.e., solve the outer minimizationprob- 
lem) as the least squares solution of the following 
(2M + 6) set of linear equations: 

Note that  xO,~,(O) = x:,:, i.e., the Gauss-Newton 
update. This solution xo,,(O) may not feasible, 
but  in general, it can be shown that there exists a 
A, E [0, co) such that  for all A 2 A,, xo,,(A) is feasi- 
ble. The  updated estimate is then XO,,+~ = xo,,(A,). 
This value, A,, of the Levenberg parameter is ob- 
tained by solving llD, (xo(A) - xo,,)ll = 6,. Some 
of the important aspects of this algorithm are sum- 
marized in the following remarks. 

0 Note that  a t  each iteration, the Levenberg pa- 
rameter A, has to  obtained via an inner iter- 
ative loop. In each of these inner iterations 

for obtaining A,, we need to  solve Eq. (26) for 
xo,,(A). In the implementation of this algorithm 
by Mor6 [8], [9], a two stage Q R  procedure is 
used to  solve for the Levenberg parameter. In 
addition, this procedure factors the the Jacobian 
matrix so that  the intermediate parameters re- 
quired for updating 6, can be computed very 
efficiently. 

0 Another important aspect in the evaluation of 
A, is the choice of the iterative method used in 
solving the nonlinear equation in A. Newton’s 
method for solving nonlinear equations can be 
used, but a much more efficient iteration has 
been suggested by Hebden [lo] that  exploits the 
special structure of the problem. 

0 The ii element of the diagonal scaling matrix 
D, is updated a t  each iteration in the following 
manner: 

At the first iteration, we have [Do]ii = 
IlCOli ( r 0 ) l l .  

0 The radius of the model trust region 6, is up- 
dated based on how well the local quadratic ap- 
proximation predicts the change in the function 
value. The ratio d, of the actual to  the pre- 
dicted reduction in the function value is given 
by 

The  denominator of the expression on the right 
hand side of the above equation can be easily 
shown to  be non-negative. Depending on the 
value of d,, the following update strategy is 
adopted: 

- If 19, is negative, i t  implies that  the value 
of the cost function has increased instead 
of going down. This happens if the local 
quadratic model is totally inadequate. In 
such a case, 6, is drastically reduced (typ- 
ically by a factor of 10) and the value of 
the Levenberg parameter is recomputed. 
The  estimate is updated, i.e., XO,,+I = 
xO,, (A,) only if d, 2 0.0001 (a small pos- 
itive number). 

- If 0 < 19, 5 0.25, the estimate is accepted, 
but 6, is reduced for the next iteration, 
since values of d, considerably less than 
one indicate that  the local quadratic model 
does not accurately reflect the cost func- 
tion behavior. The  new trust region radius 
6,+1 is computed using, 6,+1 = p6,  where 
a value of p E [0.1 0.51 is chosen using a 
quadratic fit in the direction of the updated 
estimate. 
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- If 21 > 0.75, then we choose 6,+1 = 6, if 
A, = 0,  and 6,+1 M 26, if A, > 0. Since, 
in these cases, the local quadratic model 
seems to  be a reasonably good approxima- 
tion to  the actual cost function, the Gauss- 
Newton update may be appropriate. To 
allow this update to  be feasible, Sn+l  is in- 
creased. 

A detailed theoretical development of this algorithm 
can be found in [8 ] ,  [ll]. The algorithm is started 
using an initial point XO,O obtained using the initial- 
ization procedure described below. The algorithm 
has been found to  converge to  the solution, i.e., 
X O , N  x xgL after a reasonably small number of itera- 
tions N (approximately 5 to  15 iterations, depending 
on the scenario and also on the particular realization 
of the LOS measurements). Furthermore, the algo- 
rithm performs optimally for this application, since 
the minimized value of the cost function, f ( x ~ , ~ ) ,  
is shown to satisfy a certain statistical test that is 
equivalent to  the optimality of the algorithm. In ad- 
dition, the ML estimates are shown to be efficient, 
i.e., their covariance meets the CRLB. 

4.3 Algorithm Initialization 
In this section, a method for obtaining an initial es- 
timate X O , O  = [o,o]' is presented. A classical 
method attributed to  Laplace 111 can be used if all 
the LOS measurements originate from the same sen- 
sor, i.e., in a single sensor scenario. The  method 
described below is more general in the sense that it 
can be used both for single as well as for multiple 
sensor scenarios. 
Let the reference time t o  coincide with the T ' ~  mea- 
surement time instant t,, T E { l , .  . . , M } ,  and let p, 
be the unit LOS vector, which is formed using the 
measured angles z( T ) .  

(29) 

where pr is the (unknown) distance between the sen- 
sor and the target at t,. In order to obtain an initial 
value for the velocity vector we use a simple 
constant velocity model to  describe the target mo- 
tion. Using the LOS vectors p k ,  obtained from z(k) 
we can write 

60 ,o  4- i o , o ( t k  - t r )  = ' V , ( k ) ( t k )  + PkPk 
k = l ,  . . . ,  M ,  k # r  (30) 

Substituting from Eq. (29) and eliminating the 
unknowns pk by using the vector cross product 8, 
we obtain the following linear equations for the four 
unknowns p, and io,,: 

[ ~ k ( t k  - t r > 1 8  i o , ,  + [ ~ k  CQ P ~ I P ~  
= Pk @ [ Q ~ ( k ) ( ~ k )  - q ~ ( r ) ( ~ r ) ]  

k = l ,  . . . ,  M, k # r  (31) 

The above 2(M-1) linear equations can be solved (in 
the least squared error sense, since M 2 3) for the 

four unknowns a.nd p r .  Finally, can be de- 
termined by substituting p, back in Eq. (29). 

5. ESTIMATION WITH PRIOR INFORMA- 
TION 
In the previous section the set of measurements 2~ 
was the only information available. In most practi- 
cal scenarios the first scan (or measurement), made 
a t  time t l ,  is obtained approximately when the tar- 
get comes out of the atmosphere. In this case the 
altitude of the target at the first scan, i.e., a t  time 21 

is known to be within a certain range of values. In 
addition, it is assumed that  bounds on the speed of 
the target a t  11 are also available. 
In this section, we consider the estimation of the 
target state a t  the reference time t o  given the mea- 
surement set 2~ and additional information about 
some functions of the target state. The  prior infor- 
mation is not a full prior probability density func- 
tion on the state; thus, a standard MAP approach is 
not possible. The approach [la] will be to  model the 
prior information as "pseudo-measurements" of some 
functions of the state X O .  This keeps the problem 
within the ML estimation framework, but makes use 
of the (partial) prior information that  is (reasonable 
to  assume to be) available, i.e., i t  will yield a modi- 
fied ML estimate with incomplete prior (MLwp). Us- 
ing this approach, we shall first derive a new lower 
bound on the covariance matrix, taking into account 
the availability of prior information. Let ho(x) be 
a p x 1 vector of parameters about which additional 
information is available. This information is in the 
form of a probability density function p(zo), where 
zo is a pseudo-measurement. This can be modeled 
as the sum of the function hO(x;fRuE) and some ran- 
dom noise. The prior information is independent of 
the measurement set 2 ~ .  The pseudo-measurement 
is combined with ZM to  obtain the augmented mea- 
surement set 2, = 2~ U {zo}.  The  conditional pdf 
of the measurement set Z,, which is also the new 
likelihood function of xo, is 

(32) 
The mutual independence of the measurements also 
implies that the Fisher information due to  the dif- 
ferent measurements is additive. Let PCRLBwp be the 
new Cramer-Rao lower bound on the covariance. The  
inverse of this matrix is the sum of the individual in- 
formation matrices 

Az,(xo) = p(z,lxo) = P ( Z O I X O ) P ( ~ M I X O )  

PG~LB,, = + (33) 

where F0(x;fRUE) is the Fisher information matrix as- 
sociated with the measurement ZO, given by 

FO(X;fR"E) = 
~ { [ V x o ~ ~ , ( x o ) l  [VxoAzo (XO)I')Xo=XpUE (34) 

The expectation E { . }  in the above equation is over 
the pseudo-measurement zo and A,,(xo) is the log- 
likelihood function associated with i t  

&,(xo) = ~ogP(zo lxo )  (35) 
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Thus, 

Substituting the expressions for FO(XO) and P c R L ,  

from Eq. (15) in Eq. (33), PCRLBwp is given by 

The existence of F o ( x 0 )  depends on the integral on 
the r.h.s. of Eq. (36). By using a differentiable like- 
lihood function (e.g., a uniform pdf can be approxi- 
mated by a Butterworth function of sufficiently high 
order), F o ( x 0 )  is guaranteed to exist. 

5.1 C o n s t r a i n e d  E s t i m a t i o n  
In the above analysis, no assumptions have been 
made on the components of the vector h o ( x 0 )  or on 
the associated pdf p ( z 0 ) .  In this section, we present 
an estimation algorithm for the case when the tar- 
get altitude and speed at  the reference time to, are 
constrained to  be within known bounds. The com- 
ponents of the parameter vector ho(x) are the target 
altitude and speed, i.e., 

l l$o l l  
ho(xo) = [ 11t0111 

The  target altitude4 is bounded by a known interval 
Tmin < l lEo l l  < Tmax and the target speed is also as- 
sumed to be similarly bounded Vmin < l l i o l l  < Omax. 

The expression for the state estimate is obtained in 
a much simpler manner, without the necessity of us- 
ing a pseudo-measurement5, by forming a prior pdf 
directly on the state estimate xo as: 

where CO is the normalization constant. The poste- 
rior pdf of xo given the measurement set 2~ is 

where c1 is another normalization constant. The 
desired estimate xyLwp is the one that maximizes 
the above posterior pdf, or minimizes X ~ , ( X O )  = 
- logp(xo)ZM), the negative logarithm of the pos- 
terior pdf. Using Eqs. (14) and (39) in Eq. (40), we 

4The  alt i tude is actually IIEoll-Earth Radius, i.e., the dis- 
tance above the surface of the Earth.  For the sake of conve- 
nience, we consider the distance from the center of the Earth 
as the altitude. 

5The  use of the pseudo-measurement is useful in obtaining 
the CRLB; however, in the course of the optimization the use 
of an  equivalent constrained search is advantageous. 

can write 

else 

where 

Hence, we can write 

X M L w ~  = arg min f ( x 0 )  
XoEn 

X o E n  

0 

= arg min [ v(xO)’v(xo) ] (43) 

5.2 Covar iance  
The lower bound on the covariance matrix, P C R L B w p ,  

is obtained by computing the the Fisher information 
matrix Fo(xZRUE) and using it in Eq. (37). The inte- 
gral on the r.h.s. of Eq. (36) is evaluated (see Ap- 
pendix C) using a Butterworth approximation for 
the uniform prior pdfs of the altitude and speed (as- 
sumed independent), yielding 

where U, and U, are 

Substituting F o ( x 0 )  back into Eq. (37), P c , L B w p  is 
obtained. In a practical scenario, where the true tar- 
get state is not known, PMLwp, the covariance in the 
MLwp estimate, is approximated via: 

= { + r(xo)’r(xo) }xo=xyLwp (47) 

5.3 Constrained M i n i m i z a t i o n  A l g o r i t h m  
The MLwp state estimate is obtained as the solu- 
tion of a constrained minimization problem as indi- 
cated by Eqs. (43) and (42). In theory, general con- 
strained minimization algorithms (e.g., Lagrangian 
multiplier method) can be used to solve this prob- 
lem. A major difficulty in the practical implementa- 
tion of these methods lies in the fact that ,  a t  each 
iteration, they require the solution of a set of nonlin- 
ear equations (i.e., the constraints). The  nonlinear 
equations pertaining to  the problem at  hand (i.e., 
Eq. (42)) do not have a closed form solution and 
hence an iterative method (e.g., multidimensional 
Newton’s method [13]) has to be used. There are 
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quite a few problems associated with these itera- 
tive methods for solving multidimensional nonlinear 
equations, the major one being that all of them have 
convergence problems and are numerically very ex- 
pensive. The  algorithm presented below avoids these 
difficulties by taking advantage of the special struc- 
ture of the constraint equations. 
Let x;,, = [EL,, e,,,] be a feasible state estimate and 
v, be the vector of measurement residuals a t  the nth 
iteration. We partition the Jacobian I?, evaluated a t  
xO,, as rn = [rp, run], where 

‘ I  

i.e., rP and I‘,, (both 2M x 3 matrices) are the Ja-  
cobians of v(x0) w.r.t. to and to respectively. The 
algorithmic steps involved in obtaining the updated 
estimate x;,,+~ = (,,,+,] are explained be- 
low. 
In the unconstrained problem, the updated estimate 
is obtained as the minimum of the local quadratic 
approximation to  the cost function f(x0). This local 
quadratic model qn(xo) is given by 

. I  

qn(xo) = v’:,~, + 2v;r,(x0 - xO,,) 
+(xo - XO,,)/r’:,rn(X0 - xO,,) (50) 

I t  can be easily shown that  the unconstrained mini- 
mizer yk,, = [CL,, (:,,] of this local quadratic model 
qn(xo) is obtained by solving the linear least squares 
problem 

r n  YO,, = vn (51) 

In the present case, we minimize q,(xo) subject to 
altitude and speed constraints. Minimizing qn(xo) 
with both the constraints applied simultaneously is 
extremely difficult, as has been indicated at the be- 
ginning of this subsection. Hence, we start by apply- 
ing only the altitude constraint and using the speed 
constraint at a later stage, i.e., we first solve the fol- 
lowing problem: 

minimize qn(xo) 

such that  T i i n  < 11t011’ 5 r iax (52) 

Note that  if the unconstrained position estimate ob- 
tained by solving Eq. (51) is feasible (i.e., if r,in < 
[ / < o , , l [  < r,,,), we can directly accept it as the up- 
dated position estimate. In general, however, CO,, 
is not feasible, and hence a state estimate satisfying 
the altitude constraint is obtained by minimizing the 
following augmented cost function 

Sn(X0, a )  = Qn(X0) + a ( I l t o l l ’  - r’) (53) 

where a is the Lagrangian multiplier and 

The solution to  Eq. (53) is obtained by solving both 
VXogn(xo, a )  = 0 and Vag,(xO, a )  = 0. For a given 
value of a ,  VX,g,(xo, a )  = 0 can be solved to  obtain 
an estimate, say yo(a)’ = [Co(a)‘ iO(a) ’ ] .  I t  can be 
shown I141 that  this estimate y o ( a )  is obtained by 
solving the following linear equation 

= r:, ( r n x 0 , n  - vo) (55) 

Note that yo(0) = yo,,, i.e., the unconstrained esti- 
mate. Starting with a tentative value of a ,  we can 
iteratively solve the constraint equation IICo(a)ll = 
r (e.g., using Newton’s method) to  obtain the solu- 
tion a,. The updated position estimate is then given 
by 

EO,n+l = C o ( a n >  (56) 
If in addition, to(@,) satisfies the speed constraint, 
i.e., if Co(an) E (vmin,vmaX], then i t  can be taken 

as the updated velocity estimate: to,,+, = Co(an). 
In general, however, this need not be the case. In 
order to  keep the updated velocity in the feasible 
region, we use a damping factor ,Bn as follows: 

I I ‘  I/ 

, 
iO,,+l = io,, + Pn ( i d a n )  - E o , , )  (57) 

Since to,, is always feasible, there exists a value of 
Pn E (0,1] such that is also feasible. The  value 
of P, is obtained as the root (in [0,1]) of a quadratic 
equation. 

It can be seen that in this algorithm the altitude 
constraint plays a dominant role in that  i t  affects 
both the position and the velocity updates while the 
speed constraint is used only in updating the veloc- 
ity components. The algorithm is designed in this 
manner due to the fact that  the altitude constraint 
has a far more significant effect on the estimates than 
the speed constraint. In addition, it avoids the dif- 
ficulty of applying both the constraints simultane- 
ously. Since the search space is confined to  the fea- 
sible region, the initial starting point of the algo- 
rithm x0,o must also be feasible. Finally, since this 
algorithm is based on the damped Gauss-Newton 
method [ll], it has similar convergence character- 
istics in that convergence is assured if the starting 
point is sufficiently close to  the unconstrained mini- 
mum. 

I 
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5.4 Algorithm Initialization 
The initialization procedure presented in Section 3.3 
can be improved using the prior altitude and speed 
information. Following the same notation as in Sec- 
tion 3.3, we first note that 11[0,011 E [ T ~ ~ ~ , T ~ , , ] .  

Hence, a tentative value of l l < o , o l l  M 0.5(~min +Tmax)  

can be used to  determine pr as one of the positive 
roots of the following quadratic equation 

Substituting pr in Eq. (29) directly yields In 
addition Eq. (31) for io,, can be modified (since to,o 
is known) as follows 

[Pk(tk - t r ) l  '8 i o , ,  = Pk (8 [ V , ( k ) ( t k )  - t 0 , o l  

k = l ,  . . . ,  M ,  k # r  (60) 

The above set of 2(M - 1) linear equations is 
solved (i.e., in the least squared error sense) for to,o. 
Since we require that the speed constraint be satis- 
fied, the components of the velocity vector to,o ob- 
tained are scaled such that I l i o , o l l  % 0.5(vmin+vmax). 

6. RESULTS 
In this section we consider an example target- 
sensor(s) scenario and investigate the performance of 
the ML and the MLwp state estimators. The main 
goal of this numerical example is to illustrate the use- 
fulness of the theoretical bounds and also establish 
the fact that  the estimation algorithms are indeed 
optimal. Before we present the results the ground- 
truth scenario is described first. 
At the reference time t = Os, The ballistic ob- 
ject (target) is located a t  30"N latitude 45'E lon- 
gitude and at  an altitude of 50km, which yields 
[TRUE = [3936.42 3936.42 3214.07l'km as the 
true target position in the GCE coordinate frame. 
The target has a flight range of lOOOkm and is 
heading North-East a t  the reference time. This 

[-0.4028 0.1792 0.2360]'km/s as the true target ve- 
locity in the GCE coordinate frame. The LOS mea- 
surements are obtained from two satellites (SI and 
Sa), both of which are in circular orbits in the equa- 
torial plane rotating in the westward direction, a t  
an altitude of 1000km above mean sea level. At 
time t = 0,  the satellite S1 is located at  0" latitude 
and 0" longitude and satellite Sz is located a t  0" lat- 
itude and 90"E longitude. The generation of the tar- 
get trajectory and measurements from the moving 
satellites used the software in [15]. 
The measurement covariance Rs(k) for the sensor can 
be written in terms of uLos as follows: 

- - . TRUE 
range and heading specifications yield to 

where B ( k )  is the target elevation as seen by the sen- 
sor. We present results for uLos = 5, 10 and 25p rad. 

For simplicity, we assume that both sensors operate 
a t  the same o,,,. 
The extent of target observability depends not only 
on the sensor-target geometry, but also on the to- 
tal time of observation. Hence, in our simulation 
we fixed the total time window of observation (Twin) 
at  60 seconds and varied the sampling time inter- 
val: T,. For example, with T, = 1 s we have M = 
61 LOS measurements while with T, = 20s we get 
M = 4 LOS measurements. 
We consider the following two measurement scenar- 
ios: 1) a single sensor scenario where all the LOS mea- 
surements originate from sensor SI only; 2) a two 
sensor scenario where the LOS measurements come 
from the two sensors S1 and Sa in an alternating 
fashion, with the sensor 5'1 making the first mea- 
surement. All the simulated results are based on 100 
Monte Carlo runs. 

6.1 Residual Measurement Error 
Given a target state estimate xo, the value of the nor- 
malized residual measurement error f (xo) is a mea- 
sure of the "goodness of fit" between the actual mea- 
surements and the predicted measurements. It can 
be easily shown that the residual measurement error 
evaluated at  the true target state, f T R U E  = f (x;fRuE) 
is chi-squared distributed with mn, degrees of free- 
dom (n ,  = 2 and m = number of LOS measurements, 
in the present problem). 

The ML estimate, x f L ,  is the unconstrained mini- 
mizer of the cost function. In a completely linear 
setting, it can be shown (e.g., [5]) that  this minimum 
value, f M L  = f (xfL) is chi-squared distributed with 
(mn, - n,) degrees of freedom (n ,  = 6 in this case). 
This latter property is very useful both in simula- 
tions and in real time applications for evaluating the 
optimality of estimators. In the present nonlinear 
context, we can expect this property 

(63) 
2 

f M L  - Xmn,-n, 

to hold approximately. 
The constrained estimate, xyLwp, which is obtained 
using the prior information, may not always be the 
global minimum. Hence, the associated residual 
measurement error f M L w p  = f (xrLwp) is in general 
slightly greater than f M L .  Using Eq. (63) we can 
obtain the 95% two-sided probability region for the 
average value of f M L  over N Monte Carlo runs as 
follows6 

- 2 
X ( 2 M  - 6)N(0.975> 

I f M L  N 

6The notation used indicates that the probability mass to 
the left of the point xz(cx) is equal to a. 
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7 10.0 7.23 8.62 ( 9.14) 8.46 ( 8.99) 7.62 ( 8.80) 
6 12.0 5.34 6.24 ( 7.06) 6.28 ( 7.18) 6.46 ( 7.34) 

4 20.0 1.62 1.75 ( 2.21) 1.76 ( 2.45) 1.98 ( 3.07) 
5 15.0 3.46 3.81 ( 4.41) 3.69 ( 4.29) 3.88 ( 5.04) 

8.80 
6.69 
4.57 
2.41 

- - 
f,, and f,,,, averaged over 100 M o n t e  Carlo runs. 
T i m e  interval between the f irst and the  last measurements is G O  s 

Table 1: Residual measurement error for the single sensor scenario w i th  60 s observation window. 

- - 
f,, and f M L w p  averaged over 100 Mon te  Carlo runs. 
T i m e  interval between the f irst and the last measurements is G O  s. 
The f irst LOS measurement is f r o m  sensor SI, t h e  next one is f r o m  Sa, and so on  i n  an alternating fashion. 

Table 2: Residual measurement error for the two  sensor scenario w i th  GO s observation window 

where f:? is the residual error in the ith Monte Carlo 
run. 
The  values of f,, (and f M L w , )  averaged over 100 
monte Carlo runs, and the corresponding 95% confi- 
dence bounds, are listed in Tables 1 and 2. Table 1 
is for the single sensor scenario and Table 2 is for 
the two sensor scenario. I t  can be seen that f,, lies 
within its 95% bounds in both the scenarios. 
In the single satellite scenario (see Table l), f,,,, is 
slightly higher than f,, for M < 10. This is due to  
the fact that  we are trading off residual measurement 
error for less estimation errors. Interestingly, - in the 
two sensor scenario (see Table 2) f,, and f,,,, are 
almost identical. The  use of two satellites yields a 
large improvement in the target observability ensur- 
ing very low estimation errors. Hence, in this case, 
the additional target information is redundant. 

6.2 RMS Position and Velocity Errors 
The position and velocity RMS errors for the sin- 
gle sensor scenario are presented in Figures 1 and 2. 
The  RMS errors of the ML and the M L w p  are plotted 
separately due to  the large difference in their magni- 
tudes. The  Cramer-Rao bounds on these errors are 

also indicated for both the ML and the M L w p  cases. 
The simulated values of position and velocity errors 
are obtained from the diagonal elements of the sam- 
ple Mean-Square Error matrix over 100 Monte Carlo 
runs. 
Note the large difference between the position errors 
in the ML and the M L w p  estimates in Figure 1. This 
error reduction is achieved by utilizing the available 
partial prior information which is very valuable in 
poor target observability situations. As the target 
observability improves (either due to  increased num- 
ber measurements, or reduced sensor noise levels) the 
prior information becomes less important and there 
is not much difference in the errors in the ML and 
the M L w p  estimates. Also, note a similar differ- 
ence (though to a much lesser extent) between the 
velocity errors in the ML and the M L w p  estimates 
shown in Figure 2. In addition] note that  the actual 
errors are commensurate with the theoretical values, 
an indication of the efficiency of the estimates. 
The RMS position and velocity errors for the two 
satellite scenario are shown in Figures 3 and 4. First, 
note the dramatic reduction in the magnitudes of 
the errors (as compared to  the single satellite case), 
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Figure 1: Normalized RMS position error for the single sensor scenario with 60 s observation window. 

which is a direct result of the enhancement in target 
observability. Secondly, the prior information is of 
negligible value, since the errors in the ML and the 
MLwp estimates are identical. 

6.3 Efficiency and Consistency 
The RMS errors indicate the efficiency of the esti- 
mator by considering only the diagonal terms of the 
covariance matrix. A more rigorous test of the ef- 
ficiency of the estimator is obtained by taking into 
consideration the entire covariance matrix. The nor- 
malized est ima2ion error squared (NEES) [5] is de- 
fined as 

CY,L = [xfL - 0 X T R U E ] l p - l  C R L B  [xfL - x ; ~ ' ~ ]  (65) 

If the estimator is unbiased and if its covariance is 
equal to  PCRLBr (i.e., i t  is e f ic ien l ) ,  then CY,, defined 
above is chi-squared distributed with n, (i.e., 6 in 
the present problem) degrees of freedom. Taking the 
average value over N Monte Carlo runs, the 95% 
probability bound on E,, is 

where  CY:^ is the NEES calculated in the ith Monte 
Carlo run. Both estimator bias and inefficiency 
would tend to  make E,, lie outside these statistical 
bounds. 
The  estirnator-calculated covariance P,,, has to be 
consistent with its actual covariance. This consis- 
tency of the estimator is very important because in 
practical applications only the estimator calculated 
covariance is available, and any inconsistency (opti- 
mistic or pessimistic) would make the estimator per- 
form suboptimally. The  same NEES as defined above 

can be used, with the estimator calculated covariance 
PML in place of PCRLB, as a measure of the estimator 
consistency 

Taking the average value of P M L  over N Monte Ca.rlo 
runs, we get 

~ i ~ ( 0 . 9 7 5 )  - 
I P M L  N 

where is the NEES calculated in the ith Monte 
Carlo run. 
The measures of efficiency E,,,, and consis- 
tency p,,,, for the MLwp estimator are defined as 
above with xyLwp, PCRLBwp and PMLwp used in place 
of xf', P C R L B  and P M L  respectively. 
The NEES measures of efficiency and consistency 
for the ML and MLwp estimators are shown in Fig- 
ures 5 and 6 for the single sensor scenario in Fig- 
ures 7 and 8 for the two sensor scenario. With a few 
exceptions (i.e., for A4 < l o ) ,  it can be seen that  for 
both scenarios the estimators are both efficient and 
consistent. This result establishes the claim that  the 
estimator achieves the CRLB. 

- 

6.4 Altitude and Speed Errors 
In this subsection we present the 2 x 2 matrices 
HCRLB and H C R L B ~ ~ ,  which are the approximate 
lower bounds on the covariance of the estimated al- 
titude, speed for the ML and MLwp estimators re- 
spectively. Using this covariance matrix we plot the 
2a error ellipse on the altitude-speed axes along with 
a scatter plot of the altitude-speed estimates from the 
individual Monte Carlo runs. 



86 

450 500c 200 

180- 

160- 

140- 
0 
: 120- 

I 60 40 2oo 

- 

25 ura 

10 urad 

l:::: i o  i o  30 40 i o  $0 

\ 25 urad 

400 

350 

300 
0 ' 250- 

200 

150- 

100- 

50 

z 
25 urad \\\ 

- 

- 

- 

- 

- 

0; lb 20 30 40 i o  60 
M --> 

. . . . . .  Cramer-Rao Bound; 

2201 The MLwp-cas 

M ---5 

- Simulated Result. 

Figure 2: Normalized RMS velocity error for the single sensor scenario w i th  GOs observation window. 

We define the 2 x 1 vector ho(x0) whose components 
are the target altitude and speed as 

l l $o l l  
ho(xo) = [ I l t o l l  I 

The desired covariance matrices HCRLB and 
HCRLB~,,  can be approximated using the Jacobian 
of h o ( x 0 )  with respect to  xo evaluated a t  the true 
target state xzRuE = as follows 

HCRL13 

[ V X ~ ~ O  (x:~"")']' P C R L B  [ V X , ~ O  (xzRUE)'] (70) 
N 

f f c R L , w p  - 
[ V X ~ ~ O  (x;fRUE)']' J'CRLBwp [Vxoho (x:~"~)']  (71) 

The expression for VXoho (xo)' can be easily shown 
to be given by the following equation 

dh O g , l  
[Vxoho(xo)'l = 1 O S X 1  & ]  (72) 

In Figures 9 and 10 the scatter plot of altitude and 
speed estimates for the single and two sensor scenar- 
ios is shown. In this case, the sampling time is fixed 
a t  3 sec (i.e., 21 scans) and cLOs = l0prad. Note that  
in the M L w p  case for the single sensor scenario shown 
in Figure 9 all the altitude estimates are constrained 
within f 2 5  km from the true altitude (50 km) and 
the speed bound of f 0 . 5  km/s is not tight enough to  
make a similar impact on the speed estimates. Once 
again note the rather large difference between the 
ML and M L w p  altitude errors, for the single sensor 
scenario (shown in Figure 9). 
In the two sensor scenario (Figure 10) the dramatic 
reduction in the magnitudes of the errors (as com- 
pared to  the single satellite case) is once again a di- 
rect result of the enhanced observability. As has been 

seen before in the case of position errors, the prior 
information is of negligible value, since the errors in 
the ML and the M L w p  estimates are identical. 

6.5 Launch and Impact Point Errors 
The exoatmospheric trajectory of the target is com- 
pletely determined by the target state xo a t  the 
reference time to, because the target dynamics are 
completely determined by Keppler's laws. But, dur- 
ing the boost and re-entry phases, the effect of the 
Earth's atmosphere and the thrust (in the boost 
phase) play a major role in determining the motion of 
the target. An accurate determination of the launch 
and impact points of the target would require a com- 
pletely different motion model which is beyond the 
scope of this chapter, hence we shall estimate the 
launch and impact point errors under the simplifying 
assumption that  the entire target trajectory (from 
launch to  impact) is governed only by Keppler's laws. 
This reflects the contribution of the estimation errors 
on the accuracy of the trajectory extrapolation. Ad- 
ditional errors not accounted for here, would be from 
imperfect thrust/drag modeling. 
In Figures 11 and 12 the launch point estimates for 
the single and two sensor scenarios are shown, for 
T, = 3 sec (i.e., 21 scans) and U,,, = 10prad. The  
2u error ellipses are plotted using the sample covari- 
ance matrices. In the single sensor scenario (Fig- 
ure l l ) ,  the launch point errors are considerably less 
in the ML wp case as compared to  the ML case. Also, 
the clustering of the sample points in the M L w p  case 
is due to  the constraints on the target altitude. In 
sharp contrast, the two sensor scenario (Figure 12) 
yields very accurate launch point estimates. As in- 
dicated above, these errors reflect only the contri- 
bution of the estimation errors a t  t o ;  The use of a 
thrust profile and motion equations with drag with 
appropriate errors would be necessary to  complete 
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Figure 3: Normalized RMS position error for the two sensor scenario with 60s observation window 

the error picture. 
The  impact point errors for the single and two sensor 
scenarios are shown in Figures 13 and 14 respectively. 
Note that  the the impact point is a t  a far longer dis- 
tance away (compared to  the launch point) from the 
estimated state a t  the reference time. Hence, the 
impact point errors are higher than the launch point 
errors. In the single sensor scenario (Figure 13), the 
MLwp estimator still yields considerably less error 
than the ML estimator. I t  can be seen from Figure 14 
that  in the two sensor scenario the impact point 
can be determined fairly accurately, even though the 
state estimate was at a far earlier point in time. 
Finally, we would like to  reiterate that  both the 
launch and impact point errors would in general 
be higher if the thrust of the missile during the 
boost phase and the effects of the Earth’s atmo- 
sphere (e.g., atmospheric drag during the re-entry 
phase) and the associated errors are not neglected. 
Nonetheless, this example illustrates the possible ap- 
plication of the methods presented in this chapter in 
determining the origin and the destination of a bal- 
listic missile. 

7. CONCLUSIONS 
We have presented a robust algorithm to estimate 
the trajectory of a ballistic object from angle-only 
measurements and also incorporating additional tra- 
jectory information. Furthermore, the Cramer-Rao 
lower bounds on the covariance matrix for both the 
ML and MLwp cases have been derived. The re- 
sults indicate that  even with poor observability, the 
algorithm provides a reliable estimate of the target 
trajectory. The  incorporation of additional target 
motion information yields significant improvement in 
the estimation errors in single satellite scenarios, par- 
ticularly when the number of LOS measurements is 
small. The  use of da ta  from more than one satellite 

improves target observability and yields estimates of 
much higher accuracy. 
There are still some unresolved issues that  are re- 
lated to  the problem of ballistic trajectory estima- 
tion. There do not exist any analytical results relat- 
ing the observability of the target to  the position of 
the sensor(s). Such a result is very useful in strategi- 
cally locating sensor satellites so as to  maximize the 
observability of a target launched from some partic- 
ular region on the Earth’s surface. Incorporation of 
probabilistic prior information on attributes of target 
trajectory, such as the target flight angle and head- 
ing angle, into the framework of the modified ML 
approach is currently under investigation. 
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A. Algorithm for State Propagation 
Presented below is an algorithm that propagates the 
state of an object in a balllstic trajectory around the 
earth. Let x(t)’ = [[(t)’ [(t)’] = f ( x o , t o , t )  be the 
unknown state to be computed given the time t ,  a 
reference state xb = x(t0)’ = [[L Eo] and the ref- 
erence time to. The underlying theoretical concepts 
and the derivation of the equations used in this algo- 
rithm can be found in [l]. The gravitational parame- 
ter /I = 3.986012 x lo5  km3/sec2 and the convergence 
check parameter T O L  = 

’ /  

are used. 

STEP 1 

STEP 2 
if (a0 >_ 0) 

else 
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STEP 3 
p := uoa’2; 

else 
l - c o s h ( f i ) .  

P 
s inh(  -)- fl. 

c := 

s := 

’ 

P J - P  1 

STEP 4 
T := poa3s + qoa2c + %a; 

a ! : = & +  [-f] d -’ [ ( t - t o ) - T ] ;  

:= poCy2c + q o a ( 1 -  sp)  + 5; de  

STEP 5 
if ( [ ( t  - t o )  - T] > T O L )  

goto STEP 3 

The above steps yield the required state x(t)’ = 
[[(t)’ i(t)’] a t  time t .  For computing the Jacobian 
r (x0)  we require the 6 x 3 matrix V x 0 t ( t ) .  The com- 
putation of this matrix involves the following addi- 
tional steps. 

STEP 8 

STEP 10 
A := 

STEP 11 

B. Computation of the Jacobian 
The procedure to evaluate the Jacobian I’(x0) given 
the target state xo at time t o  is presented below. It 
can be seen from Eq. (12) that the Jacobian can be 
divided into A4 sub-blocks as: 

Each of these I‘k(x0) IC = 1 . . . M sub-blocks is a 2 x 6 
matrix. Since the Jacobian is formed by stacking up 
these individual sub-blocks, we shall only consider 
the computation of the kth sub-block, rk(x0). Dif- 
ferentiating hk(x0) in Eq. (4) with respect to xo we 
obtain 

I’k(x0) = -R:(!) [Vx,hk(x~)’]’  = -Ri(!) . 

Note that Vx0EZ(tk), Vx,S,(tk) and V ~ , < , ( t k )  are 
the three columns of the 6 x 3 matrix VXo<(tk)’. 
Once again differentiating the range pk(x0) in Eq. (5) 
we obtain 

PXOE(tk)’I [ E ( t k )  - % ( k ) ( t k ) ]  
Vxopk(xo) = (75) 

P k  (XO) 
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I t  can be seen 3m the above Eqs. ( 1) and (75) 
that in order to  compute I 'k (x0)  it-only remains for 
the matrix VXo<(tk)' to  be calculated. The  com- 
putation of this matrix involves the evaluation of 
steps 8 to  12 (in addition to  steps 1 to  7) of the 
algorithm given in Appendix A. 

C. Computation of the Fisher information 
The prior pdf p ( z o l x 0 )  on the altitude and speed is 
modeled using an N'h order Butterworth function as: 

p(z0lx0) = P(ZOr(XO)P(ZOvIXO) 

- K ( A r , N )  . K(AV , N )  
2N (76) 2N - 

- [""b;'"] 

where A,. = 0.5 [rmax - rmin], A, = 0.5 [Vmax - urnin]; 

K(A, N) = s s i n  (&) is the normalization constant 
for the Nth order Butterworth function and zo = 
[ t o r  to,,]' is the 2 x 1 pseudo measurement on the 
parameters 

h o ( x 0 )  = [ ;; ] = [ l l$o l l  ] (77) l l t o l l  
Since p ( z o l x 0 )  depends on T O  and vo and not directly 
on XO, we can expand the integral in Eq. (36) using 
the chain rule as 

Fo(x0) = [ V x , h o ( x o ) ' ]  

Using the definition of h o ( x 0 )  we obtain 

The  integration in the above equation can be sepa- 
rated in two separate integrals over to,. and zo, be- 
cause the pdf p ( z 0  1x0) is separable in t o r  and 20, . In 
addition using Eq. (79) in Eq. (78) yields the follow- 
ing simplification 

[ FO(X0) = 

where 

(82) 

Using the definition of p(zo, . lxo)  and p(t .0 ,  1x0) given 
in Ey. (76) and simplifying, both the above definite 

integrals can be reduced to  the following form, which 
has a closed form solution [16] 

2-' 

A 
N - -  - 

Substituting the above result back in Eq. (80), the 
result given in Eqs. (44) and (46) follows. 



91 

68 78 

5.2 

I O  20 30 40 50 60 
M ---> 

5.2 5'4/ 

I 
5' lb 20 30 40 50 60 

M ---> 

. . . . . .  95% Probability Region. 

Figure 5: Estimator efficiency for the single sensor scenario with 60 s observation window. 

68 73 

\ I  
\ I  

5.2 

I 
IO 20 30 40 50 60 

M ---> 

5.21 1 
I 

10 20 30 40 50 60 
5' 

M ---> 

. 95% Probability Region. 

Figure 6: Estimator consistency for the single sensor scenario with 60 s observation window. 



92 

6 6  
,' I 

7 

6.8- 6.8 - 

6.6 - 6.6 - 
,' 1 

I 1  
.' I 

1 1  
6.4- I I 6.4- I I 

I 1  I I  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ............................................................................... 

6.41 I -  
0 ,  

5.2 - 5.2 

The MLwo ca 7 

- 

6.4 :''Ill I I 

5.21 10 20 30 40 50 60 5.2.1 10 20 30 40 50 60 

M ---> M ---> 

. . . . . .  95% Probability Region. 

Figure 7: Estimator efficiency for the two sensor scenario with 60 s observation window. 



93 

3.3 3.3 I 
The MI 

: 10 urad 

I 
0 100 200 300 
altitude (km) 

2.7' 
-200 -100 

3.2 - 

3.1 - - 
I 
Y 
a 

3-. . . . .  

:: 
2.9 - 

2.8 - 

I 
20 40 60 80 100 2.7' 

0 
altitude (km) 

. . . . . .  True values; - 2u Error ellipse (using CRLB); + Sample points; o Sample mean 

Figure 9: Altitude and Speed estimates for the single sensor scenario with 60s  observation window 

The M!&.am 2.996 2.996 
The MI wsax~ 

(1 

2.988- 2.988 - 

2.986- 2.986- 

+ + 

2'98&35 4d.9 49195 !50 50:05 50.1 50.15 
2'9%.85 49.9 49195 ;O 50105 5d.l altitude (km) 

50.15 
altitude (km) 

. . . . . . True values; - 2u Error ellipse (using CRLB); + Sample points; o Sample mean. 

Figure 10: Altitude and Speed estimates for the two sensor scenario with 60 s observation window 



94 

250 The 

0.25- 

0.2 - + 0.2 - + 

200 

150- 

100- 

$ 50- 

- 

- 
S c 0 0- - 
$ -50- 

-100- 

-1 50 - 

-200 - 

-0.2 - -0.2- 

+ 

. ... 

The 60 

40t 
10 urad 

21 scans 

- : 20 Error ellipse (using sample covariance); + Sample points; o Sample mean. 

Figure 11: Launch Point Error for the  single sensor scenario with 60s  observation window. 

- : 2a Error ellipse (using sample covariance); + Sample points; o Sample mean. 

Figure 12: Launch Point Error for the two sensor scenario with 60 s observation window 



The M!-cas 

-200 -100 0 100 200 
km (east --->) 

I 

95 

80 The 

60 - 

40 - 

- 20- 1 
r K 0- . .  - 
E 
Y -20- 

-40 - 

-60- 

-%?A0 -140 -100 -50 0 50 100 150 2;o 
km (east --->) 

- : 2a Error ellipse (using sample covariance); + Sample points; o Sample mean. 

Figure 13: Impact Point Error for the single sensor scenario with 6 0 s  observation window. 

2.5 The 

I 
-3 -2 -1 0 1 2 3 

km (east --->) 

-2.5' I 
-3 -2 -1 0 1 2 3 

km (east --->) 

-2.5' 

- : 2a Error ellipse (using sample covariance); + Sample points; o Sample mean 

Figure 14: Impact Point Error for the two sensor scenario with 60 s observation window 



96 

APPLICATION OF MULTIPLE HYPOTHESIS TRACKING TO MULTI-RADAR AIR 
DEFENSE SYSTEMS 

S. S. Blackman, R. J. Dempster and T. S. Nichols 
Hughes Aircraft Company 

P. 0. Box 902 
El Segundo, California 90245 

USA 
(310) 616-1918 

SUMMARY 
This chapter discusses a multi-radar air defense 
system implementation that utilizes central-level 
observation (plot) processing and Multiple 
Hypothesis Tracking (MHT) data association. 
The chapter begins with an overview of the air 
defense system application and a discussion of 
the reasons MHT data association has been 
chosen. Next, the transformation of plot data 
from multiple distributed radars to a common 
stereographic coordinate system is described 
and the approach to registration is outlined. 
The mathematical basis and the implementation 
logic for the track-oriented MHT algorithm are 
described. This includes a discussion of the 
clustering, pruning and merging methods that 
have been developed to make implementation 
feasible. The manner in which the output of the 
MHT tracker is presented to the user is also 
described. 
A number of features make the multi-radar air 
defense application more complex than single 
sensor systems. These include the variety and 
asynchronous nature of the input data, the 
potential for variable and heavy clutter densities 
and stringent false track confirmation 
requirements. This chapter will present the 
specific methods that have been developed to 
adapt the general MHT algorithms to these 
requirements. It will show how false track 
requirements can be related to the MHT track 
confirmation threshold through the use of the 
Sequential Probability Ratio Test (SPRT). 
Finally, analytic and simulation methods that 
have been developed and applied to predict 
performance of an air defense tracking system 
are discussed and representative results are 
presented. 
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planes 
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acceleration of earth's gravity 
altitude extent of clutter returns 

height of the radar site above sea-level 

target height above sea-level measured 
by radar 
distance of radar site from center of earth 

distance of target from center of earth 

hypothesis that a set of plots consists 
entirely of false detections 
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hypothesis that a set of plots arises from 
a single true target 
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likelihood score of track i 

sensor measurement dimensionally 
average number of false alarms per 
second 
number of radars in system 

estimated probability of detection 

false alarm probability 

probability of track validity 

transformed measurement covariance of 
target position error 
target range measured by radar 

Ground range from radar to target 

Maximum range of radar 

Minimum range of radar 

residual covariance matrix 
basic scan interval for application of 
miss penalty 

expected true track confirmation time 

I 

expected time between false track 
confirmations 
processing interval length 

scan time required by the sensor to cover 
volume cv 
scan time of radar i 

equivalent radar sampling interval 

track deletion threshold 

track confirmation threshold 

the expected time at which 90 percent of 
target tracks will be confirmed 
target location with respect to master 
stereographic plane in complex 
coordinates 
radar site location with respect to master 
stereographic plane in complex 
coordinates 
complex conjugate of w 

x-coordinate of transformed target 
position 
x-coordinate of target position with 
respect to the local stereographic plane 
x-component of target ground range 

y-coordinate of transformed target 
position 
y-coordinate of target position with 
respect to the local stereographic plane 
y-component of target ground range 

measurement residual vector 

target location with respect to local 
stereographic plane in complex 
coordinates 
false track acceptance probability 
true track rejection probability 
angle of rotation between local and 
master stereographic planes 
false target density 

false target density for radar i 

nominal (average) false target (noise, 
clutter) density 
new target density 

nominal (average) new target density 

target elevation measured by radar 

radar elevation limit 

target azimuth measured by radar 



98 

“Iim 

A L ( ~ )  

Ah 

rn h 

h 

cp 

‘pm 

‘ps 

‘rn 

‘s 

# 

P 

(T 
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g 
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(T 

2 
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(T 

V O  

w 

radar azimuth limit 

track score increment at time interval k 

difference between longitudes of radar 
site and master stereographic coordinate 
system 
longitude of master stereographic 
coordinate system 
longitude of radar site 

geodetic latitude 
geodetic latitude of master stereographic 
coordinate system origin 
geodetic latitude of radar site 

conformal latitude 
conformal latitude of stereographic 
coordinate system origin 
conformal latitude of radar site 

correlation of transformed target x and y 
position coordinates 
standard deviation of measured target 

height 

variance of stereographic ground range 

standard deviation of measured target 

slant range 

variance of transformed target x position 

covariance of transformed target x,y 
position 

variance of transformed target y position 

standard deviation of measured target 

azimuth 
central spherical angle between the radar 
site and stereographic coordinate system 
origin 

1. TARGET TRACKING 
This chapter addresses target tracking in the 
context of air defense. The air defense mission 
is to defend assets against hostile aircraft and 
missiles by intercepting them with friendly 
aircraft or missiles. Both hostile and friendly 
targets may employ sharp maneuvers, up to 9 g 
for aircraft and even higher for missiles. 
The goal of the target tracking function is to 
process sensor observations to provide accurate 
target position and velocity estimates, to 
maintain continuity of target identification, and 
to discriminate targets of interest (aircraft and 
missiles) from noise and clutter. Target 
measurements for this purpose come from two 
types of sensors, secondary surveillance radars 
(SSRs) and primary surveillance radars (PSRs). 

1 

1.1 Air Defense Radars 
SSRs transmit interrogation signals. They 
detect and measure the responses of aircraft 
equipped with compatible transponders. As a 
result, SSRs detect only aircraft with active 
transponders, and they are not useful in tracking 
unequipped civilian aircraft or hostile aircraft. 
Based on the measured target parameters, an 
SSR outputs target observations, commonly 
known as plots, comprising the measured target 
azimuth and range, transponder codes (used for 
target identification) and, in some cases, target 
height as reported by the transponders 
PSRs transmit radio or microwave pulses. They 
detect and measure the reflections of these 
pulses from objects in the environment. Objects 
that reflect sufficient energy back to the PSR are 
detected. As a result, primary radars detect 
birds, automobiles, swarms of insects, ocean 
waves, mountains and other extraneous objects. 
These extraneous observations are known as 
clutter. PSRs report plots comprising azimuth, 
range and, in some cases, height. However, 
many older PSRs do not measure target 
elevation and are thus unable to report height. 
Capabilities of PSRs vary widely. While some 
high data rate PSRs are being employed, most 
are not very accurate (e.g. the MPDR-90, with 
a 90 kilometer range, 4 second data rate, and 
accuracies of 8 milliradians in azimuth and 250 
meters in range). More typical are the long 
range, low-data rate PSRs, typified by the 
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ANFPS-117, with a 12 sec0 d data rate, 
maximum range of 350-450 km, and accuracy 
of 250 meters in range and 2.5 milliradians in 
azimuth. PSRs are often positioned to provide 
overlapping coverage for the air defense 
mission, resulting in measurement update rates 
of 1 per second or more on close-in targets. 

1.2 Plot-to-Track Association 
Given a set of radar measurements, the target 
tracker must associate the new measurements of 
the targets with the tracks that represent them. 
The efficacy of this function determines 
whether the target is consistently identified with 
a single track. Errors or changes in track 
identity can result in track swaps or track loss. 
In the air defense mission, such ambiguities can 
result in significant errors such as firing on 
friendly aircraft. 
The degree of difficulty of associating 
observations with the correct tracks depends on 
the type of sensor. An aircraft transponder 
provides an identification code to an 
interrogating SSR. While this code can be 
garbled in a number of ways, it provides a 
reasonably reliable means of associating 
observations with tracks. Some radar sites 
support both a PSR and an SSR aligned on the 
same mounting. The measurements of the two 
radars are often combined to form reinforced 
plots, constructed using the better source for 
each reported parameter. Observations made by 
PSRs alone have no identification codes. Thus, 
association of a PSR observation must be made 
on the basis of proximity of the measured target 
position to a track position estimate, an 
association that can have a high degree of 
uncertainty. The use of Multiple Hypothesis 
Tracking (MHT) for making reliable association 
decisions under uncertainty is the principle 
subject of this chapter. 

1.3 Environmental Considerations 
In air defense applications, the tracking 
environment can significantly affect the 
performance of the tracker. Noise jamming can 
be used by hostile forces to degrade or deny 
target detection. However, the newer 
generations of radars use adaptive nulling 
techniques to reduce the effects of noise 
jamming by suppressing the received signal at 
the jammer azimuths. Other electronic 

countermeasures (ECM) use deception to avoid 
detection by radars. 
Clutter observations compound the difficulty of 
associating observations with tracks. If one or 
more clutter and target observations can be 
associated with the same track, then the 
likelihood of making an incorrect association 
increases. 

1.4 Target Tracking Filters 
When a measurement is associated with a track, 
it is used to update the track estimate of target 
position, velocity, and (in some cases) 
acceleration. This is typically accomplished 
with one of several types of tracking filters. 
The accuracy of the target position and motion 
estimates depend in part on how well the 
kinematic model (or models) used in the filter 
matches the target motion. If the range of 
maneuvers that the target can execute is small 
and well-defined, it is often possible to 
construct a filter that can provide very accurate 
position and velocity estimates, given accurate 
sensor measurements and a high data rate. If 
the target maneuvers do not match the filter's 
kinematic model(s), if the data rate is too low, 
or if the sensor measurement accuracy is poor, 
then track position and velocity estimate will be 
less accurate. In air defense applications, a 
trade-off often must be made between accuracy 
of the filter in tracking constant-velocity targets 
and accuracy and responsiveness of the filter 
during target maneuvers. 
In the 1960s, low computer throughput rates 
necessitated the use of alpha-beta filters for 
target tracking. A tracking filter updates the 
track position and velocity by forming a 
weighted average of the predicted track position 
and the plot position. The alpha-beta filter uses 
a fixed gain (weighting) or a gain schedule. The 
gain schedule decreases the gains over time to 
an assumed steady-state level. A constant 
velocity target motion model is used and a 
maneuver detection scheme is employed to 
determine when the target dynamics no longer 
match the constant velocity model. At this 
point, the filter reverts to higher gains, allowing 
the filter to give more weight to target 
measurements. When the maneuver is 
completed, the gain schedule is again employed 
to force the filter to steady state convergence. 
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As computer throughput increased in the 1970s, 
Kalman filtering was employed in target 
tracking. Kalman filtering has the advantage of 
dynamically adapting gains to changing target 
trajectories at the expense of increased 
computational complexity. It allows faster 
convergence to a steady state. However, it 
assumes a single target motion model and a 
maneuver detector is still required to determine 
when the target's motion does not match the 
model. The methods used to respond to these 
occurrences are similar to those used with 
alpha-beta filters. For a discussion of tracking 
filters in general and the alpha-beta and Kalman 
filtering methods in particular, see [ 11. 
In the 1980s, multiple model filters were 
developed. These tracking filters employ 
several Kalman filters running in parallel, each 
with a different target motion model. The 
goodness of the fit between the target 
measurements and the motion models is 
monitored. At any given time the filter state of 
the best model, or an appropriately weighted 
combination of filter states, is selected for 
further processing and for display. A successful 
multiple model filter for air defense applications 
is the Interactive Multiple Model (IMM) filter 
[2]. Several variations of IMM filters are being 
employed in the current generation of air 
defense trackers. 
Simulation results for the system described in 
this chapter were obtained using Kalman 
filtering with maneuver detection. 

1.5 Sensor Level Tracking vs. Centralized 
Tracking 
Two philosophies of target tracking are used in 
air defense, sensor level tracking and 
centralized tracking. The sensor level tracking 
approach forms tracks using the output of each 
radar and then combines the tracks formed on 
each target to form a composite track. The 
centralized approach processes plots from 
multiple radars directly to form composite 
tracks . 
The advantage of the sensor level method is that 
each sensor's data can be processed 
independently to form tracks using a simplified 
tracker and a computer with relatively low 
processing speed. Processing is distributed 
across multiple computers. The communication 
bandwidth required for sensor level tracking is 

small since only the processed tracks need to be 
transmitted to a central facility. However, in 
most applications, the plot data is desired for 
display and must be transmitted to the central 
level anyway. 
The centralized tracking approach has the 
advantage of using all the information contained 
in the plots, as opposed to the limited 
information contained in single sensor tracks, to 
form the composite tracks. As a result, it 
produces more accurate tracks and has the 
potential to correctly resolve ambiguities more 
frequently than the sensor level approach. This 
improved tracking performance comes at the 
expense of a more complex tracker and higher 
performance computing resources. 
Radars in an air defense system may be 
separated by hundreds of kilometers. Thus, 
both tracking philosophies require special 
methods to transform the multiple radar data to 
a common coordinate system such as the 
stereographic coordinate system. Also, 
registration methods are required to reduce 
multi-radar bias errors. The stereographic 
coordinate transformations and registration are 
discussed in Section 2. 

1.6 MHT vs. Other Target Tracking 
Approaches 
The MHT approach to target tracking differs 
from other approaches in the way in which plots 
are associated with tracks. This is a crucial step 
in any tracking approach. Association errors 
can cause inaccurate track state estimates, track 
loss and track misidentification. Where other 
methods make an immediate and irrevocable 
decision about which plots to assign to each 
track, MHT forms several branches on each 
track representing different possible 
associations. As time passes and additional 
plots are received, MHT eliminates branches 
which prove to be unlikely, based on a 
likelihood scoring method. In this way, it uses 
the evolution of plot histories over time to make 
better association decisions. Maintaining 
several branches for each track and deciding 
which branches to eliminate consumes 
substantially more processing than conventional 
tracking methods. However, with the 
exponential rate of increase in computer 
processing speed, the additional processing 
required has ceased to be an impediment to 



implementing MHT trackers with high track 
capacity. 
The MHT method, its application to the air 
defense system tracking problem and 
representative performance results are presented 
in Sections 3 through 5. 

2. COORDINATE CONVERSION AND 
REGISTRATION 
This section describes a method for converting 
radar measurements to a common stereographic 
coordinate system. It also deals briefly with the 
problem of radar registration. 

2.1 The Stereographic Coordinate System 
The problem of combining measured range, 
azimuth angle and either elevation angle or 
height from multiple distributed radar sites 
arises in the design of air defense systems. The 
aircraft tracked by these systems, as well as 
potential missile targets, typically maintain a 
nearly constant altitude above sea level. Thus, 
it is desirable to define a common coordinate 
system using x, y and altitude coordinates. A 
preferred system using these coordinates is the 
stereographic system defined below and 
described in more detail in [3-lo]. 
The basic principles of stereographic 
coordinates are illustrated in Figures 1 and 2. 

Figure 1 . Stereographic Projection. The 
projection of a target T with respect to a plane 
tangent to the earth at S is represented by T'. 

The stereographic plane is drawn tangent to the 
surface of the earth at the center of the 
coordinate system. The target position (T') is 
represented with respect to this coordinate 
system by first projecting its true position (T) 
onto a point (P) on the surface of the earth. 
Then, the intersection point P of the line drawn 
from the perspective point Q through P with the 
stereographic plane defines the target (x, y )  
position. Finally, the z (or altitude) position is 
set to the target height (altitude) above the 
earths surface. 
Several steps in the process of converting a 
radar measurement to stereographic coordinates 
use a spherical earth approximation. In 
actuality, the earth is better approximated as an 
ellipsoid which can be obtained by revolving an 
ellipse about its semi-minor axis. Defining a to 
be the semi-major axis (or equatorial radius) 
and b to be the semi-minor axis (polar radius), 
the degree of departure from circularity of the 
ellipse, as used in the required transformations, 
is defined by the eccentricity, 

(1) 
e 2 =1-(b/a) 2 

A widely accepted standard is the WGS-84 

Figure 2. The Radar-Target Geometry with 
Respect to an Ellipsoidal Earth Model. The 
point S represents a radar site positioned at 
geodetic latitude cp and at an altitude of hs. The 
target T is at an altitude ho and at a slant range 
given by the line segment ST. It is interesting 
to note that there is no closed form expression 
for the geodetic latitude of T given the radar 
slant range, azimuth and altitude. 
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ellipsoid for which a is 6,378,137 m and e2 is 
0.00669438 1. 
The conversion of a measurement from a radar 
at a location displaced from the center of the 
stereographic coordinates to a position with 
respect to these coordinates requires several 
steps. Before processing any observations, the 
position of the radar site with respect to the 
system (or master) stereographic coordinate 
system is computed for later use in the 
conversion of the observations. Then, three 
steps are required to convert an observation for 
use in a tracking system centered at the master 
stereographic coordinate system. 
First, the measurement is converted to a local 
stereographic system, centered at the radar. 
Second, a transformation is made from the radar 
site stereographic coordinate system to the 
master coordinate system. Finally, the radar 
measurement errors are converted to a 
measurement error covariance with respect to 
the master Cartesian coordinate system. 

2.1.1 Computation of Radar Site Position 
Relative to Master Coordinates 
The center of the master stereographic 
coordinate system is defined to be at the 
geodetic latitude 'p, and longitude Am. 
Similarly, the radar site is defined to be at 
geodetic latitude 'p, and longitude hs. 
(Latitudes are defined to be positive to the north 
of the equator and negative to the south. 
Longitudes are defined to be positive to the east 
of the prime meridian and negative to the west.) 
Since latitude and longitude are defined relative 
to the ellipsoidal earth and conformal mapping 
is relative to a sphere, a transformation of the 
geodetic latitude to a conformal latitude that is 
defined relative to a sphere is required. The 
longitude is unchanged. The conformal latitude 
@ is computed from geodetic latitude 'p 

according to the relationship [lo] 

tan (; -+- ;) =tan ('p -+- n)[1-esin 'pr2 
2 4 l+esin'p 

Once the conformal latitudes of the master 
system origin am and of the site origin (pS are 
computed from Eq. (2), the position components 
(us,  vs) of the site on the master stereographic 
plane are given by [ 101 

2 Em sin M cos QS 
U =  
S l + C O S y r  (3) 

(4) 
v =  2Em(sin@scos@m - ~ o s @ ~ s i n @ ~ c o s A h  ) 

S 1+cosyl 

where 
M = h  -)c s m  
cosy =sin@ sin@ +cosmS cos@, COSM s m  
The value of Em in (4) is chosen to balance 
magnification effects between the center and the 
edges of the surveillance region. A good 
empirical value for Em is 

Em = E[: +a...(%)] 
where: 
E = geocentric earth radius 

L J 

d = maximum extent of the surveillance 
region from the origin of the master 
coordinates 

max 

Finally, the angle p,, that will be required later 
for the transformation from the radar site to the 
master coordinates is given by [ 101 

1 -(sinas +sin@,)sinAh 

C O ~ @ ~ C O S @ ~  + ( l+sin@ssin@m)cosM 

(6) 
-'[ 

p =tan ms 

The site position coordinates (us, vs) in the 
master stereographic plane and the height of the 
site above sea-level hs specify the position 
coordinates of the site with respect to the master 
coordinate system. These coordinates and the 
angle p,, , given in Eq. (6), are used in the 
conversion, discussed next, of the radar data 
measured at the site into measurements with 
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respect to the master stereographic coordinate 
system. 

height, to compute measured target height 
above sea level. The conversion is given by 

2.1.2 Transformation of Radar Site 
Measurement to Master Coordinates 

h ={(Es+hS) 2 +2Rosineg(ES+hs)+Ro 2 -Es (10) 
0 

Each radar measurement consisting of slant 
range Ro, azimuth angle qo and either height 

Next, the position ( xo, yo) with respect to the 
site stereographic coordinates is converted to 

that the third coordinate ( h  = height above sea 

transformation relating ( xo , yo) to position 
components (x, y)  with respect to the master 
coordinate system can be expressed in complex 

above sea level h , or elevation angle 
converted to a local stereographic plane that is 

is first position ( x, Y)  in the master coordinates. Note 

level) does not require further conversion. The 
0 

tangent to the Earth at the radar site. The 
stereographic coordinates ( xo, yo) of the radar 
rep0rt with respect to the local plane are given 
by notation by [ 101 
x =x -2Ax y 
0 g g g  

Y o g  =Y +A(x;-Y;) 

where 

x = R  sinq 
g g  0 

y = R  cosq 
g g  0 

The stereographic ground range R is given by 
[7,81: 

g 

ws +ZexP(-iP,,) 
W =  

(7) 

w zexp(-iP,,) 

4 E k  
S (8) 1- 

where 

where: 

2 2  F = R  o ( 0  - h -h s)z 

(9) 

w = x + i y  

w = U  +iv 

w = U  -iv 

z=x +iy 0 0  

A solution to Eq. (1 1) can be obtained through 
the second order approximation [lo]. 

s s s  
- 

s s s  

X = U ~ + ~ X ~ + C ( X  2 2  -y ) + ~ D X ~ Y ~  
1 1  

(13) y=Vs+ky -D(x, 2 2  - Y ~ ) + ~ C X ~ Y ~  
1 

where 

x = x cospms + yo sin Pms 

y = y  cosp -X sinp,, 

1 0  

The measured azimuth angle qo is the 1 0  m s o  

error as discussed in Section 2.2 
The measured elevation angle (corrected at 4 E i  

the radar for atmospheric refraction) can be 
used, along with measured range and radar 

measurement after correction for registration 2 2  
k=l+-  S 

us + v  

The solution given by Eqs. (12) and (13) is very 
accurate as long as the coordinate centers are 

I 
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within about 2000 km of each other and the 
measurement displacements are about 300 km 
or less. For this case an approximate error 
bound is given by [ 101 

12131,s ~ (3x1 0 ~ , ) 3  (2x1 06m)2 

( 
(14) r 16 6.4x106m 

4 16Em 
/Error[ < 

e 5m 
If larger distances are involved or greater 
accuracy is desired, exact values for x and y 
can be obtained from Eq. (1 1) by multiplying 
the numerator and denominator by the complex 
conjugate of the denominator. 

2.1.3 Master Site Measurement Covariance 
Matrix 
Central-level tracking in master site coordinates 
requires a measurement covariance matrix 
associated with the converted position 
measurement. The measurement error 
associated with the z (height) component and 
the target dynamics in z are typically 
considered to be very loosely coupled with 
those in the (x ,  y )  components. Thus, the error 
in measured target height ho can be computed 
directly and input to an uncoupled z direction 
tracking filter. Then, a measurement error 
covariance that accounts for the correlation in 
the x and y measurement components is 
computed and input to a coupled x- y tracker. 
The transformation converting the range, height 
and azimuth angle error variances o2 , o2 

and o2 associated with the radar site 

measurements to a covariance matrix R 
defining x and y components measurement 
errors with respect to the master coordinate 
system is given by 

Ro ho 

170 

where 

C - d  f g s - t  

.=[d c][-g f][t .I[:: -Ym]  
(16) 

1 c=k+2Cx +2Dy 1 

d = 2Cy -2Dx1 1 

f =cosp,, 

g=sinp ms 

g 
s = 1 - 2Ay 

t=2Ax 
g 

0 m=sinq 

0 n   COS^ 

o2 =G[  ( 2hq0 Ro)'oio +[ R i  + h ' i  - h t f r o 2  
Rg hO 

REh'f 

4(EmF2)4 
G =  

hIs = Es +hs 

h' 0 =Es+h 0 

The matrices containing c, d ,  s and t in Eq. 
(16) differ only slightly from identity matrices 
and can be dispensed with in most applications. 
Also, because o2 changes only slightly with 

changes in hi0 and Ro, the right hand side of Eq. 
(17) can be replaced with an application-specific 
upperboundon o2 . 

Rg 

Rg 

2.1.4 Example 
Application of the transformation defined above 
is illustrated using simulated data from three 
proposed radar sites for an air defense system 
currently under development. Table 1 gives the 
longitude, the geodetic and conformal latitudes 
and the height of the three sites and the origin of 
the proposed master stereographic coordinate 
system. Table 1 also gives the computed 
positions (us, vs) of the three sites with respect 
to the origin of the master stereographic plane. 
Next, Table 2 gives the result of transforming 3 
simulated measurements from the same target 
which was taken to be moving along the X axis 
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Time 

1.01 
3.57 
4.23 

Table 1. Master an1 Site Locations for Example Stereographic Coordinate System 

Geodetic Conformal 

Measured Transformed Error 
Site Az. Angle Range Position (m) Statistics (m) 

P 

3 1.0550 101,217 -25,856 -19,918 296 535 -0.96 
1 5.6039 30,276 -26,520 -19,829 148 126 0.73 

Y (3 
OX 

(rad) (m) X Y 

2 4.4344 46,274 -26,648 - 19,979 102 267 -0.70 

Table 2. Example Results for 3 Sites Measurements Transformed to Master Stereographic 
Coordinates 

at a constant velocity of about -200 d s .  Table 
2 gives the time, site and measured range (m) 
and azimuth angle (rad) of the three 
measurements taken at the three sites. The 
measured height ho was taken to be 400m in all 
cases and dmm was taken to be 300 km. 
Finally, Table 2 also presents the measurement 
covariance values computed using Eq. ( 15) 
assuming the following measurement accuracies 
for all three sites. 
(T =6.Omrad, Q =70m, (T = lOOOm 

The final entry in Table 2 is defined to be 
110 RO hO 

w (3 

p=- 
(36 
X Y  

2.2 Radar Registration 
The coordinate transformations given in the 
preceding sections assume that the radars are 
precisely calibrated to produce measurements 
free of any systematic biases. This is rarely the 
case. Systematic radar measurement biases are 
estimated in a process called registration. The 
estimated biases are removed from the radar 
measurements before they are converted to 
system coordinates. Reference [ 1 13 gives a 
detailed discussion of the registration methods 
that will be outlined below. 

The most important parameters estimated in the 
registration process are range and azimuth 
biases. Large biases in these measurements can 
result in forming multiple tracks on a single 
target. Smaller biases can result in unstable 
track state estimation. Removing them allows 
proper functioning of plot-to-track correlation in 
central-level tracking and track-to-track 
correlation in sensor-level tracking. 
Biases in time of detection and target elevation 
can also contribute to correlation errors. 
However, they are frequently not registered in 
air defense systems. Instead, time biases are 
often estimated based on known time delays 
associated with radar signal processors and 
communication links. 
Elevation biases depend on a variety of factors 
such as atmospheric refraction of radar beams, 
bending of the antenna pedestal by winds, and 
other factors, resulting in biases that change 
rapidly over time and target position. The non- 
homogeneity of elevation biases makes their 
estimation both difficult and of little value. In 
practice, less reliance is placed on PSR height 
measurements than on azimuth and range in the 
plot-to-track correlation process. 
Registration is usually performed on pairs of 
radars to eliminate relative biases between 
them. A prerequisite to the registration process 
is the identification of plots generated by the 
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two radars that represent the same target. This 
is accomplished either by associating SSR plots 
with matching identification codes, or by 
matching PSR plots according to their 
proximity. In the central-level tracking 
approach, the results of plot-to-track correlation 
can provide these correlated plots directly. 
Selected correlated plots are used in registration 
algorithms such as those described in [ 111 to 
reduce bias errors by an order of magnitude. 

3. MHT ALGORITHM DESCRIPTION 
Hughes Aircraft Company has developed a 
track-oriented MHT algorithm that is being 
applied to a variety of single and multiple radar 
and IR tracking applications. This section will 
give an overview of the general MHT logic flow 
shown in Figure 3. It will describe the 
clustering, pruning and merging methods that 
have been developed to make implementation 
possible, The score function used to evaluate 
alternative data association hypotheses will be 
defined and a unique method that has been 

developed to present MHT data to the user will 
be described. The next section will specifically 
address the manner in which the MHT 
algorithm has been tailored towards the multi- 
radar air defense application. 

3.1 Functional Description of Track- 
Oriented MHT 
The track-oriented approach to MHT starts by 
independently forming tracks. Our approach 
[ 12-15] has been denoted Structured Branching 
(SB) and is similar to other track-oriented MHT 
methods described in the literature [16-191. 
Using this approach, observations (denoted 
plots) are formed into tracks without imposing 
the usual constraints that a plot not be used to 
update more than one track and that a track not 
be updated by more than one plot. The tracks 
that are formed may not be consistent with each 
othef-two tracks may both use the same plot, 
for example. These inconsistencies are resolved 
later through the formation and evaluation of 
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hypotheses composed of sets of consistent 
tracks. 
In order to satisfy computational constraints and 
produce information that can readily be 
interpreted by a user, it is necessary to limit the 
number of track hypotheses. The main method 
for doing this is to delete (or prune) unlikely 
tracks. As detailed below, pruning is performed 
at two stages. First, individual track hypotheses 
are compared with the hypothesis that all 
included plots are false alarms. Then, tracks 
that survive this frrst test (versus the false alarm 
option) are compared at the global level by 
forming, evaluating and pruning hypotheses. 
Next, the blocks in the flow chart of Figure 3 
will be described. 

3.1.1 Track Formation and Maintenance 
The first element of Figure 3, Track Formation 
and Maintenance, represents the central track 
file where all tracks are maintained and the 
operations performed there. As plots are 
received, standard gating methods [ 11 are used 
to determine viable plot to track pairings. Then, 
existing tracks are updated with all plots within 
the gates and extrapolated, no-update- 
observation, tracks are formed. Also, 
essentially every plot is used to form the first 
point of a new track. Thus, a great many tracks 
are potentially formed and many of the tracks 
are inconsistent in the sense that the same plots 
are used for more than one track. 
A list is compiled for each track specifying the 
plots that compose the track. This list is used in 
the clustering, compatibility testing, and 
merging logics described below. 

3.1.2 Track Level Pruning and 
Confirmation 
Each track has a track level probability that can 
be computed from its score. The score is the 
log likelihood ratio, or the log of the probability 
that the track is valid divided by the probability 
that all observations are false alarms. The 
track-level pruning process compares the track- 
level probability to a suitably chosen deletion 
threshold. The tracks that fail this test are 
deleted. The surviving tracks are tested for 
confirmation and passed to the next stage, 
which is clustering. Track confirmation status 
is used later to determine the eligibility of tracks 
for presentation to the user. 

3.1.3 Clustering 
The process of clustering is the collection of all 
tracks that are linked by common observations. 
Tracks that share observations are defined to be 
incompatible and a record of incompatible 
tracks is maintained from scan to scan. This 
record is updated as tracks are deleted and as 
new tracks are formed from the current scan's 
observations. 
A cluster can include tracks that do not share 
plots directly but that both share plots with a 
third track. Thus, if track 1 shares a plot with 
track 2 and track 2 shares another plot with 
track 3, all three tracks are in the same cluster. 
A standard algorithm from [20] is used for 
clustering . 
The result of clustering is a list of tracks that are 
interacting (or linked through common plots). 
These tracks are ranked in order of log 
likelihood ratio (the score function discussed in 
the next section). The next step is to form 
hypotheses of compatible tracks. 

3.1.4 Hypothesis Formation and Pruning 
Multiple track hypotheses are formed to 
represent the multiple targets in the scene. 
Hypotheses are defined to be sets of consistent 
(compatible) tracks in the sense that no two 
tracks within a given hypothesis share plots. 
There can theoretically be any number of tracks 
within a hypothesis. Thus, the process starts 
with the definition of one track hypotheses (one 
and only one track is valid) and expands by 
adding new tracks to existing hypotheses. 
The new tracks that are added to any hypothesis 
as the hypothesis is expanded cannot share plots 
with any tracks in the existing hypothesis. This 
can be accomplished directly because each track 
has a compatibility list and so a compatibility 
list can be defined for the hypothesis as a whole. 
Then, when the hypothesis is expanded, only 
those tracks in the hypothesis compatibility list 
can be used. 
The hypothesis generation process forms a set 
of N-track hypotheses (starting with N = 1) and 
expands a subset of these hypotheses into 
( N + 1)-track hypotheses. This process is 
continued until the potential scores that are 
associated with further expansion are no longer 
deemed adequate to justify expansion. This is 
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basically a breadth-first type of search that can 
be terminated at any time (if, for example, time 
or computer storage allocations are exceeded) 
with a broad cross-section of the tracks 
surviving. 
To summarize, hypotheses are formed by a 
breadth-first expansion process that forms 
( N + 1)-track hypotheses from N -track 
hypotheses. A continual process of pruning is 
performed so that the number of hypotheses is 
kept under control. At the end of this process, 
there will be a list of hypotheses, each 
comprising a different set of tracks. Finally, 
hypothesis scores are converted to probabilities, 
using the transformation presented in the next 
section, and low probability hypotheses are 
pruned (deleted). 

3.1.5 Global-Level Track Pruning 
The (a posteriori) probability of a given track 
can be computed as the sum of the probabilities 
of all the hypotheses containing that track. 
Some tracks, for example, may have only been 
contained in hypotheses that were deleted. 
Thus, these tracks will be computed (as an 
approximation) to have probability zero and can 
be immediately deleted. Also, each track whose 
probability is below a deletion threshold is 
removed from the track file. Finally, following 
[16,17], an N-scan (extended to N-observation) 
pruning approach is used to delete selected 
confirmed tracks. This implementation of N - 
observation pruning for a multiple sensor 
system is discussed in detail below. 

3.1.6 Track Update and Merging 
Filtered state estimates are formed for those 
tracks that survive pruning. This 
computationally demanding Kalman filtering 
step should not be performed until poor tracks 
are deleted by pruning. However, the next 
processing step, merging, performs a 
comparison of state estimates that requires 
accurate filtered estimates. 
Tracks that potentially share observations will 
have been identified during clustering. Merging 
logic is performed to determine which tracks are 
redundant representations of the same target. 
Merging rules have been defined to use both 
common observation history and similar state 
vectors to identify those tracks that should be 
merged. 

Once two tracks are determined to be similar, 
the track with the higher a posteriori probability 
is retained and the other track is deleted. Thus, 
in effect, a single track now represents the two 
tracks that previously represented essentially the 
same potential target. An increment to the score 
of the retained track is also made in order to 
account for the probability of the track that is 
deleted. This is described in Section 14.3 of [l]. 
Merging is the last logical operation performed 
in order to reduce the number of tracks that are 
to be maintained. Tracks that survive the 
pruning and merging steps are predicted ahead 
to the time of the next observation data and the 
process continues. Finally, as described next, 
the best tracks are output to the user. 

3.1.7 User Presentation Logic 
Any MHT system will be required to maintain 
at least several and possibly up to about 10 
tracks for each true target. These tracks could 
all be displayed with some indication of their 
probability. This approach can be useful for the 
algorithm designer but is too difficult to 
interpret for use in an air defense system. Thus, 
a special logic is required to operate upon the 
current most likely tracks to provide a 
consistent, continuous output to the user. Using 
this method, although track numbers change 
internal to the MHT logic, a single track with a 
consistent track number is displayed for each 
target. The track file containing these tracks is 
denoted the universal track file. The logic, 
described in detail in [21], required to form the 
universal track file is outlined next. 
After each scan the confirmed tracks in the most 
likely hypothesis of each cluster are defined to 
be primary tracks. These primary tracks are the 
tracks that best represent the expected numbers 
of targets in the clusters. A primary to universal 
track-to-track assignment process is performed 
to link the current best (primary) tracks with the 
extrapolated (universal) tracks that best 
represented the targets on the previous scan. 
Unassigned primary tracks are used to establish 
new universal tracks. Assigned primary tracks 
replace the old universal tracks to which they 
were assigned. Thus, this approach does not 
require any track fusion. Finally a logic is 
defined to inhibit the presentation of tracks that 
are identified to be stationary clutter points. 



The state estimates can be obtained at any time 
by extrapolation of the universal tracks. A 
universal track is allowed to be extrapolated for 
several (typically 3 or 4) scans without a 
primary track assignment before that universal 
track is deleted. 

3.2 Track and Hypothesis Evaluation 
This section presents the basic track and 
hypothesis scoring relationships and shows how 
track confirmation and deletion thresholds can 
be derived as applications of the classical 
Sequential Probability Ratio Test (SPRT). 

3.2.1 Track and Hypothesis Scoring 
A track-oriented MHT approach starts by 
forming candidate tracks and evaluating the 
likelihood that each track represents a true 
target, as opposed to the alternative hypothesis 
that all plots are false alarms or random clutter. 
It is most convenient to convert likelihoods to 
the log likelihood ratio (or score function) as 
defined in [ 1,13,15]. Then, the score function 
for track i, Li, can be computed at time interval 
k using the recursive relationship 
Li( k) = Li (k - 1)+ AL( k) 

where 

no track update 

track updated 
' with observation 

AL( k) = 

e ,  = estimated probability of detection 

= false target density p, 
M = sensor measurement dimensionally 
S = residual covariance matrix 

d2 = normalized statistical distance function 
T -1 = y s  9 - - 

9 = measurement residual vector 

In order to use prior knowledge of new target 
density p, and false target density p,, the 
initial score can be defined to be 

- 
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= nominal (average) new target density p,, 

= nominal (average) false target (noise, 

Thus, under the nominal (average) conditions 
the initial score is zero. If, for example, the new 
target density in a given region is expected to be 
larger than the nominal, then track confirmation 
is favored in that region by starting new tracks 
with a higher initial score. 
The track score L. can be converted to a 

probability of track validity P( Ti) through the 
relations hip 

PFTN 
clutter) density 

1 

This is the probability that the track is valid 
when compared with the single alternative that 
the plots are all false alarms. These 
probabilities can be used to prune highly 
unlikely tracks. Next, for tracks that survive 
this first pruning step, hypothesis and track 
probabilities are computed considering all data 
association hypotheses. The score of any given 
hypothesis H. is just the sum of the scores of all 
component tracks 

I 

L, = c L; (20) 
' 7  T~GH. 

1 

Implicit in the hypothesis score of Eq. (20) is 
the score of zero that is associated with plots 
that are declared to be false alarms by that 
hypothesis. Given hypothesis scores L , the 

Hi 
probability P H .  of hypothesis j can be 
computed using all J hypotheses [13], 

( 1) 
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Note that a given track can be contained in more 
than one hypothesis. Thus, the probability of a 
track is the sum of the probabilities of all 
hypotheses that contain the track. This global 
track probability is used for track deletion. That 
is, if a track's global probability does not exceed 
a threshold (typically 0.001 to 0.005), the track 
is deleted. 

3.2.2 Track Confirmation and Deletion 
The number of tracks that the system will be 
required to maintain is limited according to the 
computational capabilities. Also, there will 
typically be a false track confirmation rate 
requirement to be satisfied. For example, a 
typical criterion used in air defense system 
applications is that false track confirmation be 
limited to no more than ten per hour. Thus, 
track confirmation and deletion criteria must be 
defined in accordance with these system 
requirements. This is done by noting that the 
track confirmation process can be stated as an 
application of the sequential probability ratio 
test (SPRT). 
The SPRT is used here as a decision rule for the 
classification problem: does a specified set of 
plots consist entirely of false alarms ( Ho) or do 
they arise from a single true target ( H,)? Thus, 
the track confirmation (accept H,) and deletion 
(accept Ho) criteria can be expressed as upper 
and lower thresholds ( T2 and T,, respectively) 
on the score function. Using SPRT theory 
[22,23] these thresholds are defined in terms of 
the score Li for track i such that 

L. I S T  , =In [ - (1 "a,], accept Ho (delete track i) 

(21) (1 - p) accept H (declare track i L. r T  =h[-], 1 
1 2  a confirmed target) 

continue test T ,<Li<T 2' 

Predetermined allowable false decision 
probabilities (a, p )  are defined: 
a = false track acceptance probability 
p = true track rejection probability 
In particular, a is defined to be the probability 
of accepting H, when Ho is correct and can be 

related to the allowable false track confirmation 
rate. The choice of p is made in order to best 
minimize expected true target track 
confirmation time T, while satisfying the 
constraints on the number of tracks that can be 
maintained. Results indicate a good overall 
choice for p to be 0.1. 

In order to relate a to the false track 
confirmation requirements, it is first necessary 
to define the additional system parameters 
CV = coverage volume of the sensor 

Ts = scan time required by the sensor to 

= expected time between false track 

cover volume CV 
- 

TFC 
confirmations (taken to be 3600 divided 
by the number of false track 
confirmations allowed per hour) 

DBS = detection bin size 
DBS is the volume of an elemental detection 
element in which the false alarm event is 
independent from other elements and has 
probability PFA . For example, a radar detection 
bin might be defined by the beam width in 
azimuth and elevation angles, and by range and 
Doppler (range rate) bins. 
Then, the average number of false alarms 
produced per second is given by 

cv 
N~~ =F'FA 

For small a the probability that any one second 
interval will produce a false alarm that 
ultimately will produce a false track 
confirmation is aNFA . Thus, in order to limit 
the expected number of false track 
confirmations to one per T,, seconds, we have 

1 -  T,DBS - _  a=NFATFC T FC CVP,, 

Choice of threshold relationships as defined in 
Eq. (21) and with a as defined in Eq. (23) is an 
approximation that ensures that the false track 
rate will be nearly the required value. The 
nature of the SPRT test, with thresholds as 
defined by Eq. (21), is such that the actual false 
decision probabilities may be less than specified 
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[23]. As discussed further below, simulation 
results indicate that the false track confirmation 
rate resulting from this procedure may be 
somewhat less than that allowed by the 
requirement. But, the simulation assumes 
spatially uncorrelated clutter and, in practice, 
clutter is spatially correlated. Correlated clutter 
may lead to more false track confirmations than 
predicted by the simulation. However, since the 
specified error probabilities are small, it is 
expected that the differences between specified 
and true error probabilities will be insignificant. 

4. MHT FOR MULTI-RADAR AIR 
DEFENSE SYSTEM APPLICATION 
As previously discussed, the characteristics, 
such as scan rate, measurement accuracy and 
even measurement dimension, can differ 
significantly for the individual radars of an air 
defense system. Thus, a centralized architecture 
in which all plots are sent to the central-level 
MHT tracking system is conceptually preferable 
and will optimize data association and state 
estimation performance. Applying MHT to a 
centralized architecture is much less complex 
than the use of MHT with a distributed network 
such as described in [24]. However, there are a 
number of modifications to a general MHT 
algorithm that must be made in order to 
accommodate the unique characteristics of the 
air defense radar system input data and 
requirements. 

4.1 Handling Multi-Radar Asynchronous 
Data 
The differing radar scan rates and coverages 

igure 4a. Track Gates and Observation 
Received on Scan Interval k. 

mean that observations are received from 
different spatial sectors in what is effectively a 
random pattern. Thus, the definition of a scan 
(or sampling) interval that is required for track 
state prediction and update and for track score 
processing must be modified from what would 
typically be used for a single sensor system. 
For the purposes of track prediction and update, 
a pseudo scan interval Tp with length about 1 .O 
s is defined. Tracks are predicted to the center 
of the interval and during the initial gating, the 
plots are assumed to be valid for the center of 
the interval. Since the plots are not actually 
detected at the center of the interval, there can 
be a timing error. After selection of candidates 
using a gate large enough to include time 
differences, time correction is performed for 
gate tests based on finer measures of correlation 
between plots and tracks. 
In order to allow a track to be updated by more 
than one radar during an interval T , each 
radar's input plots are handled separately. 
Consequently, data from several radars may be 
processed by the MHT tracker during a single 
time interval Tp. 

Figures 4a and 4b illustrate a potential problem 
that can occur when processing radar data in 
scan intervals of Tp. In this example, three 
plots (01  1,012,013)  are available from radar 
1, but only 01 1 and 0 1 2  are received on the 
first scan interval (k). Similarly, radar 2 
produces 021  at interval k and 022  at interval 
k+ 1. This pattern could likely occur for the 
condition of three closely spaced targets which, 
due to limited sensor resolution, may produce 

P 

I 
Figure 4b. Extrapolated Track Gates and 
Observations Received on Scan Interval k+l . 
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only two plots. 
The processing in interval k will start with 
tracks T1 and T2 and the plots (01 I ,  012) from 
radar 1. Then, 0 2  1 from radar 2 will be 
processed. Since plots 013 and 022 will not be 
processed until the next interval ( k+ l), likely 
hypotheses on scan k will update T1 with plot 
01 1, T2 with 0 1 2  and then either T1 or T2 with 
021, as shown in Figure 4a. However, MHT 
will also maintain extrapolated versions (T l', 
T2') of T1 and T2 that are not updated with 
observations 012  and 021. Then, as shown in 
Figure 4b, the processing on interval k+l will 
produce a likely hypothesis that 022 and 013 
update T1' and T2', respectively and that 012  
and 021 start a new track. 
To address situations such as illustrated in 
Figures 4a and 4b, it is necessary to avoid 
updating a track with more than one plot from 
the same radar on the same scan. This can be 
accomplished by prohibiting a track from being 
updated on adjacent processing intervals by the 
same radar. For example, the branch of T1 that 
is updated on interval k with 01 1 is not allowed 
to be updated on interval k + l  with 013. 
Finally, the manner in which the miss penalty 

I"( 1 - FD) is added to the track score defined in 
Eq. (16) must be modified from that used for a 
single sensor system. One approach is to define 
a basic scan interval Tb such that any target 
within the system field of view should be 
illuminated at least once (by one of the radars) 
during this time period. This time period is 
typically about 6-12 seconds. Thus, a track 
score miss penalty is given to those tracks that 
are not updated at least once in this time 
interval. A second, more accurate, but more 
complex approach is to apply the miss penalty 
separately to each track according to the 
expected radar illumination pattern of that track 
and its previous update history. 

4.2 N -Scan (Observation) Pruning 
Following [16,17], the basic idea of N -  
observation pruning is to use the tracks in the 
current most likely hypothesis to prune other 
tracks based upon conflict over observations 
received N observations back in time. 
The N -observation pruning logic is facilitated 
by use of the family tree structure illustrated in 
Figure 5. Using this structure, root nodes are 

I I \  I \  
I I \  I \  

I I \  
I I \  

I 

Figure 5. N-Observation Pruning via Family Tree Structure (N = 3). 
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identified and all confirmed tracks that are not 
descendants of one of these root nodes are 
deleted. The root nodes are identified using the 
confirmed tracks in the most likely hypotheses 
of each cluster. The history of each of these 
tracks is traced back for N observations and the 
ancestor track that was updated with the Nth 
observation in the past becomes the family tree 
node. Then, all confirmed tracks that are not 
descendants of one of the root node tracks are 
deleted. 
The Nth  -observation pruning logic is illustrated 
in Figure 5 with N=3. Track T2 of family F1 is 
contained in the most likely hypothesis at scan 
k . Assume that it was updated on scans k, k- 1 
and k-2. Using N=3, the history of track T2 is 
traced back for 3 observations to the root node 
represented by T2 on scan k-2. Then, within 
F1, only those tracks that can be traced back to 
T2 in scan k-2 (in this case only T2 and T9) are 
allowed to survive. All other tracks are deleted. 
This logic is, in effect, using current data to 
make irrevocable decisions regarding the 
correct association hypothesis N observations 
ago. Finally, each family that does not have a 
track in the most likely hypothesis and contains 
at least one track with N observations is 
identified (such as F2). Each confirmed track 
within such a family is deleted. 
As discussed in [ 171, the single sensor N -scan 
pruning logic has been extended for a multi 
sensor system where, potentially, all targets may 
not be seen by all sensors. The logic is 
restricted to all tracks that contain at least N 
observations and the number of scans back is 
the number required to cover N observations. 
Thus, the logic is actually an N-observation 
pruning rule. This logic reduces the number of 
tracks required for maintenance in typical 
scenarios by about half when compared with a 
system that only uses hypothesis and track 
probabilities for pruning. 

4.3 False Target Density and Track 
Confirmation 
Computation of the track score function, as 
discussed above, requires the definition of a 
false target (or false alarm) density. Also, 
determination of the track confirmation 
threshold requires an estimate of the false target 
input rate. This section defines these quantities 

for a typical multi-radar air defense system 
application. 
The majority of false detections produced by 
radar air defense systems are clutter returns. 
Many clutter returns will persist over extended 
time periods and thus will have a similarity with 
true targets. Tracks formed from persistent 
stationary clutter can be identified as false 
targets by their small velocity. These tracks 
should be maintained so that future clutter 
returns can be correctly identified and not 
assigned to true target tracks. Then, only those 
false observations that are essentially 
uncorrelated from scan-to-scan will remain to 
present a problem to the tracking system. 
Characterization of these false returns is 
discussed next. 
Typical clutter density is defined to be one false 
observation (or plot) per unit area Ai (on the 
ground) per scan of a given radar i .  A 
representative value for Ai is 25 nmi2. Assume 
that the returns are uniformly distributed over 
an altitude extent he, that radar i has scan time 
Ts. and that data over interval T are processed. 

Then, the false target density for use in 
processing this data and updating the track score 
is 

1 P 

T 

false plots per time interval Tp per unit volume 

Using typical parameters 

Ai = 25 nmi2, he = 15,000 ft, T = 6s, Tp = 1s 
S. 

gives 

= 1.2 x 10-14 fi-3 = 4.2 x 10-13 m-3 PFT~ 

Determination of the track confirmation 
threshold for an air defense system basically 
follows from Eqs. (21) and (23). However, for 
this application, as derived next, the input 
number of false alarms NFA is computed from 
the clutter model rather than from Eq. (22). In 
order to determine NFA , assume that the air 
defense system will cover a volume defined by 
maximum Rmax and minimum Rmin ranges. 
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Also, the angular coverage is taken to be *qlim 

in azimuth and 0 to 
total coverage volume becomes 

in elevation. Then, the 

Given N~ radars the total or (system) false 
target density will be a sum over p 

Eq. (24). Then, the number of false alarms per 
second N,, becomes 

defined in 
mi 

As a typical example, consider a system with 4 
radars each with a scan period of 6 s and with 
area A. equal to 50 nmi2. Further take 

1 

he = 2.5 nmi, Rmax = 65 nmi, Rmin= 2 nmi 

= 180 deg, = 10 deg. "him 
Then, the expected number of false alarms N,, 
per second is about 500. 
The above development has assumed uniformly 
distributed false alarms while in practice the 
density will vary. In particular, the false alarm 
density will typically be larger at closer range. 
In order to extend the development to non- 
uniform clutter densities, a set of zones with 
different clutter densities is defined for each 
radar. Similarly, the expected new true target 
density can be chosen to vary with zone. Then, 
the initial track score can be defined according 
to the zone using Eq. (19). 

5. SYSTEM EVALUATION 
Three levels of analysis and simulation are used 
to predict true and false track confrrmation 
performance and true target track maintenance 
performance. First, as discussed in the previous 
section, the track confirmation process is a 
direct application of the classical SPRT. Thus, 
analytic prediction of the expected decision 
times for true track confirmation and false track 
deletion can be obtained directly from the Wald 
approximation [ 13,15,22,23]. 

A second performance prediction approach uses 
a simplified Monte Carlo simulation to follow 
the score history of simulated tracks. False 
track confirmation performance is evaluated by 
examining the histories of tracks that are 
initiated by false alarms. The simulation is 
simplified by only examining the highest score 
false track hypothesis. Each Monte Carlo 
simulation run is continued until the track score 
satisfies either the confirmation or deletion 
criterion, as defined in Eq. (21). 
The simplified Monte Carlo simulation 
approach for predicting true target track 
confirmation and maintenance history follows 
the true target path and generates observations 
according to the assumed system detection and 
measurement statistics. This simulation just 
propagates the correct hypothesis (no false 
alarms are generated) and compares the score of 
this hypothesis with the confirmation and 
deletion thresholds. This approach uses the 
optimistic assumption that the correct 
hypothesis will ultimately prevail over incorrect 
hypotheses that contain false alarms. Thus, its 
results represent an upper bound on 
performance. However, experience indicates 
that performance predictions from more detailed 
(and much more time consuming) simulations 
closely follow those from the simplified MHT 
simulation [ 151. 
Finally, a detailed Monte Carlo simulation of 
target detection and MHT processing is required 
in order to consider scenarios with multiple 
interacting targets and to obtain final system 
performance predictions. This simulation is 
also used for basic system design. Thus, along 
with detailed Monte Carlo statistics, a detailed 
print out capability has been developed so that 
track and hypothesis time histories can be 
examined for individual Monte Carlo runs. The 
next sections will present representative results 
from system design studies. 

5.1 False Track Confirmation 
Due to the extremely large numbers of Monte 
Carlo samples required in order to obtain 
accurate statistics, false track confirmation 
performance is predicted using the simplified 
Monte Carlo simulation approach. For 
example, consider a hypothetical system with 
500 false alarms/s input and with a required 
time TFc between false track confirmations. 



Parameters 

False Tracks per a - 

TFC Hour 

Simulation Results 
Number of False Estimated a 

Tracks 

I I I I 
360 10 5.6 x 10-6 10 5.60 x 10-6 1 

36 

120 

I I I I 
720 5 2.8 x 10-6 4 2.20 x 10-6 

100 5.6 10-5 63 3.50 10-5 

30 1.7 10-5 15 0.83 10-5 

Then, if 10 false track confirmationsh are 
allowed 
- 
TFC = 360 S ,  a = 5.6~10-6 

Table 3 presents false track confirmation results 
as a function of the various TFc (and resulting 
a) that were simulated. An hour of tracking 
was simulated for each case. This table gives 
the expected number of false tracks and the 
number of false tracks actually formed by the 
simulation (with equivalent a). These 
simulation results generally agree with the Wald 
approximation but show, as in [15], that the 
numbers of tracks formed by simulation tend to 
be somewhat less than predicted. 

5.2 Single Target Track Confirmation and 
Maintenance 
True target track confirmation performance has 
been examined as a function of false alarm 
density and system coverage. First, the analytic 
Wald approximation is used to predict expected 
track confirmation time Tc. Second, the 
simplified Monte Carlo simulation approach is 
used to compute T and the expected time Tgo 
at which 90 percent of the target tracks will be 
confirmed. Finally, the full Monte Carlo 
simulation, with a multi-radar detection model 
was used to compute T and Tgo. C 

The multi-radar system simulated used 3 radars 
with coverage volume out to 120 nmi and 
azimuth and elevation limits of k 60 deg and 15 
deg, respectively. Two radars had sampling 
interval 3.75 s while the third had sampling 
interval 10 s. The measurement error standard 

C 

deviations were taken to be 0.5 deg in angle and 
0.07 nmi in range. System evaluation was 
performed for different values of the clutter 
density parameters Ai, but for a given system 
the same value Ac was used for all radars. 

In order to use analytic and simplified Monte 
Carlo simulation methods for evaluation, the 
multi-radar system was approximated by a 
single radar system with an equivalent single 
radar sampling interval TSR given by 

= 1.58 s 1 1 1  
TSR 3.75 3.75 10 TSR 

+-+-, -- -- 1 

Also, in the case where the clutter area 
parameters Aiare the same for all radars, the 
effective clutter area for the equivalent single 
radar system is also equal to Ac. 

Table 4 summarizes true target track 
confirmation performance using the analytic 
prediction and the results of simplified and full 
Monte Carlo simulation. Results are presented 
as a function of Ac, which is defined to be the 
area over which one false alarm per radar per 
scan is expected. The simplified Monte Carlo 
results were derived using 500 samples while 
the full Monte Carlo used 20 samples for the Ac 
= 100 case, 100 sample for the Ac = 50 and 25 
cases and 10 samples for the case of Ac = 12.5. 

Table 4 shows a consistency between the results 
obtained using the three performance prediction 
approaches. The track confirmation times 
predicted by the analytic method are somewhat 
longer than those found from the Monte Carlo 
simulation. This can be explained by the fact 
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Clutter 
Density 

Parameter 

AC 

100 
50 
25 
12 

Track Confirmation Times 

Analytic Simplified Monte Carlo Full Monte Carlo 
- - - 

TC TC T90 TC T90 

12 10 14 13 16 
15 12 17 14 16 
20 16 21 18 24 
35 22 32 27 30 

that the analytic prediction is, in effect, 
averaging over an ensemble of target maneuvers 
while the Monte Carlo simulations used 
nonmaneuvering targets. 
Track maintenance in the presence of severe 
target maneuver as well as heavy clutter has also 
been studied. Typical results are summarized in 
Figures 6 through 9. First, Figures 6 through 8 

show the probability that a track is confirmed 
and maintained as a function of time for three 
clutter densities ( Ac = 50,25, 12.5) examined 
using a full Monte Carlo study. These results 
include a 7 g target maneuver that began at 37 s 
and led to a 180 deg turn- To Satisfy the 
maintenance requirement, a track must be 
ContinuOuslY maintained on the target. The 
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Figure 6. Track Confirmation and Maintenance for Ac = 50 nmi2. 
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Figure 8. Track Confrmation and Maintenance for Ac = 12.5 nmi2. 
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igure 9. Comparative Track Maintenance (Conventional vs. MHT Tracker). 

maintenance requirement also includes a 
difference criterion between the true and 
estimated position and velocity. This distance 
was briefly exceeded for two of the ten Monte 
Carlo runs under the most dense clutter 
condition (Ac = 12.5). However, a continuous 
track was maintained in both cases and, as 
shown in Figure. 8, the distance criterion was 
only exceeded for about 2.5 s in both cases. 
Figure 9 shows comparative track maintenance 
performance results for MHT versus a 
conventional (single hypothesis tracking) 
system in current operational use. The 
probability of track maintenance through a 7g 
180 deg turn is given as a function of the clutter 
density, as defined by A,. These results, as well 

as similar results obtained &om IR system 
analysis, indicate that the MHT approach has 
the capability to operate in a clutter density that 
is at least 10 times the operational limit for a 
conventional (single hypothesis) tracking 
system. 

6. SUMMARY 
MHT is readily applicable to a multi-radar air 
defense system. Plots from all radars are 
transmitted to the central-level MHT processor. 
Although not discussed in detail in this chapter, 
modem computational capabilities and recently 
developed MHT algorithm efficiencies assure 
that real-time processing can be achieved for 
systems currently under development. 
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Simulation results indicate that the MHT 
approach to data association will lead to a 
significant performance improvement over that 
currently achievable by conventional (single 
hypothesis) tracking systems. 
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1. SUMMARY 

Multisensor tracking and data fusion deals with combining data 
from various sources to arrive at an accurate assessment of the 
situation. Technical d8iculties in performing multisensor 
tracking and fusion include not only ambiguous data, but also 
disparate data sources. The tracking and fusion problem is 
M e r  complicated by the facts that targets may not be 
detected by some sensors, dense false alarms and clutter 
detections may be present, and the target model may not be 
known exactly. In this chapter, a multitarget tracking problem 
which involves data obtained fiom multiple MTI radars is 
considered. A tracking and fusion algorithm which takes into 
account the uncertainties in both data origin and target 
dynamics under a dense clutter environment is presented. 

2. INTRODUCTION 

Tracking and fusion with multiple sensors has attracted a great 
deal of attention recently [l-61. It deals with integration and 
correlation of data from various sources to arrive at an overall 
assessment of the situation. The difliiculties in performing 
multisensor tracking and fusion include not only ambiguous 
data, but also disparate data sources. First of all, the identity 
of the objects responsible for each individual data set is 
unknown so there is uncertainty as how to associate data from 
one sensor which are obtained at one time and location to 
those of another sensor at another point in time and location. 
Secondly, the data sources may include various active and 
passive sensors such as radar, infrared, acoustic, as well as 
other sources such as COMINT and ELINT. 

The tracking and fusion problem is M e r  complicated by the 
facts that (1) targets may not be detected by some sensors due 
to the variation of signals and the sensor characteristics, (2) 
dense false alarms and clutter detections which are not easily 
distinguishable from the true target measurements may be 
present; and (3) target models may not be known exactly and 
they may vary in time. 

The multiple-bothesis approaches for multitarget tracking 
which are near-optimal, have gained popularity [l-61 since the 
pioneer work of Reid [7]. In these approaches, all feasible data 
association hypotheses between measurements and targets are 
formed, evaluated, and maintained. Although they can handle 
complex target and sensor models and include track initiation 
and continuation in one fiamework, they require computing 
resources, both time and memory, that increase exponentially 
with time especially under dense target and clutter 
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environments. 
feasible, which are still very expensive. 

Other approaches for multitarget tracking include targef- 
oriented and track-oriented approaches. In the target-oriented 
approach [6, Sec. 6.21, the number of targets is assumed to be 
known and all data association hypotheses are combined into 
one for each target. Even though the computational 
requirements are fixed for this type of approach, it can only 
handle track continuation, and requires a separate module for 
track initiation. In the track-oriented approach, tracks are 
initiated, updated, and possibly terminated based on the 
associated measurement histoy. Each track is treated 
individually and a data association and evaluation scheme is 
needed to form and evaluate the track. This approach 
represents a tradsoff between performance and computation 
and is most suitable for dense target or clutter applications. 

Thus only suboptimal implementations are 

In this chapter, a multitarget tracking problem under a dense 
clutter environment is considered. Detections &om ground 
vehicles are assumed to be available fiom multiple airborne 
MTI (moving target indicator, i.e., with Doppler) radars located 
on different platforms. The goal of this chapter is to present a 
simple, yet comprehensive multiplfAarget tracking and fusion 
algorithm suitable for dense target and clutter environment. It 
is shown in [5 ,  Ch. 71 that the optimal data association 
algorithm is only marginally better when the target or clutter 
density is either very high or very low compared to the simple 
nearest-neighbor algorithm. 

We therefore propose here a simple track-oriented approach 
based on a form of "greedy" nearest-neighbor and multiple 
model algorithms. In this approach, a centralized fusion 
architecture is assumed, i.e., data collected from multiple 
sensors are pooled together in a central site where they are 
combined. The goal here is to be able to pick up a potential 
track as quickly as possible and eliminate false tracks as 
effectively as possible. To do so, tracks are initiated based on 
a single measurement and a score is obtained for each track to 
determine its "strength". The track score is calculated based 
on the associated measurement history as well as the target and 
sensor models. To eliminate false tracks efFectively, tracks 
with scores below a specified threshold will be pruned. The 
pruning threshold is one of the system parameters and can be 
adjusted adaptively based on the scenario and performance 
requirements. 

The algorithm has been implemented in a MATLAB 
environment [SI. Simulation results with multiple h4ll sensors 
have also been obtained. Extensive analysis with Monte Carlo 
simulations shows good performance. The chapter is organized 
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as follows. section 3 presents the tracking algorithm, section 
4 describes sensor and target models, and Section Sshows the 
simulation results. 

3. TRACKING AND FUSION ALGORITHM 

The centralized architecture is chosen for tracking and fusion 
with multiple sensors. In other words, all detections fiom 
different sensors are pooled together in the fusion center where 
they are processed. To handle a dense target and clutter 
environment, a track-oriented approach is proposed together 
with the multiple-model approach for tracking maneuvering 
targets. 

The tracking and fusion algorithm is summarized as follows 
(see Figure 1). 

1. Track clustering: At each scan when a new data set 
(measurements) arrives, first decompose the existing tracks 
and new measurements into independent groups (clusters) 
based on gating so that data association can be performed 
within each cluster. ?his step is to eliminate unnecessary 
associations between far apart (in the measurement space) 
tracks and measurements. 

2. Data association: Within each cluster, form and select the 
most likely data association event to be processed. To speed 
up the process in dense environments, a "greedy" algorithm is 
used to associate measurements to tracks. 

3. Track scoring/updating A score is assigned to each track 
and is obtained based on the association history. The score 
indicates the "true track probability" (TIP) and is used in the 
decision of eliminating or confirming tracks. 

4. Track initiation: Measurements not associated with any 
existing track will be used to &tiate a new track. A new track 
is initiated with a single measurement *ere a Gaussian 
distribution for the target state is created based on that 
measurement. 

5 .  Track management: To avoid redundant tracks, similar 
tracks are combined and tracks with scores below a certain 
threshold are pnmed out. 

1 New D,"ta Set I 

For each Cludcr 

I 1 Track Scoring/Updating ] I Track Initiation I - 

Figure 1. Algorithm Summary 

Data Association 

The simplest data association algorithm is the so called 
"nearest neighbor" (NN) algorithm [3]. There are several 
variations of the algorithm including the standard NN and the 
"greedy" NN algorithms. In the standard NN algorih,  one 
simply assign tracks to measurements according to the order of 
the association likelihoods. Namely, the "nearest neighbor" 
assignment is 

The selected track and measurement pair is then removed fiom 
the list for future consideration and the next most likely 
association will be chosen fiom the remaining list. l'his 
procedure is repeated until all tracks are considered. 

In the "greedy" nearest neighbor (GNN) algorithm, the tracks 
are first prioritized. The idea is to start with the track with the 
highest "priority" and assign it with the most likely 
measurement. Namely, the first pair is 

i' = argmaxL(y,Iz') 

where H(r)  is the track priority, which could be defined as a 
function of the track score (probability), relative track 
estimated position, current track association uncertainty, or a 
combination of part or all of the above. For example, the 
association uncertainty of a track is defined as the entropy of 
the association probabilities between the track Z and all the 
current "feasible" mksurements y, , i.e., 

(3) 
i 

where 
L(Y, 17) 

c L(Y, 17) 
P, = (4) 

f 

and z) is the association likelihood between 
measurement y ,  and track z (for specific example, see Eq. 

(18)). 

Once a certain track-to-measurement association pair is 
chosen, they will be removed &om the list and the next track 
with the highest priority will be processed. This process 
continues until all tracks are considered. Note that 
measurements which have been chosen earlier will not be 
included in the current consideration. It is possible that a track 
may not have any validatedl measurement, in that case, no 
measurement will be chosen and the track will not be updated. 
Mer  processing all tracks, measurements that have not been 
assigned to any track will then be used to initiate a new track. 

~ ~~ 

lmeasurements inside the validation gate [3]. 
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Track Initiation P(M,) and P ( a x )  the probabilities that track Z and its 
ancestor 7 are in model X respectively, then at each scan, 
depending on the specific association for the track, the score is 
updated based on the following formula. 

The track initiation module initiates a track based on a single 
measurement. To initiate a track, we need a Gaussian 
representation (approximation) of the target state distribution 
of an undetected target. It is reasonable to assume that the 
position information contained in this distribution is negligible 
compared with that contained in the measurements because 
variances of measurements are typically much smaller than 
that of the prior distribution. Therefore, a track will be 
initiated fiom a single measurement as follows: 

1. First create a gaussian distribution from the three positional 
measurements, i.e., the range, the azimuth and the elevation. 

2. Create a gaussian distribution of the velocity vector with a 
priori information. 

3. Modlfy the Gaussian target state distribution by the Doppler 
(range rate) measurement. 

Track Scoringmpdating 

A score is assigned to each track and is updated based on the 
association history. A multiple model algorithm [6, Sec. 4.41 
is used to define and evaluate track scores. In this algorithm, 
two models are used: one for "observable target", designated as 
Model A ("alive"), one for "unobservable target", designated as 
Model D ("dead"). The "unobservable target" can represent 
either a true target outside the sensor coverage or an 
erroneously hypothesized target, that is, it is equivalent to "no 
target". In both models, measurements can originate fiom the 
target (with detection probability PD ) or clutter. However, in 
the "no target" model we have PD = 0. 

A Markov chain will model the observable and unobservable 
situation as follows. Denoting by M ,  the event that model X 

is in effect during the current sampling interval2 and a, for 
the previous interval, the following transition probabilities are 
assumed: 

P(M 1x7 ) = l - - E  P(M ID ) = E  

P(M lil? ) = l - - E  
( 5 )  

A A  A '  D A  A 

D D  D' A D  P(M 1x7 ) ' E D  

That is, transitions between the models (sudden death 
probability E, and resurrection probability E D )  are 
assumed with low probabilities. Practical values for these 
"designed parameters" are discussed in [6, Sec. 4.41. 

The initial score for the new track is calculated based on the 
ratio of new target density PNT and clutter density P A' 

are defined as the expected numbers of true targets and false 
alarm per unit surveillance volume per scan. Denoting by 

2The k-th sampling interval is ( f L - ,  , t ,  1. 

(7) 
- 

for track T with associated measurement y where 
c y  = Py(MA) + Py(hfD) ,  and 

1 
P ( M  )=- 

c0 
0 D  

(9) 

detection probability of the predicted track 7 ,  L0.l.t) is the 
association likelihood between the measurement y and 7 , and 
LpA (y) is the false alarm likelihood. 

For the tracks with associated measurement, they will be 
updated based on the standard filtering equations such as 
Kalman filter or Extended Kalman Filter (EKF) (see Section 3 
for a specific example). For those track with no associated 
measurement, they will only be extrapolated without updating. 

Track Management 

Since many tracks can be initiated under a dense clutter 
environment, to avoid redundant tracks, a test of similarity is 
carried out to determine whether two tracks represent the same 
target. This test first checks if the two tracks share the same 
current associated measurement, if so, a track-to-track 
association technique [6] is then used to determine their 
similarity. Assuming the tracks are independent, this test will 
accept the hypothesis that the two tracks represent the same 
targetif(i, - i , y ( Q ,  + V;>-'(i, -;,>I I+V where P P i '  j 

and e., 9. are the state means and covariances of the two 

tracks and v/ is the decision threshold. 
* J  

To judge if a track is real or not at any moment of time, the 
scoring threshold is used. A track is judged to be false and will 
be pruned ifthe score of the track is below the given threshold. 
' Ih is  is to effectively eliminate unwanted tracks under dense 
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clutter environment. The pnming threshold is one of the 
system parameters and should be adjusted adaptively based on 
the scenario and performance requirements. 

4. SIMULATION MODELS 

We first describe the target and sensor models used for the 
simulation. Targets of interest are generally assumed to follow 
nearly constant velocity trajectories. To model the effects of 
randomness in target dynamics (target maneuvering), white 
accelerations are assumed. The target motion is modeled in 
two-dimensional Cartesian coordinates. 

The MTI radar observes targets in a low signal-to-noise ratio 
environment. We assume the MTI radar is modeled by the two 
fimctions, measurement model pM (yl X) and detection model 
pD (x) . The detection model can be described as 

where pi is the detection fimction for each component i in 

{R, A ,  E ,  D} which represent range, azimuth, elevation, and 
Doppler (range rate)3. Each Xi represents the true value for 
component i .  For i in { R I  A , E ,  D } ,  we have 

D 

where FOV is the field of view4 for the component i, and 
ai is the standard deviation for measurement component i, 
which will be discussed later. The measurement value model 
plM(yl X)  is likewise decomposed as 

PM(YIX)  = n 
i E { R ,  A ,  E ,  D} 

For iin { R ,  A ,  E ,  D } ,  wehave 

signal strength can also be explicitly modeled, see [9] for 
details. 
4 It is generally an interval or a mion of intervals so that the 
integral in Eq. (9) can be expressed by error fimctions. 

where 0, is the measurement error standard deviation given 
by PI 

(14) I 

with 6, being the sensor resolution for the component i and 
SNR is the signal-to-noise ratio. 
The false alarm probability is determined by [2] 

PFA = exp(-SNR, ) (15) 

f3om which the expected number of false alarms can be 
calculated as 

where SNR is the SNR threshold for detection and 

p( FOV, ) is the volume of the field of view for measurement 

component i. 

TH 

1 

We model the target state as a 4-dimensional vector, i.e., 2-D 
position and 2-D velocity as described earlier. We also 
assume that the target state distributions of all the old tracks 7 
have gaussian representations, as 

Then it follows from the linearization of nonlinear 
measurement equations that the measurement to track 
association likelihood is 

= ( R , A , E , D )  is the measurement vector, 

= (K, Z,B ,  B) is the nonlinear projection of target 
YRAED 

where 

% E D  
state estimate X onto the sensor's measurement space, S is the 
innovations variance matrix defined by 
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where V is the velocity component of X, V, is the sensor 

velocity vector, I3 is a 3x3 identity matrix, and ( ! i ) i e (R ,A ,6 )  

is the sensor pointing system defining azimuth and elevation 

It is clear that with two sensors, not only all four targets are 
reliably tracked (versus two or three targets tracked with a 
single sensor) but the track probabilities are also higher while 
the average false track probabilities remain low. Since we 
initiated a track with a single detection, there will be 

'Os sin sin 
cos z 

- cos 2 sin E - sin Z sin E cos E ti 

Azimuth FoV sensor 1 (0 - goo), sensor 2 (-90 - Oo ) 

Sensor Range:30Om, Doppler: I d s ,  Azimuth: 
Range FOV 15 - 55 km ~ 

and 

The initial state estimate is obtained as described in Section 2. 
After a track is initiated, it is a rather straightforward 
application of the Extended KalmanJilter to update a track by a 
measurement. Namely 

f = F + K b  - (23) 

tracks created in a multisensor situation than in the single 
sensor cases as shown in Figure 7. However, with the 
algorithm presented here, the life of most of the false tracks is 
very short, as shown in Figure 9. In other words, the 
trackinghsion algorithm is able to pnme the false tracks rather 

(21) 

(22) effectively. Z = d i a g ( o i , o i , o i , o D )  2 

Doppler threshold 2.5 m / s  
sampling Interval 2 minutes5 

Track pruning Pm = 0.01 

Mean SNR 14 dB 
SNR threshold 10 dB 

1 threshold 

directions. I Resolution I 0.7 deeree I 

T and f = (I -KH)v = v- KSK 

that update the mean vector to .? and the estimation error 
variance matrix to 3. m e n  no measurement is assigned, a 
track is simply extrapolated based on the target dynamic 
model. 

5. SIMULATION RESULTS 

This section describes the results of simulations. The 
simulation is implemented in a MATLAB environment. A two 
sensors, four targets scenario shown in Figure 2 was created 
and simulated measurements based on the models described in 
Section 3 were generated. The two MTI sensors are located at 
approximately 2000 feet above the locations (0,O) and (50 
km,O). The nominal set of key parameters used are given in 
Table 1. 

threshold SNR = 8dB was also simulated which 

corresponds to the false alarm rate of PFA = 1.2 . l o  , that 

fh 
-4 (25) 

generates about 16 false detections per scan in the surveillance 
region. The simulation results given in Figures 10 and 11  show 
that even though the average number of false track increases 
significantly, the tracking performance does not degrade too 
much. Specifically, most of the four targets are tracked with 
reasonably high probabilities. We also varied the average SNR 
to study its impact on the tracking performance. Since the 
detection probability is a hc t ion  of the SNR (see Figure 3), 
the tracking performance, particularly, the average good track 
probabilities, decreases from 0.9 to about 0.7 when the average 
SNR decreases from 14 dB to 10 dB (see Figures 8 and 12). 
The pnming threshold is the last factor we studied in the 
simulation. It turns out that the tracking performance (not 
shown here) is relatively insensitive to the pruning threshold, 
particularly for the threshold ranging from 0.01 to 0.1. 
However, the performance degrades notably when the 
threshold goes beyond that. This simulation can be used also 
for threshold optimization [lo]. 

Figure 3 shows the receiver operating characteristic (ROC) of 
the system. With SNR = 14dB, SNR,,, = lOdB corresponds 

to a false alarm rate of, approximately, pPA = 4.5 
which translates into an average number of 6 false alarms in 
the sensor FOV (field of view). Figure 4 shows the typical 
sensor detections from two MTI sensors for the entire 80 
minutes of simulation. It can be seen that the clutter density is 
relatively high and targets are often missed especially when 
their relative velocities (range rate) are low. Figure 5 shows 
one sample run results with a single MTI sensor only and 
Figure 6 shows the results with both sensors. Figures 7 and 8 
show the performance curve with 50 Monte Carlo simulations. 

-- 

5This low sampling rate is typical for an air to ground 
surveillance system. 
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6. SUMMARY AND CONCLUSION 

This chapter considers the MTI tracking and fusion problem for 
scenarios with high false alarm density. In order to develop a 
simple, yet comprehensive, algorithm suitable for a dense 
clutter environment, we adopted the track-oriented approach 
where a form of "greedy" nearest-neighbor association 
algorithm is used. In this approach, a centralized fusion 
architecture was assumed. To establish good tracks and 
eliminate false tracks effectively, tracks are initiated based on 
a single measurement and a probabilistic track score is 
assigned for each track to determine its strength. This track 
score is computed based on the association history using a 
multiple model algorithm with an underlying Markov chain. 
Tracks with scores below a certain threshold are then discarded 
and similar tracks are combined. 

The algorithm has been implemented in a MATLAB 
environment. Tracking results with multiple MTI sensors 
using extensive Monte Carlo simulations have also been 
obtained. Several key parameters such as SNR and detection 
threshold were varied to demonstrate the feasibility of the 
algorithm. Future work includes the development of algorithms 
for incorporating terrain information and integrating data fiom 
other intelligent sources such as infiared and COMINT. 
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SUMMARY 

The central elements of this paper are the 
development of a statistical approach to the 
problem of track fusion, specifically, track 
correlation, and system track maintenance in 
distributed command and control systems. The 
basic approach is a sequential decision process 
based on the concepts proposed by Bar-Shalom 
[ l ]  and Waltz and Llinas [2]. This paper 
presents (1)  the functional requirements for 
track management in conventional air defense 
systems and extended air defense systems 
(which include low-observable aircraft, cruise 
missile, and tactical ballistic missile defense), 
(2) the theoretical foundations for the 
sequential, multiple hypothesis decision 
processes used in the FAAD C21, IADS and 
NATO AEW Integration Programs; (3) track 
maintenance in distributed systems, and (4) a 
discussion of the practical aspects of the 
application of the theory to systems constrained 
by current data link message standards. The 
essential theory for sequential correlation 
decisions is based on the sequential probability 
ratio test for multiple alternative hypotheses [3- 
81. The decision statistics and criteria are 
derived together with the theoretical 
performance trade-offs among type I and type 
II errors and decision times. 

1. INTRODUCTION 

Conventional air defense systems (such as the 
NATO AEW/Ground System Integration 
Programs, NATO Iceland Air Defense System, 
and the U.S. Army Forward Air Defense C21 
System) generally employ combinations of 
sensors, weapon subsystems, and external 
system data to compile a surveillance air 
picture. Data from external systems usually is 
received via tactical data links (for example, 
TADIL B, Link 1 1 ,  JTIDS). In order to 
maintain the best possible recognized air picture 

and to make the most efficient use of the 
limited capacity of the tactical data links, the 
C21 subsystems therefore must be able to 
integrate track data from a local sensor suite 
with track position data from other C21 
subsystems, Airborne Early Warning, and 
external track sources into a composite system 
track file. The system track file must be 
complete, non-redundant and of sufficient 
quality to support the requisite Command and 
Control decisions such as distribution of 
selected track information to weapon 
subs y s tem s , target - to- w eapon pairing, 
acquisition by the weapon subsystems, and 
coordination with other C2 and Battle 
Management subsystems. The critical issue 
often is to conserve the communication 
resource by suppressing dissemination of 
redundant track information. 

In extended air defense systems, which include 
low-observable, cruise missile and tactical 
ballistic defense in addition to conventional air 
defense, the problem is somewhat more 
complicated. First, it is compounded by the 
addition of high precision tracking radars with 
fixed face, phased-array antennas, which are 
necessary to detect and track low-observable 
objects and ballistic missiles. These radars 
may be employed both for surveillance and fire 
control. Second, the ground-based elements 
may not be as constrained by the limitations of 
tactical data links as conventional systems; 
future systems may be netted by wide area 
networks of fiber-optical cables. The critical 
issues are (1) to ensure the maximum 
surveillance coverage against low-altitude, low- 
observable objects, (2) to provide high quality 
track information to multiple, geographically 
distributed users, and (3) to maintain a 
common data base at multiple C2 subsystems. 
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On a qualitative level, the track management 
requirement at the C2 subsystems of extended 
air defense systems is to correlate multiple 
tracks of a common objects in order: 

1. To maintain track number continuity as 
an object moves through the coverage 
envelopes of multiple sensors or 
subsystems; 

2. To fuse the sensor or local 
identification, classification and 
discrimination data into a single system- 
level track description; and 

3 .  To maintain a common data base of 
high quality track information at 
multiple, distributed subsystems. 

The last item is particularly important in order 
to avoid saturation of the data links and to 
avoid ambiguous or conflicting decisions at 
distinct C2 and weapon subsystems. 

The central elements of a track management 
function for an extended air defense system 
with the characteristics described above are (1) 
the track correlation logic and (2)  a method for 
updating multiple, distributed data bases. The 
paper also provides a top-down systems 
analysis approach to the design of a track 
correlation and maintenance logic for multiple 
radar surveillance systems, which is illustrated 
with the extended air defense design problem 
derived from NATO air defense systems. 
Moreover, all of the performance data is 
presented parametrically versus separation 
normalized by the subsystem tracking errors. 
Therefore, the same technique and performance 
analyses can be used for any system design 
problem once the subsystem errors are known; 
the performance data can be scaled to whatever 
subsystem tracking errors are anticipated. 
These techniques have been applied to the U.S. 
Army Forward Area Air Defense C21 System, 
the AEW integration programs for NATO and 
to the Iceland Air Defense System now under 
development. 

This paper will present in detail discussions of 
the following topics: (1) functional 
requirements for track management in extended 
air defense systems, particularly those with 
geographically distributed C2 and weapon 
subsystems; ( 2 )  examples of quantitative 
performance requirements for track correlation; 

(3) a statistical approach to track correlation; (4) 
track maintenance in distributed systems based 
on Kalman filtering theory; and ( 5 )  
implementation issues in communications 
limited systems. 

2. AN EXAMPLE: FAAD C21 

In order to motivate the general theory which 
will be addressed in Section 3, consider the US 
Army Forward Area Air Defense (FAAD) 
System. The primary operational mission of 
the FAAD System is to provide effective 
counter-air protection for the Division ground 
units. This is accomplished by the Command, 
Control and Intelligence (C21) element of the 
system through the detection and engagement 
of hostile air targets before those targets can 
attack the Division assets. Therefore, the basic 
requirement for the FAAD C21 System is to 
collect, process and disseminate to the FAAD 
Weapon Systems the time-critical air track 
information necessary for engagement of 
hostile aircraft. 

This processing must be accomplished in the 
context of the FAAD C21 design, which 
consists of a collection of spatially distributed, 
semi-autonomous, redundant C2 subsystems. 
In this concept, each subsystem (i.e., the 
Sensor C2 units, the Air Battle Management 
Operation Center, and the Army Airspace 
Control Center) is self-contained. Each 
subsystem may have one or more sources of 
local track data, including a FAAD Ground 
Based Sensor (GBS), HIMAD, Air Force 
STIDS PPLI, Army EPLRS Position Reports, 
and Adjacent FAAD Systems, as illustrated in 
Figure 2.1. 

The requirement "to process" air track 
information specifically includes the 
requirement that each C2 element be able to 
assemble a single system-level track file from 
the remote tracks received from other C2 
elements and one or more local track files. The 
essential functional requirement, therefore, is a 
Track Correlation function. This function must 
correlate the local track reports from the 
individual sources against a system track file; 
when two or more sources are determined to 
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report tracks for the same aircraft, one of the 
tracks is selected to represent the "system level" 
track for that aircraft. An individual sensor 
track is adequate to cue a weapon system; 
averaging tracks for additional accuracy is not 
required. Thus reporting responsibility rules 
based on track quality are used to ensure that 

each subsystem maintains an identical copy of 
the system track file. The data fusion problem 
for the F M D  &'I application, therefore, 
reduces to that of track association or 
correlation. 

FAAD C21 
Track Source 

I I GBS: Ground-Based Sensor 
FU: Fire Unit 
ABMOC: Air Battle Mgmt Ops Center 
A2C2: Army Air Command & Control 

Figure 2.1 FAAD C2i System Architecture. System tracks and ID information are 
exchanged among the C2 subsystems over the FAAD JTIDS net. 

The discussion throughout the remainder of 
this paper will consider the case of FAAD 
Ground Based Sensor tracks only; external 
tracks will not be considered. Thus, the 
correlation logic design problem is limited to 
the problem of correlation at a Sensor C2 
subsystem of new local GBS tracks with 
remote GBS tracks received from other Sensor 
C2 subsystems via the FAAD JTIDS data link. 

2.1 FAAD Error Sources 

In order to design and evaluate a track 
correlation logic, it is necessary first to describe 

quantitatively the sources of track error which 
drive the correlation process. It is important 
for this application to consider both the random 
and systematic error components in the tracks. 
The random components include the random 
measurement errors at the sensors, and data 
link and time reference quantization errors. 
The systematic errors include sensor 
calibration, north alignment, and leveling as 
well as the error introduced by the coordinate 
transformation from local sensor coordinates to 
system coordinates. 
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~ 

Coordinate Conversion Errors (0) 
Sensor Position OCC 25 m 
North Alignment oNR 60 m 

Data Link Quantization Errors (0) 
Position CT,, (LSB=100 m) I 28.9 m 

Table 2.1 : Systematic Errors 

v I 

Velocity o,, (LSB=20 ds) I 5.8 d s  I 

The quantitative performance requirements on 
the C I system assume that the sensor can 
deliver tracks (under some conditions) with 
position accuracy' (lo) no worse than 100 
meters in the horizontal plane and 167 meters in 
the vertical direction. The errors in the 
delivered track include coordinate conversion 
errors from radar to system coordinates and 
quantization errors in the data link in addition to 
the normal random measurement and track 
prediction errors; the values assumed are 
shown in Table 2.1. The north alignment error 
is based on a l o  value of 2 milli-radians for the 
azimuth error against an aircraft at 30 km from 
the radar. 

2 

Tracks in the FAAD C21 System are five 
dimensional, consisting of a horizontal (x,y) 
position, velocity in the horizontal plane, and 
height. However, if one considers one 
dimension of the track data, for example the x 
coordinate, then the track state vector is 
X = [x x] and, the covariance matrix T: can 
be represented [ l ,  91 by 

T:=,[xxt]=[ P C  I=["" 21 
OPV 

Also, let X a n d k  denote the filtered and 
predicted state vectors, respectively. The 

Position accuracy means explicitly the standard 
deviation (1 a) of the error. Track errors are assumed 
to be independent and normally (Gaussian) in each of 
the three coordinates. Moreover, the standard deviations 
of the errors for both horizontal components (that is, X 
and Y) are assumed to be equal. 

variance of the position error at the time tl of 
delivery to the C 2 I system is, therefore, 

i'( t l )  = V( to) + OC, 

(2.2) 

where, At ,  = (tl - to) is the elapsed time from 
the last track update to track delivery at the first 
C21 subsystem. 

An actual variance, oM, 2 for the radar 
measurement error can be obtained if some 
assumptions are made about the radar tracking 
logic. For example, if it is assumed that a 
standard (a, P)-filter is used with the gains 
limited to provide approximately 3-point 
smoothing [ l ,  91, then 

n n 

- 0; 2 oL 
P( to)  = 0.833 o;, e( to)  = -, V( to) = - 

2 2  2 T2 
(2.3) 

where 2 is the radar scan rate (in this case, 2 
seconds). If the delivery time At ,  is 0.25 
seconds and if delivered accuracy is 100 
meters, then the standard deviation oM of the 
measurement error must be approximately 70 
meters. 

The 100 meter track accuracy noted above 
refers to the accuracy of a local GBS track at a 
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Sensor C2 unit. For the remote track, the 
transmitting Sensor c2 unit must extrapolate 
the track forward, using the quantized velocity 
information, to the anticipated time of 
transmission. At the interface to the JTIDS 
radio, the position is quantized for a second 
time. Thus, the variance model for the remote 
track is 

9(t2) = q t , )  + 0tQ 
(2.4) 

where, A 5  is the total time necessary to predict 
the remote track forward (from the time of the 
last update by the remote GBS) to obtain time 
coincidence of the local and remote tracks. If 
one considers, in addition to the normal 2 
second update rate of the GBS, the YO, buffer, 
and processing delays at both the remote and 
local Sensor C2 units, the JTIDS terminal 
delays, and the transmission time necessary 
when multiple relays are required, a worst-case 
value for At2 of 4 seconds is possible. Thus, 
the standard deviation of the remote GBS track 
can be as large as 175 meters. 

2.2 Quantitative Performance Goals 

The qualitative requirement for a complete 
and non-redundant system track file must be 
refined to quantitative upper bounds for the 
probabilities of false correlation of tracks of 
two distinct aircraft and missed correlation 
of two or more tracks of the same aircraft, 
respectively. The probability of false 
correlation must be further qualified by an 
operational requirement on the separation of 
aircraft. It is not reasonable, for example, to 
expect a high degree of discrimination between 
aircraft separated by less than resolution 
capabilities of the sensors. 

In general, these quantitative requirements must 
be derived from operational requirements and 
the limitations of the physical hardware, such 

as the communications link essi rate, 
and so forth. For the FAAD CLI System, the 
system-level probability of false correlation, 
denoted by P,,,(FC), must not exceed 0.10; 
the probability of missed correlation denoted by 
P,,,(MC), must not exceed 0.004; that is, 

PSYS(FC) 5 0.10, P,,,(MC) 5 0.004 
/? c\ 

It will be assumed that the missed correlation 
applies to aircraft within 100 meters of each 
other. The false correlation requirement is not 
complete; there is the issue of the aircraft 
separation for which the requirement applies. 
Operationally, distinct formations of aircraft 
may approach to within one-half mile or 
approximately 700 meters of each other in 
normal operations. Thus, the requirement will 
be restated as 

P,,,(FC I Separation 2 700 m) 5 0.10 
(2.6) 

3. A STATISTICAL THEORY OF 
TRACK CORRELATION 

In order to formulate the track correlation 
problem, let X, and X, represent tracks from 
two sources (systems or sensors). In the 
following it will be assumed that each track Xi 
is a random vector in the n dimensional real, 
Euclidean space R" and are distributed as a 
multivariate normal random variable, denoted 

Xi ER", X. 1 = N(pi, Xi)  
(3.1) 

The expected value and variance of Xi are 
denoted 

E[Xi]=pi ,  E[(Xi -pi,'3=.. (3.2) 

In the following it will be assumed that a track 
is an estimate of the state (at a minimum, 
position and velocity) of an aircraft based on a 
time-ordered set of measurements of the 
position of the aircraft; more specifically, 
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m 

'i = z A k  'i.k 
k= l  (3.3) 

= A, Zi,l + A, Zi,, + . . , + A, Zi,, 

where the matrix weighting factors (Ak I k = 1, 
2, ... m )  are given, for example, by the 
Kalman filter formulation of the optimal 
estimation problem, and the (Zi,k I k = 1,2, ... 
m} are the measurements at source i [l, 9, 101. 

The tracks represent the same aircraft if p1 = 
p2; otherwise, they represent two distinct 
aircraft. A correlation or association test now 
can be formulated as a statistical test of two 
alternative hypotheses about the means of the 
two underlying probability distributions. The 
space of possible mean vectors m is R". Given 
a covariance matrix S (that is, a symmetric, 
positive definite matrix), let S, be a 
neighborhood of the zero vector 0 defined by 

and let SA be a subset of the complement of 
S, defined by 

(3.5) 
S A = { ~ ~ R n I p ' E - 1 p 2 h A }  

where hN < h,. Note that SA and SN are 

disjoint subset of R"; that is, 

(3.6) 
S N U S A c R " ,  S,nSA=O 

A correlation test is now a test of the two 
alternative hypotheses H, and HA (called the 
null and the alternative hypotheses, 
respectively) defined by 

An appropriate statistic for testing the null 
hypotheses HN against the alternative 

hypotheses HA is the chi-squared statistic 
defined in [3, 6 ,7 ,  111. 

In particular, a convenient test would be of the 
form: accept the null hypothesis H, if 6 2 C; 
otherwise reject H, and accept the alternative 
hypothesis HA. The constant C can be defined 
by the requirement that 

Pr[c I C I HN] 1 1  -a 
(3.9) 

where the error rate a is the acceptable error for 
rejecting HN when it is true. Alternatively, the 
constant C could be chosen in order to meet the 
acceptable false correlation rate p; that is, 

(3.10) 

In general, the statistic 6 has a non-central chi- 
squared probability distribution, denoted as 
X2(n,h), since X, and X, are assumed to be 
multivariate normally distributed random 
vectors, where 

The probability density function for the non- 
central chi-squared probability distribution is 
defined as follows [2 ,8,9 and 101: 

(3.12) 

where r is the standard gamma function 

r(a) = jw ya-' e-y dy 
0 (3.13) 
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The parameter n -- then number of degrees o 
freedom -- in Equation 3.1 1 is the dimension o 
the track state vector. The probability that 6 5 
C can be evaluated numerically with the 
procedures given in Press, et. al., Numerical 
Recipes [ 121; the American Mathematical 
Society has published extensive tables [13]. 

Now consider the requirements of the FAAD 
C21 outlined in Section 2. The error rate a for 
missed correlations is 0.004, and the error rate 
p for false correlations is 0.10 when the actual 
separation between aircraft is 700 meters. The 
700 meter criterion represents a normalized 
separation of approximately 3.5; the 100 meter 
criterion represents a normalized separation of 
0.5. Thus, the parameters h, and h, which 
define the two hypotheses (Equations 3.4 and 
3.5) can be assumed to be 0.25 and 12.25, 
respectively. Tracks have five components; 
thus the number of degrees of freedom is 5 in 

Equation ,11. The gate C for the missed 
correlation criterion is the solution of 

Pr [x2(5, h) I C] 2 0.996 (3.14) 

for h = 0.25; that is, C = 18.2. Similarly, the 
gate C for false correlation criterion is 
determined by 

Pr [x2 (5 ,  h)  IC] I 0.10 (3.15) 

for h = 12.25; in this case, C = 8.2. 

A comparison of the two correlation decision 
criteria is shown in Figure 3.1. Based on a 
single correlation decision or trial, only one of 
the two criteria can be satisfied; both cannot be 
satisfied simultaneously. 

C 
0 

m 
.- 
c - 
2 
L ~ 

0 
0 
w- 
0 

>, c .- - .- 
n 
m 
P 
0 
L 
n 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 

Single Trial A I _t_ Single Trial B 

Logic A: Gate = 18.1 
Prob[Cor.] = 0.996 at 
0.5 units of separation 

Prob[Cor.] = 0.10 at 
3.5 units of separation 

Logic B: Gate = 8.2 

0 1 2 3 4 5 6 
Normalized Separation 

Figure 3.1 : Single Trial Probabilities of False Correlation versus Aircraft 
Separation. Single Trial Logic A is optimized for the required missed correlation rate; Logic B is 
optimized for the required false correlation rate. 

The solution for this apparent dilemma is to 
apply Wald's [4, 5, 81 concept for sequential 

are used, corresponding to an inner gate (e.g., 
6 5 C,) for "correlation" decisions and an outer 
gate (e.g., 4 2 c2> for COrrelation" 

decisions. For the region of ambiguity (e.g., 
C, e 5 e C2) the decision is deferred until 

analysis, often called the sequential probability another observation or sample is obtained. By 
ratio test. In this Concept, two decision Criteria selecting the two gates C, and C, 

appropriately, both error rates can be achieved 
simultaneously~ This price, of course, is that 
an extended sample time may be required 
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before sufficient data is collected for the 
decision. 

Formally, the sequentid probability ratio test is 
defined by the statistic Z, where 

(3.16) 

The correlation test is then: 
(i) Accept the null hypothesis HN if Z 5 a 
(ii) Accept the alternative hypothesis HA 

(iii) Continue sampling if a e Z < b. 
"Continue sampling" is the context of track 
correlation means to obtain the next update of 
each of the two track under consideration. A 
track is, by Equation 3.3 a statistic, that is, a 
function of all of the measurements available to 
a system concerning the state of an aircraft. 
Wald gives a convenient approximation for the 
choice of the two decision criteria, a and b. 
Specifically, 

i f Z i b  

1-P , bE- P a=- 
1-a a (3.17) 

The problem now is to reduce the formal 
detiiition of the sequential probability ratio test 
to a usable test in terms of 6 rather than Z. To 
this end, set [4, p. 3151 

z = Ln (Z) = L A  -1, 2 + L n b ( ' , y ) }  

- Ln (.(;, )} 
(3.18) 

Two gates, C, and C,, are obtained by solving 
Equation 3.17 for 6; fiist with z = Ln(a), and 
then with z = Ln(b). Given the non-linear 
nature of Equation 3.17, Brent's method2 was 
applied to this problem in order to find the 
roots. 

* Brent's method is a straightforward, numcrical method 
for finding 1001s of non-linear equations; see Ref. 12 for 
details. The convergence properties. when applied IO 
this problem, are quite good. 

~n the FAAD 61 example, the solutions for the 
two gates, C, and Cz, are 4.7 and 24.6. That 
is, the two tracks are associated if E; 5 4.7; they 
are not associated if 5 2 24.6; otherwise, there 
is no decision. The performance of the 
sequential decision logic is shown in Figure 
3.2. 

4. APPLICATIONS TO AIR 
DEFENSE 

In air defense systems there are two limitations 
of the sequential approach to decisions. First, 
one does not have the luxury of an extended 
decision time; an acmal decision is necessary at 
some point in time. Second, only rarely can a 
correlation problem be reduced to a one-versus- 
one test; there usually is more than one 
candidate for correlation when a new track is 
received from a track source. 

Consequently a modified sequential decision 
logic, which takes the two constraints into 
consideration, was developed for FAAD based 
on the sequential probability ratio test. This 
logic uses Small, Large and Gross Gates, as 
illustrated in Figure 4.1 for the case of a plane 
of two degrees of freedom, to identify probable 
correlations, non-correlations, and the 
ambiguous cases. The small gate corresponds 
to the gate C, described previously; the gross 
gate corresponds to the gate. 

The actual correlation decisions are determined 
as follows. If there are no remote tracks in the 
Gross Gate (GG), then the new local track is 
unique or uncorrelated (UC). If there is exactly 
one remote track in the Cross Gate, and it is 
also within the Small Gate (SG) (that is, R2 
through R6 of Figure 4.1 do not exist), then 
the new local track is Firmly Paired or 
Correlated @") with the remote track (that is, 
R1 in Figure 4.1). Thus, the logic yields rapid 
(that is, single trial) decisions in low density 
environments. For any other situation, a 
conditional correlation decision is made which 
is conf i i ed  or modified based on subsequent 
track updates from both the local and remote 
sensors. 
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Sequential Probabil i ty Ratio Test 
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Figure 3.2: Probability of Correlation and the Expected Decislon T h e  versus 
Aircraft Separatlon. The standard deviation of the decision time is approximately equal to the 
expected time: therefore, extended decision times can be anticipated for aircraft separated by 3.5 
normalized units or, for FAAD C I, 700 meters. 2 

Gross Gate 
Lar ge Gate 
SmaI I Gat c 

New Local 
Sensor 
Tr ack 

' Remote 
a t e r  Ri ng Sensor Tracks  

0 M i d d l e  R i n g  

Figure 4.1 : Sequential Correlation Logic Gate Structure (Horizontal Positlon). 
The Small Gate identifies the remote tracks which represent a common aircraft with a high 
probability; the Gross Gate identifies remote tracks which represent different aircraft with a high 
probability; remote tracks in the middle and outer rings are ambiguous correlation decisions which 
require further observations for resolution. 
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Status 
cs 

For example, if there is one or more remote 
tracks in the Outer Ring (OR) (that is, in the 
Gross Gate but not in the Large Gate; for 
example, R4, R5 and R6 in Figure 4.1), then 
the new local track is declared to be 
Conditionally Single (CS); Conditionally 
Single tracks are eligible for dissemination to 
other subsystems. If this condition persists for 
the next four updates of the local track, then the 
Conditional Single label is changed to Firm 
Single (or, equivalently, Uncorrelated); see 
Table 4.1. On the other hand, if there is one 
remote track in the Middle Ring (MR) or 
multiple remote tracks within the Large Gate 
(LG), then the local track is Conditionally 
Paired (CP) with each remote track in the Large 
Gate. A scoring logic based on the presence of 
subsequent updates in the Middle Ring or 

Correlation Gates Score 
No remote in GG +5 
No remotes in LG +2 

Small Gate is used to select one remote 
(generally, the closest of the remote tracks) for 
the Firmly Correlated decision; refer to Table 
4.1. This process of conditional correlation 
decisions and confirmation produces high 
confidence decisions in high target densities by 
deferring decisions in ambiguous situations 
until target motion resolves the ambiguity. 

CP* 

As noted previously, the small gate and the 
gross or outer gate are defined by the sequential 
probability ratio test. However, the large or 
middle gate is not an element of the theory. 
This gate must be defined partly by intuition 
and partly by trial and error through 
performance modeling. Performance modeling 
is the subject of the next section. 

Remote in SG +2 
Remote in M R  +1 
Remote in OR .- 1 
Remote not in GG Delete 

Table 4.1: Scoring Logic and Decision Criteria for Tracks 
with Conditional Status 

I 
~ ~ ~~ 

I At least one remote in LG I -1 I 

I ~ . . .  ~~ 

Decision Criteria 
CS --> UC if Score 2 5 or no remotes in GG 
CS --> CP if Score = 0 
CP --> CS if Score = 0 for all remote CP's 
CP --> FP if Score > 5 ** 

Notes: 
CP: conditional pair; CS: conditional single. 
* A score is maintained for each conditionally paired remote 

** If more than one remote has Score 2 5, then choose the closest 
track. 

in the horizontal plane. 

5. PERFORMANCE ANALYSES Markov Chain model with which the sequential 
logic can be evaluated in closed-form. These 

The performance analyses outlined in this models, in addition, can be applied to derive 
section are based on the use of (1) central and the system level requirements for sensor 
non-central chi-squared statistics to evaluate the registration and coordinate conversion 
gate probabilities as functions of the error accuracy, which are the prerequisites for 
statistics as noted in Section 3 and (2) a successfultrackmanagement. 
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The sequential logic outlined in Section 4 can 
be represented by a state transition model. For 
the case of one remote track and one local 
track, the assignment of states is given in Table 
5.1. Table 5.2 defines the possible state 
transitions together with the respective 
probabilities. A representation of the state 
transition structure is shown in Figure 5.1. 
PG, P,, and Ps are probabilities that the remote 
track will be in the Gross, Large and Small 
Gates, respectively; Po and PM are 
probabilities that the remote track will be in the 
outer and middle rings: 

Conditional Single 1 
Condition a1 Single 2 

With this framework, a Markov chain model 
[14, Chapter 31 can be applied to evaluate the 
probability of each of the two possible 
decisions as well as the statistics for the 
number of samples necessary to reach the final 
decision. The set of absorbing states, in this 
case the Firmly Paired (or Correlated) and 
Firmly Uncorrelated states, is an ergodic set of 
states in a finite Markov chain. The 
fundamental theorem of finite absorbing 
Markov chains states that, independent of the 
starting state, the probability that the process is 
in an ergodic state after n transitions tends to 
unity as n tends to infinity [4]. The issues of 
(1) which of the two states represents the 
terminal point, and (2) the expected time to 
absorption are addressed in [ 141. 

3 
4 
5 
6 
7 
8 

Table 5.1 : State Definitions 

Conditional Single 3 
Conditional Single 4 
Conditional Pair 1 
Conditional Pair 2 
Conditional Pair 3 
Conditional Pair 4 

State I Description I s core  
0 I Null state 0 

1 

1 9  I Firmly Uncorrelated I 5 - I 
I 10 I Fimlv Paired I 5 I 

Table 5.2: State Transitions and Probabilities 
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Figure 5.1. State Transition Diagram for Correlation of One Local Track against 
One Remote System Track. The transitions among the states are defined by the 
probabilities that the remote track will fall within the specified gates. 

The Markov chain model was applied to obtain 
the probability of "correlation" and "no 
correlation" decisions as a function of aircraft 
separation. For the results shown in Figure 
5.2, it was assumed that the correlation logic 
received only one track from each of two 
subsystems. The techniques discussed by 
Johnson and Kotz [ll] were employed to 
compute the gate probabilities for the non- 
central chi-squared distributions which result 
from off-set normal distributions. The 
performance of three alternative logics is 
shown in Figure 5.2; the alternatives are 
defined by the approximate percentage points 
of the small and large gates, respectively. The 
90/50 Gate Logic was chosen for the FAAD 
application since it provides the best match to 
the system requirements. The 50 percent gate 

corresponds approximately to the acceptance 
criterion of 4.4 for the null hypothesis in the 
sequential ratio test. All three of the logics 
used a Gross Gate size of 29.0, which 
corresponds to the criterion for rejection of the 
null hypothesis. 

Since the sequential logic may require multiple 
observations in order to reach a firm decision, 
the expected or average number of observations 
required is a performance parameter of interest. 
The expected number and standard deviation of 
the number of transitions is provided in Figure 
5.3 as a function again of the normalized 
aircraft separation. As will be noted from 
Figure 5.3, the standard deviation of the 
decision time is approximately equal to the 
average time which indicates the possibility of a 
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wide variation in actual decision times, the other hand, for separations greater than the 
particularly at a normalized separation gross gate size, the logic reduces essentially to 
approximately equal to the small gate size. On a single trial logic. 

XPI = Large/Small Gate Percentages 
1 .o 

0.8 
C 
0 

0 3 0.6 
0 6 0.4 
d 
0 

.- c 

6 

& 0.2 

0.0 
0 1 2 3 4 5 6 

Normalized Separation 

Figure 5.2: Probablllty of Correlatlon versus Aircraft Separation. In the Sequential 
Logic, the Large Gate can be used to control the missed correlation rate while the Small Gate can 
be used to control the false correlation rate. 

Expected Number (and Standard Deviation) 
of the Updates To Final Correlation Decision 
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E 
3 z 

Y Expected No. - St. Dev. 

Correlation Gates : 
Small = 4.45 
Large = 9.24 
Gross/Outer = 29.0 

0 1 2 3 4 5 6 
Normalized Separation 

Figure 5.3: Expected Number of Transitions for a Flrm Declslon versus 
Normalized Separation. The longest decision times occur when the separation is 
equal to the size of the small gate. 

The normal separation in Figure 5.2 can be the horizontal plane or the velocity (or phase) 
considered in several different ways. plane. It may also be considered as a fixed bias 
Obviously, it can be considered as distance in between the two tracking subsystems. For 
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example, if there is a 200 meter error in the 
knowledge of the relation positions of the two 
radars, then there will be an equivalent (in the 
FAAD case, 1 unit of normalized separation) 
offset in the reported track positions of a 
common aircraft. Similarly, a relative azimuth 
bias at one of the two radars will result in an 
apparent separation for an aircraft at given 
range from the biased radar. The required 
probability of 0.004 of missed correlations 
occurs for the 90/50 logic at a normalized 
separation of 0.5 or 100 meters. Thus, any 
combination of registration errors which yield a 
separation of less than 100 meters will be 
acceptable. 

Now consider the performance of the 
sequential correlation logic versus the single 
trial logic discussed in Section 3. Figure 5.4 
shows the performance of the 90/50 sequential 
logic versus the two single trial logics shown in 
Figure 3.1. The sequential logic yields a 
missed correlation error rate of 0.0025 versus a 
requirement of 0.004. In addition, the false 
track error rate for the sequential logic is 0.04 
at 700 meters of separation in the horizontal 
plane versus the required 0.10 rate. The 0.10 
false correlation rate occurs at approximately 
3.15 units of normalized separation or 640 
meters. 

1 .o 

0.8 
C 
0 
0 
2 0.6 

0.4 

.- 
c - 
L 

8 
d 
p. 0.2 

0.0 
0 1 2 3 4 5 6 

Normalized Separation 

Figure 5.4: Probability of False Correlation versus Aircraft Separation. A 
sequential correlation decision logic can achieve simultaneously the required error rates for both 
false and missed correlations. 

Finally, consider the situation in which one 
local track is to be correlated against two 
remote system tracks, one of which represents 
the same aircraft as the local track. This 
perhaps represents a more realistic situation 
than the previous cases in which the local and 
remote tracks represented two distinct aircraft 
since the ability of radars to resolve individual 
aircraft is a function of both range and the 
separation of the aircraft in the radar 
measurement coordinate system. 

In order to evaluate performance in this case, 
the Markov chain model was expanded to 
include 16 conditional correlation states (rather 
than 4) and two additional absorbing states to 
cover the four possible results of the sequential 
logic. The four absorbing states are (1) no 
correlation, (2) correlation with a correct 
remote track, (3) correlation with the incorrect 
remote track, and (4) correlation with both 
remote tracks, which is the ambiguous decision 
case. The results of the analysis are shown in 
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Figure 5.5 for the cases of a perfect ambiguity 
resolution and resolution by a random 
selection, which together bound the nearest 
neighbor decision criterion3. Note that the 
probability of correlation shown in Figure 5.5 
is the probability of correlation with the 
incorrect remote track, that is, case (3) and case 
(4) with an incorrect ambiguity resolution. 

6. IMPLEMENTATION ISSUES 

In order to design and implement a track 
correlation logic, it is necessary to describe 
quantitatively the sources of track error at the 
correlation processor, including both the 
random and the systematic error components in 
the tracks. In particular, the correlation statistic 
5 defined in Equation 3.8 requires knowledge 
of the track covariance data for both tracks, one 
of which could be a track from a remote system 
received via a data link. Unfortunately, the 
standard 80-bit track message formats used on 
tactical data links allow only 2 to 4 bits for 
track quality; thus, the covariance matrix for 
remote tracks must be reconstructed in order to 
apply the standard statistical likelihood and chi- 
squared correlation techniques discussed in 
Section 3. 

Reconstruction of the track covariance matrix at 
a remote site is, at best, only a process of 
approximation based on a set of assumptions 
about the remote system. An example of one 
set of assumptions is the following: 

1. The Track Quality TQ in the track 
message corresponds to an upper 
bound for the standard deviation oTQ 
of the error in the predicted track 
position at the anticipated time of the 
next update. 

The ambiguous case could be analyzed more precisely 
by use of the non-central F-distribution to approximate 
the probability that the correct remote track is closer to 
the local track than the incorrect remote track. The 
solution would only be approximate since the 
conditional probability distribution given the results of 
the gate checks is essentially an unsolved problem in 
mathematical statistics. However, the results should be 
sufficiently accurate to support any engineering 
conclusion or decision which is likely to be required. 

2. The update rate At and the standard 
deviation oM of the measurement error 

3. 

of the remote sensor are known, at least 
approximately. The value of the 
standard deviation should be an upper 
bound for the errors in the coordinate 
system assumed in the message format 
rather than the actual measurement 
variables (e.g., range and azimuth). 
The remote system will process the 
sensor measurements with some form 
of a linear least-squares estimation 
technique, for example, a Kalman filter. 

The third assumption provides an approximate 
representation for the upper bounds of the track 
estimation errors for the worst-case 
component. Let the vector X represent one 
track dimension, that is position and velocity 
(actually, only the rate of change of x); that is 
X = [x x] By assumption, X is the result 
of a linear ieast-squares estimation process; 
therefore the covariance matrix E for X (that is, 
the predicted state) has the form [ 1,9] 

1 z=o, I ,,:, 12 

6 
2 n(n-1) n (n - 1) (At )  
_ _  

I n  (n - 1) (A t) n ( n2 - 1) (A t)2 1 
where n is the number of measurements which 
were used and At is the approximate update rate 
(which may be increased from the sensor scan 
interval to account for a probability of detection 
of less than unity, if appropriate). 
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Flgure 5.5: Probabllity of An Incorrect Correlation Decision. If one of the two 
remote tracks represents the same aircraft as the local track, then a correct correlation decision will 
occur with probability of at least 0.90 when the normalized separation greater than 2.5 units. 

By the second assumption, the bound for the 
position variance is known; thus, 

Since both of the variables oTQ and oM are 
known, Equation 6.2 can be solved for the 
variable n; specifically, 

(p + 4) + J&G 
n =  

2 P  (6.3) 

Given n, then the other elements of the matrix 
in Equation 6.1 can be computed. Finally, 
since this matrix represents the upper bound or 
worst-case for the covariance of the individual 
components of the track, the full  track 
covariance can be represented as the block- 
diagonal matrix with each block given by 
Equation 6.1. Note that it may be necessary to 
permute the rows and columns of the block- 

diagonal matrix in order to match the order of 
the variables in the actual track vectors. 

7. CONCLUSIONS 

This paper has defined a method for track 
management in distributed, multiple sensor 
tracking systems, together with an analytic 
technique for performance evaluation with 
respect to random, systematic and system 
errors. One critical analysis remains open for a 
complete design and implementation approach, 
namely the registration requirements for 
participants in a distributed surveillance 
system. However, the analysis techniques 
derived in this paper can be applied in a 
straightforward manner to obtain the upper 
bound for the registration error within a 
system. The decomposition of the total error 
into the component error sources must be based 
on knowledge of the specific sensors involved; 
however, the same techniques can be applied to 
study the impact of the individual component 
errors on system performance. Finally, the 
final error W for system registration must 
be a subjective compromise between the 
analysis results and the practical limits of the 
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data processing necessary to align the system 
sensors. 
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This Section provides an overview of the fundamental and emerging 
techniques that are presently under research and development for their 
utilization in advanced real-time Automatic Target Recognition (ATR) 
S ys tems. 

Image fusion, image segmentation and object classification, in 
conjunction with Artificial Neural Networks, constitute the basic 
technologies for real- time recognizers. 

Low-observability conditions and the non-cooperative characteristics of 
military targets make multi-sensor and multi-frequency imagery data 
fusion very useful for target detection and recognition. The fused image 
obtained from multi-spectral observation of a given scenario contains 
most of the signatures or information of the potential targets which are 
present, in the range of frequencies of the observation detectors. This fact 
contributes positively to the detection, identification and recognition of 
such targets in  adverse environment. 

Image segmentation techniques are used to extract objects from a 
particular scenario. They are especially efficient for the fusion of multi- 
spectral imagery, since the amount of information contained in this type 
of imagery is much higher than in conventional ones. 

Classification is the subsequent process to support object extraction by 
segmentation which contributes directly to the recognition of the 
targets. In segmentation, the utilization of fusion techniques improves 
the characterization of targets and, therefore, the efficiency of the 
classification process. Real-time processing is essential for applications in 
Defence Surveillance, Detection, Identification, Tracking and Guidance 
Systems. Neural Networks, because their architectures inherently have 
fine grain parallelization properties, will hopefully, provide the required 
real-time capabilities. On the other hand, classical numerical algorithms, 
due to their own direct applicability, are important for the selection, 
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development, training and verification of the performance of Neural 
Networks . 

This Section presents different types of classification algorithms, 
Bayesian Belief Networks, and Neural Networks covering the complete 
Automatic Target Recognition process, including fusion, segmentation 
and classification, that are very promising for real- time, or quasi-real- 
time systems applications. 

The Editor of this Section wants to thank and congratulate the 
authors for putting together many new ideas and expositions of 
techniques in the field of Automatic Recognition Systems for the near 
future.  
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CLASSIFICATION PAR FUSION DE DONNES 
INCERTAINES MULTI-SENSEURS 
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France 

1. RESUME 

Une analyse multi-senseurs visant B reconnaitre une situation parmi un 
certain nombre d'hypothbses rkpertorikes a priori, pour I'identification 
d'une cible par exemple. doit Ctre capable de tirer le meilleur parti de tout 
apprentissage prealable disponible. Les mkthodes classiques de 
traitement. notamment probabilistes. restent toutefois limitees par le 
manque de reprksentativitk de ces apprentissages lorsque les conditions 
d'observations Cvoluent de fagon mal maitriske. II convient alors de 
recourir aux techniques de I'incertain. et en particulier B la Theorie de 
I'Evidence qui procure le cadre le plus ouvert dans ce contexte. Sa mise 
en oeuvre conduit cependant B un delicat probleme d'interprktation des 
informations disponibles, compte tenu des notions qu'elle permet de 
manipuler. C'est donc une recherche axiomatique des solutions les plus 
pertinentes qui est proposee ici pour deux types de problbmes 
complkmentaires. fkdkrh par un concept genirique de traitement propre i 
gkrer la fiabilite des donnees dklivrkes. L'intCrCt de cette approche est 
Cvalue sur la base de quelques simulations simples. 

2. BESOINS ET FORMULATION DU PROBLEME 

L'intirCt majeur qui justifie I'association de senseurs multiples tient au 
Mn6fice qui peut Ctre tire de leur complkmentarit6 [3]. La vocation d'une 
telle association est donc avant tout de traiter des configurations 00 une 
partie des senseurs est plus ou moins en d6faut (aptitudes pour la 
situation B traiter, environnement, contre-mesures. d6faillances. ... ). Un 
traitement judicieux de ce type de configuration exige la prise en compte 
de toutes les informations disponibles. notamment celles susceptibles de 
nous renseigner sur la qualit6 des mesures, sur leur potentiel informatif, 
sur le contexte des relev6s. et donc sur la pertinence relative des 
diffkrentes &valuations qui peuvent Ctre menkes. 

Ceci conduit B infkrer dans u n  mCme systbme des donnees de nature 
particulibrement disparate, et souvent subjectives. incertaines. 
incomplbtes. erronks. imprkcises, avec des relations de dependance tks 
spkcifiques. On devra typiquement integrer le traitement conjoint de 
mesures, d'apprentissages plus ou moins reprksentatifs, et 
d'informations qualitatives sur ces donnkes. Les theories de I'incertain 
procurent un cadre fkdkrateur seduisant dans ce contexte, mais leur mise 
en aeuvre pratique se heurte i un certain nombre de difficultis: 
interpretation et modklisation des informations disponibles dans les 
cadres thkoriques appropriks, choix d'une architecture de fusion et de 
rkgles de combinaison, principes de dkcision B adopter, contraintes sur la 
rapidit6 et le volume des calculs nicessaires. 

ConsidCrons plus prkciskment ici un systbme multi-senseurs conp  pour 
reconnaitre une situation scrutCe parmi u n  ensemble exhaustif de N 
hypotheses Hi rkpertoriies a priori ( i€[l .  NI). Les applications 
concernCes couvrent ainsi un panorama relativement vaste de fonctions. 
les hypotheses en question pouvant &re, par exemple, la prksence 
d'entitks (detection, extraction), I'identitC de cibles (veille. conduite de tir, 
autodirecteur ,...) ou d'arners (recalage de la navigation d'engins). la 
localisation d'un vecteur ou d'une cible, Ma t  d'un systbme ou d'une 
situation (dommages. configuration,. . . ). La finalitk d'un tel systbme peut 
par ailleurs Ctre le simple renseignement, ou I'intCgration B uti systbme 
plus global de filtrage (poursuite de cibles. recalage de navigation, ...) ou 
d'aide a la decision en vue de la mise en ceuvre de moyens d'analyse. de 
guerre Clectronique. &intervention,. . , 

Les senseurs sont par ailleurs reputes choisis et 
dCfinis en vue d'assurer la meilleure complCmentaritC utile au problbme 
traitk, leurs spdcificitks important peu pour ce qui suit. Typiquement, ils 
peuvent Ctre de type radar, imageur infrarouge. radiombtre. ESM, video. 
acoustique, sismique, sonar. Chacun des M senseurs S ,  (j€[l. MI) 
utilises est en outre supposk dot6 des traitements propres B extraire des 

signaux ou des images qu'il procure une mesure ou un ensemble de 
mesures m, pertinent pour la fonction envisagee. 

On se propose de considkrer dans un premier temps le cas le plus gknkral 
00 chaque mesure m, permet d'6laborer. sur la base d 'un  apprentissage 
prkalable quelconque, N critbres Ci, B valeurs dans [O. 11. propres B 
caracteriser respectivement la vraisemblance de chaque hypothese Hi. Un 
facteur de qualit6 qi, B valeurs dans [0, 11 est en outre associk 2 chaque 
vraisemblance Ci,. Sa vocation est de traduire, i partir d'un apprentissage 
ou de connaissances exogbnes. I'aptitude du critkre Ci, B discriminer 
I'hypothbse Hi dans les conditions de I'observation. I1 integre notamment 
la confiance que I'on peut avoir dans la reprksentativitk de I'apprentissage 
utilise pour 1'6laboration de C,j. compte tenu de I'kvolution du contexte, 
de la qualitC. du volume, et de I'exactitude des donnCes accessibles lors 
de I'apprentissage. et de la pollution Cventuelle des relevks. 

Deux types de problbmes particuliers d'intkrct sont ensuite dkvelopph. et 
f6dkres par le problbme gknerique qui vient d'Ctre introduit. 11s 
correspondent. pour I'un B une Blaboration particulibre des facteurs de 
confiance qi, partir de matrices de confusion apprises pour chaque 
senseur. et pour I'autre B I'utilisation d'un apprentissage stochastique 
dans la determination des vraisemblances Cij. L'apport de I'approche 
priconisee est mis en Cvidence dans chaque cas sur la base de quelques 
simulations simples de synthbse. 

La demarche adoptee consiste en une recherche axiomatique des solutions 
repondant aux diffkrents problkmes posCs. Le cadre retenu est a priori 
celui de la thkorie de I'kvidence. qui s'avbre Ctre le plus large et le mieux 
adapt6 B I'interprktation des donn6es consid6rees (cf § 3). Les resultats 
obtenus sont nkanmoins compares aux solutions accessibles par d'autres 
voies de dkrence. 

L'exposk qui suit prisente une synthese de travaux d6ji partiellement 
discutks dans [l .  2.41. 

3. RAPPELS SUR LA THEORIE DE L'EVIDENCE 

Quelques bases nkcessaires B la comprkhension de la suite de I'exposk 
sont ici rassemblkes de fagon informelle. Elles mettent notamment en 
Cvidence certains outils de la theorie de I'kvidence particulibrement utiles 
en fusion de donnkes. 

3.1 Notions fondnmetitnles 

Cette thCorie. dhelopp6e dans [5]. suppose la definition pr6alable d 'un 
ensemble E de N klements Hi (iE[1, NI) exclusifs et exhaustifs. appele 
cadre de discernement. 2E designe alors I'ensemble des 2N-1 
sous-ensembles Aj de E (j€[l, 2N-11). 

Une fonction de masse Blkmentaire m(.)  est d6finie de 2E 
sur [O. 11 par : 

m ( 0 )  = 0 (3.1) 

2N-1 
1 m(Aj)= I 
j=1 

(3.2) 

Les klements focaux sont les Blements A, de 2E dont la masse m(A,) est 
non nulle. Lorsque ces klements focaux se rkduisent aux seuls singletons 
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Hi, ou plus gknkralement B une partition de E. la notion de masse 
Blkmentaire est assimilable B celle de probabilitk. L'apport de la thhrie de 
1'6vidence est donc typiquement de permettre 1'6valuation conjointe 
d'ensembles quelconques de ces singletons Hi. DBs lors les kvknements 
consid6r6s ne sont plus nkcessairement exclusifs. Une masse m(A,) est 
reprksentative de la vraisemblance attribuable B I'un des klkments du 
sous-ensemble Aj. sans aucun discemement possible entre les diffkrents 
Clkments de A,. En particulier m(E) dksigne le degr6 d'incertitude totale. 

Une fonction de crkdibilitk Cr(.) peut kgalement Stre dkfinie sur les 
m h e s  ensembles par : 

Cr(0) = 0 (3.3) 

Cr(E) = 1 (3.4) 

Cr( U Aj ) t (-1)111+1 Cr( n Aj ) 
j€J ICJ jE1 

I # 0  

(3.5) 

ob I'on peut remarquer que la fonction de probabilit6 est un cas particulier 
de fonction de cddibilit6. obtenue B 1'6galitk de (3.5). 

Les fonctions de masse Blkmentaire et de crddibilitk sont donc dkfinies et 
utilisable de faGon indkpendante. II existe cependant une bijection entre 
I'ensemble des fonctions de masse Blkmentaire et I'ensemble des 
fonctions de cr6dibilit6. qui associe B chaque jeu de masses sur 2 E  un jeu 
de crkdibilit6s sur le m&me ensemble. Cette correspondance est formalis& 
par les relations : 

m(Aj) = (-l)IAj-BkI Cr(Bd 
BkCAj 

(3.6) 

(3.7) 

La notion de fonction de plausibilite peut alors etre introduite 
indiffdremment en liaison avec la fonction de crUdibilit6 : 

PI(Bk) = 1 - Cr(7Bk) (3.8) 

-Bk designant le complhent de Bk dans E. ou B partir de la fonction de 
masse 6lkmentaire : 

(3.9) 

De fqon intuitive, la crkdibilit6 peut Stre interprktke comme une mesure 
de vraisemblance minimale d'un kvknement. et la plausibilitk comme une 
mesure de vraisemblance maximale. La prise en compte d'informations 
concktes dans un sys the  peut donc se faire soit en termes de crcklibilitks 
et de plausibilitks, soit plus directement sous forme de masses 
klkmentaires. 

Parmi les diverses notions manipulkes par la thkorie de I'kvidence, 
signalons encore la fonction de communalitk. dont I'int6rEt pratique sera 
souligni dans la suite : 

3.2 Combinaison de sources distinctes 

(3.10) 

L'intkrSt majeur de la thkorie de I'kvidence en fusion de donnkes repose 
sur la possibilitk de construire une fonction de masse klimentaire m(.) 
unique. par sommation orthogonale des M fonctions de masse 
klhentaire mj(.) issues de M sources d'information Sj distinctes 
(j€[l, MI). dkfinies sur le m&me cadre de discemement E : 

Cet op6rateur a 616 proposk par Shafer pour rialiser la conjonction d'avis 
en respectant (3.1). Dautres ophteurs ont ktk envisagks. notamment 
propres 1 ignorer cet axiome (open world), ou relevant d'une logique de 
disjonction. La somme orthogonale, qui a pu &trejustifit% plus rkemment 
B partir d'approches axiomatiques complexes, reste nkanmoins I'outil le 
plus pertinent pour fusionner des sources ne prksentant pas un dksaccord 
important quant aux croyances exprimkes. a l e  consiste h calculer : 

M 
m(A) = (l-K)-l * { ll [ m , ( W  11 (3.12) 

A I n A 2 n  ... nAM=A#(a j=1 

ob Ai d6signe un sous-ensemble quelconque du cadre de discemement 
commun E. kvaluk par la source Sj. K est I'inconsistance de la fusion. 
propre h figurer le degrk de contradiction entre les croyances exprimkes 
par les diff6rentes sources mises en jeu : 

M 

AlnA2n  ... n A M = 0  j=1 
K =  c { II [mj(W 11 (3.13) 

Une telle loi de combinaison d'informations distinctes procure un certain 
nombre de propriktCs primordiales en fusion de donnkes multi-senseurs, 
notamment : 

* la commutativitk. 

* I'associativitk 

* une mise en aeuvre simple B partir des fonctions 
de communalit6 Q, de chaque source S, : 

3.3 Conditionnement 

(3.14) 

(3.15) 

Une cddibilitk conditionnelle Cr(.lA), relativement B un kv6nement A, est 
la somme orthogonale d'une crkdibilitk quelconque Cr(.) et d'une 
crcklibilit6 certaine CrA(.) dkfinie par le jeu de masses : 

mA(A) = 1 (3.16) 

et donc: 

mA(B)=O , v B#A (3.17) 

Autrement dit 

Cr(.lA) = Cr(.) 63 CrA(.) (3.18) 

Les crcklibilit6s et les plausibilitks conditionnelles oMissent alors aux lois 
de composition suivantes : 

Cr(BIA) = { Cr(BU7A) - Cr(-A) } I { 1 - Cr(-.A) } (3.19) 

PI(BIA) = PI(BnA) I PI(A) (3.20) 

Les crkdibilitks conditionnelles satisfont par ailleurs la propriCt6 de 
distributivitk du conditionnement par rapport h la somme orthogonale, ce 
qui rend en pratique indiffkrent I'ordre dans lequel on effectue ces deux 
opkrations : 

Cr063CPo (.IA) = C f  (.IA) 63 CPo(.IA) (3.21) 
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V AjCE. Cr(A,) = PI(A,) = P(Aj) = Z m(Hi) II convient Bgalement de noter qu'en prisence d 'un  jeu de masse reduit A 
une distribution de DrobabilitCs. c'est-&dire Dour des Cl6ments focaux Hi€ Ai 

(3.30) 

. ,  
formant une partitibn du cadre de discemement E (cf 9 3.1), (3.20) 
assure la parfaite coherence de la theorie de I'evidence avec I'inf6rence 
bayksienne. 

Dautre part la combinaison d'un jeu de masses quelconque m(.) avec un 
jeu de masses bayhien mo(.) procure un jeu de masses bayesien moo(.). 
different de m"(.). et foumi par: 

3.4 Affaiblissement 

L'affaiblissement Cl.(.) d'une credibilite Cr(.) dans 
le rapport a (a€[O, 11) permet de reduire globalement le degrd de 
certitude delivre par la source d'information concem6e. en fonction de la 
confiance que I'on est amen6 h lui accorder par ailleurs : 

Cra(E) = 1 (3.22) 

Cla(A) = (1-a) * Cr(A) , V A#E (3.23) 

Ceci revient h modifier le jeu de masses correspondant selon la 
transformation : 

ma(A) = (1-a) * m(A) , V A#E (3.24) 

ma(E) = a + (1-a) * m(E) (3.25) 

3.5 Raffinement - Grossissement 

En complement du conditionnement. deux operations sont plus 
sp6cialement d6di6es h la gestion des cadres de discernement. Elks 
constituent une composante vitale en fusion de donnees, car la somme 
orthogonale ne permet de fusionner que des fonctions de masse 
Blementaire dCfinies sur un m&me cadre de discemement. alors que les 
sources d'information foumissent le plus souvent des evaluations sur des 
cadres de discemement diffkrents. 

Soit R une application d'un cadre de discemement El dans un cadre de 
discemement E2 : 

R 
E1 = {Hi1 .... .H~ l1}  + E2 = (Hi2 .... ."z2} , N2> NI (3.26) 

R est un raffinement de E1 dans E2 si {R(Hll), ... ,R (HN~~)}  constitue 
une partition de E2. Un jeu de masses m2(.) p u t  alors Etre determine sur 
E2 comme I'extension minimale d'un jeu de masses ml(.) donne sur El, 
par : 

niz(R(B)) = ml(B) (3.27) 

pour tout Blement focal B de ml(.), m2(.) etant nul ailleurs. 

N 

k= 1 

oh PI(.) est la fonction de plausibilite associk aujeu de masses m(.). 

moo(Hi) = { mO(Hi)*PI(Hi) } / { C m'(Hk)*PI(Hk) } (3.31) 

3.6.2 Crddibilitd consonante 

Elk est definie par: 

Cr(0) = 0 

Cr(E) = 1 

(3.32) 

(3.33) 

Cr(AnB) = min { Cr(A). Cr(B) } (3.34) 

On montre qu'ainsi ses ClBments focaux sont emboitCs les uns dans les 
autres. Si ces demiers sont Btiquetes de telle sorte que A ICA2C. . .CA~ 
( k N ) .  leurs masses satisfont : 

m(AK) = PI( AK - A K - ~  ) 

m(A,) =PI( A, - A,.I ) - PI( 

(3.35) 

- A, ) , V A,#AK (3.36) 

et inversement : 

K 
PI( Aj - Aj.1 ) = Z m(Al) 

I=j 
(3.37) 

La fonction de plausibilite associ6e B une crCdibilit6 consonante vdrifie par 
ailleurs la relation duale de (3.34) : 

PI(AUB) = max { PI(A). Pl(B) } (3.38) 

De plus, tout Bvenement Aj a n6cessairement. dans ces conditions, soit sa 
crCdibilit6 nulle. soit sa plausibilit6 Cgale ii 1 ; autrement dit. la 
consonance impose h un CvCnement d'&tre parfaitement plausible avant 
d'&tre credible : 

V AjCE. Cr(A,) = 0 ou Cr(-A,) = 0 (3.39) 

11 existe dos une relation inverse R . ~ ,  dite de grossissement, Elle permet II convient de noter que les cr6dibilit6 et plausibilite consonantes sont 
de determiner un jeu de sur partir jeu de rigoureusement 6quivalentes aux notions de nCcessit6 et de possibiliti de 

la thiorie des possibilit6s. Au niveau de leur formalisme ces demikres 
peuvent donc n'ttre considCr6es que comme des cas particuliers de m2(.) donne sur E2, B I'aide de : 
cddibilit6 et de plausibiliti. 

m L(A) = c m*(B) (3.28) 
BCE2 

A={Hil/R(Hil)nB#0} 4. PRISE DE DECISION: CHOIX DE L'HYPOTHESE LA 
PLUS VRAISEMBLABLE 

3.6 Propr iMs de credibilite particulieres 

3.6.1 Crddibilitt baydsienne 

On souhaitera le plus souvent designer I'hypothkse Hi* la plus 
vraisemblable au v u  de I'information BlaborBe. Une telle prise de 
decision, immediate lorsqu'il est possible d'associer une probabilite a 
posteriori ii chaque hypothkse. devient particulikrement d6licate lorsque 
les evaluations sont orksentks en termes de ieu de masses de la theorie de 
I'bvidence. Toute Is difficult6 est alors Ike h la non-exclusivitk des 
evaluations, qui pose le probl&me pratique de I,interpr6tation et de la prise 
en compte relative des masses attach& aux Blements focaux de cardinal 

Les 6lements focaux sont ici rkduits aux seuls singletons Hi du cadre de 
discernement E :  

sup6rieur ou Bgal h 2. dans la designation d'un singleton unique. Ce 
problkme, general ii la thCorie de I'Cvidence et incontournable dans le 
contexte trait6 ici, ne donne lieu h ce jour qu'8 des solutions intuitives 

V AjtHi, iE[1. NI, 

DBs lors les notions de credibilit6. de plausibilitk, et de probabilitk sont plus mains "absolu. 
confondues : 

m(Aj) = 0 (3.29) 
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I I  est donc propose dans la suite trois approches globales diffkrentes du 
problbme g6n6ral de choix de I'hypothbe Hi* la plus vraisemblable. etant 
donne un jeu de masses m(.) quelconque sur un cadre de discernement 
E={H1 ,... , HN}, lorsqu'aucun autre a priori discriminatoire entre les Hi 
n'est retenu. 

Une synthbse des procedures degagees visera ensuite i retenir une 
attitude u n i f i k  face au pmblkme. 

4.1 Approche globale "focalisee" 

Cette approche consiste B considerer N jeux de masses mi(.) certains 
(iE[1. NI). en accord avec la definition (3.16) et (3.17). chacun dtant 
respectivement focalisd sur une des N hypotheses Hi du cadre de 
discernement E L'inconsistance K, de la somme orthogonale entre lejeu 
de masses mi(.) et le jeu de masses m(.) disponible est alors 
representative de leur dksaccord. c'est-A-dire du conflit qui oppose 
I'evaluation m(.) B la certitude qu'il s'agisse de I'hypothkse Hi. 
L'hypothbse Hi* choisie doit donc Etre. dans ces conditions, celle qui 
correspond B une inconsistance K, minimale. K, &ant en pratique donnk 
par : 

Ki = 1 - PI(Hi) (4.1 ) 

OD PI(.) est la fonction de plausibilite associee B m(.), c'est I'hypothkse 
pour laquelle cette plausibilite est maximale qu'il convient de retenir. 

L'interEt de ce critbre dinconsistance est en particulier confort6 par la 
notion d'entropie qui peut Etre attachie a son expression [6]. 

4.2 Approche globale "bnyesienne" 

L'idCe est ici de prendre en compte la donnee prkalable d'un jeu de 
masses bayCsien "6quiprobable" mb(.) sur le cadre de discernement E : 

(4.2) 

mb(A)=O , v A#Hi , i€[l, NI (4.3) 

Confiant A ce jeu de masses mb(.) un r6le similaire B 
celui de probabilites a priori dquiprobables dans I'infirence bayesienne. 
un jeu de masses mc(.) peut Etre determine par sommation orthogonale du 
jeu de masses mb(.) et du jeu de masses m(.) disponible. En vertu de la 
proprieti (3.31). %(.) est alors un jeu de masses bayesien dCfini par : 

(4.4) 

OD PI(.) est la fonction de plausibilite associee A m(.). Par reference au 
maximum de probabilite a posteriori, la procedure de decision consiste 
alors de fagon immediate A retenir I'hypothbe Hi* de masse maximale. et 
donc. ici encore, de plausibilite FI(H,*) maximale. 

Conceptuellement. le principe de cette approche consiste i substituer i 
I'incertitude totale a priori une indifference entre les singletons du cadre 
de discernement, de fagon A forcer la discrimination entre ces seuls 
6 I6 m e n t s. 

4.3 Approche par paradigme de decision 

La solution est ici cherchee en se referant B un contexte plus gkneral de 
prise de decision, synthetise par exemple dans [7]. Le but est alors de 
choisir une action A mener parmi Q actions ah possibles (hE[l. Q]). B 

partir de I'evaluation fournie par le jeu de masses m(.) sur le cadre de 
discernement E 

Ce choix peut Etre conduit en maximisant une fonction de coat C(ah) sur 
I'ensemble des actions possibles, connaissant le poids G(ah/Bk) que I'On 
affecte A chaque action potentielle ah lorsque 1'6venernent Bk, 
sous-ensemble quelconque de E. est realise : 

Toute la difficult6 de mise en aeuvre pratique et la cridibilite d'une telle 
procedure restent likes 1'6valuation des poids G(%/Bk). le plus souvent 
trks subjective. Si I'on peut en g6n6ral considerer que les poids relatifs 
aux seuls singletons H, de E sont fournis par le systkme ou I'utilisateur. 
ceux relatifs aux sous-ensembles Bk de cardinal sugrieur ou 6gal 2 
doivent en revanche faire I'objet d'une determination intuitive. 
Bventuellement guidCe par une "attitude" privil6giCe [7J 

Toutefois dans notre cas, ce caractere subjectif peut Etre fortement attinu6 
par la bijection que I'on est amen6 Btablir entre I'ensemble des actions et 
le cadre de discernement E. chaque action a, consistant respectivement A 
declarer une hypothbse HI comme vraie (Q=N). En effet. en I'absence de 
toute information complhentaire. les poids sont alors legitimement 
donnes par : 

E(a,lBk)= 1 si H,EBk (4.7) 

E(a,/Bd=O si H,@Bk (4.8) 

de fapn  a respecter la notion de masse m(Bk) associke, telle qu'introduite 
par la thCorie de I'evidence. c'est-A-dire comme une evaluation d'un des 
elements de Bk. sans que I'on soit en mesure de preciser de que1 BlCment 
de Bk i I  s'agit. 

Dans ces conditions, (4.6) conduit elle aussi B designer I'hypothbse HI* 
de plausibilite? PI(H,*) maximale comme la plus vraisemblable. 

4.4 Synthese 

Les trois approches globales presentees convergent toutes vers la mEme 
procedure de decisiqn, qui consiste B retenir comme la plus vraisemblable 
I'hypothbse Hi* telle que : 

PI(Hi*) = max { PI(Hi) } 
iE[l ,N] 

(4.9) 

5. PROBLEME CENERIQUE 

Le problbme trbs g6nCral de discrimination introduit au 0 2 est considere 
dans le cas d'int6rEt pratique OD les critkres Ci, sont 6laborBs par des 
chaines d'information distinctes. qui justifient la differenciation de leur 
pertinence respective par des facteurs qi,. On suppose par ailleurs Stre 
dans le contexte le plus frequent OD les criteres C,, pris isolement ont 
toujours au moins valeur de refutation. dans le sens OD leur nullite garantit 
que I'hypothbse associte Hi n'est pas verifik.  

Ceci conduit a formaliser le problbme sur la base de deux axiomes : 

Axiome 5.1 : Chacun des N*M couples [Ci,. si,] constitue une source 
dinformation distincte. ayant pour Bl6ments focaux Hi, -Hi, et E. OB le 
cadre de discernement E represente I'ensemble des N hypothkses. 

Axiome 5.2 : C!, EO. lorsqu'il est valide (qi, = 1). permet d'affirmer que 
Hi n'est pas v6nftee. 

L'axiome 5.1 impose d'6laborer N*M jeux de masses mi,(.), A partir. 
respectivement, des N*M couples [C,,. qj,]. Pour chacun. la masse des 
ClCments focaux. Hi, -Hi, et E, est dans un premier temps d6finie par la 
valeur du critbre Ci, correspondant, qui ne peut Etre interpret6 qu'en 
termes de crUibilit6 ou de plausibilite de Hi. L'axiome 5.2 limite alors A 2 
le nombre des interpretations admissibles. La premibre conduit A : 

Crij(Hi) = 0 et Plij(Hi) = C,j (5.1) 

1 
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(5.2) 

Lapriseencnnpredufaeleurdeconfianceqij assoei6hCij permetalms 
d'6labonr le jeu de masses mu(,) eherch.5, par affaiblissement dans IC 
rappoIf(1-qj) (cf 5 3.4). Ceci wnduil aux deux modr3les possibles : 

Un jeu de masse m(.) synlhttisanl S e n m b l e  des 6valuations est ensuite 
obtenu par sommatian onhoganale du d i f i h t s  jeur de masses m, ( ), 
dans le cadre de chaoue mod&. Un c r i t h  de maximum de dausibi{ii6. 
justifie BY 9 4. perm& alors de degager de m(.) Shypoth& 12 la plug 
vrniswnblable. Les 2 d e s  intmduits conduisent a m i  mrwctivement 

(5.9) 

-: 

i~ 
{ Q Il~ij*(l-Gj)l~[l-~j*C~l) (5.10) 

II wnvient de noler que la solution 1 r6pond tgalement B un c r i t h  de 
maximum de d i b i l i t i  [4]. 

Le modble 1 est par silleurs wnsonant el se @le donc. mais lui seul. 8 
une interpr6tation dans le cadre de la th6orie des poasibilitea (cf 
D 3.6.2) : 

(5.11) 

(5.12) 

Diffbrents optrateurn de eonjonetion susceptibles d'assumr la 
wmbi i son  dcs N*M s o w  ainsi f a d i s e c S  son1 alom cnvrsageablcs 
[8]. "OUS reheadmm id h litre de r t fhnce la n m c  trisngulain 
idcmpotente. pourmu pmpiucS fmdamenralcs qui ladknaqwnt lqplus 
de la m m e  orthogooale emplo te dans I'appoehe par 18 &Cane de 
I'tvidcnce. pour aa simplidti dculatoim, et pour aon emplot IC plus 
rtpsndu en I absence h choir moavta 

Un c r i t h  de maximum de possibilitC pour la dttcrmination de 
I'hypothhz H, la plus vraisemblable est alws inconmwnablc (nkessile 
nullc) II conduit h la solution : 

mm t mln lI%l*(~-C,J)l 1 (5 13) 

La dtlcmunanm pique des C,, et q,l cst dans m m  le8 cm un pmblemc 
spt*fique nu typ Gapplication tnule. Deux situations diff6renles par la 

i J  

name dea mnformaaons disponrblcs sont p&ntees dam la a u k  'Ules 
mnt nprCsentabvcs dep deux grandes classes de pmbllmes renconwh 
d a n s l e s a p p l i e a b m s b m ~ t ~ i l k s h c e ~ a u r  

6. CLASSIFICATION AVEC MATRICE DE CONFUSION 

Le robleme prWdent est particularis6 en ce que les cafieients de 
wnl%inceqij wnt dlabor6s 8 pattir d'un apprentissage de la matrice de 
eonfusion relative 8 chaque senseur Sj lese isolement. La naNre 

parliculibre de cette information wnduit comidtrer que chaque  sou^ 
[Cij. ql] intmduite nu 9 5 eat e l l u r n h e  la wmme mhogonale de N 
sources [Q,, a , ]  ( 1 k N ) .  shietement de memc nalure. ail : 

6.1 Solutions 

Lea deux solutions d t g a g h  dans le cadre de la thhrie de Stvidence 
s'krivenf alorn simplement : 

splutipnl: 

max { n n [ I - ~ ~ * C ~ - C ~ , ) I  
i k j  

B: 

max { Il n [lqkij*(l-Ckj)l/[lqkij*~jl) (6.3) 
i k j  

et la solution exhapolte dam le cadre de la thhrie des possibilitds 
devient : 

splutipdl: 

max 1. min [ l - q j * ( l - ~ , ) ] )  (6.4) 
i k j  

A tihe de r6fknce. la nolution prohabilisk adapeCe au pmtdhne suppo~ 
une dkision deeentraliste au nivcau de ehaque senseur. impo& par la 
prise en canpte des matrices de conlusion : 

(6.5) 

Enfin. I'ignwanee de Is matrice de confusion dduit elassiquement la 
decision 8: 

SplUtipaI: 

max ( n  Cij) (6.6) 
i j  

6.2 Slmulatioms 

Quelquea simulations t&s simples permettent d'appdhender le 
wmportement relatif de ces dnq solutions. Ells mettent tourn en s h e  
la mmnaissance de tmis dbles h Saide de deux senseurn. Pourchaque 
criere Gj. des valeurn alCamim sont &&& d o n  une la unilwme sur 
[Bij. Bjj+0.30] lorsque la cible i est effectivemeat 18 cible prCaen&, et 
sur [0.35.0.6.5l sinon. h bomes Bij son1 ehoisies de f q n  h satisfaire 
les matrices de confusion doMees ur chaque senseur. don1 on notera 
qu'dlea prcsentent taux de w A i m  Quirtpattis sur les mauvaisea 
d6claraFons. et donc parlaitement dtfiinis par les seul taux de 
mcmmamanee 

Le premier exemple pr&entd wncemc deux senscum identiquea aymt de 
surcmir le meme ~ Y X  de nmnnainaneceTr pour chacune dea h d s  cibles. 
La figure 1 foumit le taux de reconnaissance moyen obtenu p r  lea 
diK6rentes mtthodes lorsque T, varie. LE meilleur camportemcot -1 
oblenu ~ l a l h ~ e d e l ' 6 v i ~  indifftremmrntavecSuneoul'auhe 
des modtlisations. Le ereux T+1/3 eomspond B une absence 
#information (matrices de confusion uniformes). A noter IC bon 
wmportement de lathhrie des possibililei smwt exemplc L'appmhe 
pmbabilisle est en revanche unifam6ment moins bonne. en d€ptt bun 
ap If ben6fique de la connaissance des matrices de confusion 
i x i d w l l e a  pour lea faibles valeurs de T, Cepe conlre pdmance mle 
attach& au caracl&re d6ceccntialise de la decision de classification. qui 
comprimabusivementl'infurtmtim avant fusim Le boncompniement 
delasolution58T,tl~~t.ve.cfsadrua8faiblcT,m bienentvidence 
SintMI de prendre en wmple I'infomtion qualitative donnee p" la 
connaissance des mahices de wnfusion individuelles. 



1 54 

Taux de rmmaiisance moyen 
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Figure 1 - Classificanon avec matrim de mnfuusion : 
3 cibles - 2 apteurs identiqurs - Incidence 
du tam de TeeoMBissme mdividuel Tr 

11: druriems ercmplc. prkenlt en figure 2. differe simplement du 
p e m i u  en ce que I'analyse est menee en fonctlon du numbn M de 
senseun. T, etant fine h 0.2 p u r  sugmatiscr unc silllation dCfavorahle 
Seules les solution3 issues des lhtoncs de I'ewdcnee ct des posribililb 
menem h pmfiL de fapn slable. I'cffct setisnque cumulabf des caplwo 
dans un cas aussi cntiquc La solution 5 montrc en prticulier que 
I'adjonclian de tout noweau senseur condud h dtgm.de, Ics 
performances. en I'abrence dinformabons qualitatives danr I'advenite 
llapprcche pmbabiliste subit quant h elk un cffcr de quantification 
pamculdrement pCoalioant compte ten" der malices de confusion 
considtrtes. AnoterI'impaetdrlagestiondeI'incertainauniveaudun 
sed capcur 
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Figure 2 - Classificauon avec matrices de eonfusion : 
3 cibles - Capteurs identiques - T r= 0.2 - 
lncideme du nombre M de capteun 
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Figure 3 - Classificahm avec mahices de confusion 
0 caplwrl I Capteur2 

Le demier exemple relbve de la situation dint6St pratique ou 1.8 deux 
senseun ont deo capacitk ditisnimimtea mmpl6mentaires. bun tam de 
reconnaissance p u r  chaque cible et leur tam de reconnaissance moyen 

sont donnk en figure 3. Lcs laux similaires obtenus par Ic8 t h h i c s  de 
I ' incehn sont pdssenles en figure 4. lls monbcnt. la01 en slabililt v i s b  
vis des difl6renm eibles qu'en valcvr moyenne. I'avantage du prcmicr 
mad~eobtenuparlalh~edeI'Cvidenee.ctlaconfn-pcrlamarrede la 
lhhne des p s i b i l i t b  due h un opf,rateur tmp frustre. La meillcure 
idutiondegagk peut€he mmplrCc. dans le mheesprit.aur mlu t im4  
et 5 sur la f~gurr 5 II mnvient 18 cnmc de Mnsmter I'inltr€t, dam 
I'ordre. de la pnre en wmpk dinformauons sur 1. validit6 des domdcs 
dispniblcs et d unc dteisian ecnrralwdc. telles qu'assur&s par 
I'appmche pc$o& 
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Figvn 4 - Classifi~atim avec matrices de confusion 
0 Sdution 1 I Solution2 I Solution3 
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Figure 5 - classification avec matrices de conlusim 
0 SdUtion 1 I sal"tio"4 I SOlUtiO"5 

7. DISCRIMINATION STATISTIQUE SUPERVISEE 

Le probl&mme bait6 maintenant suppose que chacune des mesures mj a pu 
laire lobjet d'un apprentissage prhlable des distributions de puWilit6 a 
priori p(mj/Hi). IOUS Ies diff6rentes hypathbes Hi. en vue de pennettre la 
discrimination en phase de reconnaissance. Ce type d'apprentissage 
mtistique est compatible avec la majorit6 des systhmes p u r  lesquels un 
cerlain nombre de mesurees pdliminaires peuvent €Ire eonduites dans 
diffgrentes situations r&lles ou s imuks .  Lcs histogrsmmes 6tablis a 
partir de telles mesures son1 en effet p m p m  A lournir un modele 
numdrique ou analylique des distributions p(mj/Hi). En phase de 
reconnaissance. les N*M valeurn de demit6 de probabilitd P(q/Hi)  
aasOci4e.s respectivemen1 BUX M mes- locales mj constiwent lea en& 
des baitements de fusion et de reconnaissance qui vont €Ire discuffi dans 
la suite. 

Si I'on considere le cas le plus ldquent ob les mesum m, peuvent €Ire 
suppos&s statiatiquement ind6pdantes. lea senseus &ant en gbndral 
chasis pour leur mmpldmentantd d'inlormation. la solution du problhme 
p s C  est immMiate par I'approche baybsienne qui cnnduit typiqwnent 5 
evaluer la mbabilitb a mal6iori P(H/m ,.... m d  de chaaue hvooIh&se . . .. . .... . .. 
Hi B l'aide.de : 



00 P(Hi) designe sa probabilit.6 a priori. L'hypothbse Hi* retenue est 
alors naturellement donnee par : 

(7.2) 

Une telle approche est toutefois rapidement mise en defaut lorsque les 
conditions d'observation rkelles different des conditions d'apprentissage 
disponibles. ou lorsque la statistique des mesures est insuffisante h 
I'apprentissage. LE manque de maitrise que I'on constate i ce niveau dans 
la plupart des applications a m h e  en effet B utiliser des distributions, 
acquises lors de I'apprentissage. qui s'avkrent Etre plus ou moins 
repr6sentatives des distributions reelles rencontrdes. De plus, il est 
souvent difficile d'acckder a un jeu de probabilitks a priori P(Hi) capable 
de traduire lid&lement la dalitk. 

P(m1. ... ,mM/Hi) = n p(mj/Hi) (7.3) 
j 

La recherche des modeles satisfaisant ces trois axiomes va &Ire conduite 
dans la suite en considerant la restriction progressive de I'ensemble des 
modeles possibles. lorsque les axiomes sont pris successivement en 
compte dans I'ordre de leur Bnond. 

7.2 Axiome 7.1 : Coherence avec I'approche bayesienne 

7.2.1 Dtveloppemenl 

Soit Q(.) le jeu de masses representatif de la source d'information S o  
que constituent les probabilites a priori P(Hi). m,,(.) est donc un jeu de 
masses bay6sien d6fini par : 

7.1 Formulation du p r o b l h e  mo(Hi) = P(Hi), V iE[l.N] (7.4) 

Le but poursuivi ici est donc de rechercher une procedure bas& 
uniquement sur la connaissance des p(m,/H,), et susceptible d integer 
toute information sur la fiabilit6 des diverses distributions, telle 
qu'Blabor6e B partir d'une connaissance plus ou moins partielle des 
conditions d'observation. 

Cette recherche est menee en considkrant. pour plus de simplicit6, que 
toute I'information qualitative disponible est synthdtisee sous la forme de 
N*M coefficients qi,E[O.l], chacun &ant reprksentatif d'un degr6 de 
confiance p lad  respectivement dans la connaissance de chacune des N*M 
distributions p(m,/Hi). L'apprentissage des coefficients qj, peut resulter 
d'une procedure d'6laboration contextuelle spkcifique. ou d'une 
optimisation directe du traitement multi-senseurs complet sur des donnees 
variees prealables. Des qi, nuls doivent permettre de consid6rer des 
informations incompletes. II est par ailleurs possible de constituer autant 
de jeux de coefficients qj, que d'ensembles de conditions d'observation 
identifiables en temps del, compte tenu de I'environnement disponible. 

mo(A) = 0 ,  V A+Hi , iE[l.N] (7.5) 

La coherence v ide  impose que la somme orthogonale des jeux de masses 
cherches m,(.) et de mo(.) fournisse. des lors que les distributions 
p(m,/Hi) sont parfaitement representatives des densites reellement 
rencontrkes, et que donc q,=l pour tout i et j, un jeu de masses bayCsien 
mb(.) en conformit6 avec I'infkrence bayisienne (7.1). cet axiome doit en 
particulier rester vrai que1 que soit le sous-ensemble de sources Sj 
combinies. delimite par jEJC[l.M]. Concretement : 

doit donc verifier dans ces conditions : 

(7.6) 

Tri ter  ce probleme par la theorie de 1'6vidence exige de rechercher. pour -. 
chaque source S,. une modklisation des N probabilitds a priori p(m,/Hj) "'D""' 

= {[v p(mj/Hi)l*P(Hi)) 1 1 {[n P(mj/Hk)l*P(Hk)} s V HiEE (7.7) aff6rentes et de leurs N facteurs d e  confiance respectifs qii (i€[l,N]) 1 . :  
J " J  sous forme d'un ieu de masses Clementaires mA.k &soci6 a<ne fonction 

de crkdibilit6 Cr j . )  et i une fonction de plausihh-5 Plj(.). Les sources Sj 
&ant distinctes. une evaluation globale m(.) peut alors &tre obtenue par 
sommation orthogonale des m,(.). Le cadre de discernement approprie est 
bien sOr I'ensemble des N hypotheses Hi ripertori6es a priori. 

A cette fin. il est propose de conduire une recherche exhaustive et 
rigoureuse de I'ensemble des modeles susceptibles de satisfaire trois 
axiomes fondamentaux dans le contexte envisage. Ces trois axiomes sont 
retenus a priori pour leur legitimite dans la plupart des applications 
visees : 

Axiome 7.1 : Coherence avec I'approche bayesienne dans le cas 00 les 
distributions p(mj/Hi) apprises sont parfaitement reprisentatives des 
densites riellement rencontrCes (qi,=l. Vij). et ob les probabilitCs a 
priori P(Hi) sont connues. 

Axiome 7.2 : SCparabilite de 1'6valuation des hypotheses Hi ; chaque 
probabilite p(m,/Hi) doit Etre consid6rke comme une source d'information 
distincte donnant lieu a un jeu de masses mi,(.), notamment susceptible 
d'int6grer son facteur de confiance qij en terme d'affaiblissement (cf 
5 3.4). On impose ainsi i chaque jeu de masses m,(.) d'Ctre la somme 
orthogonale des N jeux de masses mi,(.) consideres pour iE[l,N]. De 
plus, les 616ments focaux du jeu de masses mi,(.) ne peuvent Stre. compte 
tenu du mode d'klaboration d e  p(m,/Hi). que Hi. -Hi, et E. le cadre de 
disceniement E &ant toujours I'ensemble des hypotheses Hi. 

Or, compte tenu de la propridt6 (3.31). les dquations (7.4). (7.5). et (7.6) 
conduisent i : 

Satisfaire conjointement (7.7) et (7.8) pour tout J C  [ 1 .M] a m h e  
finalement A definir chaque m,(.) par sa fonction de plausibilit6. I'aide 
des N equations : 

Plj(Hi) = Kj*p(m,/Hi) , iE[l.N] (7.9) 

ob Kj est un parametre unique pour les N Cquations. simplement dCfini 
par : 

Kj E [{E P(mjW1-I .  {max[~(mj/Hi)l)-~l (7.10) 
I I 

Ces bornes sur K, sont uniquement imposks par la nature de la notion de 
plausibilite : cette grandeur doit notamment rester infkrieure 1. et la 
somme des valeurs qu'elle prend pour des dvenements constituant une 
partition de E (les Hi eux-mhes  ici) doit Etre sup6rieure A 1. 

Axiome 7.3 : Coherence avec I'association probabiliste des sources ; 
pour des sources Sj indkpendantes et des densites p(m,/Hi) parfaitement 
reoresentatives de la rkalit6. les Drocedures de modelisation retenues 

7.2.2 Cornmenlaires 

obteiiues par m'asses p k i b l e s .  dCfinis par un systemede N+l equations (N Bquations 
(7.9) et la somme des masses @ale B 1) 21'1-1 inconnues. 
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Pour la valeur minimale de Kj. le rksultat obtenu se resume dans tous les 
cas h un jeu de masses unique, et de surcroit bayisien : p l , ( ~ ~ )  = Kfj*(mij(~i)+mlJ(~))/(mij(l~i)+mij(~)), ~E[I,N] (7.18) 

m,(Hi) = p(mj/Hi) I p(mj/Hk), v iE[l.N] 
k 

mj(A) = 0,  V A#Hi , iE[l,N] 

oh le facteur Kfj est independant de I'hypothkse Hi concernde. 

Le respect de la contrainte (7.9) irnposCe par I'axiome 7.1 ne permettra 
alors d'associer au seul jeu de masses mi,(.) la seule probabilite p(m,/Hi), 
pour qiJ=l. que si : 

(7.11) 

(7.12) 

Parmi les diverses solutions obtenues pour la valeur maximale de K,, i I  {mij(Hi)+mij(E))l{mij(lHi)+mij(E)) = Rj*p(mj/Hi) (7.19) 

ou Rj est une constante de normalisation independante de Hi. dont les 
valeurs possibles ne dependent que des distributions p(mj/Hi) 
effectivement le verronS dans la suite, 
Cette constante permet en pratique de considerer le cadre gBn6ral oh les 
p(m,/Hi) ne sont connues que de faqon relative, c'est-&dire B un gain de 
normalisation prks. 

existe une  solution consonante, unique sur I'ensemble des solutions 
dCgagCes. Elle correspond au modhle propose par G. SHAFER 
hi-mdme. sur la base de cette seuk CaractCristique. pour un contexte 
similaire h celui du present axiome 7.1 [SI. Pour donner I'expression 
Pratique de cette solution. suPPsons P(mj/Hi) ranges de telk sofie 
que p(mjlHi)zp(mjlH2)n...zp(mjlH~). b S  dements focaux sont a h  
les N sous-ensembles de E : 

en 

Ai = U Hk, i€[l,N] 
hi 

(7.13) Exprimbe de faqon paramitrique en fonction du niveau d'incertitude 
mi,(E). (7.19) procure le jeu de masses cherchi : 

et les masses correspondantes sont obtenues conformement B (3.35) et 
(3.36) : 

mi,(Hi) = {Rj*p(m,/H,)-ml,(E))/{ l+Rj*p(mjlHi)) (7.20) 

~ J ( A N )  = Kj*P(mj/HN) (7.14) 

mJ(A,) = KJ*(p(mJIH,)-p(m,/H,+l)) , pour l&N-1 (7.15) 

I I  convient toutefois de remarquer que cette dernihre solution ne satisfait 
pas les axiomes 7.2 et 7.3, et qu'en consequence elk ne pourra pas etre 
retenue dam la suite. 

Notons enfin que dans le cas ideal ou les distributions p(m,/Hi) sont 
parfaitement representatives des densites reellement rencontrkes. une 
procidure de maximum de vraisemblance conduit B retenir I'hypothkse Hi 
qui maximise p(ml. ... .mM/H,), c'est-&-dire le produit des p(m,lHi) 
lournis par les M sources Sj supposCes independantes. Par ailleurs, les 
notions de plausibilite et de communalit6 Ctant identiques pour les 
singletons Hi du cadre de discernement E, la loi de combinaison (3.14) 
est applicable aux Plj(Hi) pour obtenir la plausibilite Pl(H,) aprks fusion 
des sources Sj. La relation (7.9) a m h e  dans ces conditions : 

PI(Hi) = Kf*p(ml ,... .mM/Hi), V iE[l,N] (7.16) 

oil le coefficient Kf, indipendant de Hi, inthgre les Kj et I'inconsistance 
de la fusion. Pour rester coherente avec ce cas particulier. toute procMure 
de decision visant h designer I'hypothhse la plus vraisemblable devra 
pour iiotre problhme exclusivement maximiser une fonction monotone 
croissante de la plausibilitk PI(Hi) obtenue aprks fusion des sources Sj. 
Ce rCsultat est en parfait accord avec les conclusions de I'approche 
gCnCrale prCsentBe au 9 4. 

7.3 Asiome 7.2 : Sfparnbi l i te  d e  I ' ~ve lua t ion  des  
hypotheses 

Cet axiome consiste B considerer que chaque jeu de masse mJ(.) cherche 
est lui-m&me le resultat d'une fusion entre N jeux de masses miJ(.) 
(iE[l.N]) : 

(7.21) mij (-Hi) = { 1 -Rj* p( mjlHi)* mij (E))/{ 1+Rj* p( mjlHi )} 

mij(E) = f[Rj*p(mjlHi)] E [O, R,*p(mj/Hi)l 

oh f est une fonction quelconque verifiant simplement (7.22). 

Cette condition (7.22) est impode par la notion de masse (comprise entre 
0 et 1) qui limite Bgalement les valeurs possibles de R, en fonction des 
distributions p(m,/Hi) utiliskes. et ceci independamment des mesures mj 
effectivement observees : 

(7.22) 

(7.23) 

II est par ailleurs possible de montrer que ces conditions suffisent B ce que 
le coefficient K, de I'expression (7.9), calculd pour la fusion (7.17). 
verifie bien la contrainte (7.10). Ceci peut en particulier se faire 
simplement en mettant en evidence que I'expression de K, est alors une 
fonction monotone croissante de chaque mi,(E), dont les valeurs 
extrhales permettent de satisfaire I'intervalle (7.10). 

Si I'on introduit le facteur qi, dans les expressions (7.20). (7.21), et 
(7.22) en terme d'affaiblissement. conformhent B (3.24) et (3.25). les 
mij(.) sont finalement donnees par : 

mi,(Hi) = qi,* {R,*p(m,/H,)-Ai}/{ l+R,*p(m,/Hi)) (7.24) 

mi,(-Hi) = qi,*{ l-R,*p(mj/Hi)*Ai)/{ l+R,*p(m,/Hi)) (7.25) 

m..(E) 1J = l-qi,+qi,*Ai (7.26) 

oh Rj reste defini par (7.23). et Ai par : 

(7.27) A i  =f[Rj*P(mj/Hi)l E [O. Rj*p(m,lH,)] 

I'expression gCn6rale des modkles mi(.) qui satisfont les axiomes 7.1 et 
7.2 est ainsi obtenue par (7.17) appliquee B (7.24). (7.25). et (7.26). Une 
infinite de solutions repondent donc encore au problkme. 

(7.17) 

Un jeu de masses mi,(.) possBde par ailleurs trois Blements focaux (Hi. 
-HI, et E) dont les masses ne dependent que de la valeur p(mjlHi) et du 
facteur qj correspondants. des sources 

La &gle (3.14) peut dtre directement appliquee aux plausibilitis associees 
Plij(Hi). pour fournir la plausibilite Plj(Hi) resultant de la fusion (7.17). 
puisque les notions de plausibiliti et de communalit6 sont identiques pour 
les singletons Hi du cadre de discernement E. Les plausibilitis Pl,(Hi) 
peuvent ainsi dtre mises sous la forme: 

7.4 Asiome 7.3 : Coherence nvec I'associntion probnbiliste 

Compte tenu de la structure particulihre (7.17) des jeux de masses m,(.) 
repondant aux axiomes 7.1 et 7.2. et compte tenu de I'associativitt! de la 
somme orthogonale. I'axiome 7.3 sera satisfait pour les modhles tels que. 
si les qi, sont Bgaux B 1, le jeu de masses mi(.) defini par : 
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mi,(.) = F[Rj*p(mj/Hi)] 

Aprbs examen de I'wiome 7.3, les modbles satisfaisant simultan6ment les 
trois axiomes sont donc r6duits au nombre de deux. Tous deux sont 
definis par (7.24). (7.25). (7.26). 11s se diffkrencient par le fait que pour 
I'un A i d ,  alors que pour I'autre Ai=R,*p(m,/Hi). avec dans les deux cas 
Rj contraint par (7.23). 

(7.28) 

(7.29) 

est identique aujeu de masses m'i(.) obtenu par la modelisation directe. a 
I'aide de la mCme fonction F(.) : 

7.5 Synthhse des modhles ohtenus 

LRs modkles satisfaisant conjointement les trois axiomes souhaides sont 
donc finalement au nombre de deux. Tous deux ripondent B la 
dkomposition : 

(7.30) 

Les mij(.) v6rifiant (7.20). (7.21). (7.22). et (7.23). procurent dans la 
fusion (7.28) : mj(,) = @ 

I 

mi(Hi) = (V*X-Y*W)/(V*X+X-Y*W) (7.31) 

mi(-Hi) = @-Y* W)/(V*X+X-Y * W) (7.32) 
Le modele 1 est particularis6 par: 

mij(Hi) = 0 

mi,(",) = qj*{l-Rj*p(mj/Hi)) 

m..(E) 'J = l-qi,+qi,*Rj*p(m,/Hi) 

et le modble 2 par : 

mi (E) = Y * W/(V*X+X-Y * W) (7.33) 

avec les definitions : 

V = r! {Rj*P(mj/Hi)l (7.34) 
J 

W = n {l+R,*p(mjlHi)} 
j 

j 
X = n {l+mij(E)} 

Y = mij(E) 
J 

et les contraintes : 

mij(E) = f[Rj*p(mjlHi)l E [O, R,*p(mj/Hi)] 

Rj E [O, (ma{p(mj/Hi)I)-11 
mj,i 

Parallblement le jeu de masses m'i(.) s'6crit : 

m',(Hi) = {V-m'i(E)}/{ 1+V) 

m'i(-Hi) = {l-V*m',(E))/{l+V) 

mij(-Hi) = qij/{l+Rj*p(mj/Hi)) 

mi,(E) = I-qi, 
(7.36) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

(7.49) 

(7.50) 

(7.51) 

(7.37) Dans les deux cas le facteur de normalisation Rj est simplement contraint 
par : 

(7.52) 

II est B remarquer que la mkconnaissance totale d'une distribution 
p(m,/Hi), caract6risCe par q,,=O, revient bien dans les deux cas B ignorer 
le jeu de masse mi,(.) correspondant, puisqu'alors celui-ci est trivial 
(mij(E)=l) et donc 6l6ment neutre de la somme orthogonale. 

(7.39) 

7.6 Solutions du problhrne 

Moyennant le fait que les notions de plausibilite et de communalit6 son1 
Bquivalentes pour les singletons Hi du cadre de discemement E, la loi de 
combinaison (3.14) peut Ctre directement appliquee aux plausibilitks 
Plj(Hi) definies par (7.18) pour notre problbme. en vue de foumir la 
plausibilit6 PI(Hi) qui devra Ctre maximisee par la procedure de decision 
Ctablie au 5 4 et confortee au 5 7.2.2 : 

(7.40) 

(7,41) 

(7.42) 

OB V est toujours donnee par (7.34). la contrainte sur les R, etant par 
ailleurs satisfaite par (7.39). J 

PI(Hi) = I! {[mi,(Hi)+mij(E)]I[mi,(-Hi)+mij(E)]) (7.53) 

La cornparaison des jeux de masses mi(.) et m'i(.) obtenus peut Ctre 
abordk en imposant mi(E)=m'i(E) dans (7.33). Dbs lors les expressions 
(7.40) et (7.41) sont respectivement Bquivalentes aux expressions (7.31) 
et (7.32). entrainant en toutes circonstances mi(Hi)=mli(Hi) et 
mi(-Hi)=m'i(-Hi). En revanche (7.38) et (7.42) ne seront Bquivalentes 

La procedure de decision correspondant A chacun des deux modbles 
d6gagis au 3 7.5 est alors obtenue pour leurs jeux de masses mi,(.) 
respectifs, en appliquant (4.9) B (7.53). Ceci conduit B retenir I'hypothbse 
Hi qui satisfait. pour le modble 1 : 

(7.54) pour une mCme fonction f, au travers de (7.33) toujours contraint par 
mi(E)=m'i(E). que pour les deux fonctions f suivantes : 

max{n [l-qij+qij*Rj*p(mj/Hi)]} 
~j 

f(x) = 0, v x 

f(x) = x 

(7,43) 

(7.44) . 

et pour le modhle 2 : 

max{ll [{l-qi,+R,*p(m,/Hi)}l{ 1+( I-qij)*R,*p(m,lHi))l) (7.55) 
I J  

Si I'on cherche B comparer ces deux procedures en considCrant les 
expressions optimisees comme deux fonctions des variables qi, et 
[R,*P(m,/H,)]. il apparait qu'elles sont numkriquement trbs proches ; 
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elles satisfont les m6mes valeurs limites et les mdmes monotonies, avec 
une difference maximale de quelques % pour des valeurs medianes 
particulieres ; les valcurs prises par la fonction relative au rnodkle 2 sont 
par ailleurs toujours superieures A celles de la fonction Btablie sur le 
mcdkle 1. 11 y a donc tout lieu de penser qu'en pratique ces deux 
formulations mkneront B des performances en g6nBral Bquivalentes. Ceci 
est notamment v6rifi6 dans le cas des simulations presentees dans la suite. 
pour lesquelles aucune tendance significative n'a pu Etre degagee en 
faveur de I'une ou I'autre des deux approches. Dans une telle situation, il 
est clair que notre preference doit aller A la formulation la plus simple. A 
savoir celle associie au modkle 1. Seule la procedure (7.54) sera donc 
discutke dans la suite. 

Notons enfin que lorsque tous les qij valent 1. c'est-A-dire lorsque les 
distributions p(mj/Hi) sont parfaitement representatives de la rhlit6. les 
deux approches se ramknent bien A une procedure de maximum de 
vnisemblance. 

7.7 Lien avec le problhe  generique 

Le problkme de discrimination A partir d 'un  apprentissage statistique, tel 
que trait6 dans ce 5 7. est en fait un cas particulier du problhne genkrique 
discuti au 5 5. A I'inverse de I'application A la classification avec 
matrices de confusion menee au 5 6. les coefficients de confiance qij 
conservent ici toute leur gCniralit6. En revanche les critbres Cij sont 
niaintenant particularises en ce qu'ils assurent la prise en compte des 
distributions p(mj/Hi). 

Les deux procedures (5.9) et 5.10) obtenues au 5 5 sont rigoureusement 
Bquivalentes aux deux procedures (7.53) et (7.54) dCgag6es ici. si I'on 
adopte pour Cij les definitions respectives suivantes : 

Pour le mod& 1 : Cij = Rj*p(mj/Hi) (7.56) 

Pour le modkle 2 : Cij = Rj*p(mj/Hi)/[l+Rj*p(mj/Hi)] (7.57) 

oh Rj reste bien sOr le gain de normalisation contraint par (7.52). 

Ce resultat est en fait legitime si I'on note que I'axiome 5.1 est 
directement exprim6 par I'axiome 7.2. et que les solutions contraintes par 
les axiomes 7.1 et 7.3 vtrifient automatiquement I'axiome 5.2. Les 
axiomes 7.1 et 7.3 permettent simplement de preciser la prise en compte 
des informations particulieres p(mj/Hi) dans I'expression du critere C,,. 

I I  convient cependant de noter que la nature probabiliste des contraintes 
qui permettent de difinir plus prdciskment le problkme trait6 ici 
(coherence avec Bayes) interdit tout developpement formel dans le cadre 
de la thCorie des possibilitks. Les notions de crkdibilitt? bayesienne et de 
credibilitd consonante sont en effet incompatibles (cf 5 3.6). 

7.8 Simulations 

Comme au 5 6. I'analyse de quelques simulations tr&s simples va nous 
perinettre de mieux apprehender le comportement des procedures 
degagees, d'ivaluer leur potentiel. et de preciser leur emploi privilkgi6. 
indCpendamment du domaine d'application envisage. 

Pour cela considCrons un probleme de discrimination entre deux 
hypotheses H I  et H2 representatives. par exemple. de I'identiti d'une 
cible dans un contexte de reconnaissance. La distributions p(m,/Hi). 
apprises au prkalable par les senseurs Sj utilisks. sont des lois normales 
rCduites : 

P(mj/HI)=N (0.1) (7.58) 

p(nl~/Hz) =N(SaJ,l)  (7.59) 

figtirant la mesure d'attributs dkterministes, entachie d'un bruit additif 
gaussien. Les mesures m, simulant les releves rencontrks dans la rhlit6 
sont alors gCnCdes A partlr de lois normales r6duites difftrentes : 

P L ~ J ~ H I )  = N (091) (7.60) 

pr(mjlH2) = N (Srj.1) (7.61) 

propres A traduire une Bventuelle derive Sr du signal attendu Sa. par 
exemple like B I'holution de la signature (radar, infrarouge. ...) de la cible 

en fonction de I'environnement. de la m6t6orologie. des conditions de la 
mesure.. . . 

Diffirents scenarios d'intkr6t pratique vont dtre balayes dans ce cadre. 
Compte tenu de la remarque expr ide  au 5 7.6. seuls les resultats 
obtenus A I'aide de la procedure bas& sur le modkle 1 sont pr6sent6s ; ils 
sont representatifs des deux prddures dkgagees. 

7.8.1 Cas I : I capteur et 1 donnde incertaine 

La figure 6 prksente les risultats obtenus avec u n  senseur unique S I  
lorsque le signal Srl reellement prdsent6 prend diverses valeurs S. plus 
ou moins differentes du signal attendu Sal=6. Corr6lativement. 
I'bvaluation p(mllH1) est considkrke comme certaine (q 11=1). alors que 
1'6valuation p(ml/Hz) est sujette A incertitude, q2l pouvant prendre 
diffkrentes valeurs parametriques q. Le taux de bonne reconnaissance de 
I'hypothese Hi effectivement presentee est obtenu en g6n6rant des 
mesures m; en nombre dgal selon la loi pr(ml/HI) et selon la loi 
pr(milH2). 

Taux de reconnaissance 

S 
I 

- 2 - 1  0 1 2  3 4 5 6 

Figure 6 -Classification avec apprentissage statistique : 
1 senseur- Sa1=6 ;Sr l=S ;q l i= l  ;q21=q 

Rappelons qu'en vertu de la remarque faite B la fin du 5 7.6. la courbe 
obtenue pour q=l correspond A I'approche probabiliste traditionnelle qui 
suppose dans tous les cas la parfaite reprksentativiti des distributions 
p(m,/Hi) (Srl=Sal). Par rapport B cette courbe. toute diminution de q tend 
progressivement A rkduire 16gkrement les performances dans le cas d'un 
apprentissage coherent (SrlZSal). pour les ameliorer sensiblement dans 
les cas d'information dkfectueuse (SrlccSal). y compris pour une 
inversion de contraste (SrlcO) par exemple representative de 1'6volution 
de signatures infrarouges. Notons que le taux de 0.5 obtenu pour S=O est 
incontournable par quelque methode que ce soit. puisqu'alors les deux 
distributions pr(mllH1) et 13(ml/Hz) sont parfaitement confondues. 

Au-dela d'une optimisation fine des facteurs de qualit6 qij pour des 
conditions particulihres d'erreur dont une modelisation parametrique 
permettra bien souvent une approche probabiliste compititive. bien que 
plus complexe. ces rksultats mettent en lumikre I'intkrdt majeur d'un 
fonctionnement robuste A deux Btats : q=l si I'erreur ne peut que rester 
faible (typiquement Sal-SrlcZ), et q de I'ordre de 0.9 ici si elle a de 
fortes chances d'dtre plus importante. et cela sans pouvoir etre 
caractiris6e. 

1.8.2 Cas 2 : 2 capteurs et I donnde incertaine 

L'intBr6t de cette configuration est essentiellement de pallier I'incertitude 
susceptible d'affecter un capteur de bonne qualitk. en lui associant un 
capteur de qualit6 moins bonne. mais sore. La figure 7 prdsente donc le 
resultat obtenu lorsqu'on adjoint au senseur SI  du cas 1 un senseur S2 tel 
que Sa2=Sr2=2 (et donc q12=q22=1). 

Les conclusions degagees dans le cas 1 restent parfaitement valables ici. 
De surcroit, la valeur de q voisine de 0.9 permet de Mneficier pleinement 
des performances du senseur S2 dans le cas le plus difavorable 
(Srl=S=O) avec un taux sup6rieur A 0.8. alors que I'approche classique. 



stigmatisee par q=l, n'arrive pas I d6coller de 0.5. D'une faGon plus 
globale. la procedure BlaborBe procure ici un gain en performances 
particulibrement important dbs que I'erreur commise n'est plus 
nBgligeable (typiquement Sal-Srl>2). grice au parti qu'elle permet de 
tirer des informations disponibles. 

Taux de reconnaissance 

I 
- 2 - 1  0 1 2  3 4 5 6 

Figure 7 - Classification avec apprentissage statistique : 
2 senseurs - Sa 1=6 ; Sr 1=S ; Sa2=Sr2=2 ; 
q11=q12=q2F1;q21=q 

Le fonctionnement I deux Btats introduit pour le cas 1 (q=O,9 ou 1 selon 
que Sal-Srl risque d'&tre important ou non) permet en outre d'assurer 
dans chacune des deux circonstances identifikes des performances 
multi-senseurs au moins Bgales I celles du meilleur senseur pris 
isolkment. que I'on considere le taux de reconnaissance minimal ou le 
taux moyen sur I'intervalle des valeurs de S alors respectivement 
concernkes. Cette facult6 est importante en ce qu'elle correspond I une 
finalitd indispensable pour les systbmes multi-senseurs. le plus souvent 
delicate I satisfaire en pr6sence d'erreurs mal maitriskes. 

La figure 8 met par ailleurs en kvidence une bonne stabilitd des rBsultats 
obtenus pour q=O,9 lorsque cette valeur dBcroit, compte tenu de la 
pkcision statistique des essais menb. Le fonctionnement robuste dBgagB 
plus haut est donc peu sensible au choix de q qui peut par cons6quent dtre 
fix6 de faGon relativement arbitraire. sans optimisation fine. 

Taux de reconnaissance 

1 T  S=6 P 

O V 6 i  0 .5  
s=-2 1 
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Les rksultats prBsent6s en figure 9 sont signillcatifs des performances 
accessibles. 11s correspondent I Sr2=2 et I une Bvolution paramktrique S 
de Srl. La courbe q=0.9 fait de nouveau apparaitre un gain substantiel 
pour les situations visdes par le prBsent exemple. confortant encore une 
fois les meilleures performances garanties par la procddure proposee face 
I chaque capteur pris isolement ou face I la fusion probabiliste classique 
(q=l). que I'on considbre le taux de reconnaissance minimal ou le taux 
moyen sur I'intervalle des valeurs de S alors concernBes. 

Taux de reconnaissance 

- 2 - 1  0 1 2  3 4 5 6 

Figure 9 - Classification avec apprentissage statistique : 
2 senseurs - Sa 1=Sa2=6 ; Srl=S ; Sr2=2 ; 
q11=q 1 2 1  ; 421=922=q 

8. APPORTS DE L'APPROCHE PROPOSEE 

L'intBrCt de la solution gkndrale proposBe au 5 5 a B t B  degage dans le 
cadre de deux types de problkmes complhentaires. reprksentatifs dune 
majorit6 dapplications pratiques. Dans le premier cas la solution est basBe 
sur la connaissance prialable des matrices de confusion de chaque 
senseur. alors que dans le deuxibme cas elle prend en compte un 
apprentissage statistique plus ou moins reprksentatif des mesures. 

Le gain en performances et en robustesse mis en Bvidence dans les deux 
cas sur quelques simulations trbs simples est notamment lie I la meilleure 
exploitation des particularitks du domaine d'emploi que permet I'approche 
proposke : mise en Oeuvre dune  fusion la plus centralisde possible au 
niveau le plus riche en information, gestion de I'incertitude sur les 
donn6es utilis6es. prise en compte dinformations exogbnes 
Bventuellement subjectives sur la validit6 des observations ou leur pouvoir 
informatif et sur le contexte, valorisation de la complBmentarit6 des 
capteurs. rentabilisation de I'apport de toute source supplhentaire,. . . 

L'approche proposke est en particulier bBnBfique face I diffkrents 
problbmes d'apprentissage : pollution des banques de donnBes par des 
informations parasites, dkfaut de reprBsentativit6 des modbles. notamment 
sous des conditions dobservation Bvolutives, insuffisance des relevks 
disponibles. ... Elle permet Bgalement de gBrer avec succes la disparitd 
intrinsbque du potentiel informatif des diffkrentes sources. 

II convient Bgalement de rappeler que la demarche adoptee conduit 
naturellement I traiter des informations incomplbtes : la meconnaissance o o , i  0 , 2  0,3 0,4 0 , s  0,6 0,7 o,a 0,9 1 totale d'une Bvaluation Cii ( q d )  est 616ment neutre de la fusion, une 

9 
I 0.4 

., . . ., 
mBconnaissance partielle peut &e contr6lb par le facteur qi,. et un cadre 
de discernement incomplet peut Ctre gkrB directement I partir des modeles 
BICmentaires. ceux-ci &ant simplement dBfinis sur {Hi.-Hi) sans 
prksager du contenu de -Hi. 

Les aleorithmes DrBsentBs n'exieent oar ailleurs qu'une charge de calcul 

Figure 8 - Classification avec apprentissage statistique : 
stabilite des performances en fonction du 
choix du facteur d'incertitude q. pour le cas 2 

7.8.3 Cas 3 : 2 capteurs el 2 donnkes incerlaines 

II s'agit ici de chercher I pallier l'incertitude du senseur SI. toujours 
inchangk. en lui associant cette fois un senseur S2 de mCme bonne 
qualitk. mais aussi de mCme incertitude. On considbre donc que 
Sal=Sa2=6, que qll=qlz=l, et que qzl=q22=q. facteur commun 
d'incertitude. En effet. compte tenu des configurations dBjI couvertes par 
le cas 2 (au moins un capteur "certain"), on ne s'intkresse maintenant 
qu'aux situations ob I'erreur risque d'Ctre importante simultandment sur 
les deux senseurs (Sal-Srl et Sa2-Srz grands tous les deux). 

Irks lirh&, parfiitement compagble hvec les coniraintes ophionnellcs. 
et en particulier nbgligeable devant les prBtraitements dextraction propres 
au sources utilides (traitement dimages .... ). 

Les applications traitkes sont multiples : reconnaissance radar de cibles 
airiennes. maritimes, ou terrestrcs. A I'aide de formes d'onde multiples 
(frkquences. types de rksolution, polanmCtries. discriminants multiples 
extraits dune mdme reponse ....) ; reconnaissance de sources sonar ou 
radar en Bcoute passive, par analyses multiples des formes d'onde 
Bmises ; reconnaissance de cibles terrestres par imagerie bimode radar ct 
optronique. dans un contexte &observation satellitaire ou akroprtB. ou 3 
des fins de guidage terminal dengins ; alerte bimode radar et infrarouge 
en defense aCrienne ; reconnaissance automatique d'amers pour le 
recalagc de la navigation de vChicules aCriens I I'aide de senseurs 
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millimetriques et infrarouges ; interpretation des donnees dans des 
systkmes &aide 2 la dkision. 

Un certain nombre de travaux ont par ailleurs et6 menbs pour integrer ce 
formalisme au sein de methodes de pistage de cibles, de fa$on B 
Mneficier de la meilleure synergie entre les fonctions classification et 
poursuite. 

I1 reste maintenant B en etendre le domaine de mise en ceuvre du concept 
pdsentt? 2 la prise en compte &informations plus varibes. par exemple en 
recherchant une mkthodologie plus systematique &elaboration des 
critkres Cij et des ccefficients qij. et ceci notamment sur la base des cadres 
thkoriques compatibles (probabilites. ensembles flous. theorie des 
possibilites. theorie des fonctions d’utilit6. mesures &information. ... ). 

9. BIBLIOGRAPHIE 

1. A. APPRIOU. “Formulation et traitement de I’incertain en analyse 
multi-senseurs”. Confkrence invitbe, 14mc Colloque GRETSI. Juan- 
les-Pins, 13-16 septembre 1993. 

2. A. APPRIOU. “Probabilites et incertitude en fusion de donnees 

3. A. APPRIOU. “Perspectives l iks a la fusion de donnks”. Science et 
Defense. Pans, mai 1990. 

4. A. APPRIOU. “Inter& des theories de I‘incertain en fusion de 
donnks”, Conference invitbe, Colloque International sur le Radar. 
Paris, 24-28 avril 1989. 

G. SHAFER. “A mathematical theory of evidence”. Princeton 
University Press, Princeton. New Jersey. 1976. 

6. R. R. YAGER. “Entropy and specificity in a mathematical theory of 
evidence”, International Journal General Systems. Vol. 9. 1983. 
pp 249-260. 

R. R. YAGER. “A general approach to decision making with 
evidential knowledge”. Uncertainty in Artificial Intelligence, L. N. 
Kanal & J. F. Lemmer Cd.. Elsevier Science Publishers, B. V. 
North-Holland, 1986. 

D. DUBOIS, H. PRADE. “Theone des possibilites : application a la 
repdsentation des connaissances en informatique”, Masson. Paris, 
1988. 

5. 

7. 

8. 

multi-senseurs”, Revue Scientifique et Technique de la Bfense. 
nO1l. 1991-1, pp27-40. 



161 

1 
The variable ID represents the target type. The 

I states of this variable are the different types of tar- 
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1. SUMMARY 

This paper describes the use of Bayesian Belief Net- 
works for the fusion of continuous and discrete 
information. Bayesian belief networks provide a 
convenient and straightforward way of modeling the 
relationships between uncertain quantities. They 
also provide efficient computational algorithms. 
Most current applications of belief networks are 
restricted to either discrete or continuous quantities. 
We present a methodology that allows both discrete 
and continuous variables in  the same network. This 
extension makes possible the fusion of information 
from, or inferences about, such diverse quantities as 
sensor output, target location, target type or ID, 
intent, operator judgment, behavior profile, etc. 

2. MODELING USING BELIEF NETWORKS 

Target recognition and tracking performance is 
improved by taking advantage of all information 
available. This includes sensor information (target 
signatures, lines-of-bearing, etc.), intelligence 
information and historical information about target 
behavior profiles. Knowledge about target behavior 
profiles, for example, may identify behaviors that 
are related to target modes of operation. Sensor con- 
tacts provide samples from these behavior profiles 
that allow inference about a mode of operation. Fus- 
ing all of these factors in  order to improve target 
recognition and tracking requires the ability to 
accurately model the dependencies among all fac- 
tors. 

gets. The target recognition problem is to identify 
the actual state of this variable which is not 
observed directly, only inferred. The variable M, 
represents operating mode (e.g. transit or attack). 
The composite variable {A, ,  7,) depicts the current 
activity and time i n  that activity. This variable can 
be used to encode behavior profiles that are known 
to be related to the operating mode.The inclusion of 
velocity and location variables, V ,  and L, ,  shows 
that a tracker is an integral part of the identification 
model. Finally, the D, variables are the only vari- 
ables that are actually directly observed. In general, 
these may be contact reports such as lines-of-bear- 
ing or position fixes, signature data from sensors 
that measure parameters that can be used to discrim- 
inate among target IDS, or other types of intelli- 
gence information. 

Dependencies exist among all of the variables i n  the 
belief network. Model construction requires identi- 
fying dependencies as being either direct, or indi- 
rect. An arc connecting two variables shows a 
direct dependency. I n  general, a model could have 
direct dependencies among all variables, and would 
be shown as a ful ly  interconnected graph. In prac- 
tice, variables either exist or can be introduced in  a 
model to reduce the number of direct dependencies 
and simplify the problem of quantifying dependency 
relationships. For example, L, + I ,  the location of 
the target at time n +  1, is shown as dependent on 
the target location at time n and on target velocity. 
Location L,- I also is relevant to L, + I but provides 
no further information once velocity and location at 
t ,  are known, so no arc is shown from L,-  I to L , ,  I .  

The ability to construct a model that has a large 
number of indirect dependencies is critical to the 
successful application of belief networks to large 
problems. The probability distribution of each vari- 
able is assessed conditionally for each combination 
of values of predecessor nodes. Nodes that have no 
predecessors are specified as prior probabilities. 
The mathematical foundations of belief networks 
shows that the joint distribution of all of the vari- 
ables in  the network is equal to the product of the 
conditional distributions at each node (given the 
dependency constraints that are stated i n  the net- 
work). This is important to understanding the 
semantics of belief networks, however i t  could be 
very difficult computationally to work with the ful l  
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to all'nodes 
subscript n indicates time t ,  

ID = target type 

M = mode 

A = current activity 

z = time in activity 

V = velocity 

L = location 

D = data, information, 
reports, etc. 
(e.g. LOB, signature) 

Figure 1. Target recognition and tracking belief network 

joint probability directly. Instead, a significant body 
of research has investigated methods for using local 
computations to achieve the same effect as working 
with the joint, but at lower computational cost 
[]].Using these techniques, networks of over 1000 
variables have been constructed that perform proba- 
bilistic reasoning i n  a few seconds on Sun 4 work- 
stations [ 2 ] .  

Most belief network research has been conducted 
using models composed of discrete variables. More 
recently, the methods have been extended to con- 
struct Gaussian belief networks, belief networks for 
multivariate normal densities [3]. For certain cases 
these methods have been combined to allow mixed 
discrete and continuous models [4]. However, these 
analytic methods impose the constraint that the con- 
tinuous parameters have a Gaussian density. 

The approach taken in  this paper is to use stochastic 
methods, rather than analytic methods for reasoning 
with belief networks. Applications such as target 
recognition require the ability to construct models 
that combine discrete quantities such as ID, mode, 
and activity, with continuous quantities such as 
velocity and location. However, in  many instances 
the continuous densities will not be Gaussian, and 

analytic methods are difficult to apply. Our 
approach is to use belief networks to construct the 
dependency model, then use Monte Carlo sampling 
from the model, in  order to fuse information about 
both continuous and discrete quantities to improve 
target recognition. We will have a brief description 
of Monte Carlo reasoning, then illustrate the appli- 
cation of this approach to a scenario using the belief 
network shown in  Figure 1 .  

3. MONTE CARLO COMPUTATION IN 
BAYESIAN ANALYSIS 

In this paper we use a Monte Carlo computational 
procedure. With this approach both continuous and 
discrete variables as well as non-Gaussian distribu- 
tions can be handled in  a straightforward manner. 

Bayesian analysis using Monte Carlo integration 
has been used successfully for difficult problems in 
traditional statistical analysis. We use the follow- 
ing notation to describe the methodology. (The 
symbol p (q  X) denotes the probability density of Y 
conditional on the value of X.) 

D - the data 
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8 - the vector of parameters 

p (Dl e) - the likelihood function. D is the data 
actually observed. The likelihood equals the "proba- 
bility" of getting the data that was actually observed 
as a function of 0. 

p ( 8 )  - the prior probability density which repre- 
sents knowledge and uncertainty about 0 before 
seeing the data. 

p (el D )  - the posterior probability density which 
represents the knowledge and uncertainty about 8 
based on both the data and the prior. 

To be consistent with certain reasonable axioms of 
inference and decision making, the prior and poste- 
rior probability densities and the likelihood func- 
tion must be related according to Bayes' Theorem: 

The information i n  the data enters through the like- 
lihood function, information external to the data 
through the prior. The posterior density represents 
the combination of the two. All inferences and deci- 
sions are based on the posterior density. 

Bayesian inference, decision making and the com- 
putation of uncertainty limits require the evaluation 
of integrals of the form 

where the h ( 8 )  are real valued functions. To 
evaluate these integrals by Monte Carlo we proceed 
as follows: 8,) m = 1,2, ..., MC, are generated 
independently from a multivariate density ("impor- 
tance function") g(8)  . Then, weights W ( e , ) ,  
m = 1, 2, ..., M C ,  are computed from 

To minimize computational error for a fixed Monte 
Carlo sample size, M C ,  g ( e )  should usually be 
chosen to approximate the posterior density. This 
is known as importance sampling. It is more conve- 
nient however, and in  some problems adequate, to 
choose g (e) to equal the prior density, p (e). We 
will do that in  this paper. Importance sampling 
methods for the type of problems discussed in  this 
paper are being developed. 

Since {e,, W ( e , )  : m = I, 2, ..., M C }  is a weighted 
sample from the posterior distribution, the Monte 
Carlo approximation to I is given by 

Further discussions of Bayesian statistical analysis 
using Monte Carlo integration and examples of dif- 
ferent types of problems where this approach has 
been used can be found in  Stewart [5,6,7,8]. 

The problem of interest i n  this paper, fusing infor- 
mation to monitor and track a developing situation 
and to classify a target, requires an extension of the 
Monte Carlo procedure just described. Here we 
wish to update our current prior distribution to a 
posterior distribution as new information becomes 
available and to update (evolve) that posterior dis- 
tribution to a prior distribution at a later time for the 
next information update. 

Let 

D ,  = Data (information, measurement, report, etc) 
at time t ,  

The information update is as described above: An 
unweighted Monte Carlo >ample { 0; } from the 
prior distribution p(8"1D,-l ) at time t ,  will  be 
converted to a weighted sample Je; , W,}  from the 
posterior distribution, p (e"/ 0, ) , by weighting 
each 0; by the likelihood, i.e. W ,  = p (D,l 0; ) . 
(This can be seen from equation (3) when g(8)  
equals the prior.) 

The evolution update, convertilng the weighted sam- 
ple from the posterior, p (e"[ D ,  2 ,  to an unweighted 
sample from the prior, ~ ( 8 " + ~ 1  D ,  ) , uses the Monte 
Carlo technique of splitting. Each 0," is split into 
J ,  different 0::' where J ,  is a random variable 
with expected value equal to W m I c W m  times the 
desired Monte Carlo sample size and each (3'"' is 
generated from p ( € l f l + l l  0; ) . The resulting sample 
will be the desired unweighted Monte Carlo sample 
from the prior density p(8"+'1  D', ) .  (Note that the 

will not be statistically independent.) I ,- 
All inferences and decisions are based on the cur- 
rent Monte Carlo sample. It is used to compute 
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B 

A 

Figure 2. Target path and Monte Carlo samples of location following 
every third line-of-bearing update. 

probabilities, to display uncertainties, to predict the 
future and to evaluate possible decisions. 

4. EXAMPLE 

In this example the objectives are to track a target, 
infer target type (three possible types) and to infer 
current operational mode. Four types of sensor 
input are available: 

b 

b b 

bb 
b 

b 

b 

Figure 3. Distribution of location immediately 
before a line-of-bearing update. 

1 .  Line-of-bearing contacts from two sensors, A & 
B, at different locations. There are 24 line-of-bear- 
ing updates alternating between the two locations. 
Each contact has a standard deviation of error equal 
to 2.5 degrees. 

2 .  Accompanying each line-of-bearing contact is 
discrete information about activity, which is related 
to target speed. 

3.  Signature information that depends only on tar- 
get type, reported as the most likely target type. In 
this example there are four such reports, one of 
which is i n  error. 

Figure 4. Non-Gaussian distribution of 
location resulting from the line-of-bearing 
contact. 
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Figure 5. Before and after “negative information” update. 

actual time of transition 
from operating mode two 
to operating mode one 

4. Negative information obtained when the area 
within a circle is thoroughly searched and no target 
is found. 

Figure 2 shows the target path, where movement is 
from right to left. Also shown are Monte Carlo sam- 
ples from the posterior distributions of location fol- 
lowing every third line-of-bearing update. These 
Monte Carlo samples show the uncertainty i n  the 
location of the target. Each Monte Carlo sample 
can be thought of as a sample of possible target 
locations that are compatible with all the informa- 
tion available at that time. 

Figures 3 and 4 illustrate the uncertainty distribu- 
tions of location before and after a line-of-bearing 
update. The distribution in Figure 4 is non-Gauss- 
ian. (Contours of Gaussian densities are elliptical i n  
shape.) Figure 5 shows the distributions of location 
before and after a “negative information” (target not 
i n  circle) update. Notice that the distribution after 
the update is very different than a Gaussian. One of 
the reasons for using the Monte Carlo methodology 
is its ability to handle and display non-Gaussian 
distributions 

1.0 

0.9 

0 0.8 

Time (line-of-bearing contact number) 

a - location and speed related 

b - signature data only 
c - combined 

information only 

Figure 6. Probability of target type II (correct type) 

Figure 6 shows the probability computed for target 
type 11, which in  fact is the correct target type, as a 
function of time. The three curves correspond to (a) 
using location and speed related information only, 
(b) using signature data only, and (c) using all avail- 
able information. Curve (c) illustrates the benefits 
of fusing continuous and discrete information to 
improve target. recognition. 

Figure 7 shows the probability of being i n  operat- 
ing mode one as a function of time. The actual time 
of transition from operating mode two to operating 
mode one is indicated. 

5. CONCLUSION 

The performance of a system for target tracking, 
recognition, and situation assessment is improved 
by using as much information as possible. Bayesian 
belief networks provide a convenient and straight- 
forward way of modeling the relationships between 
uncertain quantities and of fusing information. The 
Monte Carlo computational approach offers great 
versatility and can accommodate models that would 
be difficult to handle with other approaches. 
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SUMMARY 

A method is proposed for grey-level image 
segmentation which combines the benefits of an 
Artificial Neural Network (ANN) approach with the 
definition of simple, intuitive constraints that govern 
the network behaviour. Several schemes are 
introduced for the definition of the constraints, as 
well as for the network potential initialization 
criteria. A new neural network model, derived from 
the Hopfield Neural Net, is proposed, adapted to the 
defined constraints. Obtained results are shown and 
compared with those achieved with classical 
algorithms. 

Image Segmentation Neural Networks 
Constraint Satisfaction Hopfield Networks 

1. INTRODUCTION 

Image segmentation tasks, though difficult to 
precisely define, are usually understood as 
procedures to cluster each pixel within an image into 
one of a number of different categories. A desirable 
goal for such procedures is to yield segmented 
images where the resulting clusters are grouped into 
well defined regions, those regions are uniform (in 
the sense that they avoid single, misclassified pixels, 
usually caused by the presence of noise and/or fault 
detectors), and they represent the contents of the 
original image in such a way that this information 
can be passed along on to the next stage of the image 
process. 

The pixel clustering into regions, as performed by 
any segmentation algorithm, must be carried out on 
a classification scheme based on some attribute [l], 
such as the pixel grey level, or the texture. 

Though texture segmentation has proven to be very 
useful in the case of infra-red images [2], and as a 
way to complement those results obtained from grey- 
level segmentation,there is no precise definition of 
what constitutes a texture (texture models do not 
necessarily adapt well to some types of natural 
scenes nor do they provide much intuition about 
human texture perception [3]). 

To perform an image grey level segmentation, some 
transformation of the original intensity information of 
each pixel must be used, given that the intensity of 
the image may not always be a good representation 
of the underlying physical variation of the scene [4]. 
In this sense, statistical techniques such as modelling 
image data with Markov Random Fields (MRF's) 
have been commonly applied, using a Maximum A 
Posteriori (MAP) criteria to cluster the pixels. 
However, the minimization of the energy function 
derived is exceedingly difficult, and it is usually a 
non-convex function, and the search space is much 
too large to perform a direct minimization [5 ] .  

While this approach has been shown to yield good 
results in many cases, specially in the presence of 
noise, in the case of natural scenes the segmented 
image lacks both visual coherence and homogeneity, 
particularly if the image to be segmented presents a 
complex set of contents, textures and illumination 
conditions, as most real images do. 

Furthermore, the MRF approach seems to be better 
suited to segmentation to only two-level regions (that 
is, segmenting targets from the background). The 
performance decreases strongly in the case of 
segmenting to multilevel regions, mainly in the 
combined presence of both noise and overlapping 
targets, or when leakage zones are present. 

In this paper we propose a set of empirical 
constraints that determine to which of the available 
segmentation levels each pixel should belong. These 
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constraints depend not only on the brightness o he 
pixel, but also on the region to what the neighbouring 
pixels belong, so as to minimize the probability of a 
misclassification based on the alteration of the grey- 
level of the pixel caused by noise or a fault detector. 

The set of constraints are joined to form an energy 
function representing the difference between the 
optimally segmented image and the presently 
achieved one. When minimized, they should yield a 
resulting image good enough to perform further 
vision processes (such as detection and 
classification), regardless of the contents of the 
original image and the vision conditions, and 
allowing manual selection of the desired number of 
levels. 

For the minimization part of the algorithm, we have 
selected a severely modified version of the Hopfield 
Neural Network model, where several neurons are 
assigned to each image pixel. This network 
architecture has been proven to achieve suitable 
results in a short number of iterations of the energy 
minimization algorithm (commonly 40 to 50 
"epochs"), and is easily hardware implementable so 
as to achieve real-time performances. Speed of 
convergence is mainly determined by the number of 
selected classes, and not by the particular contents of 
the image. 

Evaluation of several strategies to minimize the 
energy function, to initialize the neuron input biasses 
and to update the neuron potentials have also been 
considered. 

2. CONSTRAINT SATISFACTION FOR 
MULTILEVEL, GREY LEVEL 
SEGMENTATION 

The energy function to be minimized has been 
formulated in terms of imposing certain spatial 
restrictions to the segmentation label assigned to each 
pixel within the image. These restrictions are the so- 
called constraints. 

Let us assume that, for every pixel (x,y) in the 
image, we assign to it a value Uk,x,y, called potential, 
that represents the probability of that pixel belonging 
to the k,, class of pixels (that is, the higher this 
potential, the greater the probability that this is a 
class k pixel). 

If there are n possible fferent classes, then there 
will be n different U, values per pixel, ranging from 
U. to U"-,. We will later assign n neurons 
(representing such potentials) per pixel in the original 
image. 

A combination of constraints has been defined to 
calculate, in each moment, the value of any of the k 
possible potentials assigned to a certain pixel. While 
the number of different constraints defines the degree 
of precision in the task to be accomplished (in this 
case, grey-level segmentation), the need to keep the 
number of them relatively low may arise from the 
ability of the network to converge in a reasonable 
amount of time [6] .  Those constraints, defined in 
terms of spatial restrictions, have been formulated as 
follows: 

CONSTRAINT 1: avoidance of mis-classified 
pixels within a region. 

In a normal scene, the probability of an isolated pixel 
within a region, classified as belonging to another 
region is very low. The first constraint tries to ensure 
that the class already assigned to the neighbours of a 
pixel is taken into account when deciding the class to 
which the pixel belongs. That is, if all neighbouring 
pixels are assigned to class "in, the probability of the 
pixel belonging to any other class should be lowered, 
while the probability of being assigned to the same 
class should be increased. 

This can be formulated as a partial contribution to 
the global potential variation, given by the following 
expression: 

U k y  ( t+ l )  = 

where UG(t) represents the kth potential assigned to 
pixel (x,y) at time t ,  and U'(t+l) represents the 
contribution to that potential by constraint 1 at time 
t + 1. W contains all the pixels within the excitatory 
neighbourhood of the (x,y) pixel defined for this 
constraint, and ax,xo,y,y~ is the excitatory factor as a 
function of the distance between the two pixels. 

While the excitatory factor can be as complex as 
desired, it has been found that a step function in 
terms of the Manhattan distance between the two 
pixels is sufficient for our purposes. 
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CONSTRAINT 
pixel grey-level. 

clustering regions similar to the 

This constraint intends to cluster pixels according not 
only to their spatial location, but also to their 
brightness, so that different regions of the same class 
(in different positions of the scene) imply similar 
brightness in the original image. 

This constraint can also be formulated as a 
contribution to the global potentials assigned to each 
pixel. Of all the available k potentials (segmentation 
levels) per pixel, only one will receive a positive 
feedback (increase), while the others will receive a 
negative one (decrease). The one receiving a positive 
feedback is determined by assigning a central level to 
each possible segment, and finding the one which 
achieves the lowest difference with the normal.ized 
grey level of the pixel. This can be expressed as: 

Ufcy (t+l)  = 

where U2(t + 1) represents the contribution to that 
potential by constraint 2 at time t+  1, pixx,, is the 
original, normalized, grey-level value of the pixel at 
location (x,y), and n is the number of segmentation 
levels. In this case, the neighbourhood of a neuron 
(k,x,y) is composed of the rest of neurons belonging 
to the same pixel, (k’,x,y).  

CONSTRAINT 3: Inter-inhibition of same-pixel 
potentials. 

The third constraint tries to ensure that only one of 
the n available potentials per pixel will increase its 
value well above the rest, then imposing only one of 
the possible class assignments to the pixel. 

The formulation of the third constraint can be 
implemented as follows: 

where U3(t+l) represents the contribution to the 
neuron potential from constraint 3, and p is a weight 
constant. 

3. POTENTIAL UPDATE RULES. 
NETWORK DYNAMICS 

Once the three contributions to the neuron potential 
corresponding to each of the three constraints have 
been calculated, the expression is globalized to 
determine the extent of the variation that it causes on 
the global neuron potential. 

The potential update rules determine the influence of 
both the classification constraints and the recent 
history of class assignment for each pixel, along with 
the present classification obtained for every 
surrounding pixel within a well defined 
neighbourhood. 

On each iteration of the globai potential estimation, 
obtained classification value for each pixel should 
converge to a final one, where further iteration 
should, ideally, represent no variations in the 
segmented resulting image. Convergence, then, 
should be understood as the situation where pixel 
classifications remain stable through subsequent 
potential updates, rather than the condition of stable 
potential values. 

It has been found that this convergence is only 
achieved if several conditions are simultaneously 
satisfied (causing the network energy to always 
decrease, regardless of the possible pixel 
classification variations according to the potential 
update rules). Among them, constraint influences 
over the potential should be both upper and lower 
bounded and mutually normalized, even if weight 
factors are used to increase the effect of any one of 
them over the others. 

It has also been found that using a threshold function 
with the values yielded from the constraints 
influences over the global potential both improves the 
segmentation results and reduces the convergence 
time. To implement such a threshold, a sigmoid 
function has been used, denoted by: 

where F(x) is the thresholded value of the input x ,  
bounded between -1 and 1, and 6 is a gain term, 
initially set to a value such as 0.1, which can be 
slowly increased during the operation of the network. 

The global function that defines the neuron potential 
for each neuron in the network can, then, be defined 
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as follows: 

where U '(t) represent the evaluation of 
constraint "i" at time t ,  Ci is the influence 
or weight of constraint "i" over the 
neuron potential update, and A t  is a time 
constant that represents the system 
memory and allows slow convergence 
while avoiding strong potential 
oscillations. It also serves as a limiting 
factor which guarantees that potentials 
will not overflow through many iterations 
of the algorithm, even if they continue 
growing. 

The importance of properly selecting the 
weight constants resides in their direct 

conventional and classical minimization methods are 
not valid when applied to non-convex functions such 
as this one, with very large search spaces. 

[51 Hopfield neural networks, where a single neuron is 
assigned to every pixel, is connected only to its 
neighbour and has negative self feed-back [8], have 
been shown to solve complex minimization problems 
with relatively good results. 

PIXEL 
GREY-LEVEL 

FIGURE 1. Schematic reoresentation of each neuron of the ANN. Each of the constraints - 
influence Over the resulting image, that 
is, over which of the existing constraint 

is shown as a black box: C,. whose input is a combination of neighbourhood potentials 
for each Of the 

effects will eventually take control over 
the others. A trade-off between the three (or more) 
constants allows a significant image segmentation, 
avoiding nonsense results such as segmentation of the 
image into one single region (first constraint 
supremacy), segmentation of each pixel to the region 
closer to its grey-level (second constraint supremacy) 
or image segmentation to initialization seed 
(supremacy of the third constraint). 

4. PROPOSED HOPFIELD-LIKE 
NEURAL MODEL 

We now can identify the expression in expression (5 )  
as an objective function whose global extreme, 
maximum for the potential corresponding to a 
minimum of the system energy, must be found. The 
segmented image will be formed by taking only one 
of the potential values assigned to each pixel, 
specifically the one with the highest value (in a 
"winner-takes-all" strategy), and assigning the pixel 
to that class. 

Once assumed that the expression is a good 
representation of the segmented image, a relaxation 
method must be found to minimize the global energy 
solution from the objective function in expression 
(9, as efficiently as possible [7]. However, most 

The advantage of such methods is that the approach 
is highly robust and noise insensitive, even when the 
input data is incomplete or defective. Some other 
derived benefits are the ability to be easily hardware 
implemented for real-time operation through parallel 
and distributed computing, and their fault tolerance 
and graceful degradation [9]. 

In our model, the Hopfield neural network has been 
modified so as to directly map the potential function 
as defined in expression (5).  K neurons are assigned 
to each pixel, each representing the potential for the 
k class of the pixel. Thus, there are as many as 
MxNxK neurons in the network, if MxN is the image 
size in pixels. 

Each neuron in this network is a modified version of 
those Corresponding to a Hopfield ANN, in the sense 
that the neuron potential depends on the recent 
history of the potential, the potentials assigned to 
neighbouring pixels and the input bias, but with a 
different, slightly more complex relationship between 
these magnitudes. A graphical representation of such 
behaviour is shown in Figure 1. 

The potential of the neuron is computed from the last 
obtained value, which represent the recent history of 
the network, and from a modified version of the 
original pixel grey level. The rest of the influences, 



derived from the different defined 
constraints, affect the computation of the 
potential grouped in as many different sites 
as constraints are defined. Each site groups 
a number of neurons which represents the 
neighbourhood of influence for each 
constraint and, so, can be viewed as a 
function of certain neuron potentials 
affected by a weight constant. 

In our model, site 1 represents the first of 
the constraints (avoidance of mis-classified 
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pixels within a region), computed from OmW W O E  

neighbouring potentials belonging to the 

constant C,. Site 2 represents the second 
Same nkn ,.lass, and affected by weight Figure 2. Neighbourhood representation for the Nk.,.x.y neuron of the network. 

Neighborhood for the first constraint has been selected to be of size 3x3. 

constraint -(clustering -regions similar to 
their pixel grey-level), which depends only on. the 
pixel grey-level and the neuron class. Finally, site 3 
stands for the last of the previously defined 
constraints (inter-inhibition of same-pixel potentials), 
which is computed only from potentials belonging to 
all the neurons assigned to that pixel, affected by 
weight constant C,. 

The definition of the scope is independent for each of 
the neighbourhoods. For the first constraint, the size 
of the neighbourhood must be chosen as a trade-off 
between a large value, which avoids small-isolated 
regions but with distortionate sharp edges, and small 
values, which keep clean edges while being less 
efficient with single, mis-classified pixels. 

. 

For the second constraint the definition of a 
neighbourhood is meaningless, given that the 
potential influence is derived solely from the pixel 
grey-level and the class that the neuron is assigned 
to. Finally, for the third constraint, it is obvious that 
the neighbourhood is composed of all the neurons 
assigned to the pixel (one for each segmentation 
class), excepting the one whose potential is being 
modified. 

Figure 2 shows the neighbourhoods corresponding to 
the first and third constraints for neuron NK-l,x,y, 
assigned to the pixel of coordinates (x.y). The second 
constraint neighbourhood is limited to the pixel value 
and the class of the neuron, K-I. 

itself though computations in adjacent 
neighbourhoods. After N/(2m-I) iterations of the 
minimization algorithm (where N is the image side 
size in pixels, and m is the neighbourhood side size, 
also in pixels), this change, though very attenuated, 
is translated to the opposite side of the image. 

5. EFFECTS OF NEURAL POTENTIAL 
INITIALIZATION 

It has been shown that the strategy used for the 
neurons potential initialization plays a very important 
role in the number of iterations which are needed to 
achieve the segmented image, in the evolution of the 
segmentation process and in the visual aspect of the 
resulting segmented image [ 101. 

For this work, several strategies werw tested for the 
initialization of the neuron potentials, which are 
detailed as follows: 

J Initialization of potentials to a value 
proportional to the pixel normalized grey 
level. This method accelerates the 
convergence of the minimization process 
considerably, achieving a presegmented 
image in less than 10 iterations, but presents 
inertia in the sense that noise corrupted 
pixels remain mis-classified for as many as 
40 to 50 iterations. 

The dimensions of the neighbourhood, especially the 
one defined by the first constraint, determine the 
effect of pixel clustering changes throughout the 
entire image. Though only changes in those pixels 
included in the neighbourhood directly affect the 
computation of the potential for the central neuron 
during the present iteration, any change propagates 
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d Initialization of potentials to a low, 
random value, uniformly distributed 
around the statistical mean of the 
normalized input data range. This 
strategy achieves the best results in 
both visual appearance and 
evaluation figures of all the tested 
methods, but requires many more 
iterations of the minimization 
algorithm than the other strategies 
(usually between 100 and 130 
iteration for a 6 level segmentation). 

/ Initialization of potentials to a 
presegmented value obtained by 
dividing the grey-scale range into the 
number of desired discrete levels, 
and assigning each pixel to the center 
value of the grey-scale segment to which it 
belongs. This method has achieved good 
results only with synthetic images, but not 
with natural scenes. 

Two other strategies have been tested, as a 
combination of the three introduced previously. They 
are as follows: 

EFFECT OF POTENTIAL INITIALIZATION OVER SEGMENTATION RESULT 

K OF UNCLASSIFIED OR MIS-CLASSIFIED PIXELS 
( 0 0  , 1 , I I 

IO 20 IO 40 SO 

# ITERATIONS 

f INITIALIZATION STRATEGY 'I - NOISE -t- PIXEL m' PRESEQY. 

FIGURE 3. Evolution of the miss-classification rate versus the number of performed 
terations of the segmentation algorithm, for three different potential initialization 
itrategies. 

/ Initialization of potentials to a presegmented 
value, which is then increased with a small 
noise term. 

/ Initialization of potentials to a value 
proportional to the pixel normalized grey 
level, to which is then added a small noise 
term. 

From all the proposed methods, the first one usually 
achieves good enough results in a reasonable number 
of iterations (usually between 50 and 60). If the 
incoming scene presents a high level of noise 
corruption, or contains many details manifested as 
very small, insignificant regions, the last 
initialization method (value proportional to the pixel 
normalized grey level, plus a small noise term) has 
proven to achieve better results, though it usually 
requires from 15 to 25 iterations more to converge to 
good results. 

6. OBTAINED RESULTS 

Figure 4 shows a comparison of results obtained by 
segmenting an image with different methods. The 
first row of images include the original scene, with 
256 different input levels, and the segmented image 
obtained by two classical methods: a Perkins 
segmenter and a pyramidal segmenter. 

The second, third and fourth rows show the same 
image segmented by the method proposed in this 
paper for obtaining 3, 4 and 6 segmentation regions 
(depending from the parameter K ) .  Each of these 
rows shows the evolution of the achieved result, in 
terms of iterations of the algorithm. 

For all the ANN segmentations shown in the figure, 
neuron potentials have been initialized to a value 
proportional to the pixel normalized grey level (the 
first of the proposed initialization strategies), the 
time constant of the potential update circuit ( A t )  has 
been set to lo4, and the neighbourhood size for the 
first constraint has been set to 3. Some 
improvements have been achieved by updating the 
neuron potentials following an asynchronous 
(random) scheme, rather than a sequential one. 

Figure 3 shows a comparison of the three main (non- 
combined) strategies for potential initialization, in 
terms of percentage of misclassified or un-classified 
pixels versus the number of iterations of the 
minimization algorithms, for the test image. 
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1 
FIGURE 4. From Ice to right. tint row. o r i M  image to segment (256 levels). segmentation result using a Pcrkins 
segmenter. and segmentation result using a pyramid scgmcntcr. Sccond. third nnd founh rows show IIU results of 
~gmcming mC s ~ m s  image using the narral ~hvork as d e w  in the text, with Ihrrc, four and six rgmcncitim levels, 
respstively. tcii  mC left ooc showing the segmented image aller 25 itetations of IIU algorithm, and mC right one after 
50 iterations. 
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7. CONCLUSIONS 

The proposed method for grey-level image 
segmentation using Neural Networks has been shown 
to achieve good results with nearly all of the tested 
images, both synthetic and natural scenes. Its main 
advantage is the independence of the scene contents 
and nature, in the sense that the algorithm does not 
necessarily have to be optimized for the expected 
incoming scenes. Both Perkins and pyramidal 
segmenters require several input parameters, usually 
derived from the contents of the image or the image 
type. 

Another advantage of the proposed methods is its 
capability for allowing the selection of the resulting 
number of segmentation levels, thus allowing the 
user, in manual intervention operations, to adapt the 
algorithm to the required level of detail. 

Also, an architecture such as the one suggested here 
is very susceptible to hardware integration, making 
we of both @elization and distributed computing, 
thus providing a d u s t  path for attempting real-time 
image segmentation. 

Obtained results have been shown to be very 
promising, most of the time both visually and 
numerically better than those obtained by different 
classical segmentation tools. However, tiuther 
research mustbe carried out, both for the 
optimization of obtained results and for the definition 
of new constraints (such as a Markov Random Field 
modelling) which could even improve the results 
shown in this paper. 
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1. SUMMARY 

Near-simultaneous, multispectral imagery of 
ground target and background signatures were 
collected over a full diurnal cycle in visible, 
infrared, and ultraviolet spectrally filtered 
wavebands using Battelle's portable sensor suite. 
The imagery data were coregistered and processed 
using a variety of classical statistical algorithms, 
artificial neural networks and data clustering 
techniques to classify pixels and objects in the 
imaged scenes. Imagery collected at different 
times throughout the day were employed to verify 
algorithm robustness with respect to temporal 
variations of spectral signatures. Sensor fusion 
hardware was also designed and built to accompany 
the sensor suite to provide real-time pixel 
classification capability. In addition, research is 
being performed to advance the state of the art 
using differential absorption lidar as an active 
remote sensing technique for spectrally detecting, 
identifying, and tracking hazardous emissions. 
These investigations support a wide variety of 
multispectral signature discrimination applications, 
including automated target search and landing zone 
detection. Battelle's sensor suite has also been used 
to quantify the extent of natural gas leaks and 
record the thermal characteristics of smoke 
grenades. 

2. INTRODUCTION 

The spectral distribution of energy reflected and/or 
emitted from an object is a unique characteristic 
that may be exploited to discriminate the object of 
interest from the local background. Multispectral 
data fusion techniques can be used to solve a 
variety of classification and discrimination 
problems. Battelle's portable multispectral sensor 
suite has been used to collect simultaneous 
multispectral scene imagery in several data 

collection episodes. Implementing tailored data 
fusion algorithms, Battelle has processed some of 
the recorded imagery to solve classification 
problems including automatic detection of ground 
targets and location of aircraft landing zones. 
Upcoming investigations using active lidar 
technology include the detection and identification 
of gaseous emissions for environmental monitoring 
and chemicalhiological weapons treaty 
verification. 

Algorithms implemented in the study included 
unsupervised maximum likelihood and fuzzy 
clustering algorithms along with Multilayer 
Perceptron and Learning Vector Quantization 
(LVQ) artificial neural networks. Supervised 
clustering of the data was also used. The 
algorithms were tailored to perform pixel-level 
classification of scene imagery using simultaneous 
multispectral measurements covering the UV, 
visible, near-IR, MWIR, and LWIR wavebands. 
Imaged outdoor scenes were comprised of tactical 
targets, buildings, roads, runways, and vegetation. 
Imagery were spatially coregistered with an RMS 
error on the order of 0.5 pixels. Outdoor scenes 
processed through the data fusion algorithms were 
displayed with artificial color to demonstrate 
algorithm classification performance."] 

Waveband saliency analyses were performed to 
determine which spectral bands contained the bulk 
of the discriminating information for discerning 
objects in the scenes. These analyses help 
determine the optimum subset of wavebands for 
discriminating spectral signature characteristics for 
an object of interest. Histograms and scatter plots 
of the multispectral data were generated with the 
Geographic Resources Analysis Support System 
(GRASS).'*] For system implementation, the 
potential benefits of waveband saliency analyses 
include a reduction in the number of system 



176 

sensors, ultimately minimizing cost, weight, 
complexity, and processing requirements. 

To further verify classification robustness, 
algorithms were tested on outdoor scene imagery 
recorded over broad periods of time throughout the 
day. Results were excellent, indicating that scene 
classification is achievable despite temporal 
signature variations. 

3. MULTISPECTRAL IMAGERY 
COLLECTION AND PROCESSING 

Battelle's portable sensor suite consists of two high- 
resolution, high-sensitivity thermal imagers and five 
charge-coupled-device (CCD) cameras. A variety 
of spectral filters and telescopic lenses accompany 
the sensor suite to enable rapid system 
reconfiguration for supporting many unique 
imaging and data collection requirements. The 
attached photograph (Figure 1) of the multispectral 
sensor suite shows one system configuration 
example using telescopic lenses on the thermal 
imagers for long distance, outdoor imaging. 
However, the sensor suite may be easily 
reconfigured to support close-up mu1 tispectral 
imaging applications. With its collection of spectral 
filters, the Battelle sensor suite images over a large 
selection of wavebands in the visible, infrared, and 
ultraviolet regions of the spectrum. The CCD 
cameras generate 640 x 480 pixel images while the 
thermal imagers spatially sample a coarser 
resolution of 207 x 260 pixels in the MWIR and 
207 x 344 pixels in the LWIR. 

During two outdoor data collection episodes, 
Battelle's multispectral sensor suite was positioned 
looking downward from a 1 10-foot tower location. 
Imagery were then recorded over a period of 
several days. Pixel-level fusion was accomplished 
by feeding the coregistered multispectral pixel 
intensity measurements into data fusion algorithms. 

In the initial multispectral data collection episode 
conducted in June 1992 at Wright-Patterson AFB, 
Ohio, Battelle recorded scene imagery of a mobile 
missile launcher amidst a background containing 
roads, buildings, trees, and grass over a full diurnal 
cycle. Figure 2 depicts a 35 mm photograph of a 
scene containing the mobile missile launcher and 

ground clutter imaged simultaneously in six 
wavebands by the sensor suite. The multispectral 
imagery of this scene, processed through an 
artificial neural network, is displayed in Figure 3 
with artificial colors designating the different 
classes of objects (target, road, building, trees, and 
grass) identified by the network algorithm. To 
further verify robustness of this classification 
algorithm, it was tested on imagery recorded over 
broad periods of time throughout the day. Results 
were excellent, indicating that scene classification is 
achievable despite temporal signature variations. 

Ground truth data covering a variety of 
meteorological parameters and site thermocouple 
measurements on targets and background were 
collected. This critical data, in conjunction with 
the multispectral imagery, provides a valuable 
record of weather and atmospheric conditions to 
support future modeling and analysis efforts using 
the imagery. 

There are clear tactical advantages in implementing 
a data fusion algorithm to automatically perform 
multispectral data fusion for detecting potential 
targets. Chaotic and obscured operational 
environments pose a challenge for human observers 
looking for targets and threats. Even in more 
placid scenarios, system operators may become 
task- and data-sahirated to the point where potential 
threats go unnoticed. Automatic target 
detection/cuing can leverage an operator's 
effectiveness by reducing workload and increasing 
probability of target detection.[31 Battelle's 
investigation implementing sensor fusion of 
multispectral target and background signatures 
supports the concept of automated target search. 

In conjunction with the Federal Aviation 
Administration's Runway Detection Program, 
Battelle collected additional multispectral imagery 
in a separate measurement episode and processed 
the data using analysis and fusion techniques to 
detect a runway at Wright-Patterson AFB, 
discriminating it from other objects in the area 
using spectral characteristics. Figure 4 shows a 35 
mm photograph of a scene imaged in multiple 
wavebands consisting of a runway, roads, 
vegetation, and tactical targets at approximately 3 
km. Figure 5 displays, in two artificial colors, the 
binarized result of a data fusion algorithm merging 



177 

the multispectral data to segment, or detect, the 
runway. 

4. DATA CLUSTERING ALGORITHMS 

As a baseline, the study began with an investigation 
using an unsupervised maximum likelihood 
statistical algorithm for clustering the multispectral 
data. Displaying the clustered pixel classes with 
artificial color indicated that fusion of data from all 
six wavebands successfully distinguished the classes 
of interest. Using only the visual and near-infrared 
bands, the camouflage-green mobile missile 
launcher was difficult to discriminate from 
background trees. Employing data from the two 
thermal bands, the clustering algorithm confused 
the mobile missile launcher with paved road, but 
successfully separated vegetation from man-made 
objects. Combining the data from all six 
wavebands successfully clustered the classes of 
interest, distinguishing target pixels from 
background pixels as well as differentiating 
between vegetation and man-made objects. 
Pruning combinations of sensor inputs indicated 
that the green-filtered visual band and the 8-12 
micron thermal band together contained most of the 
key information for distinguishing the classes. 
Clustered classes were displayed with artificial 
color. 

A fuzzy clustering algorithm was also applied to the 
multispectral scene imagery containing the mobile 
missile launcher target. Similar to other 
techniques, this algorithm carved different object 
regions within the multispectral feature space, 
except that it allowed for "overlapping" class 
possibilities among the data clusters. In other 
words, a specific point in the multidimensional 
pattern recognition feature space may have been 
simultaneously designated as belonging to more 
than one cluster or object class, with weighted 
possibility factors pertaining to the "degree of 
belonging" to each class. However, the researcher 
must ultimately select a defuzzifying threshold to 
apply when making a final classification decision. 

In addition to clustering algorithms, a supervised 
classification algorithm was applied to the 
multispectral data set obtained during the first 
imagery collection episode. The supervised 

algorithm generated a pixel intensity histogram in 
each waveband for pixels sitting on a user- 
designated object (i.e., target) within an imaged 
scene. Thresholds were established near the tails of 
the histograms. Pixels were then classified as 
target pixels if the intensity values in each 
waveband fell within established thresholds on the 
histograms. 

5. NEURAL NETWORK ARCHITECTURES 
AND TRAINING RESULTS 

The scene employed in the initial investigation 
consisted of a mobile missile launcher parked on a 
grassy area in front of a grove of trees (Figure 2). 
Additional objects within the scene consisted of 
paved areas and buildings. Imagery from all 
measured spectral bands were spatially 
coregistered, or aligned, with an RMS error on the 
order of 0.5 pixels. To assess classification 
robustness, the tailored neural networks were 
trained and tested on scenes imaged at different 
times of day. Learning coefficients, number of 
computational nodes, and node transfer functions 
were varied to optimize performance of a 
Multilayer Perceptron network and a modified 
Learning Vector Quantization (LVQ) network 
employing "conscience" with added training noise. 
Both architectures trained successfully, converging 
within several thousand training iterations to a 98% 
pixel classification accuracy on a separate set of test 
data. As shown in Figure 3, trained network 
outputs of classified pixels from a full scene were 
displayed with artificial color to pictorially convey 
the near-perfect segmentation and classification of 
the five class regions (mobile missile launcher, 
buildings, paved road, trees, and grass). Network 
architectures were developed and tailored with the 
Neuralworks Professional II/PLUS software 
package by Neuralware, Inc.14] Image pixel data 
were processed with the Geographic Resources 
Analysis Support System (GRASS), a Geographical 
Information System (GIS) possessing some image 
processing capabilities.[21 

The initial training data set consisted of 750 spectral 
vectors (pixels) comprised of 150 vectors for each 
of the five classes. The corresponding test data set 
contained 250 vectors including 50 pixels for each 
class. The trained neural networks were later used 
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to classify all 233,000 pixels imaged in a full scene, 
of which approximately 5600 were target pixels. 
Results were excellent, indicating that the trained 
neural networks served as robust target 
segmentation algorithms. With only limited 
training, approximately 90% of the on-target pixels 
were correctly classified and over 99% of the 
background pixels were correctly classified as not 
being on target. The contiguity of the on-target 
pixels offers an advantage in that a few 
misclassified target pixels will not detract from the 
target segmentation display. Also, image 
processing techniques, such as windowed 
convolution with a median filter, may serve to 
"clean up" many of the misclassified pixels. 

To further verify the classification robustness of the 
LVQ neural network for target detection, the 
network was trained and tested on imagery 
recorded over broad periods of time throughout the 
day. Results were excellent, indicating that 
automatic target detection is achievable despite 
target and background signature variations over 
time. Imagery collected at dawn and dusk were the 
most difficult for the neural network classifier, 
apparently due to the rapidly changing signature 
dynamics at crepuscular times of the day. Adding 
a time-ofday input to the neural network, along 
with the spectral intensity measurements for each 
pixel, significantly improved the classification 
accuracy. 

Waveband saliency analyses were performed to 
determine which spectral bands contained the bulk 
of the discriminating information for discerning 
targets amidst cluttered background. These 
analyses investigated the waveband combinations 
providing complementary information for finding 
targets. Spectral inputs to the networks were 
ultimately reduced to include only the green, near- 
infrared, and LWIR wavebands. For system 
implementation, the benefits of reducing the 
number of system sensors include minimized cost, 
weight, complexity, and processing requirements. 

6. HARDWARE IMPLEMENTATION 

To accompany the passive electro-optical sensor 
suite as it collects multispectral imagery, Battelle 
designed and built a real-time digital data collection 

and fusion processing system. The system 
incorporates state-of-the-art high speed video, 
computer graphics, memory and programmable 
logic technologies into a hardware architecture that 
enables data fusion algorithms (i.e., look-up tables 
derived from trained neural networks) to be 
executed at video pixel rates. The system classifies 
all pixels in an imaged scene by combining inputs 
from three separate cameras imaging in different 
wavebands. The classification result is visualized 
in a video format on a full-color, nine-inch, active 
matrix liquid crystal display (LCD). The sensor 
fusion board is an U0 addressable standard full- 
length PC/AT bus-compatible circuit card assembly 
comprised primarily of VLSI surface mount 
components. The host processor is used to 
configure and program the hardware functions. 

The sensor fusion board accepts three line-locked 
composite video inputs from three spatially 
registered cameras. These inputs are digitized to 
eight bits each and are processed to form a 24-bit- 
per-sample input to the video classifier and the 
video output select circuitry. The classifier uses 23 
bits to produce an eight-bit data word containing the 
two possible four-bit classifications. The four-bit 
classification results in up to 16 distinct 
membership classes. The video output select 
circuitry receives the eight-bit classifier output data 
word, 24-bit pixel input data (32 bits total) and user 
configuration data. Using these inputs, it selects 
one eight-bit video input and the final synchronous 
four-bit classifier data. The color space converter 
performs 3-by-3 matrix multiplication at pixel rates 
to accomplish 24-bit-to-24-bit color space 
coordinate conversion. This device is used to 
create transparent pseudocolor overlays on 
grayscale image data. The video RAMDAC 
converts the 24-bit color output of the color space 
converter into an RS-170 compatible RGB video 
output for display. The entire classification process 
is pipelined, with all stages operating 
simultaneously. The process does not require input 
video storage other than the use of registers 
required to temporarily store data at each stage of 
the pipeline. As a result, the overall input-to-output 
latency is just a few pixels, and the output is line- 
locked to the input. 

The sensor fusion board is designed to operate at a 
top pixel rate of 18.75 MHz. In most cases, the 
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pixel rate used will be less than 15 MHz, as 
multisensor pixel registration becomes more of a 
challenge with high resolution cameras.[q 

7. DIFFERENTIAL ABSORPTION LIDAR 
(DIAL) APPLICATIONS 

Battelle is using a state-of-the-art mobile sensor 
suite incorporating active, multiwavelength, laser 
remote sensing technologies for applications such as 
field remote sensing of chemical/biological warfare 
(CBW) agents and environmental monitoring. The 
test bed system consists of the U.S. Army Dugway 
Proving Ground lidar system van currently on loan 
to Battelle. The mobile system provides a lidar 
capability for evaluating and testing improved 
hardware designs and components while serving as 
a field test support system for a variety of 
industrial, regulatory, environmental, DOE and 
DoD applications. Specific areas of use for the 
system include atmospheric boundary layer 
profiling, aerosol detection, hazardous air pollution 
monitoring and CBW species identification and 
detection in support of treaty compliance and 
nonproliferation monitoring. 

The ground-based, direct detection, tunable CO2 
system is designed for rapid detection and 
concentration measurement of various molecular 
constituents within the atmosphere using range- 
resolved and column-content DIAL techniques. 
Modifications and refurbishment of the system are 
currently being conducted at Battelle for the lidar 
(laser sources) and receiver subsystem. 

The lidar system is housed in a 30-foot 1988 
Frontrunner manufactured by Wolverine Western 
Corporation. The van houses a climate control 
system to maintain a comfortable operating 
environment for both the operator and equipment. 
A 30 kW Kohler generator mounted in the rear of 
the van provides electric power. Leveling and 
stabilization are performed by hydraulic jacks 
located at each corner of the vehicle. 

cooled HgCdTe detector. The scanner, mounted 
on top of the vehicle, allows pointing over a full 
hemisphere. Data acquisition and processing is 
accomplished with a Digital Equipment Corporation 
Microvax 3200 and CAMAC data acquisition 
module. A color graphics display, magnetic tape 
storage and a laser printer are also on board the 
vehicle. 

8. CONCLUSION 

The spectral distribution of energy reflected and/or 
emitted from an object is a unique characteristic 
that may be exploited to discriminate the object of 
interest from the local background. Near- 
simultaneous, multispectral imagery of ground 
target and background signatures were collected 
over a 'full diurnal cycle in visible, infrared, and 
ultraviolet spectrally filtered wavebands using 
Battelle's portable sensor suite. The imagery data 
were coregistered and processed using a variety of 
classical statistical algorithms, artificial neural 
networks and data clustering techniques to classify 
pixels and objects in the imaged scenes. Imagery 
collected at different times throughout the day were 
employed to verify algorithm robustness with 
respect to temporal variations of spectral 
signatures. The investigation supports a wide 
variety of multispectral signature discrimination 
applications, including automated target search, 
landing zone detection, and chemical/biological 
agent tracking. 

Results of the study were excellent and indicated 
that the chosen data fusion algorithm was not 
critical to solving the object classification problem. 
Rather, the system solution lies in choosing the best 
set of features (in this case wavebands) for 
discriminating the object of interest (i.e., target, 
runway, etc.) from its background surroundings. 
With a set of wavebands judiciously chosen for 
discriminating the object of interest under 
established conditions, any of the mentioned 
algorithms can be tailored to use the multispectral 
measurements to effectively classify the imagery. 

The lidar package received from Dugway Proving 
Ground contains four Questek Series 7000 TEA 
CO2 lasers with a nominal 4 Joule transmitted 
energy at lOP(20). The infrared receiver uses a 
16-inch f/2.5 telescope along with a liquid-nitrogen- 
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Battelle Imaging Sensor Suite Bands: 

UV 0.2 - 0.4 pm 

blue 0.42 - 0.49 pm 
green 0.51 - 0.56 pm 
red 0.61 - 0.66 pm 

NIR 0.81 - 0.95 pm (vegetation) 

Subband MWIR 3.5 - 4.1 pm 
Subband MWIR 4.5 - 5.0 pm 
Broadband MWIR 3.0 - 5.3 pm 

Subband LWIR 7.81 - 9.8 pm (CW) 
Subband LWIR 9.98 - 11.41 
Subbad LWIR 9.14 - 9.68 ptn (CW) 
Subband LWIR 10.497 - 10.857 pm 

(cw) 

(CQ IaSedCw) 
Broadband LWIR 8.0 - 13.0 pm 

Fig. 1. Battelle multispectral =mor suite. 
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Fig. 2. Multispectral signature test - tower view. 
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Fig. 4. FAA landing program data collection - imaged scene. 
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Fig. 5. Segmented runway using unsupervised classification - 1800 hours, 3km. 
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SECTION N 

SIMULATION AND PERFORMANCE EVALUATIONS 

INTRODUCTION 
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Italy 

This Section contains three papers that support the simulation and 
performance evaluation of multi-spectral data fusion systems. An 
effective simulation and performance evaluation is essential to rapid 
prototyping and algorithm selection to support numerous MS/MTT 
applications. In this Section,, we cover the handling of Automatic Target 
Recognition (ATR) test data, an effective tool to support the development 
of precision guided munitions and a study of target acquisition and 
sensor cueing in air-to-air environment. 

The first paper presents a method for bench-marking ATR data. The 
bench-mark for performance measurement of this statistical 
classification rule was compared with other classification algorithms. By 
means of statistical considerations it  is possible to derive the optimal 
classification rule that, on the average, its application yields the lowest 
probability of committing classification errors. This technique becomes 
central in real-time Automatic Target Recognition Systems that employ 
multi-sensor and multiple-look evidence accumulation strategies. 

The second paper describes the Modular Algorithm Concept Evaluation 
Tool (MACET) to quickly configure and evaluate multi-spectral sensor 
fusion algorithms. Target acquisition in a high clutter, all weather 
day/night condition represents a rather demanding capability for air-to- 
surface attack mission. The MACET is being developed by Wright 
Laboratory to evaluate acquisition and aim point selection algorithms. 
This will ensure that the critical elements will allow the weapon system 
to operate independently and accurately in  the operational scenarios. 

The last paper used a simplified flight simulator in a dynamic 
environment to evaluate sensor fusion algorithms and cueing processes. 
The operational capability of fighter aircraft in a very demanding air-to- 
air threat scenario represents one of the future challenges for aircraft 
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designers. The use oL multi-sensor data fusion, sensor management, 
situation assessment and attack management techniques is the 
envisaged solution to the problem. Accurate tracking, short response 
time and a sufficient level of confidence in identification were recognized 
as critical requirements. Therefore, a simulation study was aimed at 
tailoring the algorithms to tracking and fusion problems, so that there 
would be more confidence in the phenomena and in the performance of 
the adopted techniques in the operational situation. 

I 
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Benchmarking ATR Test Data* 

Andrew Hauter, Vince Diehl, and Arnold Williams 
SAIC, Arlington, VA 22203 College of Engineering, George Mason University 
vdiehl@rsta.saic.com Fairfax, VA 22030 gorsak@tejas.gmu.edu 

Geoffrey Orsak and Matthew Sorell 

SUMMARY 

By means of statistical considerations it is possible to 
derive a classification rule which is optimal in the sense 
that, on an average basis, its use yields the lowest 
probability of committing classification errors. This 
statistically optimal classification rule is a generally 
accepted standard against which the performance of other 
classification algorithms are often compared. As is true 
in many fields which deal with measuring and 
interpreting physical events, statistical considerations 
become central in Automatic Target Recognition 
because of the randomness under which classes are 
distributed in sensory data. There has been considerable 
investment in real time Automatic Target Recognition 
Systems that employ multiple-sensor and multiple-look 
evidence accumulation strategies. These ATR's exploit 
predetermined models of the targets and target states 
using correlation matching processes to declare targets 
or target features and various detector forms and graph 
matching techniques to accumulate evidence. Due to the 
nature of the sensors and environment, it is not clear 
that these algorithms can be cast in an optimal fashion; 
however, given a selected training and test set much can 
be said about the respective performance. It is this 
benchmark by which this paper measures performance. 
To this end, techniques for estimating the probability of 
errors inherent in the sampled data sets and the 
calculations of bounds on this measured performance are 
investigated. 

1.0 INTRODUCTION 
The common approach €or evaluating ATR's has been 
to provide a common data set, formulate an ATR 
competition, and select the best performer by process of 
elimination. This testing process can be beneficial if (1) 
the test data selected does not bias one algorithm over 
another, (2) the data represents a robust challenge to the 
algorithms and (3) there exists enough data that there is 
sufficient confidence for design and testing. However, 
the shortcoming of this approach is that it doesn't 
provide a stopping point. The resolution of this issue 
or even the methodology to arrive at an answer is not 
altogether clear in the literature, yet it is critical. This 

paper takes a two-fold approach, first from an optimal 
classification point of view in which the optimal 
classifier is derived and its performance estimated by 
simulation, and second from a minimum achievable 
error probability approach in which the minimum 
probability of error is bounded by analytical expressions 
which incorporate sufficient statistics derived from the 
data.. The topics covered here are grouped under the 
fo I low ing headings: 

2. SUMMARY PROBLEM DESCRIPTION 

2.1 Description of Error Measures 
2.2 Decision Criteria 
2.3 The Receiver Operating Characteristic 
2.4 Summary 

3. BOUNDS ON THE MINIMUM 
PROBABILITY OF ERROR 

3.1 Problem Statement 
3.2 Distance Measures and f-Divergence 
3.3 A class of upper bounds on min P, based on 

3.4 A class of lower bounds on min P, based on 
f-divergence ' s 

f-divergence ' s 

4. SAMPLE SIZE AND ERROR ESTIMATION 
TECHNIQUES 

4.1 Monte Carlo Methods 
4.2 Error Counting Methods 
4.3 Importance Sampling 
4.4 Application to ATR 
4.5 Challenges for the ATR Problem 

5. APPLICATIONS 

5.1 Likelihood Ratio Test 
5.2 Parzen Kernel LRT 
5.3 Asymptotically Optimal Detector 
5.4 Asymptotic Equivalence and Conclusions 

6 .  REFERENCES 

Work Sponsored By ARPA Contract #F33615-91-C-1801 * 
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2.0 SUMMARY PROBLEM 

Before proceeding to details and specific examples, 
we give a descriptive account of how two probability 
distributions determine the detectability of a signal, 
or the discernibility between two signals. Optimally 
one wants to determine the best possible performance 
given some set of sensor data. This performance can 
be predicted by a bound on the probability of error. 
The error represents those cases where we have 
missed a target (probability of miss, PA,) together 
with those where we have designated clutter as a 
target (probability of false alarm, P F ~ )  The existence 
of tight bounds on these quantities will offer a 
meaningful measure of relative performance of 
different detection schemes. If we can determine this 
fundamental performance for the data we will be 
able to judge how well algorithms can operate on the 
input sensor data. In turn, this will also allow a 
determination of the adequacy of a sensor design to  
fulfill a specified requirement. 

In evaluating ATR performance, two obstacles 
prevent an easy solution: firstly, the underlying 
distributions are incompletely characterized, and 
secondly, the number of training samples (or feature 
sets) required for performance estimation is usually 
smaller than desired (sample size determines the 
accuracy of ‘the performance estimates). To this end, 
pattern recognition research has considered various 
questions concerning the relationship between the 
training set size, the number of features, and the 
estimation of performance [ 11. 

2.1 Description of Error Measures 

The Neyman-Pearson lemma indicates that the optimal 
test between two hypotheses is the likelihood ratio 
test. To illustrate, let us consider the two class 
detection problem based upon an N-dimensional 
observation vector with the following corresponding 
hypotheses: 

H,: X-P,(X) target 

H, :  X-P,(X) clutter 

DESCRIPTION 

(1) 

In the case that the joint distributions are known 
precisely, the likelihood ratio test becomes: (2) 

where p I  and p ,  are the corresponding joint density 
functions under H, and H, respectively. It is well  

known that the likelihood ratio, I(x), is the sufficient 
statistic under the most widely used optimality 
criteria in detection and estimation theory. These 
include minimum probability of error, optimal 
Neyman-Pearson, and mini-max (PFA, PA,). Because of 
the generality of the LRT, it is to be expected that 
“good” ATR solutions will attempt to approximate 
this statistic. 

For the binary hypothesis problem, the interaction 
between the likelihood ratio test, the probability of 
errors, and the threshold setting T are depicted in 
Figure 1. 

1 

say ” wsay H2 

~~ 

FIGURE 1. Testing Between Two Hypothesis 

The probability of errors are defined on the 
conditional probabilities: 

m 
PFA = p = Pr(suy H2 I Hi true) = F) ( x ) &  

T 
(3) 

T 
P ~ = a = P r ( s u y H 2  [Hitrue)= j q ( x ) &  

-a3 

2.2 Decision Criteria 

As alluded to above, the three decision criteria of 
interest in this document are the Bayes min P,, 
Neyman-Pearson, and so-called mini-max. We 
examine each of these in detail beginning with the 
Bayes min P,. 

2.2.1 Bayes min Probability of Error 

The Bayes Probability of error is described by the 
following relationship: 

Pe =P[wH1 I H2lP[ff2I+P[sayH2 I HIIP[HI 1 (4) 

As discussed in the previous section, the optimal 
detection rule under this criterion is the likelihood 
ratio tested against the threshold P(H,)/P(H,). If the 
threshold T is not set to this quantity, then an 
increase in the P, will be incurred. Unfortunately, a 
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difficulty of using a Bayes detector for the ATR 
problem is lack of knowledge of the prior 
probabilities. Nevertheless, many of the approaches 
in detection theory and pattern recognition have 
derived their error estimation procedures based on the 
Bayes detector; as such we will examine this 
classification scheme closely. Moreover, the basic 
Bayes error concept given above can be generalized to  
include loss functions where the Bayes error then 
becomes the Bayes risk [2].  

2.2.2 Neyman-Pearson Criterion 

In the absence of the knowledge of the prior 
probabilities, researchers have typically chosen to use 
the Neyman-Pearson Criterion: 

min P[say H,IH2] such that P[say H21HI} < a ( 5 )  

In this case we seek decision rules with minimum 
Probability of miss while imposing a level 
constraint on the false alarm rate. As in the 
minimum P, optimality criteria, the LRT against a 
suitably chosen threshold is the optimal 
classification rule. It is a popular practice in the 
ATR community to standardize a specification for a 
P F ~  (that is a); and correspondingly to find solutions 
which minimize PM [p, = 1 - PM]. It is interesting to  
note that the minimum Bayes error decision rule and 
the optimal Neyman-Pearson solution are both the 
Likelihood Ratio Test with a different threshold T 
(see Section 2.3, the Receiver Operating 
Characteristic). 

2.2.3 Minimal Test 

In addition to the min P, and N-P criteria, detection 
theorists often consider the so-called minimal 
criterion: 

Once again, under this criterion, the optimal 
classification rule is the likelihood ratio tested 
against a threshold T. However, in this case, the 
threshold is determined by the worst case set of a 
priori probabilities. Thus one can be assured that the 
performance resulting from the environment w i 11 
always be superior to the performance of the mini- 
max test. 

2.3 The Receiver Operating Characteristic 

As previously mentioned, the Neyman-Pearson test 
completely specifies the minimum values of PFA and 
PD (probability of detection) as the test threshold 
varies. It is worth noting that for the likelihood 
ratio test each class can be made up of an 
N-dimensional joint density and that the ratio 
function is a multidimensional reduction onto a one- 

dimensional decision axis. ince the Bayes error (4) 
follows easily if PD and P F ~  are known, then it is 
logical to focus on calculating PD and PFA as a 
function of the chosen threshold. A convenient 
method for displaying this information is in the 
form of a Receiver Operating Characteristic (ROC) 
curve, in which a plot of PD vs. PFA is constructed 
for all thresholds of the likelihood ratio test. 

We begin by considering equations (1) and ( 2 )  in 
Section 2.1, the likelihood ratio test is 

(7)  

The variable Z(X) is a random variable whose 
probability density depends on which hypothesis is 
true. If the two conditional densities, p(llH2) and 
p(dHI) are known then PFA and PO are given by: 

(9) 

In Fig. (2)  we show representative conditional density 
hnctions p(llHn) and p(llHI) which have been 
transformed by a 5x5 likelihood ratio filter (the details 
of which will be explained in Section 5.1). Clearly, one 
of the main obstacles in evaluating the optimal 
achievable ATR performance is lack of detailed 
knowledge of these functions. However, if sufficient 
amounts of data are available, empirical estimates may 
be formed. Based on these quantities, estimated ROC 
curves can be constructed. In Figure 2, we see both the 
empirical data densities and the corresponding densities 
associated with the LRT. From these we have formed 
the empirical ROC. The difficulty is that it is often hard 
to find p(  ][Hi). Clearly, determining accurate estimates 
of p(llHi) is a shortcoming of this approach. 
Nevertheless, given sufficient data there are many 
statistical methodologies for developing consistent 
density estimators. 

The receiver operating characteristic for the likelihood 
ratio summarizes a specific relation between two 
probability distributions. The coordinate system 
shows hit rates (PD) as ordinates and false-alarm rates as 
abscissas. When the probabilities are plotted linearly, 
the values of the coordinates run f?om zero to one, and 
therefore all possible ROC curves are bounded by a unit 
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1-D empirical densiiies 

In(intensily) 
InlLlT)) 

FIGURE 2. Typical densities 

square. As shown in Fig. (3), the chance line (a) is the 
positive diagonal, which occurs where PD=PFA This 
line is the ROC curve for a detection scheme which 
ignores the data given and simply guesses' at random. 
Any ROC curve above this diagonal line, such as (c), is 
termed "proper" as the performance is better than 
guessing. A proper ROC curve is a monotonically 
increasing convex down fhnction fiom (0,O) to (1 , l ) .  
Any ROC curve below the diagonal line such as (d) is 
"improper" as better performance is achieved by 
guessing; however, such a poor classifier can be made 
proper by inverting its decision so that the classifier 
says "target" when it now says "no target", and vice 
versa. The intersection of the negative diagonal (b) 
where p ~ ' 1 - P ~ ~  with the ROC curve is the minimax 
operating point, and the intersection of the line PFA=a 
with the ROC curve is the Neyman-Pearson operating 
point. For a more detailed treatment of the properties d 
ROC curves based upon likelihood ratios, see [3,4]. 

1 .o 

PD 

0.a 
1 .o 

.O a PFA 

FIGURE 3. The coordinate system for the 
ROC curve 

2.4 Summary 

Summarizing several key concepts for the binary 
decision problem: 

1. From the Neyman-Pearson lemma, we find that the 
optimum test is a likelihood ratio test. Thus, 
regardless of the dimensionality of the observation 
space, the test consists of comparing a scalar 
variable with a threshold. 

2. A complete description of the I@) performance can 
be obtained by plotting the conditional probabili- 
ties PI, and P F A  as the threshold T is varied. 
However, if only the minimum average error is 
desired it is generally easier to calculate the Bayes 
for a specific threshold setting. 

3.  For many cases, construction of the 1(X) can be 
simplified by using a sufficient statistic. This 
solution, however, has been evasive for the ATR 
designer because of the non-parametric and non- 
stationary nature of imagery. 

The classical Bayes, minimax, and Neyman-Pearson 
strategies have been known for some time (hyyothesis 
testing was formally introduced in 1933) . The 
challenge lies in requiring a complete (parametric) 
statistical description of the data to specify the optimum 
decision rule. It is frequently demonstrated that 
algorithms designed around a particular model may 
perform poorly when actual data differs from the 
assumed model. This suggests two methods for solving 
this dilemma: either develop accurate models of all 
class distributions or develop a non-parametric 
technique that is proven robust for parametric cases. 
The first option is more desirable because the question 
of "true" performance then becomes an analytic exercise 
(not necessarily an easy one). Unfortunately, this option 
is not pragmatic due to the difficulty of deriving and 
validating the large number of classes that would be 
required. Alternatively, the non-parametric approach is 
attractive because the test becomes universal in the 
sense that the test can be constructed in partial 
ignorance of the probability distributions governing 
the system ["partial" is used because blindly 
applying a non-parametric approach without some 
knowledge of the data can cause unnecessary errors]. 
The disadvantage is that proof of robustness over a 
wide range of cases is not a general proof. 

It should be clear from the preceding discussion, that 
evaluation of the error probability is in general a 
very difficult task. The analytical bound approach 
seeks an approximate expression for the error 
probability in the form of upper and/or lower 
bounds. These bounds are often easier to compute 
than the P, itself. The second approach is facilitated 
through the use of detectors which attempt t o  
approximate the LRT through the use of non- 
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parametric approaches. One non-parametric approach 
employs a Parzen kernel estimate and the second 
employs a finite state Markov models. Minimum 
error rate estimates are then obtained by estimating 
the performance of these detectors offering a tight 
upper bound on the min P,. 
This paper outlines each procedure and the process of 
testing them on a common data set, which in this 
case corresponds to high frequency data from the 
Lincoln Laboratory ADTS SAR System. Although 
targets are available testing was restricted to two 
classes of clutter-grass and trees, in order to stay at 
the unclassified level. 

3.0 BOUNDS ON THE MINIMUM 
PROBABILITY OF ERROR 

To evaluate the performance of a detector, it is 
necessary to establish the minimum achievable 
probability of error for comparison. Direct 
calculation of this figure requires both knowledge of 
the optimal detector and integration over the full  
decision space. Since we cannot define the optimal 
detector in the ATR problem (the distributions of 
the hypotheses are never precisely definable) and the 
decision space is large, direct computation is 
infeasible. Although it is possible to construct an 
asymptotically optimal detector, and estimate the 
probability of error of this detector, for finite 
training sets there is no guarantee that this detector 
is optimal, hence there is no guarantee that we have 
estimated the minimum achievable probability of 
error. It is therefore desired to characterize the 
minimum achievable probability of error by means of 
tight upper and lower bounds. These bounds can then 
be compared with the performance of the classifiers 
under test to assess their relative merit. 

In this section, a family of bounds are presented for 
the binary decision or detection case. These and other 
bounds for the multiple hypothesis classification 
problem may be found in the literature, see for 
example.23 

The bounds presented give various degrees of 
tightness of fit to the true minimum probability of 
error for a given data set. The choice of the specific 
bound depends upon the amount of data and the type 
of sufficient statistics available, and on assumptions 
made in the derivation of the bound, such as 
dependence, symmetry or distribution. 

It is well known that all good bounds require the 
knowledge of the true probability distributions 
underlying the data. In the ATR problem domain, 
this information is rarely available, thus there is a 
gap between theory and practice. Our aim here is to  
present classical theoretical bounds and show how 
they may be used with simple models. They are 

equally applicable to real sensor data, but more 
sophisticated models are required. Signal modeling is 
not addressed by this report, though it is critical for 
the ATR problem. 

The motivation for finding the minimum achievable 
probability of error is to evaluate how well the 
classifier under test performs against the best 
possible classifier for a given data set, which by 
definition must achieve the minimum probability of 
error. Rather than determining the exact form and 
performance of the optimal classifier, we merely 
estimate its performance based on the data set. For 
example, if the minimum probability of error against 
a given data set were bounded by say 0.009 and 0.012, 
we would consider a classifier with an error 
probability of 0.011 to be performing very well and 
possibly optimally, whereas another classifier with an 
error probability of 0.020 would be suboptimal. On 
the other hand, we would be dubious of our 
measurement techniques and/or the detector 
algorithm if an error probability of 0.001 were 
measured. 

In this section we assume our data to be independent 
and identically distributed. Such an assumption is 
rarely justified in ATR as there are certainly depend- 
encies between neighboring pixels. Nevertheless the- 
ory may be extended to cover the case of dependent 
data, although this will not be discussed here. I t  
should also be noted that the data vector size depends 
both on the window size in the image and the number 
of looks within the window - increasing the window 
size is of no use if the target is already completely 
encapsulated, rather the window should be of the 
optimal size to enclose the target, the classification 
error could then be reduced by increasing the number 
of looks at the target - from different angles, 
polarizations, radar frequencies etc. 

3.1 Problem Statement 

We seek to find the minimum Bayes error- 
probability defined by [4]: 

where the integral is taken over the entire 
observation space R,,. As stated, computing this 
integral is elusive even if the conditional densities are 
known precisely. To circumvent this, information 
theoretic and other quantities will be utilized to  
bound the minimum probability of error both from 
above and below. 

3.2 Distance Measures and f-Divergence 

The purpose of a distance measure between two 
hypotheses is to offer some meaningful measure of 
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the dissimilarity between two density functions. 
Based upon this, one may attempt to quantify how 
distinguishable the two hypotheses are from one 
another and hence lead to an estimate of the 
minimum achievable probability of error. Our 
motivation is then to seek some distance measure 
with a close relationship to the true minimum 
probability of error, so that the distance measure can 
be used to bound the minimum probability of error 
from above or below. 

Many distance measures have been derived for this 
purpose by various authors - see for e ~ a m p l e . ~  To 
illustrate, we will describe a family of distance 
measures parameterized in terms of some function. 
Some well known distance measures which happen to  
belong to this family off-divergences will also be 
given. Lower and upper bounds on the minimum 
probability o f ,  error derived from this family w i 11 
then be presented, again including some classical 
bounds. 

We proceed by defining f(x) to be a convex-up 
function, following the conventions in 17, 91, which 
is well behaved as x approaches zero and infinity. We 
define the f-divergence between two joint density 
functions P,  and P, by:' 

Use of the f-divergence allows the construction of a 
general family of bounds on the probability of error 
which includes many classical bounds such as the 
Chernoff bound. It should be noted however that 
this family, though broad, does not include all  
common bounds. 

3.3 A class of upper bounds on min P, based 
on f-divergences 

It has been shown by Boekee and van der Lubbe in [3] 
that the probability of error for the binary 
hypothesis problem with probabilities P, and P2 is 
upper bounded by 

where 

provided f 2  is finite - this places further constraints 
on our choice of f .  In this way we have an upper 
bound on the probability of error. We illustrate this 
upper bound with the classical Bhattacharyya upper 
bound.6 

From the average Bhattacharyya coefficient, 

R" 

we have 

f l  = - I  

f ,  = f 2  =f, =o 

From which it follows that 

which is a well known result. This bound is 
illustrated in Figure 3.1 for the following example, 
in which we assume a constant signal of amplitude s 
is present or absent in Laplacian noise and is plotted 
as a function of s with the true minimum probability 
of error for comparison. 

1 H, : P (x)=-exp(- I x I) 
2 
1 HI : 4(x)=-exp(TIx-.sI) 
2 (17) 

, IID Unysal  DeIm,or, ..: i.i.d. "ta, -: real data 

, , , 

FIGURE 4. Minimum Pe and the corresponding 
Bhattacharyya upper bound 



Note that for the special case of the multi- 
dimensional Gaussian distribution, the Bhattacharyya 
distance is given in terms of mean vectors m, and 
covariance matrices Si by: 

(18) 

3.3.1 A clas of lower bounds on min Pe based on 
f -divergences 

Boekee and Ruitenbeek' have extended a class of 
lower bounds on the minimum Bayes probability of 
error by considering the f-divergence between two 
hypotheses. Following the approach in Poekee811, 
we introduce a modified divergence function. 

and set U = U($ = P(H,b)  = 1 - P(H,b), such that 
- 
0, (4 YH2 1 = 4 {j * (P(H2 I XI)} (20) 

This is a just a special-case f-divergence where we 
have chosen to use f * as our parameter function. We 
further simplify our analysis by only considering f 
functions such that a symmetric modified function is 
obtained, that is 

f* (U)= f*  (1 --U), ( O I U  51) (21) 
1 
2 

which is symmetric about U = -. The following 
bound can be obtained: 

where U = U( w(H,,H,)) is the solution of 

f *(U) = D f ( H 1 3 2  1 (23) 

This equation can be solved analytically for special 
cases and numerically in general. As an example, 
consider the Bhattacharyya coefficient as given in 
(3.19, we have: 

and 

f * ( u > = & m  (25 )  

Noting that since Df(H,,H,) = - p ,  we obtain the 
following bound: 
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Other upper and lower bounds have also been derived 
for specific distance measures, for example for the 
symmetric Kullback-Leibler bound: 

J ( 4 , P , ) = l @ 2 ) - p 1  )log2 p 2 h  (27) 
PI R" 

We illustrate the Bhattacharyya and Kullback- 
Leibler bounds with the following example: 

Grass and tree SAR image data were used to  
construct histograms under the i.i.d. assumption. The 
histograms were constructed from chips of size 192 
by 128 pixels and quantized into 25 bins. The bin 
widths were chosen such that each bin contained 
approximately the same number of pixels from both 
distributions together - in this way differences in the 
distributions tend to be highlighted. Synthetic i.i.d. 
data was then constructed. The minimum probability 
of error for this data set was estimated by 
importance sampling using a likelihood ratio detector 
trained on the source histograms (infinite training) - 
since we know that the detector will achieve optimal 
performance and that importance sampling w i 11 
result in an unbiased, small variance estimate. 

We then computed the Bhattacharyya and symmetric 
Kullback-Leibler distances for the two histograms 
and hence constructed the upper and lower bounds for 
each distance. The number of data elements was 
varied from 1 pixel to 100, representing up to a 
10x10 pixel window. The result is shown in figure 5 .  

FIGURE 5. Probability of Error Estimate for the 
Universal Detector, compared with upper and lower 
Bhattacharyya (dashed) and Kullback-Leibler 
(dash-dot) bounds on the minimum probability o f  
error 
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It will be noted that real data is highly structured 
and therefore contains considerable dependency, hence 
these results should not be taken as representative of 
true performance against empirical data. However by 
introducing known dependencies into the synthetic 
data, representative of true structure, it is possible 
to extend this approach to estimate performance against 
more realistic data. 

3.4.1 Conclusion 

We have presented a variety of upper and lower bounds 
for the minimum Bayesisn error probability. These 
bounds were presented primarily in the context of 
f-divergent distance measures together with the 
motivation for this approach. Although these bounds 
cannot be computed analytically except for very 
special cases, computer numerical integration makes 
the calculation trivial, provided that the underlying 
distributions are known or can be approximated to  
sufficient accuracy. Such approximation will affect 
the tightness of the bound, nevertheless for small 
error probabilities an order-of-magnitude ,estimate is 
often informative. 

4.0 SAMPLE SIZE AND ERROR 
ESTIMATION TECHNIQUES 

Despite the many bounds available, the net result of 
extensive investigations on bounds for P, seems to be 
that one should try to estimate the error probability 
itself in some direct way. The relative "tightness" 
afforded by bounds can only be assessed by examining 
the true performance. To address this, in this section 
we consider properties of performance estimation 
techniques. The topics considered are Monte Carlo, 
error counting methods, and Importance Sampling. 

4.1 Monte Carlo Methods 

As before, for the sake of simplicity, let us consider 
the classical binary hypothesis testing problem where 
one choose between two alternate hypotheses: 

Ho:  x - P o  
HI:  x-PI 

where X is an N-dimensional observation vector and 
the Pi are arbitrary joint distribution functions 
governing the data. Assuming a non-randomized 
decision rule, we may define Zo E RN to be the 
region where the classifier chooses Ho and Z, = zij to 
be the region where 4 is chosen. From this, the 
probability of false alarm for any classification 
system can be written, as 

PF = PrLsuy I HO 1 = 1 PO ( x ) h  (29) 

where po(x) is the joint probability density function 
of X conditioned on the hypothesis H,. Observe from 
the above that the false alarm rate can be written 
[Hereafter, all expected values are with respect to Po 
unless otherwise indicated] as [ lZ,  (x)] where 
I ~ ,  (x) is the indicator function [ I ~ ,  (x) = 1 vx E zl; 
0 otherwise] over Z , .  We form the standard Monte 
Carlo estimate for PF as simply a sample average of 
Iz, (.I, i.e., 

where T i s  the number of trials of the Monte Carlo 
simulation, end Xi are independent and identically 
distributed realizations of X generated from 
distribution Po. It is easily verified that PF is an 
unbiased estimator for P, with associated variance 
given by 

Typically one chooses the number of simulation 
trials T based upon a predefined confidence interval 
on the estimator p F .  More specifically, T is chosen 
so that 

By use of Chebyshev's inequality, one can readily 
show that a sufficient condition for the above 
confidence interval to hold is for 

If we consider the standard 95% confidence interval 
defined by [% f F , %  f F ] ,  that is with probability 0.95 

PF E[%PF,% f F ]  then the number of simulation 
trials must exceed the quantity 

55 
T2- 

PF 

To appreciate the scale of this number, consider for 
the moment an ATR operating at a false alarm or 
miss rate of lo-'. The above analysis states that one 
must simulate with at least 5.5 million observation 
frames (not to be confused with pixels). This 
number becomes even more prohibitive as the 
probabilities of interest diminish. 

As an alternate means of evaluating this result. one 
may consider that the number of trials essentially 
establishes that one must observe either 55 false 
alarms or 55 missed targets over the simulation t o  
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achieve the desired level of estimator accuracy. For 
highly effective ATR's, one will hopefully observe 
far fewer error events than this. As such' standard 
Monte Carlo methods will suffer in these critical 
cases. 

4.2 Error Counting Methods 

The Monte Carlo technique assumes an unlimited 
supply of random variables, in real system testing the 
number of samples is frequently too small to merit a 
reliable estimate. Over the years practitioners in pattern 
recognition have developed methods for small sample 
sets to improve the estimate on performance. Moreover, 
because they make a tradeoff between the optimistic bias 
of the design set and the weaker bias against an 
independent test set they also represent a form of upper 
and lower bound on the true performance. In and of 
themselves, they do not represent a bound on the 
optimal performance, which can only be achieved (on 
average) with the most powerful decision criteria. But if 
used in conjunction with a classifier designed for 
optimal performance these error counting methods offer 
a reliable upper bound range to the optimal 
performance. We now present four of these techniques. 

1. The Resubstitution Method 

The resubstitution method is simply training and 
testing with the same data sets. Ideally, if enough data 
has been collected and set aside then there will exist a 
sufficient amount of data to train the classifier. In so 
doing, the designer frequently tests the performance on 
this training set and if necessary will proceed to modify 
or optimize the algorithm to obtain better performance. 

However, there are perils involved with drawing 
conclusions with this resubstitution estimate. For 
example, let us suppose that the number of samples is 
not larger than twice the dimensionality of the sample 
space. Then it can be shown' that a hyperplane exists 
that separates the samples perfectly. Then while testing 
the detector with the training set, the designer would 
observe an over-optimistic error rate. Since it is not 
always possible to precisely determine the 
dimensionality of the data, one way to avoid this peril 
is to reserve enough samples for testing independent of 
the training set, i.e., the hold out method, which would 
provide a relative bound to the resubstitution estimate. 

In general, the estimated P, using the resubstitution 
method will tend to be less than the hold out method, 
depending on the test and training data set used. The 
difference between these estimates can provide a measure 
of variability between the training and test data. This 
measure becomes more reliable as the data sets increase 
in size and the variance of the error estimates decrease. 

2. The Hold Out Method 

In the hold-out testing process, the density estimates in 
training are obtained from data sets independent from 
the data sets used in testing. Since the detector will be 
seeing new and different data the hold out estimate 
provides an upper bound bias. Even though it is 
conceivable the performance could improve if the test 
data were easier to discriminate, one could argue that 
the test set was not chosen properly to match the design 
set. The importance of testing on data independent of 
the training data is that this degradation in performance 
provides a more realistic estimate of how well the 
classifier will perform, avoiding some of the pitfalls 
explained in the previous section. However, for severe 
degradation the important insight is the fact that the 
classifier was poorly designed, some causes being: poor 
feature selection, poor model selection, wrong decision 
criteria, etc. If the loss is extreme, re-thinking the 
classifier design may be necessary. Hence, the hold out 
method is important for testing the validity of the 
resubstitution estimate. 

To illustrate this, assume the optimal Bayes classifier 
is being used. 

Let P d  = the design set distribution and P, = the test set 
distribution. We know in general given two models P 
and P' that &e probability of error will be bounded such 
tied: 

Pe=Pe(P,P)<Pe (P,P')  VP'# (3 1) 

Therefore the training samples Pd and P ,  provide an 
upper bound on the true performance. 

3.  Leave-One-Out Method 

The leave-one-out method gets around the problems 
of the hold-out method when sufficient samples for 
training and testing are not available. The technique 
trains on all samples but one and tests against the 
remaining sample. The classifier is then retrained 
leaving out a different sample and again tested using 
the remaining sample. The process is repeated for a 11 
samples in the data set. This method has been found 
experimental to be approximately unbiased, however 
the bias reduction is acheved at the expense of an 
increase in the variance of the estimator. 

4. Rotation Method 

The rotation method is a compromise between the 
hold-out and leave-one-out  method^.^ The data is 
partitioned into some number of blocks (more than 2 
and less than the data set size), and the leave-one-out 
method is used on a block-by-block (rather than a 
sample-by-sample) basis. The rotation method 
reduces both the bias inherent to the hold-out 
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method and, to some extent, the computational 
burden associated with the leave-one-out method. 

In summary, the average resubstitution error rate 
provides a lower bound on the true error probability 
while the others yield upper bounds. The performance 
is conditioned on the quality of the non-parametric 
estimate. The better the estimate the tighter the 
upper bound. 

4.3 Importance Sampling 

The use of Monte Carlo simulations can produce 
estimates for probabilities which are arbitrarily 
accurate, provided the number of trials (observations) 
is sufficiently large. Unfortunately, in applications 
where the probability of interest is small, the 
number of simulation trials required to obtain the 
desired accuracy is often unacceptable. A modified 
Monte Carlo technique known as Importance 
Sampling has been shown to provide a significant 
reduction in the required number of simulation trials 
[ 1,3,5,6, and references contained therein]. Given 
proper implementation, this technique will reduce 
the variance of the estimate, thereby reducing the 
number of simulation trials required for a specified 
level of accuracy. However, before elaborating on the 
method of Importance Sampling, we begin by 
reviewing the critical features of the Monte Carlo 
and error counting methods. 

To circumvent the limitation of the Monte Carlo 
estimate, simulation theorist have utilized the very 
powerful technique often referred to as Importance 
Sampling to "speed up" the simulations. Importance 
Sampling is a technique for significantly reducing the 
number of trials in Monte Carlo simulations. This is 
achieved by first generating the system input X* 
from a biased or modified probability density 
function, p ; ,  rather than from the original density 
function. This "biasing density" is chosen such that 
the random vector (data), X*, is more likely to come 
from the regions in the observation space which cause 
errors. Since in this implementation simulation 
errors occur with a greater frequency than in standard 
Monte Carlo simulations, each error in the 
simulation is scaled by a weighting function 
determined such that the resulting performance 
estimate is unbiased. The proper biasing and 
weighting of events in the simulation will render a 
reduced-variance estimate of Pp 

Mathematically speaking, the Importance Sampling 
estimator described above for estimating the false 
alarm rate is given by 

1 '  Pi =,c w(x;)zz, (x;) 

where xi. are sample distribution vectors generate1 
from the biasing distribution p i ,  and where W( xf)  
is the so-called weighting function on the 
observation vector. It is easily shown that when the 
weighting function is chosen as 

and Po is absolutely continuous with respect to p:, 

the Importance Sampling estimator Pi is unbiased 
with variance given by 

- [ * ]  var PF =- 

where w=[ W(X)Zz, (a]. 
By computing the Monte Carlo and Importance 
Sampling variances, we observe that if w < PF, then 
Importance Sampling will result in a reduced- 
variance estimator for PF. This critical inequality can 
be satisfied through the proper choice of biasing 
strategy, that is through the proper choice of "biased" 
input data. Fortunately, a number of biasing 
strategies have been shown to afford significant 
variance reduction for a variety of general detection 
and classification problems. These are nominally 
constructed through some modification of the 
original density functions underlying the data. 

The originating approach was introduced by 
Shaurnugam and Balaban'', where the input data was 
simply modified by scaling each data value. In this 
way, the modified density function becomes 
p* ( x ) = x p ( X / ) .  Shortly after this important work, 
an improved Importance Sampling biasing strategy 
was concurrently introduced by Orsak and Aazhang" 
and Lu and Yao'* in which the data was modified by 
simply adding a constant to each sample. The 
resulting biasing density is therefore p*(x) = p(x-c) 
where c is designed so as to minimize the Importance 
Sampling variance. This biasing strategy is today the 
standard by which all other Importance Sampling 
methodologies are measured. 

As an example, let us consider a 5 dimensional signal 
in additive noise classification problem. We evaluate 
two cases, one with Gaussian additive noise and the 
other with Laplacian additive noise. The true 
(unknown) error rates for these two examples are 
4 .5~10"  and 2 . 5 ~ 1 0 - ~  respectively. This in turn 
requires 1 . 2 ~ 1 0 ~  and 2 . 2 ~ 1 0 ~  simulation trials 
respectively to achieve the confidence interval of 
[%PF,%PF] with probability 0.95. However by 

i=l 
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incorporating Importance Sampling, it can be shown 
that no more than 300 simulation trials are required 
for the same level of accuracy. To demonstrate this, 
in Figure 6 we plot the Monte Carlo and Importance 
Sampling probability of error estimates as a function 
of the number of simulation trials T. One may 
readily observe the strong "stability" of the 
Importance Sampling estimators when compared t o  
the standard Monte Carlo estimate. 

4.4 Application to ATR 

Since the ATR environment is well known to be 
more complicated than simply signal plus noise, the 
so-called linear shift biasing strategy described 
previously must be abandoned in lieu of alternate 
approaches. Cotrell et all3 and Sadowsky and 
BuckewI4 have proposed an exponentially tilted 
version of the original density as a biasing density. 
This is formulated mathematically as 

where s E % and is the real version of the charac- 
teristic function. An extended version of this 
Importance Sampling approach is given by 
p * ( ~ ) = p i ( x ) p ; - ~ ( x ) I K  where K is the appropriate 
normalizing constant. It has been shown that these 
Importance Sampling implementations result in 
many desirable asymptotic properties such as 
exponential gains over Monte Carlo simulations. In 
terms of implementation, in the binary classification 
problem, the optimal value of s results in the biasing 
density being half way between the original 
competing densities p o  andp,. It should be noted that 
this property is also shared by the optimal linear 
shift biasing density in the additive signal case. 
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Based upon these observations, new biasing strategies 
which are readily implemented can be formed as a 
linear combination of the original densities, that is 

In the case of testing "grass" from "trees," this 
implies that a good Importance Sampling data set can 
be constructed by randomly selecting pixels from 
either "tree" data or "grass" data with probability 
0.5. Clearly the error rate of any detector will be 
significantly increased when faced with this data set. 
However the Importance Sampling weighting 
function described previously will compensate for 
this by scaling each observed error by a data 
dependent constant typically less than one. As such, 
this process should offer a significant reduction in 
simulation variance. 

To evaluate this simulation methodology, we 
consider evaluating ATR classification algorithms on 
synthetic i.i.d. grass and tree data. Only 100 
importance sampling trials were required for each 
estimate of the probability of error, in order t o  
estimate probabilities as low as lo". This compares 
with over a million samples required for Monte- 
Carlo estimates of the same order of magnitude. 

4.5 

While traditional implementations of Importance 
Sampling offer significant improvements in Monte 
Carlo simulations, they unfortunately have required 
a complete statistical characterization of the data 
(see the weighting function given above). Of course, 
this information is not available in a realistic 
simulation however, it might be the case when 

Challenges for the ATR Problem 
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FIGURE 6. Importance Sampling saving compared with Monte Carlo methods 
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testing on synthetic data. Nevertheless, standard 
implementations may be approximated by 
incorporating density estimates based upon training 
data. With this modified version, one might 
experience some "bias" in the estimate, however, it is 
believed that the resulting simulation methodology 
will result in a significantly smaller average squared 
error than traditional Monte Carlo simulations. 
SAIC is currently pursuing this direction of research 
and will report on its findings once completed. 

5.0 APPLICATIONS 

5.1 Likelihood Ratio Test 

The likelihood ratio test described in Section 2.3 has 
been shown to be the optimal test under the 
minimum Bayes error, Neyman-Pearson and minimax 
criteria. It requires the probability densities of each 
hypothesis to be known in order to be formulated, a 
requirement which cannot generally be met in the 
ATR problem. Nevertheless the test illustrates a l l  
of the key aspects of detection theory, 'even if i t  
cannot be formulated precisely. Stein's lemma 
provides a relationship between the false alarm 
probability a, the miss probability p and the sample 
size n for Neyman-Pearson type detectors, but no 
such relationship exists for the determination of the 
operating threshold T. Such a requirement can be 
avoided by applying a detector to the data and 
determining the operating threshold from the output 
conditional densities. 

We make use of the fact that the Kullback-Leibler 
distance is the expected value of the log-likelihood 
ratio and rewrite the likelihood ratio test in terms of 
Kullback-Leibler distance, using a powerful 
technique from large deviation theory known as the 
method of types, developed by Csiszar and Korner 
[Csiszar] who used it extensively in their work: 

P2 (9 log l(XJ = log - 
PI (XJ 

(33) 

The likelihood ratio test in Kullback-Leibler form is 
easily implemented for discrete valued data sets and, 
in accordance with Stein's lemma, the error 
probabilities associated with this detector fall to  
zero asymptotically, provided that the probability 
densities are known accurately. This scheme is easily 
extended to the multiple hypotheses case, although 
all M classes must be modeled. Thus there is one 
requirement for a low error probability classifier 
constructed as a likelihood ratio test: accurate 
probability densities for each hypothesis. This 
requirement, however, is a challenge that has eluded 
ATR designers for 20 years. The ATR problem 
domain as the data dependencies inherent in target 

identification and are difficult to model accurately 
and the sample sizes are limited by the number of 
pixels on target that the sensor resolution allows. 
Hence adaptive high dimensional models formulated 
for small data sets are required in this domain. 

5.1.1 Example Analysis 

Using data files from the SAR data grass and tree 
regions, each of the two classes contained four files 
of return power represented as 256 by 256 pixels. 
Each pixel was approximately one foot by one foot 
in dimension. To test the K-L LRT on our 
experimental data, we assigned two of the 8 chips - 1 
grass and 1 tree-designated as training chips. 

From this 256x256 chip, an estimate of the 
distribution was formulated using a histogram 
estimate. This estimate represents P2 and P, in the 
log likelihood derivation. P, represents the test data. 
Hence, a smaller observational window was 
constructed adaptively over the test images t o  
construct P,. Observational frame sizes of 32x32 and 
20x20 were used. These two window sizes were 
chosen because most targets would fall within these 
resolution frames. Results of this filtering process 
using the hold out method is shown in Figure 7. As 
expected the better performance represents the 32x32 
window (more information used). If the data were 
real target classes the true performance could be 
expected to fall between these two ROC curves. The 
resubstitution estimate (not phoned) performed with 
complete separability between classes with no errors 
(on 30,000 samples). Importance sampling would be 
necessary to provide an unbiased estimate. These low 
errors are encouraging, considering the challenging 
classes tested. The relationship between this 
increasing performance due to increasing spatial 
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window size coincides with the asymr otic 
equivalence relationship that will be described in 
section 5.4. 

5.2 Parzen Kernel LRT 

Pattern recognition problems are particularly 
difficult to treat mathematically due to the 
complexity and diversity of the data as well as the 
small sample sizes of the data relative to the number 
of features or primitives used in the algorithm 
design. The underlying distributions can be dissimilar 
for each class of interest and are often nongaussian. 
In the previous section the one dimensional 
distribution estimate performed very well, but we 
know this is suboptimal because the data is 
inherently dependent. In most cases the samples (or 
features) selected for algorithm design are not 
independent, but correlated. 

In this LRT, the Parzen kernel is used to estimate 
the undersizing distributions: 

where, 

where, 

(34) 

(35) 

The parameters of the estimator, a and b, are 
normalizing constants that depend only on the 
dimensionality of the samples, n. The N values are 
the sample sizes of each class i. The estimated 
covariance matrix for each i class is obtained from 
the appropriate data set. The inverse and determinant 
of the sample covariance matrices are computed and 
used as parameters for the estimator. The threshold 
and the kernel size Y are parameters that receive 
special treatment. The threshold is estimated from 
the data by finding the value that gives the minimum 
error. This value is then modified in certain ways to  
minimize the bias and variance due to the small 
sample sizes. The behavior of the Parzen Estimator 
as a function of the kernel size parameter has been 
found to have an important role in the small sample 
size bias and variance effects. At present, no 
satisfactory method has been found to find the best r 
for any given data sets. Currently the best solution 
is to compute the upper and lower bound error 
estimates for a sequence of r values and plot the 

results. If the bias removal xhniques are working 
well, the upper and lower curves of the plot should 
be fairly smooth and both should be relatively flat  
over a broad range of kernel size values.' If the 
sample sizes are adequate for good error estimation, 
both error curves should be fairly smooth and the 
separation between the upper and lower bound should 
provide a reasonable range of estimation error. 

The k symbols in the numerator and denominator of 
the estimator equation are the kernel functions that 
are summed to estimate the probability density 
values for X. Note that the kernels are summed over 
all of values in the class i, fi) when the lower 
bound is estimated. When the upper bound error is 
estimated, the kernel with the same J$!' as X is 
excluded from the sum. There is extensive literature 
on the Parzen kernel method of density e~t imat ion . '~  
The Parzen kernel technique can be constructed 
conveniently to use the resubstitution and the leave 
one out methods for the lower and upper bounds. 

5.2.1 5x5 Dimensional Error Results and Analysis 

Four hundred samples of 5x5 observational frames 
were formed for both the grass and tree data in the 
following manner. For each of the four files for each 
class, one hundred 5 by 5 subentries were obtained 
from the upper left comer of each matrix, i.e., the 
upper most one hundred 5 by 5 submatrices of each 
matrix. The 25 column vectors were then obtained by 
row transforming the submatrices. 

The data was then transformed using the power 
transform. The Quadratic Classifier was run on the 
untransformed and transformed cats sets, resulting in 
the error bounds of 0.30 to 0.36 and 0.18 to 0.27, 
respectively. 

The two figures below show the output of the 
Parzen Nonparametric Error Estimator for the 
untransformed data and the transformed data 

The upper and lower error bounds are 0.23 to 0.15. 
Because of the larger number dimensional estimate, 
fewer samples (100 samples) were available for the 
error estimate. Despite the small number of samples, 
the upper bound estimate is consistent with the 
Quadratic Classifier results. 

5.3 Asymptotically Optimal Detector 

The asymptotically optimal detection schemes 
formulated by Ziv [Ziv] and Gutman [Gutman] are 
optimized according to the following criteria: 

Error probabilities must asymptotically go to  
zero with increasing sample size 
Only training and test data sets are available 

J 
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Transfonnec Data 

FIGURE 8. 25 Dimensional Error Estimates 

Thus the major difference here is that unlike the 
likelihood ratio test, there is a reduction in the 
number of probability models required. It turns out 
from the derivation that for the binary decision case 
(target or no target) that only one training data set 
is required for a Neyman-Pearson type detector 
formulation. The classifier has a similar form to the 
likelihood ratio test in Kullback-Leibler form: 

This classifier is optimal in the sense that both error 
exponents are asymptotically maximized. The scheme 
is easily extended to the multiple-hypothesis case, as 
shown in [Gutman]. It may also be noted that as the 
training sample size tends to infinity, the Ziv- 
Gutman detector reduces to the maximum likelihood 
classifier, of which the LRT is a special (binary 
hypothesis) case. 

The asymptotically optimal classifier, like the 
Kullback-Leibler form, includes all finite alphabet 
stationary ergodic Markov processes of a finite order. 
Hence, adaptive models formulated as Markov 
dependent data lends itself for these classifiers; 
however, models of this type have not been fully 
investigated for the ATR problem. 

5.3.1 Example Analysis 

A second-order Markov dependent Ziv-Gutman 
asymptotically optimal detector was constructed for 
the example detection problem of trees vs grass. The 
Markov state was derived from the pixel above and 
the pixel to the left of the current test pixel. 
Examining the sample data by eye indicates that this 

model will probably be quite effective for grass but 
trees, which have a clumpy nature, may not be 
modeled satisfactorily. The detector was trained only 
on grass using a 128 by 192 pixel window of grass 
data, and tested against windows of grass and trees, 
each of size 128x192 pixels. The test window size 
was varied from one pixel to 32x32 (1024) pixels 
for grass, and to 64x64 (4096) pixels for trees. The 
Kullback-Leibler distance between the grass and tree 
distributions was measured to be about 0.51, so a 
threshold of h=O. 19 was chosen. A three-level 
quantizer was used, for histograms with a total of 
27 bins. 

The results of this detector are given in figure 9. I t  
can be seen that, as established by the derivation of 
the detector, the .false alarm rate is tending 
exponentially to zero, and that the miss rate is 
tending towards zero as the sample size increases. 
The miss performance is poor (in fact initially i t  
increases rapidly) due to the nature of the detector 
and the fact that trees are not well modeled by the 
second-order Markov assumption. 

UnNersal Detector: Grass v Tree3 
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2nd order Markov model 
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5.4 Asymptotic Equivalence and Conclusions 

The minimum achievable probability of error for a 
given data set and sample size may be met by an 
optimal detection scheme for that data set. In 
practice, most detection schemes are suboptimal, and 
we now need to ask the question: how fast does the 
error probability go to zero for a given classifier and 
data set as the sample size increases, and what is the 
maximum rate at which the error probability can go 
to zero? 

Suppose we have two competing ATR schemes, one 
of which has a probability of error of say 5% and the 
other 20% on a 2x2 window. If the former scheme 
has an error probability of 4% for say a 4x4 window, 
whereas the error probability of the latter falls to 
1%, then clearly the latter scheme benefits from 
increasing the sample size and will then be a better 
detector. As the sample size increases, it may not be 
feasible to estimate the error performance (that is, 
the error rate is so low that no errors occur given the 
test data). The example given shows that it is not 
sufficient to merely measure the error performance 
for a smaller test window - the rate at which the 
error drops is also required. It has been shown that 
the error probability decreases exponentially; hence, 
the rate of decrease is expressed as an exponent of 
base 2. 

We present the case for independent identically 
distributed data vectors which can be generalized to  
the dependent case. For a Bayesian detector, the 
maximum error exponent can be shown to be the 
Chernoff distance:I6 

r 1 

(36) 

This rate will be met by an optimal detection scheme 
such as the Likelihood Ratio Test or its asymptotic 
equivalent. The actual error exponent of a detector 
can be estimated by simulation and semilog 
regression, and can not asymptotically exceed 
the Chernoff distance between the competing 
distributions. 

For Neyman-Pearson type detectors, for which one 
error rate (say the false alarm exponent) is fixed, the 
other error exponent (say the miss exponent) has 
been shown by Stein's lemma to approach the 
Kullback-Leibler distance as the false alarm rate 
tends to zero. If we define the false alarm 
probability to be a, which is to be bounded from 

above by E and the minimum probability of miss to  
be p for some sample size N given the constraint on 
a, then: 

(37) 

It can be seen in Figure 5 that the likelihood ratio 
detector error probability has approximately the 
same slope as the Bhattacharyya upper bound. For 
this example, the Bhattacharyya and Chernoff 
distances are very close (SBhauachalyya - 0.5, soemoff - 
0.45), hence the likelihood ratio detector has been 
shown to be optimal for this example in two ways, 
as the error probability, 

lies within the computed bounds on the 
minimum achievable error probability, and 
falls off at (or near) the fastest possible rate. 

5.4.1 Example Analysis 

To show this relationship, the maximum error 
exponent was plotted along with the LRT 
(Kullback-Leibler) using a resubstitution [Because of 
the number of computations involved only the 
resubstitution experiment was performed] estimate 
of the Bayes for various window sizes (Figure 10). 
These estimates were sampled to insure more 
independent samples. The results indicate an 
exponential decay rate for the Pe estimate as a 
function of the increasing observational frames. I f  
the data were truly independent, then this would 
represent the optimal achievable performance. 

However, because of the data dependencies, a higher 
dimensional model estimation technique is required. 
The Parzen kernel is an established approach, but the 
covariance is not sufficient to capture the higher 
dependencies. Similarly, diagonalization methods 
which uncorrelate the data suffer from the same 
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assumption. Now of course, there are, finite Markov 
and finite context models that use inter-sample 
dependency to describe structures that have been used 
with considerable success in speech and text 
recognition, but applications for processing 2-D data 
have yet to be exploited. 

Nevertheless, assuming a sufficient model, the same 
technique can be extrapolated to the individual errors 
PD and PFA, or even the conditional densities 
themselves (PLIH,) and P(LJH,). This could provide 
a family of ROC curves that would represent an 
upper bound on any N-pixel classifier. 

Summarizing, the following observations can be 
made: 

It is instructive to state performance in terms of 
the number of pixels per detector for fair 
comparison. The classifier that can utilize more 
samples of information should clearly perform 
better. Describing the performance measure in this 
fashion offers the ability to answer the critical 
question, “when is sensor resolution good 
enough?“ 

Asymptotic equivalence indicates that evidence 
combined from multiple sensors and multiple 
looks should increase exponentially in 
performance. The challenge is how to combine 
this information with a classifier. 
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ABSTRACT 

Target acquisition in a high clutter environment in all- 
weather at any time of day represents a much needed 
capability for the air-to-surface strike mission. A 
considerable amount of the research at the Armament 
Directorate at Wright Laboratory, Advanced Guidance 
Division WL/MNG, has been devoted to exploring 
various seeker technologies, including multi-spectral 
sensor fusion, that may yield a cost efficient system with 
these capabilities. Critical elements of any such seekers 
are the autonomous target acquisition and tracking 
algorithms. These algorithms will allow the weapon 
system to operate independently and accurately in 
realistic battlefield scenarios. 

In order to assess the performance of the multi-spectral 
sensor fusion algorithms being produced as part of the 
seeker technology development programs, the Munition 
Processing Technology Branch of WL/MN is developing 
an algorithm testbed. This testbed consists of the Irma 
signature prediction model, data analysis workstations, 
such as the TABILS Analysis and Management System 
(TAMS), and the Modular Algorithm Concept Evaluation 
Tool (MACET) algorithm workstation. All three of these 
components are being enhanced to accommodate multi- 
spectral sensor fusion systems. MACET is being 
developed to provide a graphical interface driven 
simulation by which to quickly configure algorithm 
components and conduct performance evaluations. 
MACET is being developed incrementally with each 
release providing an additional channel of operation. To 
date MACET 1.0, a passive IR algorithm environment, 
has been delivered. The second release, MACET 1.1 will 
be presented in this paper using the MMW/IR data from 
the Advanced Autonomous Dual Mode Seeker (AADMS) 
captive flight demonstration. Once completed, the 

delivered software from past algorithm development 
efforts will be converted to the MACET library format, 
thereby. providing an on-line database of the algorithm 
research conducted to date. 

1.0 INTRODUCTION AND OVERVIEW 
The Wright Laboratory Armament Directorate at Eglin 
AFB, FL has been actively involved in research for the 
purpose of understanding the phenomenology exploitable 
for smart weapon systems guidance for several decades. 
This research has evolved along with sensor technology 
from approaches using unresolved infrared signatures to 
high resolution, multi-sensor imagery. The knowledge- 
base which has been continually enhanced as a result of 
these efforts is critical to the development of robust 
acquisition and tracking algorithms. It is these algorithms 
which provide smart weapons the capability of 
autonomous, precision guidance. 

The development of all-weather, time-of-day, terrain 
insensitive algorithms lends itself to a physics-based 
approach, in which reliable algorithm features can be 
derived from the target signature collected in a single 
spectral regime or over multiple bands [I]. Key to a 
physics-based algorithm development effort are tools 
which support the analysis of measured data, 
constructionhefinement of models which realistically 
describe the physical processes associated with the 
targethackground signatures, and simulations for the 
purpose of exercising evolving algorithm concepts. Such 
an algorithm development toolbox is required to support a 
systematic exploration of the scattering/emitting process 
inherent to targethackground signatures, and to develop 
optimized algorithms which exploit this phenomenology. 

The Munition Processing Technology Branch of 
WL/MNG is developing a multi-sensor algorithm testbed 



204 

to suppo precision guided weapons research. This 
testbed consists of the Irma signature model, data analysis 
workstations such as the TABILS Analysis and 
Management Systems (TAMS), and the Modular 
Algorithm Concept Evaluation Tool (MACET) algorithm 
workstation. All three of these components are being 
upgraded to accommodate multi-spectral sensor fusion 
systems. Both ladar and passive MMW channels [2,3] 
have been added to the baseline Irma IR signature 
prediction model and a four channel version is currently 
in prototype. Likewise, the MACET system has been 
upgraded to accommodate MMW/IR data fusion with 
later releases to be four channel capable. 

MACET is being developed to provide a graphical 
interface driven simulation by which to rapidly prototype 
and evaluate acquisition and aimpoint selection 
algorithms. MACET is a user-friendly, graphics-based, 
software system developed to run on a Sun Workstation 
[4]. MACET was designed to s,upport both unitary and 
multi-sensor fused configurations. An incremental 
developmental approach was adopted with interim 
deliveries of the product occurring every six months. The 
purpose of this paper is to present the MACET concept, 
describe its development plans, and demonstrate the 
progress realized to date. 

2.0 MACET OVERVIEW 
MACET is intended to be a user friendly software system 
to support the rapid prototyping and evaluation of air-to- 
surface acquisition and aimpoint selection algorithms. In 
order to facilitate this function, the following design 
requirements were specified for MACET: minimum 
training time, rapid prototyping capability, compatibility 
with existing data, capability to accept existing algorithm 
components, algorithm evaluation shell, multi-sensor 
algorithms, emulation of target acquisition and aimpoint 
selection algorithms, Sun Workstation platform, nominal 
development costs, generation of standard algorithm 

performance metrics, flexibl 
probe placement [SI. 

graphi 

From these design requirements, it was determined that 
MACET would be constrained to execute on a Sun 
Workstation and must utilize existing software 
platform(s) in order to maintain nominal development 
costs. Other required capabilities include: a graphical 
user interface, the establishment of a standard data 
format, a computer aided algorithm design capability, and 
an ethemet interface with the VAX and PC systems. 

The MACET concept is illustrated in Figure 2.1. A Sun 
SPARC Station 2 serves as the host platform for MACET. 
An ethemet is used to link the Sun with VAX systems 
located within the Radar Signal Processing Laboratory 
(RSPL) and Imaging Processing Laboratory (IPL) where 
existing data reduction and analysis utilities reside. 
Measured data from the TABILS database, laboratory 
tower and captive flight test exercises are used to exercise 
the prototype algorithm configurations. MMW and IR 
synthetic data from signature prediction codes, such as 
Irma, are also used for this purpose [ 6 ] .  MACET will 
also contain a library of algorithm components generated 
during previous research efforts under 6.2, 6.3, and Small 
Business Innovative Research (SBIR) programs such as 
the Advanced Tactical LADAR Seeker (ATLAS), Low 
Cost Anti-Armor Submunitions (LOCAAS), Joint 
Adverse Weather Seeker (JAWS), Dual Mode Seeker 
(DMS), and others; thereby providing on-line access to 
over a decade of research in the area of autonomous 
acquisition algorithms for air-to-surface guidance. A 
graphical user interface is employed to minimize the 
system training time required of engineers and analysts to 
use the tool. 
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Figure 2.1 MACET Concept 
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ACQm SlTl ON ALGOR WHM SELECTION 
B O E n g  

* Alianl 
* U s r D c l i m  

The MACET system is developed upon the Paragon 
Image Logic and Khoros 1.0 software platforms. The 
Paragon Image Logic was modified to support the top- 
level functionality of the MACET architecture including 
the user interface. Signal and image processing routines 
from Khoros are used to provide lower level library and 
functional routines for the purpose of algorithm 
prototyping and output display. This configuration was 
selected for MACET development because Paragon was 
found to have the better graphical interface and offered 
better user support at that time. However, given the 
similarity of  the Khoros and Paragon environments, 
subsequent releases of these two software packages have 
been closely monitored in order to take advantage of any 
increased functionality. 

w i r y  Sr.3tlSS 

The MACET architecture is illustrated in Figure 2.2. As 
shown in this graphic, MACET consists of six major 
functional areas. These functional areas include: ground 
truth editor, data selection/format conversion, algorithm 
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selection, performance evaluation, output selection, and 
utilities. The ground truth editor provides the capability 
to tag targets in the data scene before injection into the 
signal processing algorithm in order to facilitate 
performance scoring. The data selection/format 
conversion function allows the user to select a data set for 
algorithm testing and will convert all selected data to a 
format compatible with other MACET functions. The 
algorithm selection function facilitates algorithm 
prototyping using either existing algorithms or algorithm 
components provided in an on-line library or by 
providing the capability to define new elements. Once 
the algorithm has been defined and the data selected, the 
performance evaluation function can be activated. The 
purpose of this function is to compute defined algorithm 
performance metrics (such as probability of 
detection/probability of false alarm) or user defined 
metrics via probe placement. Upon completion of 
algorithm testing, the resulting metrics can be viewed 

DETECTOR DESI(;N 

* Autorqressive 
CFAR 

W P W S E L E ~ I O N  
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S a n n e F o d  PI- D a i i a n  k r l  
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using the output selection function. Both graphical and 
text output are supported. Lastly, a utilities function is 
provided for workspace manipulation and accessing lower 
level MACET data processing routines. 

Development of the MACET simulation is well underway 
with significant progress being realized in the areas of 
data conversion, ground truth editor, performance 
evaluation, and output selection. A schedule of MACET 
software releases is provided in Figure 2.3. As indicated 
by this chart, incremental versions of the MACET will be 
delivered as additional channels (sensor types) are added. 
This incremental development approach will result in a 
comprehensive active/passive IR/MMW version, capable 
of emulating either unitary or sensor-fused systems, to be 
delivered at the conclusion of the Data Analysis and 
Modeling (DAAM) contract in November 1995. This 
simulation will provide the flexible non-realtime 
emulation by which to rapidly prototype and evaluate 
unitary and sensor fused algorithms. 

3.0 GROUND TRUTH EDITOR 
A key element of the MACET architecture is the Ground 
Truth Editor. The purpose of the editor is to provide the 
user with the ability to designate targets and aimpoints 
within scenes under test including multi-spectral and 

multi-sensor imagery. This sensor independent truth data, 
along with computed scene statistics, is then attached to 
the image files under test for later use in algorithm 
scoring and performance curve generation. 

3.1 Design Philosophy 
The Ground Truth Editor’s (GTE) design is based on the 
same fundamental goals as the remainder of the MACET 
system, i.e., provision of a powerful and flexible tool 
which remains simple and intuitive. To that end, the 
graphical user interface (GUI) of the GTE is similar to 
that of many contemporary computer aided drawing 
packages (see Figure 3.1). A palette of tools is displayed 
as a column of icons which graphically depict the 
function of each. Other functions are readily available via 
the menu system which remains consistent with the GTEs 
graphical user interface. The system runs under the XI 1 
windowing system and was built using the industry 
standard Motif toolkit. This assures maximum portability 
across platforms and provides consistency with the 
MACET environment as well as most other X based 
applications. The MACET system is intended to be 
functionally intuitive so as to require minimal training 
investment prior to productive use. This philosophy is 
embraced in the user friendly design of  the GTE. 

I 1 QQC; 
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MACFT 1.1 A 
ACTIVE MMW 
MMW I IR FUSION 

MACET1.3 A 
PASSIVE MMW 

PMMW I MMW I IR I LADAR FUSION 

MACET 1.2 A 
LADAR 

MMW I IR I LADAR FUSION 

Figure 2.3. MACET Development Schedule 



3.2 FileFormat 
The G W A C E T  design philosophy is fiuther 
exemplified in the file formats adopted for ground truth 
and data. In the interest of maintaining compatihility with 
the widest possible cross section of data formats, the 
MACET data format was chosen to be compatible with 
the XVIFF format of Khoros. The XVIFF format was 
chosen not only because of the proliferation of the Khoros 
package throughout the image processing community, but 
because of the versatility of the format and readily 
available conversion programs. The MACET format 

(MVIFF) differs from XVIFF only when ground truth 
data is associated with the given "image", and then onIy 
in that a small portion ai the end of the 5 12 byte comment 
field is used for ground m t h  related data. Khoros 
routines and any routines designed to operate on XVIFF 
data will function equally well with MVIFF data. 

The ground truth file itself is an ASCII text file which 
could be edited by any conventional text editor if desired; 
however, the file is typically maintained solely by the 
GTE. An excerpt from an example ground truth file is 
shown in Figure 3.2. A ground truth file does not 
reference any specific images or data sets. It is in itpelf 
not constrained to data type or view related parameters 
such as pixel dimension, aspect ratio, or resolution and is 
thus completely sensor independent. Restricting the 
ground truth file to "absolute" truth information allows it 
to be referenced by unlimited numbers and types of data 
files without regard to sensor type. Included in a 
ground truth file is an absolute reference point specified 
by latitude and longitude. All target and feature locations 
specified within the file are given in meters offset from 
the reference with positively increasing x moving to the 
east and positively increasing y moving to the south. 
Each MVIFF data or image file specifies its vertical and 
horizontal orientation and the offset in meters of the 
oenter of upper left pixel from the reference specified in 
the ground truth file. The XVIFF format provides for 
specification of pixel dimensions in meters and these 

%MGTl 

#Example ground truth file 

longitude 
latitude 
fiename 
object 9 
object 10 
object 11 
object 12 
object 13 
object 14 
object 21 
object 22 
object 23 

87.4 
30.6 
"teflOl" 
"Red Square" 
"Yellow Circle'' 
"Yellow Square" 
"T62" 
"BMp" 
"Scud Launcher" 
"Truck" 
"Holes" 
"Resolntioo Panels" 

#Vehicles In the scene are listed below ... 
region 23 rectangle [(llO,lZ0),(130,140), "Rectangle 
comment"] 
region 12 circle [(332$16)$,"Circle comment"] 
region 13 circle [(431.132),6.5,"Circle comment"] 

Figure 3.2 Example Ground Truth File 



fields are utilized for that purpose in MVIFF as well. 
Other ground truth related information associated with an 
image or data set, including the ground truth file name, 
are inserted at the end of the 512 byte comment field. 
The beginning of this data is denoted by "%MVIFFI". 

The autonomy of the ground truth file provides for 
efficient representation of ground truth. Since the 
information linking a given data set or image to its 
corresponding ground truth is minimal and is stored in 
preassigned fields withim an XVIFF file, there is 
essentially no additional overhead required for 
incorporating ground truth. One ground truth file can be 
shared by many and diverse types of images as is 
illustrated in Figure 3.3. It is feasible that a single ground 
euth file describing a test range could be used for 
multiple test runs using various sensors. Corrections to 
the ground truth need only be made once rather than for 
each image. 

3.3 Ground Truth Editing 
In many situations the ground "truth" must be supplied by 
interpreting the data set itself, or from images made in 
conjunction with data collection. The single ground truth 
file system allows editing of ground truth from any 
registered image. A typical scenario might consist of 
digitized video co-registered with IR or MMW sensors. 
The video would be provided for extraction of ground 
truth. For this scenario, the digitized video imagery 
would first be loaded into the GTE. If surveyed scoring 

panels or land marks are available, these would be used to 
specify the ground reference for the ground truth file. 
The markings are seleeted in the image with the cursor 
and registered by makimg the "register" selection from the 
menu. Multiple points may be used for registration, in 
which case an average is calculated for positioning, and 
orientation is determined by best fit Registration 
between images (relative truthimg) is accomplirbed by 
simply selecting a point in each image and making the 
"register" selection. Multiple points are handled in the 
same manner as in absolute truthing. After an initial 
image is registered, additional images which are loaded 
and not yet associated with a ground truth file can be set 
to default to identical parameters. All that is needed to 
register a sequence of images is to load each and register 
relative to the preceding image using a common point in 
an overlapping region. If the relationship is defmed and 
known between images such as is the case with co- 
reglstered data, that relationship can be automatically 
incorporated into an entire family of images so 
registering each individually is not necessaty. If the 
relationship is initially unknown, but consistent, it can be 
established with registration techniques (e.g. registering 
comer reflectors visible in IR or visible data with MMW 
rems) ,  and then incorporated in the remaining images. 
After data sets (MVIFF files) are registered, designation 
of targets and aim points can be accomplished using 
registered data and will appear appropriately scaled in all 
corresponding data. 

L Ground Truth F/ 

Ionglude 87 I 
latitude 30 8 
Illemme 'fclD1' 
OblSnP 'Red 

Figure 3.3 The Same Ground Truth File for Various Data 
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Figure 3.4 CO-registered Visible (a) and IR(b) Images olMiuefield 

3.4 Multi-Spectral Data Fusion Examples 
Several examples of multi-speceal images that have been 
mthed using the MACET Ground T ~ t h  Editor are 
provided in this section. These include multi-band visible 
and IR images, as well as IR/MMW data. A discussion of 
LADAR imagery is also provided. 

of a minefield, along with the corresponding IR band. 
The RGB image was obtained by merging three visible 
bands. This band merging is done by the ground truth 
editor at the request of the user. In this example, the 
images were created in a co-registered manner, so no 
regismion information needed to be added by the user. 

3.4.1 Mufibband Vlrible/IR 
The Ground T ~ t h  Editor can manipulate multi-banded 
images, either individually, or by merging bands into 
single images. Figure 3.4 illustrates an RG image 

?he corresponding ground truth data for the images, 
showing the object types and regions of interest, are 
displayed in the main window of the ground truth editor, 
as shown in Figure 3.5 

I 
Figure 3.5 Ground Truth File for Visible/iFt Image 
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Figure 3.6 Cc-registered IR (a) and MMW @)Images of T-62 Tank 

3.4.2 .?R/MMwDala is defmed, as shown in Figure 3.6(a). Note that the region 
Figure 3.6 shows an IR image of a T62 tank, along with is translated and scaled automatically in the millimeter 
the corresponding millimeter wave image 161. The wave image shown in Figure 3.6(b). Users may add 
images represent merent  fields of view; therefnre, all comments to each region of interest, which are displayed 
ground truth designation has to be appropriately rescaled. as annotations in the imwe windows. 
By default, the ground truth editor assumes that an image 
pixel represents a square meter. Given this is not the case 3.43 LADARDala 
in the millimeter wave image, the pixel size in the Currently, the ground truth editor is only capable of 
regisfrafion information has to be updated. handling two dimensional data. Adding functionality for 

three-diiewional data, such as the LADAR imagery 
After registering the images, regions of interest can then depicted in Figure 3.8, would not be difficult given the 
be defined S i c e  a new truth file is being created, the flexible formats of both the images and the ground truth 
user must Erst define object types for the ground truth. data. The MVIFP f m a t  has fhree-dimensional 
Smce the only object of interest in the images is the tark, capabilities already built in, and the ground tmth format 
this can be accomplished by simply adding the T62 object could easily be extended (m a hackward-compatible 
type in the main truth window depicted in Figure 3.7. fashion) to provide this capability. These modifications 
Next, a circular region enclosing the T62 in the IR image will he included in the next MACET release. 

Figure 3.7 Ground Truth for TbZ Image Figure 3.8 LADAR Image of Tank (front and side views) 
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GORlTHMS 
Prototype algorithms have been developed with each 
MACET release for the purpose of providing generic 
baseline templates. These are functional algorithms in 
themselves, hut are not intended to replace more robust 
and task specific systems. The supplied algorithms 
provide a baseline structure for algorithm development 
and illustrate methods of incorporation using MACET. 
These algorithms are all based on classical statistical 
techniques, however, the MACET environment is not 
limited to these designs. Fuzzy set technique and neural 
network implementations are possible and will be straight 
forward to implement because of the modular nature of 
the tool. At the present stage of development, MACET 
includes three algorithm templates, infrared, active real- 
beam millimeter wave, and dual-mode IRIMMW. Each 
of these incorporates different examples of MACET 
capabilities so as not to make a given algorithm 
unnecessarily complex, but to demonstrate as completely 
as possible MACET functionality. Multiple orientations 
of a detected object are evaluated with the IR prototype 
algorithm, for example, but not in the IR/MMW dual- 
mode prototype. The dual-mode prototype, on the other 
hand, tests multiple objects extracted from a single image 
whereas only a single object is extracted with the 1R 
example. The supplied prototype algorithms are described 
here in an effort to highlight MACET functionality. 

4.1 Infrared 
The infrared prototype algorithm is shown in Figure 4.1. 
It is composed of four basic components: Prefilter, 
Detect, Discriminate, and Classify. The components of 
the prefilter module and its sub-modules are shown in 
Figure 4.2. The prefilter module filters the image with a 
1x3 sliding window mean filter implemented by selecting 
the optional mean image output of the "CFAR" routine. 
Further enhancement of target pixels is accomplished 
with a quadratic classifier module (PixelEnhance). This 
module implements a two class quadratic classifier over 
an image of texture feature vectors extracted with the 
"fractal-feature" module. Feature vectors representing 
every pixel in the image are transformed using predefined 
target and background transformation parameters into 
values of class discriminants. Differencing of the 
discriminant values at each pixel results in an image of 
log likelihood ratios which is passed on to the "Detect" 
module for further processing. The features extracted are 
comprised of statistics of neighborhoods of differing sizes 
surrounding each pixel. Means and standard deviations of 
three different sized windows centered at a given pixel 
define the six element feature vector corresponding to that 
pixel. These elements are computed by three instances of 
the "CFAR" routine and handed together in the 
"fractal-feature" module. 

Figure 4.1 IR Prototype Algorithm 



Figure 4.2 IR Prefilter Module 

The enhanced image from the "Prefilter" module is 
presented to the "Detect" module which applies a sliding 
window mean filter (implemented again with the "CFAR" 
routine) of the approximate size of a target. This serves to 
deemphasize objects smaller than the expected target and 
accentuate targets. Output from this stage is processed in 
the '"Discriminate" module which uses the routine number of pixels criteria. 

"objseg" to segment goups of adjacent pixels which 
exceed a specified threshold into objects. These objects 
are further screened in "objseg" according to number of 
pixels, of which a minimum and maximum are specified. 
The output of "Discriminate" is a list of rowlcolumn 
coordinates of objects which meet the threshold and 

4.3 IR Classify Module 



Figure 4.4 Variable Parameter Assignment 

The "Classify" module is shown expanded in Figure 4.3. 
This module receives the object coordinate list kom 
"Discriminate" and a filtered version of the original input 
image from "Prefilter". It extracts a region of interest 
centered at the object coordinates from the filtered image 
and compares this to pre-formed templates of candidate 
targets at various orientations. The region of interest 
extraction is accomplished using the "Extract Subimage" 
routine which requires image coordinates as parameters. 
MACET provides for output dependent parameters by 
allowing variables and expressions to specify parameters. 
Figure 4.4 shows the parameter entry forms for the 
routine "Extract Subimage" as well as the "Varviff which 
accomplish the glyphs variable assignments. The 
extracted region of interest is normalized to unity 
variance and zem mean prior to correlation with the target 
templates. This is accomplished in the "norm" module 

which is shown expanded in Figure 4.5. Correlation of 
the region of interest with potential targets is done in the 
transform domain. An FFT is therefore performed prior to 
presentation to the "multimatch" modules which 
accomplish the multiple orientation correlations. Three 
"multimatch" modules are necessary in order to perform 
the correlation operations with the three candidate target 
types. A target template which consists of twenty-four 
orientations of the particular target is presented to each 
module. These templates are the complex conjugates of 
the Fourier transforms of the given target data at the 
various orientations. The slant angle is constant. As seen 
in Figure 4.6, "multimatch" consists of two instances of 
the routine "multi" followed by "Image (2D) Stats", a 
statistics calculation routine. The routine "multi" allows 
functions which provide only for single band data 
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inputs to operate on data of multiple bands without the 
need of splitting out bands and looping or duplication. In 
this example, the fwst instance of "multi" invokes the 
multiply routine "vmul" to form the product of the 
transform of the region of interest image with each of the 
twenty-four bands or orientations contained in the 
template image. The second instance of "multi" calls 
"vW with the direction switch set so as to calculate the 

/ 

inverse transform of each orientation band. This produces 
a correlation image for each orientation all of which are 
banded together in a single smeture. The statistics routine 
is designed to function with multi-band data, and is used 
here to determine the maximum value in each band. 
These are incorporated into II file which is made available 
external to the "multimatch" routine. An ascii file is also 
available which summarizes other statistical information. 

Figure 4.5 Normalization Module 

Figure 4.6 Multimatch Module 
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T a r g e t  Correlatlon 

0 45 90 13 180 225 270 315 360 
Candidate Target Orientation 

I T62 Z I  L BMP . 

Figure 4.8 IR Target Correlation Plot 

The maximum value outputs of the three instances of 
"multimatch" are forwarded out of the "Classify" module 
and presented to a plotting routine for display. The ascii 
files are also available for discerning additional 
information about the selected region of interest 
correlation file such as the position of the maximum. This 
corresponds to the point in the region of interest which 
aligns with the center of the target template, and could he 
used for aimpoint determination. 

Intermediate output from different processing stages of 
the algorithm are shown in Figure 4.7. The input image is 
synthesized IR with three different target types (T62, 
BMP, and ZIL) at various positions and orientations. In 
order to simplify the prototype algorithm, only a smgle 
object is processed. The detected region of interest is 
shown along with the template which was chosen as the 
match and alignment points as determined h m  the ascii 
statistics output also shown in the figure. The output plots 
in Figure 4.8 show the peak correlation corresponds to a 

T62 oriented at approximately 15 degrees. The similarity 
between BMP and T62 is apparent from the close 
correspondence between plots. Although the ZIL is 
distinctly different a correlation according to orientation 
is obvious in all three targets. 

4.2 Active Millimeter Wave 
The active millimeter wave prototype algorithm in 
MACET is designed for use with real-beam radar data. 
The configuration shown in Figure 4.9 is intended for 
data captured in four contiguous dwells which are stored 
in separate files. The separate data are concatenated into a 
single file in the "DwellCat" module and passed to 
"DETECT" for the first stage of processing. This module 
correlates the data with a pattern which corresponds to the 
beam shape of the system in order to enhance the true 
returns while reducing noise. The processed data is then 
presented to the "Segment" module. In this stage, the data 
is correlated on a beam basis with a waveform template 
which represents the anticipated shape of the return from 



Figure 4.9 MMW Prototype Algorithm 

a hard target. A threshold is applied to the output of the 
oorrelstion openition, and neighbddng data which e x d  
this fbreshold are formed into ob@&. The  ordinates of 
these objects are psssed to the next Fooassing stsge along 
with the p d  data and an image of labeled objects. 
These data are received by the "Discrhninate" module 
which u ~ e s  the label image solely to determine the 
number of objects to process. The ceordinates of the 
centers of the dttDcted objects become the centers of 
regions of interest which are extraded and banded 
togetber to be pnooesd by "Classifjt". The "Classi&" 

.module ootrslaw these against predefmed target 
templatea in an attempt to classify the detected objwts. 
The pmtotype algorithm provides for selection betwean 
two classas. "Classify" outputs the carelation score for 
each object in two ffles wrrespondiug to the two target 
types. These files are ploaed by "XprismZ", and made 

available to two "ShowBest" medules. The "ShowBest" 
modnles find the object whish corresponds to the highest 
correlation with a given target type, and displays the 
corresponding region of in- 

4.3 Dual-Mode 
Elmen@ of both IR and AMMW were modified and 
incorporated into a dual-mode millimeter wave and 
in- prorotypt algorithm. The implementation of this 
algorithm is shown in Figure. 4.10. Additional support 
logic beyond the single channel algdthms is necessary to 
accomplish appropriate scaling and registration betwean 
the millimeter wave and i n h d  data. The data set used is 
comprid of real-bcam millimeter wave data sampled 
such that two IR rows cornspond to a single range bin. 
The radar return beams are stored as rows, and hence 
must be rotated as well as scaled with respect 
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Figure 4.10 Dual Mode Prototype Algorithm 

data is multiplied to the IR data in order to accomplisb 
proper registration for processing. The geometric 
manipulation for registration is performed on the IR data 
in the "IRregister" module. The "GetlRsizes" and 
"GetMMWsizes" as well as the assorted image padding 
and resizing are used to maintain pixel to pixel 
correspondence hetween the two data formm as the data 
are processed. Triggering is necessary to ensure 
synchronization between the two channels. 

The algorithm uses the MMW channel for detection of 
objects, and the IR channel for classification and aimpoint 
selection. The impetus behind this is the high contrast 
expected in the radar data between the large metallic 
targets and natural background clutter. Once the 

target objects are identified and a hounding region of 
interest defined, the higher resolution of the IR data is 
exploited for target identification and aimpoint 
determination. 

Data processing in the MMW channel proceeds in the 
same manner as the single channel MMW algorithm up to 
the "Consolidation" module. This module performs the 
same function as the "Discrimination" module in the 
single channel algorithm, with an additional task of 
consolidating the IR regions of interest into a banded data 
set. It is the IR data which are passed to the "Classify" 
module for further processing. The "Classify" module is 
functionally the same as that in the 
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aligns with the center of the target template, and can be 
used for aimpoint determination. 

The "ShowBest" modules display the extracted region of 
interest which scores highest for the corresponding target 
class. "CorrPlot" plots the correlation scores versus object 
number for each class. This plot is shown in Figure 4.12 
for the example data set which contains two actual targets 
along with the regions of interest selected as "best" for the 
two candidate target classes. Crosshairs depict the point at 
which the template aligned with the regions for the best 
tit. 

MMW single channel algorithm, and is shown expanded 
in Figure 4.11. The "Multi" glyph allows the FFT 
procedure to be performed on each band in the input 
multi-band data set. The resulting multi-band transform 
by the single-band template transforms of the candidate 
target types to form correlation images in the 
"multimatch" modules. The peak values are extracted in 
"multimatch" as well and passed on. Ascii file output is 
also available which summarizes other statishcal 
information including the position of the maximum. This 
corresponds to the point in the region of interest which 

Figure 4.11 MMW Classify Module 

-1 0 

O b  I -st 

Figure 4.12 Target Correlation Plot and Aimpoint Identification 
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METRIC 
ROC Curve 
Probability of Detection 

Pmbabilitv of False Alarm 

5.0 PERF- 
Once the algorithm has been specified, and the test data 
set designated, the user can activate the MACET 
algorithm performance evaluation function. The purpose 
of this function is to compute certain defined algorithm 
metrics, and to facilitate the calculation of other user 
defined performance values. The metrics incorporated 
into the performance evaluation function are listed in 
Table 5.1. A description of each of these metrics is also 
provided in the table. 

MACET uses the "Probdet" module to generate confusion 
matrices, which in turn, are used to calculate overall 
probabilities of detection and false alarm. These 
confusion matrices are used to correlate targets in truth 
data with detected locations in a target image file. 
Probdet may be used to accumulate decisions over a 
series of images. The process used by the Probdet 
module is shown in flow diagram form in figure 5.1. 

The confusion matrices, generated by the Probdet 
module, are floating point images of dimension N+3 rows 
by N+2 columns, where N is the number of targets found 
in the truth data and image scenes. The values of the 
image in locations (L.N. I..N) correlate target types from 
the truth file with detections in the target image file. 
Entry (1 , l )  contains the number of background pixels 
correctly identified. 

Row 0, columns 2..N are the probability of detection (and 
correct classification) of the type associated with the 
corresponding row. Column 0, rows 2..N are the 
probability of false alarm (or incorrect classification) of 

DESCRIPTION 
Probability of Detection versus Probability of False Alarm 
Number of correct detection decisions divided by number of target 
trials. 
Number of incorrect detection decisions (false alarms) divided by the 

the type associated with the corresponding column. 

Entry (1,O) is the overall probability of detection inclusive 
of all targets ignoring classification. Similarly, entry 
(0,l) is the overall probability of false alarm. Entry (0,O) 
is the probability of target objects being detected at all, 
i.e. that a single pixel will be indicated as a target. 

A fmal row is included whose entries are the actual 
numeric target types as found in the ground truth file, 
which are represented by their column of residence. A 
zero target type is used to indicate background. 

Selecting the Probability of Defection or Probability of 
False Alarm modules for a selected algorithm and data set 
results in the iteration of that algorithm over the data 
while tabulating the algorithm's performance confusion 
matrix (true detection, false detection, missed detection, 
and missed false detection). These results are then sorted 
as a function of target-to-clutter ratio (generated in the 
ground truth editor) and read out to a file. This file can 
then be used to generate performance plots using the 
MACET Data Display module. All results will be for a 
single threshold setting. 

Selection of the ROC Curve module will also result in 
iterative testing of the specified algorithm using the 
designated data set, but for multiple threshold settings. 
The step size and range of these variations are specified 
by the user upon selection of the ROC Curve option. The 
output of these;ests are files containing Probability of 
Detection and Probability of False Alarm results as a 
function of threshold setting. An example ROC curve, 
using 20 threshold settings, is shown in figure 5.2. 

Aimpoint Selection Error 

Table 5.1. Available Algorithm Performance Metries 

Difference between computed aimpoint (centroid, hot spot, etc.) and 
the aimpoint designated by the user in the ground truth editor 

~~~~ 1 number of background (non-target) trials. 
I Number of correct classification decisions divided by the number of Prob. of Correct Class 
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Figure 5.1 Flow Diagram of Confusion Matrix Generation 



Figure 5.2 1R Prototype Algorithm ROC Curve 

6.0 CONCLUSIONS AND 
RECOMM ENDATIONS 

MACET is a graphical interface driven system by which 
to rapidly prototype and evaluate acquisition and 
aimpoint selection algorithms for precision guided 
munitions. It is being developed as a component of 
WL/M"s multi-sensor algorithm testbed, and therefore it 
has been designed to accommodate multi-spectral sensor 
fusion systems. 

MACET is being developed on the Sun Workstation, 
although it has been successfully rehosted to other 
workstations such as the DEC Alpha. It is built upon the 
Paragon Image Logic and Khoros 1.0 software systems. 
Because of the similarity of the two systems, upgrades of 
these products are being monitored in order to take 
advantage of any increase in functionality that they may 
offer. 

The MACET architecture was developed to satisfy the 
following requirements: user friendly, minimum training 
time, rapid prototyping capability, compatibility with 

existing data, capability to accept existing algorithm 
components, algorithm evaluation shell, single and multi- 
sensor algorithms, emulation of target acquisition and 
aimpoint selection algorithms, Sun Workstation platform, 
nominal development costs, generation of standard 
algorithm performance metrics, flexible graphical output, 
and data probe placement. This architecture has been 
successfully implemented and all capabilities 
demonstrated for two incremental versions of the 
simulation: IR only (MACET 1.0) and IR/MMW 
(MACET 1.1). Continued MACET development will 
result in a four channel capable (ladar, passive MMW, IR, 
active MMW) version of the simulation. This version is 
scheduled for completion in November 1995. Current 
development efforts are directed toward MACET 1.2, 
which will introduce the ladar capability. 

Each MACET build includes not only the enhanced 
environment functionality required to represent new 
sensor types, but also template algorithms. Such template 
algorithms provide the inexperienced algorithm evaluator 
with a baseline by which to initiate prototyping. They 
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also serve to validate the increased functionality of the 
MACET environment. Two such algorithm prototypes, 
an IR and fused IR/MMW, have been delivered with the 
MACET 1 .O and 1 .1  builds [8,9]. 

Future versions of MACET will likely address the 
incorporation of legacy algorithms into the MACET 
algorithm library, execution speed enhancements, and 
extensions to unconventional classes of algorithms such 
as neural networks and fuzzy logic. These added 
capabilities are intended to establish MACET as an on- 
line repository of algorithm component research and to 
enhance its utility in providing the rapid turn-around 
required of captive flight test exercises. 

Overall, MACET will give the Armament Directorate of 
Wright Laboratory a very powerful tool in the 
development and evaluation of algorithms for precision 
guided munitions. With its development, MACET will 
aid in the design of austere, all-weather seeker systems 
thereby enhancing the global reach of the U. S. Air Force. 
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SUMMARY 
A method to implement Sensor Fusion and Sensor 
Cueing on an advanced fighter aircraft is de- 
scribed in this paper. 
Starting from a short introduction concerning the 
general aspects and theory of Sensor Fusion, the 
paper presents some choices adopted during the 
development of the Sensor Fusion process a t  
ALENIA AERONAUTICA System Technology 
dept. 
Sensor Cueing will be also introduced and some 
particular cases of interest for a fighter aircraft 
will be discussed. 
The performances of the adopted solutions are 
then discussed on the basis of some experimental 
results obtained using a simulation tool. 
An evaluation of the overall Sensor Fusion 
process performance and some considerations 
about possible alternatives will conclude the 
work. 

LIST OF SYMBOLS 
A/C Aircraft 
Az Azimuth 
DVD Divisione Velivoli Difesa 

El Elevation 
EW Early Warning 
FOR Field Of Regard 
FOV Field Of View 
IFF  Identification Friend or Foe 
IRST Infra Red Search and Track 
RWR Radar Warning Receiver 
RWS Range While Search 
SF Sensor Fusion 
SM Sensor Management 
STT Single Target Track 
TWS Track While Scan 
vs Velocity Search 

1. INTRODUCTION 
The studies on Sensor Fusion started in ALENIA 
AERONAUTICA in the context of a research 
program designed to study the capabilities of an 
advanced fighter A/C equipped with advanced 
functions like Sensor Fusion, Sensor Manage- 
ment, Situation Assessment and Attack Man- 
agement operating in a high threat scenario. 

(Defence Aircraft Division) 

During the first phase o the research, some items 
like accurate tracking, short response time and 
a high level of confidence in identifications were 
recognized as critical and so were used to tailor 
the algorithms for  tracking, fusion and 
identification. 
At  the end of this phase the necessity to evaluate 
the just developed algorithms in a dynamic 
environment was recognized, in order to acquire 
more confidence in the phenomena and study 
the behaviour of the system in some simple 
operative situations. 
For the above reasons the test of the entire system 
was executed using a simulator able to manage 
a simples manually piloted fighter A/C, equipped 
with the SF and SM algorithms to be verified, 
plus some autonomous targets. 
During the SF studies and simulations, as well 
as the most complex case in which the System 
must be able to recognize as unique and track a 
single target detected by all the sensors, some 
specific and more frequent cases are also in- 
vestigated. In particular, the cueing of a sensor 
to a target detected by another sensor was 
identified as an interesting problem in some 
operative situations. 
The results of the studies and the simulations 
concerning the SF and the Sensor Cueing are 
showed in this paper. 

2. SENSORS SIMULATION 
Since the output data from sensors represents the 
main input for  a SF  process, then the more 
realistic are these inputs, the better will be the 
"reality" of the tests and the reliability of the 
results. The Sensors have been simulated taking 
into account the relevant characteristics of the 
commercial sensors, including the capability to 
be managed by both human operator (the Pilot) 
or an automatic function like the SM. 
The modelling of the sensors may be split into 
two different blocks: 
1. Antenna scan inside FOV. 
2. Detection functions and measurement er- 

rors. 



Both the detection functions and the errors 
modelled in this research program are the typical 
ones for each sensor and are not tailored to any 
existing sensor, with the exception of the RWR 
that has better accuracies than any existing sensor 
of this type. 
The choice to model a RWR with high angular 
precisions was made to investigate the upgrading, 
in the overall Weapon System performances, by 
the introduction of another sensor able to 
contribute to the track of a target. 

2.1 RADAR 
In this simulation the Radar supports four modes: 
VS, RWS, TWS, STT. 
In VS, it supplies only angular location and range 
rate. 
In RWS, it provides location (also range) and 
range rate. 
In TWS, the Radar executes track for a reduced 
number of targets supplying location, rates, 
accelerations and course. 
In STT, it supplies the same parameters as TWS, 
more precise, but for only one target. 

2.2 RADAR WARNING RECEIVER 
In this simulation RWR measure the angular 
position of the electromagnetic sources existing 
in the scenario and tries to identify them by 
comparing the relevant received parameters with 
a stored emitters database. 

In this simulation the IRST supports two modes: 
SEARCH and STT. 
In SEARCH it is able to supply only Az and El. 
In STT it supplies angles, angular rates, angular 
accelerations and a poor estimate of range. 

2.4 EARLY WARNING AIRCRAFT 
The EW supplies range, range rate and angles. 

3. THE SENSOR FUSION PROCESS 
As stated in [1][2][3] the SF is a process able to 
collect information from multiple sources, and 
to associate (correlate) them in order to achieve 
an estimation of the state and the identity of 
targets and threats. 
The SF process can be seen as being composed 
to two different, sequential (in time) functions: 
Data Association and State Estimation. 
The Data Association has the scope to determine 
which new sensor measurements and existing 
tracks have a common source; the State Esti- 
mation is performed after such assignment, in 
order to obtain the best estimate of the 
target/ threat state. 
Estimation of the targets/threats state are also 
used to predict the future state of each existing 
track at the time of the sensor measure. 

. 

. 2.3 INFRA RED SEARCH AND TRACK 
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Using a SF process it will be possible to provide 
the crew with the most accurate presentation of 
the threats and targets in the battle zone; the SF 
outputs, summarized in information concerning 
position and identification, are then transferred 
to a process able to assign a priority to each 
specific threat/target. 

3.1 SENSOR FUSION DEVELOPMENT 
The development of the SF process started from 
the general items explained above, and went on 
with tailoring such items to our specific appli- 
cation; the result was the process shown in Fig. 2. 
The observations and/or the trackfiles from the 
four sensors are collected in a Tracks & Ob- 
servations Receiver and distributed to the As- 
sociation and State Estimation Functions. 
The existing tracks will be extrapolated to the 
received track/observation time and then com- 
pared in the Gating and Correlation Blocks on 
the basis of their position and accuracy. 
The correlated pairs are then filtered and 
combined before being used to upgrade the 
proper fused trackfile. 
The main functions constituting the SF process 
are described in the following subsections. 

3.2 ASSOCIATION 
The aim of the Association Function is to search 
among the fused tracks Database looking for the 
best candidate (if it exists) to be updated by the 
new received sensors data. 
The Association function is here split into two 
different and time subsequent functions: Gating 
and Correlation. 

3.2.1 GATING 
Gating is a technique to decide if a new 
track/observation received from a sensor can be 
associated to an existing fused track. 
Such a decision is based on stochastic methods 
taking into account the detecting sensor and the 
fused track accuracies, in conjunction with the 
differences between the sensor track/observation 
and the extrapolation of the existing track. 
The Gating Function then consists of con- 
structing, for each existing track, a region (gate) 
in the measurement space within which the 
tracks/observations from sensors are expected to 
arrive; only those fused tracks receiving a sensor 
track/observation within their gate will be 
candidates for updating. 
If a track/observation is applicable to more than 
one gate, the final decision about the best fused 
track candidate for updating will be taken by 
the Correlation function. 
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Track/observation no fitting into any ga 
be considered as a candidate for  new 

4 will 
track 

initiation and controlled by the Track confir- 
mation and deletion function on the basis of 
successive detections. 
The gating implemented for  the Association 
function will be rectangular and can be described 
by the following equations: 
I Y , - Y , I < 3 a r  ( 1 )  

(I, = J- (2) 

Y ,, = observation 
Y, = prediction 

3.2.2 CORRELATION 
The Correlation Function has the purpose of 
making the final decision in the Data Association 
process by analyzing the Gating results and using 
them to find the best match between observations 
and fused tracks. Fused tracks will be then 
updated using the sensor data in the State 
Estimation Function. 
The above sentence implies the computation of 
the normalized distance between the gate centre 
and the position of any track/observation sat- 
isfying the gate. 

Assigned the value 5 to the new track/obser- 
vation, the value to an extrapolate trackfile 
(the centre of the gate), and defining g n a s  their 
distance, the normalized distance d,, between 
these two variables is defined by the following 
formulae: 

S =  covariance matrix of G,,  
The normalized distance d,, has a chi-square 
distribution, deriving from linear operations on 
independent Gaussian random variables with 
zero means, thus it can be associated to the 
probability that a sensor track/observation could 
satisfy the gate. 
The simplest case in which just one observation 
respects only one track gate will be simply solved 
by assigning the sensor track/observation to that 
fused track if the Equation (3) supplies an 
acceptable value. 
If more than one sensor track/observation will 
satisfy the Equation ( I ) ,  the best observation and 
track pairs are  chosen using the maximum 
likelihood method. This method is able to decide 
among n fused tracks and nz observations/tracks, 
which are the better candidate pairs for  As- 
sociation on the basis of their relative d,,., values. 

3.3 STATE ESTIMATION 
State Estimation should be a flexible process able 
to self-adapt to any sudden variation of inputs 
such as missing detections, asynchronous de- 
tections from sensors (targets are not detected at  
the same time by all the sensors) and target and/or 
fighter manoeuvres. 
In order to implement such a process, the Kalman 
Filter was choosen due to its capability to 
automatically determine the gains to be given to 
the input measurements data in order to minimize 
the mean squared error on the basis of the target 
manoeuvre estimation and changing detection 
histories, such as missing detections. 
The accuracy of estimations is also computed by 
the Kalman Filter via the covariance matrix; 
therefore, such a matrix can be used, in 
conjunction with the statistics of the measure- 
ment errors, for  gating. 
The Kalman filter used to implement the State 
Estimation is composed of three coupled range 
and angle (Az and El) filters. 
The range filter uses range, range rate and range 
acceleration as states and its measurement matrix 
is composed of range and range rate measures. 
The two angular filters work in polar coordinates 
and use as states the angles in conjunction with 
the velocity and acceleration components along 
the horizontal and vertical axes lying in the plane 
perpendicular to the line of sight toward the 
target (see Fig 1). The measurement matrix of 
such filters is composed of the angular only 
measurements. 

HOR Z O I l T U  A’ i 
I Fig 1 - Kalman Filter coordinate system 

These three filters are coupled in the sense that 
the range filter needs the angular rates estima- 
tions from the angular filters, while the angular 
filters needs the range and range rate from the 
range filter to work properly. 
Using this method, the SF process will not be 
able to execute passive tracking because angular 
filters need to be periodically refreshed with 
updated range and range rate estimates, therefore 
only targets detected by Radar can be fused. 
This choice was made in order to avoid the 
addition of more computational charge for  the 
computers, already high for  the adoption of the 
Kalman Filters. 
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4. THE SENSOR CUEING PROCESS 
Any Avionic System having an advanced 
function like the SF should include a Sensor 
Management process. 
Such a system should be able to optimize the 
search coverage and scan rate for sensors, to 
guarantee the emission control and to facilitate 
the target identification by varying (managing) 
some sensor parameters like centre of scan, FOV, 
scan rate and mode. 
SM is usually a very complex process composed 
of a variety of functions and usually needs to be 
accurately tailored to the specific application. 
In Fig. 2 the SM process is shown as a functional 
block evidencing its capability to execute the 
Sensor Cueing (Ref [l]). Following are some 
considerations about this particular function, 
while the test results concerning some particular 
cases will be discussed in Section 5. 
Sensor Cueing is a cooperative process between 
different sensors oriented towards the acquisition 
of data on a common target. This is achieved 
using observations or tracks from one sensor to 
point another sensor toward the target direction 
and by analyzing the second sensor detections in 
order to ensure that the target acquired is the 
same detected by the first. Such analysis should 
be, in its simplest case, a simple gate and 
correlation test. 
In a particular application like a fighter A/C, 
Sensor Cueing could be useful in some situations 
like the following: 

A. RADAR to IRST 
In some situations it could be useful to track a 
target while reducing active emissions toward it 
but still maintaining a good level of accuracy. 
Such goals can be achieved by combining the 
high angular accuracies of a passive sensor like 
IRST with sporadic Radar emissions, designed 
to acquire range and range rate information in 
order to maintain the SF tracking capability. 
Obviously, working with aged range informa- 
tions results in suboptimal performance for the 
State Estimation Function, but at medium range, 
the track accuracy maintains good performance. 

B. IRST to EW A/C 
EW A/C can acquire targets at long range and 
guide fighters toward them. Later, the fighters 
can autonomously acquire such target using their 
on-board sensors. 
If active emissions must be avoided as much as 
possible, but at the same time a medium range 
accurate bearing is necessary to improve the 
fighter intercept path, the IRST can be used in 
the same way as described at point A until  a 
more accurate track must be acquired using the 
on board Radar. 

C. RADAR to RWR 
A threat detected by RWR, may need more data 
in order to obtain more accurate information 
about position and identity. Such information 
can be obtained by cueing an active sensor like 
Radar toward the emissions detected by the RWR 
and using the Radar features to acquire more 
cinematic data and improve identification. 
The tests relative to each of the above situations 
will be discussed in Sections 5.2 to 5.4. 

5. SIMULATION RESULTS 
Tests have been executed in order to evaluate, 
via simulation, the performances of the SF 
process implemented. 
Simple fighter-target geometries in which the 
fighter follows an intercept path toward the 
target have been used to explore the possibility 
of tracking a target using all the on board sensors 
data and the influence of some relevant para- 
meters on the target acquisition and the track 
precision. 
The tracking system developed for the SF process 
uses, as described in Section 3, coupled range 
and angular filters. The range and range rate 
measurement can then be considered as relevant 
parameters for the system. 
Consequently, the interval between two con- 
secutive range and range rate measurements (i.e. 
the revisit time of Radar for a specific target) 
can influence the track accuracy. 
Another relevant parameter to take into account 
when associating data from different sources is 
data precision. In fact inaccurate data can 
negatively influence Data Association and State 
Estimation. 
In the following Subsections, the influence of 
the above parameters on the fused trackfiles will 
be shown using simulation results. 
Only the relative Az data referred to the true 
scenario Az value (the true target Az) will be 
shown, because the simulation results for the El 
are similar to those for Az. Range and range rate 
are not significant to evaluate the SF process 
performances because such parameters are 
measured only by Radar. 
Figures concerning the Cueing tests show the 
Radar detection times (not the detected values) 
and the outputs of both the filtering and 
extrapolation functions in order to better evaluate 
track divergence. 

5.1 MULTISENSOR FUSION 
The more relevant results of the simulation tests 
executed on the Multisensor Fusion system are 
shown in Fig 3 and Fig 4. 
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During these tests, the Correlation accuracy 
evaluated using the chi-square statistics applied 
to d,, was always better than 50°/o, confirming 
the observation to gate assignment with a high 
confidence level. 
Fig 3 shows the values detected by each sensor 
associated with the corresponding fused trackfile 
obtained from processing the input data. 
Such figures can be used to demonstrate the poor 
influence of an inaccurate sensor like RWR 
(when compared with Radar and IRST) on the 
fused trackfiles, when the time interval between 
two consecutive RWR detections is short (less 
than four  seconds in the example), then, with a 
RWR accuracy like the one considered here, it 
could be used to participate at the fused trackfile 
updating. 
In Fig 3 it can also be observed that the fused 
trackfile has generally a better precision than the 
single sensor measure and is more stable. 
Fig 4 is used to show the influence of the Radar 
scan interval (i.e. the target revisit time) on the 
fused trackfile accuracy. 
In Fig 4-A, with the Radar scan interval of 2 
seconds there are no appreciable divergences in 
the fused trackfile, nor when missed Radar 
detection occurs. 
In Fig 4-B, enlarging the Radar scan interval to 
6 seconds, considerable divergences can be noted, 
but the fused trackfile maintains a good accuracy, 
and the Association accuracy will always be 
better than 50%. 
Enlarging the Radar scan interval to higher 
values, the RWR inaccuracy becomes significant 
and a loss of track could occur. 

5.2 RADAR TO IRST CUEING 
The results of the simulation tests concerning the 
Radar to IRST cueing are showed in Fig 5 .  
Tracks were initiated on the first Radar detection 
after the Cueing occurs, then the Cueing 
precision is evaluated by the system as a function 
of the Association accuracy. 
Different Radar scan intervals of 6 and 10 
seconds are considered in order to examine the 
influence of such parameters on the track 
stability. 
In Fig 5-A the track maintains an acceptable 
stability and accuracy up to 8 K m  of range, then 
instability becomes evident and a track loss 
occurs. 
Enlarging the Radar scan interval i t  can be noted 
(Fig 5-B) that track divergence starts at a range 
of 14 Km. 

This test can be useful to evaluate the per- 
formance of the Radar to IRST Cueing versus 
the Radar scan interval and range from target. 
Reduction of active emissions is feasible at 
medium ranges, but as the range decreases, the 
Radar scan interval has to be reduced in order 
to maintain the track stability. 

5.3 IRST TO EW A/C CUEING 
Fig 6 depicts the results of the simulation tests 
of the IRST to EW cueing at different IRST scan 
intervals. 
Tracks were initiated at  the first IRST detection 
after the cueing occurs and the Cueing precision 
is evaluated using the Association accuracy. 
During this test the Az and El data from the EW 
A/C were used to set the IRST centre of scan 
while angle tracking was executed using Az and 
El data from IRST because the EW data are aged 
due to data link delays and usually not useful to 
update a trackfile. 
EW A/C measurements of range and range rate 
are transposed to the fighter axis before sup- 
plying the angular filters with the new values. 
Fig 6-A shows bad track accuracy due to the 
relevant differences between the filtered and 
extrapolated values. Reducing the IRST scan 
interval (Fig 6-B), the track accuracy improves 
and tracks can be maintained up to where it 
becomes necessary to use the onboard Radar to 
augment the track precision. 

5.4 RADAR TO R W R  CUEING 
In this test, depicted in Fig 7, the detection of 
an air to air threat by the RWR was simulated 
and, consequently, the SM process decided to cue 
the Radar toward the threat direction in order 
to acquire more cinematic and identification 
data. 
After receiving the RWR alert, the fighter starts 
a 2g sustained turn in order to position the threat 
to the front and facilitate Radar operations. The 
influence of such turns on the fused trackfile 
are evident in the first 15 sec of the test and are 
due to two main causes: 
1.  
2 

Filters are not yet in the steady state 
RWR data are used to update the fused 
trackfiles in order to ensure the Cueing 
correctness. 

In any case, the Association function was able 
to maintain the track although such angular 
errors. If necessary, after the Radar Cueing, the 
SM process can decide to update the trackfile 
using only the Radar data, or to change the Radar 
mode. 

6. CONCLUSIONS 
The performances of the SF process described 
in Section 3 and the feasibility of the Sensor 
Cueing in some particular situations have been 
shown by the simulation tests conducted. 



It was also indicated that a tracking system using 
coupled range and angular filters could be useful 
in a SF process, but will have the constraints of 
quite short range and range rate measurements 
intervals, expecially when range decreases. 
To avoid such problems a passive ranging 
function, able to track the range between two 
consecutive Radar detections or  the passive 
angular track capability should be added, but the 
computational charge for computers will rapidly 
increase. In this case the solutions presented in 
this paper will have to be considered as a 
compromise between the necessity to have a State 
Estimation process able to self-adapt to varying 
scenarios and the constraint of avoiding heavy 
computational charges for  the computers. 
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The paper by R. R. Suresh presents the raisons d’ttre and 
advanced testbed for using multi-mode sensor suites to support low 
cost applications in battlefield surveillance and weapon guidance. He 
also presented an Integrated Multiresolution Algorithm (IMA) 
paradigm, which in a single, seamless approach, provides detection, 
recognition, and identification as a by-product at successive levels of 
refinement. I 

I 

SECTION V 

DATA FUSION FOR GUIDANCE AND CONTROL APPLICATIONS 

INTRODUCTION 

Dr. David F. Liang 
Head, Space Systems and Technology 

Defence Research Establishment Ottawa 
Department of National Defence 

Shirley Bay, Ottawa 
Canada K1A 024. 

The effectiveness of military operations is driven by 
increasingly sophisticated technology applications. The advent of 
more and more powerf,ul processor and sophisticated sensors implies 
that the military has to cope with a powerful new generation of high 
speed, stealthy and accurate weapon systems. Particularly 
distressing is the fact that during the Gulf War, coalition air forces 
flew more than 5000 sorties over Iraq without a single confirmed 
kill of a mobile SCUD. To cope with increasing sophistication of threat 
and sensor systems, multi-sensor, multi-target tracking systems 
could be ubiquitously applied to smart weapons, target acquisition 
and tracking systems, battlefield surveillance and situation 
assessment systems, wide area surveillance systems, tactical and 
strategic defence systems. 

The paper by S. S. Lim and D. F. Liang presents a Multiple 
Hypothesis Tracking algorithm that has been modified for efficient 
implementation in a multi-target air defence radar surveillance 
tracking assessment. The modified algorithm has been extensively 
tested against numerous sets of air defence radar measurements. 
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C.A. Noonan dealt with sensor data fusion in the context of air- 
to-air situation awareness beyond visual range. He was able to show 
that for a future air superiority aircraft, equipped with non- I 

commensurate sensors, algorithmic complexity in the fusion of the 
data has a lesser impact on system performance than the 
determination of the data relationships. For the communications 
network and tactical data exchange this means getting the data 
alignment right. 

r 

R. G. Zuidgeest presented the merits of artificial intelligence in 
command and control multi-sensor data fusion (MSDF). He presented 
the world model that includes MSDF and the four levels of 
hierarchical representations of knowledge sources: sensor, object, 
recognition, and relational level. He discussed a number of candidate 
AI techniques for the representation of the knowledge sources, and 
described a global distributed architecture for C2 networks where AI 
techniques can be applied. 
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AIR DEFENCE R D. R SUR 'EIL CE SYSTE 
TRACKING ASSESSMENT 

S. S. Lim D. F. Liang and M. 
112 Grassy Plains Drive 

Kanata, Ontario 
Canada 

K2M 2M5 

SUMMARY 

In this paper, an efficient Multiple Hypothesis 
Tracking (MHT) algorithm has been developed 
and implemented. This algorithm is a modified 
version of MHT combined with an N-scan back 
pruning approach. The principal objective of 
this modification is to effectively reduce the 
large number of hypotheses in the original 
MHT thereby yielding a fast tracking algorithm 
which requires moderate computing resources. 
The modified MHT algorithm has been 
extensively tested against numerous sets of 
real radar measurements. These real radar data 
contain complex tracking scenarios such as 
trajectories of several fighter aircraft going 
through high-g maneuvers, crossing tracks and 
close formation in a cluttered environment. 
This paper will demonstrate the performance 
of the modified MHT algorithm against a set of 
real radar data. Descriptions of the radar data 
and the extent of the clutter are provided. The 
effectiveness of the modified MHT algorithm in 
handling maneuvering targets will also be 
discussed.  

1. INTRODUCTION 

Future air defence , surveillance systems must 
be able to cope with highly maneuverable and 
closely spaced targets. The detection and 
tracking of dim targets in high-g and dense 
environments will require low detection 
thresholds  with resul t ing high clut ter  
densities. Most target trackers aiming at radar 
applications have been tested and evaluated 
based on the measurement data produced from 
simulation subject to a priori mathematical 
model and simplifying assumptions. However, 
i n  real-t ime radar target tracking, the 
measurements are not normally governed by 
any assumed mathematical models and hence 
inevitably cause unforeseen difficulties. 

Blanchette 
Defence Research Establishment Ottawa 

Department of National Defence 
Ottawa, Ontario 

KIA 024 

In current literature, a number of well- 
recognized approaches have been proposed [ 1 - 
41. The nearest neighbor standard filter (NNSF) 
is the most straight forward, and produces a 
single unambiguous data association solution 
at each point of time, based on the previous 
assoc ia t ion  and  t h e  cu r ren t  sensor  
information. This however may not be the best 
choice, especially because it does not make 
full use of 'all prior sensor data. Once an 
incorrect association is  made, it seems 
unlikely that the solution would ever recover. 

The branching algorithm [5,6] is an alternative 
to the NNSF approach. In this algorithm, the 
correlation performance can be further 
improved by deferr ing some difficult  
assignment decisions until more data are 
collected. Correlation hypotheses are created 
and the unlikely branches are eliminated by 
computing the relative likelihood of each 
branch, under the assumption that each target 
is present (i.e., the detection probability is 
one) and without accounting for false alarm 
statistics. This is an improvement over simple 
sequential decision making such as in the 
NNSF. However, the main criticism of the 
branching algorithm arises from the fact that 
the association constraint (that an observation 
cannot simultaneously belong to different 
target tracks) is not used. This implies that a 
target can be associated with every 
measurement  within i t s  gate .  Hence, 
measurements within several gates can lead to 
sets of data-association hypotheses that are 
not mutually exclusive. Smith and Buechler [6] 
have partially remedied this problem by the 
use of an ad hoc procedure to eliminate 
branches whose estimates are less than a 
special distance away. 

Bar-Shalom proposed a track-oricnted Joint 
Probabilistic Data Association (JPDA) filter 
[7-81. The JPDA computes the probability of 
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association of the latest set of measurements to 
the existing targets. The joint probabilities are 
computed under some assumptions of false 
target distributions and all the hypotheses are 
combined into one in every scan. This method 
performs an averaging over observation-to- 
track data association hypothesis that have 
roughly comparable likelihood. While this 
algorithm maintains continuity superior to 
NNSF, this is done at the expense of accuracy, 
since all reports are used in track update 
computation even though only one report has 
really originated from the target. More over, 
this algorithm does not provide the track 
initiation procedure. 

Reid [9] proposed a tracking algorithm, known 
as the multiple hypothesis tracking (MHT). The 
MHT approach will maintain several (perhaps 
many) possible data association solutions, and 
uses the history of sensor data to eliminate 
highly unlikely choices, eventually leaving 
only one best choice (hopefully). This should 
yield the best solution, however it does 
generally have periods of uncertainty. The 
m a i n  drawback is that in a dense target 
environment the number of hypotheses can 
increase exponentially with each scan, leading 
to severe computational burden. Alternatively, 
pruning the hypotheses becomes essential. 
Another disadvantage is that the data 
association decision is often deferred, and 
thus a single best estimate is not always 
available in a timely manner. Thus if one 
could not wait for the solution, then it would 
be necessary to take special measures. A sub- 
optimal track based variance of the MHT is the 
Track Splitting Filter (TSF). This filter deals 
with the problem of multiple measurements 
falling within a gate in a manner similar to the 
MHT, but it does not address the issue of 
multiple tracks competing for the same 
measurement. It  is well suited for tracking 
known targets in closed formation. 

Hence the principal consideration for the 
choice of a tracking algorithm for 
implementation in a real radar environment 
(rather than simulations), depends on the 
nature of the radar data and on the 
computational requirement for timely 
operation. In this paper a modified MHT 
(MMHT) algorithm has been developed for real 
time implementation and for the assessment of 
the performance against real radar data. The 

modified algorithm promises the feasibility of 
real-time tracking while requiring a moderate 
computer memory. The MMHT is a simplified 
version of the MHT but employs two modified 
hypotheses pruning techniques: d y n a m i c 
t h r e s h o l d i n g  and N - s c a n  b a c k  pruning.  The 
pruning schemes effectively delete unlikely 
hypotheses and maintain only a reasonably 
small number of hypotheses, thereby making 
the MMHT a real-time implementable 
algorithm. The performance of the MMHT is 
demonstrated against real radar data that 
contain complex track scenarios such as 
trajectories of several fighter aircraft going 
through high-g maneuvers, crossing tracks and 
close formation in a cluttered environment. 
The results of performance tests indicate that 
the algorithm is fast enough for real time 
implementations and capable of handling a 
large amount of track information. Further, i t  
is robust in several distinct tracking 
situations. 

The paper is organized as follows. In Section 2 
the modified MHT algorithm is presented. To 
demonstrate the performance of the MMHT 
algorithm, numerical results against various 
radar data are displayed in Section 3. 
Concluding remarks are presented in Section 4. 

2. THE MODIFIED MHT ALGORITHM 

In this Section, a modified MHT 
implementation is presented. As mentioned 
above, the main drawbacks of the MHT 
implementation are the requirement for 
enormous computation time and huge computer 
memory. This is because the number of track 
hypotheses grow rapidly with time. Hence, to 
make the MHT scheme implementable for real 
time applications, modifications to provide 
effective management of the track hypotheses 
are essential. In this Section, the 
modifications are referred to as the modified 
MHT (MMHT) algorithm. 

2.1 The Modified MHT Algorithm. 

The practicality of the MHT is determined by 
the degree to which the unlikely hypotheses 
are eliminated, thereby keeping only a 
manageable number of tracks with high 
probabilities. For this sake, the MMHT 
algorithm employs two pruning techniques, 
i.e., dynamic thresholding and N -scan back 
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approaches, with appropriate modifications. 
The dynamic thresholding is an improved 
version of the thresholding scheme by 
dynamically updating the probability 
threshold for pruning. The N-scan back 
pruning is to select, every N scan, only the 
most likely hypothesis from each cluster and 
delete all other hypotheses within the cluster. 
This pruning results in significant 
improvement in both computation speed and 
memory requirement for the track management. 
The advantage of the pruning process is to 
reduce efficiently the unlikely hypotheses and 
to maintain only a reasonable number of 
hypotheses. Thus it prevents the number of 
track hypotheses from growing so rapidly that 
they can expand out of control. Further, the 
pruning scheme simplifies the task by only 
showing the user the track scenarios of 
interest. The modified MHT scheme is 
graphically presented in the flow diagram 
shown in Fig. 1. 

The main part of the algorithm consists of 
clustering, hypothesis generation, pruning by 
dynamic thresholding and N scan back 
approach. The cluster (CLUST) subroutine 
associates measurements with the previous 
clusters. A cluster is a group of hypotheses 
containing associated tracks that do not 
interact with any other group of hypotheses 
within other clusters. The hypotheses within a 
cluster will not share measurements with the 
hypotheses of any other clusters. The basic 
goal of clustering is to divide the large 
tracking problem into a number of smaller 
ones that can be solved independently. The 
hypothesis generation (HGEN) subroutine 
creates new data association hypotheses for the 
set of validated measurements of each cluster. 
The probability of individual hypothesis is 
then computed in the PROB subroutine. Both 
the clustering and hypothesis generation 
procedures use the pruning subroutine to 
reduce the number of hypotheses which grow 
rapidly with time. The hypotheses satisfying 
certain qualifications will remain and all the 
unlikely hypotheses are eliminated in the 
PRUNl subroutine. As part of the pruning 
process, similar hypotheses may be combined 
into one. The subroutine FILT computes the 
estimate of each hypothetical track based on 
the previous estimate and on a new 
measurement using a standard Kalman filter. 
Every N scan, only the most likely hypotheses 

are selected and the other hypotheses are all 
eliminated in the subsequent considerations, 
as explained above. This procedure is shown 
in the subroutine PRUN2. The major 
distinction between the MMHT and Reid's MHT 
is with the two pruning schemes, i.e., dynamic 
thresholding and N-scan back pruning (the 
subroutines PRUNl and PRUN2 in Fig. 1). 

2.2 Clustering 

Clustering is a procedure for partitioning a 
large group of association hypotheses into 
several non-interactive sub-groups, each 
having a smaller number of hypotheses. The 
principal objective of clustering is to reduce a 
dimensional tracking problem into several 
smaller ones that can be solved independently. 
A byproduct of the clustering procedure is its 
suitability for efficient parallel processing of 
the tracking tasks. 

Initially, one cluster is set up for each 
confirmed track. Each new measurement is 
associated with a cluster if it falls within the 
validated region of any track from that cluster. 
A new cluster is initiated any time a 
measurement is received, which does not fall 
within the gates of any track contained in an 
existing cluster. The cluster is initiated with 
the measurement using the alternatives (true 
or false alarm) associated with its source. In 
order that clusters remain distinct, the gates 
of tracks between the clusters must not be 
overlapping. Thus, when a measurement falls 
within the gates of two or more tracks from 
different clusters, the clusters are merged. 
The merged cluster is called a super cluster. 
If tracks within a cluster separate spatially 
and no longer have overlap in measurements, 
that cluster is subdivided accordingly into 
smaller clusters that can be managed 
independently. 

2.3. Generation of The Association 
Hypotheses. 

Let L ( k ) = [ h ( k ) , i = 1 , 2  ,..., k] be the set of 
association hypotheses up to time k. This set 
is obtained from L(k-1 )  arid the latest set of 
measurements Y(k)  = (yl(k),y2(k), ...) as follows. 
New hypotheses are formed by associating the 
first measurement y,(k) with L ( k - I ) ,  then 
augmcnting the resulting set by associating 
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y , ( k ) ,  etc. The possible associations for the i- 
th measurement y,(k) are: 

i) the continuation of a previous track; 
ii) a new track; 

or iii) a false alarm (or clutter). 

However, the above assignments must be made 
subject to the constraint that each track can be 
associated with at most one current validated 
measurement which falls within the validated 
region of the track. 

2.4 Computation of the Hypothesis 
Probability. 

The sensor reports usually contain 
measurement noise generated from various 
sources, such as thermal false alarms, clutter 
and other targets. Suppose the number of such 
extraneous reports in any volume C obeys a 
Poisson distribution with mean b C ,  where b is 
the normalized extraneous report density. Let 
N D T ,  N T G T ,  N N T  and N F T  denote the number 
of measurements associated with the prior 
targets, previously established targets within 
the area of coverage of the sensor, new targets, 
and false targets, respectively. Then the 
probability of the hypothesis Li(k) given 
m ea s u r e m en t i s  
calculated[9] by 

Y' = (Yo) .Y(2) .  ... ,Y(k)) 

P ' ( k )  = P(L,(k)lY') 

L m=l J 
where P D  , J F T  . J N T  are the probability of 
detection, the density of false targets, and the 
density of new targets. respectively. The c is a 
normalization constant, H is the measurement 
matrix and P'(k-1) is the probability of the 
hypothesis L, (k -1 ) .  N ( x , B )  denotes the normal 

exp( - 0 . 5 ~ '  B-'x / d m ) ,  B = Hijkf  + R 

where P is the covariance of the target 
estimate for the prior hypothesis L,(k-1) and R 
is the measurement noise covariance. 

d i s t r i b u t i o n  g i v e n  b y  

The probability can be recursively calculated 
in the following way. First, all the 

probabilities of the prior hypotheses are 
multiplied by ( l - P D ) N m ,  Then the 
probabilities of new hypotheses are updated 
by multiplying either 

1) pFT, if the measurement is associated with 

2 )  p m ,  if the measurement is assigned to a 

or 3) PD / 0 -P,)N(j(k),B,) if the measurement y j  

a false target: 

new target; 

belongs to the i-th track, where 
j ( k )  = yj( k) - H(k$,(klk - 1). 

Finally the hypothesis probabilities are 
normalized. 

2.5 Pruning Unlikely Hypotheses. 

A track history L(k) at scan k is defined by 
selecting, at each scan j l k ,  a single sensor 
report yi (j),O< i j  S Nj, where ij = 0 refers to the 
hypothesis that none of the sensor reports 
within the validation gate is originated from 
the target. Hence the track history L(k) is just 
the hypothesis that the entire sequence of 
measurements within L(k) is correct, i.e., each 
sensor report y5(j) was originated from the 
target when i j # O ,  while no sensor report was 
received when 4 = 0.1 S j S k . The track history 
L(k) at scan k is obtained from the track 
history L(k-1 )  at scan k - 1 .  and incorporating 
it into the measurement set specified by 
Y( k) = (y,( k),i = 1.2,.. .( N'] . In notional terms, 
L(k)= (L(k-l), yi,i=0,1,2 ,..., N,). Clearly one 
history L,(k-I )  at k - 1  gives rise to (1+N,) 
histories &(k) at scan k. Then, the total 
number of such hypotheses L(k)  at scan k is 
given by ( l + N , ) M ( k - l ) ,  where M(k-1) is the 
number of hypotheses at k - 1 .  Hence the 
number of hypotheses will rapidly grow with 
time. Therefore, there is a clear need to limit 
the number of hypotheses. In order to 
eliminate the unlikely hypotheses, a few 
approaches have been proposed in the 
literature [ 1,2,9]: 

i) The T h r e s h o l d i n g  approach is aimed at 
removing hypotheses with probabilities that 
fall below a predetermined threshold. Since 
the probability of each hypothesis decreases 
as the number of measurements increases in 
the association event, the disadvantage of 
pruning by this approach is that some of the 
probable hypotheses may be eliminated. This 
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problem an be overcome by computi the 
probability of the most likely hypothesis 
based on the threshold, and then by adjusting 
the threshold to a lower level for further 
processing. This procedure will be denoted as 
“ D y n a m i c  threshold ing” and utilized in the 
PRUNl of the MMHT shown in Fig. 1. 

ii) The Fixed Number technique is aimed at 
allowing a predetermined number, say m ,  of 
the hypotheses to be maintained by ranking 
the hypotheses and choosing only the m most 
likely ones, as measured by the probabilities 
or score functions [2,6]. The limitation of this 
idea is that dissimilar hypotheses having 
almost the same probabilities may be 
eliminated, while retaining very similar 
hypo theses. Com bining similar hypo theses 
prior to pruning partially addresses this 
problem. However, combining similar 
hypotheses is a complex procedure. 

iii) The Ranking Approach is aimed at ranking 
and summing the probabilities of the more 
likely hypotheses. When this sum exceeds a 
threshold, the remaining hypotheses are then 
all eliminated. This pruning method can be an 
effective choice. however, the problem lies in 
terms of the computational cost for sorting a 
large number of hypotheses based on their 
probabilities for typical tracking situations. 

Unfortunately none of the above methods was 
found to be effective in actual trials by many 
investigators. For efficient pruning, in the 
MMHT algorithm (Fig. l),  two pruning methods 
(dynamic thresholding and N-scan back 
pruning) are employed with appropriate 
modifications. The dynamic thresholding (the 
subroutine PRUNl in Fig. 1) is an improved 
version of the thresholding scheme by 
dynamically updating the probability 
threshold. The dynamic threshold may be 
computed by multiplying a factor, for example 
0.65, to the probability of the most likely 
hypothesis. Thus, the dynamic thresholding 
can reflect the entire hypotheses probabilities 
and does not eliminate the hypotheses with 
similar probabilities 

I n  the modified MHT algorithm the major 
pruning is achieved by the N - s c a n  - b a c k  
approach (the subroutine PRUN2 in Fig. 1) in 
which only N-scan data (measurements from 
scan k - N  to k )  are considered in the 

association and track management. The other 
old track information as well as measurements 
corresponding to scans from 1 to k -  N - 1  are 
ignored in the subsequent considerations. 
However, N-scan back approach does not yield 
sufficient pruning and hence a single 
hypothesis selection criteria is added. 
Therefore, the resulting output of the 
subroutine PRUN2 is the  most likely 
hypothesis from each cluster ,and all other 
hypotheses are deleted from the corresponding 
clusters. This produces a significant 
improvement in pruning the unlikely 
hypotheses and ultimately resulting in a 
reasonably small number of hypotheses that 
can be maintained throughout the entire 
tracking operation. As well, these pruning 
processes make the MMHT an efficient 
algorithm that is suitable for applications in a 
real time environment while requiring only 
moderate computer resources . 

3. NUMERICAL RESULTS 

To illustrate the performance of the MMHT 
algorithm, the numerical results are presented 
in this Section. In Section 3.1, the recorded 
radar measurements are described and 
displayed in Figs. 2-5 and Figs. 7-8. The 
performance of the MMHT algorithm against the 
radar measurements is presented in Section 
3.2. 

3.1 The Radar Data 

The plots of the radar data obtained from RATT 
(Raid Tracking Trials) are presented in Figs. 2 
to 5. Five CF-18 fighter aircraft flying 
prescribed routes in tight formations served as 
raid targets for TEST1 and TEST2, and 
likewise, six aircraft flew for TEST3 and 
TEST4. The layouts of the two formations are 
shown in Fig. 6. The RATT routes are 
pentagonal in shape and the data that do not 
belong to the route are due to other targets in 
the vicinity as well as clutter. The prescribed 
altitude was 20,OOOff and the speed was 
5 0 0 k n o t s .  The turn rates were about lg  for 
normal formations but at the end of TEST2 and 
TEST4 the aircraft executed 6g turns for 1 nmi .  

A different set of plots consisting of RADAR5 
and RADAR6 data are shown in Fig. 7 and Fig. 
8, respectively. The examination of these plots 
reveals that the radar reports contain mainly 
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false returns due to heavy clutter. Especially 
RADAR6 data show only three distinct tracks 
while the rest of the data are clutter 
measurements originated from some other 
objects such as migrating birds. In fact, the 
number of such clutter data is about 200 per 
scan on the average. The extent of the clutter 
is highlighted in the zoomed-in view shown in 
Fig. 9. 

3.2 Tracking Results. 

To assess the performance of the MMHT 
tracker, evaluation tests were performed 
against the above mentioned radar data. For the 
N-scan back pruning, the parameter N = 3 was 
chosen. The results of the evaluation test 
against the radar data in Figs. 2-5 and Figs. 7- 
9 are presented, in Figs. 10-13, respectively. 
From these FigGes it is observed that as a 
whole. the MMHT estimated tracks closely 
follow the target trajectories, including the 
high -g maneuvers, close formation, crossing 
tracks, and scan misses in heavy cluttered 
environment. Further, it is noted that high-g 
maneuvers do not produce any remarkable 
degradation in the overall  tracking 
performance. From the results of Figs. 10-13, 
it is clear that the MMHT is, indeed, robust to 
the various tracking conditions and shows 
consistent performance against many difficult 
track scenarios. 

can be easily implemented for real time 
applications even on a personal computer 
system. 

4. CONCLUSIONS 

In this paper, an efficient implementation of 
the modified MHT algorithm has been 
developed for real time performance 
evaluations. The MMHT utilizes two pruning 
schemes to reduce the number of track 
hypotheses which grow rapidly with time in 
the original MHT algorithm. The dynamic 
thresholding and N scan back pruning are 
effectively implemented in the MMHT to 
produce a computationally efficient and real 
t ime implementable  a lgori thm. The 
performance of the MMHT has been evaluated 
against eight sets of recorded radar 
measurements. From the test results it can be 
concluded that the MMHT algorithm yields 
reliable estimates even for difficult target 
trajectories such as close formation, crossing 
tracks, high-g maneuvers and scan losses 
under heavy clutters. This implies that the 
algorithm is robust in various distinct 
tracking situations. Further, the MMHT is fast 
enough for real time implementations while 
requiring only moderate computer memory. 

Table 1. The CPU time and Memory used in the test. 
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Low Cost Multi-Sensor Suites For 
Surveillance and Weapon Guidance 

B. R. Suresh 
Alliant Techsystems Inc. 

600 Second Street NE 
Hopkins, Minnesota 55343, U.S.A. 

SUMMARY 
With the changing geo-political landscape, there is an ever 
increasing need for low-cost sensors for application to 
surveillance systems and weapon guidance. Typically, these 
applications require MMW radars, IR imaging sensors, ladars 
and acoustic sensors as well as signal processing algorithms and 
high throughput miniature processors. The emphasis should be 
on developing low-cost individual sensors. The system 
applications then typically involve a suite of low-cost multiple 
sensors. The fusion of information from these sensors provides 
superior performance and an overall cost-effective product. 

1. WTRODUCTION 
“...Like looking for a needle in a haystack” is how General 
Norman Schwartzkopf described the problem of finding mobile 
Scud missiles in January 1991. In the aftermath of Desert 
Storm, battlefield surveillance and precision weapon targeting 
in adverse weather have emerged as significant problems to be 
encountered by NATO forces in future conflicts. Targets of 
interest include fixed high value targets, time-critical fixed, and 
mobile high value targets and vehicular targets. There is 
evidence that these problems can be solved by using multi- 
spectral sensors. We examine the problem from the perspective 
of an unattended ground sensor for surveillance and an 
autonomous smart weapon. A key element in developing such 
sensors is keeping them cost effective. An assessment of and 
prognosis for future multi-sensor systems will be provided. 

2. MULTI-SENSOR TRADES AND SYSTEM 
ARCHITECTURES 
Over the years, significant dollars have been invested in the 
development of low-cost sensor technologies. Promising low- 
cost sensors include MMW radar, passive imaging IR, Ladar. 
and Acoustics. Table 1 lists the operating characteristics of 
these sensors [I]. Table 2 delineates the target discriminants 
derivable from these sensors. It is apparent that these sensors 
have differing strengths and weaknesses. The design of a multi- 
sensor system requires the matching of complementary 
characteristics provided by these sensors. The benefits of such 
a multi-sensor system include adverse weather operation, 
countermeasure resistance, and high performance at low cost. 

There is a popular misconception that multi-sensor systems are 
unaffordable; that dual mode costs twice as much as single 
mode, and can never be cost effective as single mode. It is 
important to recognize that dual mode is not, for example, the 
“best” MMW attached to the “best” IR; doing so indeed would 
defeat the very spirit of seeking a dual mode solution. 

As shown in Figure 1, the key element in the engineering of a 
dual mode system is the degree to which the individual sensors 
are balanced to exploit their synergy and performance. This is 
in contrast to driving one sensor to be a “Cadillac” and 
expecting it to deliver most of the performance; since this ends 
up driving the sensor into the domain of diminishing returns, 
cost effectiveness will suffer. By keeping each sensor low cost 
(and thus, low performance) and using their synergy to regain 
the high performance, cost effective multi-sensor system 
designs can be obtained. 

The ATR (Automatic Target Recognition) function in most 
RSTA systems and weapon seekers can be performed by a 
judicious combination of MMW radar, FLIR, and ladar sensors. 
Figure 2 depicts the roles of different sensors in the ATR 
function. The left hand column in the figure depicts the 
hierarchy of ATR functions-ROI search, detection, 
recognition, and identification. The roles of the different 
sensors in performing these functions is also indicated there. 
Due to the laws of physics, each sensor is inherently adapted to 
performing certain functions, versus others. For example, 
MMW radar due to its longer wavelengths, is well suited for 
rapid wide-area search and ROI selection. In contrast, imaging 
ladars with their high resolution 3-D signatures are very useful 
in target identification. Passive FLIRs have strengths in 
functions that lie between the functions where radars and ladars 
are strong. The key to a low cost sensor system lies in a 
judicious engineering of a multi-sensor suite where each sensor 
is performing in a physical domain suited to itself, and therefore 
can be mechanized at low cost. On the other hand, one can 
force a ladar to perform all the functions, including ROI search. 
No doubt, such a ladar can be built; but mechanizing such a 
device which challenges the laws of physics costs money-lots 
of it! 

Figure 3 shows the sensor fusion architecture alternatives for 
smart weapons as an example. A variety of cost/performance 
trades are available for a variety of applications. The 
applications span the spectrum from very simple sensor fuzed 
munitions to more potent terminally guided missiles. The 
bottom line is to recognize that a multi-mode sensor is not a 
monolith; a family of multi-mode solutions exists to address 
varying cost/performance needs. Figure 4 illustrates a family of 
smart weapons that can benefit from a family of simple to 
sophisticated multi-mode sensors. 
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Table 1. Sensor Characteristics 

Active 

Viewing 
Adverse Geometry 

Day/ Weather Signature 
Passive Night Use Use Robustness 

Temporal 
Signature 

Robustness 

 passive^^ I NO I Yes I Yes I NO I Yes I NO I -YeS 

Rapid 
Scan 

Broad 
Area 

Coverage 

No 

Yes 

No 

Yes 

Non- 
Line-of- 

Cost Sight 

L O W  No 

L O W  No 

High No 

JAW Yes 

MMWRadar 

Ladar 

I Dual mode system engineering involves partitioning 
the problem into domains best suited for each 
sensor - i.e., divide and conquer 

Yes No Yes Yes No Yes Yes 

Yes No Yes No Yes Yes No 

Table 2. Sensor Discriminants 

Acoustics 

Passive 
IR 

No Yes Yes Yes Yes Yes Yes 

MMW 
Radar 

Down- 
Range 
Reso- 
lution 

No 

Yes 

Yes Ladar 

Cross- Eleva- Trans- 
Range tion verse 
Reso- Reso- Dop- Veloc- Vibra- Polar- 
lution lution pler ity tion ization 

Yes Yes No Yes No No 

Yes* Yes* Yes No Yes Yes 

Yes Yes Yes Yes Yes Yes 

Acoustics 

Reflec- 
tance 

No 

Yes 

Yes 

No 

Radi- 1-D 2-D 
ance Shape Shape 

Yes Yes Yes 

No Yes Yes* 

No Yes Yes 

No No No No No No Yes No Yes No 
* With monopulse imaging 

I Synergy involves capitalizing on complementary 
discriminants to create new, robust discriminants 

Acoustic 1 E:- 

Shape sions 

No Yes 
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Figure 3. Sensor Fusion Architectures and Trades 

3. ADVANCED SENSOR TISTBED 
A key tool required in the development of multi-sensor systems 
is an Advanced Sensor Testbed to support sensor system R&D. 
Figure 5 shows a schematic of such a testbed, which is designed 
to be a flexible and rapidly reconfigurable tool to support a 
variety of system development programs. This testbed was 
developed by Alliant Techsystems as part of its ongoing R&D 
program. We have also developed a variety of sensors which 
“plug-in” to the testbed to permit evaluation of alternate sensor 
concepts. Sensors include MMW radars (W-band, Ka-band, 
and V-band), uncooled imaging IR sensors, imaging ladars, and 
acoustic arrays. The testbed is capable of being tower tested or 
flight tested. 

Figures 6 and 7 depict the advanced sensor testbed including the 
instrumentation. This configuration includes a dual mode 
sensor suite with a MMW radar and an uncooled IR sensor. 
Figure 8 shows some of the target signatures collected with the 
advanced sensor testbed. These signatures can be used for 
phenomenology analysis, sensor evaluation, and algorithm 
development . 

to uncooled IR sensors is based on the unique microbolometer 
technology [2]. Unlike many cryogenically cooled IR FPA 
sensors, the microbolometer uncooled IR sensor has the 
following benefits: 

The microbolometer is based on monolithic silicon 
technology, and is extremely low cost 

Amenable to long duration, unattended operation 

Requires no cooler or chopper, leading to low power 
operation 

Mechanically rugged with no microphonics 

Long-wave (8-12 pm) operation with broadband response. 

Figure 9 depicts an uncooled 1R sensor (developed by Alliant 
Techsystems) along with its salient parameters. WAS with 
240 x 336 pixels have been fabricated with excellent uniformity 
characteristics. Note the sharp, high contrast imagery produced 
by the sensor. 

Imaging IR sensors are now becoming increasingly affordable 
with the advent of uncooled IR sensors. A promising approach 
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I 

Figure 7. Operator Side of the Sensor Testbed. All controls and monitors are available to the operator on this side. 

Algorithm and processor development generally follows a 
3-step approach as shown in Figure 10. Algorithms are initially 
developed on general purpose computers such as VAX and 
SUN stations. In the sewnd step, algorithms are ported to a 
HOLprogrammable, real-time processor testbed. This allows 
field evaluation of algonthms for c o n t i h  building. Finally, 
m the third step, a padraged processor is built Such a packaged 
processor is exemplified by Aladdin. Aladdin is a compact 
(&inch diameter) high throughput pnofcssor intended for multi- 
senmr si@ and image processing [31. Aladdin has a modular 
architecture and can be scaled and rccontigured for different 
applications. Aladdin is programmable in Ada or C. Since the 
processors in steps 2 and 3 of Agure 10 axe functionally 
equivalent, it greatly facilitates softwsre migration. 

A key to the success of a multi-sensor system is the maximizing 
of the synergy between the sensors. This can be done hy 
developing fusion algorithms that maximize this synergy. It is 
this fusion synergy which is instrumental in yielding high 
performance out of two relatively low-cost sensors. Multi- 
msor fusion ean be prformed by combining information fmm 
two senson at various informational hierarchies. The approach 
which yields the highest synergy. called concomitant 
processing, is depiaed in Figure 11. Concomitant processing 
maximizes the synergy hy integrally fusing the information 
from two sensors at all possible hierarchical levels. 

Multi-sensor systems can be leveraged for surveiUance system 
and smart weapon seeker applications. These system 
applications arc described next 



Ground Truth Tank Target 94 GHz MMW Slgnature 

FalseCoior Ladar Rsnga Image 

Falsa-Color Ladar lntenslty Image 

Figure 8. Target Signatures Collected wlth Advanced Sensor Testbed 



LOCUSP Camera Wlth BFOV Lens 

I .. , . S0.&ioC NETD 
Chopperless operation 
15’ x a”, 5” x 3’ dual FOV 
1.0 mrad, 0.33 mrad IFOV U 

Block Diagram 

UU 

Alternate optics interface 
ManuaVauto gain control 
24 Vdc, 13 watts operation 
RS170 video out 

* 7.3 ibs wlthout optics 
5 . 1 ’ ~  5.3’x7.1* (H x Wx L) 
without optics 

Figure 9. Uncooled IR Sensor 

Y 

& 

Image Research Laboratory Flexlble Testbed Processor “Miniature” Processor (ALADDIN) 
Concept development Concept validation Operational scenario validation 
General-purpose computer WAX, Rapidly reconfigurable modules 

F o M i t  hardware 
HOL programmable 

Nonreal-time High confidence in algorithm - Real-time 
Limited confidence in algorithm 

Semicustom hardware 
* HOL programmable 

‘Real-time” HOL programmable 

Sun, etc.) 

performance 
performance 

Flgum 10. Real-Time Processor Evolution 



2M) 

p.l;l Fuslon 

Cldtication 

Classiflcatlcm Template 
Matchkg Eairaction 

'Conwmltant: 'Swnehing That AccMnpanles Or Is Collaterally Connected wlth Swnsthing 
Else' - Wshsteh NewColleglate Dictionary 

Figure 11. Concomitant Dual Model Fusion Algorithm 

A SURVEILLANCE APPLICATIONS 
The Desert Storm experience highlighted the strategic benefits 
of battlefield surveillance and situational awareness. Future 
conflicts will vcry defmitely involve the rapid deployment of 
light forces. These light forces are deficient in anti-armor 
capabilities and lack protection against the heavy systems they 
may encounter before additional reinforcements arrive. The 
lethality and survivability of such light forces requires 
surveillance systems-unattended ground sensors capable of 
long duration operation. Such systems are applicable to forward 
ohservation for fire control. mobile reconnaissance (ground 
based or airborne), and covert intel operations. 

The key technical problem in such a battlefield surveillance 
sensor system is one of reliable, wide area target detection with 
low false alarms and real-time threat imagery transmission over 
an RF communication link. This problem is exacerbated hy the 
fact that military communication channels are typically 
bandwidth constrained. Intelligent bandwidth compression 
techniques which combine automatic target recognition with 
conventional video bandwidth compression can often be used to 
get over the bandwidth bottleneck. 

Figure 12 depicts a conceptual battlefield surveillance sensor 
system. It conrains an acoustic sensor which is on all the time. 
On detection of any activity, it serves to "wake-up" and turn-on 
the rest of the system. Such power management is necessary to 
enable long duration operation on a battery. Ihe main targeting 
sensors are an imaging IR sensor and low light level TV. A 
GPS is provided for accurate location of the sensor and an 
electronic compass and laser rangefinder provide precise target 
location with reference to the surveillance sensor. A processor 
is provided for sensor signal processing and a radio transmits 
the image data back to a control station. 

Uncooled IR is an ideal choice for such a surveillance system. 
The uncooled IR sensor is compact, low cost, and low in power. 

Since it is uncwled (does not require replenishment of Liquid 
Nitrogen), it is amenable to long duration unattended operation. 
It is rugged and can be air dropped. The broadband response 
allows multi-color operation for enhanced target detection. 

5. SEEgER APPLICATIONS FOR WEAPON 
GUIDANCE 
Seekers are currently being developed in the US. for fixed high 
value targets (e.g., bridges, bunkers) as well as mobile targets 
(e.g., SS-, tank, APC). Thegreat scud hunt during Des- 
Storm highlighted the nced for precision strike against targets. 

Examples of weapons intended for fixed high value targets 
include the JDAM and JSOW. JDAM is a unitary bomb, which 
in its baseline configuration incorporates INSIGPS guidance. 
JSOW is a dispenser for cluster munitions or a unitary warhead, 
which also embodies INSICIPS guidance. Both JDAM and 
JSOW can have their precision strike capability significantly 
enhanced by the addition of a simple, low-cost terminal steker. 

Such a guidance approach to precision strike is illustrated in 
Figure 13. Given apriori knowledge of the location of fixed 
high value targets, INSlGFS guidance can be used to deliver the 
weapon within a small m r  basket-typically 13-30M CEP. A 
terminal seeker can then be used to target a precise aimpoint to 
get 3M CEP. Since the search area for the seeker is greatly 
reduced by the INSIGPS, a low-cost endgame seeker can be 
utilized for p i s i o n  strike. 

A variety of seeker technologies have been explored for the 
fixed high value target saker. Table 3 lists the pros and cons of 
many of these s e e k e r s a e  bottom line is that there is no 
acceptable solution. A dual mode MMWlIR seeker provides an 
attractive alternate choice for the fixed high value target seeker. 
A dual mode seeker keys on the fact that the seeker only has to 
search a small area localized by the INSIGPS. The MMW 
operates effectively in a d v m  weather at long range to provide 
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an initial target fix; since the MMW is scanning a small 
localized area. it delivers adequate performance to get into a 
target basket until the 12R effective range is reached. The 
MMW then hands off to the high resolution 12R for the 
endgame precise aimpoint tracking. In clear weather, the 12R 
would get the hand-off at a longer range. Such a sensor 
resource management is well-suited for an autonomous fixed 
high value target seeker, and a terminal accuracy of 3m CEP is 
possible. 

A key challenge in the development of high value target seekers 
is the establishment of a methodology and infrastructure for 
target area mission planning. The general strategy for mission 
planning is depicted in Figure 14. One starts out with, for 
example, a Basic Target Graphic of the target area, Salient 
target features are extracted by the mission planner to generate a 
scene description file. This file is then transformed to the 
domain of the seeker sensor (IR. MMW, etc.) by sensor 

Y 

modeling tools. The transformed file is then loaded into the 
seeker for target acquisition using correlation and scene 
matching algorithms. The challenge of developing mission 
planning techniques will greatly benefit from the advances in 
sensor modeling and computer graphics. The commercial 
infrastruchlre set up by the videogame and entertainment 
industries can also provide benefits here. Oddly enough, the 
current generation of children growing up with Nintendo may 
provide the recruiting ranks for the future developers and 
operators of mission planning workstations! 

Alliant Techsystems has built and flight tested MMW seekers 
for high value target acquisition. Figure 15 shows a POL 
refincry being acquired by the MMW seeker in a flight test. IR 
terminal aimpoint algorithms have been developed and 
demonstrated in the lab (see Figure 15). These algorithms rely 
on template matching b e e n  a stored reference image and the 
sensed image. 

Basic Target Graphic (BTG) 

Scene Dellcrlptlon File 

User Selected Features 

Figure 14. Target Area Mlsslon Planning 
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IR Target Acquisition 

bker Application ot a Dual Mode Seeker 

MMW Target Acquisltion 

Figure 15. nxed Hlgh Value Target Set 

Relocalable targets such as mobile missile launchers present a 
different set of problems with their ability to fire and move. 
Precise location is virtually impossible to determine even after 
the missile is fired. Their ability to quickly move aftcr f ~ n g  
requins more ass& to be used to a l k k  the launch system The 
problem is funher complicated by their single target nature thus 
negating the ability to use target duskring techniques for target 
acquisition. Another complicating aspect of mobile missile 
launchers is their ability to appear as dim targets, i.e., low 
observable, countwmeasured, camouflaged, and usually in deep 
hide, thus requiring highly complex sensors, just to acquire 
them. The ever-increasing availability and capability of these 
weapons will require a large number of assets to be dedicated or 
diverted to this mission in order to neutralize ils effectiveness. 
As seen in Des& Storm. the effectiveness of this approach is 
limited. Hence, a “Scud Buster’’ must be accurate, 
countermeasure resistant. all weather. and autonomous while 
maintaining low cost. Multi-sensor seekers provide a cost 
effective solution in this case as well-however. the problem is 
more complex than that of hitting fixed high value targets. 

A variety of seeker technologies have bxn investigated for the 
mobile target seeker as well. Table 4 outlines their pros and 
cons. Once again, none of these technologies provide an 
acceptable solution. 

As an alternative to the above technologies, dual mode 
MMWlIR provides an atvactive option. The complementary 
synergy of MMW and IR balance out each other’s weaknesses 
to provide a total performance capability. By fusing MMW and 
IR information. their synergy can be exploited to obtain 
quantum improvements in the performance needed to meet the 
mobile target seeker requirements [4]. Figure 16 shows actual 
field test d t s  obtained by Alliant Techsystems (under Army 
programs) to quantify the benefits of dual-mode MMW/IR 
synergy over MMW-alone or IR-alone. It U this synergy which 
holds the kcy to the detection of cou stafioMly targets, and 
sparsely locared SShf/TEL targets in the mobile target strike 
mirsion Suhmunitions such as the US. Army’s BAT capitalize 
on this synergy to target elusive SShlfIELs. 

The reliable recognition and identification of tactical targets will 
greatly benefit from the emergence of model based multi-sensor 
ATR algorithms. One such promising approach is the 
Integrated Multiresolution Algorithm (MA) paradigm. The 
IMA paradigm is contrasted with the classical ATR paradigm in 
Figure 17. The IMA paradigm is based on the premise 
(modeled after the human cognitive process) that the ATR 
function should proceed on a coarse-to-fine hasis. with multiple 
hypotheses (targets. aspects, and depressions) considered at 
early stages of the process. leading to specific hypotheses at the 
later stages of the proms. This is an inlegrated ATR approach 
which, in a single, seamless paradigm, provides detection. 
recognition and identification as a by-product at successive 
levels of refinement in a multi-resolution tree. Unlike the 
classical ATR paradigm, a top-down approach such as IMA 
completely eliminates the successive information reduction 
steps. resulting. in a two-fold benefit. First, it prevents 
propagation of erroneous decisions made in earlier stages. 
Second, it avoids scenario dependence by eliminating 
information reduction steps which are usually tied-in to local 
StatisticS. 

6. CONCLUSIONS 
Multi-sensor systems will have ubiquitous applications in 
surveillance systems and smart weapon precision seekers. 
Multi-sensor systems provide adverse weather operational 
capability and countermeasure resistance. Multi-sensor systems 
provide low cost solutions. It takes the right system engjneering 
approach to balance the complementary capabilities of sensors 
in attaining a low cost solution. A family of multi-sensor 
systems can he engineered to provide the right cost versus 
pmformance operating point for a variuy of missions. 
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Table 4. Mobile Target Seeker Candidates and Their Trades 

Candidate 
'echnology Advantages 

MMW Mature technology 
Wide area coverage 
Adverse weather 

Cold target detection 
capability 

capability 
I 

IR Mature technology 
Good target 
classification/aimpoint 
capability 

LDAR 1 ~ o o d  target 
classification/aimpoint 
capability 

Mobile Target Seeker 

Disadvantages 

Unacceptably high false alarms in 

CM susceptibility (especially for 

Inadequate target classification/ 

wide area search 

high value targets) 

aimpoint capability 
MMW/IR fusion synergy provides 
-Wide area search with reliable 

- Coldktationary target detection 

- CM resistance, particularly needed 

- Accurate target classification 
MMW provides adverse weather 
capability 
IR provides precise aimpoint and 

Dual mode provides graceful 
performance degradation when one 
sensor is rendered ineffective 

clutter rejection 

Adverse weather vulnerability 
CM susceptibility (especially for 
high value targets) 

for time critical targets 

Technology not mature 
High DTUPC cost 
Adverse weather vulnerability 
Inability to search wide areas in 
mission timelines 
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SUMMARY 
The modem air superiority aircraft is faced 
with ever increasing threats and more capable 
targets. To be effective against them, it needs 
to know what and where they are as early as 
possible during any encounter. It must do this 
during day and night, in all weathers, in hostile 
counter measure environments and in the 
presence of clutter. 
The aircraft will receive large amounts of 
information from multiple sensors and data 
communications systems. If the information 
is to be used effectively to the benefit of the 
mission, it must be aligned, correlated, 
consolidated and presented to the crew in a 
meaningful form. 
A model is offered of tactical situation 
awareness processing as it might be embedded 
in a future avionics system. It shows Sensor 
Data Fusion in relation to sensors and 
communications, to situation and threat 
assessment and to sensor and mission 
management. It shows the flow of data around 
the sub-system as it creates and maintains the 
tactical situation database and ranks the 
information therein in order of importance to 
the mission. 
The requirements placed on sensor data fusion 
by air superiority operations are discussed. 
These are dominated by particular features of 
the tactical aircraft platform and its mission. 
A computer test harness, developed by BAe 
Defence, Military Aircraft Division, is 
described, along with built in tools which 
calculate test statistics. The harness was 
developed as part of a programme of studies 
carried out by the Mission Systems group of 
the Product R&D team within the Systems 
Engineering Department at BAe's Warton 
unit in Lancashire, U.K. Examples of the 
results which were obtained when an air to air 
sensor data fusion model was evaluated are 
reproduced. 

1 INTRODUCTION 
Since the early days of air warfare a pilot's 
ability to maintain an awareness of the tactical 
situation has been a dominating factor in the 
outcome of air combat engagements. Until 

relatively recently this ability was a "sixth 
sense", possessed by some (the aces) and not 
by others. Modern multiple-sensor and 
communications systems have the capability 
to provide all the data necessary to establish 
and maintain Tactical Situation Awareness 
and to extend its scope far beyond the visual 
range. However, effective use of these sensors 
can increase the potential to gather 
information to such an extent that 
"information overload" becomes a real 
problem. Even in multiple crew aircraft, the 
assimilation of data from multiple, disparate 
sources can become a significant task in a 
target rich environment if no computer 
assistance is provided. 
The increasing sophistication of the (airborne 
and ground based) threat, the complexity of 
the sensor system and a potential requirement 
for single crew aircraft has lead to an emerging 
need to provide for pilot assistance through the 
use of computer aids. In future aircraft, 
automation of Tactical Situation Awareness 
processing will reduce workload and enhance 
performance by providing a single, 
comprehensive air picture to the aircrew 
which requires the minimum of human effort 
to assimilate. 
This text is concerned with Tactical Situation 
Awareness processing for some future air 
superiority aircraft. In particular, with those 
processes known as Sensor Data Fusion. Its 
objective is to identify those problems which 
arecharacteristic of, and sometimes unique to, 
the air superiority role. 

2 TACTICAL SITUATION 
AWARENESS PROCESSING 
Figure 1 shows a model for Tactical Situation 
Awareness processing. It comprises sensors, 
data fusion, situation assessment and sensor 
management. 
The system shown in Figure 1 is a generic one. 
It might be said to represent many classes of 
military and civil Situation Awareness 
processing systems. However, it is an 
adequate model on which to base an overview 
of the air superiority case and to outline the 
environment in which Sensor Data Fusion will 
operate in the future. 
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Tactical Situation Awareness 

2.1 Tactical Situation Database 
The Tactical Situation Database is an on-line 
store of information. Some of it will be 
long-term and slowly-changing, such as fixed 
ground threats or the expected enemy force 
composition. It is sufficient to manipulate and 
update such information at a ground 
installation and provide it to the aircraft in the 
form of a data-cartridge at the start of each 
mission. The Sensor Data Fusion process 
would make use of such data but would rarely 
update or amend it. 
Another class of information may be described 
as medium-term and infrequently updated, 
such as long range threats, targets and friendly 
forces. They would be beyond the coverage of 
the aircraft's sensors or, if it is conducting a 
mission as part of an operational group, 
beyond the group's sensor coverage. Such 
information would be received periodically 
from a Command and Control centre via the 
data communications network. The Sensor 
Data Fusion process would correlate and align 
this information, in time and to the local spatial 
datum, and ensure that the database is always 
fully up to date. It may use this data, via Sensor 
Management, to cue the sensor system when 
first detection becomes possible. 
The final class of information in the database 
may be described as short-term and on-line, 
such as targets and threats which lie within 
sensors and weapons range. Often they will be 
visible to multiple sensors simultaneously 
and, in group operations, to several group 
members simultaneously. The alignment, 
correlation and consolidation of this data 

forms the prime task of the Sensor Data Fusion 
Process. In a target rich environment, it can be 
highly processor intensive. 
In addition to these types of update, the crew 
may intervene to change the Tactical Situation 
Database at any time. Eg in response new 
information received via voice 
communications. 

2.2 Situation Assessment 
Situation assessment is concerned with 
priorities and'resources. Priorities may stem 
from several sources. The most important of 
these are threat (what poses the greatest danger 
to me'!), target (what are my best opportunities 
to attack?) and crew intervention (what does 
the crew want to do next?). By quantifying 
these, the Tactical Situation Awareness 
system can adapt to provide the highest quality 
information where it is needed most. 
Threat prioritisation can be based on track 
parameters provided by the Sensor Data 
Fusion Process such as predicted closest point 
of approach, time to closest point of approach, 
inferred threat type etc. Target prioritisation 
may be based on firing opportunity 
calculations and predicted kill probabilities. 
Threat or target prioritisation may be 
overridden by the crew at any time and in the 
case of target prioritisation crew selections 
will be the norm. 
Resources are limited on a small aircraft. 
Availability of fuel, armaments, processing 
capability, etc. all impinge on the its ability to 
follow a particular course of action. Situation 
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assessment will monitor resources against the 
current Tactical Situation and indicate to the 
crew when critical resource levels are reached. 

2.3 Sensor Management 
The Sensor Management process completes 
the Tactical Situation Awareness loop. It is 
concerned with controlling the behaviour of 
the sensors to adapt it to the current Tactical 
Situation. The extent to which this is possible 
depends on the sensors. Some are intrinsically 
controllable and others are relatively passive 
and fixed in their behaviour. In general, an air 
superiority aircraft will carry a mix of these 
types. 
Sensor Management will control the search 
behaviour of the sensors. Its objective will be 
to maximise the probability that threats and 
targets are detected, acquired, tracked and 
identified as soon as it is physically possible 
to do so. It will do this by adapting the sensors’ 
response to information available from 
external sources. Depending on the quality of 
the external information it may initiate wide 
volume or narrow searches (a process known 
as cuing) or direct track initiation, for one or 
more sensors, using external data to initialise 
Sensor Data Fusion (a process known as 
priming). 
Once threats and targets have been detected 
and acquired, Sensor Management tries to 
ensure that prescribed levels of information 
quality are achieved, and then maintained, in 
the tactical situation database. If the 
information, regarding a particular target or 
threat, is found to be inadequate in any way, 
sensor resources may be concentrated in its 
region. Conversely, if the information exceeds 
required quality levels, sensor resources may 
be freed for use elsewhere. 
All of the above actions will be subject to crew 
intervention, indirectly via the priority list and 
directly via cockpit sensing controls. 

3 THE IMPACT OF THE AIR 
SUPERIORITY ROLE ON 
SENSOR DATA FUSION 
The requirements placed on sensor data fusion 
by the air superiority role are dominated by 
particular features of the aircraft platform and 
its mission. For many surface based and large 
platform based sensing tasks, the numbers, 
types and spatial distributions of sensors may 
be chosen to deliver constant high 
probabilities of detection and tracking over a 
given region. On an air superiority aircraft, this 
is not the case. The aircraft is designed to 

optimise vehicle performance features and the 
sensor fit is strictly limited by constraints of 
space, weight, power consumption etc. Thus, 
an approach to data fusion is required which 
is tailored to the sensor fit and the likely sensor 
deployment strategies. 
The following sections consider the 
limitations imposed by the constrained sensor 
fit, the nature of the targets and the short 
duration of airborne engagements. 
3.1 The Impact of Sensor Fit 
The aircraft is equipped with a sensor suite to 
provide targetting data to its weapons system, 
to provide early warning of attack and to 
provide situation awareness to the crew 
beyond the visual range. Usually, the prime 
sensor will be an air to air RADAR. This will 
provide accurate range and radial velocity 
measurements and fair sight line 
measurements. It may have additional modes 
for cooperative and non-cooperative target 
identification. Data from the RADAR may be 
used for targetting medium and short range 
missile systems and for controlling gunfire. 
The RADAR may be supported by an infrared 
sensor referred to as Infrared Search and 
Tracking (IRST). An IRST will provide 
accurate sight line and, sometimes, angular 
velocity measurements. It will not provide 
directly measured range or radial velocity. It 
may have modes for non-cooperative target 
identification, but these will usually require 
crew intervention and may only be practical 
on multiple crew aircraft. Data from the IRST 
may be used for targetting in place of RADAR 
data but, unless supported by externally 
measured range data, would introduce extra 
uncertainty into the fire control processing. 
The third common on-board sensor is the 
Electronic Support Measures (ESM). This 
comprises a RADAR Warning Receiver 
supported by enhanced direction finding. The 
ESM measures the characteristics of the 
RADAR emissions made by other aircraft or 
surface installations. These may be used for 
non-cooperative target identification. It also 
provides relatively poor sight line data. The 
purpose of the ESM is to give early warning 
of hostile platforms and weapons 
engagements and to aid the identification of 
the emitting platform. 
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The air superiority platform may carry other 
sensor types but the above, in conjunction with 
data communications, form a sufficient basis 
for examination of the properties of the Sensor 
Data Fusion process. 
Such a Sensor suite is referred to as 
non-commensurate. This means each sensor 
produces an accurate and reliable estimate of 
adifferent characteristic or feature of the target 
and coarser estimates (or no estimate) of other 
target characteristics. If the data fusion 
process can associate different sensor views 
of each target together correctly, the rewards 
in track quality and confidence will be great. 
Such a system is said to offer high spectral 
band width. This means that it is observing the 
targets and threats, simultaneously, in 
multiple bands of the electromagnetic 
spectrum. This has  the advantages of high 
probability of detection because the aircraft 
has more chances to "see" the target. It also 
produces large synergistic gains as a result of 
data fusion because lots of different types of 
information are being gathered. The result is 
fused tracks of high dimensionality. 
An example of this, which is quoted 
frequently, is the fusion of RADAR and IRST 
measurements. As discussed above, RADAR 
contributes an accurate estimate of range and 
radial velocity and IRST Contributes accurate 
sight line and angular velocity. The effect of 
data fusion on position estimation may be 
visualised as shown in Figure 2. 
In addition to the great improvement in 
location accuracy, fusion yields estimates of 
speed and heading to an accuracy that is not 
available from either sensor individually. This 
is because RADAR suffers from uncertain 

angular velocity estimation and IRST 
produces no radial velocity. Both are required 
to estimate speed and heading. 
For the purposes of this discussion of the 
sensor suite, it is sufficient to regard Sensor 
Data Fusion as comprising two main tasks. 
They are data consolidation, producing single 
estimates of target state and identity from 
multiple inputs, and data association, working 
out how many targets are present and which 
sensors are observing them. In later sections, 
a more detailed breakdown will be introduced. 
With this type of sensor suite, data 
consolidation is "easy" and approximate 
methods produce results which are good 
approximations to the optimum. 
However, data association, in the presence of 
ambiguity, may be difficult. Optimal methods 
can produce uncertain results (and 
approximate methods even worse ones). Data 
association must be carried out on the basis of 
the data common to all sources and the quality 
of the result will be governed by the coarsest 
information which is used. This is particularly 
important when fusing data for identification 
purposes. Reliable identification often 
requires ESM returns and identification 
performance may be governed by our ability 
to do association on the strength of poor ESM 
sight line data. 
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Returning to the RADAR and IRST example, 
association cannot use the accurate RADAR 
range and radial velocity information because 
the IRST produces no corresponding 
measurements and the accurate sight line and 
angular velocity measurements from IRST 
must becompared with thecoarserequivalents 
from the RADAR. This means that the quality 
of the result is governed by the RADAR 
angular accuracy. These difficulties may be 
visualised as shown in Figure 3. 
This represents one of the simplest target 
configurations leading to ambiguity. Two 
targets, flying close together, are detected and 
reported by both sensors. The data fusion 
process must select the appropriate pair of 
fused tracks from the four candidate tracks. 
Simple logic indicates that there are only two 
feasible pairs. Unfortunately, the likelihoods 
that each pair is the true one will have similar 
values unless some other information can be 
used to discriminate between them. 
Clearly, a data association algorithm, making 
optimal use of all the available information, is 
required in order to resolve matters as quickly 
as possible. In addition, a strategy of pooling 
track data from unresolved groups into group 
reports may reduce uncertainty and deliver a 
stable solution until full resolution is achieved. 
The situation is complicated further by the 
variations in coverage and sensing 
characteristics of the various data sources. The 
example in Figure 3 was assumed to arise in 
a region where RADAR and IRST were 
operating at similar, high levels of detection 
probability. When dealing with multiple data 
sources, such a situation would be relatively 

unusual and unresolved groups would 
frequently occur in which each data source 
reports different numbers of targets. 
Sensing characteristics may also vary with 
environmental conditions, with target type and 
target behaviour. IRST detection may be 
affected by the weather or by target aspect and 
the ESM performance is dependant on the 
sensor management strategy of the target (the 
more emissions it makes, the easier it is to 
detect and identify). Furthermore, the fusion 
platform may allocate different sensors to the 
task of maintaining the information quality for 
any track or group in response to changes in 
the situation. 
Uncertainties, such as these, lead to a 
requirement for flexibility in the Sensor Data 
Fusion process. In addition, it must be highly 
sophisticated in its approach to data 
association. 

3.2 The Impact of Target Behaviour 
Airborne targets may be highly manoeuvrable 
(fighters in particular) and it is often necessary 
to dedicate the on board sensors (RADAR and 
IRST) to the maintenance of high quality, 
frequently updated, tracks on a small number 
of high priority targets in order to minimise 
the probability of track loss. This leads to the 
concentration of sensor resources in a small 
region and the potential loss of wider situation 
awareness and surveillance. This is 
represented in Figure 4. 
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While this is going on remotely-sensed, 
communicated data will provide background 
situation awareness, in conjunction with the 
ESM, to satisfy the platform's needs for 
surveillance and early warning. 

3.3 The Impact of "Time Lines" 
The aircraft and its target are capable of 
manoeuvring at high speed for short periods. 
For this reason, the periods during which the 
aircraft is actively prosecuting engagements 
or evading threats (the time lines) are 
relatively short in air to air combat. During 
these periods the system must track and 
identify targets and threats quickly and with 
high levels of confidence in order to deploy 
weapons and defences in a timely manner. 
This may have a big impact on sensor 
management and on the strategies and 
algorithms employed by data fusion. 
In systems where time lines are long, 
ambiguities of the type represented in Fig 3 
may be resolved over relatively long periods 
of time as more and often better-resolved 
sensor reports become available. This luxury 
is usually not available in the air superiority 
environment where a fast response is 
demanded. In the future, such a response may 
be provided by intelligent sensor management 
seeking, actively, the necessary extra 
information and concentrating the sensor 
resource in the regions of greatest ambiguity. 
In addition, with the emergence of covert 
operational concepts and low-observable 
airframe technology, the time lines are likely 
to shorten further. The covert concept is one 
in which, through widespread use of passive 
sensors and controlled inter-platform 

cooperation and data exchange, detectable 
active sensor emissions are minimised. This 
has the effect of reducing the amount of 
information available to the ESM which in 
turn reduces the overall probability of 
detection and identification confidence. Low 
observable airframe technology reduces the 
apparent RADAR cross section resulting in a 
reduced detection and tracking capability 
from the RADAR. 
On the one hand, there are advantages to our 
aircraft if it employs covert sensing. It will be 
more likely to surprise its target and the target 
will be less likely to employ adequate 
defences. The  disadvantage is a reduction in 
the opportunities to detect and track the target. 
On the other hand, there are advantages for the 
enemy in covert operation and any given 
sensor suite, employed by our aircraft, will 
take longer to track and identify threats and 
targets. The response of the system designer 
must be to use all the information available to 
the utmost. 

4 IMPACT ON SYSTEM DESIGN 
All of the above factors influence the design 
of Sensor Data Fusion systems for air 
superiority aircraft. This section will consider 
some architectural options associated with 
sensor data fusion and attempt to re-evaluate 
them in the context of the specific needs and 
characteristics of air to air operations. 
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4.1 Architectural Options 
In the field of Sensor Data Fusion, architecture 
refers to the strategy used to organise the data 
sources, processes and data interconnections 
into a coherent system. 
If technology were capable of producing a 
single sensor, to provide all the information 
required by the aircraft with all round 
coverage, all weather, day and night operation 
and not prone to countermeasures, there would 
be no need to do any Data Fusion and 
architecture would not be an issue. Given that 
no such Sensor exists, multiple data sources 
must be accommodated. Similar arguments 
can be applied to the desirability of one or 
several fusion processes. If it were practicable 
to gather all sensor measurements, from 
on-board and external sensors, together at a 
single fusion process and guarantee not to 
exceed the capacity of the host computer or 
the data interconnections, this would probably 
offer the most attractive architectural option 
irrespective of the application. However, 
system designs must accommodate existing 
networks and infrastructures and this usually 
means including a capability to use data which 
has been pre-processed into tracks prior to 
arriving at our aircraft. 
For these reasons data fusion architectures 
raise important issues and they are discussed 
in the following sections. In general, the 
discussion relates to the fusion of kinematic 
state data (location and motion). Fusion of 
identity data is relatively insensitive to 

Fig. 5 
Track Level Data Fusion 

architecture differences provided that the data 
does not undergo severe truncation as a result 
of transmission between processes. 
Three common architectural models for 
sensor data fusion are discussed in many books 
on the subject. These include References [ 13, 
[2] and [3]. The models are "track level", "plot 
level" and "combinedhybrid" fusion. In 
addition to these, a fourth option known as 
"information filter" fusion is considered. The 
information filter is discussed briefly in 
reference [5 ]  and the way it may be used to 
distribute the data fusion process is discussed 
in reference [4]. 

4.1.1 Track Level Fusion 
The first architectural model to be considered 
is track level fusion, represented in Figure 5. 
It is also commonly referred to as the "sensor 
level tracking model" and the "autonomous 
model". It operates at the highest level of all 
and all data is assumed to arrive in the form of 
tracks which have been pre-processed in a 
dedicated tracker at source. Whilst 
communication between sensors, to assist 
tracking, is possible, each track is formed 
largely on the basis of the detections made by 
a single sensor. Within the Tactical Situation 
Awareness processing model used here, the 
main source of feedback to the sensors is via 
Sensor Management. 
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This approach is recognised as having the 
advantages of  

o relatively light bus data traffic, 
o low processing density as a result of 

simple parallelism, 
o good survivability as a result of its 

distributed nature, 
o allowing each tracker to be tailored to 

maximise the contribution of its sensor, 
o a data fusion process independent of 

Sensor specific features. 
It has the disadvantages of  

o requiring special processing to allow for 
error correlations, 

o producing less accurate/continuous 
tracks due to its non-optimal approach. 

Track level fusion is flexible due to its 
distributed nature and because it 
communicates target data at a relatively high 
level. This has  advantages for the system 
integrator and the system maintainer. The 
Sensor Data Fusion process can be kept 
independent of sensor specific features and 
variants of a system, with sensor fit changes, 
should be easier to create than with other 
architectural models. Furthermore, air to air 
sensors tend to be highly specialised and 
incorporate specialised track processors. This 
architecture accommodates them well. 
The less accurate tracks and any error 
correlations, not accounted for in the 
processing, lead to reductions in tracking 
performance. However, due to the 

Fig. 6 
Plot Level Data Fusion 

non-commensurate nature of the sensor suite 
used by the air superiority aircraft (discussed 
in section Xl), this approach will produce 
good approximations to optimal performance 
in this case. This is not generally true of less 
specialised applications of data fusion. 
Non-optimality may be an important issue 
when considering system validation and 
product liability. It may be necessary to 
predict, accurately, when and how the 
performance of such a system will differ from 
an optimal one. 

4.1.2 Plot Level Fusion 
The second architectural model to be 
considered is Plot Level Fusion, represented 
in Figure 6. It may also be referred to as the 
"central level tracking model". It shows the 
sensors producing streams of plots or 
individual target measurements which are 
processed by a single tracking filter which 
produces the situation database directly. 
This approach is recognised as having the 
advantages o f  

o more accuratdcontinuous tracks due to 

o freedom from error correlation 

o being more amenable to sophisticated 

its optimal approach, 

problems, 

data association techniques. 
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It has the disadvantages of  
o Susceptibility to sensor degradation, 
o dependence of the Sensor Data Fusion 

process on low-level features of the 
sensors. 

Plot level fusion produces more accurate, 
more continuous tracks. This has advantages 
where data association is difficult because the 
more accurate tracks result in smaller 
association gate sizes. This is good because, 
the smaller the gate is, the easier it is to find 
the track when the next update is due. 
This is particularly significant when tracking 
manoeuvrable airborne targets at short range, 
where the size of the data association gates 
may become significant in relation to the 
sensors' instantaneous fields of view. 
However, at longer ranges this effect will be 
much smaller. 
The amenability to sophisticated data 
association techniques (e.g. multiple 
hypothesis approaches) is a big advantage of 
the plot level fusion approach. The fact that 
the non-commensurate sensor suite is prone to 
the type of ambiguities discussed in section 
3.1 makes data association particularly 
important. 
Unlike the track level model, all of the 
processing is concentrated in a single 
processing centre. The processing demands of 
data association increase rapidly (factorially) 
as the number of targets and sensors increases 
and, for some implementations, can generate 
unsupportable processing requirements when 

Fig. 7 
Information Filter Data Fusion 

faced with a target rich scenario. Thus, the full 
benefits of sophisticated data association 
might not always he realised. Careful analysis 
of these factors, on a case by case basis, is 
advisable. 
Optimality may offer important advantages 
when considering system validation and 
product liability. Again, processing overload 
can degrade system performance and is 
worthy of consideration in any such analysis. 
The disadvantage of plot level fusion is its 
susceptibility to sensor degradation. If the 
performance of any individual sensor is 
degraded, the situation database will be prone 
to degradation. Provided sensor degradation 
can be detected, other architectural models 
allow degraded data to be separated, more 
easily, from unaffected data. 

4.1.3 Combined/Hybrid Fusion 
The third common architectural model is the 
combined fusion model which performs plot 
and track level fusion in parallel. It may also 
be referred to as the "hybrid model". 
This architectural model has none of the 
disadvantages described above and all of the 
performance related advantages. However, 
the costs in bus data traffic and processing can 
be high and some method must be devised to 
choose between the two solutions when they 
differ. 
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The great advantage of this approach is that 
data can be directed towards the most 
appropriate fusion algorithm on the basis of 
an adaptive decision process. Thus, no data, 
suitable for optimal processing, need be 
processed sub-optimally and when optimal 
treatment of a highly ambiguous data 
association problem would lead to processing 
load problems and truncation of the algorithm, 
a quicker approximate approach will be 
available. For these reasons, a pragmatic 
approach which selects and mixes fusion 
algorithms on an opportunistic basis may offer 
the most attractive implementation options for 
future Situation Awareness processing 
systems. 

4.1.4 Information Filter Fusion 
There exists a fourth architectural option 
which is worthy of evaluation. It has been 
demonstrated in the field of robotics. Instead 
of a conventional tracking filter, each sensor 
processor runs an information filter as 
represented in Figure 7. 
It is not intended to explain and justify the 
information filter here because it would take 
up too much space. Reference [4] offers a full 
and clear definition. However, the properties 
of the information filter approach are worthy 
of consideration. 
Information filter fusion has the properties of 
algebraic equivalence to a Kalman filter 
based, plot level fusion process and physical 
distribution similar to a track level fusion 
process. It is said to require greater computing 
and communications resources than track 
level or plot level fusion and it introduces 
processing redundancy into the system. What 
it offers in return is distribution of the fusion 

Fig. 8 
Data Fusion Information Flow 

task without sub-optimality and the ability to 
reconfigure the sensor suite, on-line, without 
loss of data or interruption to track continuity. 
The information filter form is also capable of 
dealing with identity fusion and sensor 
management. These are discussed in 
references [6] and [7]. It would be fully 
feasible to connect an information filter to a 
higher level hybrid system. 

4.2 Data Fusion Processing 
The previous sections dealt with the 
processing environment external to Sensor 
Data Fusion, with the nature of the sensor suite 
and with the way sensors, fusion processes and 
interconnections may be organised. This 
section deals with the internal organisation of 
a data fusion process. It concentrates on 
properties rather than on algorithmic details. 
It considers a data fusion process comprising 
six sub-processes: data alignment, gating, 
allocation, track management, state fusion and 
identity fusion. Gating, allocation and track 
management collectively perform the data 
association task. 
The process is represented in Figure 8, along 
with the most important internal information 
flows. 

4.2.1 The Fusion Sub-processes 
o Alignment resolves time, reference 

frame and point of view differences in 
the incoming sensor returns. 

o Data a ssociation performs two 
interdependent functions. Namely, 
estimation of the number of targets 
currently "visible" and allocation of 
sensor data to the target tracks. 
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The Tactical Sensor Data Fusion Test Harness 

o Gating is a data reduction filter which 
excludes highly unlikely combinations 
from the data association process. Small 
gates lead to missed (true) allocations 
and large gates to false allocations. In 
general, the gates are chosen to 
minimise the sum of missed and false 
allocations. 

o Allocation groups sensor returns with 
target tracks. Common approaches 
optimise some separation or likelihood 
metric. Allocations may be one to one 
(nearest neighbour) or many to one in a 
probabilistic weighted mean. 

o Track managemen1 initiates new target 
tracks, maintains existing ones and 
removes discontinued ones. It may 
provide "history" data for incorporation 
in the allocation metric (Eg by some 
mu1 tiple hypo thesis approach). 

o State fusion consolidates target 
kinematic data. 

o Identitv fusion consolidates target 
identity data. 

4.2.2 Processing Performance Issues 
In general, each new sensor update will 
encounter the functions of the data fusion 
processing model in sequence from left to right 
on Figure 8. Clearly, inaccuracies introduced 
during the early stages have the potential to 
degrade the subsequent processes. 
This can manifest itself in several ways. For 
example, inaccurate data alignment can cause 
poor data association performance which can 
in turn cause data from several targets to be 

fused into a single, ghost track. This ghost 
track then degrades the next round of data 
association and a vicious circle begins. 
On the other hand, whilst approximate state 
fusion based on correctly associated data will 
degrade the other functions somewhat, when 
the approximation is a good one the effects 
will be insignificant. 

5 TEST HARNESS 
To evaluate Sensor Data Fusion systems, the 
Mission Systems R&D Group at BAe 
Defence, Military Aircraft Division 
developed a computer test harness. The Data 
Fusion Test Harness was developed over the 
period from 1990 to 1992. Its main purpose is 
to evaluate systems for tactical aircraft but it 
is not limited to those applications. It is in 
current use, contributing to evaluations of 
systems for R&D purposes and for aircraft 
projects. The test harness concept is 
represented in figure 9. 
It is written in C, and runs under CSTools on 
a Meiko transputer system with an embedded 
SPARC processor board. The SPARC 
communicates to a network of Sun work 
stations which host the control panels and 
some of the output displays. 
The main outputs are a display showing 
various plan views of the tactical situation 
driven by the transputer graphics system and 
graphs, tables and text displays hosted by the 
work stations via the X windows system. 
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The scenarios are interchangeable and are 
prepared off-line. They can range from simple 
m-on-n air to air encounters to full battle 
scenarios with formal Combat Air Patrols, 
supported by Airborne Early Warning, facing 
mass attacks. Alternatively, a scenario could 
represent a ground attack aircraft flying 
through an enemy’s surface to air defences. 
The scenarios are stored as data files and are 
activated by a time stepping simulation 
controller. 
The sensor models and the way in which they 
communicate with the fusion processes define 
the system model (analogous to the 
architectural models discussed in section 4. I). 
Figure 10 provides an example system model. 
For any given system model, where it is 
appropriate, several data fusion algorithms 
will be included in the harness. Usually this 
excludes alignment but includes different 
algorithms for the other sub-processes shown 
in Figure 8. 
When the simulation is active, the user can 
interrogate individual tracks in any of the track 
lists, via the tactical display, and select various 
measures of performance (Mop’s) of the 
current fusion algorithm. The MOP may be 
output in graphical or tabular form. 

6 EXAMPLE SYSTEM 
EVALUATION 
It is neither feasible nor intended to reproduce, 
in this text, acomplete set of system evaluation 
results covering all architecture models and 
processing options. Rather, examples will be 
given which demonstrate how such 
evaluations have been, and continue to he, 

Conims. I Data 

I 
Friendly Sensor 

Platfornis 

carried out. In particular it will be shown how 
some of the characteristics of Sensor Data 
Fusion, in the air superiority aircraft, were 
measured for a track level fusion system. The 
approach taken transfers readily to other 
system models. 

6.1 A Model for Evaluation 
The results will be drawn from an evaluation 
of a computer simulation of a system model 
with the sensor fit and processing architecture 
shown in Figure 10. This represents parts of a 
system for Tactical Situation Awareness in an 
air superiority aircraft. The scenario and the 
sensor detections were simulated, the trackers 
and the fusion algorithms were real. 
The on-board sensors comprised RADAR, 
IRST and ESM. Each sensor had a dedicated 
tracker. The model incorporated a data 
communications network which connected it 
to other similar models which observed the 
same situation. The local tracks and the 
communications network tracks were fused in 
a track level fusion process. 
The data communications network comprised 
simplified sensor models for each friendly 
aircraft in the scenario, which reported their 
information in a fixed polling sequence. 
Correlation of the network data was assumed 
to take place externally at a Command and 
Control centre, whilst correlation of the 
network data with on-board sensor data was 
assumed to be a task for the data fusion system 
under evaluation. 
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6.2 Example Results 
This section will show how some of the 
properties of Sensor Data Fusion, discussed in 
the previous sections, were measured and it 
will reproduce some results. In particular, the 
following aspects will be addressed: 

o data association performance, 
o state estimation performance. 
o processing load distributions and 

The measurements were made using a 
four-on-four air to air combat scenario. This 
began with two four-aircraft formations 
closing on each other and entering the 
coverage of the on-board sensors and ended 
with them breaking formation and 
manoeuvring to engage in close in combat. 
The period covered represents the Beyond 
Visual Range sensing phase of the encounter. 
This scenario was arranged to maximise the 
Sensor Data Fusion processing task. All eight 
aircraft were using active RADAR, IRST and 
ESM, and the friendly formation were 
reporting all their on-board sensor information 
along with their own positions and identities 
on a regular basis via the communications 
network. 
First consider data association performance. It 
is predicted in section 3. I that data association 
performance will be sensitive to the choice of 
algorithm in the presence of ambiguity. Figure 
11 shows the performance of two data 
association algorithms exposed to identical 
Sensor returns. The data association MOP used 
here is the proportion of sensor tracks which 

budgets, 

are allocated to "perfect" fused tracks, ie. fused 
tracks comprising all data for a single target 
and no spurious data. 
One algorithm generated Bayesian 
probabilities for all feasible track com bination 
hypotheses, incorporating full association 
history, and then extracted the maximum 
likelihood set of allocations. 
The other algorithm selected maximum 
likelihood allocations on the basis of current 
sensor reports only, and then used a 
non-parametric statistical ranking process to 
create, maintain and remove fused target 
tracks. 
The shape of the graph is due to features of the 
scenario. From 0 to 10 seconds the on-board 
sensors are acquiring the targets and the 
amount of information in the system is 
increasing rapidly. It continues to increase 
from 10 to 20 seconds when the data 
communications network starts to exchange 
the newly acquired data. Then at 30 seconds 
new ambiguity is introduced when targets 
appear to cross one in front of the other. 
The Bayesian approach is theoretically more 
attractive than the non-parametric statistical 
one because it uses the available data more 
fully. It can be seen that the results bear this 
out. 
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In general, the Bayesian algorithm is superior, 
showing less disturbance from the true 
situation and faster recovery. However, both 
algorithms are shown to be capable of fully 
resolving the scenario, the non-parametric 
statistical approach is simply slower to 
converge. Unfortunately, this is a major 
disadvantage for an air superiority aircraft. 
Given a less ambiguous scenario, less 
difference would have been observed between 
the algorithms. When evaluating systems of 
this sort, the scenario is important. The fusion 
task it poses must incorporate difficult 
situations to fully exercise the algorithms 
under evaluation. 
Next, consider kinematic state estimation. The 
assertion was made in section 3.1 that it is 
intrinsically easy with this type of sensor fit. 
Figure 12 shows the results when the position 
estimation performance of two algorithms was 
compared. Here the state estimation MOP is 
best expressed mathematically: 

x 100% 

The A’s are the separations between the 
estimated and true positions in range, azimuth 
and elevation and the d ’ s  are the RADAR 
measurement error variances. This is averaged 
over all fused aircraft tracks. This MOP has the 
properties of approaching zero as target and 
track approach infinite separation and 
approaching 100% as they approach 
coincidence. O n  this scale, on average, a single 
RADAR measurement would score 37% . 

Two state fusion algorithms were compared. 
A composite of the measurements from the 
contributing sensors known to have the best 
measuring accuracy in each dimension (Eg 
range from radar, angular position from IRST) 
was compared with the optimal (least squares) 
weighted mean of the contributing tracks. 
In this case the optimal weighted mean is 
theoretically more attractive than the 
composite because it uses all the data. 
However, it can be seen that the results are 
nearly indistinguishable. Again, the shape of 
the graph is due to the same scenario events. 
Another feature of the graph which is of 
interest is the slightly poorer performance of 
the weighted mean around the30 second mark. 
Due to the extra ambiguity in the scenario 
during this period, the sensor tracking 
performance was slightly degraded. This led 
to a small degradation in the weighted mean 
performance which was avoided when the 
composite algorithm was used. 
This demonstrates a characteristic of optimal 
and near optimal approaches, namely they 
perform best only when the incoming data is 
reliable and conforms to the assumptions 
made about it. In thiscase, the assumption that 
all the data arose from the same target is 
implicit in the use of an optimal weighted 
mean algorithm. The composite is more robust 
because it relies only on the best (most 
accurate) measurement dimension of each 
sensor. 
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Finally, consider processing load. The 
question is discussed in section 4.1.2. The 
predicted factorial increase in data association 
processing as the number of targets and data 
sources increases may be observed. Figutc 13 
shows the processing distribution resulting 
from the Bayesian association algorithm and 
the optimal weighted mean state estimation 
algorithm, applied to the scenario described 
above. It was observed at a stage where all 
sensors and the comms network had acquired 
and were reporting on all targets (and friends) 
within their coverage. The algorithms used 
were the nearest to optimal, and hence the most 
processor intensive, in their class. The 
processing load MOP used here was simply the 
time taken by the computer to perform each 
task as a proportion of the time taken to 
perform the total task. 
The striking thing about this result is the very 
small proportion of the computer’s time which 
is actually spent fusing data. Most of the time 
is spent doing data association. Other results 
show that the apparent concentration of 
processing on the data association functions 
becomes more extreme as the numbers of 
targets and data sources increax, and that this 
result holds true when less optimal algorithms 
are observed. 

7 CONCLUSIONS 
The results, reproduced in this paper, are a 
small sample of the work completed to date 
on the Data Fusion Test Harness. They show 
how the characteristic features of Sensor Data 
Fusion system performance may be measured. 
When a typical air superiority aircraft sensor 
fit was considered, it was seen to be highly 
constrained. To maintain background 
situation awareness whilst prosecuting a 
multiple target engagement would require 

’ )’ Optimisation 

support from other friendly sensor platforms 
via a data communications network if both 
tasks, surveillance and the engagement, were 
to be fully effective. In air to air combat, the 
capability to exchange data with other similar 
and dissimilar platforms offers many 
advantages. 
The characteristics of the sensors also had an 
impact on the ability to perform multiple 
sensor identification. In particular, better ESM 
sight line accuracy would make identity fusion 
much more reliable. 
Consideration of the architectural options 
revealed that a future air superiority aircraft 
system will, in all probability, have to perform 
some of its fusion at track level in order to 
utilise data from existing sub-systems or 
communications infrastructures. It was also 
noted that the aircraft will encounter situations 
where plot level fusion (or the algebraically 
equivalent information level fusion) of its 
local sensors would be an advantage. When 
resources allow, the most appropriate 
architecture for such a Sensor Data Fusion 
system is likely to be a CombinedHybrid 
form, which will enable Track Level, Plot 
Level and Information Level Fusion to take 
place as and when they offer the best potential 
performance. 
The results show that, for a future air 
superiority aircraft, equipped with 
non-commensurate sensors, algorithmic 
complexity in the fusion of the data has a lesser 
impact on system performance than the 
determination of the data relationships. For the 
communications network and tactical data 
exchange this means getting the alignment 
right and, in all cases, the data association must 
be good. The implication is that resources 
must be allocated to the data association task. 
This means system design and development 
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resources must be allocated to the provision 
of a first-class algorithm and on-line 
processing resources must be sufficient to 
allow the algorithm to resolve difficult 
situations. 
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SUMMARY 

The human operator observing the real world is 
confronted with a huge amount of data from multiple 
sensor systems observing that world. Multi-sensor data 
fusion (MSDF) is one of the emerging fields in 
advanced information processing, concerned with fusing 
sensor data from these multiple sensor systems. 
Automated multi-sensor data fusion can help the 
operator by processing sensor data into concise and 
surveyable information, that is more useful than every 
sensor system separately can provide. 
The merit of MSDF can be increased by employing the 
knowledge of the human operator about the real world, 
the sensor systems and the fusion process. With the 
aid of this knowledge, automated MSDF can assign 
meaning to sensor data and is able to reason about the 
observed world at a high level, comparable to what 
humans do. 
Artificial intelligence provides techniques to represent 
this knowledge and to reason with it. These techniques 
are discussed in the context of a generic framework 
comprising a world model and fusion processes. These 
techniques can contribute to an effective updating of the 
world model and can support its fusion processes. In 
addition, a global distributed fusion architecture based 
on the framework is proposed. As specific domain of 
fusion, battlefield surveillance is considered. 
This paper shows the potential use of artificial 
intelligence in multi-sensor data fusion. 

1. INTRODUCTION 

Multi-sensor data fusion (MSDF) can be considered an 
important field in advanced information processing [l]. 
MSDF is the process of combining sensor data in space 
and time in such a way that it provides more relevant 
information than each sensor system separately is able 
to. 

The increasing importance of automated MSDF is 
driven by a technology push as well as by a market 
pull. The technology of sensor systems is rapidly 

growing, more and more sophisticated and complex 
sensor systems are coming available on the market. 
They provide a huge amount of data, creating a need 
for advanced information processing through MSDF. 
On the other hand, the real world is getting more and 
more complex [2]. Dissimilar sensors operating in 
different spectral regions are required to detect the full 
variety of objects present in the real world [3]. For a 
human operator monitoring the real world through a set 
of dissimilar sensor systems of increasing complexity, it 
is a significant problem to fuse the sensor data, to 
assess the real world and decide on proper reactions 
within a limited time frame. Because of excessive data, 
ill-digested information and stress, wrong interpretations 
about the situation in the real world might be made that 
may have disastrous consequences. 

MSDF can be applied to various domains. Domains of 
research at NLR are air traffic control [4], multi-radar 
tracking employing uncertainty techniques [5], 
navigation based on Kalman filters [6], battlefield 
surveillance [A, air defence, and remote sensing. 
World wide, research into MSDF is mostly performed in 
a military context. One domain of applied MSDF and 
where this paper focuses on is command and control 
(C2). In this domain, commanders take decisions on the 
basis of fused information from various sensor systems 
located on and observing a battlefield. An example of a 
naval application in this field is the SIAP-project [8]. 
Other applications are AMUID performing battlefield 
analysis on basis of sensor information [9], and ECRES 
[lo, 111 and IDA [12], performing the same function, but 
on the basis of intelligence information (e.g. human 
reporting). 

The wide range of delicate applications (e.g. human 
lives are involved in air traffic control and command and 
control) justifies the research into MSDF. Currently, the 
field of artificial intelligence (AI) is in the spot-light to 
support MSDF. Sensors provide only numerical data of 
measurable quantities (e.g. signal strength, 
polarisation). Processing of this numerical data and 
performing calculations (such as calculation of the 
position of an object) is necessary. However, a great 
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deal of data can be transformed to a higher symbolic 
level and consequently can be reasoned with in a more 
abstract way comparable to what humans do by using 
explicit knowledge about the domain. AI is a surplus 
value to MSDF, especially in advanced sensor control 
and allocation, identification of objects, assessment of 
the situation in the real world and prediction of future 
states of that world by using knowledge about objects 
(i.e. their structure, their relation with sensor 
information, their behaviour and the contexts in which 
they act, etc.). Systems employing AI technology could 
serve as an intelligent interface transforming excessive 
and complex (sensor) data in real-time into surveyable 
and relevant information for the operator [13]. 

Chapter 2 provides a general functional architecture of 
an MSDF system based on a command and control 
model, applied to battlefield surveillance. Battlefield 
surveillance is considered as the continuous 
observation of the battlefield area to provide timely 
information for command and control functions. 
Chapter 3 globally describes the world model that 
includes MSDF and knowledge about the observed 
world. 
Chapter 4 discusses a specific set of AI techniques for 
representation of that knowledge and reasoning with it. 
These techniques emerge from knowledge-based 
systems (KBSs); neural networks are not considered in 
this paper. KBS techniques have been preferred 
because of their relative maturity, their ability to explain 
their reasoning process in a comprehensive manner 
(might be important in order to convince the operator) 
and the ease with which explicitly represented 
knowledge can be modified. Neural network techniques 
lack these important features. However, neural 
networks and KBSs can be complementary, where 
neural networks reside at a lower level of information 
processing than KBSs. Integration of these two 
techniques might provide interesting results. 
Chapter 5 describes a global distributed architecture for 
MSDF for C2 networks where KBS techniques and 
distributed AI play an important role. 
Finally, Chapter 6 presents concluding remarks. 

2. BAlTLEFIELD SURVEILLANCE AS CONTEXT 
FOR MSDF 

The basis of the application of MSDF in the domain of 
battlefield surveillance as presented in this paper is a 
generic C2 model. Four command levels are identified in 
this model: highest, intermediate, lowest and executive. 
These levels have their equivalents in the Air Force, 
Navy and Army C2 structure. 
The data flow between the levels is cyclic. First, global 
tasks are generated by the highest command level, 
which are worked out and decomposed by the lower 
command levels, up to the executive. If the tasks have 
been executed, reporting is done all the way up to the 
highest command level. The C? cycle is closed when 
these reports have been assessed by the highest 
command level. Time and data are the most important 
factors that distinguishes the levels: the lower the level, 

the more time critical and the more detail in the data 
and information. 

The C2 functions for one command level are given in 
Fig. 1. Five main functions are distinguished, presented 
in the inner ring. A commander is tasked by a higher 
command level. In the context of these tasks, the 
current battlefield situation is analyzed. After the 
analysis, decisions are taken (how to implement the 
task) and available resources are allocated. Then the 
orders are prepared to task a lower command level. In 
the execution function, interaction takes place between 
the two command levels; sometimes the orders need to 
be readjusted because the situation has changed during 
preparation of orders or the commander had incomplete 
or wrong information. After the orders have been 
executed, the results are reported, a reassessment 
based on the report information and new sensor data is 
made and reporting is done to the higher command 
level. 

The five main functions can be decomposed in a 
number of processes. These processes are displayed in 
the outer ring of the C2 model. Because this paper 
mainly covers the first function, only the processes (1) 
collection of information from sensor systems and 
intelligence, (2) composition of the battlefield (including 
MSDF) and (3) analysis and assessment of the 
battlefield are discussed here. Note that the processes 
are performed in the context of the task issued by the 
higher command level. 

The function situation analysis containing fusion and 
interpretation of data is currently done in the human's 
mind. However, because of the large amount of data 
which is made available by current technology and the 
inherent complexity of the data, it becomes more and 
more difficult to obtain and combine the relevant 
information out .of this data stream and evaluate it 
properly within certain time constraints. AI provides 
tools and techniques for automating at least part of 
human knowledge. Therefore, AI can support 
automation of fusion processes which are now 
performed by the human operator. By automating Iow- 
level routinely tasks, the human operator or commander 
can focus on more important tasks like high-level 
assessment and decision-making based on interpreted 
fused sensor data. 

Fig. 2 depicts a general architecture for battlefield 
surveillance incorporating automated MSDF. The 
architecture is based on the situation analysis function 
of the C2 model. It consists of a number of 
geographically distributed platforms with mounted 
sensor systems observing the battlefield. These 
platforms provide symbolic sensor reports about 
observed events, detected objects, etc. (i.e. the sensor 
reports are the sensor system's output of object 
detection and signal-to-symbol transformation 
processes). These sensor reports are sent to a fusion 
centre (information collection) where they are spatially 
and temporally aligned (scenario composition) to 
provide a battlefield description which is then 
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Figure 1. A generic C? model with its functions and processes at one command level ’ 
interpreted (analysis) resulting in the battlefield situation In the following chapters, the fusion centre node 
description. This battlefield situation description is containing the battlefield description is worked out in 
presented to the operator through a man-machine more detail. 
interface. 

Based on the fusion and interpretation results, it might 
be needed to direct the sensor systems in order to 
obtain an optimal battlefield situation description. The 
fusion centre as well as the operator can issue requests 
for additional sensor information (e.g. focus on specific 
area) to the sensor manager. It constructs and 
maintains a global temporal plan in which 
sensors/platforms are allocated and distributes it to the 
sensor platforms that implement the plan. 

3. WORLD MODEL AND DATA FUSION 

This chapter focuses on the world model and the fusion 
process. These elements are located in the fusion 
centre node of Fig. 2. The world model is a reflection or 
simulation of the real world in time and space. In the 
context of battlefield surveillance important aspects to 
be represented in a world model are military objects 
(their structure, behaviour, and context), terrain and 
weather circumstances, sensing systems (their 
capabilities and limitations) and the relationships (e.g. 

’ This model has been developed at NLR by R.P. De Moel and B.J.P. van der Peet for an expert meeting on Computing 
Technology relevant to Time Critical Command and Contml Applications (IEPGIP-3ISG-GIWG). 



287 

B A T T L E F I E L D  

sensors 7 T T  

E N V I R O N M E N T  

\ 

platforms SENSOR REPORTS 
V 

FUSION 
collection CENTRE 

I I 

Model sen so r/p I atf o rm 
control plan 

sen so r/platfo r m 
requests 

sensor/platform directives 

OPERATOR 

Figure 2. A general system architecture for battlefield surveillance incorporating MSDE 

causal effects) between these aspects (e.g. signature of 
object sensed by specific sensor under certain 
terraidweather conditions). In addition, the world model 
contains inference knowledge to fuse sensor data, 
assess and predict object status and observed situation, 
identify objects, and deduce more abstract, relevant and 
concise information about the real world in an effective 
and efficient manner. 

The world model has two main input streams which are 
categorised as bottom-up or top-down. Bottom-up data 
is a continuous stream of data about the real world 
such as (pre-processed) sensor data, weather reports, 
terrain conditions, and intelligence data [14]. Top-down 
data is more discrete and consists of requests for 
information (from position of an object to complex what- 
if questions) issued by a human operator through a 
man-machine interface or by an automated system 
such as a resource planning system for counteractive 
actions. These requests initiate a top-down, goal- 

directed search in the world model to extract or infer the 
required information. In fact, the set of possible 
requests for specific types of information defines the 
purpose of the world model, i.e. to provide valid 
answers to questions about the real world, and hence 
defines - given the application domain - the construction 
and contents of the world model. 

For the purpose of this paper, the world model is 
assumed to be based on a blackboard concept [15, 161. 
The blackboard concept is well-suitable for problem 
domains in which large amount of different source data, 
large number of competing hypotheses, different levels 
of abstraction and multiple symbolic representations are 
involved [lq. For the problem domain MSDF in C2 and 
in particular battlefield surveillance, the blackboard 
model consists of a blackboard information structure 
representing hypotheses about the real world at 
different levels of abstraction, and a number of 
knowledge sources about the different sensor systems 
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(e.g. ESM, Radar, IR), the battlefield environment (i.e. 
terrain, weather), the military domain (objects, tactics, 
etc.) and their inter-relationships. This chapter 
discusses the world model in terms of this blackboard 
structure and the possible fusion processes that can be 
incorporated in knowledge sources operating on that 
structure. 

As information structure, a hierarchical representation 
fits best in which each level in the hierarchy is an 
abstraction of the lower. The two main reasons are the 
hierarchy in the fusion process (e.g. fuse sensor data 
into one object, see Section 3.2) and in the military 
domain. Four levels have been identified: (1) sensor 
level, (2) object level, (3) recognition level, and (4) 
relational level. 
The sensor level describes the object measurements 
(e.g. contour and temperature), represented in sensor 
reports. Correlation of similar sensor reports in time 
results in sensor report tracks. 
The object level contains information about objects on 
the battlefield and is the result of spatial and temporal 
correlation of sensor reports and sensor report tracks at 
the sensor level. 
The recognition and the relational level comprise the 
tactical level in military terms. The recognition level 
contains military relevant information of single objects 
on the battlefield (e.g. identity). The relational level 
describes relations among objects, resulting in the 
detection and recognition of units or battle formations. 
These two levels contain information which is fully 
abstracted from sensor-dependent data. At these levels, 
concepts like division, tank, and the relationships 
among them are represented. 

The knowledge sources operate on one or two levels of 
the blackboard (i.e. the levels of the world model). 
Knowledge sources can be specialized in fusing similar 
sensor report tracks into one object track, identifying 
objects from the object level to the recognition level, 
recognizing units, identifying representative objects 
within units and monitor them only, etc. These 
knowledge sources are responsible for the fusion of the 
data to higher levels of abstraction. 

The next sections will discuss each level and the 
relationships and the fusion processes between these 
levels. 

3.1. The Sensor Level 

The sensor level describes object measurements (e.g. 
signal strength, Doppler speed, size) and characteristics 
about the measurement (e.g. type of sensor system, 
resolution, position of sensor system), which are both 
represented in sensor reports. These are the output of 
object detection and signal-to-symbol transformation 
processes of the various sensor systems mounted on 
platforms. The sensor level is the least abstract level of 
the world model. A sensor report is a low-level 
description of a phenomenon (a potential object or 
target or event that has a high degree of discrimination 
in relation to its environment, e.g. a hot spot indicating 
an engine of a tank or an explosion). 

A ensor report consists of a number of attribute 
Attributes concerning measurement characteristics 
depend on the sensor system and platform from which 
the sensor report originates. These are: platform ID and 
position, sensor system ID and type, time stamp and 
others like sensor performance, accuracy, and a 
preliminary confidence value of the observed 
phenomenon. 
Other sensor report attributes concern measurement(s) 
about the detected phenomenon. These attributes, 
called object features, are symbolic representations of 
the signal features extracted from phenomena in the 
real world by a sensor system. The kind of attributes 
and their dimensions depend on the sensor system type 
and position of the platform. Table 1 shows the relation 
between various sensor system types, the measured 
signal features and the resulting object features. 

Tracks of sensor reports acquired at successive times, 
but having similar signaVobject feature values are 
initiated and maintained, resulting in sensor report track 
hypotheses. Such a hypothesis represents the belief 
that a set of successive sensor reports are 
manifestations of the same object in time. In principle, a 
track is formed by sensor reports from the same sensor 
system or similar sensor systems, because they have a 
common format and attributes and are, therefore, easier 
to correlate. 

This type of fusion of sensor report into tracks happens 
only at the sensor level. From sensor to object level, 
individual sensor reports or sensor report tracks are 
fused into an object or object track. 
Sensor report or sensor report tracks are correlated or 
associated to object tracks on basis of spatial data, 
radiometric data or the context of the sensor report. 
Sensor reports are correlated if their spatial references 
are very close or because their non-spatial object 
features are similar. An example of spatial fusion is the 
fusion of an IR and a radar sensor report track of the 
same platform with overlapping spatial references. An 
example of non-spatial fusion is the cross-section of 
ESM sensor reports having similar values for the non- 
spatial attributes (e.g. common frequency) in order to 
determine precise position. An example of contextual 
fusion is that a sensor report is part of a pattern of 
sensor reports (e.g. representing a column), which 
makes correlation based on context possible (e.g. on 
basis of the relative position in a column). The extent to 
which fusion of sensor reports and tracks can be 
successfully performed depends on a number of 
parameters such as acquisition time, object activity, 
density and discrimination, and sensor characteristics 
and performance. 

3.2. The Object Level 

The information at the object level consists of objects 
(or events). The objects at object level in the world 
model are hypotheses, expressing the belief that a set 
of sensor reports or sensor report tracks are concerning 
the same real-world object. Different sensor report 
tracks (possibly acquired from different types of sensor 
systems) may refer to the same object. At object level, 



Signal feature 

propagation time 

azi mut h/elevat ion 

Doppler shift 

reflected power level 

11 polarisation I material I radar, laser 

Object feature Sensor system 

range radar, laser 

azimuth/elevation 

velocity radar, laser 

Radar Cross Section radar 

radar, IR, TV, laser, ESM 

video image 

frequency 

modulation 

Table 1. Relation between signal features, object features and sensor system types. 

~~ 

contour IR, TV, laser 

frequency ESM 

modulation ESM 

classification* ESM, radar 

these tracks are fused. Moreover, for each tracked 
object, more abstract information is inferred on basis of 
knowledge about object features and how they are 
sensed by sensor systems and manifest in sensor data. 
This abstract information does not contain any specific 
sensor data. Examples of such information are mobility, 
fire capability, relation with other objects (context), etc. 
If enough sensor data is acquired and information is 
inferred, an object can be classified and promoted to 
the recognition level. 

At the object level, tracks and features of objects are 
maintained and predicted. Contextual knowledge plays 
an important role with respect to accuracy. For 
example, in case of extrapolation of tracks, if an object 
is following a road for ten minutes (e.g, track mode: 
"road following") then the track can be extrapolated to 
the next crossing met. Moreover, a line of bearing (e.g. 
an ESM sensor report), can be crossed with the road to 
determine precise position under the assumption that 
the object is still following the road. 

concept tank incorporates much implicit information 
(e.g. has a barrel, has treads, is mobile and armoured) 
that was explicitly represented at object level. 
Reasoning about a tank is easier than reasoning about 
a large set of - partly sensor-dependent - attributes 
representing the object. 

Recognition is done on the basis of two types of 
information: (1) structural and behavioral information of 
the object, and (2) contextual information of the object. 

The hypotheses at recognition level depend on these 
two types of information. Recognition based on 
structural and behavioral information is, for example, 
recognizing a tank by respectively its shape obtained 
from a TV sensor and the fact that it is moving. An 
example of recognition based on contextual information 
is the recognition of an object as tank on the fact it 
moves inside the borders of an area in which a tank 
company is operating. 

3.4. The Relational Level 
3.3. The Recognition Level 

Also at the recognition level, single objects on the 
battlefield are described, but the information describing 
the objects is much more abstract and contains more 
military relevant information, like identity of an object 
and related potential capabilities (e.g. threat). 

The relation of the recognition level to the object level is 
that an abstract name or class, for example tank, has 
been associated to the object attributes; in other words, 
a conceptual meaning is assigned to the objects. The 
recognition level consists of hypotheses about the 
classes to which the objects belong. This association of 
objects to classes has economical advantages 
regarding processing and memory, because the 

The relational level represents inter-object relations and 
the (tactical) situation of the area under observation. In 
the world model, battle formations (units) are 
represented by means of groupings of (military) objects 
and units. The relational level consists of several sub- 
levels, corresponding to the military hierarchy. These 
sub-levels are bottom-up (derived from [la]): platoon, 
company, battalion, regiment, and division level. 
Each unit in the world model is a hypothesis expressing 
the belief that units (or objects) at lower levels together 
form one coherent unit in the real world. At which level 
that hypothesized unit is represented, depends on the 
contents of the real-world unit (types of objects and 
numbers) and its tactical behaviour. An hypothesis 
contains also track information. The maintenance of this 

* Today, certain types of sensors (in particular radar and ESM) can perform preliminary classification of the detected 
objects. This is not considered as a signal feature, but, of course, this information should be provided in the output vector as 
object feature. 
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information is .JSS time critical than object level 
information, because the dynamics of a unit is less than 
of each single object. This makes tracking of units 
without tracking of every individual object possible, 
which is less difficult and saves computing resources. 

Tactical, strategic and doctrinal knowledge (knowledge 
about the order of battle) plays an important role at this 
level in order to determine the status of the situation. 
Also, this knowledge can be used to detect and 
recognize units and objects according to their tactical 
behaviour in the order of battle (type of inference based 
on contextual information and knowledge). 

The purpose of this level is two-fold: (1) provide the 
operator or commander with high-level, surveyable and 
comprehensible information about the battlefield for 
subsequent assessment and decision-making, and (2) 
provide the lower levels and knowledge sources the 
necessary context to assist and direct their inferences. 

4. USING AI TECHNIQUES TO MAINTAIN THE 
WORLD MODEL 

In Chapter 3, the world model and fusion processes 
incorporated in knowledge sources have been 
described. The information describing the battlefield 
situation and the knowledge used to predict possible 
future situations and to infer new information from old 
information and newly acquired sensor reports can be 
supported by a number of techniques from the field of 
AI. This chapter discusses a number of candidate AI 
techniques that can support the maintenance of the 
world model and the provision of answers on questions 
to this model. 

4.1. Representation Techniques 

Chapter 3 mainly focused on the structure of the 
blackboard (i.e. the hierarchical representation of 
hypotheses), but the representation of the knowledge in 
the knowledge sources was not discussed. 
It is unlikely that a common representation of 
knowledge for all the sources can be used. The lower 
levels (especially the sensor level) include much 
numerical processing algorithms and knowledge is likely 
to be represented implicitly in program code inside 
sensor data processing modules. However, at the 
higher levels, representation techniques from the field of 
AI are applicable. The most well-known are: (1) 
semantic networks suited to describe conceptual 

a relationships (tank is a vehicle) and contexts, (2) frames 
to describe and model real world objects and their 
structure, (3) production rules to describe causal 
relationships (if enemy division moves to city then city is 
in danger), and (4) scripts to describe sequence of 
events (e.g. to represent military doctrine and tactics; 
special actions, e.g. crossing a river by a division, can 
reveal its organization). 

4.2. Inference And Control Techniques 

A number of inference techniques exist in deducing new 
information from old information using explicit 
knowledge. The most well-known techniques are 
forward reasoning and backward reasoning. Forward 
reasoning is typically data-driven that is heavily applied 
to lower levels of information processing. Acquired 
sensor data is quickly processed and prepared for 
higher level inferences. At these higher levels, more 
goal-directed inference techniques are applied in order 
to work towards a solution satisfying some goal (e.g. 
answering an information request from the operator) 
and to control the combinatorial explosion effect 
inherent to data-driven techniques. It is important to 
design a control method that keeps the number of 
inference steps towards an optimal solution restricted 
(i.e. keeping the combinatorial explosion under control) 
by finding the right balance between the application of 
data-driven and goal-driven inference techniques. 
Another inference technique is inheritance. Inheritance 
is based on hierarchical relationships such as is a and 
has a (e.g. a tank is a vehicle and therefore inherits the 
quality that it is movable from the class vehicle, or a 
division has a battalion and therefore the velocity of the 
battalions is inherited by the division where they are 
part of). 

Without sufficient control the basic inference techniques 
can lead to a combinatorial explosion of facts and sub- 
goals. Real-time performance of a knowledge-based 
system requires control techniques to control the 
inference and search processes through knowledge and 
information. Domain;independent search and control 
techniques (e.g. A -algorithm) as well as domain- 
dependent techniques (e.g. expert military knowledge 
for meta-level control and demons that are only 
activated in case of specific events) have to be 
employed to satisfy time constraints [19, 201. 

4.3. Techniques Dealing With Imperfect Information 

The fact that sensor systems do not provide accurate 
information, due to internal functioning or external 
conditions (e.g. weather, terrain, ECM, deception) has 
implications on the beliefs in the world model. The 
hypotheses in the world model are not a priori true and 
might be in contradiction to one another. This opens a 
discussion on how to handle imperfect information. 
Information is imperfect if it has one or more of the 
following characteristics. 
1. The information is incomplete: not everything is 

known. Nevertheless, conclusions may have to be 
drawn, possibly in the form of hypotheses. 
Incompleteness may be caused by: sensor 
coverage limited in space and time, lack of 
information about enemies, and non-generality of 
knowledge: exclusions. 

2. The information is uncertain: a proposition can not 
be said to be true or false. Instead, only some 
indication of the 'belief' in a proposition can be 
given. Causes may be: incorrect information (e.g. 
false), incomplete evidence, (ir)reliability of sensor 
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reports, changing information (when, how?), and 
elapsed time (no update information). 

3. The information is inexact: the information itself is 
intrinsically vague. This can be caused by: sensor 
system inaccuracies and inadequacies, processing 
inadequacies, navigation errors, time delays, vague 
expressions (temporal and spatial), etc. 

Various approaches have been developed to formalize 
reasoning with imperfect knowledge. These approaches 
focus on combination and propagation of uncertainty in 
inferences, on detecting and resolving contradictions 
and on belief revision [5]. It appears that all these 
techniques have their problems. 
With respect to uncertainty management, formalization 
of combination and propagation of uncertainty values in 
inferences appears to be difficult [21]. For example, the 
Bayesian inference theory [22] suffers from problems 
about assessing subjective prior distributions by 
humans, even if they do not know much about it, and 
requires evidential data to be mutually independent. 
The Dempster-Shafer theory [23] is an improvement in 
this respect, but its formulas are complex and therefore 
suffers from a computational problem that could be a 
drawback with respect to real-time performance. 
Another technique is fuzzy logic, which has been 
developed to enable reasoning with fuzzy, vague 
notions (fuzzy sets) as people do [24, 251. Fuzzy 
reasoning is not specifically geared towards real-time 
performance, and defining fuzzy sets and the fuzzy 
logic for a specific application also appears to be 
problematic. 

Other techniques that are complementary to the 
techniques discussed previously focus on the fact that 
the real world is a dynamic world, its state changes 
continuously with time. This requires a continuous 
monitoring of the integrity of the world model. Detected 
contradictions (e.g. between newly acquired information 
and current information) need to be resolved through 
revision of the beliefs (i.e. hypotheses in the world 
model). 
Two techniques dealing with revision of beliefs are truth 
maintenance and non-monotonic reasoning. 
A Truth Maintenance System (TMS) [26, 271 maintains 
the beliefs (possibly a multiple set of hypotheses, 
representing different beliefs about one situation) on 
which future inferences will be based. A TMS serves as 
a kind of administrative registration system. It is able to 
detect contradictions in the set of facts and conclusions 
from which they were drawn. 
A non-monotonic reasoning process can withdraw 
specific conclusions and facts (assumptions) causing 
the inconsistencies (it is called non-monotonic because 
the set of conclusions might be smaller than before). 
There is a lot of research going on in developing non- 
monotonic logics [28, 291, and their integration with 
TMSs (30, 311). Temporal reasoning [32, 33, 34, 351 is 
closely related to truth maintenance and non-monotonic 
reasoning and much research is performed in 
integration of these fields into one single reasoning 
system that detects and resolves contradictive 
information in time [36, 371. Each technique has its 
problems like NP-completeness of TMSs, the generality 

of research on non-monotonic logics and reasoning), 
and the frame problem in temporal reasoning. 

5. GLOBAL DISTRIBUTED FUSION ARCHITECTURE 

In the previous chapters, the world model within a 
central fusion node in the context of battlefield 
surveillance was discussed. The framework of the world 
model was based on a blackboard architecture in order 
to provide a surveyable insight into the information 
streams and fusion processes, and applicable AI 
techniques. For C2 applications, one central fusion node 
will not be adequate. An architecture needs to be 
designed that in particular fulfils the following 
requirements. 

1. It shall support the fact that sensor systems are 
geographically distributed. Communication protocols, 
type of data sent over (such as raw data, processed 
data or interpreted data), throughput, and distributed 
sensor management play an important role. 
2. It shall include the option that fusion might happen 
on plafforms as well as in C? nodes. Fusion might be 
partly performed on the sensor platform. In this case, 
interpreted data (e.g. object tracks) is sent over as the 
result. Reasons for this might be 
- to reduce data throughput which is less than if raw 

sensor data is sent over, or 
- to have interpreted data locally available for 

immediate action or accurate local sensor 
management. 

3. It shall be modular, reconfigurable and scalable. This 
in order to be flexible with respect to 
- investigation of fusion of specific sensor 

combinations in an isolated manner, 
- number of deployed sensor systems, 
- characteristics of the battlefield and theatre of 

operations, 
- the expected sensor data throughput, 
- sensor data processing happening at different sites 

and/or on different machines, etc. 
4. It shall have inherent parallelism, so that architectural 
elements can have private processors. 
5. It shall incorporate robustness. If a fusion function or 
sensor system fails, then the system shall still be 
operational. 
6. The architectural framework shall be general, and 
applicable to many war theatres, C2 network structures, 
and application domains (e.g. crew assistance for 
combat aircraft [38], naval domain or air defence). 

The requirements rule out a centralized or sequential 
processing architecture. A decentralized architecture 
[39, 401, based on loosely coupled, a-synchronous, 
course-grained, semi-autonomous agents (Fig. 3) may 
be better. The architecture comprises platform nodes, 
data fusion nodes, assessment and sensor 
management, and man-machine interfacing. 
The platform nodes are located on and around the 
battlefield (ground or airborne) observing the battlefield 
through a number of mounted sensor systems. They 
broadcast sensor reports which are processed by the 
various fusion nodes. 
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Figure 3. Distributed architecture incorporating MSDF. 

The main function of the fusion nodes is intearetation 
of sensor data. All fusion nodes incorporate the world 
model framework as discussed in Chapter 3 and rely on 
conventional as well as advanced information 
processing techniques such as those discussed in 
Chapter 4. Every node might be a specific instance of a 
generic fusion shell, in which specific knowledge is 
entered that mainly depends on the set of sensors to be 
fused and terrain under observation; the knowledge in 
the world model of a fusion node that is specialized in 
fusing heli-borne ESM and radar reports, differs from 
knowledge that is specifically focused on fusing ground 
IR and radar. The higher levels, i.e. military and unit 
level, have a common representation of information, 
because these do not include sensor-dependent 
information. This enables the fusion nodes to exchange 
this high-level information across a communication 
network. In this way, the nodes can assist each other 
with the interpretation process. For example, one node 
might ask another whether it saw also a tank at a 
certain position X. If so, accuracy of the position and 
certainty about the identity (it is a tank) can be 
increased. 

The findings of the fusion nodes are used as input to 
the situation assessment node. This node takes the 
high-level information of the specific fusion nodes as 
input for situation and threat assessment. The 
assessment node has been added to the architecture 
because it can provide the operator as well as the 
sensor management system high-level global 
information of the battlefield situation which makes well- 
organized decision-making and sensor management 
possible. In this context, small-scale situation and threat 
assessment is performed. An alternative is to distribute 

this function among the fusion nodes, eliminating 
centralized assessment. In this case, local assessment 
might be the basis for local sensor management. 

The sensor management system provides feedback to 
the sensor systems on the basis of the findings of the 
other processes and the human operator. The nodes (in 
particular the assessment modules) and the human 
operator can send the sensor management system 
requests for sensor data. In this way, the total system is 
able to anticipate to battlefield situations. It does that by 
constructing a global plan that allocates and controls 
the platforms and sensor systems, based on a pre- 
specified plan and sensor data requests. The global 
plan will be distributed to the platforms where local 
sensor managers work out the plan. 
The basic functions of the sensor management system 
are: (1) the monitoring of global sensor system 
performance, (2) the processing of sensor data 
requests into a plan, (3) the allocation of platforms and 
sensor systems and (4) the maintenance of a long-term 
observation strategy plan in order not to loose global 
observation by focusing too much and too long on local 
areas. 
The sensor management plan could be constructed on 
basis of algorithmic techniques as well as advanced 
techniques. It can use explicit knowledge about sensor 
systems (e.g. with respect to terrain and weather) and 
Al-based planning techniques. 

The final component of the architecture is the man- 
machine interface (MMI). Its main goal is to depict in a 
surveyable manner the battlefield situation, mainly 
based on the information in the assessment node. If 
necessary, the operator can consult other systems or 
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nodes represented in the architecture. Through the 
MMI, the operator can directly influence the sensor 
management plan. 

The distributed architecture of agents discussed in this 
chapter opens the world of distributed artificial 
intelligence (DAI) and processing [41]. This key 
technology fits very well to the inherent distributeness of 
the C2 process. Several alternatives are possible to 
map this architecture or multiple instances of it [17] on 
existing C2 networks. For example, each d node in a 
network may have co-located a number of sensor 
systems, one or more fusion nodes to fuse the sensor 
data, an assessment node, a sensor manager to control 
the sensors and an MMI. In addition, a communication 
module should be available in order to exchange 
information (battlefield information, sensor control plan, 
etc.) with other C2 nodes. Important questions to be 
solved are the way of communication between the 
various agents and between C2 nodes (locally as well 
as globally) and how to perform conflict resolution in 
order to achieve globally coherent behaviour of the d 
network of data fusion systems [42]. 

To conclude this chapter, note that the system 
architecture fulfils the requirements. 
- It copes with geographically distributed sensor 

systems. 
- It is modular, reconfigurable and scalable. The 

modules can be situated on platforms as well as in 
C2 nodes and can be installed on separate 
hardware. Furthermore, if extra sensor systems are 
placed in the field, an extra fusion node can be 
created and added, based on the same framework 
as the others. If the set of sensor systems or the 
operational theatres changes, the architecture still 
holds, the main thing to do is to down load new 
data and knowledge into the various data bases 
and knowledge sources about the used sensor 
systems and operational theatre such as tactical 
data and terraidweather data. 
The architecture also incorporates robustness in 
case of failure. If a sensor system or fusion node 
fails, the system will still be operational. It is 
preferred that each element in architecture runs on 
private hardware, so that a hardware failure will not 
shutdown the complete system. Beside this, real- 
time performance is increased because processing 
is distributed among multiple parallel machines. 

- And finally, it is thought that the architecture is 
flexible enough that it can be applied to many 
battlefield situations and operational theatres, such 
as the naval domain or air defence. 

- 

6. CONCLUDING REMARKS 

This paper describes the potential use of artificial 
intelligence to enhance multi-sensor data fusion in the 
field of C2. A C2 model has been presented, and the 
place of MSDF in this model has been discussed. 
Knowledge about the domain of fusion can contribute to 
better performance of data fusion. To mention some 

basic piece 
processes: 

of knowledge that can support dat fusion 

- knowledge on sensor systems and how they 
operate, given the terrain and weather conditions 
and objects to be detected, 

- knowledge on the manifestation of objects in 
different types of sensor data, 

- knowledge on typical contexts of an object (for 
example with which objects it usually cooperates), 

- and knowledge on tactics and doctrines to infer and 
assess the battlefield situation. 

A1 techniques using this knowledge can aid in effective 
control of the platform suite and in directing the fusion 
processes by only focusing on relevant parts of sensor 
data instead of processing and fusing all information 
that is offered by the sensor systems. 

Because of the explicit representation of knowledge, it 
is expected that a fusion application in battlefield 
surveillance can be relatively easily transformed into 
e.g. a naval application by "only" replacing the 
knowledge. Flexibility and adaptability is provided in 
case of changing military context by replacing the 
knowledge depending on the theatre of operations. 
The framework of a distributed architecture with its 
multiple communicating agents and incorporated AI 
techniques remains valid in many other applications, 
e.g. crew assistance for combat aircraft. For the Air 
Force, the link between battlefield surveillance and e.g. 
Close Air Support, Battlefield Air Interdiction and Air 
Reconnaissance missions should be clear. 

Research of application of AI in domains like C2 should 
be encouraged, especially with respect to real-time 
performance and integration into C2 infrastructure with 
its existing computer systems which are mostly based 
on conventional technology [13, 371. In this respect, 
techniques of major concern are representation and 
inference techniques, and techniques dealing with 
uncertainty. In addition, distributed problem solving 
techniques and related architectural solutions like the 
blackboard model are equally important. Further 
research should actually prove the usefulness of AI and 
the maturity and applicability of its techniques in the 
domain of multi-sensor data fusion. 
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