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Abstract 

Human perceptual capabilities involve the extraction of cask-orientcd information from environmental stimuli through physical 
>ensing and the use of background knowledge. 

There are many activities underway aimed at providing similar capabilities of artificial machine perception. Some success is 
achieved by exploiting what is known of corresponding human cognitive processes and by making use of the increasing power of 
information processing techniques. For this purpose, the recognition of sharply contrasted as well as fuzzy patterns (stationary 
or dynamically changing) plays an important role along with other aspects of processing of complex information structures. 

These techniques are beginning to be applied in guidance and control, in particular with regard to artificial visual perception and 
specch understmding. This application promises majorbenefits with the advent of autonomous vehicle and mission control, and 
of intelligent systems for situation awareness support of human operators. 

This Lecture Series covers the following subjects: 

- Pattern recognition techniques 
- Real time visual machine perception, principles and applications in G&C 
- Real time speech recognition and understanding in the G&C domain. 

This Lecture Series, sponsored by the Guidance and Control Panel of AGARD, has been implemented by the Consultant and 
Exchange Programme. 

Les capacites de perception humaines permettent I'extraction de donnees orientees-tiches des stimuli du milieu environnant 
par le biais de la detection physique et par I'application de connaissances prialables. 

Un grand nombre d'activitis sont enterprises a l'heure actuelle, dans le but de creer des capacitb similaires de perception 
artificielle machine. Un certain progrks est rialisable en exploitant les processus cognitifs humains connns et en se servant de la 
puissance de calcul grandissante des techniques de traitement des donnies. Dans ce contexte, la reconnaissance d'images a 
contrast marque, ainsi que de motifs flous (stationnaires ou en evolution dynamique) joue un r6le important, conjointement avec 
d'autres aspects du traitement des structures de donnees complexes. 

Ces techniques commencent a trouver des applications dans le domaine du guidance et du pilotage, en particulier en ce qui 
concerne la perception visuellc et la rcconnaiSSance de la parole. Cettc dernikre application doit donner de bons resultats avec 
I'arride du contr6le autonome des vehicules et des missions et de systimes intelligents d'aide a la perception de la situation. 

Ce cycle de conferences portera sur les sujets suivants: 

- les techniques de reconnaissance de motifs 
- la perception visuclle machine cn temps riel, principes et applications dans le domaine du guidage et du pilotage 
- la reconnaissance et la comprehension de la parole, aspects guidage et pilotage. 

Ce cycle de conferences est present6 par le Panel AGARD de Guidage et de Pilotage; et organise dans le cadre du programme 
des Consultants et dcs Echangcs. 
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INTRODUCTION 

The objective of this Lecture Series is to present both the basic ideas and approaches of machine perception, here for 
vision and speech understanding, and a number of related applications, in particular for guidance and control. 

Machine perception has become a topic of increased interest to the guidance and control community since the 
capability of autonomous process management and control is in reach in many fields including aerospace guidance 
and control. A great number of demonstration programs have been conducted worldwide and many new ones are 
underway, encouraged by the advent of more and more powerful computational architectures and performance. 

This can be viewed as one of the major technology push impacts to guidance and control. With increased awareness 
of the potentials of these techniques exploitation in applications is demanded which will trigger the requirement pull 
process with the cffect of intensifying the application-oriented research and development on this field. 

?b a g c a t  extent, the basic approach to machine perception in vision and speech recognition and understanding is 
developed upon what is known from animals and human pcrceptual mechanisms. Although the human perceptual 
capabilitics arc by far not reached at thc timc being, the pace of progress is amazing and there are cven aspccts in 
machine perception where the human capabilities are surpassed by the machine. 

The task of vision, for example, whether for brains or for machines, is to extract useful information from light in a way 
to infer relevant properties of visible objects, i s .  their l i t  reflectances, the individual or the machine needs to interact 
with in the world about it. One has identified in the brains of various creatures structures specialiscd for this kind of 
goal-oriented job. 

There is the understanding in process control that pursuing certain preestablished goals requires situational howl- 
edge, possibly the generation of a goal-oriented plan and certainly its execution. This, in turn, cannot be achieved 
satisfyingly without perception, including a structure of anticipation. This knowlcdge structure of the socalled 
pcrception-action cycle, where the gained information is to be embedded and represented, is often referred to as 
’situation representation’. For all systems known so far, including the human brain, the situation representation has to 
comply with requirements for computationalefficiency.Information compressionandcondensation has to be achieved 
for efficient handling of the knowledge (like content adressability), and the information being kept ready should be as 
complete and detailed as possible with secnre information retrieval capability. 

The brain structures are represenbg more or less only one common design decision in terms of a kind of trade off 
solution under the given biological constraints. As the machine can be diversilied in architecture, complying to the 
different application requirements, the machine might be more flexible through the combination of complementary, 
dissimilar solutions serving the diffcrent performance aspects. This kind of representation in machine perception 
could, in principal, be more complete and more detailed, and could therefore avoid mismatches and illusionary effects, 
for instance, humans are suffering from. This can be taken as a promising perspective, although, since a comprehensive 
representation would be much more complex, less easily manageable and considerably larger in size, computational 
limitations still are prevailing. 

Airbomemissionshavebecomemore complexandstressfultothe pilot.Scenariosnowrequiretbreat avoidance,rapid 
replanning and rccontiguration of navigation modes in the presence of electronic warfare like jamming of navigation 
aids such as GPS, management of electromagnetic energy emissions in heavily defended areas, and continuous 
monitoring of avionics system status in terms of fault detection and isolation and fault tolerant recodguration. That 
is the scene, activating the requirement pull process, looking for diagnostic and decision-making functions being 
performed autonomously. 
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In airborne guidance and control both completely autonomous process control and autonomous knowledge-based 
assistance for the pilot in process control are of prime interest, including autonomous situation assessment, planning 
with decision-making and problem solving and execution services. 

The lectures start on the first day with machine perception of speech, its recognition and understanding (Mangold). 
This perceptual task is very essential for operator (crew) assistance in order to offer natural communication means 
human individuals are used to. The source of information to be perceived is the human being himself. Speech 
productionisbasedon thespecificsoundgeneration whichispossiblensingthearticulatoryorgans. Man has developed 
very special decoding and understanding mechanisms to extract from the speech signal all the information. 

The remaining part of the lectures are exclusively devoted to vision, starting with approaches for sensing and 
interpretation of 3 D  shape and motion (Kanade) and elementqfunctions to be implemented on an electronic retina 
(Zavidovique). 

The capabilities and performance of vision systems using monocular stereo, and image sequence analysis with pixel 
and feature processing will be discussed in the third lecture (Baker), as will their respective utilities to vision-based 
autonomous guidance. The principal focus will be on the relationship between optic flow technique for image pair 
analysis of motion and depth and spatio-temporal manifold analysis. 

Theseconddayismoreapplication-oriented.It startswithalecture on3D vision application fornavigationandcontrol 
of mobile robots (Garibotto). This contribution describes a binocular stereo vision module for obstacle detection with 
no precise calibration at fast rate, a trinocular stereo vision based on segment primitives for the reconstruction of free 
space for navigation, and landmark detection for self-positioning and orientation of the mobile vehicle. 

The following contribution adresses image sequence understanding with application examples like road vehicle 
guidance with obstacle avoidance, vehicle docking and aircraft landing approach guidance (Dick”). High-level 
spatio-temporal models of the processes of interest in the real world are exploited for automatic feahure tracking. 
Other properties like feature grouping through ’Gestalt’idea, fixation-type vision, feature adaptation lo the actual 
shape and feature selection in a situation context are incorporated in this approach. 

Thelastlectureconsiderstwoscenariosoftheapplicationof3D computervisionusingpassiveimagingsenriors (Evans). 
First, a general scene is analysed without any prior information concerning its structure. This would be the case when 
wishing to control, for example, a vehicle moving off.road across unknown terrain. Secondly, in the converse case the 
motion is analysed of a well defined object, for example when tracking a known aircraft. A review of techniques used 
will be presented followed by further description of particular systems. 

The lecturers come from several of the participating AGARD countries, specifically France, Germany, Italy, the 
United Kingdom and the United States. There are seven lectures followed by a round table discussion at the end of 
the second day. 

I 
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perceo ion-Based and Machine-Oriented Sianal Processin 
~g 

Helmut Mangold 
Daimler-Benz, Research Center Ulm 

Institute for Information Technology 
7900 ulm, Germany 

Automatic recognition and understanding of 
speech signals is one of the key issues of 
advanced information technology. Language 
and speech are the relevant topics of cog- 
nition and therefore to understand spoken 
and written language offers,basic capabili- 
ties for universal processing of informa- 
tion. 
9nnarh i - m a n ' -  neneri  F c o m m n n i  cation me- 

mmonality of understan- 
~,oken messages. This 

ng must be the basic of 

Automatic recognition and understanding of 
spoken language is done in a multistep ap- 
proach, which starts with the low level 
signal processing. The output of the recog- 
nition step is word recognition. Many pos- 
sible words, the so called word hypotheses 
are the basis for intensive linguistic pro- 
cessing. 

Linguistic processing cares for syntactic 
analysis and semantic analysis. The seman- 
tic analysis needs again many additional 
parameters from spoken language, like into- 
nation and prosody to derive the meaning of 
a spoken phrase. 

All the processing of natural speech is 
narrowly related to human information pro- 
cessing. It is therefore possible to learn 
much from our human processing or from mo- 
dels of this processing. On the other side 
statistical methods of information proces- 
sing offer rather systematic and in many 
cases advanced methods for handling much of 
the information contained in speech using 
purely statistic approaches. To estimate 
the advantages of the more statistical app- 
roaches or more rule based approaches wlll 
be a great challenge for future research. 
Human perception will always be a guide how 
to process speech with machines. 

1. SDeech - Man's Tool for Communication 

Speech as man's generic communication med- 
ium is fully adapted to the capabilities of 
the human individual. speech production 1s 
based on the specific method of sound gene- 
ration which is possible using the articu- 
latory organs and, on the other side, per- 
ception is based on very special methods to 
extract all the relevant information from 
the speech signal, which is encoded through 
the time- and frequency characteristics of 
this signal. 

But this level of signal processing is only 
a very small part of the human processes 
which are involved if we produce and per- 
ceive speech. It has become rather common 
to call the speech signal as spoken langua- 

ge. This terminology shows clearer that 
many scientific areas are contributing to 
these processes and have therefore io be 
addressed if we want to compare human 
speech perception and machine perception of 
spoken language. It is quite clear that due 
to the inherent adaptation between speech 
production and speech perception a good un- 
derstanding of the generative processes ne- 
cessary to produce speech signals may be 
helpful for designing and understanding all 
the methods which are relevant for machine 
perception of speech, and that of course a 
deep understanding of human speech percep- 
tion may be helpful too. 

This multilevel process of speech percep- 
tion and understanding ranges from low- 
level signal processing up to high level 
cognitive processes. speech signals are our 
natural tool for human information transfer 
and, far beyond this, speech and language 
are the basis of nearly all our cognitive 
processes. We shall therefore have to care 
about signal processing, parameter extrac- 
tion. phonetic cbding, linguistic Structur- 
ing and analyzing, and finally about all 
the cognitive processes which we include 
in realizing natural language dialogues. 

2. The SDeech Signal 

In a communication theoretic based view of 
the speech signal we may interpret it as a 
complex coded signal whlch includes diffe- 
rent sorts of information that are coded in 
very specific manners. This may be easily 
understood if we look at the natural speech 
production process. 

Fig.2.1: Principle of natural speech 
production (voiced sounds). 

From Fig.2.1 we may see that the natural 
articulation system first produces an exci- 
tation signal resulting from the larynx for 
voiced sounds like vowels, and a noise sig- 
nal for unvoiced sounds like the frlcatl- 
ves. This excitation signal covers a broad 
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spectral range. It consists of a collection 
of many harmonic frequencies in the case of 
the voiced excitation signal and of a noise 
Spectrum in the unvoiced case. The basic 
pitch frequency distinguishes male and fe- 
male voices and gives a good deal of the 
information which is relevant for natural 
intonation and for the prosodic part of the 
speech signal. For male voices this basic 
frequency is centered at around 100 Hz, for 
female voices it is about twice this value 
at around 200 Hz. 

The actual sound information is moduhted 
on this basic excitation spectrum. The en- 
velope of the speech spectrum carries 
through its spectral resonance charactsri- 
stics, the formants, the information about 
different sounds. So. we have mainly two 
parts in every speech signal; the excita- 
tion, which carries much of the prosodic 
information and the short term spectral en- 
velope, which is representing the phonemic 
quality. 

This short term spectral envelope is per- 
manently changed through the process of ar- 
ticulation. This has led to a vivid opti- 
cal representation of speech signals as 
three-dimensional spectrograms, called so- 
nagrams. Such a sonagram of the German word 
lesen" is shown in Fig. 2.2. 

L -  

3 -  

2 -  

1 -  

Fig.2.2: Sonagram of the German word "le- 
sen" with indication of the se- 
cond formant. 

The horizontal axis represents the time 
scale. the vertical axis the frequency 
scale. The energy of the different frequen- 
cies is represented through the darkness. 
The darkest areas represent the formants, 
which are the resonances of the vocal tract 
and which represent different sounds. This 
means that the most important informati.on 
is represented by these formants. 

The course of the second formant is manua.1- 
ly drawn into the sonagram. The position of 
this formant is continuously changing as 
the sounds change during the articulation. 
Such a sonagram seems to be rather easily 
readable and some attemps have been under- 
taken to use spectrograms as another repre- 
sentation of speech, e.g. for deaf people, 
but in practice spectrogram reading ,needs 
extensive training and even then it i s  
not possible to do it in realtime. This 
means finally that optical perception of 
relevant speech information is practically 
not possible. But our natural speech per- 

ception system is based on spectral ana- 
lysis and higher level parametrical ana- 
lysis of a similar manner. 

2.2 Natural Decodino of Sueech S j m  
Information 

The decoding of the information contained 
in the speech signal is done in E# multile- 
vel process. The primary processing is done 
within the different parts of our external 
and internal ear. The sensitivity range 
of the ear is extremely hi.gh. Its lower li- 
mit is given by the noise produced through 
hydrogen molecules in the air. The whole 
range reaches up to 120 dB. This huge range 
is necessary to guarantee that the ear can 
perceive every sound or noise which is 
practically possible. 

Fig.2.3 gives a schematic overview about 
the primary organ. The middle ear is main- 
ly responsible for a resistance adapta- 
tion of the resistance of the air to the 
resistance of the liquid within -the inner 
ear. This inner part of the ear consists of 
a spiral tube which is separated into two 
parts through the basilar membrane. This 
carries around tenthousand sensor:; to mea- 
sure the movement of this membrane. The 
membrane itself realizes a sort of mechani- 
cal short-time frequency analysis, produ- 
cing nothing else than a spectral pattern 
like that in Fig.2.2. 

Fig.2.3: Schematic drawing of the ,structure 
of the inner ear with the cochlear 
tube stretched from spira.1 form to 
a linear form for clearness. 

The endings of the auditory nerve are di- 
rectly processing the signal from ::he basi- 
lar sensors. The auditory nerves do not 
only transmit the pulse frequency coded 
signal, but through intensive lnteraction 
of neighbouring nerves many enhancements of 
the spectral resolution are real'zed. In 
physics we have the basic principle that 
fhe product of spectral and time resolution 
in spectral analysis I S  constarlt. This 
means that,always a better spectral. resolu- 
tion requires worse time reso1ut:ion and 
vice versa. The mechanical spectral analy- 
zer of the basilar membrane underlies of 
course the same rules. Only the very speci- 
fic processing afterwards cares for  a much 
better spectral and time resolution than 
might be possible through the mEichanica1 
analysis alone. 
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characteristic defined through the maximal 
frequency energy within this band. Fig.2.5 
shows these bandfilter characteristics 
which are based on the one side on the non- 
linear frequency sensitivity along the mel- 
scale and on the other side on the spectral 
masking which is done in the low level ner- 
vous processing (~ie85). 

We have already seen that the dynamic range 
of our hearing covers around 120 dB in sig- 
nal energy. This loudness sensitivity is 
nearly logarithmic, i.e. already the hear- 
ing cells on the basilar membrane have such 
an inherent logarithmic sensitivity. The 
spectral sensitivity is not uniform over 
the whole hearing range from around.16 HZ 
up to near to 20 kHz. Fig.2.4 shows the 
frequency dependent amplitude sensitivity 
of the ear which peaks in the 1 to 2 kHz 
range. Especially in this frequency range 
there is normally the important second for- 
mant of the different sounds, which is re- 
sponsible for distinguishing many sounds 
from each other. Already a long time ago 
psychoacoustic experiments have shown that 
the transmission of the frequency range 
between around 800 Hz and 2 kHz is suffici- 
ent for getting a certain basic in- 
telligibility (Zwi67). 

Fig.2.4: Frequency dependent amplitude 
sensitivity of human hearing. 

A very important aspect of differentiating 
one spectral pattern from another one is 
frequency selectivity. This is usually mea- 
sured by psychoacoustic experiments asking 
test listeners to detect small changes in 
the frequency of test tones. This leads to 
a perceptual frequency scale, which is con- 
stant over the first few hundred Hertz and 
which then decreases with increasing fre- 
quency. This degradation of the frequency 
resolution at higher frequencies is combi- 
ned with improvement on temporal resolution 
at these higher frequencies. This fact is 
well adapted to the characteristics of the 
speech sounds themselves. The higher for- 
mants have usually higher bandwidth and it 
is therefore not necessary to analyse their 
mid frequencies as precise as for the lower 
formants. On the other side for sounds 
where the spectral energy is concentrated 
on higher frequencies like voiceless plosi- 
ves, spectral changes are happening much 
faster than e.g. for vowels. Voiced sounds 
require therefore good spectral resolution, 
while voiceless sounds need good time reso- 
lution. 

Combined with this varying spectral resolu- 
tion is the spectral discrimination of 
neighbouring frequencies. It is highly am- 
plitude dependent. This means that a fre- 
quency near to another one cannot be 
discriminated from the first if it does not 
reach a certain amplitude. Our hearing ca- 
pabilities have a sort of band structure, 
where all frequencies which are near to 
each other are weighted with a bandfilter 

Fig.2.5: Frequency characteristic of 
18 channels of a mel-scale based 
filter system as used for auto- 
matic speech recognition (similar 
to the filterin in the human 
auditory systemq. 

The whole frequency scale is covered by 24 
such frequency bands. Their bandwidths are 
highly different depending on the mel- 
scale. As we can see from the figure, where 
the frequency scale is logarithmic, such 
frequency masking works mainly upwards to 
higher frequencies. 

Besides this spectral masking, we can also 
experience a time-dependent temporal mask- 
ing. Such forward or backward masking is 
produced by stronger components coming be- 
fore or after a weaker component. 

1. cochlear ne-= 3. trapezoid body 

2. nucleus dorsalis 4.  colliculus inferioris 

Fig.2.6: Enhancement of spectral selectivi- 
ty on different positions of the 
auditory nerve apart from the 
basilar membrane. 
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The gmeral idea of all these effects is to 
strengthen the strong components in the 
signal. This again is necessary to care for 
a good robustness of our human speech reco- 
gnition process. Measurements in the 1.ower 
level auditory nerves have shown this too, 
where the formants are systematically 
enhanced in the run of the nerve from the 
auditory c.ells. Fig.2.6 shows some spectral 
characteristics measured on auditory nerves 
on different positions from the auditory 
cells. the top left image shows spectral 
sensitivity of the cochlea itself for some 
few tones. The second image and the further 
images stem from nerves in the lower level 
of the brain, measured within the acoustic 
nerve. We can very clearly see, that the 
spectral sensitivity is more and more en- 
hanced. 

2.3 Robustness of the Decodinu Process 

Of course all the speech decoding done in 
the human perception process is not only 
based on the signal processing described. 
It includes much higher level processing, 
but many of the processing steps are alrea- 
dv resuonsible for the hiah level of ro- ~~ 

b;stnes's which is possible>in the human de- 
coding process. We shall later see, that 
this robustness is by far better than the 
robustness we can today realize with ma- 
chine recognition of speech. 

Robustness concerns many aspects of 
perception, like 

speech 

Fig.2.7 gives an example for such a para- 
meter dependency. Here the intelligibility 
for meaningless syllables is shown depen- 
ding from the boarder frequency of a high- 
pass and a lowpass filter f o r  different 
speech levels. We can see that even with 
very small bandwidth there is still a good 
intelligibility of such meaningless syllab- 
les possible. 

I 

Fig.2. 

?OO 
96 

I, 
60 

YO 

za 

f -  

7: Intelligibility of meaningless 
syllables (logatomes) depending 
on the boarder frequency of a 
lowpass and a highpass filter. 

Very interesting again is the €act that 
both curves have their crossover at around 
2 kHz, the frequency where already in 
Fig.2.4 we have seen the highest auditory 
sensitivity. 

3. Machine Recoqnition of Swech - Pattern 
Recoanition 

3.1 Structure of Word Recoanition 

Most today available speech recognizers are 
word recognizers. which are based on pat- 
tern recognition of spectral patterns like 
that in Fig.2.2. The basic structure of 
such a word recognizer is shown j.n Fig.3.1. 

Fig.3.1: Basic structure of a word recogni- 
tion system. 

First the speech spectrum is continuously 
measured. Besides the static spectrum dy- 
namic parameters like changes in the spec- 
trum are measured too. In the last few 
years the usage of a mel-spectrum based 
analysis has proven to deliver optimal re- 
cognition results. Besides this approach 
there are still adaptive spectral filtering 
procedures used, where the spectral enve- 
lope is approximated through least squares 
approximation. This technique which is 
called linear predjctive coding LPC,gives a 
rather good approxlmation too (Ma76). Like 
the perception based approach this offers 
the possibility to make a detailed analysis 
of the spectral characteristics in a fle- 
xible manner. Fig.3.2 shows such an LPC- 
based spectral approximation for different 
deqrees of the approximating filter. 

Fig.3.2: LPC-Analysis of a speech spectrum 
using different degrees of filte- 
ring. upper left: speech spectrum 
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Using such a method for spectral estimation 
we get a spectral pattern for further pro- 
cessing like that in Fig.3.3, where we have 
shown,, a spectral pattern for the spoken 
word They". Here we can clearly see, how 
the changing formants of the speech spec- 
trum are modelled. 
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Fig.3.3: LPC-Spectrum of the word "They" 

3.2 The Pattern Recounition Process 

After the primary parameter definition some 
normalization stages are usually important 
for temporal and energy normalization. 
Through this processing it is possible to 
wide? the dynamic range of the system. But 
it is of course possible too to include 
here some normalization which goes far bey- 
ond such rather simple procedures. This 
concerns mainly the normalization of dif- 
ferent speakers' voices. to get a true 
speaker independent recognition. 

Such a speaker adaptation is first done for 
the spectral parameters which define the 
specific voice sound of different speakers. 
One approximation may be used to adapt fe- 
male and male voices to each other. But it 
is not yet possible to adapt all the dyna- 
mic variations of different speakers to 
each other. This will still be a topic,for 
basic research. some primitive approxlma- 
tions to this problem are already included 
in some existing word recognizers using a 
linear or a nonlinear time normalization of 
the varying speed of articulation. 

Another important aspect of preprocessing 
is the enhancement of noise robustness. Due 
to many levels of perception our human per- 
ception of speech is highly robust against 
environmental noise. Fig.3.4 compares the 
capabilities of human perception and todays 
existing speech recognizers. We can see 
that existing word recognizers are still at 
least 10 dB away from the SNR which people 
can tolerate. 

recognition rate 
intelligibility 

100 
% 
80 

6 0  

LO 

20 

0 -12 -9 -6  -3  0 +3 +6 +9 t12 + 5 dB 
rignal-to-noise-ratio 

Fig.3.4: Human and machine recognition of 
speech under noisy conditions. 

Especially the recognition of sentences 
uses a high degree of redundancy, while the 
good results of human digit recognition 
comes from the few numbers of possibilities 
to be distinguished. 

The classification stage itself makes a 
more or less sophisticated comparison of a 
sort of reference pattern and the new pat- 
tern to be classified. The reference 
pattern is usually defined during the 
training process. For this training a user 
or many users have to utter every word to 
be recognized or at least some representa- 
tive words for the vocabulary to be recog- 
nized. The system then stores this word 
patterns or special representations of the 
information contained within these Dat- 
terns. 

As shown in Fig.3.5 every classification 
makes a measurement of distances between a 
reference pattern and the new pattern. 

- t i m e  

Fig.3.5: Pattern classfication through 
distance measurement. 

Often the distance measurement includes 
some normalization procedures like in the 
dynamic time warp approach. The principle 
of this approach is shown in Fig.3.6. 
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Fig.3.6: Principle of dynamic time warping 
DTW 

DTW makes first a local comparison of all 
short time spectra (10 ms-spectra) of the 
reference pattern and the new pattern to be 
recognized. In a second step the best path 
through the resulting distance matrix 1s 
computed. This optimal distance path then 
is a measure on the double time scale how 
both spectral patterns may be optimally 
adapted to each other through dynamic adap- 
tation of the time scales. If we may assume 
that the spectral deviations of both pat- 
terns are to be ignored - which is only 
allowed for speaker dependent recognition - 
then the deviation from the linear path is 
a good measure of similarity between both 
patterns 

Word recognizers based on this principle 
have brought the first breakthrough for 
practical applicability of word recognition 
due to their good recognition results in 
speaker adaptive word recognition (Cla92). 

Another method of whole word based pattern 
recognition is done with artificial neural 
networks. Here again some assumptions about 
the physiological perception of speech are 
the basis for the technical approach. A 
neuron as the basic element of physiologi- 
cal processing consists of the cell corkms 
which has many dendrites arising from :Lt. 
These dendrites are ending on other cells 
making contacts on their surface, the syn- 
apses. So they form a network for exchange 
of information. Fig.3.7 shows a schema of a 
physiological neuron and its electrical e- 
quivalent, the neural network basic element. 

Through combination of many such neurons we 
can build a neural network which is able to 

Fig.3.7: Schematic draw of a neuron and its 
electrical model. 

make distance measurements between two-di- 
mensional patterns. A schematic draw of 
such a network is shown in Fig.3.8. There 
are at least three signal layers necessary. 

Fig.3.8: schematic drawing of a nelural net- 
work. 

The first one is the input layer where we 
are inputting the result of the preproces- 
sing. e.g. the spectral pattern of the word 
to be recognized. Following is the network 
of artificial neurons including the weight- 
ing factors w. from Fig.3.7. The hidden 
layer combine& the information from the 
training procedure. This means that we can 
interpret its function as a sort of refer- 
ence pattern. The output layer finally com- 
bines the input from the input layer 
weighted with the information from the hid- 
den layer to a measure of class membership. 
The darkness of the neurons within the lay- 
ers gives first the spectral energy and fi- 
nally the membership. Neural networks are 
nothing else than a distance measu.re scheme 
which usually includes some nonlincsarity in 
the behaviour of the weighting fac.tors. It 
is of course possible to include more than 
one hidden layer. But then the amount of 
training samples becomes very large. The 
advance of neural network speech recogni- 
zers lies in the fact that this -technique 
concentrates on the discriminative aspects 
of the different spectral parameters. 



Through intensive training the network is 
therefore able to learn even rather small 
distances between different word classes, 
e.g. to differentiate between phonetically 
rather similar words. The main drawback is 
still that the amount of training to make 
such differentiations is often not toler- 
able and so presently there is not yet, any 
specific advantage of word recognizers 
based on neural networks compared to con- 
ventional statistic methods. 

3.3 CaDabilities and Limitations of Whole- - 
The recognizers thus far described are 
based on purely whole word patterns. There 
is no knowledge included about the .struc- 
ture of speech or words, which consist Of 
single sounds to be articulated in concate- 
nation. The recognition process takes the 
word as the basic element with all the pro- 
blems which are arising from the fact that 
e.g. normalization of rhythmic differences 
in the articulation of a word is not so 
easy. DTW has found a nice technique for 
this, but it has on the other side problems 
with adaptation of spectral changes for 
speaker independent or speaker adaptive re- 
cognition. 

Another problem is the recognition of con- 
nected words with the methods mentioned. 
Here usually some parts of the words are 
coarticulated, such that the single words 
are no more articulated in the same manner 
as if they would have been spoken in isola- 
tion. 

A more detailed adaptation to the structure 
of the language itself would therefore of- 
fer more possibilities to widen the scope 
of speech recognition to better word recog- 
nizers and on the other side to recognition 
of continuous speech and thus to real 
speech understanding systems. 

4.1 Sounds and Phonemes 

Historically the first approaches to auto- 
matic speech recognition started with at- 
tempting to recognize single sounds, or 
still more easier to recognize single let- 
t e T s  to make an automatic tvoewriter. But .___ .. ~~~ ~~~ ~ ~~~~~~~ 

all these attempts have not b'een very suc- 
cessful and so the practical solution was 
to make whole word pattern recognition for 
command applications. This is mainly due to 
the fact, that the word is the smallest 
unit which can easily be produced in lso- 
lation. 

on the other side the smallest unit pre- 
sently used in spectral pattern matching is 
the 10 ms-spectrum. The usual speaking rate 
of human speaking is around 20 sounds per 
second for even a fast speaker. If the 
spectrum of a word is calculated every lOms 
then it is possible to describe every sound 
with around 5 spectral patterns. So, also 
rather short sounds like plosive bursts are 
at least described by one spectrum. This 
1Oms unit is a rather artificial unit which 
is only roughly oriented at the structure 
of the speech signal. 

Much better units are phonologically based 
on distinctive parts of the continuous sig- 

* 
* They should have phonological meaning. They should be easily separable out of 
the continuous speech signal. 
They should not change too much if they 
are coarticulated with other units. 

* Coarticulation of such units should not 
be possible too much. 

nal. such units should fulfil at least the 
following criteria: 

x 

We can at least identify two such units, 
the speech sound with its abstract repre- 
sentation the phoneme and the syllable, 
which is mainly a unit used in written re- 
presentation of language but which has SI- 
multaneously an important aspect in spoken 
language. 

The advantage of the phoneme as basic unit 
is the limited number of them. The usual 
large languages can be described by around 
40 phonemes. But the number of syllables is 
between 100 and 1000 times larger. from 
which many are rather seldom. The phoneme 
seems to be a rather recommendable basis 
for a description of the language. A still 
pertinent problem is of course that there 
is no direct and reversible transform be- 
tween phonemes in a word, its sound struc- 
ture and the typing of the word. There are 
rule based systems to do this, but these 
sometimes miss the correct spelling. To use 
lexica needs on the other side extensive 
human work and never will be complete. 

The question for the selection of the best 
units can perhaps be answered if we ask for' 
our human perception. Here the answer is 
rather simple: It is surely not only a pure 
phonemic decoding. We experience this fact 
clearly if we want to recognize meaningless 
words. Even to recognize such meaningless 
syllables is complicated. On the other side 
long experience from optical spectrogram 
reading has shown that trained users are 
able to attain a correct phonetic decoding 
of between 80 and 90 percent. 

4.2 SDeech Structure and Perceotion Models 

our daily experience shows rather clearly 
that our speech perception process includes 
a huge amount of knowledge. The basic 
question will be if, and how this knowledge 
is practically combined with the existing 
structure of the speech signal itself. Is 
there e.g. a substantial amount of phono- 
logic knowledge directly influencing the 
perception on a sound or word level? 

Cole et.al. have described a basic collec- 
tion of rules for such a perception model. 
These are(Co80): 

* words are recognized through the interac- 
tion of sound and knowledge. * Speech is processed sequentially word by 
word. Each word's recognition locates the 
onset of the immediately following word 
and orovides svntactic and semantlc con- 
straynts to recognize the immediately 
following word. 

* Words are accessed from the sounds which 
begin them. 

* A word is recognized when the sequential 
analysis of its acoustic structure elimi- 
nates all candidates but one. 

In this terminology the phonologic struc- 
c u r e  of the spFech plays an imporcent role 



Even if the definition does not include any 
intermediate structures like syllables, 
these may be included in the recognition of 
word structures. The composition of words 
from syllables and the relevance of syl- 
lable perception is shown very clearly in 
perception experiments. We have no problem 
to reconstruct missing sounds in a word, 
but we have much more problems to recon- 
struct missing syllables. Syllables may al- 
ready have a certain semantic role, if we 
look at prefixes which may change totally 
the semantics of a word. 

The stratification model of speech percep- 
tion and speech structure in Fig.4.1 shows 
this fact. The linear structure of the pho- 
nemic chain is changed into a netstructure 
at the higher levels (Win83). 

+ 
Sound 

Fig.4.1: The stratification model of speech 
(from Win83). 

5 .  The Role of Words and Sentences 

5.1 The Word as a semantic unit 

The bottom-up approach of speech perception 
which has been reflected in the existing 
work in automatic speech understanding has 
stressed the importance of all these small 
units, starting from a 10 ms feature vector 
over the phoneme, syllable up to the word. 
Other investigators. motivated chiefly by 
developments in generative linguistics, ha- 
ve proposed much larger units for percep- 
tion like clauses or sentences(Pis75). The 
word plays here an intermediate role, as we 
already may see in the stratificational mo- 
del from Fig. 4.1. 

It is of course in the meantime clear that 
there is now sufficient psychological evi- 
dence that all these layers of analysis are 
available simultaneously. Many models of 
brain functions favour a layered model f o r  
the processes done in the brain, and of 
course these layers are permanently active 
during the process of perception. It has 
become clear from brain physiological 
studies that only if all layers are actj.ve 
a perception of speech is possible. of 
course the problem is still under discus- 

sion how far speech based semanti.c proces- 
ses need speech perception as a basic. . Fi- 
nally this means that cognitive processes 
are ultimately based on a language and 
speech processing procedure. 

The word fulfills many of these require- 
ments. It has a semantic meaning. A s  we 
know from some conversations, esgecially in 
foreign languages it is widely Ftossible to 
arrange a fully word based conversation, 
leaving out all the rest of the sentence. 

- 5.2 svntactic and Semantic Structures 

Words presented in a sentence ccintext are 
more intelligible than presented in isola- 
tion. The same is true if we pre,sent words 
in a nonsense environment. Then the recog- 
gnition of the word may be worsened. Some 
traditional assumptions about the contri- 
bution of syntax and semantics in the per- 
ception process underestimated the rele- 
vance of the cooperation of all the levels. 
This view gave them only the role to 
restrict the multitude of possible alterna- 
tives. The process of speech perception was 
in this model based on a strict serial or-  
ganization, where the phonemic characteris- 
tics of the speech signal are more o r  less 
directly extracted from the acoustic pro- 
perties of the signal. 

Phonetic experiments in transcription of 
spoken language have shown in the meantime, 
that it is nearly impossible to d,ecode the 
correct phonemic representation oE an utte- 
rance without higher level lexical and syn- 
tactical information. 

Finally it is important not to forget the 
prosodic information which exists on a ra- 
ther low word level, but which is mostly 
relevant on the sentence o r  phrase level. 
Only in the last few years the importance 
of prosody for human perception i:; investi- 
gated deeper and this understanding then 
offers new chances for machine perception 
of speech. 

5.3 SDoken Lanuuaae and Informaticg 

Communication and information processing 
are two very intensively connected topics. 
There is no information processing possible 
without any communication and we know that 
this communication process does not only 
cover the internal process of communication 
within the brain of a human but that the 
interpersonal communication is more o r  less 
the basic force for every advance in cogni- 
tion. Spoken language communication is one 
of our  basic communication media, it is at 
least the most spontaneous medium. Compared 
to written communication it offers so many 
additional parameters like intonation, pro- 
sody, stress to underline certain semantic 
facts and to give a much wider scope of in- 
formation than it ever is possible through 
written language. 

There is some psychophysical evidence that 
written and spoken language use the same 
phonetic code which is derived in a 
similar way from written or spoken informa- 
tion. This phonetic code could then be the 
basis for most of our language based infor- 
mation processing steps. 

Processing 
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with a sufficient number of possible words 
for the sentence to be analyzed. 

After the signal processing the linguis- 
tic processing is following which is based 
mainly on syntactic and semantic ana- 
lysis. of course the top level processing 
is depending on all the pragmatics based 
knowledge, which controls the dialogue 
and the internal knowledge processing. The 
output channel is doing rather similar 
things in a reverse manner, This means 
that from semantic concepts via syntactic 
design a text is created which then is 
transferred into an acoustic signal 
through phonologic steps and signal 
synthesis. 
This linear approach to speech understan- 
ding gives good insight into the single 
steps and offers good possibilities for 
control of the different processing levels. 
A totally different approach is,the black- 
board based approach, where basically a si- 
multaneous acces to all levels of signal 
processing is possible, from low level 
acoustic signals up to semantic and 
pragmatic processing. This approach offers 
the principal capability to make easy re- 
quests between all these domains, but the 
main problem is still, to decide, how all 
these domains are to be coordinated, 
Fig.6.2 gives a rough schema of such a 
blackboard based approach. 

6. Machine SDeech Understanding 

6.1 s tructues of SDee ch undez-q 
Svstems 

After these views into the structure of our 
human information processing, especially 
related to speech perception, it will now 
be interesting to look back again at the 
state of machine perception of speech. If 
we try to make a true analogy to our models 
of human speech perception we can have in 
principle two approaches, the strict serial 
system and the blackboard approach where 
every part of processing can permanently 
access to all the steps. Fig.6.1 shows the 
schematic structure of a serial speech un- 
derstanding system. 

Sentence ILanguogeI 

syntax syntax 
ruies 

template lexicm template 
matching rule5 matching 

! Sound \ 
signal signal 

processing phonological rules synthesis 

Speech J’ 

Fig.6.1: Steps in a serial speech under- 
standing and dialog system. 

Such a system includes not only the under- 
standing stage up to the analysis of seman- 
tics but it must have additionally the re- 
verse information channel for outputting of 
the answer. 

All the steps which have to be treated 
start and end with the acoustic signal and 
they end with the semantic representation 
of the content of the spoken signal. The 
first steps in the analysis part are rather 
similar to a word recognizer, as was alrea- 
dy described. Such speech understanding 
systems usually have to understand conti- 
nuous speech and therefore it is never very 
helpful to consider the words as isolated 
events but it will be much better to repre- 
sent every word by a collection of much 
smaller units, usually the phonemes. We 
shall see in the following chapter, which 
methods are today existing to recognize 
words on the basis of phonemes and how it 
is possible to care f o r  different alterna- 
tives of every word and simultaneously to 
provide the following linguistic processing 
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Fig.6.2: Blackboard approach for speech 
understanding. 

The important part in every blackboard 
approach is the database where all the hy- 
potheses about the results of the different 
parts are represented. It must of course 
include a measure for the vagueness of the 
special results which again could be the 
basis for interactions between the domains. 

Of course the basic question is and will 
be, which of both concepts offers the best 
and on a long term basis the most possibi- 
lities for inclusion of much phonologic and 
linguistic knowledge and has simultaneous- 
ly good capabilities for getting enough in- 
sight into the behaviour of the models. AS 
we have already seen, psychoacoustics and 
psycholinguistics offer some ideas about 
this question. but it seems that our human 
information processing scheme does some- 
thing serially and some other things are 
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done in parallel. At least the higher le- 
vels seem to have much parallelism using a 
sort of blackboard approach, while the ve- 
ry low level parameter extraction is done 
serially. Technical solutions of course 
prefer systems where most of the steps can 
be designed separately. This is the case in 
both examples, but the interaction in the 
serial system is much simpler. Therefore in 
most technically realized cases the se.ria1 
approach is used and up to now 1s surely 
more advanced, even if in a long term 
sight this approach will be replaced 
through more and more parallelism. 

6 .2  word Recoanition in sDeech Under- 
standina svstems 

AS we have already seen the most flexible 
way to describe continuous speech is on a 
basis of the phonemes or the sounds which 
describe the realization of the phonemes. 
Every word to be recognized can be mode.lled 
using such a phoneme chain. The single pho- 
neme again can be modelled on the basis of 
spectral patterns or special features of 
such spectral patterns, like positions of 
formants, voiced/unvoiced characteristics 
or spectral energy distribution. such a 
systematic model based approach is based on 
the theory of Markov Models, which had 
first been used to describe the statistical 
characteristics of written language. 
Fig.6.3 shows the results of a Markov Model 
for German written text, where statisti.ca1 
relations up to the degree 3 are used. The 
statistical degree r=O uses only the dis- 
tribution of letters and blanks in German 
texts, while r=3 includes the statistics of 
the distributions of the three following 
letters. 

I - - ( I :  aiobnin*larsfneonlpiitdregedcoa*ds*e*dbieasln 
dnurlorr ls~omntheut*svdleeoieei: i : .  . . 

c7,i : er:ragepteprteini i igei t ; i ;gerelen*re*ui l ( :~ves~mi~ 

r = 2 :  billunien*zugen~die:*hin;rse;rrchrwel.rwar*getl~ 

r - ? :  eist*des: l -n ich:r in:rdcn*plossen*I~ai in:~iroge~,rwa 

nzerurboma . . . 

nichelcblant:i:dierluiidcrstim* . . . 

zufai i re . . . 

Fig.6.3: Markov Chains based on statistics 
of German texts. 

Already with r=2 there are some short mea- 
ningful words received and this becomes 
better and better with rising r. 

On the basis of Markov chains for spectral 
patterns we then model in a similar way 
the signal characteristics of spoken lan- 
guage up to the word level. Of course, as 
Markov himself has done, such a 
statistical modelling ist still possible 
beyond the word level. It is principal.1~ 
possible to model whole sentences, even 
the characteristics of texts can be 
included in a statistical model. 

To recognize words it is then possible to 

use Hidden Markov Models HMM for every word 
and for every phoneme to be recognized, 
which can be trained through spoken speech 
and thus become more and more representa- 
tive for the word to be recognized itself. 

The basic structure which can be described 
by a Hidden Markov Model i s  shown in 
Fig. 6.4. 

duration 

Fig.6.4: Basic structure of a Hidden Markov 
Model. 

There are states and transitions, both with 
probabilities for them. These stat:es Sn can 
be followed by another state but also by 
themselves. The structure of the model de- 
fines, which transitions are principally 
possible. Of course the most general model 
offers possibilities for every transition, 
but such models are practically nclt calcu- 
lable due to restrictions in the statisti- 
cal representation in a limited training 
material. So. experience is requested about 
the best structure for such models. Every 
state of a word model is again ba.sed on a 
smaller sound model, which usually has at 
least three states which model th.e onset, 
the stationary part and the final part of 
such a sound. The statistical model has to 
include not only durational models for eve- 
ry state but it must also have information 
about the probability of a selected spec- 
tral pattern being in the position of any 
state. This is necessary because the spec- 
tral variations in the articulation of dif- 
ferent words are rather high. This can be 
seen in formant maps, where the position of 
the first two formants for the vowels haye 
been analyzed. Such a map is shown in 
Fig. 6.5 .  

If we look at such a plot, we can see, that 
there is much overlap of the different vo- 
wel spectra. This means that it is not pos- 
sible to differentiate them clearly. This 
becomes much more complex with mor'% dynamic 
sounds, which consist mainly of changing 
parameters. Therefore the characteristics 
of the different states in the HMM must be 
described by their probable distribution 
within the set of parameters, ~2.g. the 
spectrum. It has become usual to do this on 
a soft decision basis, meaning 'that the 



Fig.6.5: FZ/Fl-Plot of the Swedish vowels. 
(Fan591 

membership to one parameterset, e.g. in the 
Fl/FZ-area is described by the probability 
that a certain vowel has a certain ,Fl/FZ- 
parameter. Of course this needs immense 
statistic work with different voices and 
different examples of speech, but finally 
this leads to a chance to characterize the 
sounds even in a speaker independent way, 
if the statistical distribution of all the 
parameters is measured over many speakers. 

It is highly astonishing how we human re- 
cognize speech in a widely speaker indepen- 
dent way. There seems to be not a long 
adaptation procedure necessary to recognize 
totally different voices, e.g. during a 
conversation with very differnt people. It 
is up to the moment not yet clear which 
sort of spectral and phonologic adaptation 
we can make to have a practically unlimited 
capability to recognize nearly every spea- 
ker. It seems obvious that mainly higher 
level processes are responsible for such a 
capability because there is no signal pro- 
cessing known which could do this. Since 
many years speech research has looked,, for 
the so called "distinctive features in 
speech. These are parameters which could be 
independent of the special speaker and of 
the word where a special sound has been 
spoken. But there has nothing been found 
which fulfils all the expectations. For the 
moment therefore the solution is to adapt a 
word recognizer in a short training phase 
to a new speaker's voice. This is done 
with a spectral transformation. Fig.6.6 
shows the principle of such a transforma- 
tion. In a bilateral transformation the pa- 
rameters (normally the spectral pattern) of 
the new speaker and of a well defined re- 
ference speaker are transformed into a new 
parameter area in such a way that the dif- 
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ference between both speakers becomes mini- 
mal. Through this transformation better re- 
sults are possible than through a single 
sided transformation of the new speaker in- 
to a reference speaker. 

" refer-ce €attern space speaker 

Fig.6.6: Principle of a two-sided trans- 
formation of speaker parameters. 

If we look again on our human technique of 
adaptation such spectral adaptation is su- 
rely of minor importance, much more impor- 
tant seems to be an adaptation to the dyna- 
mic articulation. 

After all these pattern oriented processing 
the word recognizer itself has again to 
identify the spoken word correctly. Using 
the Hidden Markov Technique it is again im- 
portant to measure distances between the 
trained model and the chain of spectral 
states of the word to be recognized. Usual- 
ly we get many word hypotheses. Especially 
in the case of continuous speech these hy- 
potheses are defining a network of words 
which may all be possible at different time 
slots. Fig.6.7 shows the principle. 

t *cor* 

word 8 - 
word 12 - word 4 

I 

word 1 word 11 
word 13 

word 6 word 14 

I 

word 17 I 
word 7 - 
I_ . 

word9 - 
I 

wordz - 
a word 15 
- 

w s  -- 
Time 

Fig.6.7: Word net as the result of the word 
recognition. 

In a serial understanding system it will 
now be the task of the linguistic proces- 
sing to define first the correct word chain 
and in the following stage to analyze all 
the contents of the phrase which had been 
spoken. 
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6 . 3  Lansuage Models and Parsers 

Similar to the definition of the most pro- 
bable word, it is possible again to defjne 
the most probable chain of words using 
again statistical analysis of a huge col- 
lection of texts, which should be as far as 
possible representative for the texts to be 
analyzed. Then alone statistics may help to 
define from the word network the most pro- 
bable sentence, based on the statistics of 
the most probable chain of words. We call 
such a method a language model, even if we 
know that every language model is rather 
restricted to the texts that had been the 
basis for the training of the model. so. if 
for example a speech understanding system 
should be able to write special letters for 
patent counselors, the training material 
should come from many such letters. 

Such a statistics based approach has the 
advantage that there are no rules and it 
can be easily adapted to other applications 
if the training material is changed. The 
important drawback lies in the fact, that 
the language model may fail totally if the 
application domain is changed without new 
training. In some cases the result of such 
a recognizer may be worse than without any 
language model. 

The approach of transformational grammar 
had seemed to offer a rather easy capabili- 
ty to derive very djfferent grammatical 
structures from some basic principles. 
Fig.6.8 gives an example from (Win83). 

Fig.6.8: Sentences with different deep 
structure transformed into the 
same surface structure. 

The deep structure of a sentence is relat.ed 
to the semantic content, while the surface 
structure is describing all the syntact.ic 

relations within this sentence. I f  there is 
a sentence with the same deep structure as 
another sentence it may be possible that 
they have different surface structures and 
vice versa. If we start with a syntactic 
analysis for the processing of the sentence 
we may see very similar surface structures 
for two sentences but the semantic content, 
represented by the deep structure is dif- 
ferent. 

Fig.6.9 shows a model of linguistic compe- 
tence of the adult. This means that the 
main language capabilities are in a mature 
state and the actual usage is dominating 
over the acquisition of language capabili- 
ties. 

Fig.6.9: Model of the basic human language 
capability. From (Win83). 

This model has three main components, the 
central linguistic competence, the language 
acquisition device and the performance 
mechanism. Linguistic competence is the 
source of our intuitions about grammati- 
cal structure. The language acquisition de- 
vice is permanently bringing new informa- 
tion about deep and surface struct.ures and 
is permanently widening the linguistic com- 
petence. Of course as already men.tioned in 
the adult user this is no more as active as 
in the case of a child acquiring most of 
the linguistic competence. The node1 has 
the three main factors. semantics, syntac- 
tics and phonology in parallel as we have 
already seen in the blackboard model. 

Another rather important relation happens 
within this model between the boxes for 
language use and the performance mechanism. 
The permanent interaction between the 
speech production mechanism and the percep- 
tion mechanism has been stated many years 
ago already in the Motor Theory of Speech 
Perception. This theory says that every 
perception process is in parallel connected 
to an internal production process within 
the brain of the human perceiving the 
speech signal. All these theories very de- 
finitely state that there is an intensive 
interaction between both sides and that it 
is nearly impossible to perceive speech if 
the.interna1 production capability is dis- 
torted. of course it is clear that this 
does not concern the external mtschanisms 
of speech production. 



If we look at Fig.6.1 the syntactic 
processing stage refers to the word lexicon 
which is always the one basis of its analy- 
sis. The other thing are the necessary 
rules which identify the relations of words 
within a phrase or sentence. We can there- 
fore state that the basic elements of a 
syntax are: 

* a lexicon of allowed types of words, 
* a collection of allowed types of 
sentences and 

* a rule system combining both. 

pample sentences (1): 

*"DO you have five recently published re- 

"Existed there a new report from the 

Are there new papers from Maier?" 

ports from Mr. Miller?" 

ministry?" 

Equivalent syntact.ic description: 
[presencel[numberl[datel~paperl[aurhorl 

pample sentences (2): 
Has Mr. Maier recentlv written some new 
papers? " 
"Has Mr. Miller newly published five new 

"Has the ministry presently published a 
reports?" 

new paper?" 

Equivalent syntactic description: 
[auxiliary verbl~authorl[datel[verbl[num- 
berlrpaperl 

These two small examples may show that 
there are very many possible descriptions 

It is without any large 
possible to create some 

de- 
are 
to 

of the same fact. 
amount of effort 
thousand different versions of grammar 
scribing the same content, but there 
the same amount of versions which lead 
misunderstanding. 

Within today existing speech understanding 
systems the number of sentences allowed is 
rather restricted, being a basic problem 
how this can be permanently adapted to the 
actual versions of speaking habits. Every 
living language is permanently changing its 
habits and this means that even the syntac- 
tic constructions allowed a r e  c h n n n i n o  OPT- =- --=  r-- _ _  . . . . 
manently. Every syntactic rule system 
should therefore have the capability to 
adapt itself to new speaking habits. 

There are mainly two ways to realize adap- 
tive grammar systems in understanding, to 
include elements of generative grammar or 
to do it in a sort of interactive learning 
through dialogue, which is in principle 
possible within a man-machine system. 

6.4 The role of semantics and Draqmatics 

We know from our everyday experience that 
we do not only rely on our language know- 
ledge if we try to understand the meaning 
of sentences spoken through a human part- 
ner, but we include much unconscious know- 
ledge. These are elements which we call 
world knowledge or more general pragmatic 
knowledge. That is everything we know from 
the Special application on which we make 
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our discussions but far beyond this all the 
knowledge from our life. Therefore often 
understanding via a telephone call is less 
easier than a direct conversation, where we 
can include behaviour of our partners too. 

The model of Fia.6.9 covers therefore onlv 

these non-speech experiences 

In the schema of a linear speech understan- 
ding system of Fig.6.1 this pragmatic and 
application oriented processing and data- 
base forms the top level processing part,of 
the whole system. In our human processlng 
this knowledge is surely distributed over 
the whole cognitive processes of the brain. 

For a limited technical application of 
speech understanding there are some chances 
to include such knowledge in a practical 
accessible manner. It will then be intermi- 
xed with the semantic analysis part. 

Semantic analysis may rely on many diffe- 
rent aspects of the speech structure. The 
most important of them are represented 
through the following parameters: 

* syntactic structure 
The order of words within a phrase 
defines widely the semantic content of 
a sentence. The main problem is that 
there are extreme possibilities for am- 
biguities which may not be resolved 
through a syntactic analysis alone, but 
which need additional knowledge. 

* Vocabulary 
The vocabulary can within technical 
systems be restricted to a rather limi- 
ted amount of words. If a user is able to 
handle such a limited amount of words and 
he can express all his ideas with this 
lexicon, than it is possible to define 
the semantics of the words used in a ra- 
ther consistent way, such that possible 
misunderstandings are rather limited. 

This parameter characterizes all the 
relevant aspects of extra-linguistic 
but speech oriented behaviour of a 
human. Examples are intonation. stress 

* Prosody 

for words or sentences, rhythm of spea- 
king, up to hesitations. A detailed 
analysis of such parameters is present- 
ly not yet possible in automatic sys- 
tems, but there are many scientific 
approaches to use much more of these 
parameters for semantic analysis. 

How sounds are spoken and how they 
are combined to words characterizes 
partly intonation and partly some 
special knowledge about the speaker 
himself. We can detect from this in- 
formation something about things 
which are directly relevant on the 
background on which the speech to 
be understood is articulated. Here 
non-speech articulations, like ah's 
and hm's etc. are relevant too. 

* Phonology and Articulation 

* Acoustics 
External noise, distortions, limited 
bandwidth give us some semantic in- 
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formation about the speech signal and 
its location of production and there- 
fore about the speaker's present si- 
tuation. 

Discourse structure 
Every dialogue has a certain structure 
which depends on many factors, like 
speaker habit, dialogue content, dial- 
logue stress, relevance of content etc. 
It is even for human auditors not easy 
to assess all these different aspects 
from the speech signal alone. For  ma- 
chine speech understanding it is pre- 
sently nearly impossible to rely on 
such an analysis. Here still much re- 
search is necessary, which must include 
ergonomic aspects as well as application 
oriented and phonologic details. 

* Dialogue stile 
People are used to adapt themselve under 
different conditions to different stiles 
of dialogue. This aspect is narrowly re- 
lated to the problems of analysis of dis- 
course structure. It is more or less the 
top level aspect of the dialogue 
scenario. 

These aspects which should be included in 
the semantic analysis task are widely 
intermixed with each other such that it is 
not so easy to separate them definitely and 
to describe their influence under semantic 
aspects in a very definite manner. Addit-io- 
nally some parameters are often only occa- 
sionally changed and give some unconsci.ous 
information. but often do not reflect the 
conscious intention of the speaker. Often 
they reflect the special habits any special 
speaker has. and so they characterize more 
the speaker and not so much the semant.ics 
of the speech itself. 

The basic tasks of semantic analysis are 
then: 

* to create a logic description of the con- 
tent of a sentence, 

* to describe within this logic description 
relations with a world model, and 

* describe possible semantic alternatives 

Practically this task needs very powerful 
tools for describing all the possibilities 
and relations efficiently and in such a way 
that definite semantics are coming out and 
not ambiguity. 

as a source for the future dialoge. 

* Make a list of all words which have 
been attributed to [author]. 
If the word for the date is defined as a 
year, then check if this is a meaningful 
year (which should be between 1900 and 
1992) 

Within the first example, the list of au- 
thors is not easy to be implemented, be- 
cause authors are here not only people with 
names but they can be an official agency, a 
confederation etc. All these can be the 
source of documents, and in the definition 
of our syntax they can be authors. 

A good prosodic analysis will resolve some 
ambiguities, but most must be done by in- 
clusion of pragmatic knowledge coming di- 
rect from the specific application and 
additional usage of world knowledge. Both 
can be gained within the understanding sys- 
tem through the dialogue. 

6 . 5  Dialooue with Sveech 
Svstems 

~- understa- 

In our human communication we do many 
clarification by dialogue. Within these 
dialogues we learn not only the actual si- 
tuation of information processing but the 
long term knowledge. That is the knowledge 
which we build up during our life and which 
we therefore call world knowledge. There 
are nice examples for computer-man dia- 
logues from the first start of artificial 
intelligence research and the first 
investigation into man-machine dialogue. 

These first examples have been realized 
with the system called Eliza at the MIT by 
Joseph Weizenbaum. It had been realized 
already in the sixties, when computers had 
become enough powerful to handle nearly in 
realtime such linouistic Droblems (Wei661. 
Fig.6.10 gives -an example of such a 
dialogue. 

Men are all alike 

I N  WHAT WAY 

They're always bugging us about something or ,,the= 
CAN YOU THINK OF A S P E C I F I C  W P L E  

Well, my boyfriend made me come here. 

YOUR BOYFRIEND MADE YOU COME HERE 

He. says i'm depressed much of the time. 

I AM SORRY TO HEAR YOU P X E  DEPRESSED 

I need some help, that much seems certain. 
WHAT WOULD I T  MEAN TO YOU IF  YOU GOT SOME HELP 

Perhaps I could learn fo gcc along with my mother 

T E L L  ME MORE ABOUT YOUR FAMILY 

Fig.6.10: Example of a man-machine dialogue 
with Eliza. Written language. 

The analysis oE meaning was not really rea- 
lized in Eliza, it had been more or less 
only a pattern identification and we feel 
spontaneously that the dialogue is rather 
schematic and it turns around itse.lf. Only 
an analysis of the deep structure may have 
overcome all these problems. 

But of course the main problem was that no 
real pragmatics was implemented. So the 
dialogue itself was senseless and therefore 
it looks like a typical party dialogue, 
where people who have nothing to say to 
each other are speaking and have a nice en- 
tertainment. 

A real pragmatik and semantic analysis, 
which includes knowledge must be based on 
extensive databases and the correct. inclu- 
sion of all the knowledge stored in these 
databases. It is clear that this problem is 
again a language analysis problem because 
much of the knowledge in these databases 
will again be stored using language as the 
adequate medium. 



1-15 

2 
Speech recognition systems today available 
are concentrating on very special tasks. In 
Fig.7.1 we have shown the available systems 
on a three dimensional specification map. 

I 
, , .I..V , ! 

Fig.7.1: Three dimensional representation 
of the major aspects of speech 
recognition systems. 

The relevant parameters used for this 
classification are: 

* The system prize, which usually repre- 
sents the technical capabilities of a 
system, ie. a good recognizer for iso- 
lated words with high recognition rate 
is usually more expensive than one with 
a limited recognition rate. 

* The sort of speaking required, isolated 
or connected or totally continuous. 

* The degree of speaker dependence, adap- 
tation or totally speaker independence. 

The main areas of practical systems concern 
the recognition of isolated words for com- 
mand applications. These applications often 
require speaker independent recognition if 
they are used over the telephone in public 
applications. Another class of recognizers 
addresses the problem of connected words. 
Speaker independence is here still a prob- 
lem because the coarticulation problems of 
different speakers are not so easy to be 
predicted and modelled. Another aspect, 
whjch could only be described in terms of 
prtze is robustness against background 
noise, speaker variations, limited band- 
width etc. Finally we have not included in 
the presentation the vocabulary size, which 
can vary from very few words (10 to 20)  for 
limited command input into machines up to 
many thousand words, when one wants to rea- 
lize a dictation machine. 

The recognition rates today possible differ 
very high, depending on the difficulty of 
the recognition task. It can be near to 
100% for good quality speech, a limited vo- 
cabulary with trained speakers, but it can 
be 20% worse for untrained speakers in the 
same application task and it can even be as 
low as some ten percent for larger 
vocabulary under noisy conditions. 
Therefore it does not make much sense to 
give here figures. Every application task 

must be carefully investigated, user beha- 
viour must be modelled and the man-machine 
dialogue must be designed as carefully. 

The application of speech understanding is 
still not yet possible because practical 
and applicable speech understanding systems 
which can understand continuous speech in- 
put with naturally spoken sentences are not 
yet on the market. There are speech dia- 
logue systems available with word recogni- 
tion as input and with a continuous speech 
output. For most practical applications 
such systems fulfill the need of the user, 
if the user himself cares for a careful 
isolated or connected spoken input. 

Fig.7.2 shows schematically how speech in- 
put and output may bring a human and a 
system together. 

common Speech s y * t e m  
Senre Input Barkground 
/ 

Application (. Human > 
Knowledge 

Pragmatic Speech 
Knowledge output  

I I s y s t e m  
Reaction 

Fig.7.2: Functional relations in speech 
controlled systems. 

On the one side we find the human opera 
with its knowledge, based on very differ 
sources. On the other side there is 
application system, which is contair 
different forms of information and wt 
will show very specific reactions. 

3r 
nt 
he 

ch 
ng 

we have roughly two different forms of 
users, the occasional user and the pro- 
fessional user. The occasional user uses 
speech communication with machines only for 
very specific applications and rather rare- 
ly. He is not trained to usage of speech 
systems and handles them as if he would 
speak to a human. The professional user on 
the other side is a daily user and is 
trained to do the right things, le. speak 
in the manner required and knowing the vo- 
cabulary allowed. 

we can distinguish two forms of dialogues, 
the action dialogue and the information 
dialogue. 

Fig.7.3 shows the essential elements of an 
action dialogue, where the user,wants to 
get rather simple precise actrons. The 
goals of this activity are rather clear, 
the user has to command his request and 
gets then hopefully the correct system re- 
action. here syntactic and pragmatic pro- 
cessing steps are mostly included covering 
very restricted and specific pragmatic 
aspects. Simple examples of such dialogues 
are speech based machine control. 
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E 

- 
speech input / output application system 

I 1 - 

Fig.7.3: Structure of an action dialogue 

In Fig.7.4 the basic elements of an infor- 
mation dialogue are presented. Here the 
user does not want to produce direct 
actions but he wants to get information in 
a more or less natural dialogue. The 
primary goal of such a dialoque is to make 
a real information exchange 

3.7.4: Structure of an informat 
dialogue. 

Usually here the level of information ex- 
change goes much deeper than in the action 
dialogue. Therefore the analysis of meaning 
is the additional component characterizing 
such a dialogue. Examples of such dialoges 
are information systems, e.g. for fli.ght 
time tables or for general public infor- 
mation like weather forecast. Such systems 
will become more and more important already 
in the near future and they will then need 
good speech understanding. 

8 .  Future Developments 

Machine perception of spoken and written 
language is surely one of the most advan- 
ced challenges of information technology. 
Speech is the basis of most of our cogni- 
tive processes. If we can get a deeper and 
deeper understanding of all the processes 
related to speech production and speech 
understanding we will get access to much 
better understanding of the understanding 
process itself. It is clear from the 
laborious research in speech understanding 
in the past that we are presently only in 
the begin-ning to understand speech and 
all the structure behind it better and 
that there is still a long way to go. 

Presently available systems which can be 
useful tools for man-machine communication 
have in many areas profited from models of 
our human speech processing. Such models 
will in the future help to understand all 
the important processing steps better. A 
system approach to integrate the different 
steps into a more synergetic concept may be 
better than the purely linear step-by-step 
approach. 

Deeper insight into the mechanisms of 
speech will help us not only in .systems for 
easy information processing, it will help 
us in speech translation and in cooperative 
knowledge processing. 

Speech interactive systems will offer us a 
true human access to machine information 
and they will in such a way widen the scope 
of practical applications of information 
technology in the same way as the basic in- 
sight into it. 
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Abstract 
Robotics is where artificial intelligence meets the physical 
world. Computer vision provides robots with the perceptual 
capabilities which are especially critical for robots which op- 
erate in an unconstrained natural environment. 

In computer vision, recovery of 3D shape and motion is the 
key to understanding scenes. Thns, the problem has attracted 
mncb of the attention of vision researchers over the last decade, 
and many sophisticated algorithms have been developed. I 
am going to talk about three recently developed methods for 
sensing and interpreting 3D shape and motion: 

The factorization method for image sequence analysis 

Very fast range imaging by analog VLSI smart chip 

The multi-baseline stereo method. 

It is interesting to note that while the performance of these 
methodsbasexceededthat ofprevionsmethcds,thealgorithms 
themselves are simpler and more straightforward. In addi- 
tion to enhanced performance, these algorithms are suitable 
for real-time parallel implementation by special hardware or 
VLSI. 

The following three parts provide detailed descriptions of 
these methods. 

The Factorization Method for 
Shape and Motion Recovery 

from Image Streams 1 

Inferring scene geometry and camera motion from a 
stream of images is possible in principle, but is an ill- 
conditionedproblem when the objects are distant with re- 
spect to their size. We have developed a factorization 

'This research was performed by Carlo T o m i  and Take0 kana&. and 
wassupportedbytheDefense AdvancedResearchProjecfs AgencymOD) 
and monitored by the Avionics Laboratory, Air Force Wright Aeronautical 
Laboralories, Aeronautical Syslems Division (AFSC). Wright-Patterson 
AFB, Ohio 45433-6543 under ConUactF33615-81-C-1499. ARPA Order 
No. 4976, Amendment 20. The views and wnclusions wnlained in 
this document are those of the author and should not be inlerpreted as 
representing the official policies, either expressed or implied, of DARPA 
01 the U.S. government. 

method that can overcome this dificulg by recovering 
shape and motion without computing depth as an inter- 
mediate step. 

An image stream can be represented by the 2F x P 
measurement matrix ofthe image coordinates of P points 
tracked through F frames. We show that under ortho- 
graphic projection this matrix is of rank 3. 

Using this observation, the factorization method uses the 
singular value decomposition technique to factor the mea- 
surement matrix into two matrices which represent object 
shape and camera motion respectively. The method can also 
handle and obtain a full solution from a partially filled-in 
measurement matrix, which occurs when features appear 
and disappear in the image sequence due to occlusions or 
tracking failures. 

The method gives accurate results, and does not intro- 
duce smoothing in either shape or motion. We demonstrate 
this with a series of experiments on laboratory and outdoor 
image streams, with and without occlusions. 

1 Introduction 

The structure from motion problem - recovering scene ge- 
ometry and camera motion from a sequence of images - 
has attracted much of the attention of the vision commu- 
nity over the last decade. Yet it is common knowledge 
that existing solutions work well for perfect images, but are 
very sensitive to noise. We present a new method called 
the factorization method which can robustly recover shape 
and motion from a sequence of images without assuming a 
model of motion, such as constant translation or rotation. 

More specifically, an image sequence can be represented 
as a 2F x P measurement matrix W ,  which is made up of 
the horizontal and vertical coordinates of P points tracked 
through F frames. If image coordinates are measured with 
respect to their centroid, we prove the rank theorem: under 
orthography,themeasurementmahixis ofrank3. As acon- 
sequence of this theorem, we show that the measurement 
matrix can be factored into the product of two manices R 
and S. Here, R is a 2F x 3 matrix that represents camera 
rotation, and S is a 3 x P matrix which represents shape in a 
coordinate system attached to the object centroid. The two 
components of the camera translation along the image plane 
are computed as averages of the rows of W .  When features 
appear and disappear in the image sequence due to occlu- 
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sions or tracking failures, the resultant measurementmatrix 
W is only partially filled-in. The factorization method can 
handle this situation by growing a partial solution obtained 
from an initial full submatrix into'a full solution with an 
iterative procedure. 

The rank theorem precisely captures the nature of the 
redundancy that exists in an image sequence, and permits 
a large number of points and frames to be processed in a 
conceptually simple and computationally efficient way to 
reduce the effects of noise. The resulting algorithm is based 
on the singular value decomposition, which is numerically 
well-behaved and stable. The robustness of the recovery 
algorithm in tum enables us to use an image sequence with 
a very short interval between frames (an image stream), 
which makes feature tracking relatively easy. 

We have demonstrated the accuracy and robustness of 
the factorization method in a series of experiments on labo- 
ratory and outdoor sequences, with and without occlusions. 

2 Relation to Previous Work 

In Ullman's original proof of existence ofa solution [U1179] 
for the sbxcture from motion problem under orthography, 
as well as in the perspective formulation in [RA79], the 
coordinates of feature points in the world are expressed in 
a world-centered system of reference. Since then, how- 
ever, this choice has been replaced by most computer vi- 
sion researchers with that of a camera-centered representa- 
tion of shape [Pra801, LBH831, [TH841, IAdi851, [WWSS], 
(BBM871, tHKN881, WJ891, [Hee891, tMKS891, [SA891, 
[BCC90]. With this representation, the position of feature 
points is specified by their image coordinates and by their 
depths, defined as the distances between the camera cen- 
ter and the feature points, measured along the optical mis. 
Unfortunately, although a camera-centered representation 
simplifies the equations for perspective projection, it makes 
shape estimation difficult, unstable, and noise sensitive. 

There are two fundamental reasons for this. First, when 
cameramotion is small, effects ofcamera rotation andtrans- 
lation can be confused with each other: for example, small 
rotation about the vertical axis and small translation along 
the horizontal axis both generate a very similar change in 
an image. Any attempt to recover or differentiate between 
these two motions, though doable mathematically, is natn- 
rally noise sensitive. Second, the computation of shape as 
relative depth, for example, the height of a building as the 
difference of depths between the top and the bottom, is very 
sensitive to noise,since itis asmalldifference between large 
values. These difficulties are especially magnified when the 
objects are distant from the camera relative to their sizes, 
which is usually the case for interesting applications such 
as site modeling. 

The factorization method we present in this paper takes 
advantage of the fact that both difficulties disappear when 
the problem is reformulated in world-centered coordinates, 
unlike the conventional camera-centered formulation. This 
new (old - in a sense) formulation links object-centered 
shape to image motion directly, without using retinotopic 

depth as an intermediate quantity, and leads to a simple and 
well-behaved solution. Furthermore, the mutual indepen- 
dence of shape and motion in world-centered coordiflates 
makes it possible to cast the structure-from-motion problem 
as a factorization problem, in which a matrix representing 
image measurements is decomposed directty into camera 
motion and object shape. 

We first introduced this factorization method in [TK90a, 
TK90b1, where we treated the case of single-scanline im- 
ages in a flat, two-dimensional world. In [TK91] we pre- 
sented the theory for the case of arbitrary camera motion 
in three dimensions and full two-dimensional images. This 
paper extends the factorization method for dealing with 
feature occlusions as well as presenting more experimen- 
tal results with real-world images. Debrunner and Ahuja 
have pursued an approach related to ours, but using a dif- 
ferent formalism [DA90, DA911. Assuming .that motion is 
constant over a period, they provide both closed-form ex- 
pressions for shape and motion and an incremental solution 
(one image at a time) for multiple motions by taking advan- 
tage of the redundancy of measurements. Boult and Brown 
have investigated the factorization method for multiple mo- 
tions [BB91], in which they count and segment separate 
motions in the field of view of the camera. 

3 The Factorization Method 

Givenanimagestream, supposethatwe havetrackedpfea- 
turepointsoverFframes. Wethenobtaintrajectories ofim- 
age coordinates { (ufp, vfp) I f = 1,. . . , F, p = 1 , .  . . , P} .  
We write the horizontal feature coordinates u f P  into an 
F x P matrix U: we use one row per frame, and one col- 
umn per feature point. Similarly, an F x P matrix V is built 
from the vertical coordinates vfp. The combined matrix of 
size 2F x P 

w = [+] 
is called the measurement matrix. The rows ofthe matrices 
U and V are then registered by subtracting from each entry 
the mean of the enbies in the same row: 

;;ip = u f P -  af 
(1) - 

v f p  = " f p - b f ,  

where 

- p=1 

This produces two new F x P matrices 
V = [Gffp]. The matrix 

:= [ i i fp ]  and - 
- w = [+I 

is called the registered measurement matrix. This is the 
input to our factorization method. 
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Figure 1: The systems of reference used in our problem 
formulation. 

3.1 The Rank Theorem 
We now analyze the relation between camera motion, shape, - 
and the entries of the registered measurement matrix W .  
This analysis leads to the key result that W is highly rank- 
deficient. 

Referring to Figure 1, suppose we place the origin of the 
world reference system 2 - y - z at the centroid of the P 
points s, = (x,, y,, . ~ ~ ) ~ , p  = 1, . , . , P}. in space which 
correspond to the P feature points tracked in the image 
streatn. The orientation of the camera reference system 
corresponding to frame number f is determined by a pair 
of unit vectors, ifand jf ,  pointing along the scanlines and 
the columns of the image respectively, and defined with 
respect to the world reference system. Under orthography, 
all projection rays are then parallel to the cross product of 
ifand jf: 

kf = i f  x jf . 
From Figure 1 we see that the projection (ufp,vfp), i.e., 
theimagefeatureposition,ofpoints, = (xp,ypr zp)T onto 
frame f is given by the equations 

wheretf = (af,  bf ,  cf)Tisthevectorfromtheworldorigin 
to the origin of image frame f .  Here note that since the 
origin of the world coordinates is placed at the centroid of 
objectpoints, 

P 1 p ESP = 0 .  
p= 1 

We can write a similar equation for Gf,. To summarize, 
T 

"' Gyp = = jf ifTSP sp . (3) 

Because of the two sets of F x P equations (3), the regis- 
tered measurement matrix W can be expressed in a matrix 
form: 

- 

F = R S  (4) 

We can now write expressions for the entries iif, and G f ,  
defined in (1) of the registered measurement matrix. For 
the the registered horizontal image projection we have 

?if, = u f p - a f  

represents the camera rotation, and 

s =  [ s1 " '  S P ]  (6) 

is the shape matrix. In fact, the rows of R represent the 
orientations of the horizontal and vertical camera reference 
axes throughout the stream, while the columns of S are 
the coordinates of the P feature points with respect to their 
centroid. 

Since R is 2 F  x 3 and S is 3 x P ,  the equation (4) implies 
the following. 

Rank Theorem: Without noise, the registered 
measurement matrix F is at most of rank three. 

The rank theorem expresses the fact that the 2 F  x P image 
measurements are highly redundant. Indeed, they could all 
be described concisely by giving F frame reference systems 
and P point coordinate vectors, if only these were known. 

From the first and the last line of equation (2), the original 
unregistered matrix W can be written as 

W = R S + t e ; ,  (7) 

where t = ( a l , .  . . , up, bl ,  . . . , bF)T is a 2F-dimensional 
vector that collects the projections of camera translation 
along the image plane (see equation (2)), and e; = 
(1,. . . , 1) is a vector of P ones. In scalar form, 

u f p  = ifsp + af 

vf, = $sP + bf . (8) 

Comparing with equations (l), we see that the two com- 
ponents of camera translation along the image plane are 
simply the averages of the rows of W .  

In the equations above, if and jf are mutually orthogonal 
unit vectors, so they must satisfy the consmints 

T 

JifJ = U f I  = 1 and iTjf = 0 .  (9) 

Also, the rotation matrix R is unique if the system of ref- 
erence for the solution is aligned, say, with that of the first 
camera position, so that: 

il = ( l ,O ,O)T  and j, = ( O , l , O ) T .  (10) 
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Theregisteredmeasurementmatrix w must be at most of 
rank three without noise. When noise compts the images, 
however, will not be exactly of rank 3. However, the 
rank theorem can be extended to the case of noisy measure- 
ments in a well-defined manner. The next subsectionintro- 
duces the notion of approximate rank, using the concept of 
singular value decomposition [GR71]. 

3.2 Approximate Rank 

AssumingZ that 2F 2 P, the matrix @ can be decomposed 
[GR71] into a 2F x P matrix 01, a diagonal P x P matrix 
X, and a P x P matrix 0 2 ,  

- w = O,XO?, (11) 

such that 0701 = 0 : 0 2  = 010: = Z, where Z is 
the P x P identity matrix. X is a diagonal matrix whose 
diagonal entries are the singular values u~ 2 . . . 2: up 
sorted in non-decreasing order. This is the Singular Value 
Decomposition (SVD) ofthe matrix @. 

Suppose that we pay attention only to the first three 
columns of O,, the first 3 x 3 submatrix of Z and the first 
three rows of 02. If we partition the matrices 01, 2, and 
0 2  as follows: 

v v  
3 P- 3 

v 
P 

we have 

0 1 x 0 2  = 0;x’O; + Ol”’’0:: 

Let @* be the ideal registered measurement matrix, that 
is, the matrix we would obtain in the absence of noise. 
Becauseoftheranktheorem, @* hasatmostthreenon-zero 
singular values. Since the singular values in Z are sorted in 
non-increasing order, Z’ must contain all the singular values 
of %* that exceed the noise level. As a consequence, 
the term 0 ~ Z ” O ~  must be due entirely to noise, and the 
best possible rank9 approximation to the ideal registered 
measurement matrix w’ is the product: 

w = 0;x’O; 

We can now restate our rank theorem for the case of noisy 
measurements. 

for Ule transpose of E. 
ZThisasswnptionisnotcrucial: i f2F < P,everyUllngcanterepeepested 

Rank Theorem for Noisy Measurements: All 
the shape and rotation information in @ is 
contained in its three greatest singular values, 
together with the corresponding left and right 
eigenvectors. 

Now if we define 

R = o;[x”l’/’ 
s = [x’]’/20; , 

we can write 

The two matrices Rand S are of the same size as the desired 
rotation and shape matrices R and S:  R is 2F x 3, and S 
is 3 x P. However, the decomposition (13) is not unique. 
In fact, if Q is any invertible 3 x 3 matrix, the matrices RQ 
and Q-’S are also a valid decomposition of W ,  since 

W = R S .  (13) 

(RQ)(Q-IS) = R(&Q-’)S = RS := W . 

Thus, R and S are in general different from R and S. A 
shiking fact, however, is that except for noise the matrix Ris 
alineartransformation of the hue rotation matrix R, and the 
matrix S is a linear transformation of the true shape matrix 
S.  Indeed, in the absence of noise, R and R both span the 
column space of the registered measurement matrix W = 
W = W .  Since that column space is three-dimensional 
because of the rank theorem, Rand R are different bases for 
the same space, and there must be a linear transformation 
between them. 

Whether the noise level is low enough that it can be 
ignored at this juncture depends also on the camera motion 
and on shape. Notice, however, that the singular value 
decomposition yields sufficient information to make this 
decision: the requirement is that the ratio between the third 
and the fourth largest singular values of @ be sufficiently 
large. 

3.3 The Metric Constraints 
We have found that the matrix R is a linear transformation 
of the hue rotation matrix R. Likewise, S is a linear trans- 
formation of the hue shape mamx S.  More specifically, 
there exists a 3 x 3 matrix Q such that 

- 
-* 

R = RQ 
S = & - I S .  

InordertofindQ weobservethattherowsofthehuerota- 
tion matrix R are unit vectors and the first F are orthogonal 
to corresponding F in the second half of R. These metric 
constraints yield the over-constrained. quadratic system 

itTQQTiy = 1 

iyTQQ*jS = 0 

in the entries of Q. This is a simple data fitting problem 
which, though nonlinear, can be solved efficiently and re- 
liably. Its solution is determined up to a rotation of the 

j7’~~’js = 1 (15) 
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whole reference system, since the orientation of the world 
reference system was arbitrary. This arbitrariness can be 
removed by enforcing the constraints (IO), that is, selecting 
the x - y axes of the world reference system to be parallel 
with those of the first frame. 

3.4 Outline of the Complete Algorithm 
Based on the development in the previous sections, we 
now have a complete algorithm - for the factorization of the 
registered measurement matrix W derived from a stream of 
images into shape S and rotation R as defined in equations 
(4) - (6). 

1. Compute the singular-value decomposition 

2. Define R = Oi(X')1/2 and S = (Z')1/204, where the 

3. Compute the matrix Q in equations (14) by imposing 

4. Compute the rotation matrix R and the shape matrix S 

= 
01z02. 

primes refer to the block partitioning defined in (12). 

the metric constraints (equations (15)). 

as R = RQ andS = &-IS. 

5.  If desired, align the first camera reference system with 
the world reference system by forming the products 
R& and R r S ,  where the orthonormal matrix & = 
[il j ,  kl] rotates the first camera reference system into 
the identity mahix. 

4 Experiment 
We test the factorization method with two real streams of 
images: one taken in a controlled laboratory environment 
with ground-truth motion data, and the other in an outdoor 
environment with a hand-held camcorder. 

4.1 
Some frames in this stream are shown in figure 3. The 
images depict a small plastic model of a building. The 
camera is a Sony CCD camera with a 200 mm lens, and is 
moved by means of a high-precision positioning platform. 
Camera pitch, yaw, and roll around the model are all varied 
as shown by the dashed curves in figure 4. The translation 
of the camera is such as to keep the building within the field 
of view of the camera. 

For feature mcking, we extended the Lucas-Kanade 
methoddescribedin LK811 to allow also for the automatic 
selection of image features. The Lucas-Kanade method 
of tracking obtains the displacement vector of the window 
around a feature as the solution of a linear 2 x 2 equation 
system. As good image features we select those points for 
which the above equation systems are stable. The details 
are presented in [TOm91, TK921. 

The entire set of 430 features thus selected is displayed 
in figure 5, overlaid on the first frame of the stream. Of 
these features, 42 were abandonedduring tracking because 

"Hotel" Image Stream in a Laboratory 

their appearance changed too much. The trajectories of the 
remaining 388 features are used as the measurement matrix 
for the computation of shape and motion. 

The motion recovery is precise. The plots in figure 4 
compare the rotation components computed by the factor- 
ization method (solid curves) with the values measured me- 
chanically from the mobile platform (dashed curves). The 
differences are magnified in figure 6. The errors are ev- 
erywhere less than 0.4 degrees and on average 0.2 degrees. 
The computed motion follows closely also rotations with 
curved profiles, such as the roll profile between frames 1 
and 20 (second plot in figure 4). and faithfully preserves all 
discontinuities in the rotational velocities: the factorization 
method does not smooth the results. 

Between frames 60 and 80, yaw and pitch are nearly 
constant, and the camera merely rotates about its optical 
axis. That is, the motion is actually degenerate during 
this period, but still it has been correctly recovered. This 
demonstrates that the factorization method can deal without 
difficulty with streams that contain degenerate substreams, 
because the information in the stream is used as a whole in 
the method. 

The shape results are evaluated qualitatively in figure 7, 
which shows the computed shape viewed from above. The 
view in figure 7 is similar to that in figure 8, included for 
visual comparison. Notice that the walls, the windows on 
the roof, and the chimneys are recovered in their correct 
positions. 

To evaluate the shape performance quantitatively, we 
measured some distances on the actual house model with a 
ruler and compared them with the distances computed from 
the point coordinates in the shape results. Figure 9 shows 
the selected features. The diagram in figure 10 shows the 
distances between pairs of features measured on the actual 
model and those computed by the factorization method. 
The measured distances between the steps along the right 
side of the roof (7.2 mm) were obtained by measuring five 
steps and dividing the total distance (36 mm) by five. The 
differences between computed and measured results are of  
the order of the resolution of our ruler measurements (one 
millimeter). 

Patt of the errors in the results is due to the use of or- 
thography as the projection model. However, it tends to 
be fairly small for many realistic situations. In fact, it has 
been shown that errors due to the orthogrphic distortion are 
approximately about the same percentage as the ratio of the 
object size in depth to the distance of the object from the 
camera [TOm91]. 

4.2 Outdoor "House" Image Stream 
The factorization method has been tested with an image 
stream of a real building, taken with a hand-held camera. 
Figure 11 shows some of the 180 frames of the building 
stream. The overall motion covers a relatively small ro- 
tation angle, approximately 15 degrees. Outdoor images 
are harder to process than those produced in a controlled 
environment of the laboratory, because lighting changes 
less predictably and the motion of the camera is more dif- 
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ficult to control. As a consequence, features are harder 
to track: the images are unpredictably blurred by motion, 
and cormpted by vibrations of the video recorder's head, 
both during recording and digitization. Furthermore, the 
camera's jumps and jerks produce a wide range of image 
disparities. 

The features found by the selection algorithm in the first 
frameare sbowninfigure 12. Therearemanyfalsefeatures. 
The reflections in the window partially visible in the top left 
of the image move non-rigidly. More false features c.an be 
found in the lower left comer of the picture, where the 
vertical bars of the handrail intersect the horizontal edges 
of the bricks of the wall behind. We masked away these 
two parts of the image from the analysis. 

In total, 376 features were found by the selection al- 
gorithm and tracked. Figure 13 plots the tracks of some 
(60) of the features for illustration. Notice the very jagged 
trajectories due to the vibrating motion of the hand-held 
camera. 

Figures 14 and 15 show a front and a top view of the 
building as reconstructed by the factorization method. To 
render these figures for display, we triangulated the com- 
puted 3D points into a set of small surface patches and 
mapped the pixel values in the first frame onto the resulting 
surface. The structure of the visible part of the building's 
three walls has clearly been reconstructed. In these fig- 
ures, the left wall appears to bend somewhat on the right 
where it intersects the middle wall. This occurred because 
the feature selector found features along the shadow of the 
roofjust on the right of the intersection of the two walls, 
rather than at the intersection itself. Thus, the appearance 
of a bending wall is an artifact of the triangulation done for 
rendering. 

This experiment with an image stream taken outdoors 
with the jerky motion produced by a band-held camera 
demonstrates that the factorization method does not require 
a smooth motion assumption. The identification of false 
features, that is, of features that do not move rigidly with 
respect of the environment, remains an open problem that 
must be solved for a fully autonomous system. An initial 
effort has been seen in [BB91]. 

5 Occlusions 

In reality, as the camera moves, features can appear and 
disappear from the image, because of occlusions. Also, a 
feature tracking method will not always succeed in tracking 
features throughout the image stream. These phenomena 
are frequent enough to make a shape and motion computa- 
tion method unrealistic if it cannot deal with them. 

Sequences with appearing and disappearing features re- 
sult in a measurement matrix W which is only partially 
filled in. The factorization method introduced in section3 
cannot be applied directly. However, there is usually suffi- 
cient information in the stream to determine all the camera 
positions and all the three-dimensional feature point coor- 
dinates. If that is the case, we can not only solve the shape 
and motion recovery problem from the incomplete measure- 

p, % ?, s 

r r: 
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F + f  
F*{ 

F + l ,  

F+f 

Figure 2: The Reconstruction Condition. If the dotted 
entries of the measurement matrix are known, the two un- 
known ones (question marks) can be reconstructed. 

ment matrix W ,  but we can even hallucinate the unknown 
entries of W by projecting the computed three:-dimensional 
feature coordinates onto the computed camera positions. 

5.1 Solution €or Noise-Free Images 
Suppose that a feature point is not visible in a cemin frame. 
If the same feature is seen often enough in other frames, its 
position in space should be recoverable. Moreover, if the 
frame in question includes enough other featiires, the cor- 
responding camera position be recoverable as well. Then 
from point and camera positions thus recovered, we should 
also be able to reconstruct the missing image measurement. 
Formally, we have the following sufficient condition. 

Condition for Reconstruction: In the absence 
of noise, an unknown image measurement pair 
(ufp, vfp) in kame f can bereconstructedifpoint 
p is visible in at least three more frames f i  , f2, f3, 

andifthereareatleastthreemorepointspl,p2,p3 
that are visible in all the four frames: the original 
f andtheadditional f l , f 2 , f 3 .  

Refemng to Figure 2, this means that the dotted entries 
must be known to reconstruct the question marks. This is 
equivalent to Ullman's result [U11791 that three views of 
four points determine structure and motion. In this sub- 
section, we prove the reconstruction conditi0.n in our for- 
malism and develop the reconstruction procedure. To this 
end, we notice that the rows and columns of the noise-free 
measurement matrix W can always be permuted so that 
fl  = p1 = 1, f2 = p 2  = 2, f3 = p 3  = 3, .f = p = 4. 
We can therefore suppose that 1144 and VU are the only two 
unknown entries in the 8 x 4 matxix 
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derived from equation (4). The second equation in (17) and 
the solution to (19) yield the entire rotation matrix R, while 
shape is given by equation (18). 

The components a4 and b4 of translation io the fourth 
frame with respect to the centroid of all four points can 
be computed by postmultiplying equation (7) by the vector 

Wq4 = RS74 + teTq4 . 
74 = (1,1,1,O)T: 

Since eTq4 = 3, we obtain 

(20) 
1 
3 

t = - (W - RS)74. 

s;=sp - c for p =  1,2,3 row-wise extension. 

2. column-wise extension: factor w 8 x 3  to find a full mo- 
tion and partial shape solution, and propagate it to 
include the remaining feature point. This will be used 
for reconsmcting the complete W by column-wise 
extension, 

in space and i 
4, = ~4~ - 4 , for p =  1,2,3 

= u4p - b, 

io the fourth frame. Then, i 4  and j4 are the solutions of the 

5.2 Solution in the Presence of Noise 
[ 4 1  4 2  4 3  I = iT [ s; s; $3 I The solution propagation method introduced in the previous 
[ ui2 ui3 ] = jT [ si s; $3 ] (19) snbsectioncanbeextendedto2FxPmeasurementmatrices 

two 3 x 3 systems I 

Then, the factorization method can be applied to the first 
three rows of U and V ,  that is, to the 6 x 4 submatrix 

1 1111 u12 u 1 3  u14 

U21 U22 2123 u24 

L 2121 2122 2'23 2124 1 
2131 2132 2133 21% 

to produce the partial amslation and rotation submatrices 

and the full shape maaiX 

S = [ s 1  sz s 3  a ]  

T 
such that 

w b x 4  = % , 3 S  + &le4 

whereeT= ( l , l , l , l ) .  
To complete the rotation solution, we need to compute 

the vectors i4 and j4. However, aregistration problemmust 
be solved first. In fact, only three points are visible in the 
fourth frame, while equation (18) yields all four points in 
space. Since the factorization method computes the space 
coordinates with respect to the centroid of the points, we 
have sI + s 2  + s3 + = 0, while the image coordinates in 
the fourth frame are measured with respect to the centroid 
ofjust three observed points (1,2,3). Thus, before we can 
compute i4 and j4 we must make the two origins coincide 
by referring all coordinates to the centroid 

(17) In particular, rows 4 and 8 of this equation yield a 4  and b4. 

Notice that the unknown entries uu and uu are multiplied 
by zeros in equation (20). 

Now that both motion and shape are known, the missing 
entries UU, UM of the measurement matrix W can be found 
by orthographic projection (equation (8)): 

uM = i , T a + a 4  
(18) 

UM = j T a + b 4 .  

The procedure thus completed factors the full 6 x 4 sub- 
matrix of W and then reasons on the three points that are 
visible in all the frames to compute motion for the fourth 
frame. 

Altematively, one can srart with the 8 x 3 submatrix 

UI1  u 1 2  %I3 

2121 U22 u23 

U31 U32 u33 
1 1 u4L u42 u43 ] 

E = -(SI + s2 + s3) 

In this case we first compute the full translation and rotation 
submatrices, and then from these we obtain the shape coor- 
dinates and the unknown entry of W for full reconstruction. 

In summary, the full motion and shape solution can be 
found in either of the following ways: 

3 

of the three points that are visible in all four frames. In the 
fourth frame, the projection of c has coordinates 

1 
3 

= -(U41 + U42 + u 4 3 )  

1 
3 - ( U I  + 2142 + 2143) 1 b; = 

so we can define the new coordinates 

1. row-wise exrension: factor W 6 x 4  to find a partial mo- 
tion and full shape solution, and propagate it to include 
motion for the remaining frame (equations (19)). This 
will be used for reconsmcting the complete W by 



2-8 

with F 2 4 and P 2 4. In fact, the only difference is that 
the propagation equations (19) for row-wise extension and 
those for column-wise extension become overconstrained. 
If the measurement matrix W is noisy, this redundancy is 
beneficial. since equations (19) can be solved in the Least 
Square Error sense, and the effect of noise is reduced. 

In the general case of a noisy 2 F  x P matrix W the 
solution propagationmethodcan be summarizedas follows. 
A possibly large, full subblock of W is first decomposed by 
factorization. Then, this initial solution is grown one row 
or one column at a time by solving systems analogous to 
those in (19) in the Least Square Error sense. 

However, because of noise, the order in which the rows 
and columns of W are incorporated into the solution can 
affect theexactvalues ofthe find motion andshapesolution. 
Consequently, once the solution has been propagated to 
the entire measurement matrix W ,  it may be necess'uy to 
refine the results with a steepest-descent minimization of 
the residue 

IIW - RS - -teTII 
1 
P 

(see equation (7)). 
There remain the two problems of how to choose the 

initial full subblock to which factorization is applied and in 
what order to grow the solution. In fact, however, because 
of the final refinement step, neither choice is critical as 
long as the initial matrix is large enough to yield a good 
starting point. We illustrate this point in the next sectionof 
experiments. 

6 More Experiments 

We will first test the propagation method with image streams 
which include substantial occlusions. We first use an image 
stream taken in a laboratory. Then, we demonstrate the 
robustness of the factorization method with another stream 
taken with a hand-held amatenr camera. 

6.1 "Ping-Pong Ball" Image Stream 
A ping-pong ball with black dots marked on its surface is 
rotated450degrees in frontofthecamera, so features appear 
and disappear. The rotation between adjacent frames is 2 
degrees, so the stream is 226 frames long. Figure 16 shows 
the first frame of the stream, with the automatically selected 
features overlaid. 

Every 30 frames (60 degrees) of rotation, the feature 
tracker looks for new features. In this way, features that 
disappear on one side around the ball are replaced by new 
ones that appear on the other side. Figure 17 shows the 
tracks of 60 features, randomly chosen among the total 829 
found by the selector. 

If all measurements are collected into the noisy measure- 
ment matrix W ,  the U and V parts of W have the same fill 
pattern: if the 2: coordinate of a measurement is known, so 
is the y coordinate. Figure 18 shows thisfill matrix for our 
experiment. This matrix has the same size as either U or 
V, that is, F x P. A column corresponds to a feature point, 

andarow to aframe. Shadedregionsdenotelmownentries. 
The fill matrix shown has 226 x 829 = 187:354 entries, of 
which 30185 (about 16 percent) are known. 

To start the motion and shape computation, the algorithm 
finds a large full submatrix by applying simple heuristics 
based on typical pattems of the fill matrix. The choice 
of the stating matrix is not critical, as long, as it leads to 
a reliable initialization of the motion and shape matrices. 
The initial solution is then grown by repeatedly solving 
overconstrained versions of the linear system corresponding 
to (19) to add new rows, and of the system for the column- 
wise extension to add new columns. The rows and columns 
to add are selected so as to maximize the redundancy of 
the linear systems. Eventually, all of the mol.ion and shape 
values are determined. As a result, the unknown 84 percent 
of the measurement matrix can he hallucinated from the 
known 16 percent. 

Figure 19 shows two views of the final shape results, 
taken from the top and from the side. The missing features 
at the bottom of the ball in the side view conrespond to the 
part of the ball that remained always invisible, because it 
rested on the rotating platform. 

To display the motion results, we look at the if and j, 
vectors directly. We recall that these unit vectors point along 
the rows and columns of the image frames .f in 1,. . . , F .  
Because the ping-pong ball rotates around a fixed axis, 
both if and j, should sweep a cone in space, as shown 
in Figure 20. The tips of if and j, should describe two 
circles in space, centered along the axis of rotation. Figure 
21 shows two views of these vector tips, fr0.m the top and 
from the side. Those trajectories indicate that the motion 
recovery was done correctly. Notice the double arc in the 
top part of figure 21 corresponding to more than 360 degrees 
rotation. If the motion reconstruction were perfect, the two 
arcs would be indistinguishable. 

6.2 
In this subsectionwedescribe an experiment with a natural 
scene including occlusion as a dominant phenomenon. A 
hand holds a cup and rotates it by about ninety degrees in 
front of the camera mounted on a fixed stand. Figure 22 
shows four ont of the 240 frames of the stream. 

An additional need in this experiment is figure/ground 
segmentation. Since the camera was fixed, however, this 
problem is easily solved: features that do not move belong 
to the background. Also, the streaminclndes some nonrigid 
motion: as the hand tums, the configuration and relative po- 
sition of the fingers changes slightly. This effect, however, 
is small and did not affect the results appreciably. 

A total of 207 features was selected. Occlusions were 
marked by hand in this experiment. The fill matrix of figure 
24 illustrates the occlusion pattern. Figure :23 shows the 
image trajectory of 60 randomly selected features. 

Figures 25 and 26 show a front and a top vi'ew of the cup 
and the visible fingers as reconstructed by the propagation 
method. The shape of the cup was recoveretd, as well as 
the rough shape of the fingers. These renderings were 
obtained, as for the "House" image streamin suhsection4.l, 

"Cup and Hand" Image Stream 



by triangulating the tracked feature points and mapping 
pixel values onto the resulting surface. 

7 Conclusion 
The rank theorem, which is the basis of the factorization 
method, is both surprising and powerful. Surprising be- 
cause it states that the correlation among measurements 
made in an image stream has a simple expression no matter 
what the camera motion is and no matter what the shape 
ofan object is, thus making motion or surface assumptions 
(such as smooth, constant, linear, planar and quadratic) 
fundamentally superfluous. Powerful because the rank the- 
orem leads to factorization of the measurement matrix into 
shape and motion in a well-behaved and stable manner. 

The factorization method exploits the redundancy of the 
measurement mapix to counter the noise sensitivity of 
structure-from-motion and allows using very short inter- 
frame camera motion to simplify feature tracking. The 
structural insight into shape-from-motion afforded by the 
rank theorem led to a systematic procedure to solve the 
occlusion problem within the factorization method. The 
experiments in the lab demonstrate the high accuracy of the 
method, and the outdoor experiments show its robustness. 

The rank theorem is strongly related to Ullman's twelve 
year old result that three pictures of four points determine 
structure and motion under orthography. Thus, in a sense, 
the theoretical foundation of our result has been around for 
a long time. The factorization method evolves the applica- 
bility ofthat foundationfrommathematicalimages to actual 
noisy image streams. 
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Figure 4: True and computed camera yaw, roll, pitch 
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Figure 3: Some frames in the sequence. The whole se- 
quence is 150 frames. Figure 5 The 430 features selected by the automatic detec- 

tion method. 
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Figure 6: Blow-up of the errors in figure 4. 
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2m.m y a w  40303 5m.w Figure 9: For a quantitative evaluation, distances between 

the features shown in the picture were meastired on the 
actual model, and compared with the computed results. 
The comparison is shown in figure 10. Figure 7: A view of the computed shape from approxi- 

mately above the building (compare with figure 8). 
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Figure 16: The first frame of the ping-pong stream, with 
overlaid features. 

Figure 19: Top and side views of the recon.sbucted ping- 
pong hall. 

Figure 17: Tracks of 60 randomly selected features from 
the stream of figure 16. 

Figure IS: The fill mahix for the ping-pong ball experiment. 
Shaded enhies are known. 

Figure 20: Rotational component of the camera motion for 
the ping-pong stream. Because rotation occurs around a 
fixed axis, the two mutually orthogonal unit vectors if and 
jf, pointing along rows and columns of the image sensor, 
sweep two 450-degree cones in space. 



2-13 

Figure 23: Tracks of 60 randomly selected features from 
the cup stream. 

Figure 21: Top and side views of the if and j, vectors 
identifying the camera rotation. See Figure 20. 

j 

. .  : /  I ill 
Figure 24: The 240 x 207 fill mamix for the cup stream 
(figure 22). Shaded entries are known. 

1 nil 

160 240 

Figure 2 2  Four out of the 240 frames of the cup image 
stream. 

Figure 25: A front view of the cup and fingers, with the 
original image intensities mapped onto the resulting surface. 
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A VLSI Smart Sensor 
for Fast Range Imaging 

We have built a range-image sensor that acquires a com- 
plete 28 x 32 range frame in as little as o m  millisecond. 
Using VLSI, sensing and processing are combined into a 
unique sensing element that measures range in a fully- 
parallel fashion. The accuracy and repeatability of the 
sensed data is 0.1% or betre,: In this paper; we review the 
cell-parallel method used, describe our VISI implemen- 
tation outline procedures f o r  calibrating the ceh-parah'el 
sensor and present some experimental results. We conclude 
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Figure 1: Traditional light-stripe range imaging 

by describing a second-generation range sensor integrated 
circuit which is now being tested. 

1 Introduction 

A cell-parallel implementation greatly improves the per- 
formance of a light-stripe range-imaging sensor[Gm91, 
KGC91, GKC911. Though equivalent to conventional 
light-striping from optical and geometrical standpoints, 
cell-parallel light-stripe sensors incorporate a fundamen- 
tal improvement in the range measurement process. As a 
result, the acquired range data is more robust and more ac- 
curate. Furthermore, range image acquisition time is made 
independent of the number of data points in each frame. 
By fully exploiting the capability of VLSI to both sense 
and process information, we have built a smart sensor that 
acquires a complete frame of 10-bit range image data in a 
millisecond. 

2 A Cell-Parallel Approach to Light- 
Stripe Range Imaging 

Range information is crucial to many robotic applications. 
A range image is a 2-D array of pixels, each of which 
represents the distance to a point in the imaged scene. Many 
techniques forthe direct measurement of range images have 
been developed[Bes88]. Of these, the light-stripe methods 
have proven to be among the most robust and practical. 

Fig. 1 illustrates the principle on which a light-stripe 
sensor is based. The scene to be imaged is lit by a stripe - 
a plane of light formed by fanning a collimated source in 
one dimension. The stripe is projected in aknown direction 
using a precisely controlled mirror. When viewed by an 
imaging sensor, it appears as a contour which follows the 
profile of objects. The shape of this contour encodes range 
information. In particular, if projector and imaging sensor 
geometry are known, the distance to every point lit by the 
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Figure 2: Cell-parallel light-stripe range imaging. 

stripe can be determined via triangulation. 
A conventional light-stripe range sensor builds a range 

image using a “step-and-repeat’’ procedure. A stripe is 
projected onto a scene, as described above, and one column 
of range image data is measured. The stripe is stepped to 
a new position and the process is repeated until the entire 
scene has been scanned. 

Unfortunately, step-and-repeat implementation:; are 
slow. In order to build a complete range image using data 
from N stripe positions, N intensity images are required. 
The total time T? to acquire the range kame is 

(1) ~,s‘ep = ,yqVidw, 

Assuming TFdeo = 1/30second and N = 100, T,Step = 
3.3 seconds is required. 

The frame time of a step-and-repeat sensor has been 
improved by imposing additional shucture on the light 
source. For example, the gray-coded sources used by 
Inokuchi[ISMX4] reduce the factor of N in (1) to log, N. 
However, achievable frame rates are still too slow and 
the fundamental problem remains - range frame time in- 
creases with spatial resolution. 

2.1 The Cell-Parallel Method 

The cell-parallel technique is an elegant modification of the 
basic light-stripe algorithm. The technique is a dynamic 
one, with time an important aspect of the range measure- 
ment process[ASP87]. 

Consider the geometry of a three-pixel, single-row cell- 
parallel range sensor, seen from above in Fig. 2. In the 
figure, the stripe plane is perpendicular to the page. The 
stripe is quickly swept across the scene from right to left. 
briefly illuminating object features. A sensing element, say 
S2. monitors the light intensity 1 2  retumed to it along a fixed 
line-of-sight ray Rz. When the position of the stripe is such 
that it intersects R2 at a point on the surface of an object, a 
“Rash will be observed by the sensing element. 

Range to the object is measured by recording the rime t2 
at which the Rash is seen. The location of the stripe as a 
function of time is known becauseits projection angle OL (t) 
is controlled by the system. The “time-stamp” t z  acquired 
by the sensing element measures the position of the stripe 
when its light is reflected back to the sensor. The three- 
dimensional coordinates of one object point are uniquely 

Coo P din ate 

Frame .@ b 

Figure 3: Cell-parallel system geonnehy. 

determined at the intersection of the line-ol’sight ray Rz 
with the stripe plane at BL ( tz)  on the surface of the object. 

A sensor which collects a dense range image is formed by 
arranging identical sensing elements into a two-dimensional 
array. The cells of the array work in parallel, gathering a 
range image during a single pass of the light stripe. The 
time required to acquire the range frame is iindependent of 
its spatial resolution - 

e’’ = TfmF. (2) 

The frame time ~ f ” ”  of a cell-parallel sensor is set 
by the bandwidth of the photo-receptor used in its sensing 
elements. Very high frame rates (I/T:”’”) can be achieved. 
The photodiodes used in our cell design have bandwidth into 
the megahertz. They can detect a stripe moving at angular 
velocities in excess of 6,000 ipm. 

2.2 Cell-Parallel System Geometry 

Cell-parallel system geomehy can be described using ho- 
mogeneous coordinate transfonnations[BB8%, NS791. Re- 
femng to Fig. 3, the origin of the frame 0 s  is placed at 
the optical center of the imager. The stripe is a half-plane 
which radiates out from an axis-of-rotation aligned with the 
y-axis of the frame and passing through the point 

X L = [ ~  0 0 I ] .  (3) 

Stripe rotation BL is measured counter-clock!uise about its 
axis when viewed from the positive y direction and defined 
to be zero when the snipe lies in the yz-plane. In a homo- 
geneous representation, a plane is described in tenns of a 
column vector P that satisfies the scalar product XP = 0, 
where x is a homogeneous point that lies in P. In the sensor 
coordinate frame defined above, the stripe plane is modeled 
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Figure 4 Basic sensing element block diagram. 

in terms of b and OL as 

r -cosoL 1 
(4) 

The position xs = (xs,ys, 2 s )  of a sensing element on 
the sensor image plane defines the line-of-sight ray Rs. The 
parametric equation for a line in three dimensions is used 
to represent Rs as 

( 5 )  
T x = -(xs - Os)+ os 
TS 

where rs = llxsll = d m .  The line parameter 
T ,  when normalized by 7 s .  is simply the distance along Rs 
measured from OS heading toward the object. 

The point of intersection XO, between the stripe and the 
line-of-sight, is found by solving XPL = 0 for T :  

In the coordinate frame of the sensor, this point is 

xo = [ x x s  i s  gys g z s  1 1 .  (7) 

Thus, the 3-D position xo of imaged object points can be 
recovered from the scalar distance measurement T .  

3 VLSI Range Sensor 

A practical implementation of the cell-parallel range imag- 
ingalgorithmrequires asmartsensor-onein whichoptical 
sensing is local to the required processing. Silicon VLSI 
technology provided the means for building such a sensor. 

Fig. 4 summarizes the operation of elements in the smart 
cell-parallel sensor array. Functionally, each must convert 
light energy into an analog voltage, determine the time at 
which the voltage peaks and remember the time at which 
the peak occurred. 

3.1 A 28 x 32 Cell-Parallel Sensor Chip 
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Figure 5 :  Range sensor integrated circuit. 
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Figure 6 Sensing element circuitry. 

The multi-pixel cell-parallel range sensor we have devel- 
oped is shown in Fig. 5. This chip consists of 896 sensing 
elements arrangedin a 28 x 32 may. It was fabricated using 
a 2pm p-well CMOS, double-metal, double-poly process 
and measures 9.2" x 7.9" (width x height). Of the 
total 73 mm2 chip area, the sensing element array takes up 
59 mm2, read-out column-select circuitry 0.37 mm2 and the 
output integrator0.06mm2. The remaining 14mm2 is used 
for power bussing, signal wiring, and die pad sites. 

3.2 Sensing Element Design 
The architecture chosen for the range sensing elements is 
shown in Fig. 6. Areas of interest in the diagram include 
the photo-receptor (PDiode), the photo-current transimpe- 
dance ampliier (PhotoAmp), threshold comparison stage 
(nZComp), stripe event memory (RSJlop), time-stamp 
track-and-hold circuitry (PGateUCCell) and cell read-out 
logic (PGateOflokenCell). 

In operation, sensing elements cycle between two phases 
-acquisition and read out. 

During the acquisition phase, each sensing element im- 
plements the cell-parallel procedure of Fig. 4. The photodi- 
ode within a cell monitors light energy reflected back from 
the scene. Photocurrent output is amplified and continu- 
ously compared to anextemalthresholdvoltageVth. When 
photoreceptor output exceeds this threshold, the "stripe- 
detected" latch in the cell is tripped. The value of the 
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Figure 7: Non-linear transimpedance amplifier. 

time-stamp voltage at that instant is held on the capacitor 
CCell, recording the time of the stripe detection. 

The acquisition phase is synchronized with stripe motion 
and ends when the stipe completes its scan. At that time, 
the may  sensing elements recorded a range image in the 
form of held time-stamp values. This raw range data must 
now be read from the chip. 

A time-multiplexed read-out scheme off loads range im- 
age data in raster order through a single chip pin. One bit of 
token state is passed through the sensing element array, se- 
lecting cells for output. Dual nlp-transistor pass gate struc- 
tures are used throughout the time-stamp data path. 'They 
permit the use of rail-to-rail time-stamp voltages, maximiz- 
ing the dynamic range of the analog time-stamp data. 

3.3 Stripe Detection 
One of the more challenging aspects of the cell design in- 
volved the circuiby which detected the stripe. 

A photodiode forms the light sensitive area within each 
cell. This diode is a vertical structure, built using the n- 
substrate as the cathode and thep-well of the CMOS process 
as the anode. An additionalp+ implant, driven into the well, 
reduces the surface resistivity of the anode andincreases the 
device bandwidth. 

The non-linear transimpedance amplifier of Fig. 7 was a 
key element of the sensor cell design. Reflected light from 
the swept stripe source generates nano-amp photo-current 
pulses and thus a very high-gain amplifier is required to 
convert this current into a usable voltage. In addition, very 
little die area could be devoted to photo-current amplifica- 
tion if cell area was to be kept small. The three transistor 
amplifier design of Fig. 7 satisfies both requirements. Its 
logarithmic transfer characteristic provides freedom from 
output saturation even when input light levels vary over 
several orders of magnitude. The output rise-time of pho- 
todiode/amplifier test structures in response to a stripe was 
measured to be a few microseconds. 

3.4 Analog Signal Processing 
Analog signal processing techniques played an important 
role in the design of this smart sensor. As shown in Fig. 6, 

Figure 8: The cell-parallel range-finding system. 

Table 1: CELL-PARALLEL SENSOR SYSTEM SUM- 
MARY 

Baseline 3M)mm 

Laser Source Laser Diode (Collimated) 
Wavelength 780 nm 
Output Power 30mW 
Stripewidth l m m  
Stripe Spread 40' (3 dB) 

Sweep Angle 40" 

Sensor Optics 1/2"-FormatCCD Zoom Lens 
Focal Length 
f-number fJ1.8 

Sweep Assembly Rotating Mirror 

12.5 to 75 mm 

AID Precision 12 bits 

sensing elements use analog circuitry to amplify the photo- 
current, to detect the stripe and to record the per-cell time- 
stamp information. Stripe timing is represented in analog 
form as a 0-5 V sawtooth broadcast to all cells of the array. 
This allowed the time-stamp value to be stored as charge 
on the 1 pf capacitor within each cell. The digital equiva- 
lent of latching a count into a multi-bit regiriter would be 
significantly larger in area and would require that the dig- 
ital time-stamp counters run during the acquisition phase. 
Thus, analog processingkept cell area small and minimized 
digital switching noise during photo-current measurements 
in the acquisition phase. 

4 Prototype Range Image Sensor 

The 28 x 32 element VLSI sensor prototype described in 
the previous section was incorporated into the light-stripe 
range systemshowninFig. 8. Systemcomponents visihlein 
the photograph include (from the left) the stripe generation 
assembly, the VLSI sensor chip and its interface electron- 
ics, a calibration target and the 3-DOF positioning system. 
Table 1 provides details of the configuration shown. 
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Figure 9: Lme-of-sight measurement. 

5 Cell-Parallel Sensor Calibration 

Calibration provides the complete specification of system 
geometry necessary for converting cell time-stamp data into 
range images. Two sets of calibration parameters must be 
measured. First, 3-D sensor chip geometry and optical 
parameters must be measnEd- the imager model. Next, a 
mapping between time-stamp values Bs and distance r for 
all sensing elements is developed- the swipe model. 

5.1 Imager Model Calibration 
This method measures component model geometq using 
reference objects, manipulated in the sensor's field of view 
with an accurate 3-DOF (degree of freedom) positioningde- 
vice. The following two-step procedure is used (Fig. 3): 

the line-of-sight rays Rs for a few cells are measured, 
and 
a pinhole-camera model is fit to measuredline-of-sight 
rays in order to approximate line-of-sights for all sens- 
ing elements. 

A planer target ont of which a triangular hole has been 
cut as shown in Fig. 9 is used to map ont sensing element 
line-of-sight rays. The target is mounted on the positioner 
so that its surface is paralleI to the world-xy plane. 

A single 3-D point on the line-of-sight of a paaicular 
sensing element is found as follows. The target is moved 
to some z-position in world coordinates and held. The 
bottom edge of the triangular hole is located by moving 
the target around in x and y as indicated in Fig. 9. When 
a small motion in either x or y causes a large change in 
the time-stamp value reported by the cell, occlusion of the 
line-of-sight at an edge of the triangular cut is indicated. 

Once many points along the bottom edge are located, a 
line, known to lie in the plane of the target, is fit. The 
location of the top edge is found in a similar fashion. The 
intersection of the top and bottom edge lines define one 3-D 
point that lies on the cell's line-of-sight. A number of these 
points are located by moving the target in z and repeating 
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Figure 10: Cell (13,15) measured line of sight. 
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Figure 11: "Pinhole" line-of-sight approximation 

the process. The line-of-sight for a single cell can then be 
identified by fitting a 3-D line to these points. Experimental 
dah from the calibration of one sensing element's line-of- 
sight is shown in Fig. 10. 

Mapping the lime-of-sight rays for all 896 sensing ele- 
ments in this manner is too time consuming. In practice, 
line-of-sight information is measured for 25 cells, evenly 
spaced in a 5 grid. The geometry of the remaining cells is 
approximated using a pinhole-camera model. 

The pinhole-camera model[WCH90] constrains all sens- 
ing element line-of-sight rays to pass through a single point 
focus of expansion at the optical center of the camera. 
Fig. 11 graphically illustrates the process. Sensing element 
locations are assumed to lie in some sensorplane, at loca- 
tions evenly spaced in a 2-D grid on the plane. Eleven model 
parameters must be determined that identify the transforma- 
tion matrix Tsw and the geometry of the the sensor plane. 
A least-squares procedure is used to fit pinhole-model pa- 
rameters to line-of-sight information measured in the first 
calibration step. Imager model geometry is now fully cali- 
brated. 
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5.2 Advanced Imager Model Calibration 

Unfortunately, calibration of the imager model via line-of- 
sight measurement is not suitable for use outside of the 
laboratoly environment. “One-at-a-time” measurement of 
sensing element geometry, as outlined above, is slow and 
cumbersome. 

We are developing a faster, more precise method for 
imager model calibration. In this new calibration method, 
the 3-DOF positioning system is replaced with a liquid 
crystal display (LCD) mask that need only be accurately 
positioned along one degree of freedom. The LCD mask 
is used to define precise black-and-white images that are 
“seen” by the range sensor. The method relies on intensity 
image information, measuring geometry through analysis 
of reference object images[ABA+87]. 

The LCD mask is placed between a diffuse planer tlrget 
andsensorchipataknownpositionandis backlitby shining 
the system stripe sonrce on the planer target. The pattem 
displayed on the LCD forms a black-and-white image on 
the sensor. Only illuminated sensing elements will latch 
the stripe-detected condition (Section 3-3.2). A single-bit 
intensity image is derived by identifying the time-sfamp 
output of illuminated sensing elements. 

Sensing element line-of-sight geometry is found by vary- 
ing the LCD mask pattern in a controlled fashion. For ex- 
ample, a circular pattem, whose 3-D center is known, can 
be projected. A calibration point is found by measuring the 
2-D location of this circle’s center in the intensity image 
returned by sensor. Additional calibration data is measured 
by varying the position of the circle on the LCD mask and 
the position of the LCD along ZS. Also, by measuring the 
center different radii of the circle at a fixed position, we 
can compensate for the low spatial resolution ofthe current 
sensor. The new sensor chip design, discussedin Section7, 
retums multi-bit intensity image data which further assists 
imager geometry Calibration. 

Use of the LCD mask significantly reduces the time re- 
quired to perfomimager-model calibration. In the previous 
method, two edges of a hiangular hole had to be mapped 
out, via accurate hack-and-forth movement,in order to yield 
a single calibration point. In the new method, one calibra- 
tion point is measured from a single LCD-generated pattem 
without mechanical X-Y movement. Precise calibration of 
the low-spatial resolution range sensor is possible because 
high-precision pattems are generated by the LCD mask. 

The use of an LCD mask to project precise 2-D pattems 
has application beyond the calibration of our light-stripe 
range sensor. For example, this technique could be used 
to assist more traditional camera calibration procedures or 
to present training data to image-based neural net systems. 
LCD displays have several advantages over CRT displays 
for applications like these - they are fast, they are static 
(not refreshed), and they form images which are stable and 
well defined. 

Figure 12: Time-stamp calibration 

Figure 13: Time-stamp calibration resiult 

5.3 Stripe Model Calibration 
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Figure 15: Range data accuracy and repeatability. 

Figure 14: Cell (13,15) range-data histograms. 

The second part of the calibration procedure determines 
the mapping between time-stamp data and range along all 
sensing element line-of-sight rays. As shown in Fig. 12, a 
planer target with no hole replaces the target used in step 
one. The new target is held at a known world-t position, 
parallel to the zy plane, and time-stamp readings Bs from 
all sensors are recorded. This process is repeated for many 
z positions. Using this information, the function which 
maps cell time-stamp values Bs into line-of-sight distance 
T for each sensing element is approximated by fitting a 
parabola to each. Experimental data, showing the fitted 7 

verses BS functions for several sensing elements, is shown 
in Fig. 13. Calibration of the cell-parallel range sensor is 
now complete. 

6 System Performance 

6.1 Range Accuracy and Repeatability 
The quality of the range data produced by the cell-parallel 
range sensor was measured by holding a planer target at 
a known world-z position with the 3-DOF positioning de- 
vice. In the experimental setup, the world-z axis heads 
almost directly toward the sensor with the t w  = 0 point 
roughly 500 mm away. Analog time-stamp values from the 
sensor array were digitized, using a 12-bit analog-to-digital 
converter (AID), and recorded for 1,000 trials. Light-stripe 
sweep (acquisition phase) time for each scan was 3 msec. 

A histogram of the range data reported by one cell is 
plotted in Fig. 14. The horizontal axis represents the dig- 
itized time-stamp value, converted to world-z distance via 
the calibration model. Data for six world-z positions are 
combined in this plot. The vertical axis shows the number 
of times (plotted logarithmically), out of the 1,ooO trials, 
that the sensing element reported that world-t distance. 
The sharpness of each peak is an indication of the stability 
(repeatability) of the range measurements. 

Averaged statistical data for 25 evenly-spaced sensing 
elements is plotted in Fig. 15. In order to measure accuracy 
and repeatability, the position of the target, as reported by 
the cell-parallel sensor, is compared to the actual target 
t position. The “boxed” points in the plot represent the 

mean absolute error, expressed as a fraction of the world- 
t position and averaged for the 25 elements at ZW. One 
standard deviation of “spread”, also normalized with zw. is 
shown (p) above and below each box. 

The experiments show the mean measured range value 
to be within 0.5 mm at the maximum 500” z - an ac- 
curacy of 0.1%. The aggregate distance discrepancy be- 
tween world and measured range values remains less than 
0.5 mm over the entire 360 mm to 500 mm z range. The 
cell-parallel sensor repeatability is found by computing the 
standard deviation of the distance measurements. The mea- 
sured repeatability of histogram data is less than 0.5” 
- 0.1% at the maximum 500mm positioner translation. 
The 0.5 mm repeatability decreases with the distance to the 
sensor - essentially with the slope of the time-stamp to 
distance mapping function (Fig. 13). 

6.2 Range Image Acquisition 

Fig. 16 shows a wire-frame representation of one 28 x 32 
range image produced by the sensor. The imaged object 
is the cup shown in the figure, approximately 80” in 
diameter at its opening and 80” high. The range sensor 
is looking directly at the object from a distance of 500 mm. 
The viewpoint of the plot is at a point directly above the 
optical center of the sensor. The complete range image 
was acquired during a 3 msec stripe scan. The intersection 
points of the wire-frame plot are positioned on cell line-of- 
sight rays at the measured distance along the ray and the 
focus of expansion is located in front of the cup. Thus, the 
smaller “squares” represent object surface patches closer to 
the sensor. This is opposite the manner in which straight 
perspective would make an object with a grid painted on 
it appear, and at first glance gives the false impression that 
the “mold” ussd to make the cup has been imaged. 

The curved smooth front surface of the object is clearly 
visible in the range data. The 20” handle of the cup is 
readily distinguished, as is the planer background behind 
the cup. The curved surface of the object halfway down the 
cup directly across from the bottom of its handle includes 
a slight shift of the wire-frame. The imaged cup is slightly 
narrower at its base by about 2 mm. The cell-parallel sensor 
is measuring this small 3-D feature at the 500” object 
distance. 
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Table 2: CELL-PARALLEL SENSOR PERFORMANCE 
SUMMARY - 

Spatial Resolution 28 x 32 
Frame llme Up IO 1 msec 

Operating Distance 350 to 500mm 
Accuracy < 0.5 mm 

Repeatability < 0.5 mm - 

Figure 16: Range data wire frame. 

Figure 17: Second-generation range sensor integrated cir- 
cuit. 

6.3 Sensor Performance Summary 

A summary of the cell-parallel sensor system performance 
is given in Table 2. 

7 A Second Generation Sensing Ele- 
ment 

A second-generationimplementation of the light-stripe sen- 
sor array has been fabricated. This new chip, seen in 
Fig. 17, incorporates several advantages over the first de- 
sign. The die area of the new cell, shown in Fig. 18, is 
216pm x 216pm 40% smaller than that of the cells of the 
first-generation sensor (photoreceptor area has been kept 
constant). Stripe detection is done in a more robust manner 
and range data read-out circuitry has been simplified. In 
addition, the new cell provides a means to record and read 
out the value of the peak intensity seen when it acquires a 
range data sample. The peak intensity infonnation provides 
a direct measure of scene reflectance because stripe output 
power is known and distance to the object point is mea- 
sured. In addition, the availability of intensity information 
allows for efficient sensor calibration (Section 5-5.2). 

Peak detection is done using the circuit of Fig. 19. Oper- 
ation of the circuit is straightforward. The source following 
transistor Qp enables capacitor Cr to track the rising inten- 
sity input voltage transitions. No path is proviided for C ,  to 
discharge when photoreceptor output transitions downward 
At the end of a scan, the largest intensity reading observed 
will be held. Stripe detection is easily accomplished by 
comparing the peak-intensity value Vf with the amplified 
photodiode output V.. When V, falls below the Vr. the 
output from the comparator is used to record a time-stamp 



Figure 18: Second-generation sensing element layout. 

Figure 19: Second-generation sensing element circuitry. 

2-23 

value. 
Using Spice[HSp901, operation of of the second- 

generation sensing element design was simulated. The 
simulation results are plotted in Fig. 20. The output from 
the peak-following circuit XLSCELL .30 acts as a dynamic 
threshold for each cell, replacing the extemally applied 
global threshold of the first-generation design (Section 3- 
3.2). Comparator input offset mismatch made setting a 
global threshold level, valid for all cells in the array, dif- 
ficult. Thus, stripe detection is made more robust by this 
modification. In addition, the "hue" peak detection of the 
new design provides better quality range data because the 
new stripe detection scheme identifies the location of the 
peak in time more accurately than simple thresholding. 

The peak-intensity value held within the second- 
generation cell is an impomnt attifact of the ranging process 
and, in the new design, is provided as an additional sensing 
element output. The illumination source in the system, the 
stripe, is of known power. Intensity reduction from 1 JT- 

type losses can be accountedfor becauserange to the object 
is measured. The intensity value therefore provides a direct 
measure of scene reflectance properties at the stripe wave- 
length. It is an image aligned perfectly with range readings 
from the cell array. 

The area in each cell dedicated to time-stamp read out is 
much smaller in the new design. Direct addressing of the 
cell tn be read, using row and column selects, eliminates 
the token state necessary in the first-generation design. The 
N x M array is read using N row select lines and A4 col- 
umn select lines. A given cell is enabled for read out by 
asserting the row and column select lines that correspond 
to the location of the cell in the may. The two-level bus hi- 
erarchy has been maintained, however, to keep bus loading 
at a minimum. The area savings of the new read selection 
method has made cell area of the second-generation design 
smaller despite the additional peak detection circuitry. 
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8 Conclusion 

We have presented the design and construction of a very 
high-performance range-imaging sensor. This sensor ac- 
quires a complete 28 x 32range-data frame in a few millisec- 
onds. Its range accuracy and repeatability were measured 
to be less than 0.5 nun on average at half-meter distances. 
The success of this implementation can be attributed to the 
use of a VLSI smart sensor methodology that allowed a 
practical implementation of the cell-parallel technique. 

While the advantages of processing at the point sensing 
have been advocated by many, few practical smart-sensor 
implementations have been demonstrated. The cell-parallel 
range imager presented here bridges the gap between smart 
sensor theory and practice, demonstrating the impact that 
the smart sensor methodology can have on robotic percep- 
tion systems, like automated inspection and assemhlytasks. 

Smart VLSI-based sensors, l i e  the high-speed range 
image sensor presented here, will be key components in 
future industrial applications of sensor-based robotics. 
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A Multiple-baseline Stereo 
Method 1 

Abstract 

This paper presents a stereo matching method which uses 
multiple stereo pairs with various baselines to (obtain precise 
distance estimates without suffering from ambiguity. 

In stereo processing, a short baseline means that the es- 
timated distance will be less precise due to narrow aian- 
gulation. For mnre precise distance estimalion, a longer 
baseline is desired. With a longer baseline., however, a 
larger disparity range must be searched to find a match. As 
a result, matching is more difficult and ther-, is a greater 
possibility of a false match. So there is a tradi:-off between 
precision and accuracy in matching. 

The stereo matching method presented in this paper uses 
multiple stereo pairs with different baselines generated by 
a lateral displacement of a camera. Matching is performed 
simply by computing the sum of squared-difference (SSD) 
values. The SSD functions for individual stereo pairs are 
represented with respect to the inverse distance (rather than 
the disparity, as is usually done), and then are simply added 
to produce the sum of SSDs. This resulting function is 
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called the SSSD-in-inverse-distance. We show that the 
SSSD-in-inverse-distance function exhibits a unique and 
clear minimum at the correct matching position even when 
the underlying intensity pattems of the scene include ambi- 
guities or repetitive pattems. An advantage of this method 
is that we can eliminate false matches andincrease precision 
without any search or sequential filtering. 

This paper first defines a stereo algorithm based on 
the SSSD-in-inversedistce and presents a mathematical 
analysis to show how the algorithm can remove ambiguity 
and increase precision. Then, a few experimental results 
with real stereo images are presented to demonstrate the 
effectiveness of the algorithm. 

1 Introduction 

Stereo is a useful technique for obtaining 3-D infomtion 
from 2-D images in computer vision. In stereo matching, 
we measure the disparity d ,  which is the difference between 
the corresponding points of left and right images. The 
disparity d is related to the distance z by 

(1) 
1 

d = B F- ,  
z 

where B and E are baseline and focal length, respectively. 
This equation indicates that for the same distance the 

disparity is proportional to the baseline, or that the baseline 
length B acts as a magnification factor in measuring d in 
order to obtain z. That is, the estimated distance is more 
precise if we set the two cameras farther apart from each 
other, which means a longer baseline. A longer baseline, 
however,poses its own problem. Because a longerdisparity 
range must be searched, matching is more difficult and thus 
there is a greater possibility of a false match. So there is 
a trade-off between precision and accuracy (correctness) in 
matching. 

One of the most common methods to deal with the prob- 
lem is a coarse-to-fine control strategy [ l]  - [5 ] .  Matching 
is done at a low resolution to reduce false matches and then 
the result is used to limit the search range of matching at 
a higher resolution, where more precise disparity measure- 
ments are calculated. Using a coarse resolution, however, 
does not always remove false matches. This is especially 
m e  when there is inherent ambiguity in matching, such 
as a repeated pattern over a large part of the scene (eg., 
a scene of a picket fence). Another approach to remove 
false matches and to increase precision is to use multiple 
images, especially a sequence of densely sampled images 
along a camera path [6] - [9]. A shofl baseline between a 
pair of consecutive images makes the matching or tracking 
of features easy, while the smcture imposed by the camera 
motion allows integration of the possibly noisy individual 
measurements into a precise estimate. The integration has 
been performed either by exploiting constraints on the EPI 
[6][7] or by a sequential Kalman filtering technique [8][9]. 

The stereo matching method presented in this paper be- 
longs to the second approach: use of multiple images with 
different baselines obtained by a lateral displacement of a 

camera. The matching technique, however, is based on 
the idea that global mismatches can be reduced by adding 
the sum of squared-difference (SSD) valnes from multiple 
stereo pairs. That is, the SSD values are computed first for 
each pair of stereo images. We represent the SSD values 
with respect to the inverse distance l / z  (rather than the 
disparity d, as is usually done). The resulting SSD func- 
tions from all stereo pairs are added together to produce the 
sum of SSDs, which we call SSSD-in-inverse-distce. We 
show that the SSSD-in-inverse-distce function exhibits a 
unique and clear minimum at the correct matching position 
even when the underlying intensity pattems of the scene 
include ambiguities or repetitive pattems. 

There have been stereo techniques that use multiple im- 
age pairs taken by cameras which are arranged along a line 
[10][11][12], in the form of a triangle [13][14][151 (called 
trinocular stereo), or in the other formation 1161. How- 
ever, all of these techniques, except [lo] and [161, decide 
candidate points for correspondence in each image pair and 
then search fnrthe correct combinations of correspondences 
among them using the geometrical consistencies that they 
must satisfy. Since the intermediate decisions on corre- 
spondences are inherently noisy, ambiguous and multiple, 
finding the correct combinations requires sophisticated con- 
sistency checks and search or filtering. In contrast, our 
method does not make any decisions about the correspon- 
dences in each stereo image pair; instead, it simply accumu- 
lates the measures of matching (SSDs) from all the stereo 
pairs into a single evaluation function, ie., SSSD-in-inverse- 
distance, and then obtains one corresponding point from it. 
In other words, our method integrates evidence for a final 
decision, rather than filtering intermediate decisions. In 
this sense,Tsai [16] employed strategy very similar to ours: 
he used multiple images to sharpen the peaks of his over- 
all similarity measures, which he called JMM and WVM. 
However, the relationship between the improvement of the 
similarity measures and the camera baseline arrangement 
was not analyzed, nor was the method tested with real im- 
agery. In this paper we show both mathematical analysis 
and experimental results with real indoor and outdoor im- 
ages, which demonstrate how the SSSD-in-inverse-distance 
function based on multiple image pairs from different base- 
lines can greatly reduce false matches, while improving 
precision. 

In the next section we present the method mathematically 
and show how ambiguity can be removed and precision in- 
creased by the method. Section 3 provides a few experi- 
mental results with real stereo images to demonstrate the 
effectiveness of the algorithm. Section 4 presents conclu- 
sions. 

2 Mathematical Analysis 

The essence of stereo matching is, given a point in one 
image, to find in another image the corresponding point, 
such that the two points are the projections of the same 
physical point in space. This task usually requires some 
criterion to measure similarity between images. The sum 
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Po PI p2 m 
where N,,, is the number of the points within the window. 0 0 

I I 
B1 For the rest of the paper, E [ ]  denotes the expected value of 

a random variable. In deriving the above equation, we have 
, assumed that d,(j) is constant over the window. Equation 

(6) says that naturally the SSD function r d ( i ) ( z ,  d ( i ) )  is 
expected to take a minimum when d(,) = d,(i) ,  i.e., at the 

I 
02 
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Figure 1 : Camera positions for stereo 

of squared differences (SSD) of the intensity values (or 
values of preprocessed images, such as bandpass filtered 
images) over a window is the simplest and most effective 
criterion. In this section, we define the sum of SSD with 
respect to the inverse distance (SSSD-in-inverse-distance) 
for multiple-baseline stereo, and mathematically show its 
advantage in removing ambiguity and increasing precision. 
For this analysis, we use I-D stereo intensity signals, but 
the extension to two dimensional images is straightforward. 

2.1 SSD Function 
Suppose that we have cameras at positions PO, PI, .  . . , P, 
along a line with their optical axes perpendicular to the 
line and a resulting set of stereo pairs with baselines 
B I ,  Bz,.  . . , B, as shown in figure 1. Let fa($) and ji(z) 
be the image pair at the camera positions PO and Pi, respec- 
tively. Imagine a scene point 2 whose distance is e. Its 
disparity d,.(i) for the image pair taken from PO and Pi is 

We model the image intensity functions j o ( z )  and j j ( z )  
near the matching positions for 2 as 

fO(5) = f ( z ) + n o ( z )  
ti(.) = f(z - & ( i ) )  + ni(z), (3) 

n o ( z ) , ~ ( z )  - N(O,&. (4) 

assuming constant distance near 2 and independent Ciaus- 
sian white noise such that 

The SSD value ed(il over a window W at a pixel position 
x of image fo(z) for the candidate disparity d(i) is defined 
as 

e d ( i ) ( z , d ( i ) )  C(fO(z+j) - f i ( z + d ( i )  + j ) ) '>  ( 5 )  
j € W  

wherethe CjEw means summation overthe window. The 
d( ; )  that gives a minimum of e d ( i )  (z, d ( ~ )  is determined as 
the estimate of the disparity at z. Since the SSD measure- 
ment c d ( i ) ( z ,  d ( o )  is a random variable, we will compute 
its expected value in order to analyze its behavior: 

. .  . .  
right disparity. 

Let us examine how the SSD function e d ( i ) ( z , d ( i ) )  be- 
haves when there is ambiguity in the underlying intensity 
function. Suppose that the intensity signal! f(z) has the 
same pattem around pixel positions z and z + a ,  

f ( z + j ) = f ( z + a + j ) ,  jctw (7) 
where a # 0 is a constant. Then, from equation (6) 

E[ed(i)(z,d,(i))l = %i(i)(s, d,(i)+a)l =: 2Nw& (8) 

This means that ambiguity is expected in matching in terms 
of positions of minimum SSD values. Moreover, the false 
match at d,(q + a appears in exactly the same way for 
all i; it is separated from the correct match by a for all 
the stereo pairs. Using multiple baselines does not help to 
disambiguate. 

2.2 SSD with respect to Inverse Distance 
Now, let us introduce the inverse distance C wch that 

>From equation and (Z), 

d,( i )  = BiFC, (10) 

d ( i )  = BiFC, (11) 

where Cv and C are the real and the candidate inverse dis- 
tance, respectively. Substituting equation (11) into (3, we 
have the SSD with respect to the inverse distance, 

e<(i)(z,C) C ( f o ( z + j ) - f i ( ~ + B i F C + j ) ) * ,  (12) 

at position 3: for a candidate inverse distance C. Its expected 
value is 

E[q( i ) ( z ,  01 = ( f ( z + j ) - f ( x + B i F ( C - - C ~ ) + j ) ) ' + 2 ~ ~ ~ ~ .  

j € W  

j € W  

(13) 
Finally, we define a new evaluation function 

eF(lz...n)(z,<), the sum of SSD functions with respect to 
the inverse distance (SSSD-in-inverse-distance) for multi- 
ple stereo pairs. It is obtained by adding the S,SD functions 

C )  for individual stereo pairs: 

f(. + d(i) - 
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+2nN,u$ (15) 

Io the next three subsections, we will analyze the character- 
istics of these evaluation functions to see how ambiguity is 
removed and precision is improved. 

2.3 Elimination of Ambiguity (1) 

As before, suppose the underlying intensity pattem f ( z )  
has the same pattern around x and x + a (equation (7)). 
Then, according to equation (13), we have 

a 
E[ec(i)(x,C7)1 = Elec( i ) (x ,Cv+~;~) I  = 2 N t d .  (16) 

We still have an ambiguity; a minimum is expected at a 
false inverse distance cf = CF + *. However, an impor- 
tant point to be observed here is that this minimum for the 
false inverse distance <f changes its position as the hase- 
line Bi changes, while the minimum for the correct inverse 
distance Cp does not. This is the property that the new evalu- 
ation function, the SSSD-in-inverse-distance (14), exploits 
to eliminate the ambiguity. For example, suppose we use 
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+ 4N,uk. (17) 

We can prove that 

E[e~(lz)(x,C)I > 4Nwd = E [ ~ c ( I z ) ( ~ , G ) I  for< # Cp. 
(18) 

(refer to appendix A) In words, ec(lz)(z ,  C) is expecred to 
have the smallest value at the correct Cr. That is, the ambi- 
guity is l ie ly to be eliminated by use of the new evaluation 
function with two different baselines. 

We can illustrate this using synthesized data. Suppose 
the point whose distance we want to determine is at z = 0 
and the underlying function f ( x )  is given by 

(19) 
cos (gx )  + 2 if -4 < 2 < 12 

i fx  5 -40r 12 5 x. 

Figure 2 (a) shows aplot of f ( x ) .  Assumingthat d7( ] )  = 5, 
u', = 0.2, and the window size is 5, the expected values of 
the SSD function ed(l) ( x ,  d ( l ) )  are as shown in figure 2 (b). 
We see that there is an ambiguity: the minima occur at the 
correct match = 5 and at the false match d ( l )  = 13. 
Which match will be selected will depend on the noise, 
search range, and search strategy. Now suppose we have a 
longer baseline B2 such that 2 = 1.5. >From equations 
(6) and (lo), we obtain E[ed(2)] as shown in figure 2 (c). 
Again we encounteran ambiguity, and the separation of the 
two minima is the same. 

Now let us evaluate the SSD values with respect to the 
inverse distance C rather than the disparity d by using equa- 
tions (12) through (15). The expected values of the SSD 
measurements E[ec(I)]  and E[eC(q] with baselines B1 and 
B2 are shown in figures 2 (d) and (e), respectively (the plot 
is normalized such that BIF  = 1). Note that the minima at 
the correct inverse distance (5 = 5) does not move, while 
the minima for the false match changes its position as the 
baseline changes. When the two functions are added to 
produce the SSSD-in-inverse-distance, ik expected values 
E [ e ~ ( ~ z ) ]  are as shown in figure 2 (fj. We can see that the 
ambiguity has been reduced because the SSSD-in-inverse- 
distance has a smaller value at the correct match position 
than at the false match. 

2.4 Elimination of Ambiguity (2) 
An extreme case of ambiguity occurs when the underly- 
ing function f(z) is a periodic function, l i e  a scene of a 
picket fence. We can show that this ambiguity can also be 
eliminated. 

Let f(z) be a periodic function with period T .  Then, 
each ec(i) (3, C) is expected to be a periodic function of C 
with the period &. This means that there will be multiple 
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(4 (b) 

Figure 3: "Town" data set: (a) ImageO; (b) Image9 

minima of (z, C) (Le., ambiguity in matching) at inter- 
vals of & in <. When we use two baselines and add their 
SSD values, the resulting (z, C) will be still aperiodic 
function of c> but its period Tn is increased to 

where L C M ( )  denotes Least Common Multiple. That is, 
the period of the expected value of the new evaluation func- 
tion can he made longer than that of the individual stereo 
pairs. Furthermore, it can be controlled by choosing the 
baselines BI  and Ez appropriately so that the expected 
value of the evaluation function has only one miniinum 
within the search range. This means that using multiple- 
baseline stereo pairs simultaneously can eliminate ambi- 
guity, although each individual baseline stereo may suffer 
from ambiguity. 

We illustrate this by using real stereo images. Figure 3(a) 
shows an image of a sample scene. At the top of the scene 
there is a grid board whose intensity function is nearly pe- 
riodic. We took ten images of this scene by shifting the 
camera vertically as in figure 4. The actual distance. be- 
tween consecutive camera positions is 0.05 inches. Let this 
distance be b .  Figure 3 shows the first and the last images 
of the sequence. We selected a point z within the repetitive 
grid board area in image9. The SSD values e(.(;) (z, C) over 
5-by-5-pixel windows are plotted for various baseline stereo 
pairs in figure 5. The horizontal axis of all the plots is the 
inverse distance, normalized such that 8bF = 1. Figure 5 
illustrates the trade-off between precision and ambiguity in 
terms of baselines. That is, for a sholter baseline, there are 
fewer minima (Le. less ambiguity), but the SSD curve is 
flatter (i.e. less precise localization). On the other hand, 
for a longer baseline, there are more minima (Le. more 
ambiguity), but the curve near the minimum is sharper; that 
is, the estimated distance is more precise if we can find the 
correct one. 

Now, let us take two stereo image pairs: one with B = 5b 
and the other with B = 8b. In figure 6 ,  the dashed curve 
and the dotted curve show the SSD for B = 5b and B = 8b, 
respectively. Let us suppose the search range goes from 0 
to 20 in the horizontal axis, which in this case corresponds 

Baseline b Zb 3b 41, 5b 6b 7b 8b 9b 

Figure 4: "Town" data set image 
sequence 

Figure 5 :  SSD values vs. inverse depth: (a) E = b; (h) 
E = 2b; (c) E = 3b; (d) B = 4b; (e) B = 5b; (0 B = 6b; 
(g) B = 7b; (h) B = 86. The horizontal axis is n o d i z e d  
such that 8bF = 1. 

to 12 to co inches in distance. Though the SSlD values take 
a minimum at the correct answernear C = 5, there are also 
other minima for both cases. The solid cuwe shows the 
evaluation function for the multiple-baseline :stereo, which 
is the sum of the dashed curve and the dotted curve. The 
solid curve shows only one clear minimum; that is, the 
ambiguity is resolved. 

So far, we have considered using only two stereo pairs. 
We can easily extend the idea to multiple-baseline stereo 
which uses more than two stereo pairs. Corresponding to 
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+ n o ( z + j )  -ni(.+BiFC+j))’. (22) 
-e- B = , b  .... 0 .... 8 = 8 b  
t B - 5 b a m  By taking the Taylorexpansion about C = Cr up to the linear 

terms, we obtain 

f(z+BiF(C-Cr)+j) R! f(z+j)+BiF(C-S~)f’(.+j). 
(23) 

\*. 
,6 ‘4% 

Substituting this into equation (22), we can approximate 
e<(;)(., C) near CF by aquadratic form of C: 

e<(<)(”> C) 
x C ( - B i F ( C - C F ) f ’ ( % + j )  

j € W  

+no(z + j) - ni(z + BiFC + j))’ 
B:F2a(z)(( - (?)’ + 2B;Fb;(z)(C - Cr) + .;(.), 

bvers’oo dspffi 

Figure 6: Combining two stereo pairs with different base- 
lines = 

(24) 

equation (24) minimum; 
Figure 7:  Combining multiple baseline stereo pairs 

equation (ZO), the period of E[e<(lz...n,(z, C) ]  becomes 
e .  ,(,) - (  - (. - BiFa(z)’ (28) 

Since E[bi(z)]  = 0, the expectedvalue ofthe estimate 6(;) 
is the correct value Cr, but it varies due to the noise. The 
variance of this estimate is: 

(21) 
T T  

BlF’B2F”“’ B,F 

where B I ,  Bz ,  , . . , B, are baselines for each stereo pair. 
We will demonstrate how the ambiguity can be further 

reduced by increasing the number of stereo pairs. >From 
the data of figure 4, we first choose imagel and image9 as a 
long baseline stereo pair, ie. (1) B = 8b. Then, we increase 
the number of stereo pairs by dividing the baseline between 
imagel and image9, i.e. (2) B = 4b and 8b, (3) B = 2b, 
4b, 6b and 8b, (4) B = b, Zb, 3b, 4b. 5b, 6b, 7b and 8b. 
Figure 7 demonstrates that the SSSDs-in-inverse-distance 
shows the minimum at the correct position more clearly as 
more stereo pairs are used. 

2.5 Precision 
We have shown that ambiguities can be resolved by us- 
ing the SSSD-in-inverse-distance computed from multiple 
baseline stereo pairs. The technique also increases precision 
in estimating the hue inverse distance. We can show this 
by analyzing the statistical characteristics of the evaluation 
functions near the correct match. 

>From equations (3), (10). and (lZ), we have 

Basically, this equation states that for the same amount of 
image noise u i ,  the variance is smaller (the estimate is more 
precise) as the baseline B; is longer, or as the variation of 
intensity signal, a(.), is larger. 

We can follow the same analysis for eg(lz...n)(z,C) of 
(14), the new evaluation function with multiple baselines. 
Near C,., it is 

ec(lz...n)(z,C) = ( $ B ? )  Fza(z) (c  - c7)z 

+2F ($Bibi(z))  ( S - S r ) + k ~ i ( z ) .  i=l (30) 

The variance of the estimated inverse distance & ( ~ z . . . ~ )  that 
minimizes this function is 
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>From equations (29) and (31), we see that 

The inverse of the variance represents the precision of the 
estimate. Therefore, equation (32) means that by using 
the SSSD-in-inverse-distce with multiple baseline stereo 
pairs, the estimate becomes more precise. We can confirm 
this characteristic in figures 6 and I by observing that the 
curve around the correct inverse distance becomes shzuper 
as more baselines are used. 

3 Experimental Results 

This section presents experimental results of the multiple- 
baseline stereo based on SSSD-in-inverse-distance with real 
2D images. A complete description of the algorithm is 
included in Appendix B. 

The first result is for the "Town" data set that we showed 
in figure 3. Figures 8 (a) and (b) are the distance map and 
its isometric plot with a short baseline, E = 3b. The result 
with a single long baseline, B = 9b, is shown in figure 
9. Comparing these two results, we observe that the dis- 
tance map computed by using the long baseline is smoother 
on flat surfaces, i.e., more precise, but has gross errors in 
matching at the top of the scene because of the repeated 
pattem. These results illustrate the trade-off between am- 
biguity and precision. Figure 10, on the other hand, shows 
the distance map and its isometric plot obtained by the new 
algorithmusingthreedifferent baselines,3b, 6b, and9b. For 
comparison, the corresponding oblique view of the scene is 
shown in figure 11. We can note that the computed distance 
map is less ambiguous and more precise than those of the 
single-baseline stereo. 

Figure 12 shows another data set used for our experi- 
ment. Figures 13 and 14 compare the distance maps com- 
puted from the short baseline stereo and the long baseline 
stereo: the longer baseline is five times longer than the 
sholt one. For comparison, the actual oblique view roughly 
corresponding to the isometric plot is shown in figure 15. 
Thoughnorepetitivepattemsareapparentintheimages, we 
can still observe gross errors in the distance map obtained 
with the long baselinedue to false matching. In contrast, the 
result from the multiple-baseline stereo shown in figure 16 
demonstrates both the advantage of unambiguous matching 
with a short baseline and that of precise matching with a 
long baseline. 

4 Conclusions 

In this paper, we have presented a new stereo matching 
method which uses multiple baseline stereo pairs. This 
method can overcome the trade-off between precision and 
accuracy (avoidance of false matches) in stereo. The 
method is rather straightfonvard: we represent the SSD 
values for individual stereo pairs as a function of the in- 
verse distance, and add those functions. The resulting 

function, the SSSD-in-inverse-distance, exhibits an unam- 
biguous and sharper minimum at the correct matching po- 
sition. As a result there is no need for search or sequential 
estimation procedures. 

The key idea of the method is to relate SSD values to 
the inverse distance rather than the disparit:y. As an af- 
terthought, this idea is natural. Whereas disparity is a func- 
tion of the baseline, there is only one true (invt:rse) distance 
for each pixel position for all of the stereo pairs. Therefore 
there must be a single minimum for the SSD values when 
they are summed and plotted with respect t3 the inverse 
distance. We have shown the advantage of the proposed 
method in removing ambiguity and improving precision by 
analytical and experimental results. 
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A SSSD-in-inverse-distance for Am- 
biguous Pattern 

Proposition: Suppose that there are two and only two 
repetitions of the same pattem around positions 2 and x + a 
where a # 0 is a constant. That is, for j E W 

f (x+j )  = f ( E + j ) ,  

Then,ifBl # B2, forVC, C # Cv, 

if and only if = z or 5 = z + a. 
(33) 



2-31 

(a) 
Figure 8: Result with a short baseline, B = 3b: (a) Distance map; (b) Isometric plot of the distance map from the upper 
left comer. The matching is mostly correct, but very noisy. 

A correct distance 

(a) 
Figure 9: Result with a long baseline, B = 9b: (a) Distance 
comct. However, there are many gross mistakes, especial$ 
matching is completely wrong. 

map; 
r in th 

matching is less noisy when it is 
ie top of the image where, due to arepetitive pattem, the 
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,.-~ (a) 
Figure 10: Result with multiple baselines, B = 3b, 6b, and 9b: (a) Distance map; (b) Isometric plot. Compared with 
figures 8(b) and 9(b), we see that the distance map is Less noisy and that gross errors have been removed. 

Figure 11: Oblique view 
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Figure 1 2  "Coal mine" data set, long-baseline pair 

(a) (b) 
Figure 13: Result with a short baseline: (a) Distance map; (b) Isometric plot of the distance map viewed from the lower 
left comer 



Figure 15: Oblique view 

(a) (b) 
Figure 16: Multiple baselines: (a) Distance map; @) Isometric plot 



f o r j  E W ,  where 

al = BlF(Cf - G) 
a2 = Bd'(Cf - Cr). 

Since B1 # BZ and G. # Cf, 
a1 # az. 

So, we have 

f ( z + j )  = f(< + j ) ,  for< = x , x  + a l ,  orx  + az. 
(38) 

Since this contradicts assumption (33), equation (35) does 
not hold. Its left hand side must be positive. Hence (34) 
holds. 

B Multiple-Baseline Stereo Algorithm 

We present a complete description of the stereo algorithm 
using multiple-baseline stereo pairs. The task is, given n 
stereo pairs, find the C that minimizes the SSSD-in-inverse- 
distance function, 

" 
SSSD(x,c) = ( f o ( x + j )  -f i(z+BiFC+j)) ' .  

;=I j € W  

(39) 
We will perform this task in two steps: one at pixel res- 
olution by minimum detection and the other at sub-pixel 
resolution by iterative estimation. 

Minimum of SSSD at Pivel Resolution 

For convenience, instead of using the inverse distance, we 
normalize the disparity values of individual stereo pairs 
with different baselines to the corresponding values for the 
largest baseline. Suppose B1 < BZ < ... < B,. We 
define the baseline ratio Ri such that 

Bi 
B ,  

Ri = -. 

Then, 
BiFC = RiB,FC = Rid(,), 

where d( 
B,. Substmting this into equation (39), 

SSSD(z,d(n)) = (fo(x+j)-fi(l+R;d(n)+j))z 

(42) 

is the disparity for the stereo pair with baseline "! 

n 

i= l  j € W  

We compute the SSSD function for a range of disparity 
values at the pixel resolution, and identify the disparity that 
gives the minimum. Note that pixel resolution for the image 
pair with the longest baseline (B,) requires calculation of 
SSD values at sub-pixel resolution for other shorter baseline 
stereo pairs. 

2-35 

Iterative Estimation at Sub-pixel Resolution 
Once we obtain disparity at pixel resolution for the longest 
baseline stereo, we improve the disparity estimate to sub- 
pixel resolution by an iterative algorithm presented in 
[12][17]. For this iterative estimation, we use only the 
image pair to(.) and fn(s) with the longest baseline. This 
is due to a few reasons. First, since the pixel-level esti- 
mate was obtained by using the SSSD-in-inverse-distce, 
the ambiguity has been eliminated and only improvement 
of precision is intended at this stage. Second, using only 
the longest-baseline image pair reduces the computational 
requirement for SSD calculation by a factor of n, and yet 
does not degrade precision too significantly. 

In the experiments shown in section 3, we used the fol- 
lowing algorithm fur sub-pixel estimation: Let do(") be 
the initial disparity estimate obtained at pixel resolution. 
Then, a more precise estimate is computed by calculating 
the following two quantities: 

A4") 

(43) 

(44) 

The value A4n, is the estimate of the correction of the 
disparity to further minimize the SSD, and u & , ~ ~ ~  is its 
variance. We iterate this procedure by replacing do(,) by 

dqn) + d q n )  +A"() (45) 

until the estimate converges or np to a certain maximum 
number of iterations. 
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Building and Using Scene Representations 
in Image Understanding 

H. Harlyn Baker’ 
Artificial Intelligence Center 

SRI International 
Menlo Park, CA 94025, USA 

1. SUMMARY 

The task of having computers able to understand their 
environments through direct imaging has proved to be 
formidable. With its beginnings about 30 years ago (l), 
the field of computer vision has grown +s a major part 
of the pursuit for artificial intelligence. Most elements 
of this pursuit - language understanding, reasoning and 
planning, speech - are very difficult challenges, but vi- 
sion, with its high dimensionality of space, time, scale, 
color, dynamics, and so forth, may be the most challeng- 
ing. Early attempts to develop computer vision focused 
on restricted situations in which it  was feasible to pro- 
vide the computer with fairly complete descriptions of 
what i t  would encounter. In such cases, single images 
provided the sensory information for analysis. As the 
domains of application grew, the requirements for more 
competent descriptions of the world increased. Dealing 
with three-dimensional (3D) dynamic structures (the real 
world) from 3D dynamic platforms (we humans) calls for 
greater capabilities on both the analysis and synthesis 
sides of the issue. The analysis side is the processing of 
sensory data for such tasks as recognition and navigation, 
and a number of techniques are discussed here for dealing 
with these two-, three-, and higher-dimensional data, The 
synthesis side is the construction of ‘internal’ descriptions 
of what is seen in the environment - constructed now so 
that they may be used subsequently far the above tasks. 
This latter issue is the underlying theme we pose in this 
paper - developing representations from vision that will 
later enable effective automated operation in our 3D dy- 
namic environments. 

2. INTRODUCTION 

Vision, which appears so easy for all of us, has proved to 
be an extremely complex task when addressed with com- 
puters. Despite early expectations in the field for realiza- 
tion of machine vision capabilities, i t  has grown to occupy 
a large proportion of the continuing artificial intelligence 
research effort. Understanding the coarse structure, let 
alone the nuances, of our environment continues to he a 
large and, in many parts, elusive challenge. 

*The SRI research discussed here has been sponsored by 
DARPA under contracts DACA-76-85-C-0004, DACA-76 
90-C-0021, and DACA-76-92-C-0003, and by Fujitsu System 
Integration Laboratory. 

2.1 Knowledge  for Analysis 
A major component of the vision efforts seen today still 
parallels approaches taken throughout the years - the 
building in to the system of specific knowledge of the do- 
main it  will encounter. Vision does not take place without 
memory. As sighted individuals, we have a great deal of 
expertise, accumulated over years of observing and inter- 
acting with our 3D dynamic environments. Undoubtedly, 
certain capabilities appear with us at birth. Experience, 
however, and the memory that i t  accumulates, is equally 
critical to our performance. It enables us to rapidly and 
robustly interpret situations and events, recognize the fa- 
miliar, and react opportunely to what we see. Since expe- 
rience appears so necessary to our performance, i t  seems 
essential that a computer charged with seeing also have 
access to some equivalent sort of background knowledge. 
Although seldom enunciated, how this knowledge is given 
to the system, how it  is represented, and how it  is used 
in analysis of the visual imagery turn out to be principal 
issues in computer vision. 

These knowledge issues occur at all levels of the analysis, 
from deciding what useful information from small parts 
of individual images to extract for subsequent process 
ing (e.g., brightness values, gradients, contour elements), 
to considering what is relevant for identifying a striding 
distant silhouette as one’s Uncle Bob. At some levels of 
the analysis there are generally accepted definitions of 
the knowledge that is appropriate (for example, the use 
of spatial-frequency-tuned filters), but, mostly, very little 
is understood and very little is agreed upon about these 
matters. 

2.2 Representa t ional  Limita t ions  
M y  discussion here relates to this knowledge-source issue. 
I phrase it  as building and using computational represen- 
tations in the task of understanding what is presented in 
an image of a scene. I present a number of pieces of work, 
indicating the capability they were designed to provide, 
the role of this capability in a vision system, and the level 
of initial-state knowledge provided to the system along 
with its ability to augment this through time. The main 
point I draw out is that all computer vision systems begin 
with an alphabet of operational primitives used to repre- 
sent the image data. They have a vocabulary of combina- 
tions of these that they can deal with for scene interpreta- 
tion. The capability of the system is set by its expressive 
power in this vocabulary, while its utility in a broader 
context is determined by the breadth of these definitions 
and its ability to grow beyond their limiting bounds. The 
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latter issuc puslres up against generic ‘learning,’ an area 
of artificial intelligence probably unparalleled in both its 
potential and the ratio of its promise to its realization.’ 
EIowever, the issue of a system’s repertoire of expression ~ 

its ability to build representations from imaged data and 
use them in understanding the visual situation -provides 
a key measure of its contributions: its contribution in 
solving the particular problem it addresses as well as its 
contribution to the computer vision task in general. 

Two major determinants of the capabilities of a vision 
system are (1) the modes of imaging used, and (2) the el- 
ements on which i t  bases its analysis. In the next section I 
will provide a reference framework for these by discussing 
the principal modes of image data acquisition (single im- 
ages, binocular stereo, and dynamic sequences) and the 
two choices for processing styles - homogeneous versus 
structured. The comparisons of image understanding sys- 
tems I make in the following sections will be framed by 
these categories. 

3. IMAGING MODALITIES 

Imagery for scene analysis comes in three principal forms: 
monocular views; binocular views, and multi-image se- 
quences of views - looking a t  a photograph, looking with 
your two eyes without being able to move your head, and 
the general situation of two eyes on a mobile head. Each 
form of data contributes differently to the scene represen- 
tation and image understanding tasks. 

3.1 D y n a m i c  Scenes 
Image sequences may provide information about scene dy- 
namics (other moving objects), or give differing perspec- 
tives an a scene viewed as the sensor moves around. This 
is a mode of operation that people are clearly very capa- 
ble of using, as we observe our dynamic world and move 
around in it ,  exploring. The relatively new area of ‘ac- 
tive’ vision (as in a sensor that adjusts its perspective to 
satisfy its requirements) studies acquiring and exploiting 
these sorts of data. Since, from the viewpoint of sur- 
vival, anything that  is in motion in our vicinity is of spe- 
cial interest to us, the analysis of dynamic imagery may 
be expected to play a critical part in a computer vision 
system.’ Taking the more active role in data acquisition 
- moving around and collecting information from a va- 
riety of perspectives - leads to considerably more robust 
and more precise scene measurements. The cost is con- 
siderably more processing. 

3.2 Binocular  Viewing 
What a single moving sensor does not provide is precise 
3D measurement of moving objects. To determine the 
three-space position of an object requires seeing i t  from 
several (at least two) known perspectives simultaneously. 
A moving object viewed by B moving sensor is viewed 
from only one perspective at any instant. 

‘The question of learning is probably a t  the root of the ques- 
tion of intelligence. 

=An immediate question with such analysis lies in what is 
being tracked through the dynamic sequence, and we will 
return to a discussion of this. 

Binocular views, image pairs captured simultaneously 
from different locations (as the eyes provide), can give 
sufficient information to enable 3D interpretation of both 
static and dynamic elements of a scene. That  is, simple 
triangulation (back projection) can be applied to corre- 
spoilding points in two images from known viewing p* 
sitions to determine the location of the observed point 
in three-space. The biggest problem in stereo ~ one that 
has been with us from the beginning - is developing reli- 
able techniques for determining which point in one image 
corresponds to a point in the other. This is) the ‘corre- 
spondence’ problem - matching elements3 bet,ween views. 
Although static binocular viewing is unusual ~ in human 
vision mast binocular perception is dynamic - it is cer- 
tainly effective, as viewing Figure 5 (subsection 6.3.3) will 
show. Depth is a powerful aid to scene understanding. 

3.3 Single Images 
With a stationary sensor viewing a nonchanging scene, 
a single snapshot view may be all that is available, and 
alone must be the basis far scene interpreta.tion. That 
humans can operate with such a deficiency of informa- 
tion, for example in viewing photographs, lacking dynam- 
ics and explicit three-dimensionality, reveals the power of 
our processing and the value of memory and experience. 

Mast early theses in computer vision dealt with analysis 
of single images, and their failings immediately taught us 
the lesson of extensibility. Lacking access to the rich in- 
formation of depth and motion, systems for single-image 
analysis were initialized with specific knowedge of the sim- 
ple objects with which they could deal, and .had no way 
to grow beyond this aside from reprogramming. 

If all that  is presented is a single image, and never in the 
context of a dynamic sequence, any interpretation will 
have to forego explicit temporal or 3D analysis. Since 
we presumably do not begin life with explicit. knowledge 
of 3D structures, such as houses and cars, .yet develop 
understanding of them over time (with both stereo and 
temporal data available), i t  is inconceivable that  memory 
could operate without temporal analysis. 

3.4 Process ing Elements 
A distinction within the different modes of operation that 
will be contrasted throughout this article is the choice of 
analytic element used in the analysis - image pixels or 
‘higher-level’ features such as contrast edges or extended 
contours. These are often termed pixel-based and feature- 
based processing. At the pixel level, image intensity val- 
ues are treated in an undifferentiated way, and the result- 
ing representation is often termed Yretinotopic” for its re- 
semblance to a retinal layout. Featurebased processing 
and description works with a distinguished su.bset of the 
image information, and leads to scene descri,ptions that 
are more sparse but, through better localization, are also 
more precise. Although in truth this dichotomy is more 
of a continuum, I will exclusively consider the latter as 
structured abstractions from the imagery - t.he features 
will be edge elements or parts of contours. 

3A variety of choice of ‘element’ have been developed. 



4. SINGLE IMAGE ANALYSIS 

A common task in computer vision is to identify or das- 
sify items in a single image taken of some scene. For 
example, the task may be to  identify and assemble com- 
ponents of a small machine, 01 to identify targets in an 
aerial view of a military installation. Clearly, single s n a p  
shot images of such a scene will lack 3D and dynamic in- 
formation. The processing must rely on some comparison 
of what the computer expects to see with descriptions it  
extracts from the single image. 

At the pixel level, the comparison may aim to group parts 
of the scene based on textural and other classifications. 
For example, a region that exhibits high spatial intensity 
variation (texture) may be classified as vegetation if the 
scene is expected to  contain vegetation. Homogeneous re- 
gions may be sky if, again, the domain is known to be a 
natural scene out of doors. Anticipated relations between 
classified regions may provide use of mutual consistency 
to make the interpretation more robust. For example, if 
sky must be above vegetation, which is generally above 
the ground, then these spatial relations should be required 
of the classified regions. The major determinants of the 
capability of the system are the quality of the classifiers 
and the suitability of the relations. One may appreci- 
ate that determining effective classifications and relation- 
ships, valid across a wide range of realistic situations, 
might be difficult. 

At  the feature level, 2D shape descriptors are typically 
extracted from such imagery, for example straight lines, 
curves, and smooth contours, grouped into contiguous 
pieces. Some previous automated or interactive process 
has led to  the development of a ‘model vocabulary’ - a 
set of feature groupings that can be composed together 
to represent the range of objects anticipated in the scene. 
Recognition involves comparing the extracted features 
(e.g., lines, arcs) and their interrelationships with those 
represented by the models. 

What is probably most important to observe in this 
single-image analysis is that the processing mnst be pre- 
ceded by defining what is expected to be seen in the im- 
ages. Since 3D shape and motion are not available to 
the analysis, recognition must be based solely on the 2D 
information that can be obtained. 

4.1 In te rp re t a t ion  through P ixe l  Classiflcation 
Strat (2) has demonstrated an impressive capability at in- 
terpreting natural scenes with a pixel-based classification 
system along the lines outlined above. He points out that 
most recognition schemes are based on geometric repre- 
sentations and matching of discrete features, yet natural 
scenes are neither well described by geometry nor char- 
acterized by specific localizable features. Taking a more 
eclectic approach, he develops a battery of filters that at- 
tempt to classify image regions, and builds a relational 
network among these descriptors. What brings the clas- 
sifiers together is ‘context’ - the expected relatipnships 
between labeled components. These contexts are e s t ab  
lished manually in advance of any processing, and are 
individually constructed for specific domains. 

By making the recognition context sets very specific, for 
example identifying ‘foliage against sky’ rather than sim- 
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ply ‘foliage,’ they can be made more reliable. At the same 
time, generic contexts can be defined that may be satis- 
fied when more specific ones cannot. Context sets may 
include components that are both positive (for example, 
tree trunks tend to be vertical), and negative (ground can- 
not extend above the skyline). A variety of grouping and 
segmentation techniques are used over a variety of scales 
to produce candidate scene region labelings - estimates 
of pixel groupings (similar intensity or color), similar tex- 
ture, horizontal or vertical orientation, line-like structure, 
and so forth, Robust operation is attained through use of 
overlapping or redundant filters. For example, sky may 
be either an untextured homogeneous region of high in- 
tensity or an area of smoothly varying general brightness 
above most other areas in the image. Cliques - mutn- 
ally consistent sets of classifications - are sought over the 
image. The clique providing the greatest reliability and 
coverage is chosen as the best interpretation of the scene. 

Using an auxiliary knowledge representation system (the 
Core Knowledge System, CKS (3)),  a sequence of images 
may be processed, accumulating and sharing constraints 
from their individual interpretations. This, together with 
a coarse use of stereo (4), enables Strat’s system to build 
up a rough symbolic 3D map of the area being viewed. 

The examples Strat presents are in outdoors scenes of 
trees, rolling hills, and pathways. Figure 1 shows a 3D 
reconstruction of an outdoor scene analyzed with this sys- 
tem 

\ \\\ 

’ Fig. 1. Ground and vegeta t ion  in t e rp re t ed  
f rom a single Image. 

While demonstrating a good capability at classifying im- 
age components in domains where the relationships have 
been prespecified, this approach is unlikely to  provide the 
depth of interpretation needed for general scene nnder- 
standing. One factor in this is that the system would 
require a significantly larger vocabulary of objects with 
increasingly tight constraints on their interpretation to 
distinguish, for example, among different types of trees 
or, more critically, to recognize specific trees, such as the 
one with a broken branch on the top of acertain hill. This 
requires geometric understanding rather than an under- 
standing of certain relationships. In addition, no mecha- 
nism is presented for abstracting the required rules from 
the data. If one wants the system to show a utility be- 
yond simple domains, this generative aspect is essential, 
and geometry probably cannot be avoided. Nevertheless, 
relational measures are generally missing from geometric- 
based recognition systems, and the use of this relational 
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approach in a partnership with the more metric approach 
of shape- and structure-based techniques should lead to 
more reliable operation for both. 

4.2 S h a p e  from a Single Image 
A difficulty in trying to obtain information about shape or 
3 0  structure from a single image is that a particular single 
image could arise from an infinity of scene configurations. 
The simplest example of this is an image of the image 
itself, where there is clearly no threedimensionality to be 
observed, only interpreted. Interpretation requires knowl- 
edge, including knowledge of the physics of the imaging 
process and the local implications of intensity variation 
with respect to the shape of the imaged surface. Never- 
theless, we all have the ability to interpret single images 
as 3D scenes, and there has been considerable effort in 
the field to develop similar capabilities in the computer. 
Using iterative optimization techniques and models of il- 
lumination, reflectance, and variations including albedo, 
Leclerc and Bobick ( 5 ) ,  and others, have demonstrated 
the ability to recover surface height from simple measures 
on the imagery. 

That such analysis cannot be guaranteed correct is a p  
parent from its fundamental assumptions. The interplay 
of reflectances and shadowing could cause havoc with the 
modeling, which presumes fairly simple relationships be- 
tween light source and reflecting surface. Any variation 
is interpreted as either surface shape or simple albedo 
change. Such shading analysis probably will have its 
greatest use where other depth measurement techniques, 
such as binocular stereo, have insufficient information to 
operate, yet can provide 3D constraint to limit ambiguity. 

4.3 Models in In te rp re t ing  Single Images  
Undoubtedly, much of the world is quite well described 
geometrically or by discriminable aspects of coloring, tex- 
ture, or structure. Since the world is three-dimensional, 
a critical element of scene analysis must be the ability to 
represent and recognize 3D objects. In these cases, recog- 
nition may be attained by locating specific scene features 
and comparing their parameters with those chosen in ad- 
vance to represent specific objects. Recognition, here, 
may be viewed as searching through a set of 3D object 
descriptions and finding the mapping of position, orienta- 
tion, and scale that provides the most satisfactory corre- 
spondence. Aside from the selection of feature descripbrs 
and the inevitable question of haw to acquire the object 
descriptions in the first place, the major challenge in this 
work is effective search through the potentially enormous 
set of match possibilities. 

Two pieces of research can highlight the approaches taken 
to this shape-based or structural recognition. While ad- 
dressing 3D recognition, each uses information from single 
images for its recognition. The first represents objects as 
integrated networks of 3D points. The second provides 
coverage of the 3D situation by storing a range of rep- 
resentations, each pertaining to a small set of viewing 
perspectives. 

4.3.1 JD Models with Image Matching in  PD 
Huttenlocher and Ullman ( 6 )  introduced the term ‘align- 
ment’ - a method to match stored models with features 
obtained from a view of a scene. In their work, the fea- 

tures - both in the scene and in the model - are two- 
dimensional contours (each classified by its shape) and 
their endpoints, if a straight contour, or midpoints oth- 
erwise. A model is a set of 3D points forming triangles 
(planar facets), and the contours of which they are part. 
Alignment is the process of selecting pairs of correspond- 
ing triangles (from the model base and from the imagery) 
and using the transformation implied by their match to 
map the rest of the contonr description. The transfor- 
mations are simple translations, rotations, iand scalings. 
Estimating the goodness of fit of the resulting transforms 
enables selection of a ‘best’ interpretation. 

4.3.2 OD Models and Image Matching 
Chen and Mulgaonkar (7) address the problem of model- 
matching using 2D image data in a more methodical and 
practical manner. While using a related approach to 
the matching - hypothesizing ‘alignment’ transiorms and 
mapping the related constraints for validation with the 
data, the detail of their strategy offers considerable ad- 
vantage. 

Two characteristics of their work stand out. First, they 
build their models in a semiautomated way by showing 
the system parts from various perspectives and under dif- 
ferent lighting conditions. Model acquisition is a crucial 
and potentially4 very time-consuming component of set- 
ting up a recognition task, and a which technique that 
automates this using the results of its own an;dysis imme- 
diately has more utility. Each model is structured as a set 
of classified contour elements - straight and curved seg- 
ments - ordered by their relevance to  the matching task. 
Features that are detectable most often in .the training 
set and are found most likely to be correctly identified in 
the data are ranked higher in importance. These should 
be the first to be sought in the matching. This ‘learning’ 
strategy enables each model to be organized in a man- 
ner that is mast effective for establishing its presence or 
absence in the scene. In effect, a model is a sequence 
of instructions for validating an object’s presence in the 
image - i t  is a program. 

Their representational system is 2D, and a single object 
will be composed of several perspective models, with each 
covering a small range of viewing angles - plus or minus 
perhaps 15 degrees in each direction. This is not as sat- 
isfying a solution as building a unified 3D model of each 
object; however, i t  has practical advantage!: in that i t  
simplifies both the modeling task and recognition. 

The system was developed and demonstrated on an  in- 
dustrial assembly operation, involving about two dozen 
parts, and has  since been used for identifying objects in 
a dynamic context (see subsection 6.3.3). 

4.4 Prospec t  Beyond Single Images 
The techniques described above have relied primarily, if 
not totally, on 2D information, both in their imodels and 
in their image understanding. The use of 3D information 
for model representation and recognition has had less and 
generally more recent investigation. The principal differ- 
ence in these works arises from the necessity of obtaining 
3D information from the scene. This cannot be! done from 

“potentially” because very few object recognition system 
have any sizeable model repertoire 



single images, and requires either active ranging (for ex- 
ample, structured lighting, sonar, radar) or at least two 
simultaneous perspectives from passive sensors such as 
cameras. 

This step to three dimensions lays the foundation for the 
distinction I wish to make in approaches to image nnder- 
standing. If the system has no recourse to 3D temporal or 
spatial information, then its knowledge is limited to what 
the developer programs in: if the system has an ability 
to integrate information across space or time, then it can 
begin to meaningfully augment its knowledge base. Ac- 
quisition of this 3D information is the focus of the next 
two sections. 

5. SCENE MODELING FROM STEREO 

Image pairs, providing two perspectives of a scene, pro- 
vide the data for inferring the range to points in a scene. 
This is termed binocular ‘stereo’ processing, after its re- 
sulting solid three-space description of the scene. The 
goal of stereo analysis is to obtain the best estimate pos- 
sible of the range to points in the scene. ‘Best’ may de- 
pend on a number of requirements, including speed. The 
point to observe about these systems, however, is that 
they have some knowledge about the state of the world 
they are looking at - knowledge that serves to constrain 
the solution they present - and they have the common 
goal of developing a 3D description of the scene. It is 
common in stereo research to produce a range map, but 
very uncommon to do anything further with it,  for exam- 
ple, navigating or controlling a robot arm. 

Once the camera position and correspondences are 
known, estimating the range to some feature in the scene 
is a simple matter of triangulation. An effective mecha- 
nism for limiting the cost of determining these correspon- 
dences lies in using the ‘epipolar constraint.’ Knowing 
the two camera relative positions and attitudes enables 
definition of the expected pattern of disparity on the im- 
ages. For cameras directed in parallel, the disparities will 
only be lateral, while for converging cameras the patterns 
will be radial. This camera information is used to shape 
the search window for possible corresponding elements, so 
it both reduces ambiguity and decreases computational 
cost. 

5.1 Pixels versus Features 
Within stereo processing, two major approaches are taken 
in selecting correspondences, one based at the pixel level 
and the other at the feature level. The objective within 
the two is the same, however - recovering the 3D struc- 
ture of the scene as represented by the 3D location of its 
components. The main distinction lies in what consti- 
tutes these ‘components.’ 

5.2 Scene Geometry from Image Pair Pixels 
In pixel-based stereo processing, the objective is to la- 
bel each point in an image (where possible) with a range 
value. If the relative positions of the cameras are known 
and corresponding pixels can be found in the two views, 
then relative range can be estimated directly by trian- 
gulation. Absolute range comes from knowing absolute 
camera displacements. The techniques used for solving 
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the correspondence problem generally involve correlation 
- estimating the similarity between image regions in the 
two views. This similarity is usually measured as a local 
difference in intensity value between corresponding parts 
of the two images, with secondary constraints being in- 
troduced to enforce global consistency. The former, I* 
cal measure, uses a small support function - typically a 
square 01 circular region centered on a pixel - with the 
similarity being either a simple sum-of-squared differences 
(SSD), or a correlation coefficient measure. The correla- 
tion coefficient measure may be normalized to eliminate 
the effect of linear variations that might arise, far ex- 
ample, from viewing at different times of the day, under 
differing light conditions, or with separate automatic gain 
adjustments on the two cameras. 

In SSD matching, the expression to be minimized at any 
pixel (z,y) is: 

where ( d , , d , )  is a displacement from the source image 
pixel IL(x,y) ,  and (T.,T,) defines a region of integration 
in the destination image, I R ( X  + d,, y + d , ) .  This sum 
may be weighted to diminish the effect of brightness vari- 
ance with radius. The vector (d,,d,) with minimal sum 
SSD,,, is selected as the image of the pixel at (z,y) in 
the second frame. 

In normalized correlation, optimization is based on the 
measure: 

E =  c , , , , [ l L ( X j Y )  - i L ] [ l R ( z , Y )  

, / E = , ~ ~ [ - I L ( ~ , Y )  - iz12 L ~ , J M ~ ,  Y) - i R i 2  

where i is the mean brightness over the image region 
(r.,r,) centered at (z,y). 

5.8.1 Normalized Cross Correlation 
A typical approach to pixel-based stereo analysis is that 
of Hannah(4). Here, normalized correlation provides the 
matching metric, and processing in a resolution h i e n p  
chy provides a global consistency constraint. This use 
of a resolution hierarchy is fairly common in computer 
vision. I t  involves building a pyramid-like structuring 
of the image data, with the bottom level being the full- 
dimensioned image, and successively higher levels being 
the half-resolution versions of the one below them. The 
top level is a small, very highly reduced, and snbsampled 
version of the original image - it has only very low spatial 
frequency components, with the higher frequencies being 
removed by the successive averagings. 

A strategy often used in computer stereo vision is to 
match coarse features first (low spatial frequencies), and 
then use the results at this scale to constrain finer s a l e  
matching (higher spatial freq~encies).~ Beyond this con- 
straint, Hannah also requires that her correspondences 
are the same in left-to-right matches as they are in right- 
to-left matches. Analysis of the correlation coefficient and 

51t is always possible to chow images in which such M arhi- 
trary direction of progression will give the wrong answer. 
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an autocorrelation measure enables this process to ignore 
matches that have insufficient evidence for reliable esti- 
mation. This has the benefit that hallucinations, such as 
giving range to the sky, do not occur often. This tech- 
nique, however, is costly in computation. 

5.2.2 Stochastic Slereo 
An alternate that is particularly suitable for implementa- 
tion on a SIMD parallel processor is a stochastic method, 
developed by Barnard, using a simulation of the physi- 
cal process of annealing to enforce global consistency (8). 
This method uses a composite similarity measure  image 
intensity difference and a gradient constraint that biases 
the solution in favor of a flat disparity map. The stochas 
tic element enters the analysis in the way the individual 
difference measures are combined in looking for a global 
solution for the image pair. As in annealing, the system 
is injected with energy (heat), allowed to cool, heated 
up again ~ although less ~ then cooled again, repeating 
until there is very little change between these heatlcool 
cycles. The measured change is this similarity measure ~ 

a weighted sum of intensity difference and implied dispar- 
ity gradient for the selected pixel matches. The different 
‘heat’ settings allow a varying range of disparity adjust- 
ments in the pixel matching. 

The measure minimized for optimization in stochastic 
stereo is: 

with AI;, = In(i, j + Dij ) ,  where I= and I R  are the left 
and right brightness values, and VDij  is the gradient of 
the associated disparity estimate; X balances the bright- 
ness and smoothness constraints. 

Even when a parallel processor is used, the cost of iter- 
ation makes this a fairly time-consuming technique. Im- 
ages of size 512 by 512 pixels require about 10 minutes 
of processing time on an 8000-processor Connection Ma- 
chine (CM). 

5.2.9 Real-Time SSD Matching 
A third technique worth examining for its simplicity 
and effectiveness is an SSD method implemented on 
both a 16000-processor CM and on a coarse-grained (5- 
processor) i860 parallel processing system (9). Much ef- 
fort was invested in making this process run as rapidly as 
possible to support real-time control, and it can perform 
stereo matching on images 256 pixels square at about 40 
Hz on the Chl and 1 0  Hz on the i8GO configuration. The 
SSD phase gives velocity estimates for each pixel, mode 
analysis of this velocity distribution selects the major dis- 
crete motions, and an adjustment phase tracks regions 
over time. It has been used to control a robotic arm in 
tasks such as maintaining centered view on pedestrians 
and on another robot arm. 

5.2.4 Considerations 
Both of these parallel approaches share a common draw- 
back. They process only in integer units of disparity, so 
deliver just a small number of bits of range resolution. 
In the case of the stochastic stereo, this was about 5 bits 

(32 levels), while with the SSD method it was about 3 
bits (8 levels). Any change in this precision i.ncum added 
computational cost. Hannah’s method delivered subpixel 
correlation measures, and was precise down to small frac- 
tions of a pixel unit. 

5.3 St ruc tu red  Stereo Processing 
Another approach to stereo analysis for obtaining 3D in- 
formation about a scene involves the processing of not 
pixel values but abstracted features - contonr elements as 
produced by zero-crossing operators. Marr and Paggia, 
Baker, and Mayhew and Frisby were the early developers 
of this feature-based approach to stereo makhing. 

Marr and Poggia ( lo ) ,  later joined by Grimson ( I l ) ,  
worked with zero crossings of the Laplacian of a Gaus- 
sian (LOG), and progressed from large Gaussians to small 
Gaussians in a hierarchic-pyramid manner. Matches ob- 
tained at the coarse level constrained the possible matches 
at finer levels. A consistency measure was implemented 
by insisting that disparities over a small region were iden- 
tical. An unfortunate artifact of this is tbat their re- 
sults tend to represent the scene as planar chunks at 
different ranges. Mayhew and Frisby (IZ), later joined 
by Pollard (13), used a figural continuity constraint to 
enforce connectivity of depth estimates for LOG fea- 
tures that were connected in projection. Th,ey also used 
peaks and troughs of this signal, presenting evidence from 
psychophysics supporting human use of the:re in vision, 
and introduced a variation of the scale analysis of Marr 
and Paggio - looking for consensus in neighboring bands 
rather than in successive coarse-to-fine levels, Baker (14) 
used a form of figural continuity as well, and followed his 
feature matching (extrema of intensity gradient related 
to zeros of the LOG) with constrained intensity matching 
to provide a dense range map. Grimson used a surface- 
fitting technique to interpolate between matched features 
to estimate this map. 

The fact that feature-based stereo results in sparse range 
measures has  been raised as a criticism. Dense results are 
preferred. Feature-based approaches have greater preci- 
sion, however, hs they focus on the more localizable parts 
of the imagery. Scale processing is felt to be a key to pro- 
viding dense results. Pixel-based techniques have been 
more easy to implement on SIMD parallel processors, so 
they may have an inherent advantage for real-time devel- 
opment. 

Much other research has addressed pixeLbased and 
feature-based stereo, including using a third camera to 
provide an ambiguity-resolving perspective and introduc- 
ing other constraints (a recent survey paper covers much 
of this area well (15)) .  Among some dozen and a half sys- 
tems evaluated competitively a few years ago ( l G ) ,  Han- 
nah’s system was ranked first across a majority of the 
categories (17). 

5.4 Differential Techniques: Motion and Range 
A different approach to disparity estimation has been 
developed for motion processing - optic-flow analysis - 
where the objective is to estimate movements in a scene 
(18). Under certain conditions these techniques may 
also be used for stereo range estimation. Two principal 
points distinguish this work from pixel- and feature-based 



matching approaches. First, the presumption is that 
there is very little difference from one image to the next - 
motion processing allows this, whereas typical stereo has 
a sufficiently large baseline that images may differ signif- 
icantly. Second, differential techniques are used that do 
not depend on feature localization in the image. 

5.4.1 Optic-Flow Analysis 
Horn and Schunk (19) developed the brightness- 
constancy constraint, which relates variation of intensity 
between successive images with the underlying variation 
in the scene. The principle behind this differential tech- 
nique is that derivatives of the spatiotemporal intensity 
data indicate rate of image change. If the image change is 
due only to camera displacement, then simple derivative 
convolutions on the spatiotemporal intensity data can be 
used to estimate scene distances. If the change is due 
to scene motion, then the technique estimates velocities. 
Since the expression for the variation at a single point 
is underconstrained, the solution involves a least-squares 
approximation that integrates over some local neighbor- 
hood, and this makes the result sensitive to the density 
of discrete motions in the vicinity. The estimates are best 
where there is strong local texture (surface detail) with 
a single velocity. Where the texture is weak (there is lit- 
tle distinctive detail) or the local vicinity contains more 
than one motion (such as occnrs at object boundaries), 
the estimate can be rather meaningless. Despite this, the 
results tend to be generally credible. 

With the differential approach, image disparity (or veloc- 
ity) (d,,d,) at frame t can be determined by minimizing 
the following expression: 

where I:, I;* and I: are spatial and temporal derivatives 
of image intensity I ( z , y , t ) .  

The summation is again taken over a local region of the 
image (F~ ,T , ) .  One finds the least-squares solution, in 
closed form, by taking derivatives of this expression with 
respect to d, and d,. The least-squares estimate is given 
by: 

d =  -M-'b, 

and 

This expression has minimum error when 

+ d y I b  + I :  = 0, 

that is, when the observed image gradient vector 
(I:, I;, I;) is orthogonal to the observed disparity (or ve- 
locity) vector ( d z , d 9 , 1 ) .  Figure 2 shows the optic flow 
computed for the motions of a sedan and van against a 
stationary background, the imagery of which is shown at 
the top of Figure 5.  
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I 
'ig. 2. Optic Flow for Moving Sedan and Van. 

5.4.2 Hierarchic Optic-Flow Computation 
Hanna has presented a method for extending the appli- 
cability of the gradient-based technique to images with 
significant variation between frames (20). This operates 
through a hierarchic-pyramid analysis, beginning with 
low-resolution coarsely sampled imagery, and progressing 
through to the full resolution data. A unit of pixel mea- 
sure in the coarse imagery corresponds to a 2" by 2" pixel 
region at highest resolution n ilevels finer, so a gradient 
computed at this single unit can identify the predomi- 
nant motion over that much larger window. Recursive 
processing of this motion estimation followed by image 
remapping - to bring the corresponding image locales into 
alignment for the next gradient analysis - may be viewed 
as delivering the n-bit motion vector a bit at a time, start- 
ing from the highest-order bit. What is important to note 
is that with this hierarchic approach, gradient-based o p  
tic flow can also be used for stereo range estimation ~ 

large disparities are handled by the coarser scales. The 
major difficulty remains, however, that there can be no 
guarantee this coarse-t-fine progression will give correct 
results. A small feature that is moving to the left while 
the predominant region motion at a coarse level moves 
to the right will be 'mapped' in the wrong direction for 
being detected at any of the succeeding levels. 

An iterative remapping method very similar to Hanna's 
was used much earlier by Quam in his hierarchical warp 
s t e m  process (21). The matching metric in this work was 
correlation, rather than gradient-based optic flow. 

5.5 Issues in Stereo Processing 
A number of questions must follow any depth recovery 
process, such as: Are there measures of confidence ass- 
ciated with individual estimates? Is the result conclusive? 
Are there errors of omission (gaps) or commission (range 
estimates where there can be none)? Does the process 
deliver a description of objects or just an array of nnm- 
bers that represent a range 'map?' How relevant is the 
resulting description to the intended use? Since the pur- 
pose of range recovery is tied to some other task, such 
as understanding the scene or moving about in it,  these 
questions can determine the utility of the whole exercise. 

One of the principal dissatisfactions in stereo analysis has 
been in its reliability. Perhaps 90% of a scene can be 
adequately modeled with the above techniques, but the 
remaining 10% failure can make the results almost un- 
usable. Higher reliability is needed before one can trust 
an autonomous device for guidance. There is very lit- 
tle opportunity to obtain better accuracy when presented 
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with only two perspectives of a scene. Ambiguities are 
difficult to detect, and cannot be resolved without the 
introduction of more information. This information has 
often taken the form of a priori knowledge about scene 
and object types (for example, that the scene conlains 
static opaque rectilinear structures). 

Better additional information that is not domain specific, 
is provided by ‘trinocular stereo,” which involves acquir- 
ing a third view of the scene. This was first introduced 
by Burr ( 2 2 )  and later followed by Faugeras’s group in 
France (23). This third view, if noncallinear with the 
other two, provides a second epipolar constraint that can 
disambiguate potential match uncertainties. 

Almost without exception, stereo techniques have diffi- 
culty in correct handling of occlusion (where a feature 
does not have a match in the cdrresponding view), image 
reversals (where feature left-to-right ordering is inverted 
between views), transparency (where multiple ranges are 
associated with individual view points), and canopy phe- 
nomena (where there are a few predominant and quite 
different depth ranges over a small region of the view). 
These are significant issues for depth estimation and nat- 
ural scene interpretation. 

A more general comment on two- or three-view stereo is 
that the resulting descriptions are not of the same qual- 
ity as those we perceive when we as humans observe a 
scene. Stereo results look like cut-outs, with a series of 
ranges computed for certain directions of the camera. ‘The 
same can be observed in looking at a stereo pair of pho- 
tographs - the  perception is likely to have a flat, disjoint, 
and chunky appearance. The perception we have under 
natural conditions is more continuous and connected, and 
this results from our ability to observe in the continuum 
through time. We change our viewing position to suit 
our demands for fill-in and clarification, and integrate in- 
formation through active control of the viewing process, 
such as obtaining a description of some novel 3D object 
by grasping it and manipulating it before the eyes. 

6. S C E N E  M O D E L I N G  F R O M  S E Q U E N C E S  

Recent approaches to 3D vision have addressed this pro- 
cessing of image sequences, where a sequence comprises 
many views from different positions. This more closely 
resembles the operation of the human system, where we 
observe with eyes that are free to move, collecting in- 
formation from various perspectives. This multiple-view 
approach could provide considerably more complete de- 
scriptions of a scene, revealing, for example, what the 
back side of an object looks like, and could do so with 
much less ambiguity. Aside from restricted cases, how- 
ever, it has proved difficult to exploit this extra data in 
the coherent manner required. One of the problems lies in 
organizing and maintaining coherent descriptions of the 
rather massive amount of data involved -sequences could 
be hundreds of frames long, or more. 

6.1 Correspondence Through  T i m e  
Sequence processing shares many of the computational is- 
sues of stereo. The principal problem in stereo processing 
has been identified as putting into correspondence, accu- 

rately and reliably, features that appear in two views of 
a scene. Determining the correspondence is an ill-posed 
problem: ambiguity, occlusion, image noise, and other 
influences resulting from the differing appea.rance of ob- 
jects in the two views make feature matching: difficult. In 
sequence analysis, where rapid image sampling produces 
images that change little from one to the next, matching 
is less problematic. In some approaches thi;r is taken to 
an extreme, with sampling sufficiently rapid that images 
vary smoothly between views. The following sections de- 
scribe how this temporal continuity has been developed 
and exploited for robust tracking and estimation of scene 
features. 

6.2 Pixel-Based Sequence Analysis 
As was the case with stereo analysis (cross-coIrelation and 
gradient analysis), there are two principal approaches to 
pixel-based motion analysis. In correlation, the objec- 
tive is to determine for each pixel in one frame, its im- 
age in the next frame. Techniques as described in sec- 
tion 5.2 are used for this. SSD is more typical than nor- 
malized correlation in sequence analysis. With temporal 
sampling sufficiently fine that brightness chuges  are of 
a smaller magnitude than changes due to motion, there 
is little requirement for accommodating to varying illu- 
mination. With the optic-flow approach, on the other 
hand, explicit matching is avoided, and motion is derived 
directly through differential analysis, as described in sec- 
tion 5.4. 

Another problem both correlation and optic-flow analyses 
encounter is that they are designed for pair-wise compu- 
tation rather than for sequential tracking. Since they are 
referenced on the center of a pixel in one imag;e, their dis- 
placements are not easily chained with precision through 
asequence. Range estimates will be imprecise over a short 
baseline, so the reliability and precision obtainable for 
matches over a long baseline become crucial <questions. 

Pixel-based and point-based reconstruction techniques, 
where they have been developed to the stage of integrat- 
ing measures over a sequence (for example, (24, 2 5 ) ) ,  do 
not exploit the continuity of observations. R.ather, they 
treat observations from different perspectives as disjoint, 
and pool them in (more or less estimation-theoretic) vol- 
ume sets. 

A recent innovation - the use of a singular value decom- 
position procedure - uses intermediate feature trackings 
to synthesize a long baseline through many sm.dl changes. 
It recovers both the shape and motion observed in tranc 
formation of a rigid body (26). The trxcking employed 
uses an autocorrelation measure to select distinctive im- 
age features (in a spirit similar to that of Hannah). By 
tying observations together through the sequence, it ob. 
tains the benefits of a large baseline with the reduced 
error of small-increment image variation. 

A difficulty with local-support integration techniques 
(pixel-based approaches in general) is that when the lo- 
cal region of integration overlaps different range distribu- 
tions, the estimate may be quite meaningless. Since these 
bounding areas are of particular interest in mod 3D tasks 
-such as grasping and navigating - this deficiency can be 
quite severe. The issue is particularly salient in motion 
analysis, where an intermediate velocity estimate is much 
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more misleading than an intermediate range estimate. In- 
telligent window shaping may improve the situation, al- 
though at significant cost (27). 

6.3 S t r u c t u r e d  Processing - EPI Analysis 
There is much more in an image sequence than is being 
processed by techniques such as those described above. 
Selecting only highly localizable features leads to sparse 
scene descriptions, while use of the full image contents, 
as in optic-flow and correlation approaches, leads to much 
uncertainty, weak localization, and fragmented tracking. 
An alternative exists in utilizing the three-space correlate 
of 2D image contours. The motivation of this ‘structured’ 
approach to sequence analysis is that dynamic imagery 
has both spatial and temporal structure, while pixel- 
based techniques represent neither and must determine 
them both during its operation. Pixel-based techniques 
compute the temporal structure by ‘tracking’ features ns- 
ing correlation 01 optic-flow analysis, and determine the 
spatial structure by grouping results after temporal track- 
ing, And yet the structure is there in the data. 

Epipolar Plane Image (EPI) Analysis is such a technique 
that holds particular promise for scene reconstruction 
(28). It integrates throughout the data acquisition and 
has several major advantages over other approaches, such 
as not requiring correlation or any similar matching strat- 
egy, and dealing explicitly with spatial and temporal con- 
tinuity. The features utilized are at object and texture 
discontinuities, so do not involve integration across dif- 
ferent range distributions. This technique was the first to 
exploit small increments over a large integrated continu- 
ous baseline for the ideal mix of reliability and precision 
in motion analysis. The geometry and intuition of imag- 
ing in this situation are a little unusual, so I will review 
the implications of the generally used epipolar constraint 
in the context of sequence processing. 

6.3.1 Epipolar Geometrv 
In Figure 3 (left), a camera is shown at two different posi- 
tions along a linear path. At each of the sites the camera 
is looking at right angles to the path, and a feature such 
as P will appear displaced to the right in the second view 
with respect to the first. This displacement is along the 
projection of the plane formed by P and the two camera 
centers. This plane is termed an “epipalar plane,” For 
a continuing sequence of such images, the point P will 
stay on the same image scan line from frame to frame. 
Because of this epipolar structuring, w e  can confine our 
depth analyses in right-angled linear motions to single 
sets of scan lines. Figure 4 shows a volume formed by 
stacking up the data collected in an image sequence and 
slicing horizontally to reveal such a set of scan lines. The 
pattern of streaks in this slice makes the lateral displace- 
ment character quite apparent and their interpretation 
quite direct: Near features have streaks with low slopes, 
more distant features have higher dope. Stereo process- 
ing of such a scene would correspond to comparing fea- 
tures between, say, the first and the last frame, or the 
first and last line of this image. The continuity evidenced 
here takes the uncertainty out of the matching process. 
Analysis of these slice images, termed epipolar-plane im- 
ages (EPI images) after their composition from samples 
of a single epipalar plane, led to an  effective technique for 
estimating the range to features in a scene. 

A 

~~ 

Fig. 3. Epipolar Conflguration for Moving Camera.  

Fig. 4. Spat io temporal  Image Volume. 

6.3.2 Spatiotemporal Manijolda 
To expand the technique to more complex viewing situ& 
tians such as nonlinear and varying-velocity camera paths 
with varying camera orientations, as would be found when 
a human moves through a scene (Figure 3 (right) shows 
patterns of epipolar lines that arise for linear motion and 
varying view direction), it was necessary to generalize the 
geometric representations used. In the earlier work, EPI- 
based linear features - representing the evolution of indi- 
vidual features over time - were detected and processed. 
In generalizing the approach, spotiotemporol manifolds - 
representing the time evolution of whole spatial contours 
- were constructed and used in inferring scene structure 
(29). 

This reformulation brought another advantage: Repre- 
senting the time-evolution of contours rather than indi- 
vidual features would produce connected 3D space curves 
rather than isolated points. Grouping of scene measures 
into meaningful and related structures remains one the 
largest problems in vision. Since even the most reliable 
and precise depth map is only another input to the scene- 
understanding process, any technique that can deliver di- 
rect segmentation and grouping information with its mea- 
sures will have a great impact on the use and reliability 
of its data. 
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6.3.3 Tracking and Identificotion 
Figure 5 shows a composite development in tracking and 
identification using the spatiotemporal manifolds for fea- 
ture localization in space and time, and the 2D modeling 
facility of Chen (7) for object recognition. The figure 
shows in successive steps the strongest zero-crossing con- 
tours in three adjacent frames (the first and last of which 
are shown a t  the top), with the final view showing the 
results of identifying a van and sedan in these data. The 
bottom of the figure shows the models used in the recogni- 
tion. These were constructed in a earlier training phase. 
An added benefit in this figure is that  i t  demonstrates 
the value of stereo in perception: T h e  paired figures are 
nresent.ed for crossed-eve viewine and. when fused into 

used for their recognition. An exception to this lack of 
acquisition and use of 3D information in computer vision 
is in autonomous navigation systems (35, 36), although 
most systems use active ranging. Some of these systems 
are capable of extracting 3D scene features and then using 
these in obstacleavoiding traversal of the ;area. Again, 
however, the representations tend to  be simple (boxes, 
paints) and not adequate for representing anything of the 
sophistication and detail of our environmentri. A good re- 
view of 3D object description techniques may be found in 
a paper by Bed (37). Some of the works he cites address 
the issue of model building within a recognition context. 

.. 
must be obtained for us to hope to  achieve the capa- 
bilities of the human mobile-binocular system. Stereo is 
essential, as motion can only compute range to stationary 
objects and for known camera motion. At the same time, 
motion and sequence analysis are essential, as the active 
element in  exploring an environment, both for modeling i t  
and for navigating through i t ,  cannot be met from a single 
perspective or even a set of predetermined perspectives. 
While the number of research efforts addressing stereo 
and motion analysis is small (9, 24, 25, 30), a coherent 
approach to integrating these two related modalities will 
be essential to  capturing the true three-dimensionality of 
our environment, Figure 6 shows an integration of this 
sort of stereo range estimation and sequence processing 
operating on a field of rocks. The initial description (mid- 
dle) is refined from subsequent views resulting in  better 
definition an  object 3D shape (bottom). The computa- 
tional requirements for this data-intensive challenge are 
now being met by multi- and parallel-processors, with a 
number of research groups investigating stereo sequence 
analysis in high-performance computing environments. 

6.5 Recogni t ion  of 3D Shape 
The techniques described above have addressed the is- 
sue of obtaining estimates of scene 3D structure from two 
or more views. T h e  major purpose of this is to provide 
the third dimension for tasks involving recognition a n d /  A- . ,  
navigation. Unfortunately, very little has been done in 
using the 3D estimates produced. An early effort that 
took on this problem was my modeling research in E:din- 
burgh (31). Models of 3D shape were constructed through 
analysis of objects observed rotating about a known axis. 
Using a 3D alignment technique, models built from CUI- 

rent imagery were compared-with models stored in the 
training phase, and the closest 3D fit was selected as the 
match. 

Although mare refined techniques have been developed in 
the interim, for example the work of Szeliski (32) in build- 
ing 3D representations using rotation, the majority of re- 

representations, such as rectilinear blocks (33), 01 direct 
ranging techniques, such as provided by structured light Fig. 5. Object R e c o g n i t i o n  in S P a t i o t a w "  Tracking. 
or laser devices (34). Where 3D objects have been recog- 
nized, they have rarely been modeled by the same process 

-_ search in 3D model matching has used either very simple 
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7. CONCLUDING REMARKS 

A system that is to operate in the real world - that is, 
to find its way around and interact with other processes 
in the environment - must be able both to use informa- 
tion about the scene and to derive information during 
its operations through use of its sensors. This building 
and using of information in scene analysis, both geomet- 
ric and otherwise, is an essential element for autonomous 
operation. Given sufficiently expressive modeling, single 
images will be adequate for interpretation, but to capture 
these models requires developing temporal and stereo in- 
tegration techniques, and ones that encompass both geo- 
metric and relational information about objects and their 
surroundings. The alternative - programming in advance 
whatever is to be seen - cannot deliver the flexible capa- 
bilities needed for operation in the relatively unstructured 
and unconstrained domains in which we hope to operate 
our vision systems. 

When looking at the challenge of precision operation in 
a world with the complexity of ours, we can see we have 
come a long way, yet still have considerably more to ac- 
complish. Techniques for analysis over scale, 2D and 3D 
object modeling, optic-flow and spatiotemporal analyses, 
combining with object recognition using 2D and 3D ge- 
ometric and relational descriptors, are leading ns in the 
direction of attaining these capabilities. 
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I - A GLANCE AT VISION 

Visual perception performed by computers is 
usually decomposed as a chain of processes, as 
shown on Fig.1. 

Figure 1 : Classical Visual Perception. 

Low-level image processing is meant to exuact 
pertinent informations like edges and regions, 
depths, movements. .. However, in most realistic 
enough robot vision applications only candidare- 
feature subsets are extracted at this level. Then 
these parts remain to be cleaned, gathered and 
organized into features which are 2-D projections 
of some at least 3-D phenomenon. So, at low 
level, the processed objects (images) are 
characterized by their 2-D topology, the local 
nature of inter-pixel correlation, and the a priori 
even distribution of information among pixels. 
Processes are thus shift-invariant with suppons 
limited to small neighborhoods. They can hence 
take great advantage of specific computer 
architectures featuring massive spatial parallelism 
and simple processor interconnections. 

Once the information from the original image 
has been filtered and concentrated into structural 
o r  semantic knowledge, the 2-D topology 
disappears. This is where high-level processing 
starts. The objects become arbitrary graphs, 
whose processing poses serious connectivity 
and/or  p rogrammabi l i ty  p rob lems  on 
multiprocessor architectures. 

Let us underline the clear semantic gap 
between the so-called low and high level 
processings : as soon as it  is somewhat fancy, 
any feature extraction has to be controlled by a 
more intelligent procedure which takes advantage 
of explicit description of an object model, or 
structure, or situation.. . While not compensating 
for this gap in a permanent and fundamental 
manner*, the "smart retina" concept brings a 
solution; it is at least a technological solution, but 
some of its instances show cheering features of 
optimality, when they are embedded in the 
context of the whole pattem recognition process. 

Now, current robotics is not only moving 
towards involving complicated senses such as 
vision or aerial acoustics but it aims at associating 
several of them within sensor fusion schemes. 
Theoretical results like the so called "multiarmed 
bandit" theorem tend to prove that it is worth 
implementing some local computing power closer 
to sensors, when the communication bandwidth 
necessary for control is already causing 
problems. 

This makes another reason to focus on smart 
retinas, vision being likely to play, as in the 

* there is no clear evidence, however, that this 
gap be anything but artificially added by 
techniques. 

human case, a major part in robot perception. 
A smart retina is a device which intimately 

associates an optoelectronic layer with some 
processing facility. The closeness idefinitely 
suggests a VLSI implementation approach, 
possibly monolithic. But, so far, only elementary 
feature extraction, up to l imited object  
identification, has been proved technologically 
feasible. 

In that case, why should "smart retina" imply 
"integrated retina"? Here is a non exhaustive list 
of possible answers: 

* vision usually means immense amounts of 
input data - the current state of wiring technolo,gy causes 
the signalhoke ratio to fall drastically at circuit 
output 

in any case, changing the computing 
topology is often very power consumming 

the tradeoff to be made between precision 
and quantity of information is likely to benefit 
from massive loose computational style rather 
than the common precise computational sy le  - analog to digital conversion is a waste in 
many respects: 

.. there is a loss of information due to 
conversion, 

.. there is a loss in speed and functionality 
(artificially added operations to calculus), 

.. exploiting the natural correlation in 
images will require rebuilding the initial ~topology, 

.. it puts processing apart from data flow 
real extemal conditions for vision require fast 

feedback loops (from adapting to light, up to 
feature extraction) 

T o  propose a more definitive answer, we first 
give a slightly more precise definition together 
with 

first properties (SII), we then exphin  some 
very primitive examples (SIIIa) to illustrate: 

first, the concept of smart retinas 
* second, the input-output problem 
In these examples, the outside world is 

simplified (either exhaustively described or in 
translation). Then, a bit of analog processing 
followed by a uniform result gathering performs 
the intended task, and only one or two global 
outputs are produced. 

However, the preceding experiences suggest 
potential benefits from "analog thinking" when an 
algorithmic concept comes to cohabit with analog 
implementations of early vision processes. 
Descriptions of analog phenomena inside the 
system provide a language which helps to 
drastically compact any design, and emforces 
some interesting improvements at the algorithmic 
level. This fact is illustrated in (SIIIb) by 
comparisons between implementations of the 
convolution or  other basic operations like 
differentiation. Indeed, in less toy-like cases than 
5 IIIa's, current robot vision does not allow 
routine actions in such a direct manner and 
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to a binary image representatlon, most often 
based on a one-to-one mapping between analog 
and binary pixels. If the sole spatial correlation is 
taken advantage of, the analog-to-binary encoding 
procedure is called "halftoning". We will show in 
section IVb this can be neatly implemented in 
silicon. But a tradeoff occurs: more pixels for less 
grey levels, or the opposite. 

- Though halftoning can be considered as an 
unavoidable quantization operation implying a 
loss of information, which has to be minimized 
with respect tu some peculiar signal processing 
criterion (as we do in section IV), it actually acts 
as an information filter, which can enhance 
specific early vision features, such as edges, 
regions, movements, optical flow, depth ... (cf 
.[Mea 881 &[Hut88]). Processing inside the 
retina thus appears as a close cooperation between 
an analog layer and a boolean one. 

- The analog information representation, right 
after acquisition, is so heavy that arbitrary 
interactions between pixels cannot be 
implemented easily to be programmable. Only 
information processing structures provided with a 
highly physical meaning that map straight into 
silicon, leave some hope to avoid the burden of 
storing, duplicating and moving analog pixels. 

- By massive parallelization of both 
information flows and processings, operations 
inside the retina are brought closer in space and 
time. This emphasizes the interest of bidirectional 
(instead of only bottom-up) information flows, 
because the top-down feedback can be fast 
enough to ensure some convergence properties. 
For example, a complex problem like matching 
successive images of a moving scene, is reduced 
to its simpler expression when the sampling 
frequency is high enough.Another example is 
neural interactions between analog and boolean 
layers. 

Thanks to these advantages, it becomes 
possible to output meaningful results in 
accordance with the claim of smartness, but due 
to technology, there still remains an additional 
price to pay: either to deal with very specific 
applications or to particularize vision in some 
other manner like restricting it to a rough type 
(see 5 IVa). On top of that, the above list shows 
anyway a need for a fair share of analog 
contribution to meet the constraints of rapidity 
and compacity as imposed by real time robot 
vision. This makes the layers in fig.2 become the 
3 mousqueteers of robot vision as they are 
actually four, being joined by an analog 
processing layer of prime importance. We now 
analyze significant research results within that 
perspective, prior to detailing more of our own 
work. 

anyway, such actions would be mggered on a 
larger set of parameters. 

This shows integrating is not enough, even 
associated with analog thinking, hence 
introducing the concept of "rough vision", based 
on separating the structure of the image from the 
semantics it refers to. It applies first to object 
recognition thanks to neighborhood combinatorial 
logic which is easy enough to implement on 
retinas. Logical implies binary, but in this process 
the adapted binarization will be made a true 
processing operation, possibly a feature 
extraction and not only an A/D conversion. This 
is described and commented on in 5 IV before 
conclusion. 

11- T H E  "RETINA CONCEPT" : A 
PANACEA ? 

Let us define more precisely "smart retinas" as 
tentative "human-size'' vision machines, 
intimately associating optoelectronic devices with 
analog-to-digital converters and (minimal) digital 
processors to be integrated on monolithic 
(CMOS) circuits. 

Such circuits can be viewed then as stacks of 
"3" intermixed functional layers : 

Boolean Processors Array 

Figure 2 : The "Retina" circuit (cross section). 

From a VLSI point of view, a Retina structure 
is up-to-date. It exploits today's abilities of 
submicronic technologies t o  al low a 
rapprochement between acquisition and 
processing (up to few 100s x 100's elementary 
processors, with few dozens transistors each, can 
be gathered on a monolithic circuit using a lpm 
CMOS technology). The intimate association of 
different functional layers however is subject to 
strong topological constraints. These are 
suggested to be naturally satisfied on fig.1. 

While certainly related to existing biological 
visual systems (but still very far and caricatural), 
the "retina concept" features numerous and 
fruitful advantages considering 8 I: 

- The classical serial bottleneck separating 
acquisition from processing is replaced by a 
parallel conversion layer. Instead of artificially 
breaking and then reconstructing the 2-D 
topology (because of limited UO bandwidth), the 
analog-to-digital conversion is  harmoniously 
"sandwiched" between analog acquisition and 
digital processing. 

- A D  conversion is non-standard but well 
managed. Image sequences are known to be 
locally correlated both in the space and time 
domain. This can be advantageously exploited to 
encode the analog image flow into compact digital 
representations. For the sake of topology, this 
naturally leads 

I11 - ANALOG ELECTRONICS AND 
RETINAL FUNCTIONS 

IIIa - Specific at tempts 
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As far as we know, the tmt  significant attempt 
to introduce some intelligence within the sensor 
chip goes back to [Lyo81] with the desire for a 
high-reliability mouse (used to track the 
movement of a workstation user's hand) with no 
moving parts. As the "optical mouse" is 
downward looking at the special pattern of a pad 
on which it is moved around, motion is detected 
and measured. The "optical mouse" is a mostly 
digital sensor used in a very cooperative 
environnement : an hexagonal grid. However, 
important features like the local automatic gain 
control (AGC) are already present through the use 
of self-timed circuit techniques and mutually 
inhibating light sensors. The tracking algorithm, 
which compares 2 successive 4x4 images is 
based on a case by case approach, dealing with 
the 900 possibilities of image couples. 

The theme of motion detection on uniformly 
moving scene has generated a fair amount of 
work since then. In [Bis84], the stress is put on 
high resolution 1-D motion detection, in order to 
determine 3-D motion from several sensors. In 
[Tan84], a "paperless" version of the optical 
mouse is integrated, to deal with less cooperative 
environnements. An image of an arbitrary scene 
is sensed by the array of photodiodes, stored and 
correlated with the next image taken on the next 
cycle. The position of maximum correlation 
indicates the relative motion of the image during 
the time between samples. A global AGC is used, 
and correlation computations are both analog and 
digital. Finally, a fully analog and time- 
continuous version has been integrated, as 
described in [Tan881 and [Mea88], that makes 
full use of global collective neural computations 
to output the velocity vector of the image. 

For these applications, the output problem is 
implicitely solved because only one or two global 
informations about the scene are actually extracted 
from the sensor chip. This is also the case for 
sensors that deal with simple target tracking 
applications, like following the brightest spot on 
an image [Dew881 or following a spot among 
other bright spots [Umm89], and for which only 
a couple of coordinates have to be output. 

However, early vision, which takes full 
advantage of collective computation based on 
only local connections within VLSI circuits, 
generally does not change the topology of the 
processed objects : an image is transformed into 
another image. In this context, CCD technologies 
can support a large family of linear operations, 
particularly needed for spatial and temporal 
convolutions as in [Bea89]. These operators can 
be completed by simple saturation based non- 
linearities as thresholding or magnitude 
comparison as done in [EidB]. Early vision has 
also been integrated in standard CMOS 
technologies, from compact spatio-temporal 
differentiation in the "silicon retina" described in 
[Siv87] and [Mea88], up to expensive optical 
flow computation in [Hut88]. 

At last, various approaches try to deal more or 
less successfully with the problem of outputting 

the intormation present on the image. In  L C i m X X ] ,  
only the areas of interest are output from the 
sensor. The image may be also binarized or 
halftoned as in [Mar89]. Three-diaiensionnal 
integration as presented in [Kio88] and [Kat86], 
is also a possible way allowing the superposition 
of different processing levels on the input image, 
and thus allowing the output of only high-level 
compact information. 

IIIb - A more s t r u c t u r e d  approach  
towards vision 

TransducinE liEht into current, 
Standard CMOS technologies are well-adauted 

to visible light detection : w k n  an optical signal 
impinges on a p-n junction operated under reverse 
bias, the depletion region' serves to separate 
photogenerated electron-hole pairs, and an electric 
current flows in the extemal circuit. This light- 
matter interaction has to be considered as the very 
start of the vision process. Several configurations 
using different devices are available, ofwhich the 
choice is not neutral and can be more or less 
adapted to the subsequent hardware andlor 
software vision layers. 

The simplest light detector is the photon flux 
integration mode photodiode used in CCD 
cameras. It is simply constructed by diffusing a 
highly n-doped area at the surface of a p-type 
substrate (an NMOS technology is sufficient). 
After being initially reverse biased, the junction 
capacitance is discharged by the photogenerated 
current. At the end of the exposure, the voltage 
decrease is about exponentially related to the 
illumination level and integration time : log[ 
V(t)/V(O) ] cc - a t .  

When response speed is not critical, but power 
is needed, a natural byproduct of the CMOS 
process [Mea881 can be used : the vertical bipolar 
transistor. The base is an isolated section of well, 
the emitter is a diffused area in the well, and the 
collector is the substrate. Electron-hob: pairs are 
generated at the well-substrate interface where the 
p-n junction is reverse-biased. For every 
photogenerated majority carrier amvirig into the 
thin base (from the collector), about a thousand 
minority camers pass through it (from emitter to 
collector) before the necessary recoimbination 
finally occurs : this is the phototransistor action. 
This natural current gain can be used before 
subjecting the signal to any noise from 
subsequent amplification stages. It can also be 

When a p-n junction is formed between two 
oppositely doped semiconductor, a charge depleted region 
appears at the interface in which very high electric fields 
arc encountered. Instead of getting recombined, electron- 
hole vain generated in this zone are violentlv si:oarated. 



controlled making the vision sensitivity possibly 
dynamically shifed. 

Incident light on a region of the surface of a 
semiconductor is also known to cause a local 
change in that region's conductivity. As noticed 
in [Her89], this effect can be exploited to 
construct a global representation of incident 
images, which possibly allows faster pattern 
recognition processes by implicitely solving the 
image output problem. 

Logarithmic representation of illumination 
intensitv. 

In order to properly operate in outdoor scenes 
(say from moonlit to sunlit scenes), electronic 
photoreceptors must give meaningful outputs 
over several orders of magnitude of illumination 
intensity. The linear light to intensity conversion 
occurring within depleted devices like 
photodiodes and phototransistors thus must be 
followed by some further non-linear conversion. 
Moreover, as pointed out in [Mea88], it is very 
desirable to make the voltage difference between 
two points depend only on the contrast ratio 
between the two corresponding points in the 
image. Indeed, in a simply modeled scene, this 
contrast ratio is a ratio between reflectances, 
which are independent of the relative illumination 
level. This mathematically implies the use of an 
exponential law. Fortunately, exponential 
phenomena exist in  a semiconductor like silicon : 
the appearance of the source-to-drain channel in 
MOS transistors is ruled by the Fermi-Dirac 
distribution (stastistical physics & Boltzmann 
law) which ensures that charge carrier 
concentrations within the channel depend 
exponentially on the gate voltage along about a 
half volt wide interval, which is called the weak 
inversion (or subthreshold) region. This has been 
used by [Mea881 where the current from a 
phototransistor is fed into two diode-connected 
MOS transistors in series operating in the weak 
inversion region, and providing a 0.2 volt output 
voltage decrease per decade increase in current 
(see Fig.3). 

Figure 3 : Logarithmic Photoreceptor. 
Using the MOS transistor in the weak 

inversion region to exploit its exponential 
behavior is a first example of the search (among 
the wide variety of analog VLSI phenomena) for 
adequate non linear operators, which are finally 
the ones to extract the important information from 
the input image signal. Among others, non 
linearities that easily map into silicon are the 
square law, the sigmoyd function, saturation and 
hysteresis phenomena, and comparison 
operators. For example, hysteresis inverters are 
fundamental devices in the "analog toolbox" as 
shown in [Ber88] and [Smi89].These non- 
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linearities play key roles jrom simple ye t  time 
consuming operations like thresholding up to 
advanced neural optimization algorithms like 
neural halftoning [Berg01 or optical flow 
computation involving line processes [HutSS]. 

Linear functions. 
Besides the use of tricky non linear devices, 

analog implementations of vision processes rely 
on the existence of a "library" of (hopefully) 
compact cells that embed more regular 
transformations, such as storage, duplication, 
addition, substraction, multiplication but also 
piecewise linear functions like the absolute value, 
and more generally conditional functions like the 
maximum or minimum functions. However, 
implementations depend on wether the input 
signal is a voltage, a current or a charge. One of 
the skill of the designer is to find the right 
information supports to embed a particular vision 
algorithm efficiently. This is nothing but the 
equivalency for type conversion of variables in 
programmed image processing ! 

The charge domain, taking full advantage of 
CCD processes [Boy701 in  which a charge can be 
stored or spatially shifted at negligible loss, is 
unsurprisingly suited to linear image processing 
[Tie74]. Charge mixing or sharing are the basic 
operations for additive functions, we will see in 
the next paragraph how they can naturally 
implement very useful spatial convolutions. But 
substraction can also be implemented thanks to 3- 
D coupling as used in [Fos84] : besides the usual 
lateral coupling used in charge nansfer devices, 
the vertical coupling between the charge on the 
electrode and the charge in  the channel embeds a 
natural differencing phenomenon. Charge 
splitting, which is equivalent to multiplying by a 
positive coefficient less than one, can also be 
implemented as explained in [Ben84]. If CCD's 
are used in conjunction with active CMOS 
transistors, they can implement up to charge 
magnitude comparison and non destructive 
sensing and amplification (cf [Co187] & 
[ F o s ~ ~ ] ) .  Time delaying is also easily embedded 
as it is controlled by external clocking sequences : 
this is a definite advantage for motion detection 
applications. However, clocking requirements 
and difficulties to implement non-linear operators 
in the charge domain, other than saturation 
nonlinearities, suggest that currents and voltages 
are indispensable altemative system variables for 
the analog implementation of vision processes. 

Linearity in the currentholtage domain looks 
less natural since operators generally involve the 
use of MOS transistors, possibly associated with 
bipolar transistors (BiCMOS technology), all of 
which are all but linear. Ranges of linearity are 
consequently narrower than in the charge domain, 
with widths possibly as small as 0.2V in the case 
of [Mea88]. A common operation is the 
duplication of a signal, illustrated on fig.4, either 
by a current mirror or by a voltage follower. As 
can be noticed, the price to pay for the same 
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operator can senously dltfer, depending on the 
type of the input signal. 

- 'I * 
Figure 4 : Current Mirror ( I2 = I1 = IO 

), Voltage Follower ( Iout = 0 a Vout = Vin ) 
and Gilbert Multiplier ( Iout 0: 

Ibias [Vl-V2l [V3-V4] ) 

Another important operation is the four- 
quadrant multiplication that can be implemented 
thanks to the "two-stage'' differential pair shown 
on fig.4, and known as the CMOS version of the 
Gilbert multiplier [Gi168] : A triple product is 
actually performed, between two algebraic 
quantities (VI-VZ) and (V3-V4) and a positive 
quantity Ibias, which is the current flowing in the 
lower transistor and set by Vbias. However, 
image processing often involves the interaction of 
larger sets of input signals. The fundamental 
autocorrelation properties of images are 
responsible for the central importance of 
smoothing and differentiating operators in both 
the spatial and temporal domain. As far as motion 
detection is concemed, electronic time constants 
must fit the time scale of motion events in the 
observed scene : unfortunately, the largest RC 
constants that can be controlled in silicon are 
smaller than O.lms = lOMn x lOpF, which is too 
fast for our real world. This problem can be 
avoided by discretizing time, or using peculiar 
controllable resistive circuits such as the one 
presented in [Siv87]. After this general and brief 
presentation of a starting repertoire of general 
analog operators that can be used in "analog 
vision", we now present a few examples where 
physical laws inherent in electronic have met the 
operating or computionnal need of certain aspects 
of vision. 

Gaussian Suatial Convolution. 
Gaussian kernels have been shown to be of 

primary importance in edge detection algorithm 
(cf [Can86/) .  Thanks to the Central Limit 
Theorem, the repeated binomial convolution of a 
signal or an image is a good approximation to 
gaussian filtering. Sharing and halving charge 
packets is easily performed in the charge domain, 
particularly with the help of charge coupled 
devices. So binomial convolution can be 
performed in a CCD imaging array clocked by an 
unconventional method as described in [Sage851 
and generalized in [MIT88]. Fig.5 shows a novel 
2-D CCD convolution cell to be used in an 
hexagonal tiling. The boundary of the cell is 
indicated by a shaded area. The structure of the 
cell is simplified : after a certain clock sequence, 
charges are transferred from bucket to bucket 
according to the arrows. 

u+u- 
:.:lll,:.:.:.:.:.i*i:. 
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Figure 5 : 2-D Parallel and Pipelined Binomial 
Convolution 

The left part of the cell performs a binomial 
convolution along the vertical axis, while the right 
part convolves along the horizontal axis in a 
manner which is similar to implemenitations of 
FIR filters in classical signal processing pipelined 
architectures. The image is input column after 
column on the left side. The final network's 
heigth matches the number of rows in the image, 
while its width depends on the gaussian kernel's 
variance to be implemented. Finally an input 
image is massively convolved in  a parallel 
pipelined fashion, and the I 1 0  problem is 
degenerated from 2 - 0  to 1-D. Moreover, the 
variance o o f  the gaussian kernel can be 
controlled by using a partial width of the 
network, hence adapting the resolution )which the 
image is processed at. 

Whereas the choice of the binomial filter is just 
one efficient way to iteratively approach the 
gaussian shape, there are other diffusion or 
relaxation processes that are more typical of 
fundamental electric equilibria found in VLSI, 
and that we present now. 

Diffusion-Based Suatial Convolution. 
Static image processin2 is ~ndamentc;!llv based 

on spatial interactions hetween pixels or sub- 
structures that are more or less far  apurt in the 
processed image. This corresponds to the 
structural approach of vision, which tax! actually 
take place at every level of vision. When 
performed at the lowest level anywuy, these 
spatial interactions are extremely computationally 
intensive and would definitely benefit f rom 
"natural" physical interaction phenomena. 

When statistically considered, image:< have to 
be processed in a shift-invariant manner, without 
privileging any particular direction. Moreover, it 
makes sense to weaken their interaction as pixels 
get further apart from each other. We are thus 
looking for a shift-invariant phenomenon 
allowing the isotropic but radially decreasing 
diffusion of a physical quantity towards its 
neighborhood. This can be implemented ithanks to 
current diffusion in resistive materials, which is a 
linear process : if a current is injected at some 
point of a resistive sheet of conductive material 
featuring a uniform surfacic leakage resistance 
towards some source of potential (e.g. ground), 
the induced voltage profile or impulse response is 
indeed a rotation-invariant kernel (cf I:Ber88]) 
whose radial shape is given by the first modified 
Bessel function : V(r) = Q ( r )  , where r is an 
absolute normalized radius. Before discussing rhe 
relevance of the "diffusion kernel" shape for  
vision purposes, let us characterize i t  more 
precisely. To get some physical intuition about 
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1+6  
nO(r), we can consider tne current bittusion in 
the adjacent dimensions : 1-D and 3-D. For a 
resistive line V(r) x exp(-r), and for a resistive 
volume V(r) a exp(-r)/r . As expected Ko(r) 
shows an intermediate behavior that we can 
precise thanks to equivalent forms for small and 
large arguments : Q(r )  ; -log@) and Q( r )  a 

In a VLSI circuit however, we are bound to 
spatially discretize this current diffusion process 
onto a resistive ladder network of the type shown 
on fig.6. This network is  shift-invariant. 
Horizontal resistors are called diffusion resistors 
with value Rd. Vertical resistors are connected to 
ground, and called leakage resistors with value 
R1. Input injected currents Xi diffuse all over the 
network contributing to the output node voltages 
Vj. This process is linear such that we get 
V=K*X, where K is a characteristic convolution 
kernel depending on the sole ratio RI/Rd. If this 
ratio is variable, this is truly a multiresolution 
facility which is available to the analog vision 
algorithm designer ! Recent devolopments about 
the use of wavelets (cf [Mal891 & [Mal90]) in 
image processing still enhance the importance of 
such a feature. 

z exp(-r)/fi . 

Figure 6 : A Resistive Diffusion Network (1-D 
version). 

In the 1-D case, the kernel voltage profile is 
simply exponential (as in the continuous model), 
that is K(r) x exp(-r) or K(x) a exp(-1x1) because 
Kirschoff laws can be written in a recurrent 
manner. In the 2-D case however, there is no 
closed form giving K(x,y). There are actually at 
least 2 network topologies that can be used : 
either rectangular or hexagonal. The continuous 
model proves useful to understand the asymptotic 
behavior (towards -). Unlikewise, close to 0, 
that is for the central pixel on which the unity 
current is injected and for its neighbors, infinite 
voltages forecasted by the continuous model 
vanish ; the node voltages are finite and have to 
be estimated thanks to iterative algorithms. 

It is fairly easy however to derive analytically 
K*-l, the inverse of K for convolution (regardless 
of the dimension or the network topology) which 
in turn yields FI'(K), the Fourier transform of K 
(with K considered as a dismbution). This is a 
door to understanding the effect of the discrete 
current d i m i o n  in tenns offrequential analysis. 

By expressing Kirschoff laws for each node of 
a rectangular2-D extension of the network shown 
on fig.6, we get (Vie Z) (Vje Z) x.. - 

IJ -(1/R1+4/Rd).Vi ' 

- 1/%.(vi-l,j+bi+lj+vi j-l+vi,j+l) 

Figure 7: Laplacian Kernels in the rectangular 
case A r  and the hexagonal case A h .  

By using the dirac distribution 6 and the 
rectangular laplacian Ar = 4.60.0 -6.1,o -&,o -&,.I 

-60 ,~  (shown on fig.7). Kirschoff laws yield : 
X = (6/R]+A/Rd)*V, where * stands for 

convolution. But V = K*X , so : 
K*-1 = ( 6/Ri+A/Rd ) (1) . 
We can now switch to the frequency domain to 

get the periodic Fourier transform of K*-1 and 
finally K, with frequency coordinates 0, and wy : 
FT(K*-1) = l/R1+4/%.[sin2(w~2)+sin2(~/2)] 
j FT(K) = (1/R1+4/Rd.[sin2(wx/2) 

We have just been characterizing 2-D 
"diffusion kernels" in many aspects. We have 
now gathered enough information about them to 
show their relevance for vision purposes. 

Within recent years, much work has been 
devoted to the optimization of smoothing 
diffusion kernels allowing the removal of noise 
before edge detection. Beside the "gaussian 
hegemony" mentionned in the previous section, 
exponential filters have also been proved in 
[She861 and [She87], to be optimal f o r  a 
multiedge model. Now, when a straight edge is 
convolved by a 2 -0  diffusion kernel K, K is 
actually projected according to the direction 
perpendicular to the edge into ... an exponential 
filter ! The edge detection capabilities of the 

silicon retina" described in [Mea881 are the 
straightforward application of this property. We 
have also proposed (but not implemented) a more 
sophisticated edge detection algorithm 
implementation based on diffusion kernels in 
[Be188]. 

W e  will also show in $ IVb that diffusion 
kernels are particularly suited to the halftoning 
problem, that is the analog-to-binary conversion 
of images, as mentioned in [Ber90]. 

Though the fully 2-D parallel implementation 
of diffusion kernels seems much more "natural" 
than that of gaussian kernels, there remains a few 
difficulties to solve before it can be really mapped 
into silicon. As previously mentioned , it is very 
desirable to implement controllable resistors (at 
least the leakage resistors which are the less 
numerous) in  order to benefit from an analog 
multiresolution facility. This apparently requires 
the use of active resistors. The natural compacity 
of the diffusion network allows a large number of 
pixels to be integrated on the same circuit, 
however it also raises severe power consumption 
problems. Using transistors in the weak inversion 
region is a potential solution to lower current 

+s in2(wy/~) l ) - '  (2') 

I, , , 
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values, as explamed and applied In LMeaXX]. In 
that case, resistors are controlled thanks to the 
tunable transconductance of a CMOS differential 
amplifier used as a unity-gain follower. Yet, the 
linearity range is not larger than 200mV. When 
the device gets saturated, it turns out to perform a 
simple but automatic segmentation of the input 
image by preventing two neighbor pixels from 
exchanging more than a fixed current upper 
bound. 

However, considering the uncertainty on each 
transistor characteristics in  the weak inversion 
region (up to an equivalent gate voltage 
uncertainty of a few tens of millivolts), the linear 
range narrowness seems more undergone than 
desired : it requires dynamic selfcorrecting 
circuitry or static a posteriori analog 
compensation by EPROM-like techniquesz, all of 
which may be area-consumming. Further more, 
such analog voltage precision seems to prevent 
the cohabitation with digital layers which requires 
extemal clocks, inducing significant amounts of 
noise. 

We have been studying an alternative solution 
to the implementation of diffusion filters based on 
an unconventionnal use of switched capacitors (cf 
[Ber88] and [Ber90]). This approach leads to 
reasonnable power consumptions : To give an 
order of magnitude, if a (fairly large) IpF 
capacitor was to be charged and discharged from 
0V to 5V at a lMHz frequency at every pixel site, 
a 100x100 pixels retina would demand a power 
of about 0.1W. However, either it requires an 
analog CMOS process providing a double 
polysilicium layer, or "slightly" non-linear p-n 
junction capacitances have to be used (cf 
[Ber89]). In the latter case, it is amazing to notice 
how many roles the same simple device can play : 
a strip of n-diffusion over the p-substrate will be 
used a )  to connect two pixels, b)  to act as a 
switched capacitor and e) to convert light into 
current. 

Finally, a globally better precision can be 
achieved with comparable silicon area, partially 
because capacitors are really easy-to-use 
bidirectional media to perform "type conversion" 
between charges and voltages. 

7' n- 
72 A- 

Figure 8 : 4 cells from 1-D switched capacitor 
diffusion network and associated clocking 

cycle .  

Fig.8 shows how a 1-D image X, input through 
voltages sources, can be convolved by a diffusion 
kernel on a switched capacitor network. 
Horizontal and vertical capacitors are called 
respectively diffusion and leakage capacitors. A 
few peculiarities have to be emphasized. The 

h c h  techniques provide long term analog storage of 
charges. 

convolution IS only asymptoucally obtained after 
a sufficient number of elementary switching 
cycles. About 10 are necessary to reach a 0.1% 
precision when Cd=CI . The ouput voltages are 
somewhat immaterial since only half of them are 
available each time clock ~5 is high in the clock 
cycle. "Neurons" (pixels) are indeed separated 
according to their parity. This iterative aspect 
allows to share a single leakage capacitor between 
a pair of odd and even neurons. This neatly 
generalizes to 2-D, where neurons are separated 
in a checkerboard fashion. Now only the 
elementary cycle is presented on fig& Though 
capacitances have static values, LI discrete 
multiresolution facility is recovered thanks to the 
use of more complex cycles in order to obtain 
narrower d i m i o n  kernels or even direrent types 
(e.g. gaussian-like) of kernels at no further 
implementation cost ! 

We have just been comparing different 
implementations of regular diffusion networks. 
However, when resistors can be separately and 
dynamically controlled, resistive networks can 
have much broader early vision applications (cf 
[Hor86],[Koc86],[Hut88] and [Koc89]). The 
price to pay is area, but also algorithm complexity 
: for example, negative resistors, which are area- 
consumming, can also pose convergence 
problems. 

From edee to motion detection 
The above examples have made tangible the 

intuition that vision can be fruitfully thought 
about in an analog manner. But even more 
exciting are the unifying "short cuts" that simple 
analog devices, within a continuous range of 
operating conditions, can provide between 
usually well separated vision concepts. 

The silicon retina described in [Mea881 is an 
examplary case embedding into a regular resistive 
and capacitive network both edge and motion 
detection, in a tunable manner. A schematic and 
linear version is shown on fig.9. 

9 $"-l TX, - p + l  4*+2 3 
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Figure 9 : A 1-D linearized version of the 

silicon retina'' (cf [Meass]) 

The resistive part is just an equivalent version 
of the current diffusion network shown on fig.6, 
but inputs are now voltages, which dynamically 
represent the light intensity falling on each pixel 
(this was actually an intermediate step of the 
metamorphosis of the resistive network shown on 
fig.6 into the switched capacitor network shown 
on fig.8). The equivalence is a direct consequence 
of the Northon-Thevenin theorem. Besides, one 
capacitor has been added to each network node, 
in order to perform temporal differentiation. The 
outputs of the network are the voltages across the 

I, . . 



leakage resistors. 'Ibe spatial and temporal 
network behavior is described by its space and 
time constants. The space constant depends on 
the sole ratio %/RI (if diffusion resistance are cut, 
Rd gets infinite and the space constant becomes 
0), whereas the time constant varies linearly with 
Rl and Rd. So the same simple network used with 
different resistance values can continuously 
switch from edge to motion detection. Beyond 
this linearized view of the "silicon retina", the 
devices saturabiliry also plays a significant role in 
the overall computation. 

From mean to median filtering 
The saturation of a wiry gain follower, when 

used as a resistor between the output node and the 
input node (which appears as a voltage source), 
can be clearly interpreted from a vision point of 
view when used in a 'yellower aggregator circuit" 
(cf [Mea88]) as shown on fig.10 (The Gi are the 
respective conductances of the voltage followers 
in their linear region). 

, v o v t  

Figure 10: Follower aggregation circuit. 

As explained in peW881, if all the Vi voltages 
are within the same 200 mV wide interval, all the 
voltage followers are operated in their linear 
region. As the sum of the currents at the output 
node must be zero, a weighted mean of the input 
voltages is computed VoUt = C Ci.Vi / C Gi. 

On the other hand, if the Vi voltages are too 
further apart from each other, a large majority of 
voltage followers will be saturated, that is they 
will act as current sources. The saturation current 
is  known to be  proportional to the 
transconductance Gi. If all voltage followers were 
saturated, the 
final output voltage would be such that : 

C G i  = C G i  
Vi<Vou Vi'Vout 

This computation defines a weighted median. 

Finally the quantities on which the 
computation is performed appear to be the 
conductances Gi. They are set by the bias voltage 
of the differential amplifiers, and can represent 
the incident light as is the case in [DeW88]. On 
the other hand, the input voltages are used to 
control the type of computation. If a spatially 
increasing profile of voltages is input to the 
network (such that voltages differences Vi+l-Vi 
are constant), Vout will naturally indicate the area 
on which the incident light is maximal. 
Depending on the slope of the voltage profile, the 
precise value of the "pointer" V,,, will result of a 
weighted mean (small slope) or weighted median 
(large slope) or a tunable combination of both, in 
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order, for example, to perform an adequate noise 
removal on the input image. 

IIIc - Does "analog" m e a n  "smart 
enough" ? 

We have just been browsing from the most 
specific analog attempts to integrate vision up to 
more structured approaches, putting in evidence 
may be unexpectedly strong relationships 
between analog techniques and "high level" 
vision concepts. We have illustrated the versatile 
power of analog hardware within VLSI circuits, 
but also its limitations due to technological and 
more generally physical constraints, which, for 
example, can make the cohabitation with digital 
hardware uneasy. 

However, very few people have proposed 
even partial solutions to solve the output problem 
for general enough applications. Many research 
groups in the field do claim that this problem of 
input output in  vision is smartly solved thanks to 
windowing it.. reducing the field of processing, 
then the number of processed pixels, by 
approximately two orders of magnitude. Thus 
processing inside the shrunk data may be more 
sophisticated. They dangerously underestimate 
the control problem of positioning the window, 
now well-known as the problem of "narrow in 
wide angle", or of attention focusing. In the 
research about multisensor fusion, most proposed 
solutions to it ask for advanced stochastic control 
(Bar84, Mer88 ) or extended l inear 
filtering(Bar89). Other smart attempts closer to 
smart sensors deal  with fovealisation 
(multiresolution in silicon) and or active vision 
i.e. short loop between camera actuators and data 
processors to come up with natural regularisation. 

IV - YET ANOTHER MESH ARRAY 
SMART SENSOR? 

IVa - Rough vision 

In order to get to some programmable or 
adaptative recognition, on top of analog thinking 
we still had to adapt the retina concept jointly 
from the technical point of view of the 
implementation, and the more fundamental one of 
vision. 

On the technical ground: 
- As far as the digital layer is concemed (the 

top one on fig.2), the choice of a binary image 
representation is the crux of the matter. First, the 
maximization of computational power at fixed 
implementation cost is likely to strongly benefit 
from the boolean nature of the quantized images. 
The complexity of a processor as a function of the 
number of bits it processes is at least quadratic 
(e.g. for a multiplication operation). By its deep 
homogeneity, the binary representation 
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(lbit/pixel) allows the use of really "bare" 
monobit processors (about only 25 transistors). 
Their interconnection with their four closest 
neighbors turns the top layer into a cellular mesh 
array that can implement any shift-invariant 
boolean function (cf. Gar88). The larger the 
function support, the longer its computation. The 
function support is indeed scanned thanks to 
iterative image shifting. So supports are 
practically limited to local neighborhoods. This is 
why we have called those boolean operators : 
NCP's ,  s tanding f o r  Neighborhood 
Combinatorial Processings. 

- NCPs are well-adapted to low-level image 
processing. More generally, NCPs allow the 
implementation of a "rough but complete" type of 
vision, for which NCP algorithms results can be 
output from the retina in a concentrated fashion 
(such as the image integral, higher order 
moments, or sparse pixel coordinates) thus 
avoiding a potential communication bottleneck 
with the extemal world. 

- Last but not least, the binary representation 
provides a fruitful duality between operators and 
objects. Any NCP can be simply interpreted as 
the alternative recognition of a set of boolean 
patterns. Now, on the one hand, any image 
portion inside the retina is a potential NCP 
pattern. On the other hand, any pattern can be 
processed as an image inside the retina. This 
confers autoprogrammation abilities on the retina, 
which are of particular interest for tracking 
purposes ((3x88). 

On the vision ground: 
The magic in the previous section becomes the 

halftoning process which makes the whole NCP 
concept available and sensible. Now there is 
again certainly something to pay for it. Let us 
explain right away the trade-off hiding behind a 
"rough but complete" vision, by giving first more 
formal definitions and properties. 

1) NCP's (Neighborhood Combinatorial 
Processings) are exactly the shift-invariant 
operators on binary images. We have concisely 
defined them using set theory, where binary 
images can be represented as finite subsets of Z?. 
FP(Z2) standing for the set of finite subsets of Zz 
(binary images), NCP t u,v is defined thanks to 

two parameters, V€FP(ZZ) and UcP(V) (set of 
the subsets of V), by 

FP(Z2) --f FP(Z2) 
t u,v I + t u v  (I) = ( ZEP/ (-z+I) n V E U )  

2) NCPs are stable through the composition 

VV1e FP(Z2), VUICP(V1), V V ~ E  FP(Z2), 

operation o : 

vu2=P(v2) .  
t ul,vl  o t ~ 2 . ~ 2  is an NCP t u , ~  whose 

V = V1eV2 and U = t -1 (U2). 
parameters are 

Therefore, NCPs can be decomposed along a 
noise and distorsion tolerant structure revealing 
process, according to the scheme shown on 
fig.11. We note I this decomposition operation 
based on a context specific pattern base, i 
detailed in ( W c )  

+ * '  
f 

Figure 11: N.C.P. Functional Decomposition. 

So, if all semantics or context handling is 
"subcontracted" to a controller which could be 
nothing more than a boolean pattern base 
manager, then in many well delimited cases (up to 
target tracking and more!) recognition is merely a 
tolerant dot pattern matching at some point 
generalizing both the notion of interest: (say area 
of) and multiresolution. Figure 12 displays some 
suggestive graphic examples: 

Ihe above sei of 
d m  can be ,.. auiomaiic reading. a tree foliage, mganimion. 

... ieiiu A in ... he edgcs of ... or a spn team 

Figure 12 : Structure, Semantics and 
Multiresolution ... 

It is  easy to understand that such 
considerations hold only for very reshic ted cases, 
making up the "rough" vision. The direct 
counterpart of the rough character of the retina 
vision is its completeness, Le. the ability to cany 
out vision processes from acquisiticn to decision 
(cf fig.1). 

This highly pragmatic tradeoff remains most 
valuable compared to other potentially monolithic 
and complete vision systems, such as pattern 
recognition neural networks. As far as Hopfield 
networks are concerned, ir is currently admitted 
that at least 10 neurons are required per basin of 
attraction. Similar properties hold for tlhe Hebb's 
rule. Now VLSI technologies currently limit the 
number of highly interconnected neurons on the 
same circuit from a few tens up to a few hundreds 
(when interconnection tricks are exploited). So 
the number of patterns that can be recog-nized by 
today's integrated neural networks is bound to a 
few tens, and i t  is not likely to increase 
significantly but if a radical mutation occurs to 
solve the "interconnection" problem. On the 
contrary, the Retina concept makes a better use of 
today's integrating facilities. Due to the "vision 



roughness", there is no need for more than about 
a hundred of patterns, that are to be provided by a 
robust enough controller. Pattern recognition is 
certainly slower than when performed by analog 
neural networks, since computations are iterated 
inside the Retina. However it is so easy for the 
retina to pass from one context to another by 
changing the pattern base, whereas neural 
networks have to enter a long learning phase. 

If integrated neural pattern recognition is still 
several orders of magnitude ahead, a neural 
approach however is of immediate interest for 
simpler and more regular operations like non- 
standard A D  conversions within the Retina 
context. The section IVb explains why, 
displaying an exemplary application. As already 
mentioned in 5 11, the filtering associated to 
halftoning does influence NCP to be used and 
determines the "retina vision". So in 5 IVc, we 
finally come to grey level picture processings 
inside the retina. 

IVb - Analog-to binary conversion and  
halftoning 

Again, the whole structure and in particular the 
conversion layer can take full advantage of the 
computational abilities of highly interconnected 
analog networks. In particular, the homogeneity 
of the binary representation is determinative. The 
even distribution of information over all bits (each 
one will support an information of physically 
equivalent importance) has a direct influence on 
the "energetic landscapes" used in early vision 
optimization problems. This especially prevents 
local minima from being too shallow and hence 
improves the performances of neural 
computations. A well-known counter-example is 
the 4-bit A/D converter studied in [Tan861 and 
[Smi86] where the presence of such undesirable 
local minima is put in evidence. 

Halftoning techniques deal with the bilevel 
rendition of continuous tone pictures. The retina 
structure requires a fast and parallel halftoning 
technique with good fidelity at low 
implementation cost! Unfortunately, among usual 
halftoning techniques, none meets all these 
constraints. A state of the art can be found in 
[Bi183] and [Uli88]. Error diffusion methods, 
considered to be the best, are inherently 
sequential, hence unappropriate. Ordered dither 
(cf.[Bay73]) is the only "cheap" parallel 
technique, but with quite a poor fidelity. 

We have dealt with halftoning as a first 
general-purpose milestone for the conversion 
layer of our retina , towards a more advanced 
vision system. As reported in previous work 
[Ber88] analog neural networks provide a very 
attractive alternative to the halftoning problem. 

The enerm auuroach 
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'I'he retina structure provides a one-to-one 
mapping between analog (bottom layer on fig.2) 
and binary pixels (top layer). So, for any site in 
the retina array, whose index is k (k E 22, where 
2 is the integer set), an analog signal X(k)E [0,11 
is received from a photosensitive device and a 
binary information B(k)E (0,l)  is produced by 
the halftoning conversion. 

We want to keep B close to X according to a 
tonallspatial fidelity criterion. We choose to 
minimize a frequency-weighted squared error 
between X and B. Through Parseval equality, it 
is mathematically equivalent to perform the 
minimization of the following quadratic energy E 
( . stands for image dot product and * for 
convolution product) : 

E = 1/2. [ L*(B-X) 1 . [ L*(B-X) 1 
L must be considered as an intermediate 

convolution kernel whose coefficients are related 
to the above frequency weights through Fourier 
transform. We mainly use kemel K = L*L, which 
is of immediate meaning for the actual 
implementation of the procedure. 

As shown in [Ber90], local minima of E prove 
to be fixed points of a compact evolution equation 

B + HinvK(,,) o [K*(B-X)] 
Hinv, which stands for Hysteresis Inversion, 

appears as a fundamental non-linearity in the 
"analog toolbox". It is illustrated on fig.13. The 
hysteresis cycle width is responsible for the 
convergence properties of the whole network. 

(2) 

lnvener 

Figure 13 : Hysteresis inversion : a 
fundamental non-linearity. 

Along with compactness, the choice of a 
diffusion based neural interconnection satisfies 
two natural physical constraints in the world of 
images : shift-invariance and isotropy. No 
halftoning technique has ever gathered both 
properties. Based on threshold matrices, ordered 
dither methods (cf. [Bay73]) ignore both of them 
which contributes to their poor spatial and tonal 
fidelity. Currently considered as the best, random 
2-D error diffusion methods (cf [mi88]) are shift- 
invariant but naturally anisotropic due to the raster 
order of processing, triggering the appearance of 
undesirable correlated artifacts. So, unlike the 
other techniques, our method features sine qua 
non properties to reach a really high fidelity. Only 
its isotropy is imperfect due to rectangular grids 
not being radially symmemc. 

Moreover, the corresponding minimized 
quadratic energy can be advantageously 
interpreted in the frequency domain, where it has 
an exact and simple mathematical expression, 
regardless of the dimension (1-D or 2-D for.us). 
Fig. 14 displays some interesting samples. Due to 
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the decreasing shape of their Founer transtorm, 
diffusion kernels are able to keep faithfully low 
frequencies by hiding the quantization noise 
within higher frequencies. 

Frequency wzight for different ratios CUCI. .~ 

0 0.1 0.2 0,3 0.4 0.5 0,6 0,7 0.8 0.9 1 

0.1 <\z---- 16 

0 
0 0.1 0.2 0,3 0.4 0.5 0,6 0,7 0.8 0.9 1 

Normalized frquency. 

Figure 14 : Frequency Weights for various 
Kernels K. 

But are these curves optimal for halftoning 
purposes ? The answer is in the affirmative. 

Tonal resolution is the only potential 
weakness of shift-invariant halftoning techniques 
(like ours). Its separate (but constrained) 
optimization with respect to kemel K is not likely 
to spoil an already excellent existing spatial 
resolution. Now if we restrict ourselves to 1-D 
constant images, L A  modulation can be shown 
both to be optimal for halftoning purposes and to 
perform the optimization of the MSE between the 
integrals jX(k) and jB(k), with k varying in 2. 
This again justifies previous attempts (cf [UlisS]) 
to extend L A  modulation to 2-D. A major 
conmbution of our work is that we have done so 
without introducing an arbitrary order on %2 
(unlike existing 2-D error diffusion methods). 

Let us note S(k) the dirac distribution in site k, 
D = S (  1)-S(0) the derivation filter, and 
A=D*D=2.S(O)-S(-l)-S(l) the laplacian filter. 
Besides, a -1 exponent means the inverse for 
convolution. L A  modulation on constant images 
thus appears as the minimization of the following 
frequency weighted MSE criterion : 

11 D"*(B-X) 112 = 1/2 [ A - ' * ( B - X ) ] . ( B - X )  

Though physically unrealizable, (3) has a sense 
from a formal calculus point of view and turns all 
the closer to (2) as we show K-1 to be a slightly 
modified laplacian filter ! : 

( 3 )  

Picture Processiw Examules. 

The shape of the diffusion kernel K is derived 
from Kirschhoff laws. Using ratio Cd/CI 
(switched capacitor) instead of RL/Rd. we get : K- 
* = Cd/Cl.A + 6 (see 8 diffusion based 
convolution in IIIb) 

If we spread kernel K by making CdCl larger 
and larger, (2) becomes asymptotically equal to 
(3) and global minima of (2) become optimally 
halftoned images. The relationship K-I = C&.A 
+ S actually characterizes resistive diffusion 
networks regardless of the dimension. However, 
when kernel K gets wider, the local minima of (2) 
become more numerous and subsequently of a 
lesser quality. The problem is that ithe neural 
optimization can get stuck in any of them : this is 
the very limitation of our method. We need to 
make a trade-off between the quality clf criterion 
(2) and the quality of its local minima. After 
having extensively experienced the procedure, it 
empirically appears that suitable ratioir C&l go 
from 2 to 8. 

Resis t ive  & s w i t c h e d  c a p a c i t o r  
imnlementations. 

Equation (3) is so neat that the choice of K is 
definitely the cmx of the matter. We have insisted 
in the previous section on the key role played by 
simple resistive networks (as presented on fig.6) 
for a highly compact implemenltation of 
appropriate shift-invariant synaptic weights. So, 
much of the work is done, and the transcription 
of the transformation equation (2) into the 
resistive electronic circuit shown on fig.15 is 
straightforward. The resistive implementation 
proves extremely simple and regular. The 
switched capacitor implementation is detailed in 
[Ber90]. 

X(i-I) X(i) X(it l )  
I I I 

B(i-I) B(i) B( i t l )  

Analog 
lmagc 

Synaptic 
Diffusion 
Network YI 

Neurons Linear 
(Schmidt Voltage- 
Triggcrs) Controlled 

Cunont 
S O U U  

Binary 
Image 

Figure 15 : 1-D resistive neural hallftoning 
network.  
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IVc - More about NCP and retininn 
vis ions  

To begin with, let us explain the way 
combinatorial boolean operators can be used on 
thresholded images (see [Re791 and [Ros82]). A 
template (element of U) is determined thanks to 
two parameters 0 and Z, which are two disjoint 
subsets of V: the template [V, 0, Z] is the set of 
all subsets of V which include 0 and are disjoint 
from Z. It can be conveniently represented by a 
picture displaying 1's at the sites of 0, Os at the 
sites of Z and "don't care" at the sites of V which 
belong neither to 0 nor to Z. In this case, the 
application of the NCP with parameters (V,  ([V, 
Oi, Zi])i) to a binary picture I (considered as a 
subset of ZxZ) is the following subset of ZxZ  

t(1) = ( z E ZXZ, (-z+I) n V E ui[V,Oi,Zi]. 

Now, let us explain how to use a NCP 
sequence for boolean template matching. First, 
consider a small binary picture P included in a 
rectangular window R. The picture t(1) which 
results from the application of the NCP whose 
parameters are (R, [R,P, RV])to a binary picture 
I is given by the following equation: 

t(1) = ( Z  E ZXZ, (-z+I) A R E [R,P, R VI ) = 

( z  E ZXZ, (-z+I) n R  = P )  

This means that the pixels of t(1) are located at 
the sites z whose neighborhood (z+R) matches 
pixel by pixel the template [R,P, RV]. Of course, 
if one perfoms this matching process to match 
copies of a window of an acquired picture P in an 
acquired picture I, then the resulting picture will 
be black, i.e. no match will occur. Thus, one 
needs a way to handle some similarity relation 
between templates. A conventional template 
matching approach is to define some similarity 
measure between pictures [Bar 721. Now, the 
point is that as NCP operate through logical 
operations exclusively, to compute some 
numerical distance with them is not very 
welcome, and thus one has to rely on some 
geomemc similarity. 

A first approach consists in substituting to the 
template [R,P,R\P] the template. [R,Pn,(RV)n], 
where Pn and (R\P)n are the erosion of 

respectively P and (RV) by a square of size n. 
The pictures this template matches, are 
geometrically similar to [R,P,RV]. 

A more sophisticated approach relies in the 
continuous plane RxR, where R is the set of real 
numbers, on Hausdorffs distance. Between two 
compact subsets of RxR it is given by the 
following equation: 

I(A,B)=inf(& E R, (B CD DE) 13 A and (A CD 

DE) I) B)  
where CD is the Minkowski's sum and DE a 

disk of radius E. 
Thus, the Hausdorff distance of A and B is 

less than E as soon as (B CD DE) 2 A and (A CB 

DE) 2 B. By analogy, consider an elementary 
square Sn of size n. Then we will mark the points 
Z where 

(z+P) @ Sn I) (z+V) A I, (I CD Sn) 3 (z+P) 

This does not exactly check whether the 
Hausdorff distance between (z+V) n I and (z+P) 
is less than n, but this approximation gives good 
results and remains easy to compute on the fly. 

To go further, we want to introduce some 
structural similarity between templates while still 
relying on NCP operations. For that purpose, let 
us choose two square windows R1, R2 such that 
R = R1 CD R2. Let G be a regular square grid 
included in R2. Now, consider the windows 
extracted at the sites of G in P, i.e. for each site z 
of G, let Wz be R i  n (-z+P). Let TZ be the 
template [ R i ,  WZ. RI\WZI and t i  the NCP 
defined by the template (T&E G. Besides, let t2 
be the NCP defined by the template [R2,G,0]. 

Now, let us choose the grid step and the size 
of R1, such that in the one hand the windows 
W Z ~ ,  Wz2 in G overlap and such that P I) 

UZE G(Z+Wz). 
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e interm6diaire 

Structural NCP decomposition 

Through the successive application of t i  and 
t2, one matches pictures which are generated by 
swapping the windows (W,) between the sites of 
G (fig.11 and 16 ): for real pictures, most often 
the only permutation which meets overlaping and 
P-covering results in P. Now let us introduce 
some geometrical similarity between t i  templates 
as previously. Then introduce some structural 
similarity by matching points which are located in 
the neighborhood of G sites and by allowing 
some of G sites to have no match. For this 
purpose, the picture t i  (I) resulting from the 
application of t i  to a picture I is dilated by Sn 
before the application of t2. Moreover, t2 is 
modified to allow that no match occur at a small 
number of G sites (introduction of "don't care"). 

Thus, a unique process of NCL decomposition 
into a map product, holds an elastic match 
between patterns. Moreover, this process may be 
iterated according to stuctural picture complexity. 
Examules on tank uictures are eiven below. 

Initial sequence of half-toned pictures 

Result of t i :  first NCP iteration 

Result of t2: second NCP iteration 

Numbers of suitable operators can be 
implemented, not only straight recognition. Of 
course, as it is, the retina can perform 
combinatorial cellular logic operations [Pre79]. 
These include erosion, dilation, and their 
iterations as opening, closing, ... All operations 
relying on template matching are easily 
implemented too: they include primarily binary 
edge detection, shrinking and thinning.Other 
useful primitives like binary propagation [Duf86], 
turn out to require supplementary memory points. 

The addition of extra memory points (one or 
two per PE) allows implementing number of 
other algorithms which are better (fully and 
systematically) investigated considering a precise 
designed device. Now, the power of a full 
preprocessing stage for binary pictures towards 
statistical pattern recognition could b8t reached 
thanks to a global counter. It allows the 
computation of the area of patterns and thus 
combining geometric operators with counting 
yields the full range of numerical features as area, 
intercept number, connectivity number, and also 
various histograms and granulometries. After 
illustrating that point, through a non trivial 
example, let us show how to perform a counter in 
the smart sensor itself. 

Ex.1:  a n  NCP pseudo-euc l id ian  
skeletonization 

A local operation as the pseudo euclidian 
skeletonization may be done inside a smart 
sensor. In the algorithm described in [Lev 751, 
height templates Ti are given (Al ,  B l ,  ..., A4, 
B4), and must be applied successively. 

00. .oo . l .  . l .  
000 1.0 . l l  0.. 
011 110 110 011 
. l .  110 . l .  011 
11. . .o 000 0.1 
. l .  . l .  .oo 00. 
A1 A2 A3 A4 
B1 B2 B3 84 

For one iteration, all the uoints of an image I 
corresponding to the.template Ti must be rem&ed 
to perform the image J ( 7 , 1, & stand 
respectively for negation, logical or and logical 
and): 



J = I & (  Ti (I) ) 

I ( Ti (1) 1 - - 

= tl (t2 (I)) 
So, this operation is the composition of two 

NCP tll and t2i, defined as: 
t l  = 7 

t2i = 7 +Ti 

The application of the eight templates Ti is 
implemented by NCP composition. It makes the 
main loop of this pseudo-euclidian skeletonization 
to be performed by our smart retina. 

Ex. 2 : An NCP counter 
In the resulting image of counter 

algorithm, a l l  the black pixels will be concentrated 
upon a border of the sensor. To count the number 
of black pixels, we only use the output of the 
number of black points along its edges. 

The projection of the binary picture I upon the 
bound B of the sensor, translates all the black 
pixels with a given direction GD, up to the 
resulting image J, where all the black pixels are 
concentrated on B. This algorithm is presented in 
[Tof87]. Here is a NCP equivalency. For a 
projection from east to west, NCP p is as: 

l o x  + x l l  
)*I + P2 

- - 
- - P 

Templates p 1 and p2 represent respectively 
a progression of one unit to the right, and the 
meeting with an obstacle. The projection consists 
of iterating p. up to a constant image. 

All the Freeman vector projection may be 
given by rotation of p. These projections will use 
a reduced support (3x3 pixels). The projection p' 
from north-west to south-east is 

lxx xxx 
p' = xox + xlx  

xxx xx 1 

l - t  \ L l  t \  

P l  PO p7 p6 p5 p4 p3 
T 

P2 

Elementary projections pi. 

If no border constraint exists, black 
propagated pixels will progressively disappear 
(translation effect of pl). Contrarily, if one 
border B is black, B will be an obstacle (effect of 
P a  

If n is the number of pixels of I, and L = .In 
the width of the retina, the number of iterations is 
.In. 
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If we consider a composition ot projection pi. 
then the stability region of semi-planes will be the 
intersection of stability regions Rpi of each pi. 
Now, map multiplying elementary projections pi 
to concentrate all the black pixels of the binary 
picture I upon a bound of the retina, consists in 
operating one or more cycles of n projections ck 
= (p l ,ko . .opn ,k ) ,  and iterating ck until 
convergence. The choice of the projections is 
critical, because there are invariant pictures under 
two projections. For instance, the stability region 
of projections p5 and p7 is not empty [Rei85 1. 

The convergence will be obtained with 
projection without stability region, and a good 
convergence is experimentally got with c0 and c l  
cycles. In that case, the counter algorithm needs 
four cycles, c0, c l ,  c0, c l .  

c0 = pOop7'0p6 
c l  = p 4 o p 5 o p 6  

Real pictures are not well captured by 
thresholding; and introducing a threshold does 
not fit exactly the flavor of autonomy. To perform 
recognition from grey level images, two avenues 
make sense a priori: 

* to rend automatically a picture under a form 
of black and white compact regions. Such a 
blackening process is again a cellular automaton 
implementable as NCP ([Rei88]) which can be 
added directional properties to. It allows to 
execute all previously defined operators although 
tolerance in decomposing is harder to justify. 
But, learning vanishes here in a way or is 
drastically changed up to contradict our approach 
of direct learning by the image itself. 

decomposition 
algorithm to multilevel images so as to analyze 
directly halftoned images. A new step is required 
to extract key structures related to grey levels, 
grey level sets or density gradients ... Then, 
recognition comes as before from the control of 
key juxtaposition, which at that point fits 
perfectly a search for optimal equilibrium between 
B-coding (halftoning) and NCP. The approach 
relies on detecting regions as they gather some 
repartition of grey levels, knowing that a given 
halftoning process greatly constrains the possible 
repartitions. Particular NCPs  made of sub- 
templates which get the same density in templates 
are true spatial counters, and give a hint on grey 
level repartition inside a region. Technically a 
marge is introduced again under the form of don't 
care pixels in the sub-templates. This 
fuzzyfication is shown to result into a potential 
spatial shift of key-templates. So, in practice, if 
templates T as given through windows, are 
subdivided into wj's which number of occurences 
are rendered by a given dot configuration Mj, the 
tolerance on grey level configurations is made of 
both don't care pixels in Wj &little shifts in Mj. 
We illustrate the results by tracking the same 
tanks as before. 

* to generalize the NCP 
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V - CONCLUSION. 

While technologically realistic, the rapprochement 
between acquisition and processing within smart 
sensors opens doors towards peculiar types of 
interaction between analog and digiral 
computations. The technological constraints 
however are strong enough to impose a pragmatic 
approach for setting the analog/digital balance 
along with the overall performances of the 
sensor. From this point of view, our Retina m e s  
to be exemplary. Its vision is particularized to 
allow the use of really bare boolean processors, 
and consequently the monolothic integration of a 
significant number of them (100x100 in Ipm 
CMOS technology). Besides, the "roughness" in 
the image representation (1 bit/pixel) is 
compensated for by analog processing on the 
acquired image, which exploits natural correlation 
properties of the images. Neural techniques are of 
great interest for such purposes as shown in the 
halftoning case. They can also be used to enhance 
particular early vision features thus leading to 
more specific retinas. 

More generally, there is an unsurprising need at 
every level of vision for arranging non linearities, 
function of knowledge and recognition to be 
performed. Allowing analog layers to cooperate 
intimately with programmable binary layers 
(binary on a first phase?) certainly is a good 
solution, at least in vision which can make do 
with quite spacially limited connections. Analog 
suggests rather isotropic communications, where, 
at most, natural nonlinearities are taken advantage 
of, while digital suggests more complex 
interconnections by iterating or programming, 
hence possibly premeditated anysotropy and 
nonlinearities. 

But, may be the most important aspect of research 
in the field of analog vision is that concepts or 
paper work MUST one day be confronted with 
actual implementation. Though it is an expensive 
approach, technological constraints impose some 
sound realism, in front of algorithmic claims. In 
this confrontation, "silicon" proves to be a most 

valuable source ot inspiration, as i t  might be 
translating some fundamental laws where physics 
encompasses information processing. 
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1 SUMlr ARY 

This note is aimed to investigate how much visual sen- 
sors may be effective in supporting autonomous navi- 
gation of mobile robots. Although in practical realiza- 
tions, with robustness and reliabity constraints, it is 
always necessary to integrate multi sensor modalities, 
the discussion here is just limited to analyze computer 
vision advantages and disadvantages, with particular 
attention to: 

a binocular stereo vision module for obstacle de- 
tection, with no precise calibration (reactive pro- 
cess to operate at fast rate, from 5 to 10 Ha.). 
trinocular stereovision based on segment primi- 
tives for the reconstruction of free space for navi- 
gation, in which case an accurate calibration pro- 
cedure is requested. 

0 landmark detection for self-positioning and ori- 
entation of the mobile vehicle, using perspective 
invariants, for indoor navigation. 

Some comments are also provided on computer vision 
architectures to  support real time implementations. A 
real-time front end vision subsystem is described, be- 
ing able to  compute 3D segment based stereovision 
at 5Hz and segment token tracking at 10 He. Fi- 
nally, some demo arrangements are briefly referred, 
where an intense experimentation of such results is in 
progress, as a test bed for different industrial applica- 
tions. 

2 INTRODUCTION 

The interest in free-ranging mobile robots is no more 
limited to the classical industrial AGV market, but is 
increasing in a wide range of potential applications re- 
quiring great operational flexibility in less structured 
environments. Hence, it turns out that typical exter- 
nal sensors, guidance methodologies and control ar- 
chitecture are no more satisfactory for the new set of 
challenging requirements. 

Passive computer vision has been traditionally con- 
sidered non-competitive against other sensors due to 

the high cost and lack of robustness of the algorithms, 
but the recent progress in theoretical issues, availabil- 
ity of special hardware architectures and the increase 
in complexity of applicative tasks and scenarios make 
computer vision a key technology also from an indus- 
trial exploitation point of view. 

This paper is intended to give an overview of the re- 
search activities of Elsag Bailey in the field of visual 
navigation. Particular emphasis is given to the exper- 
imental evaluation of the different approaches and a 
critical analysis of engineering trade-offs which make 
it possible to implement computer vision techniques 
in real applications. 

A further goal of this work is to  discuss how to insert 
different perception, planning and control modules in 
a coherent logical architecture and how to implement 
this architecture on real time hardware. 

Visual navigation modules can be classified in many 
ways: a classical approach consists in considering the 
operative range, that is the distance of the workspace 
from the vehicle, which leads to split the general nav- 
igation task in three levels: long-range, intermediate- 
range and short-range. A different but related tax- 
onomy concerns the temporal updating rate of each 
module, according to real time requirements in real 
applications. 

An alternative approach [l] suggests to  consider vi- 
sual competencies instead of modules, that is to de- 
compose the navigation system in behaviour layers in- 
stead offunctional modules. This idea, as discussed in 
[Z], embodies some advantages such as a more direct 
integration of perception and actuation. 

The paper is organized as follows: the next section 
presents the applicetive scenario and introduces the 
experimental evaluation criteria, sections 4 to  6 de- 
scribe visual modules and techniques, from the short 
range to global navigation. Each part refers to exper- 
iments and industrial evaluation with respect to alter- 
native solutions, including some literature references. 
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S APPLICATIVE SCENARIO AND TECH- 
NOLOGY EVALUATION 

Industrial AGVs (Autonomous Guided Vehicles) are 
already an in-use technology, with known limits and 
problems. Vision is likely to provide the basis for the 
second generation AGVs, the so-called “free ranging” 
AGVs. Currently AGVs navigate using the inductive 
guidance principle, that implies expensive and nnflex- 
ible buried wires, or following reflective tape sealed on 
the floor, that does not resist to the harsh conditions 
of the industrial environment. 

Safety is achieved by ultrasound belts, which limit the 
vehicle maximum speed and create problems o t  en- 
cumbrance in cramped environments. Moreover, cer- 
tain types of obstacles like holes, steps, smooth sur- 
faces, thin metallic objects such as chair legs, are not 
detected at all, underlining the limits of current tech- 
nology. 

GEC Electrical Projects marketed on a Caterpillar ve- 
hicle [3] one of the few commercially available free 
ranging AGV, that will be considered as a reference 
for the experimental evaluation of our passive vision 
based system. GEC vehicle makes use of triangu- 
lation laser systems with retro-reflective bar-coded 
targets spread all over the workspace. Security is 
achieved through IR proximity sensors and mechani- 
cal bumpers. The main reported drawbacks includes 
the loss of maneuvering capability in constrained envi- 
ronments due to the encumbrance of the bumpers, the 
necessary limit to the maximum velocity due to the 
short operative range for a reliable IR obstacle detec- 
tion, the difficulty to operate in scarcely structured or 
cluttered environments, such as warehouse or in lorry 
loading, where targets could be occluded or difficult 
to he placed. Moreover the process of docking work- 
stations or loading/unloading in unconstrained condi- 
tions are tasks still too hard for standard technologies. 

A novel, promising market sector potentially inter- 
ested in advanced mobile robots is represented by Ser- 
vice Robotics [4]. Service robotics refers to a novel 
concept and usage ofindustrial robots in tasks that are 
not highly repetitive and not too much constrained. 
Service robots therefore require much more intelli- 
gence, flexibility and sensory capabilities than their 
industrial ancestors and the application opportunities 
and potential markets of this emerging technology lie 
outside the domain of traditional industrial robots. 

Mobile robots with relatively simple locomotion can 
be used in indoor environments to automate routine 
transport activities. The main examples include hos- 
pitals where samples, specimens, medicines and meals 
have to he carried around, and large offices, hanks or 
postal offices where mail, documents and other items 
have to be transported through corridors, hallways 
and other pre-assigned routes. Specifications for these 
mobile robots include free ranging capabilities, flexi- 

bility in reconfiguring pre-planned router;, safety even 
in peopled areas, and a simple man-machine interface. 

Helpmatea from TRC [4] is one of the first service 
indoor robot in use. It exploits multiple sensors to  
achieve the required autonomy: ultra-sounds are used 
for safety and guidance (wall following), flashing IR 
lamps and a CCD camera are arrange,d to form a 
structured light obstacle detector. Mo.nocular pas- 
sive vision is also used to maintain the heading di- 
rection by following the ceiling lamps in long and 
homogeneous corridors. Algorithms and system ar- 
chitectures presented helow will be evaluated against 
generic tasks, but representative of the mentioned a p  
plication classes. 

4 SAFETY LEVEL: GROUND PLANE OB- 
STACLE DETECTION 

The safety level refers to the Capability of detecting 
unexpected, possibly moving, objects which can ob- 
struct the navigation path. An obstacle can be defined 
as everything with a positive or negative height with 
respect to the ground level, whose amount exceeds 
the robot capability to overcome it. Negative heights 
refers to holes, stairs and any abrupt interruption of 
the ground, which is as dangerous for mvigation as 
any other obstacle. 

The general problem definition is usually completed 
by a few simplifying hypotheses: 

e the vehicle moves on a flat floor; 
the tilt angle between the cameras and the floor 

In the domain of indoor navigation those constraints 
are usually verified, therefore algorithms are still valid 
in operative conditions as well. 

A generalization of the obstacle detection problem in- 
cluding also navigation planning and control aspects is 
called obstacle avoidance, that is the robot capability 
to plan and execute locally a trajectory t o  overcome 
the obstacle and recover the originally planned path. 
In the following we focus on the sensory technologies 
and algorithms to address these two protilems. 

Obstacle detection modules, regardless the adopted 
sensory technology, have to be evaluated with refer- 
ence to some established design specifications and per- 
formance parameters: 

is known and constant. 

Fast computat ion:  the module response rate 
affects, together with the field-of-view (FOV) of 
the sensor, the vehicle cruise velocity, which is a 
major system parameter. 
Interface wi th  planning: some modules just 
detect obstacles, others return an estimation of 
their positions and dimensions to  be fed to a plan- 
ner in order to compute an avoidance trajectory. 
Robustness and reliability: a safety module 
must be highly reliable. False alarms just delay 
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disparity in the "no obstacle" case to  check whether 
the correlation is good, otherwise a collision alarm is 
generated (see Figure 1). 

navigation but failures in detecting objects af- 
fects the vehicle integrity and the safety of people 
around. Crucial parameters to  evaluate are the 
dependency on the obstacle appearance (shape, 
colour, texture) and the algorithm sensitivity to 
drifts of the a priori hypotheses (flat floor, set-up 
angles, etc.). 

Obstacle detection and avoidance are deemed to be 
critical in autonomous navigation, therefore there ex- 
ist many different approaches, using passive vision, 
laser, ultrasonics, IR proximity sensors or some com- 
bination of them, to  solve the problem but none is 
considered fully satisfactory. Here we try to demon- 
strate that passive vision is a feasible and powerful 
sensor compared to alternative current technologies 
and can be the core of a safety subsystem. 

Proposed approaches range from binocular stereo to 
monocular dynamic systems. Binocular stereo sys- 
tems [6, 51 reconstructs the world in order to detect 
3D structures in an alarm zone ahead the robot within 
the FOV. The knowledge of the position of the ground 
plane with respect to the cameras is commonly used 
to speed up processing and to focus on 3D data not 
lying on the ground. 

4.1 A stereo Ground Plane Obstacle  Detector 

The algorithm, originally developed a t  the University 
of Genoa [7], is based on a fast comparison between 
the current stereo disparity and a reference disparity 
map of the ground floor. 

An automated off-line procedure is necessary to pro- 
duce a reference map of the ground floor, which is 
supposed flat. However there is no need of an explicit 
calibration of the stereo rig parameters as requitred 
by stereo matching algorithms. 

The calibration process consists of a correlative stereo 
algorithm, based on a coarse-to-fine correlation proce- 
dure. The disparity map is computed iteratively and 
averaged by including new stereo views of some ran- 
dom patterns placed on the ground floor, until the 
variance of the disparity points is low enough. During 
on-line operations, to  check the presence of an obsta- 
cle inside the selected windows a correlation approach 
is used. 

The left image of the stereo pair is subdivided in 
square patches of size 16 x 16; each one has an ex- 
pected disparity value given by the pre-computed dis- 
parity map of the ground floor. Making the correla- 
tion between a patch of the left image and the cor- 
respondent patch on the right image shifted. of the 
expected ground plane disparity it is possible to verify 
whether an upstanding object violates the expected 
match of the two image patches. In practice, the usual 
stereo matching process is reversed: instead of corre- 
lating many patches to detect the right disparity for 
each patch, it is used the a priori knowledge of the 

\ 

Figure 1: On-line obstacle detection mechanism: the 
disparity map of the ground floor is used to select the 
patches in the stereo pair to correlate. 

This approach solves the problem of obstacle detection 
very efficiently and rapidly even if the 3D structure of 
the obstacle is not explicitly reconstructed and, there- 
fore, a local map of the free-space cannot be available 
for path planning. 

Actually a qualitative obstacle avoidance strategy has 
been implemented: it is possible to  roughly evaluate 
the position of the obstacle by looking at the image 
parts where the expected disparity has been violated, 
and to decide whether the occlusion is on the left, on 
the right or straight ahead of the vehicle. 

4.2 Real-time parallel implementation 

The pressing computational performance require- 
ments, estimated in about 10 He to cope with the stan- 
dard speeds of mobile robots, leads to the need for a 
dedicated hardware implementation of the GPOD al- 
gorithm. Currently two real time implementations are 
available: at the University of Genoa on a VDS 7001 
Eidobrain workstation, equipped with a special image 
processing board where the kernel of the algorithm 
has been microcoded and at Elsag Bailey on the mul- 
tiprocessor EMMA26 where the algorithm has been 
parallelieed. 

The Eidobrain image processing board supports the 
contemporary acquisition of a stereo paL and a high 
communication throughput among frame buffers and 
the Arithmetic Unit. Therefore, although sequentially 
implemented, the algorithm runs a t  10 Hz. 
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A parallelisation study, preliminary to the develop 
ment of a more appropriate hardware front-end, has 
been conducted on the MIMD EMMA2 computer. 
A three-processor module is involved in the compu- 
tational part of the algorithm. Each of the 3 Intel 
iAPX286 performs the same task, by means of a data 
partitioning approach. The computation of the cor- 
relation value is speeded up by a custom mathematic 
coprocessor, made by Elsag Bailey, associated to each 
processing element. 

There is also another level of temporal parallelism: a 
pipeline scheme allows the master processor to con.tro1 
acquisition of a new stereo pair while the previous one 
is still in the processing phase. 

This implementation runs at about 4 Hz, due to de- 
lays on the transmission of images on the system bus, 
which is not a video bus, but guarantees.the parallel 
processing of the whole images and, therefore, an in- 
creased reliability as compared to the sequential ver- 
sion which stops the raster scan as soon as a single 
patch detects an alarm. 

4.3 

The requirements of a safety module for navigation 
are very strict in terms of robustness if it has to be 
integrated on a real vehicle, particularly in application 
involving the presence of people. 

Basically we can recall the following advantages: 

Technical evaluation of the GPOD 

- the method allows fast implementations, up to 
10 Hz, even on a limited amount of hardware, 
and good computational performances leading to 
safe navigation at a relatively high speed of the 
vehicle; 

- the algorithm does not require complex, time- 
consuming or frequent re-calibration procedures 
and so it may be continuously run, without hu- 
man intervention; 

- vision based correlative stereo permits to navi- 
gate in constrained environments and detect thin 
metallic obstacles (such as stool legs) and smooth 
edges which typically are critical for ultrasonic 
sensors; 

and the following drawbacks: 

- the success rate depends on the amount of tex- 
ture on the obstacle. Complete absence of texture 
or pictorial evidences causes a failure as, for in- 
stance, in front of a white wall. However, this 
criticism is valid for any passive vision system 
and can be easily removed by using some active 
sensor, such as IR or ultrasounds, in combination 
with vision. 

- polished floors with particular illumination con- 
ditions, prevent a correct hehaviour since high- 
lights on the floor hold a disparity, as opposed 
to  markings on the ground plane, and violates 

the prerecorded disparity map constraints, gen- 
erating false alarms. The use of polarizing filters 
on the cameras improves the performance by cut- 
ting down some highlights. Anyway, the problem 
is not completely solved because polarizing filters 
are optimised on a particular incidence angle and 
cannot entirely remove these effects. 

- the implemented process is without imemory and 
does not support common path planning algo- 
rithms. Such purely reflexive navigation strategy 
can cause problems while maneuvering in narrow 
environments. 

6 Exploratory level: free space map building 
and local path planning 

The task is to build local representations of the robot 
environment to map free space which can be used to 
plan and update suitable trajectories to  reach a se- 
lected target position. The final goal of this task is to 
improve incrementally this 2D map by including new 
data acquired by visual sensors and keeping memory 
of the past viewpoints. Of course a pr(erequisite is 
to perform such a process quickly enough to support 
real-time navigation. The present implementation de- 
scribed in the paper is performed at diricrete steps, 
by stopping the vehicle and exploring the scene to do 
map integration and decide the next robd  action. 

The obtained 2D representation is local b,Dth in space 
and time with no semantic information. It is just a 
boundary of the free space around the robot, to  pro- 
vide the current state of the environment, including 
unforeseen events or unpredictable objects and obsta- 
cles. This local representation is passed to the higher 
level, slower process, which is supposed to plan a safe 
medium range trajectory. Otherwise, this information 
can he sent directly to a remote station and displayed 
to the human operator, for teleguidance control super- 
vision. This is a very simple and reliable way to close 
the loop at a higher level, on the basis of a very nar- 
row bandwidth channel. An example ofthis approach 
is briefly referred in the following sections. 

Different approaches are referred in the literature to 
compute this local map. In [8] a volumetric recon- 
struction of the scene is obtained through dense stereo 
correlation. Voxels are integrated in the vertical di- 
rection and the results are then projected onto the 
floor, with selected resolution, to achieve an occu- 
pancy map of the environment. Major limitations of 
this approach are the computation cost of the volu- 
metric reconstruction and the large amount of data 
produced, which require additional compression of in- 
formation to find out free space in front of the vehicle. 
In fact it is always necessary to  reach a compromise 
between the required resolution and a man:%geable size 
of the volume of data. 

The approach proposed here consists in computing 



sparse 3D segments which are representative of visible 
features in the scene, using a suitable stereo arrange- 
ment and then projecting to  the floor the most rele- 
vant part of them. In fact these data are cut between 
a lower value (a few centimeters above the floor) and 
a higher value (slightly above the height of the robot). 
In this case we assume the ground plane to be almost 
flat. Segment primitives are considered appropriate 
to describe an indoor environment with man-made 
objects and furniture. Of course appropriate light- 
ing conditions are required to provide the necessary 
image contrast for feature detection. In the follow- 
ing the adopted stereovision process is briefly recalled 
as well as the real-time processing architecture which 
has been realized to implement it a t  rates faster than 
1 He. 

5.1 Trinocular stereovision 

A trinocular stereovision approach [9], based on the 
matching of line segment tokens has been imple- 
mented for depth computation. The preprocessing is 
arranged in a pipeline fashion, that is, a sequence of 
cascaded algorithms each one elaborating the output 
of the previous stage. 

The major processing steps are: 

non-maxima suppression edge detection as an  ex- 
tension of the original Canny approach [IO]; 
edge linking using a two-step procedure for list 
making in a raster scanning and fusion and merg- 
ing of the generated edge lists (G.Giraudon). 
polygonal approximation of edge chains using a 
modification of a Sklansky approach. 

The stereo algorithm is based on three cameras placed 
at the vertices of a almost equilateral triangle, and 
roughly converging to  a common fixation area. The 
processing chain of the trinocular stereovision process 
is recalled in figure 2. 

The matching algorithm follows a prediction/- 
verification scheme; at first, a match hypothesis be- 
tween two segments from two different views is cre- 
ated on the basis of geometrical criteria; then, the po- 
sition of the corresponding segment on the third image 
is predicted. A global validation procedure is finally 
used, by including additional constraints of regularity 
and smoothness in the reconstructed 3D scene, and 
discarding ambiguous matches. 

A precise calibration of this arrangement is a key point 
for the success of stereo matching. The third camera 
is primarily used for consistency check of match hy- 
potheses and the main advantages of this approach, 
with respect to binocular solutions, are: 

the implementation of stereo matching is simpler 

the system is more robust against ambiguous sit- 
and faster, 

uation. 
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Besides, also 3D reconstruction is improved by reduc- 
ing data uncertainty from three different viewpoints. 

5.2 Red-time processing architecture 

The hardware architecture, depicted in figure 3, re- 
flects the algorithmic structure. This front-end unit 
has been developed within the framework of the ES- 
PRIT Project P940. This computer vision machine 
is called DMA from the acronym of the project it- 
self Depth and Motion Analysis and is used in other 
Telerobotic experiments as described in [ll]. 

The video-bus for image transfer at video-rate is the 
Datacube MAXBUS, which connects all modules deal- 
ing with raster image data. The system bus for data 
transfer, system control, and host interface is the 
VME bus; all the boards are connected to it and follow 
the interfacing and arbitration VME standard. 

Edge detection is implemented at TV rate according 
to Canny’s approach. Two boards have been pro- 
duced: the former is composed by 4 FIR building 
blocks (LSI logic L64240); the latter implements, on 
dedicated hardware, the “Nowmaxima Suppression” 
algorithm. 

The edge linker board is based on 2 fixed point digital 
signal processors (Analog Devices ADSP-2100) with 2 
piggy-back coprocessors to  provide fast implementa- 
tion of a set of primitives (detection and analysis of 8- 
connected edge pixels and memory occupancy checks). 

Polygonal approximation and trinocular stereo match- 
ing make use of symbolic information instead of image 
data. Moreover the stereo matching algorithm struc- 
ture requires different data partitioning, among the 
DSPs working in parallel, at the various steps of the 
process. For these reasons the two algorithms reside 
on a flexible multi-DSP architecture based on Mo- 
torola DSP56000. Data flow control among the dif- 
ferent DSPs and the execution of sequential process- 
ing steps are performed by a standard 68020 CPU, 
which in this case plays also the role of master board. 
A very powerful floating-point multi-DSP board, con- 
taining 4 DSP96002 from Motorola has been realized 
on a double-Europe VME card. This unit is partic- 
ularly effective in 3D reconstruction and high level 
floating point computation. A Token Tracker module 
is also available on a single DSP (ADSP2100) board 
and is able to perform segment feature tracking in a 
temporal sequence at a maximum rate of 10 He. 

The software architecture of the machine can be de- 
scribed by the following levels: 

the core of the system can be represented as a 
s i d e  machine where each state represents a single 
DMA function (acquisition, FIR, edge detection, 
etc.). The state machine works as a task alloca- 
tor: it selects the different drivers of the DMA 
boards according to the DMA process sequence 
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Figure 2: Trinocular stereo vision; a)preprocessing chain for each vision channel; b) stereo matching algorithm. 
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Module 

FIR filtering 
+ 

Edge Detection 
Edge Linking 

(140 segm.) 

Polig. Approx. 

(4 DSPs, 
200 segm.) 

Stereo matching 

Token tracking 

SW impl. I HW impl. 
(Sun3 1 
39.4 s 40 ms 

(filter 11x11) 

120 ms 
(6500 edges) 1 (4 DSPs, 

11.4 s 200 ms 
10000 edges) 

(6500 edges) 1 (4 DSPs, 
1 500 segm.) 

30 s I 200 ms 

(250 segm) (1 DSP, I 250 segm.) 

Table 1: Computational performance of the different 
processing modules compared to a software implemen- 
tation on a Sun3 workstation 

required by the application program, loads the 
correct parameters, coordinates the pipeline acti- 
vation of the modules. 
A portion of the control system is dedicated to the 
MD56 multi-DSPs boards, that can be considered 
as a MIMD machine since each DSP can host dif- 
ferent applicative programs, exploiting the avail- 
able synchronization and communication primi- 
tives. Moreover the 68020 CPU acts as the mas- 
ter processor of the MD56 multiprocessing sys- 
tem, hosting the main of the applicative software 
(polygonal approximation and stereo matching so 

Finally there is the interface towards the host en- 
vironment, composed by a communication pro- 
tocol between the DMA machine and the user 
interface running on the host workstation and a 
command interpreter, which decodes the instruc- 
tions received from the host. 

far). 

Table 1 refers the computation time required by the 
individual processing modules, as compared to a soft- 
ware implementation on a SUN3 workstation. Such 
results refer to  the processing of typical scenes in our 
laboratory environment (mechanical pieces and indoor 
scenes). 

5.3 Free space computation as the upper en- 
velope of the computed 3D segments 

As already mentioned, the basic idea consists in pro- 
jecting the reconstructed 3D segments onto the floor 
(known by calibration) and then process them to  ob- 
tain the free-space navigation map. There are dif- 
ferent ways to  do that. One approach is referred in 
[I21 where a 2D Delaunay triangulation on the ground 
floor is used, to better organize the available data. 

A first step of processing consists in simplifying the 
bunch ofthe projected segments to  avoidlocal clusters 
and intersections, which badly affect the triangula- 
tion process. This Delaunay triangulation is also per- 
formed as a support for further higher level processing. 
In fact in [12] the empty triangles, corresponding to 
free space, are easily identified, through visibility con- 
straints. The corresponding graph, formed by such 
triangles, is used to  generate collision free trajectw 
ries for the robot. Moreover, this representation is 
particularly suitable for an updating process. In fact, 
when new sensory data are acquired from stereovision, 
the ground floor map is updated by including new seg- 
ments into the Delaunay triangulation and the process 
is iterated. An example of the reconstructed map and 
planned path is shown in fig. 4 corresponding to  a 
recent on-line demonstration of the system at INRIA, 
in Nice. 

?alh~lhalgaloal!Ihe 
possible pa$sages 

Partoflhebaundalyof 
the lree space made01 
real ob6laCles 

Projected segments 

Oelaunay Iriaogles w b s e  
centers have been used lo 
vlmpule the palhs 

Pafltolllie boundaryoilhe 
free space lhal is nehher 
a passage nor an obrlacie 

<..e;-  -. @ The goal Ihe r o b 1  must 
reach 

Figure 4: Example of a path computed from the graph 
formed by the free Delaunay triangles. 

Another approach, which has been investigated in [I31 
consists in performing 3D interpolation of the recon- 
structed 3D segments in the scene, through a Con- 
strained Delaunay triangulation (CDT). The purpose 
here is to recover a planar surface approximation of 
the objects close to the robot, using visibility con- 
straints, as a series of triangular patches whose sides 
include the extracted 3D stereo segments. The nav- 
igation map is obtained by projecting onto the floor 
all possible paths across those triangular patches and 
merging them in a lower radial boundary (LRB), com- 
puted from the current position of the robot, which is 
the origin of the polar map. This is definitely the most 
complete and robust approach for the free space com- 
putation, since it makes use of the full perceived stereo 
information, although a t  the price of a high compu- 
tational complexity. Actually an efficient algorithm 
for 3D interpolation has been implemented as a 2D 
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Delauney triangulation on the image plane [14] and 
real time performance may be easily foreseen on suit- 
able processing architectures (it takes about 10 sec- 
onds on a standard SUN3 workstation). To simplify 

way, the obtained map is quite sufficient to plan a safe 
trajectory and reach another position from which t o  
explore again the environment. 

The availability of the previously described hardware 
for 3D stereovision at high speed permits an intense 
experimentation of this tool in a telegnidance mode of 
operation, as referred in section 7. 

p

i 
4 X V 

Figure 5:  Computation of the Lower Radial Boundary 
(LRB), by polar scanning around the viewpoint V. 

this situation, a suboptimal scheme has been adopted 
in our experiments, by computing directly the LRB 
of the free space, without any surface interpolation 
of the scene. This is obtained by a polar scanning, 
around the reference viewpoint on the mobile robot, 
of all projected segments as shown in fig. 5.  The pro- 
cess is incremental and is based on a module which 
performs the fusion of two LRB’s from the same view- 
point. Actually a single segment may be considered as 
a special case of a LRB with a small radial extension. 
The implemented algorithm for the fusion is based. on 
the sweepline technique applied to the intervals deter- 
mined by the endpoints of all segments and their in- 
tersections. The theoretical computational comp1.e~- 
ity of the algorithm is estimated to be quadratic with 
the number of segments, although from experimental 
results a linear dependence has been found. 

Fig. 6 shows the reconstructed map for a scene of 
our lab with a chair, a desk and an industrial robot. 
The line segments in the map have different meanings. 
Solid lines correspond to real edge segments detected 
by stereovision. Dashed lines are virtual boundaries 
due to visibility constraints, since nothing is visible 
beyond them. As such no decision can be taken on 
the free space available in such areas and a next stereo 
reconstruction from another viewpoint is necessary to 
improve both the density of the scene and the confi- 
dence in the reconstructed map. Actually some irreg- 
ularities are detectable in the map expecially for those 
features which are far away from the robot position, 
where the stereovision process is less accurate. Any- 

E Global navigation: Landmark  detection 
and self-positioning 

A common approach to global navigation, that is the 
capability t o  perform complex and long missions au- 
tonomously, consists in programming the robot to fol- 
low a predetermined path by dead reckoning, using 
landmarks or beacons to correct errors in the position 
estimate. Dead reckoning is the estimate of the robot 
position and orientation from measurements of wheel 
motion (odometry). Odometry alone does not gnaran- 
tee to accomplish the navigation task since it suffers 
from several sonrces of inaccuracy such a s  wheel slip 
page, therefore, an external sensor, able to reset every 
now and then odometric errors is necessary. 

Industrial AGVs use generally active beacons in 
shopfloor applications, such as IR laser  canner and 
bar-coded retroreflective targets [3]. On the contrary, 
we claim that in non-industrial indoor environments 
(offices, hospitals) a valid alternative appiroach is r e p  
resented by passive vision which does not need poten- 
tially dangerous laser emissions and high cost for the 
installation of the devices. 

The passive vision approach relies upon landmark, 
that is known scene entities which allow to recover 
the robot position and orientation from their appear- 
ance onto the image (or images). Landmarks can be 
natural entities or objects already present in the en- 
vironment whose position and image appearance can 
be recorded by the robot through a leaning by show- 
ing proceduie. This approach, followed by [5] and 
[15], is the most general and challenging since does 
not require any intervention onto the environment. A 
more conservative but reliable alternative consists in 
the installation of pre-designed landmarks in order to 
simplify their recognition and pose computation. 

Another way to classify passive vision-based self loca- 
tion techniques is on the basis of the technique for the 
estimation of the landmark position: 

stereo-based 3D feature extraction and model 
matching (2 or 3 cameras); 
triangulation of features detected and matched 
in multiple images through robot motion [15] (1 
camera); 
monocular model-based perspective backprojec- 
tion of the landmark (1 camera). 

Our approach relies on the 3D pose recovery of a pre- 
selected landmark from the perspective inversion of 
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Figure 6: a. The original scene; b. The scene map after projection of the 3D line segments onto the ground 
floor; c. The Lower Radial Boundary of the freespace. 



5-10 

its projection on a single image. The main advantages 
over the other self-location methods are: 

there is no need to match features among different 
images; 
no complex generic object recognition is required, 
since the landmark recognition is performed by a 
dedicated procedure; 
the a priori map is very synthetic since there is 
no need for a complete description of the environ- 
ment in geometric terms; in fact a list oflandmark 
positions suffices; 
processing of a single image for each self- 
positioning operation; 

s no triangulation is required and, therefore, a less 
dense landmark distribution in the environment 
is necessary, since there is just one landmark for 
each recalibration point. 

6.1 Landmark  design and the relative self- 
positioning algori thm 

Even if the fundamental property of a landmark is 
the possibility to successfully apply a perspective in- 
version procedure to its image, other desirable char- 
acteristics should be the following: 

detectability in the image by a fast and robust 

robustness with respect to partial occlusions; 
easy and reliable discrimination among different 
instantiations of the same landmark type; 
the achievable accuracy must be good enough to 
allow the reset of odometry errors; 

As such a simple and promising landmark to inves- 
tigate is a circle, producing in the sensor image an 
elliptical edge. 

From a mathematical point of view, the problem of 
the perspective inversion of an ellipse generated by a 
circle in the space, is reduced to find out those planes 
whose intersections with the cone over the ellipse and 
with vertex in the origin are circles (see fig. 7). We 
can only determine the normal to the right planes, 
and not the distance from the origin, because parallel 
sections of a cone are all similar geometric entities. 
The a priori knowledge of the landmark radius value 
allows us to choose among the parallel planes which 
one corresponds to the actual case and, therefore, to 
estimate the landmark-to-robot absolute distance. 

Avoiding special cases, there are two possible nor- 
mals for every ellipse, i.e. two possible sets of parallel 
planes: this intrinsic perspective ambiguity is solved 
by making the assumption that landmarks lie on walls, 
that is surfaces perpendicular to the navigation floor, 
whose pose with respect to the camera can be cali- 
brated. 

A key point is the existence of a a robust and reliable 
method to extract elliptic arcs from image contours. 

algorithm; 

X 1/1 
Figure 7: 3D circle and corresponding projiected image 
ellipse. 

The approach, outlined in fig. 8,  is characterised by a 
preliminary stage of geometric reasoning on the seg- 
ments coming from the polygonal approximation of 
the edge chains of the image. As such it i!; possible to 
deal successfully with outliers and noise of real scenes 
[16]. Then, an ellipticity test is carried out on candi- 
date chains of segments in order to select the contours 
which can be fitted by an ellipse equation. 

In this way the 3D position of the robot is computed 
with respect to a trame of reference centered on the 
current landmark. Hence, it is necessary tO fully iden- 
tify such landmark in order to provide a. global po- 
sitioning of the vehicle in the navigation map. Un- 
fortunately a landmark consisting of a single circle 
cannot guarantee a unique identification, therefore a 
more complex configuration is proposed: the circular 
annulus (see fig. 6.1). 

An invariant physical feature of the landmark is a 
good candidate to be used in identification, the prob- 
lem being how to measure it from images By means 
of the ellipse perspective inversion algorithm it is pos- 
sible to compute the linear relation between the ra- 
dius of a circle and the distance of its centre from the 
camera pinhole; therefore, if we observe two different 
concentric circles we are always able to compute the 
ratio of their radii. If such concentric cirelc: pairs with 
different radius ratios are used as landmarks, the ratio 
between the inner and the outer circle can then be ex- 
tracted independently of the robot pose and used for 
identification. The two concentric circles forming the 
landmark have different purposes: the outer is used 
to determine the pose of the camera with respect to 
it; the inner is used to identify the landmmrk by the 
radius ratio. 
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Figure 8: Flowchart of the ellipse detection algorithm 
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Figure 9: The concentric circles which forms the land- 
mark 

6.2 The landmark based navigat ion strategy 

Mission plans describing possible robot paths are se- 
quences of points of interest that the robot has to  
reach. Each one has a local reference system attached 
to  it and a t  least a recognizable landmark with known 
position in this local frame. With respect to these 
landmarks the robot can estimate its values of posi- 
tion and orientation in the environment. 

During navigation, self-positioning is performed 
whenever, according to odometry data, the robot 
should have reached the supposed destination posi- 
tion. In this case the robot stops and, using its knowl- 
edge about the environment, turns on itself trying to 
acquire the landmark in the field of view of the cam- 
era. 

Through landmark identification and its perspective 
inversion, the mutual rough position estimate is com- 

5-11 

puted and the resulting state vector of the robot is 
passed to the pilot module in charge of planning the 
route towards the next point of interest listed into the 
mission file. If the odometric errors lead the robot out- 
side the landmark visibility region, the landmark de- 
tection module communicates its failure and the robot 
rotates on its own axis in order to search for it. More- 
over, the system robustness is improved by the ability 
to  recognise each single landmark so that even if the 
robot get lost, he can recover his mission by searching 
for the nearest landmark visible in the camera field of 
view. 

7 A comprehensive demonstration of visual 
navigation 

Within the framework of the European research 
project ESPRIT P2502 (VOILA) an experimental 
platform for robotic navigation has been set up. The 
general architecture is based on the following e l e  
ments: 

1. the TRC Labmatea  mobile platform, control- 
lable via an RS-232 serial port. The vehicle is 
equipped with odometric sensors. 

2. Three CCD cameras mounted on an appropriate 
rig; 

3. EMMA2, an ELSAG-made multiprocessor [?I, 
that provides parallel processing capabilities; 

4. a PC 486 equipped with a frame grabber for 
monocular scene analysis, directly connected to 
EMMA2 which acts as the application supervi- 
sor; 

5. the already described DMA vision front-end, 
again connected to  EMMA2 through a dedicated 
parallel interface. 

6. A host minicomputer (Q-bus and VMS operating 
system) to be used as host for EMMA2. 

7.1 Description of the demonstration 

This demonstration is primarily intended to  exploit a 
Teleguidance mode of operation supported by remote 
visual perception. It is worthwhile to  stress the prac- 
tical relevance of many short term applications where 
the presence of the human operator in the loop cannot 
be removed. 

Three visual navigation functionalities are demon- 
strated showing different levels of integration between 
the human operator and the robot. 

According to the kind of operator interface and the 
competencies of the vehicle three subdemonstrations 
are experimented: 

(i) Direct Teleguidance; 
(ii) Landmark-based Teleguidance; 
(iii) Exploration and map building. 
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7.2 Direct Teleguidance 

This demonstration shows the possibility to inspect or 
control an indoor environment with a mobile platform. 
It is not necessary to have a model of the environment 
or to build a global map of it. 

The two principal actors of the demonstration are the 
autonomous mobile robot and a human operator. The 
architecture of the demonstration must clearly distin- 
guish between the local site, where is the human o p  
erator and the remote site, where the mobile robot 
works. 

One CCD camera provides the operator with a display 
of the remote site. Pure teleoperation is limited to  
the interactive choice of the navigation goal through 
a joystick, to select a target point on the digplayed 
scene, as shown in fig. ??. 

I.*"- \ // 

Figure 10: The direct teleguidance concept: the oper- 
ator clicks onto the computer screen the position that 
the robot must reach autonomously. 

This point is backprojected onto the floor, using some 
a priori knowledge about the set-up. Then, it becomes 
the goal of the mobile vehicle, which has to navigate 
to it without any additional intervention of the human 
operator, unless some special events occur. 

During the local navigation to the subgoal the vehi- 
cle will be completely autonomous and will detect the 
presence of unexpected obstacles. The task of obsta- 
cle detection will be performed by the ground plane 
obstacle detector (GPOD) algorithm. When an obsta- 
cle is detected the robot avoids it and tries to recover 
the original path using odometry. Finally, at the end 
of the robot action, the human operator resumes the 
system control and decides a new subgoal. 

7.9 Landmark-based Teleguidance 

Landmarks are very useful also in a Telegnidance 
scheme. The operator's job is simplified if the 
workspace is synthetically described in terms of pre- 
defined landmarks. The robot mission can be con- 
trolled at the Task Leuel by issuing commands like 
go from landmark z to landmark y. 

Moreover, the presence of the operator at a super- 
vision level can be exploited for recovering from un- 
foreseen situations without aborting the mission. In 
particular, the operator can correct the vehicle ori- 
entation whenever the odometric drifts prevent the 
camera from framing the expected landmark or solve 
high level ambiguities in the recognition phase. 

7.4 Exploration and map building 

In this demonstration the robot utilizes the capability 
to recover the free space in order to plan safe trajecto- 
ries towards a given goal avoiding unknown obstacles. 

Here the three cameras are set up in stereo configu- 
ration and connected to the DMA machine real time 
stereovision system which provides a wireframe 3D re- 
construction of the scene. 

The demonstration shows a mobile robot which 
reaches a goal specified by the operator, finding out 
autonomously a collision free trajectory without any a 
priori knowledge about the environment. At the end 
of the run, a freespace map is available proving the 
ability not only to navigate but also to  explore the 
scene. 

As the field of view of the stereo rig is relatively small, 
it is necessary to get a panoramic view of the envi- 
ronment by panning the stereo rig through a robot 
rotation. 

a Conclusion 

The paper refers on the use of artificial vision tools to 
support autonomous navigation of mobile robots for 
indoor applications. Even if we look at the challenging 
scenario of service robotics, the considered examples 
here are referred to a teleguidance mode of operation, 
which is typical of hostile environment applications 
and surveillance tasks. In this case, the human o p  
erator acts as a mission supervisor at an appropriate 
level, depending also from the degree of autonomy and 
safety of the robot action. 

In practical situations the mobile robot will be nec- 
essarily equipped with multiple sensors (lasers, IR, 
ultrasounds, tactile bumpers, etc.) beside vision, to 
obtain the more appropriate solution for the specific 
problem at hand. 

This paper is not intended l o  promote any particu- 
lar industrial or commercial product, nor 1.0 address a 
precise application task. Besides, its aim i s  to investi- 



gate potential advantages, and limitations, of passive 
vision using ordinary TV cameras in different configu- 
rations, to provide different levels of perception com- 
petencies. 

The first level is that of safety, to detect and avoid 
static and moving obstacles and allow the vehicle to  
move also in peopled areas. The second one is the 
exploratory level, to compute the free space available 
around the robot, and apply a short term strategy of 
navigation planning. A further level of competence 
is that of self orientation with respect to the environ- 
ment, using landmark recognition and 3D positioning. 
The most promising control scheme to  fully exploit 
this hierarchy of competencies is the subsumption ar- 
chitecture which is implemented here on a multipr- 
cessor machine. 

Finally the problem of real-time processing is con- 
sidered, with the description of a modular hardware 
front-end unit, able to  perform 3D stereovision at a 
very fast rate (over 1 Hz). 

The achievement of these results has been possible 
only through a fruitful cooperation with many ad- 
vanced research teams from Universities and from In- 
dustries in Europe, within the framework of the ES- 
PRIT programme. Most of these modules are already 
integrated in our development experimental system, 
which represents a very powerful and flexible envi- 
ronment for industrial exploitation of such advanced 
research results. 
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ABSTRACT 

A paradigm for machine perception is presented which 
takes time and 3D space in an integrated manner as the 
underlying framework for internal representation of the 
sensorially observed outside world. This world is con- 
sideredtoconsist ofmaterialandmentalprocessesevolv- 
ing over time. The concept of state and control variables 
developed in the natural sciences and engineering over 
the last three centuries is exploited to find a new, more 
natural access to dynamic real-time vision and intel- 
ligence. A. Schopenhauer's conjecture of 'The world as 
evolving process and internal representation' (1819) is 
combmed with modem recursive estimation techniques 
[Kalman 601 and some components from geometry and 
AI in order to arrive at a very efficient scheme for auton- 
omous robotic agents dealing with evolving processes in 
the real world in real time. Application to autonomous 
mobile robots is discussed. 
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INTRODUCTION 

Webster's Seventh New Collegiate Dictionary gives the 
foUowingdefinitionsoftermsincoMectionwith theword 
'perception': 

Perceive: 1. to attain awareness or understanding of, 2. to 
become aware of through senses. perceDt: an impression 
of an object obtained by use of senses. 
Perception: 1: consciousness; ?.a a result of perceiving; 
observation; 2 b  a mental image: concept; 3a: awareness 
of the elements of environment through physical sensa- 
tion; 3 b  physical sensation in the light of experience; 4a: 
direct or intuitive cognition: insight; 4 b  a capacity for 
comprehension. 
Perceptual: relating to, or involving sensory stimulus as 
opposed to abstract concept. 

These definitions clearly indicate a wide range of mean- 
ings, however, a close linkage to physical sensing in 
general and to vision in special (2b, 3b, 4a); 'objects' as 
'elements of environment' are referred to, as well as to 
the fact that perception is a mentally based activity (3a to 
4b). However,thebottom-up dataprocessingaspects are 
emphasized more than abstract concepts. Definition 3b 
may be the most appropriate one in the context of ma- 
chine perception; with regard to applications, 4b covers 
the task context (see also 'perceive' and 'percept'). 

'Understanding' or 'comprehending' includes knowledge 
about semantical relationship in the context of action 
sequences or goal fnnctions to be optimized. So, percep- 
tion gains its value in connection with control achvities, 
or at least with preparations for future ones. Without the 
capability of control actuation, perception would be 
meaningless (and frustrating?). 
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Intelligent systems are capable of handling complex sets 
of goal functions over time and of taking advantage of 
processes happening in their environment for achieving 
their goals. 

Because of its remote sensing capabfity, the sense of 
vision ist major source of information in our natural 
environment. The state of development of microelec- 
tronics today allows to tackle machine vision as a very 
promisiig next step in the evolution of technology on 
Earth. This section is devoted to dynamic vision as one 
major component in machine perception for locomotion 
control. 

THE DEVEJXPMENT OF TECHNICAL VISION 
SYSTEMS 

Computer vision has evolved from digital image pro- 
cessingover thelastthreedecades.Therefore,itisusually 
embedded in a quasistatic framework of soapshot inter- 
pretation. On the contrary, biologicalvisionsystemsseem 
to have developed for motion detection and control in an 
ever changing physical environment. Are the best suited 
methodsfor both tasks the same or arethere fundamental 
differences? 

In the Artificial Intelligence (AI) commnnity the vision 
problem has initially been tackled as a quasistatic prob- 
lem. Much effort has been devoted to the inversion of the 
perspective mapping process taking several (consecu- 
tive) framesintoaccount;forasurveysee[Nagel83].'rhis 
does not take advantage of the temporal continuity con- 
ditions in the physical world to which all material 
processes are usually subjected. 

In physics, especially in mechanics, powerful methods 
have been developed over the last three centuries in 
order to describe the observed behavior of material 
processes. In engineering, over the last tlree decades 
these methods have been supplemented by features well 
adapted for recursive digital data processing. Recursive 
in this context means that least squares data interpreta- 
tion is achieved step by step as new data arrive. The 
discipline of systems dynamics evolved out- of these ac- 
tivities encompassing aspects of several fields: from sen- 
sor technology, signal processing, control theory and 
design, actuator technology through dynamic behavior of 
systems. 

In this article, the systems dynamics approach is applied 
to the field of visual dynamic scene understanding mo- 
tioncontrolandintelligence. Offthebeatentrackofmain 
stream research into computer vision, this approach has 
been developed over the last decade. Combining well 
proven engineering methods with knowledge from 
geometry (perspective mapping) and some new aspects 
of AI, a surprisigly powerful and efficient scheme for 
the general task of dynamic machine vision using dis- 
tributedprocessingresulted. The basic connectinglinkis 
a very old idea which the German philosopher Arthur 
Schopenhauer conjectured morethan 170years ago ['Die 
Welt als Wde und Vorstellung', 1819, freely translated 
The world as evolving process and intemal repre- 
sentation]. 

Building on I. Kant's basic result from two centuries ago, 
which also formed the foundation for Scliopenhauer's 
conjecture, namelythat space and time are loot attributes 
of objects but are carried into the world through our 
perception and analysis system, it was decided to repre- 
sent space and time directly in the interpretation scheme. 
In addition, the constraint was deliberately imposed on 
the approach that it should work in real timi:, i.e. that the 
computational progress over time is directly linked to the 
progress of the physical process observed and controlled, 
and not limited by the present state of computer hard- 
ware performance. Of course, &is confined the problems 
to be treated considerably in the early 804:s. It had the 
members of the team look at problems in a different way, 
however, and both image processing and scene inter- 
pretation algorithms developed differently as compared 
to the results of other groups who worked under the 
paradigm that the increasing processing power of future 
miroprocessorgenerations will solve all the ]performance 
problems with respect to real time. 

After a decade of steadily increasing complexity of the 
problems solved and with experience in five different 
problem areas, it seems timely to present the approach 
and the basic ideas behind it in a comprehensive way; the 
sevendissertationsinwhichmost ofthematerialhasbeen 
originally published are in German language and, there- 
fore, not readily accessible to the general public. The 
survey article [ D i c k "  and Graefe 881 trilgered much 
interest which was one of the driving factors for wliting 
this document. 

The present article is intended as a general introduction 
to the '4D approach' for all those interested in machine 
vision applications in real world dynamical scenes. Em- 
phasis is put on exploiting knowledge about the physical 
world and temporal processes; image sequences are 
nothing but discrete and systematically impoverished in- 
termediate carriers of information about the spatio-tem- 
poral world. It is the main goal of the article to shift the 
paradigm for dynamic machine vision from more aca- 
demiccomputer science topracticalapplicationsinphys- 
ics and engineering and to the correspondkg methods. 
Practitioners should find it particularly attractive to ex- 
perience the direct connections from this modem, very 
promising field of development to well proven methods 
in conventional applied sciences. 

Resorting to these tools, hopefully, will not have AI-re- 
searchers turn away immediately. It is the blend of 
methods which will lead to efficient machine intelligence 
systems. 

LESSONS LEARNED FROM THE NATURLU 
SCIENCES, MATHEMATICS AND ENGINEERING 

The intention of this approach is not primarily to 
generate some artificial counterpart of what is called 
intelligence, but to enable machines with complex 
sensorysystems andthe capabilityofself-controlledloco- 
motion to get around in the real world in a meaningful 
way; by doing this, some kind of intelligence will emerge 
more as a side effect in a natural way. 



In physics and the engineering sciences mankind has 
learned over the last centuries how to analyse and repre- 
sent natural and artificial objects and processes in the 
environment efficiently. The condensed results of this 
longterm endeavor of interest to the field of dynamic 
vision are reviewed briefly in the following sections. 

Three-dimensional (3D) space and time 
Early geometricians, already millennia ago, discovered 
that the space we happen to live in can be exhaustively 
analysed using three independent coordinates. After the 
more modem French scientist Descartes the orthogonal 
('Cartesian') coordinate systems in wide use today are 
named. 

The relationship between space and time has been more 
obscure for a long time. It was Newton who in the 1741 
century invented the differential calculus and applied it 
to motion analysis. This step in the natural sciences to- 
gether with the introduction of the inverse square field of 
gravity brought about a revolution in motion under- 
standing. After this step the geometrically known orbits 
of planets (Kepler's ellipses) could be linked to a few 
dynamical motion parameters. The time derivative of the 
moment of momentum (the second time derivative of 
position variables in cases of constant mass) was postu- 
lated to be proportional to forces, which in a gravity field 
were in turn linked to position. 

The general description of this famous motion law, which 
despite modem theory of relativity is well justified in 
conventional mechanics still  today, may be written in 
vector notation as C = d( )/&) 

where r_ is the state vector with n components, the 
control vector of dimension r to be freely selected at each 
point in time, and2 the parameter vector of dimension q 
characterizing the special problem. In each degree of 
freedom, since acceleration as the second time derivative 
is proportional to forces or moments, two state com- 
ponents (position and velocity) have to be taken into 
account. Therefore a particle moving freely in 3D space 
has to be described by 12 state variables, 6 for translation 
and 6 for rotation, 3 each for position and velocity. For 
motion in a plane, 6 state variables are sufficient. 

It istheintegralrelationshipfromaccelerationtovelocity 
and from velocity to position which constitutes essential 
(implicit) knowledge about the temporal behavior of 
massive objects in the real world. We humans do not have 
to learn this knowledge consciously, since it is absorbed 
subconsciously during the first =of our lives while we 
learn to crawl and walk and to read to other moving 
objects or subjects properly. Some individuals develop a 
special skill in this respect; they are good sportsmen even 
though they may not be able to explicitly formulate how 
they behave. A wealth of knowledge about the real world 
is acquired and coded in our neural nets this way even 
though it is not yet known how. 

3D shape and perspeetive mapping 
A similar situation may prevail with respect to our 3D 
shape understanding throughvision. Geometric mapping 
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has been applied for many millennia in all cultures 
around the globe. Sensible theories about the vision 
process are less than one millenium old; a nice survey on 
early vision theories is given in piidberg 761. The diffi- 
cult problem in vision is that even though the input into 
data processing is a 2D matrix (spherically arranged in 
the eye or planar in a camera) the conscious interpreta- 
tion should be spatial according to the relative physical 
positions of objects in the real world. For one single 
photographic snapshot this problem cannot be solved; 
much effort in computer vision has been devoted to the 
problem of how many different images are sufficient for 
uniquely reconstructing the spatial scene. 

The law of perspective projection, according to which 
each visible particle emanates or reflects straight-line 
light rays from its spatial position to the receiver, is 
considered to be a sufficientlygood model, discarding all 
side effects of real lenses and mapping devices. 

The shape of real bodies has to be inferred from intensity 
distributions over its visible surfaces and their behavior 
over time during relative motion. Oftentimes, physical 
edgesandregionboundaries onthesurfacelead tointen- 
sityedgesintheimage plane which, whenobservedunder 
steadily changing aspect conditions, may allow the 
proper spatial interpretation (shape from X). 

For the representation of 3D shapes the engineering 
sciences have perfected a 2D representation scheme 
showing parallel projection views from three (or all six) 
mutually orthogonal directions. If the object has a plane 
of symmetry, two (four) of these viewing directions 
should preferably lie within this plane. One or two refer- 
ence axes are usually chosen in such a way that the object 
is oriented in a functionally proper way under normal 
Earth gravity conditions (e.g. a car with all four wheels 
touching the ground plane). Nonunique interpretation 
possibilities (e.g. in concavities) may be disambiguated 
by special 2D cuts through these regions. A skilled and 
trained person can imagine the proper perspective view 
of this object from any aspect condition. For practical 
purposes, only approximately correct 3D views (to within 
a few percent accuracy) are often sufficient for object 
recognition; this can be achieved using relatively simple 
heuristics for fast and efficient computation of the per- 
spectiveimagegiventhe2Dnormalviews.2D sbapeswith 
smoothly curved contours and corners can be efficiently 
represented in a translation, rotation- and scale- invari- 
ant form by Normalized Curvature Functions (NCF) 
[Dickmanm 851 which in turn are easily measurable by 
tangency operations in the image plane. 

Dynamical models of physical processes 
The term 'dynamical model' in mechanics, systems dy- 
namics and control theory means a generic chfferential 
equation description (like in eq. (1)) for some motion 
process. We confine the discussion here to motion of 
massive bodies, be it rigid or elastic. In the case of rigid 
bodies, classical mechanics has shown that the overall 
motion can be decoupled into translation of the center of 
gravity (cg) and rotation around the cg. In the case of 
elastic bodies some deformation may be superimposed 
which in the case of free motion usually is an oscillation 
around a reference shape. 
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For massive rigid bodies, the forces and moments acting 
on a specific body are usually very limited in magnitude 
leading to a characteristic motion behavior over time like 
aballflyingthrough theairin thegravityfie1d;gravityand 
its secondary effects like friction in sliding or rolling 
motion as well as fluid dynamic drag predominate many 
motion processes in the real world. Once these basic 
influences are properly understood (internally repre- 
sented by a model), a prediction of physical motion in 3D 
space becomes easy. Combiningthis with the perspective 
mapping knowledge of the previous section allovrs to 
predict motion appearing in the image plane. Note that 
for the motion in the image plane no similarly simple 
duect models can be given due to the nonlinear perspec- 
tive mapping involved. 

The use of dynamical models enforces the internal rep- 
resentation to be in space and time simultaneously (40). 
Since the image sequence is discretized over time (50 or 
60 Hz corresponding to a video cycle time T' of 2.0 or 16 
u3 ms), this basic cycle time T' or an integer multiple T 
thereof is used to transform the differential equation (1) 
into a difference equation leading to a state transition 
matrix A and a control input matrix B 

which yield avery compact knowledge representation for 
the temporal evolution of physical processes in the real 
world. Note that in the second additive term on the right 
hand side the effect of control action is contained; this 
makes this type of representation especially attractive 
since it allows to include the intelligent motion control 
part into the prediction scheme. For more long term 
prediction, probably for investigating the effect of some 
future control time history of the own vehicle (maybe 
even several alternatives thereof) this eq. has to be eval- 
uated as many times as requested into the future, thereby 
allowhg a simple means for temporal reasoning. Entire 
action sequences may be investigated (simulated) this 
way before decision taking. 

State and control variables, process parameters 
In an efficient description of real world processes there 
are three types of variables involved 

1. Those which can be changed at any time at will: e.g. 
steering wheel turn rate of a car, voltage applied to an 
electromotor, force applied to an aircraft control 
stick, throttle position of an engine. These variables 
are called control variables u(t). 
Note that this d e f ~ t i o n  is somewhat arbitrary: If the 
force applied to an aircraft control stick is such that 
the desired control stick position is reached before 
the aircraft starts moving in its eigenmodes, the con- 
trol stick position could have been chosen as the 
control variable (as has been done with the engine 
throttle). The essential point is that the control mo- 
tion has to have a dynamic behavior at least one order 
of magnitude faster than the controlled process. 

2. Those variables which can not be changed directlybut 
which only evolve over time: these are the socalled 
state variables x(t). Their evolution over time is as 
characteristic for an object in the temporal domain as 

shape is in the spatial domain. Exploiting this knowl- 
edge about moving objects in addition to shape con- 
stancyresults inmuch more efficient recognition and 
tracking schemes for moving objects. Note that the 
spatial velocity components of objects we state vari- 
ables in this sense; again, this is a strong argument for 
favoring an internal representation in 3D space and 
time via dynamical models. 

3. Variables which are fixed over periods of time and 
which may be selected at some discrete point in time, 
including the system design phase: sotded system 
parameters p. % i d  examples are shi gear posi- 
tionin a car, landing flap positionin anaircraft, switch 
positionsetc. and the constantsin the sysitemmatrices 
A and B. This set of system variables can be con- 
sidered constant over time for short term motion 
behavior even though there may occur a[ slow change 
due to wear and tear or environmentall effects like 
temperature or humidity. 

Knowledge about a dynamical system is firstly coded in 
the set of parameterse and the structure of the matrices 
A and B as well as their numerical entries. Equally im- 
portant in the temporal domain is, however secondly, 
knowledge of how the system is going to bebave with 
respect to its state variables in response to ;some control 
input over time. Especially, the question of how a desired 
set of state components can be achieved (efficiently by 
appropriate control input time histories iis practically 
relevant; the entire field of 'optimal control theory and 
application' is devoted to this problem. Mathematicians 
have developed the calculus of variation for this purpose 
[Euler 17441 and the 'Maximum principle' [IPontryagin et 
al. 621, which especially in aerospace engineering but also 
in many other fields has important andwidespread appli- 
cations since the time that digital computers allow to 
solve the corresponding diffcult numerical problems 
[Bryson, Ho 751. 

To intelligent agents the control variables are of special 
importance since they constitute the only means through 
which any influence can be exerted on an evolving 
process in the real world. Discretely selectable parame- 
ters like a switch or flap position may b'e viewed as 
'control parameters' and handled correspondingly. Con- 
trols in this sense are the extremely important parts of a 
system where 'a free will' working on information col- 
lected by sensors can exert an influence OIL the process 
under control. The provocative term 'free will' will be 
discussed later. 

Feedforward and feedback control loops (qybernetics) 
When an experienced person drives a car and wants to 
switch lane on a highway she or he implements an ap- 
proximately sinusoidal steering wheel maneuver over 
time without thinking about it. The amplitude and the 
time rate are adjusted in such a way that the car finishes 
this maneuver approximately in the center of the new 
lane. This can be done in one smooth overall maneuver. 
A beginner, on the contrary, since unfamiliar with the 
behavior of the car, will tend to use small incremental 
control inputs and observe the reaction of tlhe car which 
in turn will lead him to select the next control input step 
until the car will fmally also end up in the new lane, 
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Measurements usually are noise corrupted. Therefore, 
good state estimation can only be achieved when pro- 
cessing many more data than are minimally required. A 
brief sketch of the historical development of this tech- 
nique is given in the following subsections. 

Gauss's model based least squares scheme for measure- 
ment interpretation: When the structure of the motion 
trajectory is known in advance like for ellipses in 
planetary motion around the central star, this knowledge 
can be used efficientlyin order to smooth noisymeasure- 
ment data. Themathematician KEGauss has introduced 
the technique offitting curves ofknom structure to noisy 
databyminimidngthesumofthesqwesoftheresidues. 
This has lead to much improved accuracies in orbit de- 
termination and general curve fitting. 

Note, that this improvement is achieved by using solution 
curves of motion processes, and that a set of measure- 
ment data has to be batch-processed at a time. 

From genetic solution curves to merentia1 equation 
models: If the goal is to have good actual motion state 
estimates while motion is in progress one would like to 
have a scheme which gives an incremental update at each 
point in time when new data become available. If the 
process observed can be influenced by control input, no 
a priori structure for the solution curve can be given. In 
these cases, instead of exploiting solution curves the 
underlying generic differential equations are more ap- 
propriate. For the linear case with known noise statistics 
[Kalman 1960) has given a recursiveleast squares scheme 
which allows optimal state estimation from a reduced set 
of output measurements. Space does not allow to go into 
details here; the interested reader is referred to [May- 
beck791. The known system structure of eq. (2) allows to 
recover state components which are not directly 
measured by substituting structural knowledge for 
missing measurements, observability given. The error 
covariance matrix plays an important role in this process 
and maybe exploitedfor the removal of outliers, thereby 
stabiliang the interpretation process. 

The big advantage of this recursive state estimation 
scheme is that always onlythelastmeasurements are used 
for updating the best estimates without the need for 
storing previous data, which is especially rewarding in 
image sequence processing where each image comprises 
enormous amounts of data (105 to 106 Bytes). The result 
of all previous data is the present best estimate for the 
state vector of objects and the covariance matrix corre- 
sponding to a storage requirement in the order of mag- 
nitude 102 per object tracked. 

Extended and sequential (numerically favorable) recur- 
sion schemes: In the case of nonlinear components in the 
system description, the socalled extended Kalman filter 
has been developed based on linearisations around the 
actual reference point. 

In order to keep the covariance matrix symmetric, the 
upper triangle factorization UDP has been introduced 
pierman 75; Maybeck 791. It is numerically more effi- 
cient and stable and is being widely used. 

however, much later and without a smooth control time 
history. The experienced person since knowing the tem- 
poral response of the car to a 'feedforward control' time 
history made use of this knowledge leading to better 
performance; the beginner observing the actual discre- 
pancy between desired and actual state used the differ- 
ence in some way to feed the control input according to 
some rule (e.g. a constant factor times the negative differ- 
ence). 

By applying a 'feedback control law' the behavior over 
time of the controlled vehicle is fixed, but modified rela- 
tive tothe'opeu1oop'-behaviorwithout any controlinput. 
The actuator need not be a person but may be some 
suitable technical subsystem like an electro-motor or an 
hydraulic actuator leading to an automated system. 

Control engineering and mathematics have developed 
theoretical and numerical methods which allow design- 
ing closed-loop systems with complex eigenbehavior. Lit- 
erature abounds in this field; just one among many others 
is [Kailatb 801. 

Dynamic sytems design 
With the powerful digital microprocessors available 
today, combinations of event-triggered parameterized 
feedforward control time histories and robust feedback 
control laws for different subtasks allow the development 
of very flexible and high performance automatic systems. 

Even though the theories developed are mostly based on 
the assumptionofa linear systemdescription, averylarge 
percentage of the generally nonlinear 'plants' (the tech- 
nical systems to which automation is applied) can be 
handled this way since linearisations around the actual 
reference point usually are s&icientlygood approxima- 
tions to the system, especially since feedback controllers 
keep the system actively in this domain by their function- 
ing. By adding a system identification component, the 
temporal change of system parameters can be detected 
and the control scheme may be adjusted accordingly 
without human intervention. 

Modem trends go towards coupling automatic control 
systemswithexpert systemsinorder toimprove flexibility 
and robustness of the overall system under a wide variety 
of operating conditions. The system discussed in the 
sequel for real time machine vision may be subsumed 
under this category. 

Kalman's recursive state estimation technique 
For interpreting measurements, modem control systems 
theory has deviced an elegant scheme, how optimal esti- 
mates of the actual state of internally represented objects 
from the real outside world may be arrived at in an 
efficient way exploiting dynamical models about spatio- 
temporal relationships of the processes involved. It al- 
lows recovering the full state vector even in cases where 
only partial measurements of some output variables can 
be taken. These output variables have to be linked to the 
state variables by some smooth functional relationship. 
This scheme is extremely well suited to vision processes 
where the depth component is systematically lost during 
imaging and where partial occlusions are more the rule 
than an exception. 
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If the state update is computed every time one single 
measurement component is acquired, the use of two-di- 
mensional arrays in the programmaybe reduced, leading 
to faster execution. In addition, this scheme allows an 
easy adjustment for image sequence processing in the 
case where - due to occlusion or some other canse .. the 
number of measurement components varies from frame 
to frame. In our software, this feature has been adopted 
as a general standard [Wuensche 88, Christians 89, Mys- 
liwetz 901. 

Real-time vision, in our approach, is considered to be a 
measurement process with remote access to the system- 
atically transformed object state (by perspective projec- 
tion); identitication of the object has to be achieved 
simultaneously with the determination of the motion 
state. 

For image sequence processing, the reeursive estimation 
scheme had to be further extended for the nonlinear 
perspective mapping of point and line features. In addi- 
tion, the relationship between the dynamical model for 
cg-motion and the position and orientation of features on 
the surface of the body had to be incorporated. The 
resulting overall scheme will be described next. 

STIMULI FROM PHILOSOPHICAL THOUGHTS; 

Humans with their capability of locomotion and complex 
information processing may be considered as very com- 
plex dynamical systems with a mental component by far 
not yet understood. Philosophers for millennia have tried 
to understand human performance in different fields. 
The natural sciences joined in this endeavor since more 
than three centuries in a more systematic fashion, but still 
one is way from having satisfactory answers, though tnn- 
siderable progress has been made recentlywith the help 
of information processing technology. 

On the basis of Newton's laws of motion and the ,new 
understanding oftime, Kant inthe lS-thcentury clarified 
the situation in philosophy by his main works 'Critiques 
.....' [Kant 1780-iesI to a considerable extent. He sepa- 
rated space and time from attributes of objects granting 
the former ones a special basic quality. He also intro- 
duced a clear distinction between a material object (the 
'thing by itsew = "das Ding an sich" (m German)) and a 
human's notion about this objcct. The succeeding 'Ideal- 
ist'-philosophers at the turn from the 18-th to the 19-th 
century may have turned world interpretation 'upside- 
down' by giving ideas priority over matter and over the 
outside world; at least, this was Schopenhauer's impres- 
sion. In an attempt to put the world from this position 
'back onto the feet again', he speculated about the inter- 
dependence between the material processes in the world 
and mind. The basic idea behind the second part of his 
book title 'The world as will and internal representatilon' 
[Schopenhauer 18191 may be considered to be a major 
breakthrough in concepts about cognition. 

This basicidea has been adopted as the focal point in our 
approach to machine vision irrespective of all previous 
philosophical and psychological controversy. It is not 
intended to get involved into this discussion as far as 

humans are concerned; however, this idea has been - 
probably for the 6rst time - put to work in the context of 
cognitive machines. 

Let us assume there is a material world to which an 
autonomous agent, say based on a conventional wheeled 
road vehicle, itself being part of this world, has limited 
access (withregardtophysicalstatemeasurements).This 
may be achieved through a multi-sensor system encom- 
passing properly calibrated odo- and velocimeters, sen- 
sors for control inputs, inertial scnsors for translation 
(accelerometers) and rotation (angular rate and position 
sensors), a microphone for audio-input and imaging sen- 
sors in some spectral bands. All these signals are fed into 
a computer system with properly suited dala processing 
programs. 

The autonomous system is assumed to be endowed with 
all the relevant knowledge components discussed in the 
previous section. Provision has been taken that the engine 
is running, the sensory and motor control systems are 
operative and that there is enough computing power 
available for properly processing the sensory data; the 
computer system has access to the control actuation 
subsystems (even including voice output, say). 

The yet open question is: Is it possible to generate an 
overall system capable of demonstrating a behavior 
which is qualitatively similar to that of intelligent 
humans? 

THE INTEGRATED 4D APPROACH TO DYNAMIC 
VISION 

The main goal of this approach from its beginning in the 
early 80-ies has been to take advantage of the full spatio- 
temporal framework for internal representation and to 
do as few reasoning as possible in the image plane and in 
between frames. Instead, temporal continuiry in physical 
space according to some model for the motilm of objects 
is being exploited in conjunction with spatial shape rigid- 
ity in this 'analysis-by-synthesis' approach. 

Basic scheme 
Dynamical models link time to spatial motion, in general. 
The shape models exhibit the spatial distribution of visual 
features on the surface which allow objects to be recog- 
nized and tracked. In order to exploit both types of 
models at the same time, the prediction error feedback 
scheme for recursive state estimation developed by Kal- 
man and successors has been extended to image 
sequence processing by our group [ICalman 60; 
Wuensche 881. There are so many publications on this 
approach that only a short summary will be given here 
(see e.g. the survey article [Dickmanns and Graefe 881). 

Figure 1 shows the resulting coarse overall blockdiagram 
of the vision system based on these principles. To the left, 
the real world is shown by a block; control inputs to the 
ownvehicle may lead to changes in thevisual appearance 
of the world either by changing the viewing direction or 
through egomotion. The continuous changes of objects 
and their relative position in the world over time are 
sensed by CCD-sensor arrays (shown as con1;ergbg lines 
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Figure 1. Basic scheme for 4D-image sequence understanding by prediction error minimization 

to the lower right, symbolizing the 3D to 2D data reduc- 
tion). They record the incoming light intensity from a 
certain field of view at a fixed sampling rate. By this 
imagingprocesstheinformationflowis discretizedintwo 
ways: There is a limited spatial resolution in the image 
plane and a temporal discretization of 16 2/3 or 20 ms 
(due to the different video standards), usually including 
some averaging over time. 

Instead of trying to invert this image sequence for 3D- 
scene understanding, a different approach by analysis 
through synthesis has been selected, taking advantage of 
the available recursive estimation scheme after Kalman. 
From previous human experience, generic models of 
objects in the 3D-world are known in the interpretation 
process. This comprises both 3D shape, recognizable by 
certain feature aggregations given the aspect conditions, 
and motion behavior over time. In an initialisation phase, 
starting from a collection of features extracted by low 
level picture element (pel) processing (lower center left 
in fig. l), object hypotheses including the aspect condi- 
tions and the motion behavior (transition matrices) in 
space have to be generated (upper center left in fig.1). 
They are installed in an internal 'mental' world repre- 
sentation intended to duplicate the outside real world. 
After the philosopher K.Popper this is sometimes called 
'world;?', as opposed to the real 'world-1'. 

The initialisation is the most difficult part and has been 
solved for well defmed simple problems only. A more 
general capability is being developed presently. It con- 
sists of both data driven bottom up and model driven top 
down components cooperating over time as discussed in 
the next section. 

Once an aggregation of objects has been instantiated in 
the world-2, exploiting the dynamical models for those 
objects allows the prediction of object states for that 
point in time when the next measurements are going to 

be taken. By applying the foMlard perspective projection 
to those features which will be wellvisible, using the same 
mapping conditions as in the TV-sensor, a model image 
can be generated which should duplicate the measured 
image if the situation has been understood properly. The 
situation is thus 'imagined' (right and lower center right 
in fig. 1). The big advantage of this approach is that due 
to the internal 4D-model not only the actual situation at 
the present time but also the sensitivity matrix of the 
feature positions and orientationswith respect to all state 
component changes can be determined, the socalled 
Jacobian matrix (upper block in center right, lower right 
corner). This need not necessarily be done by analytical 
means but maybe achievedwithlittleprogrammingeffort 
by numerical differentiation exploiting the mapping sub- 
routines already implemented for the nominal case. 

This rich information is used for bypassing the perspec- 
tive inversion via recursive least squares filtering through 
feedback of the prediction errors of the features. Unfor- 
tunately, space doesnot allowtogointomoredetails here 
(see p i c b a n n s  and Graefe 881). 

This approach has several very important practical 
advantages: 

- no previous images need be stored and retrieved for 
computing optical flow or velocity components in the 
imageplaneasanintennediatestepintheinterpreta- 
tion process, 

- the transition from signals @el data in the image) to 
symbols (spatio-temporal motion state of objects) is 
done in a very direct way, well based on higher level 
knowledge, the 4D world model integrating spatial 
and temporal aspects; 

- intelligent nonuniform image analysis becomes 
possible, allowing to concentrate limited computing 
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resources to areas of interest known to carry mean- 
ingful information; 

- the position and orientation of well visible features 
can be predicted and the feature extraction algo- 
rithms can be provided with information for more 
efficientlyfinding the desired ones; outliers can easily 
be removed thereby stabilisig the interpretation 
process. 

- viewing direction control can be done directly in an 
object-oriented manner. 

Processing a variable number of features measured from 
frame to frame is alleviated by using the sequential fdter- 
ing version. For improving numerical performance, the 
UD-factorized version of the square-root-filter is used 
[Bierman 751. Details may be found in wuensche 88, 
Mysliwetz90; Bierman V, Maybeck791. By exploiting the 
sparseness of the transition matrix in the dynamical 
model a speedup may be achieved. 

'Iivo interpretation phases have to be distingnished First 
the initialisation phase when no previous knowledge 
about the scene is available, and second the continuous 
tracking phase, when objects have been recognized and 
their future behavior is being observed. 

From features to physical objects in space and time 
In the first phase, usually not time critical, like initialisa- 
tion while at rest, regions in the image are systematically 
searched for feature groupings indicative of some known 
object (lower center of fig. 2). From the collection of 
features found, object hypotheses have to be generated 
as to which objects are being viewed under which aspect 
conditions. 

Depending on the task context the higher levels to which 
the results of feature extraction are reported have to 
come up with hypotheses for generic objects fitting these 
data by proper parameter adjustment. Several such hy- 
potheses will usually be generated. They d o w  to make 
specific predictions as to where which other features 
should be found if the hypothesis is correct. Checking 
these predictions over time, the best hypothesis will 
hopefully be arrived at by eliminating the less likely ones. 

With this information, suitable dynamical models to- 
gether withbody-shapes and aspect conditions have to be 
instantiated in the recursive estimation loop (shaded 
blocks in center of figure 2, started by the right column 
of the inverted U-shaped outer frame). The dynamical 
models are then used to predict the cg-motion and body 
rotations around the cg. This information is combiied 
with geometrical shape in order to determine the spatial 
position and orientation of well visible features. Their 
positionsin theimage plane are predictedandthefeature 
extractors in the image processing system are directed to 
these regions and orientations ('geometric reasoning- 
block in lower center right of fig. 2). 

The differences between measured and predicted fea- 
ture data are used in conjunction with the filter gain 
matrix in order to update the predicted state variables 
after removal of disturbances recognized (upper right 

center in fig. 2). The temporal sequence olerrors is also 
used for checking the validity of the hypotheses underly- 
ingthe actual recursive computation.If consistently poor 
predictions are obtained, the corresponding hypothesis 
has to be adjusted; this may concern shape components, 
parameters in the dynamical model or the complete 
model. This part up to now has been implemented in a 
rather rudimentary form. For more compllex dynamical 
scenesthantheones treatedup tonow, anolbject oriented 
data base (in the computer science sense) for a variety of 
physical objects ( i  the common sense) has to be imple- 
mented; this work has just been started (upper right 
corner in fig. 2). 

A dynamical model has to be instantiated for each physi- 
cal object capable of being moved. In road vehicle 
guidance this is not only the ego-vehicle and other ve- 
hicles but also the road, the appearance of which varies 
while driving upon it, at least in the general case with 
horizontal and/or vertical curvature. This is indicated in 
fig. 2 by the perspectively shown multiple boxes in the 
recursive center part. 

The state of several objects in conjunction with en- 
vironmental parameters and the active god function of 
the ego-vehicle constitute a situation, to be discussed 
below. After recognizing the situation (center of upper 
bar in fig. 2) control modes or actual control time histo- 
ries may be selected and implemented in an efficient way. 

Reflex-like egomotion behavior 
Since in the internal representation scheme. chosen both 
thespatio-temporalstatevariables andthe controlsat the 
disposal of the system are explicitly represented, it is 
straightforward to apply the concept of state variable 
feedback in order to obtain optimal behavior for well 
defined tasks. Modern control theory provides the pro- 
ven background for this approach. For each class of tasks, 
like lane following, convoy driving etc. in visual road 
vehicle guidance, a special feedback controll law tuned to 
the actual dynamic parameters of the vehicle yields a 
characteristic behavioral mode. 

Since the computation required is but a matrix-vector- 
multiplication, this simple operation can be done addi- 
tionally at the lower level where the recursive state esti- 
mation is performed, thereby alleviating the higher levels 
from any involvement in higb frequency control computa- 
tion; in addition, this eliminates the incremental time lag 
which would have been introduced by the communica- 
tion between the hierarchical levels required. With this 
workload sharing the higher levels may run at consider- 
ably lower cycle times (limited only by the requested 
lumped reaction time delay to some event requiriig con- 
trol mode switching). For systems with dynamical capa- 
bfities in the range of humans, several hundred millisec- 
onds reaction time delay may be acceptable, while the 
recursive state estimation with reflex-like feedback con- 
trol may run at 40 to lu) nu cycle time (two to six video 
cycles) typically. 

In case a new event in the outside world requires special 
action, like the detection of an obstacle in the lane at a 
certainlook-ahead distance, the upper decisionlevel may 
trigger some predefinedfeedforward control time history 
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Figure 2. Gross flow chart of the 4D approach to real-time vision 

(left in fig.2) with a set of parameters known to be able to 
deal with this new situation (for example either braking 
or lane changing). 

Theconceptsup to thispointhavebeenimplementedand 
proven to be very efficient computationally and robust 
enough for real world applications. The following sec- 
tions deal with extensions under way and planned for the 
near future. The integrated 4D internal representation 
including time derivatives of state variables and the effect 
of control actuation over time yields a rich background 
for action planning and prediction of possible future 
evolution of the situation. Thus, based on fast forward 
simulation, temporal reasoning becomes relatively 
simple and complex situations may be handled in a 
straight forward manner. 

Objects, subjects and situations 
Before dealinginmore detail with the notionof situations 
a brief review of the concept of subjects as introduced in 
p i c k "  891 will be given: Mobile entities in the ob- 
served outside world may be classified according to the 
fact whether or not they have the capability of activating 
some locomotion or perception system control at their 
disposal.There existsalargevarietyofsystemswithmany 
shades of sophistication. Those which perform internal 
sensor data processing in such a way that control actua- 
tion is not directly coupled to measured data will be 
called 'subjects'. They are separated from the rest called 
objects (proper) because they require additional (mter- 
nal or 'mental') state variables in order to completely 
describe their state. (Deliberately, no attempt is made to 
remove the grey zone implicit in this definition.) 

For most real autonomous systems it will be impossible 
to determine their internal state completely. For most 
practical applications it will be sufficient to grossly know 
that part of the internal state of an autonomous partner 
which is relevant for the task at hand. This may be its 
actual 'view' of the situation, its actual goal function (or 
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system of goal functions together with a likely control 
strategy) and its way of arriving at decisions in the situa- 
tion as perceived. 

Since usually all control decisions are based on more or 
less inexact estimates and since too many parameters of 
other systems are incompletely known, it seems wise to 
refrain from computing too detailed expectations of 
other subjects'behavior but only prepare reactions to the 
most likely ones; careful observation of the development 
of motion trajectories of the physical body of other sub- 
jectswillgiveindicationsofitslike1yintentions.The most 
likely behaviors to be expected may be derived from 
decision and control strategies which oneself would 
adopt in the other subject's situation. 

This way of defining a situation is in agreement with the 
one proposed in pagel 881. Here however, the state of 
the objects and subjects is assumed to be known as good 
as possible through the recursive estimation scheme, and 
one is looking for a suitable control decision, the effect 
of which on the future evolution of the situation can be 
predictedby utilizingthe dynamical models for all objects 
and subjects involved (assuming likely control inputs). 

Mental states and intelligence 
For an independent outside observer the internal repre- 
sentation of objects and their states in another subject 
constitute an increase in state variables of the entire 
system since the other subject may base control decisions 
on its actual 'view of the world'; these 'mental' states will 
then have their effect on the physical world when the 
resulting control action starts changing the real physical 
state of objects in the world. Therefore, these mental 
states are decisive factors in understanding situations; in 
the German language the word Wrklichkeit', usually 
translated as a synonym for 'reality', allows a different 
interpretation including these action-consequence ef- 
fects: Ideas too may be part of 'realiw in the sense of 
'Wrklichkeit' since they may effect changes in the evolu- 
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tion of processes in the real world. (The word 'wirken', 
from which Wxfichkeit is derived, means 'to effect 
changes or reactions'.) 

Fixing the way how intemal representations are arrived 
at, when sets of input data are given, therefore, is a 
decisive factor in the design and shaping of cognitive 
systems. [Maybe the hard core of human cultures, essen- 
tially, is an equivalent to this process on a very sopllisti- 
cated level.] The richer an intemal representation can be 
made by linking incoming data to predefined interpreta- 
tion structures or to previously stored experience with 
different types of objects and subjects, the better will the 
system be able to deal with a variety of situations in the 
sense of achieving its goals despite perturbing factors. If 
rich interpretational schemes are available, a cognitive 
system may recognize situations or courses of actions 
from short subsequences, and it maybe able to react early 
in an efficient, god oriented way. 

This capability seems to be at the core of the ancient 
definition of intelligence: The word 'intelligence'was 
claimed to have originated from the Latin verb 'inter- 
legere' meaning to be able to read in between of lines: 
those facts or hints which are not explicitly written down 
but which can be concluded from the context. "slated 
to the more modem usage of the word this would mean 
that a system could be called intelligent if it is able to 
recopize an action or a process sequence, especially a 
future one, from partial observations onlx given an early 
correct interpretation, such a system would be able to 
also act early and adequately and to have advantages over 
lower performance competitive systems. This interpreta- 
tion seems to be in agreement with the general usage of 
the word intelligence in everyday life. Note that this 
interpretation is a quite natural outgrowth of the basic 
approach taking spatio-temporal representations and 
the definition of controls in this context into account. 

Especially with the sense of vision it is possible to appre- 
hend situations 'at a glance' if typical arrangements of 
objects and subjects and short but typical action fiag- 
ments can be observed. This, however, is only possible if 
the temporal domain is adequately represented by 
proper models 

SYSTEM ARCHITECTURE BASED ON THE 
INTEGRATED 4D APPROACH 

In our vision system the main sensors are two passive 
monocular imaging arrays (CCD-cameras, black and 
white) mounted on a two-&-platform fixed to each 
other with a given relative orientation. Their viewing 
direction can be controlled by the interpretation system 
according to its needs in the actual context; the controller 
is integrated into the image processing system. 

Based on the concepts discussed above the system 
developed also has a temporal structuring besides the 
usual structuring with respect to subtask hierarchies; 
both aspects will be discussed in the following subsec- 
tions. 

lkmporal structuring 
Video signal processing of course is linked to the 50 Hz 
video frame rate; this yields the basic cycle lime of 20 ms 
for image feature extraction ofwhich all slower cycles are 
integer multiples. The only faster cycle up ito now is the 
viewing direction control for active vision end s t a b i -  
tion; it may use inertial angular rate signals at a small 
fraction of the video cycle time (typically 5 im). 

Recursive state estimation is done at the rate necessary 
for control computation: If the vision based automatic 
system is expected to have about the same djmamic range 
as the human operator, its comer frequency should be 
around 2 Hz W g  sampled control theoryilnto account, 
this results in a reasonable sampling frequency of 10 to 
25 Hz yielding basic control cycle times from 2 to 5 video 
cycles (40 to 100 ms). The largest value means at a speed 
of 30 m/s (108 W) a new image every 3 meters, the 
smallest every 1.2 m. This is considered to be sufficient 
irrespective of the computing power available. 

At this rate the complete physical state of aU interesting 
objects is being recursively estimated. Using state feed- 
back control laws, behavioral competences of the auton- 
omous vehicle can be realized for different tasks and 
situations by simple matrix vector multiplication. This 
provides the vehicle with fast reflexlike behavioral modes 
without having to resort to the higher knowledge levels. 

situation Bnalysls; 
control mode 
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Figure 3. ctable fast, reflex like feedback control determination with trigered feed forward components; 
situation dependent control mode decision 
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Figure 5. Temporal structuring for details of internal representation (qualitatively) 

This temporal integration of perception is considered to 
be an essential component of learning temporal motion 
behavior like step responses and eigenfrequencies of 
objects and subjects in the real world. 

From the representational point of view, it corresponds 
to establishing the link between the differential repre- 
sentation valid for the point 'here and now' and the 
integral representation of resulting maneuver elements 
based on some stereotypical control input time history. 
The result of parameterized stereotypical control actions 
can thus be represented by a few symbolic parameters 
linking by a maneuver element two discrete states tem- 
porally well apart; an agent capable of understanding 
these symbols in connection with dynamical models and 
the temporalintegration procedure may manipulate a set 
of these elements in a quasistatic manner into a proper 
sequence in order to achieve some overall mission. This 
is the approach usually taken in AI motion planning, 
however, very often without caring about the underlying 
dynamical control aspects. 

For fast, efficient and smooth control of processes in the 
real world this underlying (in biological systems mostly 
implicit) knowledge has to be exploited; the 4D-ap- 
proacb provides exactly this link (which our human 
neural net builds up during early phases of (nonbtel- 
ligent) life in childhood). 

Up to now the designer has built these capabilities into 
our technical systems. However, no principial difficulty 
canbeseeninprovidingamore advancedsystemwiththe 
proper tools available in the engineering community for 
developing this on their own. 

These activities may run in parallel on additional proces- 
sors using software packages developed in the field of 

control engineering, system analysis and systems identi- 
fication; the resulting parameters may be. used in the 
decision and control processes thereby allcwing adapta- 
tions to changing situations and environmental parame- 
ters (for example roads on a winter afternoon turning 
from wet to icy). 

In the long run, even more deeply structured temporal 
activities may be considered Given the availability of 
proper software, the systemmayworkon storeddatatime 
histories during periods where computing power is not 
needed for actual locomotion control (m parking condi- 
tion). Several alternative control time histories and the 
resulting values of the goal function may be evaluated by 
simulation with the dynamical model available, for the 
situation considered. Tbis 're-thinking' of situations with 
a reference outcome meanwhile known, may lead to 
changes in decision parameters for future action, consti- 
tuting one component of learning. Another form may be 
the retrospective comparison of maneuvers performed in 
similar situations with different control options showing 
the relative performance achieved; this would be the 
learning of appropriate behavioral decisions. 

'If.pically during this process, the amount of data to be 
stored is reduced considerably leading ti> condensed 
descriptions of system characteristics (class properties, 
learning about facts and appropriate behavioral parame- 
ters). These characteristics, nsually, are no more state 
variable time histories but system and control parameters 
or condensed average state descriptions (e.g. mean 
values, variances). 

In this way, the 'present awareness subsystem' based on 
differential representations in the 4D-approach working 
around the point 'here and now' (central blob in figure 5)  
can be exploited in several directions by the knowledge 
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based subsystem shown in the rectangular box to the 
lower left; the latter one represents integral effects 
derived from experience over time for specific situations 
and tasks. 

Expectation based data fusion 
When a complex perception system fed by different sen- 
sors with different delay times in the data processing 
pipeline has to deal with the realworld, control decisions 
should be taken based on situation assessment for one 
single point in time. A control output to the real world 
can only be effected at the temporal point 'now'. 

Knowing what the time delay in the control actnation 
sequence from decision taking to real world implemen- 
tation is, and having temporal (dynamical) models for the 
process to be controlled available, it seems to he wise to 
exploit thesemodels for making predictions of object and 
subject states exactly for the point of control implemen- 
tation. If all measurement takings are geared to the same 
point W, an especially efficient system design results. 

The different time delays in the data paths may now be 
compensated by corresponding numbers of prediction 
stepsapplying the object specific dynamicalmodels. With 
redundant data sets the Kalman filter approach allows 
recursive least-squares-error data interpretation exploit- 
ing knowledge both about the real world process and 
about the various measurement subprocesses. Removal 
of outliers exploiting the covariance matrix helps stabiliz- 
ing the interpretation. 

Hierarchical structuring 
With respect to behavior control, in fig. 4 the resulting 
hierarchical scheme has been given. Table 1 shows the 
hierarchical structuring with respect to measurement 
and scene recognition aspects. No special low level image 
preprocessing is performed; instead, the algorithm for 
feature extraction on the basis of controlled correlation 
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[Kuhnert 88; Mysliwetz 901 are designed in such a way as 
to exhibit good noise reduction properties. Mainly, edge 
element and corner features have been used up to know. 
There is no final decision made with respect to 'optimal' 
featuresbasedonbottomupdataonly; acceptedfeatures 
for object interpretation are selected on the basis of an 
overall 'Gestalt'-idea derived from perspective mapping 
of an internal 3D shape representation (second line from 
bottom in table 1). At the single object level, time is 
introduced via the dynamical models for 4D repre- 
sentation; up to now, no interframe differencing as in 
optical flow has been applied. The future has to show 
whether this type of image sequence processing will be 
necessary at all. (It is well known that nature in its bio- 
logical systems does make me of it; this has triggered 
quite a bit of activities in this area also for technical vision 
systems. Whether and under which circumstances this is 
advantageous has yet to be determined). In our approach 
a 'virtual optical flow' for features is computed on the 
basis of the internal spatio-temporal representation and 
perspective forward projection. 

The levels discussed up to now have been implemented 
in the image sequenceprocessingsystemBW-2IGraefe 
85; Mysliwetz W] and more recently in a transputer net- 
work [Thomanek, Dickmanns 92; Behringer et al. 921. 
Thesceneunderstanding(upper) part intablel hasbeen 
implementedonaPC-ATinthepast andhasbeenported 
onto a transputer system also. From several objects and 
environmental data the situation is recognized and 
checked against the requirements for task achievement. 
If no special action is needed the system continues in its 
present mode; if some change of the operational mode 
becomes necessary a replanning is performed and the 
resulting mode change is triggered. 

The control output is fed back to the internal repre 
sentation via the prediction step, updating all the lower 
levels, thereby adjusting the measurement and inter- . pretation process to the actual state. 
resuk 

This frequent and fast traversion both 
bottomupand top downintheinterpreta- 
tion scheme assures efficient exploitation 
of both high level knowledge and most I recent measurement data. I planning, 

decisions 

t 

situation 

The gross flow chart corresponding to 
table 1 has been discussed already as fig- 
ure 2 above. It has been arranged in such 
a way that the procedural recursive state 
estimation techniques using control en- 
gineering methods form the core of the 
figure while the more knowledne based - ~. . . . . ~ . . . . h&er level activities are groupd around 
this center showing the interaction paths. t tI 

1 objects In 
spacem'me 
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A different viewpoint for subdivision 
showing other facets of the same system 
has been given at the end of pickmanns 
and Graefe 881; the completely autono- 
mous simulation capability inherent in 
this approach, and referred to already 

A aboveimay evenworkwithout any sensory 
input normally being the driving factor. Table 1. Modular processing structure for complex tasks 
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Stored data may possiblybe taken as starting points or as 
reference trajactories to study variations around; inter- 
esting questions with respect to ’mind’ and ’dreams’ may 
come up. 

EXPERIMENTAL, RESULTS 

The general scheme of dynamic machine vision and ex- 
pectation based perception discussed above has been 
developed during parallel application to four different 
areas, after the idea had come up around 1980 in connec- 
tion with the problem of visually balancing an inverted 
pendulum on an electrocart [Meissner, Dickmanns 831. 
The first application oriented problem was planar dock- 
ing of a reaction propelled air cushion vehicle with three 
fully independently controllable degrees of freedom 
wuensche 86, 881 simulating autonomous spacecraft 
docking. The second area was road vehicle guidance to 
be discussed in somewhat more detail below. The tbird 
one was birdlike autonomous landing approaches for 
conventional aircraft under visual ilight conditions; this 
may be of interest for unmanned vehicles or as basis for 
an electronic copilot and will also be briefly discussed 
below. 

Autonomously guided vehicles for transportation tasks 
on the factory floor are the fourth application area; in 
this context, the capability of landmark navigation has 
been developed and demonstrated p o c k  911. Autono- 
mous visual guidance of helicopters has been tackled in 
1992. 

Road vehicle guidance 
The application area of autonomous road vehicle 
guidance is by far the most developed one: A 5 ton van 
’VaMoRs’ of our University as well as a 10 t bus and a 7.5 
t van ’VITA’ of the Daimler-Benz AG have been 
equipped with our vision system. In experiments ranging 
over sixvears bv now. the following cauabilities have been 

I .  

demon&ated- - Lane following at high speed 100 km/h have been 
achieved limited onlv bv eneine oerformance of 
VaMoRs. On well karlced Gpty’freeways much 
higher speeds could be handled by the method; limi- 
tationsmayfirst comefromcameraresolutionat large 
look-ahead ranges. Both horizontal and vertical cur- 
vatures can be estimated to sufficient accuracy mys- 
liwetz 90; Mysliwetz, D i c k ”  921 to allow velocity 
control in order not to exceed preset acceleration 
limits. 

- Lane following on unmarked cross-country roads 
with shadows from trees and buildings on the road. 
Speeds up to 60 km/h on empty roads have been 
demonstrated; even driving under light rain fall with 
wipers operating in front of the cameras has been 
shown. 

- Night driving on well marked dry roads with normal 
headlights at low speeds has been performed with the 
Daimler-Benz bus and VITA on test tracks. 

- Dnvingonunsealed countryroadsat speeds below20 
km/h has been achieved by VaMoRs; however, in 

order to obtain more robust performance, computing 
power both for image processing and on the higher 
levels has to be expanded. 

- Recognition of well visible obstacles of more than 0,5 
m2 cross-section (black trash can) in .1 look-ahead 
range of 30 to 50 m has been demonstrated at speeds 
up to 50 km/h on unmarked two-lane roads. The 
situation assessment level decides whether thevehicle 
is autonomously stopped at a safe distance in front of 
the obstacle or whether a lane change and passing 
maneuver is performed. Similar demonstrations have 
been performed with the Daimler but, stopping in 
front of another bus. Passenger cars can be detected 
at ranges up to 100 m with a 25 mm tele-lens. Mono- 
cular distance estimation through motion stereo (an 
inherent property of the 4D approach exploiting data 
fusion from odometry) is achieved with sufficient ac- 
curacy up to about 50 m; the introduction of inertial 
gaze stabilization will allow larger focal lengths with 
correpondingly improved viewing ranges. 

- Convoying behind another vehicle has been initially 
demonstrated in our hardwarein-the-loop simula- 
tion facility, lateron with the test vehicles; ’stop-and- 
go’ experiments are a special case of tlus capability 
shown in 1990. 

- Lane changings to the left and right have been per- 
formed in daytime and at night, triggered by the 
human operator who has to take care for other ve- 
hicles in neighboring lanes. 

- Driving on public German ’Autobahnen’ has been 
startedin 1992withthetransputer system as thelatest 
achievement. Besides lane recognition two other ob- 
jects may be detected, tracked and interpreted in 
parallel. 

Aircraft landing approach 
One of the most crucial maneuvers in autonomous ilight 
is the final approach phase to the landing strip. Under 
good visual conditions, human pilots are able to land an 
aircraft safely without any support from the ground by 
using just visual cues from the airport environment and 
the runway. In 1982 we started studying this problem in 
the simulation loop with the goal to develop methods 
which would allow autonomous unmanned aircraft with 
the capabity of machine vision to do the same. G. Eberl 
in his dissertation work Pberl87l laid the fcmdation for 
the solution available now. From 1987 onward, R. Schell 
continuedthedevelopmenttillthefirstflight experiments 
successfully performed in 1591. 

The initial 9 years of development have been performed 
in the simulation loop exclusively. Results have been 
publishedinpickmanns88; Dickmanns,Scliell89].Over 
the years, realism in simulation and the use o f  real image 
processing hardware has been steadily increased. Space 
does not allow to describe the system develolped in detail, 
the interested reader is referred to [SchelU 92; Schell, 
D i c k ”  921. 

The achievements may be considered a breakthrough in 
machine vision application. It has been shown that full 
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exploiting dynamic vision could be tested. This, however, 
has been very successful, after only one week of installa- 
tion work and interface testing, due to the careful pre- 
parations performed in the simulation loop with the 
complete vision system, first trajectory and state estima- 
tion results could be achieved. Fig. 8 shows the visually 
estimated altitude as compared to a radio-altimeter 
measurements and those from the Global Positioning 
System (GPS). The landing approaches were abandoned 
at about 5 m altitude in order to make a fly-around for 
the next trial. It can be seen that visually estimated and 
radio-altimeter measurements agree very well in the vi- 
cinity of the runway (time > l3 sec); aircraft speed was 
about 55 m/s (200 km/h). Estimation quality of the longi- 
tudinal position was considered sufficiently good 
whereas lateral position estimation fluctuatedwith about 
2 m amplitude relative to the GPS-results; this will have 
to he studied fnrther. 

spatial motion in all rotatory and translatory degrees of 
freedom can be controlled by onboard autonomous dy- 
namic machine vision with a relatively small set of today’s 
microprocessors, using the 4D approach. In simulation, 
the control loop has been closed and landing approaches 
have been performed from about 1.5 !un distance till 
touchdown, including wind effects and gusts. Fig. 6 shows 
a simulated approach situation with the hashed squares 
indicating the image areas evalnated for information ex- 
traction. In both the simulation loop and in the real fight 
experiments the camera was suspended on a two-axis 
pan-and-tilt platform for visual runway fixation. I 

1 
0 Y I 

Figure 6. Simulated landing approach with subareas 
evaluated for information extraction 

In the fight experiments, funded by the German Science 
Foundation (DFG) and performed with the twin turbo- 
prop aircraft Dornier Do-128 of the University of Braun- 
schweig (see fig. 7), inertial an@ rates and orienta- 
tions have been measured by gyros and were fed into the 
interpretation system, with data fusion performed 
through the two sixth order dynamical models separated 
for the longitudinal and lateral degrees of freedom. CONCLUSIONS 

Since the aircraft was not yet certificd for active com- 
Puter control Only the real-time state estimation Part 

~~~h~ perception and vision-based intelligent motion 
control should take advantage of the recursive state esti- 

mation techniques developed in 
control engineering. The ’4D ap- 
proach’ developed at UniBwM over 
the last decade generalizes the ex- 
tended KaIman filter to image 
sequence processing. In its sequen- 
tial formulation it is well suited for 
solving major parts of the problem 
of dynamic scene understanding 
even under the condition of occlu- 
sion. The dynamical models are well 
suited for knowledge repre- 
sentation in the spatio-temporal 
domain. 

The 4D approach has been 
developed with the goal in mind to 
achieve dynamic vision perform- 

Figure 7. Test aircraft Do-128 of TU-Braunschweig 
ance similar to the human one, at 
least in motion control. Introducing 
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time as an independent variable right from the beginning 
as the basis for integral spatio-temporal object models, 
allows to develop very efficient data processing schemes. 
Unlimited image sequences may be processed without 
the need for storing previous images; the effects of his- 
torical development are accumulated in the state of 
physical objects, internally represented in 3D space and 
time. 

It has been shown in several application areas, that mi- 
croprocessors available today, already allow surpiisiig 
performance levels when exploiting this method as com- 
pared to quasi-steady approaches usually studied in Ar- 
tificial Intelligence. For high level performance in com- 
plex scenes, these engineering-basedmethods need to be 
complemented with ones well suited for explicit knowl- 
edge representation and decision making. 

It has been sketched how machine intelligence can 
possibly be developed based on the feedback scheme for 
motion control exploiting the high-level spatio-temporal 
world models which are at the core of recursive state 
estimation. In human history of science, dynamical mod- 
els (i.e. differential eqs.) have been a rather late but very 
consequential achievement in understanding the world 
we happen to live in. This powerful insight in basic prop- 
erties of processes in the real world should be exploited 
for making machine perception more effective. 
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1. SUMMARY 
Imaging sensors are powerful tools enabling remote 
control, by tele-operation, of numerous tasks where the 
operator requires an appreciation of the three-dimensional 
structure of the viewed scene. Passive video sensors also 
lend themselves to tasks where covert operation or 
elecnomagnetic compatibility is required. A commonly 
mooted tele-operational task is that of driving a known 
vehicle through an unknown terrain - or keeping station 
on a known object moving through an unknown terrain. 
The computer vision aspects of automating this task are 
divided into two separate vision functions, which are the 
subjects of this paper: 

- Analysis of image sequences of a general scene to 
extract its three dimensional (3D) structure 
anv urior information, 
Analysis of images of a well defined object, to 
extract its 3D position and orientation relative to 
the sensor. 

- 
For both these functions, the paper provides a brief 
innoduction to possible techniques followed by further 
description of particular systems, DROID and RAPiD, 
developed by Roke Manor Research Limited. DROID is 
a general, feature-based 3D vision system using the 
structure-from-motion principle. That is, it uses the 
apparent image-plane movement of localised features 
viewed by a moving sensor to extract the three- 
dimensional structure of the scene. RAPiD is a model- 
based real-time tracker which extracts the position (X, Y, 
Z) and orientation (roll, pitch, yaw) of a known object 
from image data. The system operates iteratively, using a 
prediction of object pose (position and orientation) to cue 
the search for selected edge features in subsequent imagery. 
This approach results in minimal processing of image 
pixels, so that the system can be implemented at full 
video rate using modest hardware. 

2. INTRODUCTION 
A video image, as displayed on a TV monitor, is 
intrinsically a two dimensional object, yet a human 
operator can remotely control a wide range of tasks in the 
three-dimensional world by use of a video link. In such 
cases it tempting to ask if such mks can be automated as 

the raw data used by the operator - the video data - has 
already been captured elechunidy. 

The task of following or keeping station, or performing 
some manoeuvre with respect to a known object, is a 
commonly hypothesised example. If the application is to 
keep in formation with a nearby aircraft, dock a satellite 
module, or even to follow a cooperating vehicle over the 
uncluttered desert sands, we are generally concerned with 
known objects which can be defined in some detail in 
advance. More generally we may wish to manoeuvre a 
vehicle in a cluttered scene. In such cases the possibility 
of obstructions of an unknown shape will be a major 
concern, and the system will need to estimate the sensor 
platform's path relative to any obstacles. 

Work at Roke Manor Research Limited has been directed 
towards both of the vision tasks implied above. This 
work has resulted in two systems, DROID and RAF'iD, 
for estimating structure from image sequences and model- 
based tracking respectively. These systems enable 3D 
structure and relationships to be established. While some 
interpretation of 3D measurements is performed by 
DROID, interpretation of the 3D structure is largely 
beyond its scope, as are the functions of path planning or 
control of the movement of the sensor platform. 
DROID and RAPiD have now reached some maturity, but 
the methods have not been integrated into a single 
demonsmtion, so it must be admitted that the vision task 
described above is a focus of attention and the two 
systems will largely be described separately in what 
follows. 

This introduction continues with a non-mathematical 
overview of the algorithms developed by Roke Manor for 
extracting scene structure from image sequences and for 
backing the position and orientation of a modelled object, 
A more detailed mathematical description of the 
algorithms then follows in sections 3 and 4; the reader 
may wish to omit that description and skip to section 5, 
which illushates the techniques in the context of a typical 
office corridor scene. The remaining sections of this 
paper describe the developmenl status of the work 
(including real-time implementation), and provide a brief 
critical discussion and concluding remarks. 

0 Roke Manor Research Limited 1992. AU rights reserved. 
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2.1 Structure from Motion 
A human controller in a tele-operated system can employ 
a wide range of depth cues. Given a single static image 
he may use his general knowledge of the scene's domain 
to perform scene understanding, and this may be very 
precise in providing a 3D interpretation in certain 
domains. He may also use more general cues such as 
perceived surface shading or shadows. There are many 
such shape-from-X cues (where X stands for shading, 
shadows, reflectance, texture, perspective, etc.), though 
for computer vision these approaches currently seem 
applicable only to simple constrained scenes. In ConRast, 
given a sequence of images, the assumption of scene 
rigidity and the invariance of 3D geometry with changing 
viewpoint provides a powerful lever which can be USPA to 
automatically extract quantified stuctural information by 
triangulation. This, the smcture from motion approach, 
is of course only applicable if the correspondence between 
(image) features observed from differing view-points can 
be established, and if the movement of the sensor can be 
estimated between images. 

Solutions to the image correspondence problem could be 
sought in a spatially continuous form as an optical flow 
field, defining for every point in one image of a sequence, 
the image coordinates of the corresponding point in the 
subsequent image. Images frequently contain large bland 
regions, however. and in such areas a flow field is ill- 
defined. Altematively images could be analysed for 
discrete image tokens, or features, that are likely to 
correspond to objective 3D scene elements. The 
attraction of using features, as compared to a spatially 
continuous method (such as the gradient optical-flow 
technique [I]), is that appropriately chosen features 
encapsulate the highest quality information, forming 
"seeds of perception" [2], and processing effort is not 
wasted on low quality regions of the image. This is of 
considerable interest in a real-time application, as an 
image contains a very large amount of data. 

A further attraction of discrete features, is that they can be 
developed directly into high-level 3D scene descriptors. 
These provide a convenient mechanism for passing 
information across a potentially unlimited number of 
images, so the geometric accuracy of feature-point 
measurements can be refined over increasingly long 
triangulation base-lines. A number of algorithms have 
been proposed for the detection of point-features, 
sometimes referred to as 'interest' points or 'comers'. 
DROID uses a proprietary method (described in section 3) 
which proves to be robust both as a feature detector and in 
providing reliably matched features between image 
frames. 

Following feature or comer extraction on the first IWO 
frames of a sequence, DROID's function is to estimate 
sensor and feature positions. The processing of these wo 
frames constitutes DROID's boot phase. Thereafter, in 
DROID's run mode, the system functions on an iterated 
cycle updating sensor and feature positions (and 
instantiating positions of newly detected features). It 
would be desirable if DROID could optimally update its 
statevector of sensor pose (position and orientation) and 
feature positions. There are typically many tens - 

possibly hundreds - of 3D features being ~ I ( K C S ~  at any 
time, however, and it is impracticable lo consider a 
treatment of all correlations between egomotion errors 
and feature-point position errors (and between one feature- 
point and another), and consequently the update is 
performed in two passes: 

calculation of sensor platform motion, i.e. ego- 
motion, 
optimal instantiation and update of feature 3D 
positions, assuming the ego-motion calculation is 
eonwt 

. 

This simplification leads to a viable system whose 
overall cycle of algorithm steps is shown in Figure 1. 
Steps of particular interest are: 

2D-2D feature matching: This concerns the: matching of 
uninstantiated features (Le. those extra,cted from a 
previous image frame but which are yet to be projected 
into 3D) to newly extracted feab.ues. The p n m s  is based 
on a combination of spatial constraints (in the image 
plane) and feature attributes, which describe the 
characteristics of a feature point. Spatial wxch regions 
are bands centred on epi-polar lines. These lines are the 
projections onto a later image frame of rays passing from 
the pinhole of the camera through the feature positions 
seen in an earlier frame. (This projection requires a prior 
estimate of ego-motion.) 

Ego-motion calculation: Ego-motion is estimated by 
minimising the discrepancy between the observed and 
predicted positions of matched features. In the boot case, 
a feature can only be predicted to lie at some point on an 
epi-polar line, so that the measured discrepancy is based 
on the perpendicular distance to epi-polars as shown in 
Figure 2. In run mode, i.e. from frame 3, the discrepancy 
is based on projection of 3D points; see Figure 3. At 
boot some prior estimate of motion is requirtd thereafter 
the system can be free running or use constraints based on 
past motion to ensure a smooth track estimate. 

2D-3D feature matching: Matching of already instantiated 
3D features to newly extracted 2D features is similar to 
the 2D-2D process, but, with an estimate of feature 
position now available, spatial search constraints are 
based on a projection of estimated positional error into 
the image plane. 

Kalman filter instantiation/update: feature point positions 
are estimated and updated in an optimal weighting of new 
observations and previously estimated (3D) positions. 
The process can be visualised as in Figure 4, where the 
uncertainty in feature position is depicted by an elliptical 
error surface. The new observation constitutes a 
cylindrical ermr surface centred on the ray to .he observed 
feature position. Intersection of these emor surfaces 
results in a new smaller error ellipse, which is gradually 
refined by subsequent observations. 

2.2 Model Based Tracking 
Three-dimensional (3D) model-based vision is concerned 
with finding the Occmnce of a known 3D object withiin 
an image, and obtaining a quantitative measure of the 



object’s location in three-dimensional space. The location 
of the object can then be used for tasks such as robotic 
manipulation, process monitoring, vehicular control, etc. 
As only certain aspects of the object are utilised, these 
aspects are said to form a model of the object: it is the 
occurrence of the model that is sought. A geometric 
model is attractive to work with, because the 3D geometry 
of an object is invariant to changes in view-point and so 
can provide reliability and computational simplicity. 
Additionally, the results from a geometric model will be 
quantitative. Non-geometric models, utilising such 
attributes as colour and texture, may serve to reveal the 
existence of the object, but not a quantitative measure of 
its 3D location. 

Model-based tracking is model-based vision applied to a 
sequence of video images. Model-based tracking appears 
initially to be a much more difficult problem than model- 
based vision, due to the high data-rate in an image 
sequence (up to 10 Mbytedsecond at video-rate). The 
continuity between successive images can, however, lead 
to it being a much easier problem, because the motion of 
the object can be predicted with some precision. It can 
thus be. advantageous to process at the maximum rate, 
which is at field rate. (50Hz) for standard video cameras. 
The geometric model features used for tracking must be 
cheap to extract, computationally, if processing is to 
proceed at near videurate. Computationally expensive and 
unreliable model features, such as closed regions 
representing surfaces, cannot be afforded. This indicates 
the use of simple local features such as points (or 
‘comers’) and edges. 

The tracking of rigid and jointed objects has been 
performed by Lowe [31 using straight edge segments 
extracted over the entire image area. This approach is 
computationally expensive and slow, and has been 
demonstrated at about 1 Hz using Datacube image- 
processing hardware. The strength of the approach is that 
a prior estimate of object pose is not necessary. Another 
full-image method is that of Bray [41, who uses the 
discrepancies of the locations of extracted Canny edgels 
from the projected model to update the pose, and thus 
needs a good pose estimate. The approach of Stephens [SI 
is closest to Roke Manor’s RAPiD, his model consisting 
of control points on high-contrast edges, but 
determination of the pose change, from frame to frame, is 
performed using many iterations of a Hough transform. 
Stephens’ system has been demonstrated in real-time 
(about 10 Hz) using a small Transputer array. 

The approach taken in RAPiD is to use a 3D model 
consisting of selected control points situated on high- 
contrast object edges, such as surfax markings, fold edges 
(such as edges of a cube), and profile edges (such as the 
outline of a sphere). The processing cycle is illustrated in 
Figure 5. Given a prior estimate of object pose, these 
model points are simple to project onto the image. and the 
corresponding image edges simple to locate by searching 
the image pixels perpendicularly to the expected edge 
direction. The set of measured displacements of these 
edges is used to refine, or update, the cstimatc of model 
pose. Since the estimated model pose must be close to 
the true model pose for the correct image d g e s  to be 

associated with the model points, the update equations can 
be safely linearised. This linearisation, together with the 
minimal image processing required to locate edges at 
control points, enables RAPiD to function at full video 
rate using only modest processing hardware in many cases 
of interest. 

If the target object is moving across the image, the above 
method of updating the object pose will produce a result 
that lags behind the true pose. Thus it is desirable to 
include a predictive element in the tracking loop. This 
prediction is most simply achieved by using a position 
and velocity predictor/smoother. such as the so-called 
alpha-beta tracker [6], but, with more sophistication, a 
Kalman filter [71 can be used to greater effect. The 
Kalman filter enables the relative uncertainties in the 
estimated pose to be weighted appropriately and the 
expected dynamics of the object and the sensor platform 
can be included in the smoothinglprediction process. 
Thus RAPiD can be used for tracking a moving object 
with a fixed camera, or altematively if a stationary scene 
is tracked as the camera moves, the pose of the camera is 
detennined. 

A number of RAPiDs features make it very robust in 
operation. The use of a model defined by selected control 
pnints on object edges makes it unnecessary to extract the 
whole of a edge, thus obviating a step which (for simple 
techniques at least) is generally prone to error in the form 
of fragmentation and incomplete termination. As will be 
apparent from the mathematical description, failure to 
detect an edge at a control point is not catastrophic, 
though failure to detect features degrades the accuracy of 
pose estimates: the measurement error model used in the 
Kalman filter enables the changed uncertainties in 
measurements to be taken into account in the 
smoothinglpdction proce~s. 

The required model is a small data structure of typically 
2040 control points. These should be placed on straight 
edges (edges of low curvature are also acceptable) or 
certain kinds of profile edge, such as conic sections or, 
surfaces of revolution. Additional robustness can be 
provided by specifying the expected image polarity of an 
edge, which can prevent RAPiD being seduced by 
backgmnnd edges in a clunered scene. 

3. THE DROID ALGORITHMS 

3.1 Feature Extraction 
The primitive features extracted by DROID arefeafure- 
points or corners, which abound in natural and man-made 
scenes. Feature-points are likely to correspond to real 3D 
structure, such as comers of objects and surface markings, 
and also to texture of an appropriate scale. The spatial 
localisation of feature-points can give good repeatability, 
even for natural scenes where an image decomposition 
into straight-line fragments is highly erratic. The 
extraction of feature-points is a spatially and temporally 
local operation, and .is both repeatable and 
computationally (comparatively) cheap. 

On each image processed by DROID, discrete feature- 
points are fnst extracted, with feature extraction performed 
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independently on each image. Feature-points are detected 
by use of a local auto-correlation operator [8] .  Letting 
the image intensity (grey-level) be I(x,y), at each point in 
the image construct the 2x2 matrix 

1 M = ( <(ar/ax).(ayay)> <(avay)2> 
<(avax)z> <(auax).(auaY)> 

where angle braces indicate local Gaussian smoothing of 
the arguments (a smoothing size of 1 to 2 pixels is 
commonly used), and the f i t  gradients, aYax and aI/ay, 
are obtained by use of a 5x5 mask. The eigenvalues of M 
encode the shape (the principal curvatures) of the local 
auto-correlation function: if both are large, the local grey- 
level patch cannot be moved in any direction on the 
image-plane without significant grey-level changes 
occurring, while an edge or line will have one large and 
one small eigenvalue. A corner response function, R, is 
formulated to respond to both eigenvalues being large, 
while not requiring explicit evaluation of the eigenvalues: 

R = det(M) - [ trace(M) 12.  k / 

The subtracted term makes the above formulation to sme 
extent 'edge-phobic', to ensure it does not fire off 
pixellation on strong edges, a common failing of some 
comer detectors. The value of the parameter k is the 
maximum ratio of eigenvalues of M to which the 
response function is positive. Typically a value of 25 is 
used. The local (3x3) maxima in the response function 
form candidate comers, and we select either the n 
strongest, or else all those exceeding a predefined 
threshold. The former selection procedure is better suited 
to image sequences with a widely varying content, frame- 
to-frame. The convolutions used in obtaining the 
response function may cause a feature-point to be slightly 
mis-positioned, but the mis-positioning will usually be 
consistent over time and so be of little importance. By 
performing a local quadratic fit to the response function, 
the feature-points can he located to sub-pixel accuracy. 

The most important property [91 of feature-point 
extraction is high repeatability; with this algorithm often 
over 80% of the extracted points are matchable between 
frames. To each feature-point is associated descriptive 
grey-level attributes, explicitly the local grey-level (as 
defined by a Gaussian smoothing mask), and the 
smoothed first spatial gradients. These attributes are 
assembled into an aftribute vector, a, which will be used 
to disambiguate matches. 

Feature-points are attractive to work with as they are 
simple to track over time, and are easy to handle in 3D. 
Straight edge features are similarly attractive and can be 
handled by DROID, but they are m m  suited to man-made 
environments than natural environments, in which they 
are scarce [lo, 111. Although curving and squiggly edges 
are abundant in natural scenes, they can be temporally 
unstable, and present formidable problems in finding a 
suitable representation to handle the geomefric 
information they contain. 

3.2 Camera Calibration 
Since DROID is based on the geomeny of image features, 
it is essential that an accurate interpretation of the 

location of the features is performed. In piuticular, it is 
necessary to know the direction in space towards which 
each of the pixels in the image is looking: this is called 
the geometric calibration of the camera. ELy modelling 
the camera as a pin-hole camera with specific distortions 
(eg. radial lens distortions), and using only CCD cameras 
whose sensing elements form a stable rectangular array, a 
parametric form for the geometric camera calibration can 
be devised. This model has been found to be good for 
many CCD cameras and lenses. Camera calibration is 
performed using two images of an accurately known 
planar Calibration tile [121, resulting in accurate 
measurements of the focal length, aspect rati(3, location of 
the optical centre, and up to two terms of radial 
distortion. 

The calibration enables the extracted feature-point 
locations to be uansformed to an 'ideal' distortion-free 
pin-hole camera of unit focal-length (UFL), whose image- 
plane is positioned in front of the camera. pin-hole to 
avoid tiresome minus signs. A Carte!;ian camera 
coordinate system is defined to have its origin at the pin- 
hole of the camera and Z axis aligned along the optical 
axis. The X and Y axes are parallel to the image plane. 
The image x axis is horizontal and pointing to the right, 
while the image y axis is vertical and pointing 
downwards. This gives a right-handed coordinate system, 
as illustrated in Figure 6. A point positioned at R = 
(X,Y,Z) in local camera coordinates will ke imaged in 
Un camera coordinates at 

r = (XJ) = ( x/z , Y E  ) 

This is the perspective projection, and henceforth all 
image positions will be expressed in Un coordinates. 

It will often be necessary to represent the same 3D point 
in two different coordinate systems, for example in 
camera coordinates and global coordinates. Consider a 
point located at R1 in a fist coordinate system, and at 
R2 in a second coordinate system. These point locations 
will he related by 

R2 = ( R 1 -  t )  

R 1 =  A(0) R2 + t 

where the rotation matrix, A@), and the translation 
vector, t, describe respectively the attitude and the 
location of the second coordinate system with respect to 
the fist. me superscript T denotes matrix transpose.) 

Rotations are represented by a 3-vectoI 0, whose direction 
is the axis of rotation, and whose magnitude is the (right- 
handed) angle of rotation in radians. The elements of the 
orthonormal 3x3 rotation matrix, A(@), are: 

Aij = cos86ij+ (I-cosO)@Bj - sinO:E&ijkOk 
A A  A 

:k 
l 5 i j 5 3  

A 
where 8 = @I and 0 = 8/8, and Eijk is the Levi-Civita 
symbol. The representation is singular at 8 = 2rr, but 
this is avoided by working always with 8 5 IC. Note that 
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rotation vectors are neither commutative nor associative 
(unless they are parallel), and that successive applications 
of rotations are best handled using quaternions. 

The location and attitude of the camera is generally 
referred to as its ego-motion, expressed as the ‘6-vector‘. q 
= (0.t). The ego-motion may be measured from the 
global origin (as illustrated in Figure 6). or may be in 
some convenient local coordinates. The location and 
attitude of a rigid body with respect to a reference 
coordinate system is called its pose. The pose of a body 
is the rotation, 0, and the translation, t, that must be 
applied to the body coordinate system so as to correctly 
position the body. 

3.3 Boot-Strap Processing 
The task of boot-strap processing is to initiate the 3D 
representation of the viewed scene from feature-points 
found in the first images, without assuming any 
knowledge of the scene content. The 3D representation 
will be in terms of Kalman filtered points. For a 
monocular system, the fust 2 images of the sequence are 
used for boot. DROID can be operated in a stereo mode 
[13], in which case boot consists of a conventional stereo 
process performed on the 2 or more simultaneously 
captured images comprising the first frame. 

3.3.1 Boot Matching 
The processing of a monocular image sequence is initiated 
with the fust two images. Using a prior estimate of the 
camera motion, each extracted feature-point from one 
image generates on the other image an epi-polar search 
line near which candidate matches are sought. If the prior 
ego-motion estimate from frame 1 to frame 2 is q = (0,t). 
and the observed point on frame 2 is at r2 = (x2,y2). then 
the epi-polar line on frame 1 will pass through the image 
points (tx,ty)/t, and (px.pY)/pz. where p = A(0) 
( ~ p y 2 . 1 ) ~ .  The epi-polar line is broadened out into a 
band in which match candidates are sought, and this 
broadening is chosen to reflect both the uncertainty in the 
prior estimate of the camera motion and errors in feature- 
point positioning. The length of the epi-polar line may 
be truncated at minimum and maximum depths, to reduce 
the number of spurious match candidates. Matching 
ambiguities are resolved by use of the grey-level 
attributes. If the attribute vectors for two points are al  
and az. then the attribute mismatch between the points is 

m1,2= I al  - a2 I / J  ( I a l  1.1 a2 I )  

For a successful match, the mismatch value must be 
lower than a set threshold, and if there are several 
candidates, the one with the lowest mismatch is chosen. 
Typically over 80% of the feature-points are found to be 
correctly matchable, and the few incorrect matches are 
discounted by outlier removal procedures (see below). 
Unmatched feature-points are kept for possible future 
matching; they are said to be placed in limbo. 

3.3.2 Boot Ego-Morion 
Using the feature-point matches, the camera ego-motion, 
q = (e$), is next determined. The boot-strap ego-motion 
is calculated by an iterative multi-dimensional Newton 

scheme, minimising the image-plane distances between 
the location of feature-points and the tnmcated epi-polar 
lines of their matching features 1143. To cope with mis- 
matches, a robust minimisation is performed. The 
starting point of the iterative scheme is the prior estimate 
of camera motion, and good convergence is usually 
achieved in 4 to 6 cycles. hior knowledge about the 
camera motion may be imposed by a set of soft 
constraints quadratically linking the 6 ego-motion 
parameters, q. By varying the constraint coefficients, 
planar, linear, or curved motion may be imposed. It is 
essential that a translational constraint is imposed at boot 
to resolve the speed-scale ambiguity, which is otherwise 
left entirely unresolved by the visual data. The 
minimisation scheme and the form of the constraints is 
described below in section 3.4.2. 

Once ego-motion has been determined, the 3D locations 
of matched points can be estimated by triangulation. m e  
uncertainty in the image-plane position of a feature-point 
leads to uncertainty in its 3D location. This uncertainty 
is used to start-up a Kalman filter (KF) for each point, 
whose variables represent the spatial probability 
distribution function of the point, and consist explicitly 
of a 3D mean position and covariance. Strictly, it is 
extended Kalman filters that are being used, as the time 
evolution of the filter is only being approximated as 
linear. The KF enables subsequent observations of the 
point to be optimally and cheaply combined, and high 
spatial accuracy achieved. The update and initiation of the 
KFs is described below in section 3.4.3. 

3.4 Run Mode 
After the 3D q ” a t i o n  has been initiated in the boot- 
mode, successive frames are processed in the run-mode. 
The run-mode provides an evolving 3D representation, 
which increases in accuracy and completeness as more 
frames are processed. Accuracy is achieved by using 
Kalman filterhg to optimally combine observations of an 
individual feature-point seen over an extended period of 
time. The representation evolves by the inclusion of 
newly seen feature-points, and the exclusion of points 
that are no longer visible. In this way, an unlimited 
sequence of images can be pmxssed. 

Much of the work of DROID is performed in so-called 
disparity space, for reasons of speed and numerical 
stability. A point at R = (X,Y,Z) in Cartesian camera 
coordinates has coordinates S = (x.y.2) = (x/z,Ylz,l/Z) 
in the corresponding disparity space. Thus the fust two 
components of S are the image coordinates of the 
perspective projection of R, and the third component is 
the reciprocal depth. Note that straight lines in Cartesian 
space are straight in disparity space, and similar 
relationships hold for both planes and conics. The KF of 
each feature-point contains in disparity space a mean 
position (or centroid), SKF. and an estimated error 
covariance (a 3x3 matrix). These can be thought of 
as defining a normal probability distribution function in 
disparity space. 

3.4.1 Run Matching 
In the run mode, matches are sought between extracted 
image feature-points and existing KFs by projecting the 
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KFs down onto the image-plane. First of all, the KFs 
must be hansformed from the previously used disparity 
space to the disparity space of the current estimate of 
camera ego-motion. This is straightforward for the 
centroid @y transforming to and from Cartesian space), 
but for the covariance, using Cartesian space is 
inadvisable for distant points because of poor numerical 
conditioning. To overcome this problem, a direct 
disparity-to-disparity transform has been devised. which 
uses a well-conditioned similarity hansform. By these 
means the KFs are brought into the currently used 
disparity space. 

The projection of the KF covariance, ZKF, onto the 
image-plane is obtained by pre- and post-multiplying 

with the projection matrix, P = ( :) , ant1 its 

transpose, which simply serves to extract the upper 2x2 
block of ZW By linearly combining the projected KF 
covariance with the observation covariance, ;Cobs. a 
matching covariance matrix is obtained 

'match = kobrZobs + $xojp 'KF pT 

where the two coefficients k govem chosen levels of 
statistical significance. The observation covariance, 
;Cobs, is usually taken to be diagonal and equivalent to, 
say, one pixel. The observation covariance coefficient is 
chosen to be sufficiently large for it to account for 
uncertainty (error) in the prior estimate of camera motion. 
If rKF is the perspective projection of the KF centroid, 

rKF = P SKF 

(trivially, the fust two coordinates of SW), and robs is 
the location of an extracted feature-point, then the feature- 
point is a match candidate. if 

T - 1  
('KF 'obs) 'match ('KF 'obs) < 

that is, it lies in an ellipse cestred on the projected KF 
centroid. The searching for candidates is accelerated by 
using a coarse binning scheme for the feature-points, and 
only examining the bins which the ellipse overlays. 
Candidate matches are assessed using their grey-level 
attributes, and irresolvable contentions are discarded to 
ensure that no multiplydefined KFs are generated. 

3.4.2 Run Ego-Motion 
Once feature-point matches have been obtained, the ego- 
motion, q. is determined by finding the camera attitude 
and location that brings projected KF centroids, rfq), into 
best alignment with their matching observed featiue- 
points, robs. If R o  is a KF centroid location in 
Cartesian camera coordinates, then a relative ego-motion 
q = (8.t) of the camera will make the centroid project 
onto the image at 

Where 
r(9) = @(q),Y(9)) /Z(9) 

R(q) @(9).y(q)z19)1= M e )  Ro + t 

The measure of 'best alignment' used above is given by a 
matching covariance, 'match. which is, as before, an 

appmpriate combination of the observation and projected 
KF covariances. The contribution of the i'th matched 
point to an objective function u) be min imid  is thus 

E~(P, = (r(d - rodT (r(@ - 

The ego-motion determination is performed by 
minimising a single objective function, EyItal(q). which 
is composed of a weighted sum of contributions from 
each matched point. together with a prior-umsnaint term 
producing soft constraints: 

Etotalo q T %prior - 1  + X wi:Ei(q) 
points i 

For there to be no bias from the pnOf-COnSbakt term, the 
ego-motion q is taken to be relative to the expected or 
anticipated camera pose. Global ego-motion is not used 
because rotation vectors can only be approximated as 
commutative near q = 0. 

The objective function is minimised by wing a multi- 
dimensional Newton minimisation, for which the first 
and second differentials of the objective function must be 
calculated. These are constructed analytic;ally by using 
expressions for the fust differentials of the projected KF 
centroids, dr(q)/aq, and by assuming ,that there is 
negligible dependence of the matching covariances on q. 
Each cycle of the Newton scheme produces :I new (and, it 
is to be hoped, better) estimate of the ego-motion, 9'. 
from a previous estimate, q: 

9' = q - r a2Eto&aq 2 1 -1 raE,,/aq:l 

The starting guess of the minimisation is with the camera 
at its expected position (ie. q = 0). and usually 4-6 
iterations give a good convergence. 

The main cause of error in the ego-motion calculation is 
incorrect matches, which, if uncorrected, significantly 
bias the result This problem is overcome both by using 
robust minimisation techniques to de-weight the effect of 
the mismatches, and by performing the complete 
matchindego-motion cycle twice, with tighter search 
regions on the second pass. The robust minimisation 
technique ascr iw a weight to each point on each cycle of 
the Newton minimisation. The weight, wi. of the i'th 
point on the current cycle depends exponentially on its 
contribution, Ei(q), to the objective function of the point 
on the previous cycle: 

- 
wi = exp - @.Ei(@ / Ei(q) ) 

The denominator is the (weighted) average objective 
function contribution of all the points, and is used to 
estimate the distribution of the Ei's, and this results in 
outliers being continuously and strongly de-weighted. 

Ego-motion determination is generally very accurate in 
the short to medium term. An example i:; quoted by 
Harris [151 of a short sequence of IO images iaken from a 
helicopter with a generally forward translation of about 10 
feet per frame. The accuracy of the auitude component of 
the ego-motion, the difference between the DROID 
analysis and the ground truth data, is better than 0.25'. 



though the helicopter undergoes a yaw of 15'. The 
accuracy of the translational components is less than 0.7 
feet, which is less than 0.8% of the total flight distance. 

In a long image sequence, long-term drifts can occur, in 
which both the ego-motion and perceived structure are 
self-consistently in error. For example, 'both the camera 
position and the perceived structure might come to be 
displaced 1 metre to the right of their trui: values, and yet 
the visual observations will be entirely self-consistent. 
Although there is no feedback mechanism to correct such 
an error from the imagery alone, exteinal ego-motion 
measurements (eg. odometry) may be of use in resolving 
these ambiguities. Drifting can occur in Imth attitude and 
translation, and also in the speed-scale factor. Speed-scale 
drift is where both the speed of the (camera and the 
perceived scale of the structure are in enor by the same 
factor. The speed-scale ambiguity is resolved by using 
stereo, as the stereo base-line provides a yard-stick for the 
structure. The problem of drift is exacerbated by the 
camera turning by an angle greater than the width of its 
field-of-view, so that previously establi!;hed structure is 
lost from sight and no longer acts as a stdble reference. 

3.4.3 Kalman Filter Updote 
Each time a point is observed and matchi, a more precise 
estimate of its 3D position may be obtained. This is 
because the new observation provides futher information 
relating to the 3D position of the point. Kalman filtexing 
is a method of combining a number of noisy 
measurements which is, in certain circumstances, 
statistically optimum. In DROID, each tracked point has 
its own filter whose job is to estimate both the point's 
most likely 3D location, and its positional uncertainty. 
An alternative approach, that of usin,g a single high 
dimensionality fdter containiing the coupled coordinates of 
all the points, permits the imposition of geometric 
constraints [161, but at a high computational cost, and a 
danger of irrecoverably coupling unassociated features. 

To explain the use of the KF, consider just a single 
point, as all are treated independently and in a similar 
fashion. Let the feature-point be observed in the current 
image at image-plane position, robs: this is the KF 
measurement. Its estimated positional accuracy is 
specified by the observation covariance matrix, &bs. 
The state space for the KF is the 3D location of the point 
in disparity space. Let the current estimate for the point's 
location be S K ~  (called the centroid), and the 
accompanying estimate of its positional accuracy be 
given by the covariance ZKF. The covariance and 
centroid after updating the KF with the current 
observations are given by %=[a+ PT&P1'1 

T -1 
si<F' % [ & SKF + %bt; 'obs 1 

where, as before, P is the projection mahix. (The process 
noise term, often used in Kalman Filitering, has been 
omitted from the filter because past observations of a 
point are considered to be as valid as current observations, 
and there is no timeevolution because the points are 
assumed to be stationary in Global coordinates.) As 

DROID in fact works with the inverse covariance matrix, 
the former equation reduces to a matrix addition, and the 
latter to solving a set of 3 simultaneous linear equations. 
If, after update, the disparity coordinate of the centroid is 
negative, it is reset to a small positive value to prevent 
the point subsequently flipping behind the camera. 

The KF update process is illustrated in Figure 4, in which 
surfaces of constant probability density are shown in 
disparity space. The vertical tube represents the observed 
feature-point and its covariance, while the larger and 
smaller ellipsoids represent the KF before and after update 
respectively. 

3.4.4 Kalman Filter Creation and Destruction 
The featurepoints on the current frame that fail to match 
to existing KFs, may be epi-polar matched (i.e. 2D to 2D 
matched) to those that remained unmatched from earlier 
frames and were retained in limbo. This enables KFs for 
new points to be initiated. The epi-polar matching is the 
same as in boot (section 3.3.1). The KF initiation, 
which is also the same as boot, simply makes use of the 
K F  update equations applied to the pair of initial 
observations. 

KFs which repeatedly fail to match are discarded or 
purged. whilst those leaving the field of view are retired 
(matches are no longer sought), but kept on for a while 
for use in the structural representation. Points that are 
incorrectly matched at boot will cause KFs to be initiated 
at locations that in general will not be supported by 
matches on subsequent frames, and so these erroneous 
KFs will be purged from the system. 

3.5 Surface Interpretation 
A 3D geometrical representation should ideally describe 
all the visible surfaces, seen in the current image or in the 
past, and should perhaps even infer the existence of 
unseen surfaces (eg. the continuity of a wall behind a 
lamp-post). An ideal surface representation would use 
high-level components, such as planes and conics, to 
describe the scene, but in unconstrained environments, 
especially ~ t u r a l  scenes, such components may be rare, 
ill-fitting or ill-conditioned. A more adaptable 
representation is needed, one which can cope with the 
inaccurate and spatially non-uniform data that is obtained 
from real vision systems. Since surfaces cannot be 
directly measured, and must be inferred from surface 
markings, bounding edges, etc.. a flexible interpolation 
scheme based on the measured geometric features would 
be appropriae. 

The maintenance of a low-level geometric representation 
for pars of the scene that have left the field of view For a 
period of time does not seem worthwhile: it is expensive 
to maintain (in computer time and space), and even if 
low-level featurtx are seen again, they are not l i l y  to be 
recognised as the Same ones because of changes of 
appearance (scale, aspect, reflectance. etc.). Such a 
'forgetful' system operates both in people, as the 
'persistence of vision', and in DROID. Using the 
currently visible fealures to consmct surfaces leads lo an 
ego-centric representation, such as a depth-map or the 
2.5D sketch [17]. 
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3.5.1 Planar Facet Represenlation 
The 3D points from DROID form a sparse depth map, 
bland regions of the image containing no points. To 
obtain a surface representation, an interpolation scheme 
based on the current image is used to construct a full 
depth map. As only currently visible points on the 
image are maintained in 3D. a single-valued surface (in 
range) passing through them should approximate to the 
depth map. The use of an ego-centric (camera-based) 
representation avoids the need for multiply-valued surfaces 
with the associated danger of incorrect point assignment, 
which could occur, for example. with overhanging 
structure in a plan-view projection. Working with points 
that are sufficiently mature to be reliable, the depth map 
is filled-out by a piece-wise linear interpolation between 
the image-plane locations of the 3D points. This is 
performed by using the Delaunay biangulation in the 
imageplane: each resulting triangle is interpreted as a 3D 
triangular planar facet passing through three 3D points. 
The Delaunay triangulation is chosen as it forms compact 
triangles (long thin triangles are physically implausible), 
and is cheap to compute (nearly linear in the number of 
points). The resulting surface is continuous and single- 
valued in range, but will not fill the entire image-plane 
unless supported by previously seen points now outside 
the image. The surface may be relatively c w s e  as it can 
be no finer than the separation of the features, and so 
cover over fine structure in the manner of a draped-sheet. 
Depth discontinuities in the surface are not currently 
permitted. As the surf= is consmted anew at each new 
image, it will quickly respond to changes in the structure, 
but it does suffer from an amount of temporal instability. 

3.5.2 Using Surfaces 
The explicit 3D structural information made available by 
DROID is intended for open-ended use in a range of high- 
level tasks, such as obstacle detection, recognition, 
navigation and path-planning. Such tasks are currently 
being investigated in relation to performing automatic 
visual guidance of wheeled or tracked robot vehicles in 
both indoor and outdoor environments. The most 
immediate task is to provide safe operation (don’t crash!), 
and this is performed by locating upstanding structural 
elements in the planar facet surface representation. 

For movement in the vicinity or man-made structures, the 
location of prominent structural elements such as vertical 
walls and corridors, is of value. Detection of such 
structures can lead to map registration and on to more 
sophisticated navigational abilities. The detection of 
vertical walls around a Wund vehicle is being undenaken 
by considering the plan-view coordinates of DROID 
points with heights above the floor level. A vertical wall 
should appear as a straight line in plan-view. and this 
may be extractable using a Hough transform. 

4. THE RAPiD ALGORITHMS 

4.1 Single Frame Pose Estimation 
The coordinate systems used in RAF’iD are shown in 
Figure 7. Define the Cartesian camera coordinate system, 
which has its origin at the camera pin-hole, Z-axis aligned 
along the optical axis of the camera, and X and Y axes 

aligned along the horizontal (rightward) and vertical 
(downward) image axes respectively. Imaging of points in 
3D will be handled by the introduction of a conceptual 
image-plane situated at unit distance in front of the camera 
pin-bole. The conversion to these coordinates from pixels 
is facilitated by the use of the geomenic calibration of the 
camera, and henceforth all image locations will be 
expressed in these conceptual image-plane units, and not 
in pixels. A point at position R = ( x , Y z ) ~  in camera 
coordinates will project to image position r = (x,y)T = 

(XIZ,YtZ)T. 

Define a model coordinate system, with ori,gin located at 
T in camera coordinates, and with axes aligned with the 
camera coordinate system. (A different orientation of 
model axes may be more suitable for the original 
specification of the control points of the model: in which 
case assume that the model is prerotated from a reference 
attitude used for specification.) Consider a control point 
on the model located at P in model coordinates, and 
situated on a prominent 3D edge. This control point will 
project onto the image at r = (Tx+Px, Ty+F’y) / (Tz+Pz). 
Let the tangent to the 3D edge on which the control point 
is located be called the control edge. The orientation of 
the edge at the control point is defined by specifying a 
companion control point to P, often also located on the 
Same physical edge, and which projects ontc the image at 
s. By considering the image displacement between r and 
s, the expected orientation of the control edge on the 
image can be determined. Let this be an angle a from the 
image x-axis, so that 

s - r x  

I s - r l  ) x m a =  ( 
As a step towards refining an initial pose estimate, we 
wish to find the perpendicular distance of projected model 
control point r from the corresponding imaged object 
edge. Assuming that the orientations of the imaged edge 
and the projected model edge are nearly the same, a one- 
dimensional search for the image edge can be (conducted by 
looking perpendicularly to the expected control edge from 
r. To search for the edge along an exact perpendicular 
would, however, require finding the image intensity at 
non-pixel positions. To avoid this inconvenience and 
computational cost, the edge search is performed in one of 
four directions: horizontally, vertically, or diagonally (that 
is, by simultaneous unit pixel displacemenu in both the 
horizontal and vertical directions). If the pixels are square, 
the diagonal direction will be at 45’. but with different 
image aspect ratios, other angles will be traversed. The 
direction which is closest to perpendicular to the control 
edge is chosen, and a line of pixel values centred on r, the 
projection of the conml point, is read from the image. 

Write the orientation of the line of pixels from the x-axis 
on the image-plane as the angle p, as shown in Figure 8. 
On the image-plane, let the dimensions of a pixel be kx 
and Icy in the x and y directions respectively (thus kx is 
the reciprocal of the focal length in pixels). Hence the 
orientation of the diagonal directions of the n ~ w  of pixels 
will be p = t p*, where tan p* = k p X .  
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The position of the actual edge brightness step within the 
extracted line is located by a simple threshold crossing. 
Suppose the imaged edge is encountered at a displacement 
from the projected control point r of nx pixels in the x- 
direction and ny pixels in the y-direction. (For diagonal 
directions, nx = * ny, otherwise either nx or ny will be 
zero.) Then the image-plane distance of r from the image 
edge along the mw of pixels will be 

d = d  nx2kx2 + ny2ky2 

and the perpendicular distance to the edge will be 

I = d sin (pa) 

Let n be the number of pixel steps (horizontal, vertical or 
diagonal) traversed along the row of pixels before the edge 
is encountered. For the four permissible orientations of 
the mw of pixels, the above equation for 1 is explicitly: 

Horizontal (p = 0) 

Vertical(p=3 1 =  n ky cos a 

Updiag (p = p*) 

1 = -n k, sin a 

1 = n(kycos a - kxsin a) 

Down diag (p =-p*) 1 = n(kycos a + kxsin a 1 
Each control point will result in a measured perpendicular 
distance, 1, as illustrated in Figure 9. The set of these 
perpendicular distances will be used to find the small 
change in the object pose that should minimise the 
perpendicular distances on the next frame processed. 

Consider rotating the model about the model origin by a 
small angle 9, and translating it by a small distance A. 
Write these two small displacements as the 'six-vector', q. 
This will move the model point P, located in model 
coordinates at R = P + T, to R' in camera coordinates 

R'W = W,y'Z)T 
- T + A + P + B x P  

I x+Ax+px+eypz-ezpy 
= Ty+Ay+Py+ezPx-~xPz r Tz+Az+Pz+exPy-eyPx ' 

This will project onto the image at 
r'(q) = (x',y? = WE', YE? 

Expanding in small A and 9, and retaining terms up to 
fmt order, gives 

X ' =  X + [ A x  + eYPz - OZPy - X  (Az+ exPy - 
eYPx) I tTz+Pzl 

Thus r'(q) can be written 

Where 
a = ( - e y ,  ex+ pZ, -pY. 1, 0, - x ) ~  I 
b = (-yPy - Pz. YPx, Px, 0, 1, -Y)T I 

Hence the perpendicular distance of the image edge from 
the contml point is 

C~,+PJ 
&+pd 

I'W = 1 + q.a sin a - q.b cos a 
= 1 + q.c 

Where 

and 1 is the measured distance to the edge. 

Consider now not just one control point, but N control 
points, labelled i = l..N. The perpendicular distance of 
the i'th contml point to its image edge is 

e = a sin a - b cos a 

l'i(9) = li + q.ci 

We would like to find the small change of pose, q. that 
aligns the model edges precisely with the observed image 
edges, that is to make all L'i(q) zero. If the number of 
control points, N, is greater than 6, then this is not in 
general mathematically possible as the system is over- 
determined. Instead, we choose to minimise an objective 
function, E, the sum of squares of the perpendicular 
distancas 

N E(q)=g [ li + q .q ]  2 

i= 1 

By setting to zero the differentials of E with respect to q, 
the following equations are obtained 

This is a set of 6 simultaneous linear equations, and so 
~1 be solved using standard linear algebra. 

The pose change, q = @,A), in the model pose specified 
by the above algorithm must now be applied to the 
model. Applying the change in model position is 
Straightfonvard 

T : = T + A  

The change in object attitude, however, causes some 
practical difficulties. Conceptually, the positions of the 
control points on the model should be updated thus 

Pi := Pi + 9 X P i  

After thousands of cycles of the algorithm, finite 
numerical precision and the approximation to rotation 
represented by the above equation, results in the control 
points no longer beiig correctly positioned with respect to 
each other, and thus the model distorts. To overcome this 
problem, the attitude of the model is represented by the 
"ion vector # (a 3-vector whose direction is the axis of 
rotation and whose magnitude is the angle of rotation 
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about this axis), which rotates the model from its 
reference anitude, in which the model has its axes aligned 
with the camera coordinate axes. From the rotation vector 
# can be constructed the onhonormal rotation matrix 
A@), which appropriately rotates any vector to which it is 
applied. Conceptually, the rotation mahix, A@), should 
be updated by the model attitude change, 8,  thus 

A@) :=A@) AM) 

but by doing this, the orthonormality of the rotation 
matrix may be lost in time due to rounding errors, since, 
even allowing for the symmetry of the rotation matrix, it 
is still redundantly specified. Instead, the rotation vector, 
#, is updated directly by use of quaternions. If A@) is the 
rotation matrix after the rotation vector has been updated, 
and the i'th model point is located in some reference 
coordinates at Pi(Ief), then the position of this point in 
model coordinates at the beginning of the next cycle will 
k 

Pi = A@) Pi(ref) . 

4.2 Kalman Filter 
When applying the RAPiD technique to a practical case of 
a moving object, it is possible, in principle, to use the 
pose estimate, calculated by processing one video frame, 
as the initial estimate of the object's pose in the next 
video frame. This approach to tracking a moving object 
has the disadvantage that the object's motion would be 
limited to small movements between frames since RAF'iD 
searches for model edges in a limited region about the 
predicted position. This problem can be overcome by 
using a simple predictor, such as an a, p tracker which 
also has the advantage of performing a temporal 
smoothing of pose estimates. In practice however, il. has 
been found difficult to set the hacker parameters as the 
measurement noise depends on the number and position of 
edges found, and also on the current pose of the object. In 
some extreme cases, the edges detected in a particular 
frame may not define all the object's degrees of freedom; 
clearly a more sophisticated predictor/filter is required. 

4.2.1 Kalmun Filter Oufline 
This section repeats the formulation of a standard Kalman 
filter 1191. A good description of the Kalman filter and 
associated techniques is given by Bar Shalom [u)]. 

Let ict be a vector that represents the estimated state of a 
system at time t Given a new measurement, yt. made at 
that same instant, the state vector estimate is updated to 
i't, given by 

ic't = jrt + K(yt - Hit), 

where K is the Kalman gain matrix and H is a matrix 
which maps the estimated state to the corresponding 
expected observation. Between observations it is assumed 
that the me state of the system evolves according to 

xt+1 = Axt + Et. 

where the process noise, Et, is a random variable of zero 
mean and covariance defined by the matrix Qt. Thus 
given i ' t ,  Xt+l = A ic't. If the error in the observation yt 
has zero mean and covariance Rt, and the error in .?t has 

zero mean and covariance Pt, then the opOr~aJ choice of K 
(that which minimises the trace of P't. the covariance of 
ic't, is 

K = PtHT[HPtHT + Rt1-l. and 
P t  = Pt - KHPt. 

In the time to the next observation, however, confidence 
in the state vector estimate worsens because of the 
uncertainty in evolution, thus 

Pt+l= WtAT + Qt. 

4.2.2 The Object Motion Model 
In this application of Kalman filtering, the: RAPiD pose 
estimate, yt. is the 6-vector change in pose found by the 
minimisation of E($. In the simplest moving object case 
we assume uniform motion, so the state vector contains 
both position and velocity terms. In particullar we write, 

where r is the object's position 3-vector (relative to the 
camera), and 9 is a rotation 3-vector defining its 
orientation; 

x = (r, e ,  t, e)T, 

H=[I6  061.  
where I6 and 06 are the 6-by-6 identity and :zero matrices. 
We assume that the above motion model is accurate apart 
from a random fluctuation in velocities due to forces 
acting on the model making it accelerate, so that the state 
covariance is of the form 

Q=[  2 21 
The form of 46 will depend on the the dynamics of both 
the camera and the tracked object and their relative 
position 171. 

4.2.3 The Measurement Model 
If the object pose is in m r  by q, then the probability of 
getting the set of measurements (I i )  is 

where the measurement accuracies in delemining an 
individual edge position assumed to be unconelated and 
of size u. Using Bayes theorem, the probability of the 
pose being in error by an amount q is 

We can re-write this equation in the usual form of a 
multivariate normal distribution as follows 

1 T -1 P(qI(li1) exp - ~ [ q * q ~ l  R [ q - q o l  

where qo is the best estimate for the pose error, and the 
observation error covariance, R, is given by 

L i  J 

Unfortunately, when fewer than 6 control p i n t s  are 
detected, the matrix inverse cannot be calculated because of 



7-1 1 

stationary camera. The particular target here is a planar 
object, which is convenient for laboratory trials, but 
RAPiD is not limited to this class of target. The 
definition of the corresponding target model is given in 
Figure. 15. Figure 16 shows two views of the target as 
seen by the tracking camera, with graphics generated by 
RAPiD superimposed. These mark selected parts of the 
target outline and show estimates of the target's position 
and attitude relative to the camera. Note the outline 
segments shown are not generated by 2D edge extraction, 
but are the result of projecting the model, in its estimated 
pose, onto the image plane. The close alignment, of the 
modelled target edges with the real ones, indicates the 
accuracy of the estimated track. (The superimposed 
outline is difficult to see in monochrome imagery.) The 
white. spots around the bat mark the control points at 
which RAPiD is searching for edge information. 

Figure. 17 shows a plot of track parameters for the portion 
of movement between the above images. Using a planar 
target and a single image, RAPiD is unable to determine 
very accurately the direction of the perpendicular to the 
model surface (pitch and yaw) when the orientation is very 
near fronto-parallel. but with Kalman filtering, the 
orientation of the target and its position in camera 
coordinates are generally stable. RAF'iD can be applied to 
a range of objects, with non-planar models. In such cases 
the relative accuracy of the different pose. components is 
improved. 

In addition to the example illustrated here, DROID has 
been demonstrated in other domains: 

- a hypoth&cal robot workcell I181 
country lane and DRA laboratory grounds [21] 
pot plant foliage! [221 
labora~ry and office scenes r131 
a circular vehicle test track 1231 
an airfield laid out with parked vehicles, viewed from 
a low flying helicopter [I51 

- - 

rank deficiency. This is also hue in certain situations 
when the detected control points do not fully define the 
pose of the object. The formula defining the Kalman 
fflter gain can be re-arranged, however, to avoid the need 
to compute the inverse, thus 

K = PHTR-'[ HPHTR-' + I I-' 
With this formulation for K. the filter gain can be 
calculated robustly for each filter cycle, weighting each 
measurement according to its expected accuracy. 

5. ILLUSTRATIVE EXAMPLES 
The operation of DROID is illustrated in Figures 10 to 13 
for the application of DROID to an image sequence 
recorded in a typical corridor of an office building. Figure 
10 shows two consecutive frames of the seqnence, which 
is processed at an image resolution of 256 by 256 pixels 
over a field of view of about 50 degrees. The distance 
moved between processed frames in this sequence is a b u t  
3-5"  depending on the speed of the sensor platform. 

Superimposed on the grey levels of Figure 10 are the 
positions of exmcted point features; these are the points 
which are tracked from frame to frame. While a few of 
these features are not detected in every frame the majority 
are sufficiently stable to be hacked over several frames. 
Such persistent features are shown in Figure 11; these are 
the points at which 3D information is available. 

Though range estimates are only generated for the hacked 
feature poinvs, ranges to other p ints  can be obtained by 
assuming some model of an interpolating surface. 
DROID assumes the surface can be described by planar 
triangular facets, the triangles themselves k ing drawn by 
a Delauney triangulation process with results shown in 
Figure 12. This triangulation method hies to avoid long 
thin triangles and it is seen to be successful near the centre 
of the image. Near the boundaries of the described 
shucture, triangles tend to be less good natured and an 
erroneous depth estimate for a particular feature can have 
an unwanted effect over a large part of the scene. 

Once the triangulation is determined, contours can be 
drawn on the interpolated surface as in Figure 13. 
'Contours' here are drawn 20cm apart down-range and 
cross-range. (Imagine a net of 20cm squares projected 
onto the scene from above.) We see that the general 
structure of the Scene has been captured - a flat floor with 
vertical walls to the left, right and in front. The system 
does not quite have sufficient resolution, however, to 
clearly distinguish the presence of the pile of rubbish 
stacked in the right-hand comer. An interesting feature of 
these results is the cluster of erroneous feature depths on 
the door to the left of the framed certificate on the wall. 
These arise from srmcture seen in reflections on the shiny 
door surface! 3D edge processing in a scene such as this 
would have considerable advantages, with the crisp man- 
made skirting bards and wall panels. 

The operation of RAPiD is illustrated in Figures 14 to 
18. These show RAPiD tracking a 'bat' symbol. The 
scenario is shown in Figure 14, with the camera on a 
remotely controllable platform, though in this 
demonsmation the target is to be moved relative to a 

Similarly RAPiD has a wide range of applicability. See 
for example Figure 18. Other reported applications 
include: - 
* 

laboratory demonstrations with, a floppy disc box, 
painted cone, and an egg! [61 
an airfield runway viewed from a descending aircraft 
m 
airborne object release monitoring, and following a 
Land Rover along a test mck [241. 

6. DEVELOPMENT STATUS 
DROID has been developed as an off-line process using 
general purpose hardware. In this form DROID has been 
applied to a range of domains. The initial development 
was in the context of a laboratory robot work-cell, but 
DROID has performed well in other indoor and outdoor 
contexts, including scenes dominated by natural 
vegeation, and others shuctured with human artefacts. 

In a software implementation, feature detection is the 
slowest component in DROID, taking 2 seconds on a 
Sparc 2 workstation for a 256x256 pixel image, while the 
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subsequent geometric processing takes 0.2 - 0.3 seconds 
per M e .  

Dedicated video-rate hardware (25Hz) will shortly be 
available from Roke Manor to perform feature extraction 
for either 512x512 pixel imagery, or up to 4 camera 
stereo imagery at 256x256 pixels. (Note that use of 
512x512 pixel imagery would indicate the use of a frame- 
capture camera, since the two fields producedl by 
conventional cameras are captured at 1/5Oth second 
intervals and would be tom apart even by moderate camera 
motion.) DROID systems, based on this front-end 
hardware, are currently in development: these are expected 
to perform overall at near video rate. 

Given the modest hardware requirements of RAPiD, 
development has been based on real-time assessment From 
the beginning. Near real-time performance was originally 
achieved with a multi-user VAX 3400! Current 
development and applications work is generally for the 
analysis of video recorded trials, such as the analysis of 
released-store trajectories and the landing path of 
unmanned aircraft. For convenience of software 
development, and ancillary facilities, RAPiD has IKen 
implemented on workstations supplemented by a video 
capture/display card. In a dedicated application, a two-card 
solution is readily feasible. 

7. A CRITICAL DISCUSSION 
DROID and RAPiD might be considered to lie at 
opposite ends of the range of computer vision tasks, with 
DROID extracting the 3D structure of unknown scenes 
and RAF'iD plotting the position of a known object. The 
two systems have developed in this fashion, but it is 
possible to imagine a unified DROID-RAPiD system. 
Instead of fully known models we may imagine partially 
known models in which either (a) newly observed features 
- specified by DROID-like processing - are added to an 
existing model, or (b) known yet approximately specified 
features of a model are refined. Similarly RAPiD 
processing of a modelled component in a scene may 
generate ego-motion estimates for use in instantiating 
previously unknown features. 

Returning to the original focus of attention for this paper, 
(Le. the following of a known object through unknown 
terrain). it would be appropriate to consider m e  apparent 
deficiencies with the DROID-RAPiD approach. The 
greatest limitation would seem to lie at the ontset with 
the feature-based approach. While DROID can be 
demonstrated to provide measurements with at times 
surprising accuracy, the concentration on high quality 
features leads to a sparse representation of the viewed 
structure; the sparseness can be catastrophic in very bland 
scenes. This underlines the power of the human brain in 
using a wide range of depth cues, general scene 
understanding, shape from shading and the other shape- 
from-X methods. Work is in progress to enrich DROTDs 
s!n~~turaI representation by the use of edge features which 
should be beneficial in man-made environments 
particularly. It seems apparent, however, that DROID 
should be regarded as a measurement system and some 
applications may require a further tier of image 
interpretation to achieve a complex objective. 

A second weakness expected in the DROID philosophy 
lies in DRODD's use of structure to derive ego-motion and 
vice versa. This is particularly important in the 
transition from boot to run-mode processing as errors in 
structure made at boot may be frozen into the system at 
an early stage, leading to future errors in ego-motion and 
subsequent structure errors in future structllll:. In practical 
cases, however, this does not appear to be a problem, 
with initial errors decaying over the fist fi:w processed 
frames of a sequence. The resulting structuri: may well be 
erroneous with respect to an initial globid coordinate 
frame, but it seems to be generally accurate with respect 
to local coordinates. 

An observed weakness in DROID has been a long term 
drift in the estimated ego motion, though short term 
performance is believed to be generally good. This drift 
is important if it is required to relate currently viewed 
structure to features which have long ago left the camera's 
field of view. (This effect is more pronounced with 
cameras of a narrow field of view. and when the features 
of the viewed scene are concentrated in a sinall range of 
depths.) A particularly common drift has been observed 
in the estimated speed of estimated sensor motion, which 
results in a corresponding drift in the estimated scale of 
the viewed scene. This speed-scale drift does not apply to 
the use of DROID in a stereo mode [13,231, which bas a 
g e n d y  stabilising effect, particularly at boot. Drifts in 
the ego-motion estimates may also be stabilised by use of 
external odomeuy; other motion constraints, such as 
constant forward speed may be appropriate in particular 
CiICUmsranceS. 

Tuming to the use of RAF'iD to follow known objects, a 
major weakness here is the reliance on a specific 
geometric model. This may not be a problem with 
cooperating targets, especially as the complexity of the 
required model is not onerous, though the readiness of 
new models may limit the system's flexibility. With 
non-cooperating targets, there is a system requirement to 
identify the object to be tracked so that the appropriate 
model can be applied. It is feasible that R.4PiD can be 
extended to include estimation of a small number of 
model parameters, and perhaps a model migiht be defined 
to minimise reliance on variable components, but it 
remains that RAF'iD, as currently formulated, is not 
applicable to the problem of tracking a fr(?ely moving 
generic object 

8. CONCLUDING SUMMARY 
It has been demonswted that DROID can extract sensor 
ego motion and scene structure to some accuracy, and 
RAPiD with suitable models can track known objects to 
high precision. DROID has been applied successfully in 
a range of indoor ami outdoor scenes, and RIWiD too has 
been used in a range of applications. Together these 
systems make a considerable conhibunon to the task of 
obstacle avoidance and object following. 

This p a p  has described the basic structure-from-motion 
algorithms used by DROID to generate a description of 
scene structure and sensor motion from a mono image 
sequence. The resulting scene structure is rqpresented by 
the estimated 3D positions of localised point features. 
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This paper has also described the basic algorithms of the 
RAF'iD aacker. RAPiD is eminently suited to real-time 
pmcessing with modest hardware, and real-time pmesscu 
implementations of DROW are now in development. 

In addition to the techniques detailed here, DROIJJ has 
been extended to stereo operation and use of edge features 
is being researched. Stereo generally enhances the 
stability of the system and edges are expected to enrich 
the available 3D structural representation, though this 
will be of most utility in man-made environments. 

This paper has also mentioned possible weakness in the 
DROID/RAPiiD approach, in particular the sparseness of 
output in bland scenery and the need for target-specific 
models. To perfm complex tasks, we may need to use 
these methods as measurement subsystems within a larga 
processing and interpretation framework. It is clear 
however that DROID and RAPiD are powerful tools in 
their own right, as shown by the range of environments 
in which they have been demonstrated. 
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from Outdoor Image Sequences Proceedings of the 23. E P Sparks & M J Stephens Stereo DROID 
4th Alvey Vision Conference, Manchester, August Proceedings of the IEE Colloquium on Active & 
1988. Passive Techniques for 3D Vision, London, 

February 1991, p6/1. 
22. M J Stephens, E P Sparks & R J Blissett Surface 

Perception and Lucalisation using Passive Vision Roke Manor Research Information Sheet: RAPiD 
Proceedings of the 9'th Intemationd Conference on Real-Time Video Motion A n a h i s .  1991. 
Automated Inspection and Product Control, 
Stuttgm, May 1989. 
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Figure 1. DROID process flowchart. 
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Flgure 10. Two consecutive frames from corridor sequence with 
DROiD extracted feature-polnts marked by white spots . 

Figure 11. Reliably tracked DROiD feature-points. 



Figure 12. Delauney trlangulatloii of image plane using tracked features. 

Figure 13. Contour map of scene derived by lnterpoiatlon between 
feature-points using triangulated surface. 



Figure 14. General view of RAPID demonstration scenario. 
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Figure 15. 'Bat' target model used by RAPID. 
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Figure 16. Two images of target as seen by the RAPID camera with 
target outlines and pose data superimposed. 
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Figure 17. Plots of pose parameters generated by RAPID. 
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Flgure 18. RAPID applied to a model aircraft. 
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TYPE 1/4/1 
Quest Accession Number : 91A47146 
91A47146 NASA IAA Journal Article Issue 20 
Teaching network connectivity using simulated annealing on a massively 

(AA)WILSON, STEPHEN S .  
(AA)(Applied Intelligent Systems, Inc., Ann Arbor, MI) 
IEEE, Proceedings (ISSN 0018-9219), vol. 79, April 1991, p. !559-566. 

parallel processor 

910400 p. 8 refs 8 In: EN (English) p.3511 

A simulated annealing technique for automatically training a machine 
vision system to recognize and locate complex objects is described. In 
this method, the training is used to find an optimum connectivity pattern 
of a fixed number of inputs that have fixed weights, rather than the usual 
technique of finding the optimum weights for a fixed connectivity. The 
recognition model uses a two-layer artificial neural network, where the 
first layer consists of image edge vectors in four directions. Each neuron 
in the second layer has a fixed number of connections that connect only to 
those first layer edges that are best for distinguishing the object from a 
confusing background. Simulated annealing is used to find the best 
parameters for defining edges in the first layer, as well as the pattern 
of connections from the first to the second layer. Weights of the 
connections are either plus or minus one, so that multiplications are 
avoided, and the system speed is considerably enhanced. In industrial 
applications on a low-cost parallel SIMD (single instruction multiple 
data) architecture, objects can be trained by an unskilled user in less 
than 1 min, and after training, parts can be located in about 100 Ins. This 
method has been found to work very well on integrated circuit patterns. 
I.E. 

TYPE 1/4/2 
Quest Accession Nun ?r : 91 1433 
91~44332# NASA IAA Preprint Issue 18 
Computer vision of the Martian rover - Hardware/software technique 
(AA)SHAMIS, V.; (AB)AVANESOV, G.; (AC)KOGAN, A . ;  (AD)LANC:E, M.; 

(AE) ShlANOV, I. 
(AE) IAN SSSR. Institut Kosmicheskikh Issledovanii. MOSCOW, USSR) 
\ -, > 

AIAA PAPER ' 88-5012 AIAA and NASA, International Symposium' on Space 
Automation and Robotics, lst, Arlington, VA, NOV. 29, 30, 1988. 8 p. 
881100 p. 8 In: EN (English) p.3073 

The present study examines principles of computer vision des,ign for 
autonomous planetary rovers. Some optional computer vision system (CVS) 
techniques used to measure environment parameters of the Martian rover are 
compared, with due account Por its diminished payload. Expert estimates of 
the main design parameters for every feasible option of the rover's CVS 
are adduced. Attention is given to the CVS optical range finder, stereo 
system with linear source, stereo system with matrix source (active 
systems), and stereo system with edge detection, multistereo system, and 
stereo system with mapped search (passive systems). Consideration is given 
to CVS detection of obstacles within a viewing angle. The algorithm used 
to detect local obstacles is described. 
P.D. 
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TYPE 11413 
Quest Accession Number : 91A35147 
91A35147 NASA IAA Conference Paper Issue 14 
Environment learning using a distributed representation 
(AA)MATARIC, MAJA J. 
(AA) (MIT, Cambridge, MA) 
N00014-86-K-0685 IN: 1990 IEEE International Conference on Robotics and 

Automation, Cincinnati, OH, May 13-18, 1990, Proceedings. Vol. 1 
(A91-35126 14-63). Los Alamitos, CA, IEEE Computer Society Press, 1990, p. 
402-406. Hughes Aircraft Co.-supported research. 900000 p. 5 refs 15 
In: EN (English) p.2354 

A method for robust mobile robot navigation and environmental learning 
is presented. It was implemented and tested on a physical robot. The 
method consists of a collection of simple, incrementally designed robot 
behaviors. The behaviors receive sonar and compass data which they use to 
dynamically detect landmarks and construct a distributed map of the 
environment. The map is represented as a graph in which each node is a 
collection of augmented finite state machines functioning a parallel. The 
distributed nature of the map allows for localization in constant time. 
The method utilizes a modified spreading of activation scheme to 
accomplish robust linear-time path planning. It is capable of generating 
both topologically and physically shortest paths to the goal. The method 
uses local information to achieve the global task without having to replan 
if the robot becomes lost or strays off the desired path. 
I.E. 

TYPE 11414 
Quest Accession Number : 91k35146 
91A35146 NASA IAA Conference Paper Issue 14 
Robot navigation using an anthropomorphic visual sensor 
(AA)TISTARELLI, MASSIMO; (AB)SANDINI, GIULIO 
(~~)(Genova, Universita, Genoa, Italy) 
IN: 1990 IEEE International Conference on Robotics and Automation, 

Cincinnati, OH, May 13-18, 1990, Proceedings. V o l .  1 (A91-35126 14-63). 
Los Alamitos, CA, IEEE Computer society Press, 1990, p .  374-381. Research 
supported by CNR and NATO. 900000 p. 8 refs 24 In: EN (English) p. 
2354 

The use of an anthropomorphic, retinalike visual sensor for navigation 
tasks is investigated. The main advantage, besides the topological scaling 
and rotation invariance, stems from the considerable data reduction 
obtained with nonuniform sampling, in conjunction with high resolution in 
the part of the field of view corresponding to the focus Of attention. 
Active movements are also considered to be a beneficial feature, solving 
the depth-from-motion problem and maintaining a three-dimensional 
representation of the viewed scene. For short-range navigation, a tracking 
egomotion strategy is adopted which greatly simplifies the motion 
equations and complements the characteristics of the retinal sensor (the 
displacement is smaller wherever the image resolution is higher). An 
algorithm for the computation of depth from motion is developed for image 
sequences acquired with the retinal sensor, and an error analysis is 
carried out to determine the uncertainty of range measurements. An 
experiment is presented in which depth maps are computed from a sequence 
of images sampled with the retinalike sensor, building a volumetric 
representation of the scene. 
I.E. 



TYPE 11415 
Quest Accession Number : 91A30851 
91A30851 NASA IAA Meeting Paper Issue 12 
NAECON 90; Proceedings of the IEEE National Aerospace and Electronics 

(AA)PALAZZO. FRANK L. 
(AA)ED. 

Conference, Dayton, OH, May 21-25, 1990. VolS. 1-3 

(AAj(Questech, Inc., Dayton, OH) 
Conference soonsored bv IEEE. New York, Institute of Electrical and - 

Electronics Engineers, Inc., 1990, p. Vol. 1, 466 p.; vol. 2, 456 p . ;  vol. 
3, 424 p. For individual items see A91-30852 to A91-31031. 900000 p. 
1346 In: EN (English) Price of three vols., members, $70.; nonm.embers, 
$140 p.1899 

The present conference discusses advancements in VLSI 
components/packaging, signal processing, airborne computers,, data 
transmission, advanced avionics architectures. optical application.s, data 
control and display, airborne image processing, target acquisition and 
recognition, airborne radar and fire control, navigation, weapons guidance 
and interfaces, Kalman filtering, power generation and control, and 
command control and communications. Also discussed are flight control 
reconfiguration, multivariable control theory, flight management, Ada 
language applications, object-oriented Ada simulations, s.oftware 
management and quality assurance, visual system software, 
voice-interaction applications, humanlmachine interfaces, pilot 
acceleration protection, electronic combat analysis, modular avionics, 
expert systems, machine vision/optical image processing, adaptive 
networks, logistics readiness, automated testing, and total quality 
management. 
O.C. 

TYPE 11416 
Quest Accession Number : 91N30843 
91N30843# NASA STAR Thesis Issue 22 
Application of Gestalt theory concepts for image interpretation for 

UMA APLICACAO DE CONCEITOS DA TEORIA DE GESTALT NA INTERPRETACAO DE 

(AA)ODASHIMA, EUNICE KINUYO 

robot movement navigation 1 M.S. Thesis - 14 Feb. 1990 
IMAGENS PARA A NAVEGACAO DE ROBOS MOVEIS 

Instituto de Pesquisas Espaciais, Sao Jose dos Campos (Brazil). ( 
T O K O 1  R 9 1  I -. . . -. . - 
I N P E - ~ ; ~ ~ - T D L / ~ ~ ~  910300 p. 144 In PORTUGUESE; ENGLISH summary In: 

AA (Mixed) Avail: NTIS HCjMF A07 p.3741 

Research involved the development of machine vision for a vehicle 
capable of moving from one pl.ace to another while employing collision 
avoidance capabilities. The specific objective of the study was the use of 
image segmentation of the interior space and the obstacles therein to 
construct 
on Gestalt psychology and qeometry. 

a cognitive map of the robot's movements. The paradigm is based 
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TYPE 11417 
Quest Accession Number : 91N29801 
91N29801# NASA STAR Conference Proceedings Issue 21 
Workshop on Automation and Robotics: Proceedings 
Lawrence Livermore National Lab., CA. (LH075075) 
DE91-015175; CONF-910274 W-7405-ENG-48 910200 p. 243 Workshop held 

in Livermore, CA, 6 Feb. 1991 In: EN (English) Avail: NTIS HCIMF All 
p.3562 

This workshop provided a forum in which Lawrence Livermore National 
Laboratory scientists and engineers exchanged ideas and information on the 
latest internal developments in the field of robotic and automation 
technologies. The material presented constitutes most of the presentations 
given during the workshop. Presentations were given on the following 
session topics: robotics and automation in hazardous environments; 
laboratory and machine tool automation; neural networks, machine vision, 
and sensors; applied real time control; future technologies and 
applications; intelligent man-machine interaction issues. Individual 
papers have been cataloged separately. 
DOE 

TYPE i/4/a 
Quest Accession Number : 91A29762 
91A29762# NASA IAA Journal Article Issue 11 
Star pattern identification aboard an inertially stabilized aircraft 
(AA)KOSIX, JEAN CLAUDE 
(AA)(CNES, Toulouse, France) 
Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, 

Mar.-Apr. 1991, p. 230-235. 910400 p. 6 refs 6 In: EN (English) p. 
1713 

Comparative statistical analyses are conducted for several 
star-identification algorithms applicable to inertially stabilized 

angular-matching, and orientation-angle-magnitude. While the pole 
technique was both the most complex and least efficient, so that the 
polygon-match algorithm was superior even without any a priori information 
on attitude, the possession of crude attitude data allowed the polygon 
angular-matching algorithm to yield the best results; its code was nearly 
as simple as that for the polygon-match, and its efficiency was shown by 
the present probabilistic approach to be greatly improved over the 
alternatives. 
O.C. 

spacecraft: polygon-matching, the pole technique, polygon 
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TYPE 11419 
Quest Accession Number : 91A28855 
91A28855 NASA IAA Journal Article Issue 11 
Background characterization techniques for target detection using scene 

(AA)NOAH, PAUL V.; (AB)NOAH, MEG A.; (AC)SCHROEDER, JOHN; (AD)CHERNICK, 

(AC)(Ontar Corp., Brookline, MA); (AD)(U.S. Army, Material Systems 

DAAA15-88-C-0021 Optical Engineering (ISSN 0091-3286), vol. 30, Jan. 

metrics and pattern recognition 

JULIAN 

Analysis Activity, Aberdeen Proving Ground, MD) 

1991, p. 254-258. 910100 p. 5 refs 11 In: EN (English) p.182:I 

Autonomous homing munitions (AHM) using infrared, visible, millimeter 
wave and other sensors have been investigated in order to develop ground 
target detection and identificaton systems in a clutter enviroment. 
Pattern recognition and artificial intelligence techniques combined with 
multisensor data fusion have been used to evaluate a set of image metrics 
applied to infrared terrain clutter scenes. The application of 
discriminant function analysis to target detection and identification is 
demonstrated. 
O.G. 

TYPE 1/4/10 
Quest Accession Number : 91N27411 
91N27411# NASA STAR Technical Report Issue 19 
The effects of user's training on the performance of an automatic speech 

recognizer for a self-paced task / Final Report 
(AA)SMYTH, CHRISTOPHER C. 
Human Engineering Labs., Aberdeen Proving Ground, MD. (H6521544) 
AD-A235844; HEL-TM-10-91 DA PROJ. 1L1-62716-AH-70 910400 p. 84 In: 

EN (English) Avail: NTIS HC/MF A05 p.3150 

The results of a recent experiment concerning the effects of training on 
the performance of subjects using the automatic speech recognizer are 
reported. Over a 5-day period, 20 military enlisted grade male subjects 
were trained and tested in using a connected speech (speaker-dependent) 
machine automatic speech recognizer in a self-paced task controlling a 
generic tactical display by voice command. Experimental results show that 
a majority of the subjects had little difficulty with the automatic speech 
recognizer and that for these subjects training produced only a slight 
improvement in recognizer performance. These subjects performed at a high 
machine recognition rate. However, during the first session, a large 
minority (35 percent) of the subjects had difficulty training their speech 
to be machine recognizable. These subjects required at least two training 
sessions to perform the task at their best ability, and even after they 
were trained, their performance never reached the performance :level of 
other subjects. 
GRA 



TYPE 1/4/11 
Quest Accession Number : 91N26815 
91N26815# NASA STAR Technical Report Issue 18 
Northeast Artificial Intelligence Consortium (NAIC). Volume 1: Executive 

(AA)WEISS, VOLKER; (AB)BRULE, JAMES F. 
Northeast Artificial Intelligence Consortium, Syracuse, NY. (N4144152) 

summary / Final Report, Sep. 1984 - Dec. 1989 

AD-A234880; RADC-TR-90-404-VOL-1 F30602-85-C-0008 901200 p. 71 In: 
EN (English) Avail: NTIS HC/MF A04 p.3045 

The Northeast Artificial Intelligence Consortium (NAIC) was created by 
the Air Force Systems Command, Rome Air Development Center, and the Office 
of Scientific Research. Its purpose was to conduct pertinent research in 
artificial intelligence and to perform activities ancillary to this 
research. This report describes progress during the existence of the NAIC 
on the technical research tasks undertaken at the member universities. The 
topics covered in general are: (1) versatile expert system for equipment 
maintenance; (2) distributed AI for communications systems control; (3) 
automatic photointerpretation; (4) time-oriented problem solving; (5) 
speech understanding systems; ( 6 )  knowledge-based reasoning and planning; 
and (7) a knowledge acquisition, assistance, and explanation system. This 
volume provides the executive summary of the NAIC. 
GRA 

TYPE 1/4/12 
Quest Accession Number : 91N26792 
91N26792# NASA STAR Technical Report Issue 18 
Usinq qenetic algorithms to select and create features for pattern 

classification 
(AA)CHANG, E. I.: fAB)LIPPMANN, RICHARD P. 
Massachusetts Inst: of Tech., Lexington. (MJ728827) Lincoln Lab. 
AD-A235165; TR-892; ESD-TR-90-144 F19628-90-C-0002 910311 p. 90 In: 

EN (English) Avail: NTIS HC/MF A05 p.3042 

Genetic algorithms were used to select and create features and to 
select reference exemplar patterns for machine vision and speech pattern 
classification tasks. On a 15-feature machine-vision inspection task, it 
was found that genetic algorithms performed no better than conventional 
approaches to feature selection but required much more computation. For a 
speech recognition task, genetic algorithms required no more computation 
time than traditional approaches but reduced the number of features 
required by a factor of five (from 153 to 33 features). On a difficult 
artificial machine-vision task, genetic algorithms were able to create new 
features (polynomial functions of the original features) that reduced 
classification error rates from 10 to almost 0 percent. Neural net and 
nearest-neighbor classifiers were unable to provide such low error rates 
using only the original features. Genetic algorithms were also used to 
reduce the number of reference exemplar patterns and to select the value 
of k for a k-nearest-neighbor classifier. On a 338 training pattern vowel 
recognition problem with 10 classes, genetic algorithms simultaneously 
reduced the number of stored exemplars from 338 to 63 and selected k 
without significantly decreasing classification accuracy. In all 
applications, genetic algorithms were easy to apply and found good 
solutions in many fewer trials than would be required by an exhaustive 
search. Run times were long but not unreasonable. These results suggest 
that genetic algorithms may soon be practical for pattern classification 
problems as faster serial and parallel computers are developed. 
GRA 
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TYPE 1/4/13 
Quest Accession Number : 91A26612 
91A26612* NASA IAA Conference Paper Issue 10 
Kalman filter based range estimation for autonomous navigation using 

(AA)SRIDHAR, B.; (AB)CHENG, V. H. L.; (AC)PHATAK, A. V. 
imaging sensors 

(AB) (NASA, Ames Research Center, Moffett Field, CA) ; (AC) (Analytical 
Mechanics Associates, Mountain View, CA) 
National Aeronautics and Space Administration. Ames Research Center, 

Moffett Field, CA. (NC473657) 
IN: Automatic control in aerospace; IFAC Symposium, Tsukuba, Japan, July 

17-21, 1989, Selected Papers (A91-26606 10-12). Oxford, England and New 
York, Pergamon Press, 1990, p. 45-50. 900000 p. 6 refs 12 In: EN 
(English) p.1553 

The ability to detect and locate obstacles using on-board sensors and 
modify the nominal trajectory is necessary for safe landing of an 
autonomous lander on Mars. This paper examines some of the issue!; in the 
location of objects using a sequence of images from a passive sensor, and 
describes a Kalman filter approach to improve the range estimation to 
obstacles. The filter is also used to track features in the images leading 
to a significant reduction of search effort in the feature extraction step 
of the algorithm. The lack of suitable flight imagery data presents a 
problem in the verification of concepts for obstacle detection. An 
experiment is designed to acquire a sequence of images along with sensor 
motion parameters and the range estimation results using this imagery are 
presented. 
Author 

TYPE 1/4/14 
Quest Accession Number : 91A26349 

91A26349 NASA IAA Book/Monograph Issue 09 
Intelliqent robotics (Book) 
(AAILEE; MARK H. 
(AA) (University College of Wales, Aberystwyth) 
Research supported by Universitv of Auckland and SERC. New YorklMilton 

Keynes, Englahb, John -Wiley & S&s/Open University Press, 1989,’ 224 p. 
890000 p. 224 refs 55 In: EN (English) $61.95 p.1454 

The fundamental principles of intelligent-robot design and application 
are discussed in a general introduction for engineering students and 
practicing engineers. Chapters are devoted to the current st.atus of 
robotics technology, sensor technology, artificial sight, the problem of 
perception, building a knowledge base, and machinery for thinking about 
actions. Also considered are the emulation of an expert; errors, failures 
and disasters; a robotic assembly system; and proposals for a science of 
physical manipulation. Extensive diagrams, drawings, and graphs are 
provided. 
T.K. 
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TYPE 1/4/15 
Quest Accession Number : 91N24046 
91N24046*# NASA STAR Conference Paper Issue 15 
Intelligent vision system for autonomous vehicle operations 
(AA)SCHOLL, MARIJA S .  
Jet Propulsion Lab., California Inst. of Tech., Pasadena. (JJ574450) 
In NASA, Washington, Technology 2000, Volume 2 p 34-43 (SEE N91-24041 

15-99) 910000 p. 10 In: EN (English) Avail: NTIS HCjMF A16 p.2536 

A complex optical system consisting of a 4f optical correlator with 
programmatic filters under the control of a digital on-board computer that 
operates at video rates for filter generation, storage, and management is 
described. 
Author 

TYPE 1/4/16 
Quest Accession Number : 91N23766 
91N23766# NASA STAR Technical Report Issue 15 
Synergetic multisensor fusion / Final Report, 1 Jul. 1987 - 30 Sep. 

(AA)AGGARWAL, J. K. 
Texas Univ., Austin. (TT636128) Computer and Vision Research Center. 
AD-A232089; ARO-25021.5-PH DAAL03-87-K-0089 901130 p. 60 In: EN 

1990 

(English) Avail: NTIS HCjMF A04 p.2486 

Synergetic multisensor fusion is the process of integrating information 
obtained from different sensing modalities in order to extract additional 
information that cannot be obtained by separately processing the signals 
from the different sensors. The development of a computer vision system 
using synergetic multisensor fusion is a complex task which encompasses: 
sensor modeling; environment modeling; determining the analytic models 
used to interrelate the different sensing mechanisms; determining the 
models used to interrelate the sensed parameters of imaged objects (such 
as thermal emissivity, visual reflectance, and radar reflectance); and 
devising algorithms to exploit the derived models. We have developed 
powerful and robust algorithms for computer vision tasks based upon 
synergetic multisensor fusion. Our approach is suitable for applications 
such as object recognition, tracking, surveillance, and autonomous 
guidance. 
GRA 



13-10 

TYPE 1/4/17 
Quest Accession Number : 91A23123 

91A23123 NASA IAA Journal Article Issue 08 
The DARPA Image Understandinq Benchmark for Parallel comwuters 
(AA) WEEMS, CHARLES; (AB) RISEMAN, EDWARD; (AC) HANSON, ALLEN; 

[AD) ROSENFELD. AZRIEL 
' (AC) (Massachusetts, University, Amherst) ; (AD) (Maryland, Uni.versity, 
College Park) 
DACA76-86-C-0015 Journal of Parallel and Distributed Computi.ng (ISSN 

0743-7315), vol. 11, Jan. 1991, p. 1-24. Research supported by DARPA. 
910100 p. 24 refs 15 In: EN (English) p.1258 

DARPA has undertaken an evaluation of parallel architectures applicable 
to knowledge-based machine vision, with a view to the formulation of a 
benchmark capable of addressing the issue of system performance on an 
integrated set of tasks. This Integrated Image Understanding Benchmark 
encompasses a model-based object-recognition problem, two sources of 
sensor-input and intensity and range data, and a data base of candidate 
models consisting of rectangular surface configurations in orthographic 
projection in the presence of both noise and spurious nonmodel surfaces. 
The benchmark can be used to gain insight into processor strengths and 
weaknesses, thereby guiding the development of next-generation 
parallel-vision architectures. 
O.C. 

TYPE 1/4/18 
Quest Accession Number : 91N22769 
91N22769*# NASA STAR Conference Proceedings Issue 14 
The 1991 Goddard Conference on Space Applications of Art.ificia1 .. 

Intelligence 
( AA) RASH, JAMES L . 
(AA) ed. 
National Aeronautics and Space Administration. Goddard Space Flight 

Center, Greenbelt, MD. (NC999967) 

Conference held in Greenbelt, MD, 13-15 May 1991 In: EN (English) Avail: 
NTIS HCfMF A16 p.2312 

NASA-CP-3110; REPT-91B00064; NAS 1.55:3110 Washington 910500 p. 361 

The purpose of this annual conference is to provide a forum in which 
current research and development directed at space applications of 
artificial intelligence can be presented and discussed. The papers in this 
proceeding fall into the following areas: Planning and scheduling, fault 
monitoringfdiagnosisfrecovery, machine vision, robotics, system 
development, information management, knowledge acquisition and 
representation, distributed systems, tools, neural networks, and 
miscellaneous applications. For individual titles, see N91-22770 through 
N91-22797. 



TYPE 1/4/19 
Quest Accession Number : 91A20480 
91A20480 NASA IAA Meeting Paper Issue 06 
Intelligent robots and computer vision VIII: Systems and applications; 

(AA)BATCHELOR, BRUCE G. 
(AA) ED. 
(AA)(Cardiff, University College, Wales) 
SPIE-1193 Meeting sponsored by SPIE. Bellingham, WA, Society of 

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1193), 
1990, 3 5 6  p. For individual items see A91-20481 to A91-20484. 900000 p. 
3 5 6  In: EN (English) Members, $51.; nonmembers, $64 p.918 

Recent advances in robot optical sensors and their applications are 
discussed in reviews and reports. Sections are devoted to planning 
schemes, intelligent robots, industrial robots, and sensors and 
processing. Particular attention is given to planning based on multisensor 
input, an object-oriented approach to simulation of perception and 
navigation for mobile robots, fast visual foothold finding for an 
autonomous bipedal robot, hierarchical modeling of mobile seeing robots, a 
robot tactile sensor for peghole assembling, incorporating ultrasound into 
robot vision, the use of projection to extract a range map, the tracking 
of partially occluded two-dimensional shapes, and corner detection from 
thinned-edge images using a Kalman filter. 
T.K. 

i 
Proceedings of the Meeting, Philadelphia, PA, Nov. 9 ,  10, 1989 

TYPE 1/4/20 
Ouest Accession Number : 91A20226 - ~~ ~~ 

91A20226 NASA IAA Meeting Paper Issue 06 
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, NOV. 6, 

7, 1989 
UMWOLFE. WILLIAM J.: (ABICHUN, WENDELL n. . .  . 
(AAjED.; (AB)ED. 
(AA)(Colorado, University, Denver); (AB) (Martin Marietta Space Systems 

co., Denver, CO) 
SPIE-1195 Meeting sponsored by SPIE. Bellingham, WA, Society of 

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1195), 
1990, 420 p. For individual items see A91-20227 to A91-20231. 900000 p. 
420 In: EN (English) Members, $45.; nonmembers, $56 p.918 

The present conference on mobile robot systems discusses high-speed 
machine perception based on passive sensing, wide-angle optical ranging, 
three-dimensional path planning for flying/crawling robots, navigation of 
autonomous mobile intelligence in an unstructured natural environment, 
mechanical models for the locomotion of a four-articulated-track robot, a 
rule-based command language for a semiautonomous Mars rover, and a 
computer model of the structured light vision system for a Mars rover. 
Also discussed are optical flow and three-dimensional information for 
navigation, feature-based reasoning trail detection, a symbolic neural-net 
production system for obstacle avoidance and navigation, intelligent path 
planning for robot navigation in an unknown environment, behaviors from a 
hierarchical control system, stereoscopic TV systems, the REACT language 
for autonomous robots, and a man-amplifying exoskeleton. 
O.C. 



TYPE 1/4/21 
Quest Accession Number : 91A19827 
91A19827 NASA IAA Journal Article Issue 06 
Estimating 3-D egomotion from perspective image sequences 
(AA)BURGER, WILHELM; (AB)BHANU, BIR 
(AA) (Linz, Universitaet, Austria); (AB) (Honeywell Systems and Research 

Center, Minneapolis, MN) 
DACA76-86-C-0017 IEEE Transactions on Pattern Analysis and Machine 

Intelligence (ISSN 0162-8828), vol. 12, NOV. 1990, p. 1040-1058. Research 
supported by DARPA. 901100 p. 19 refs 33 In: EN (English) p.916 

Computing sensor motion from sets of displacement vectors obtained from 
consecutive pairs of images is discussed. The problem is investigat:ed with 
emphasis on its application to autonomous robots and land vehic1.e~. The 
effects of 3-D camera rotation and translation upon the observed image are 
discussed, particularly the concept of the focus of expansion (FOE). It is 
shown that locating the FOE precisely is difficult when displacement 
vectors are corrupted by noise and errors. A more robust performa.nce can 
be achieved by computing a 2-D region of possible FOE locations (termed 
the fuzzy FOE) instead of looking for a single-point FOE. The s.hape of 
this FOE region is an explicit indicator of the accuracy of the remit. It 
has been shown elsewhere that given the fuzzy FOE, a number of Flowerful 
inferences about the 3-D sense structure and motion become possible. The 
aspects of computing the fuzzy FOE are presently emphasized, and the 
performance of a particular algorithm on real motion sequences taken from 
a moving autonomous land vehicle j.s shown. 
I.E. 

TYPE 1/4/22 
Quest Accession Number : 91A19501 
91A19501 NASA IAA Meeting Paper Issue 06 
Intelligent robots and computer vision VIII: Algorithms and techniques; 

Proceedings of the Meeting, Philadelphia, PA, Nov. 6-10, 1989. Parts 1 & 2 
(AA)CASASENT, DAVID P. 
(AA)ED. 
(AA) (Carnegie-Mellon University, Pittsburgh, PA) 
SPIE-1192 Meeting sponsored by SPIE. Bellingham, WA, Society of 

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1192), 
1990, p. Pt. 1, 512 p.; pt. 2, 382 p. For individual items see A91-19502 
to A91-19509. 900000 p.  894 In: EN (English) Price of two parts, 
members, $73.; nonmembers, $91 p.928 

Theoretical and practical aspects of computer-vision systems for 
robotics applications are discussed in reviews and reports. Sections are 
devoted to pattern recognition for intelligent robots and computer vision; 
segmentation, image processing, and feature extraction; three-dimensional 
shape determination and representation; color and range image processing; 
and neural networks and associative processors for advanced vision 
processing. Also considered are the biological basis for machine vision, 
fuzzy logic in intelligent systems and computer vision, image 
understanding and analysis, time-sequential image processing, ant3 polar 
exponential grid processing for synthetic vision systems. Extensive 
diagrams, graphs, and sample images are provided. 
T.K. 
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TYPE 1/4/23 
Quest Accession Number : 91A16419 
91A16419 NASA 1- Meeting Paper Issue 04 
Optics, illumination, and image sensing for machine vision IV; 

(AA)SVETKOFF, DONALD J. 
(AA) ED. 
(=)(Synthetic Vision Systems, Inc., Ann Arbor, MI) 
SPIE-1194 Meeting sponsored by SPIE. Bellingham, WA, Society of 

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1194), 
1990, 317 p. NO individual items are abstracted in this volume, 900000 
p. 317 In: EN (English) Members, $45.; nonmembers, $56 p.514 

Various papers on optics, illumination, and image sensing for machine 
vision are presented. Individual topics addressed include: extraction of 
the 'time to contact' from real visual data, position-decoupled optical 
inspection relay system, TDI imaging in industrial inspection, time delay 
and integration camera for machine vision, special scanning modes in CCD 
cameras, scale-invariant processing multiple wavelengths, incoherent 
optical correlators, light-source models for machine vision, design and 
testing of a microscopic reflectometer, prediction scheme for a 
verification vision system, accurate calibration technique for 3-D laser 
strip sensors, triangulation-based camera calibration for machine-vision 
system. Also discussed are: 3-D gradient and curvature measurement using 
local image information, depth from defocus of structured light, range 
sensing by projecting multiple slits with random cuts, use of linear 
arrays in electronic speckle pattern interferometry, new 3-D vision sensor 
for shape-measurement applications, 3-D imager with wide area and high 
dynamic range, integration of stereo camera geometries, surface 
orientation from two-camera stereo with polarizers, application-oriented 
overview of stereoscopic vision. 
C.D. 

Proceedings of the Meeting, Philadelphia, PA, Nov. 8-10, 1989 
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TYPE 1/4/24 
Quest Accession Number : 91N13941 
91N13941*# NASA STAR Technical Report Issue 05 
A discrepancy within primate spatial vision and its bearing on the 

(AA)JOBSON, DANIEL J. 
National Aeronautics and Space Administration. Langley Research Center, 

definition of edge detection processes in machine vision 

Hampton, VA. (ND210491) 
NASA-TM-102739; NAS 1.15:102739 307-51-10 900900 p. 31 In: EN 

(English) Avail: NTIS HC/MF A03 p.707 

The visual perception of form information is considered to be based on 
the functioning of simple and complex neurons in the primate striate 
cortex. However, a review of the physiological data on these brain cells 
cannot be harmonized with either the perceptual spatial frequency 
performance of primates or the performance which is necessary for form 
perception in humans. This discrepancy together with recent interest in 
cortical-like and perceptual-like processing in image coding and machine 
vision prompted a series of image processing experiments intended to 
provide some definition of the selection of image operato.rs. The 
experiments were aimed at determining operators which could be used to 
detect edges in a computational manner consistent with the visual 
perception of structure in images. Fundamental issues were the selection 
of size (peak spatial frequency) and circular versus oriented operators 
(or some combination). In a previous study, circular 
difference-of-Gaussian (DOG) operators, with peak spatial frequency 
responses at about 11 and 33 cycjdeg were found to capture the primary 
structural information in images. Here larger scale circular DOG operators 
were explored and led to severe loss of image structure and introduced 
spatial dislocations (due to blur) in structure which is not consistent 
with visual perception. Orientation sensitive operators (akin to one class 
of simple cortical neurons) introduced ambiguities of edge extent 
regardless of the scale of the operator. For machine vision schemes which 
are functionally similar to natural vision form perception, two circularly 
symmetric very high spatial frequency channels appear to be necessary and 
sufficient for a wide range of natural images. Such a machine vision 
scheme is most similar to the physiological performance of the primate 
lateral geniculate nucleus rather than the striate cortex. 
Author 



B-15 

TYPE 1/4/25 
Quest Accession Number : 90x37407 
90A37407 NASA IAA Conference Paper Issue 16 
Background characterization techniques for pattern recognition 

applications 
(AA)NOAH, MEG A.; (AB)NOAH, PAUL V.; (AC)SCHROEDER, JOHN; (AD)KESSLER, 

8. V. ; (AE) CHERNICK, JULIAN 
(AC)(Ontar Corp., Brookline, MA); (AD)(U.S. Navy, Naval Surface Warfare 

Center, White Oak, MD); (AE)(U.S. Army, Army Material Systems Analysis 
Activity, Aberdeen Proving Ground, MD) 
N60921-87-C-0044; DAAA15-88-C-0021 IN: Aerospace pattern recognition; 

Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989 (A90-37401 
16-63). Bellingham, WA, Society of Photo-Optical Instrumentation 
Engineers, 1989, p. 55-70. 890000 p. 16 refs 14 In: EN (English) p. 
2594 

The development of such sensor hardware as that of large IR and mm-wave 
detector arrays for air and ground vehicle detection in a cluttered 
battlefield environment has outpaced the development of signal processing 
techniques. Attention is presently given to a novel methodology for 
background clutter characterization, target detection, and target 
identification, employing multivariate statistical analysis to evaluate a 
set of image metrics applied to IR cloud imagery and terrain clutter 
scenes. This methodology is here applied to (1) the characterization of 
atmospheric water vapor cloud scenes for the U . S .  Navy’s IR Search and 
Track system, and (2) the detection of ground vehicles for the U.S. Army’s 
Autonomous Homing Munitions problem. 
O.C. 

TYPE 1/4/26 
Quest Accession Number : 90A32156 
90A32156 NASA IAA Conference Paper Issue 13 
An update on strategic computing computer vision - Taking image 

understanding to the next plateau 
(AA)SIMPSON. ROBERT L.. JR. 
iAAj (DARPA,. Information Science and Technology Office, Arlington, VA) 
IN: Image understanding and the man-machine interface 11; Proceedings of 

the Meeting, Los Angeles, CA, Jan. 17, 18, 1989 (A90-32151 13-63). 
Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1989, 

Development of knowledge-based technology enabling the construction of 
complete robust high-performance image understanding systems is addressed. 
A new-generation system, visual modeling and recognition, dynamic scene 
and motion analysis, obstacle detection and avoidance, parallel computing 
environment for vision, and technology transfer are covered among 
important accomplishments achieved in the first phase of the research, and 
the project summaries of the above developments are outlined. Integration 
of the component technologies into a new-generation system and 
demonstration of the utility of emerging vision software for autonomous 
navigation tasks are emphasized. The integration task represents a major 
research itself, since it addresses the architectural problems of sensor 
fusion and communication between the sensing and reasoning modules. 
V.T. 

p. 52-58. 890000 p. 7 In: EN (English) p.2064 
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TYPE 1/4/27 
Quest Accession Number : 90A32152 
901432152 NASA IAA Conference Paper Issue 13 
Neural networks for computer vision - A framework for specifications of 

(AA)SKRZYPEK, JOSEF; (AB)MESROBIAN, EDMOND; (AC)GUNGNER, DAVID 
(AC) (California, University, Los Angeles) 
N00014-86-K-0395 IN: Image understanding and the man-machine interface 

11; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, :L8, 1989 
(A90-32151 13-63). Bellingham, WA, Society of Photo-Optical 
Instrumentation Engineers, 1989, p. 16-29. Research supported by IBM 
Corp., Hewlett Packard Co., and University of California. 890000 p. 14 
refs 42 In: EN (English) p.2063 

a general purpose vision system 

A general-purpose machine vision system capable of perceiving and 
understanding images in an unconstrained environment is considered. 
Fifteen systems built during the last ten years are analyzed along five 
dimensions - image attributes, perceptual primitives, knowledge base, 
object representation, and control strategy. The human visual system is 
analyzed as an underlying mechanism necessary for the development of 
general purpose vision. An interdisciplinary approach to vision research 
based on the combination of computational neuroscience with oomputer 
science and electrical engineering is proposed. A methodology for 
synthesizing a framework for a general-purpose machine vision system is 
addressed, and visual tasks such as edge detection and texture 
discrimination are covered, along with complex pattern analysis and the 
formation of visual categories. 
V.T. 

TYPE 1/4/28 
Quest Accession Number : 90N27406 
90N27406# NASA STAR Preprint Issue 21 
Dynamic monocular machine vision and applications of dynamic monocular 

Universitaet der Bundeswehr Muenchen, Neubiberg (Germany, F.R.). ( 

LRT-WE-13-FB-88-3; ETN-90-97334 Sponsored in part by BMFT; DFG; Daimler 

machine vision 
(AA) DICKMANNS, ERNST DIETER; (AB) GRAEFE, VOLKER 

U1005765) Inst. fuer Systemdynamic und Flugmechanik. 

Benz A.G.; and MBB 880700 p. 99 In: EN (English) Avail: NTIS HC AO5/MF 
A01 p.3061 

A new approach to realtime machine vision in dynamic scenes is 
presented. It is based on special hardware and methods for feature 
extraction and information processing. Using integral spatio-temporal 
models, it bypasses the nonunique inversion of the perspective projection 
by applying recursive least squares filtering. By prediction error 
feedback methods, all spatial states variables including the velocity 
components are estimated. Only the last image of the sequence needs to be 
evaluated. Two applications in the field of robotics are given. 
ESA 
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TYPE 1/4/29 
Quest Accession Number : 90N27394 
90N27394# NASA STAR Technical Report Issue 21 
Parallel algorithms for computer vision / Final Report, 31 Aug. 1988 - 
(AA)POGGIO, TOMASO 
Massachusetts Inst. of Tech., Cambridqe. (MJ700802) Artificial 

31 Jan. 1990 

- 
Intelligence Lab. 

Avail: NTIS HC A04/MF A01 p.3059 
AD-A221871; ETL-0564 DACA76-85-C-0010 900400 p. 64 In: EN (English) 

An integrated vision system, (the Vision Machine) based on a parallel 
supercomputer, is examined. The core of the Vision Machine is in fact a 
set of parallel algorithms for visual recognition and navigation in an 
unstructured environment. The present version of the Vision Machine was 
demonstrated to process images in close to real time by: (1) computing 
first several low level cues, such as edges, stereo disparity, optical 
flow, color and texture, (2) integrating them to extract a cartoon-like 
description of the scene in terms of the physical discontinuities of 
surfaces, and (3) using this cartoon in a recognition stage, based on 
parallel model matching. In addition to the development of the parallel 
algorithms, their implementation and testing, work was performed in 
several areas that are very closely related. These include: (1) design and 
fabrication of VLSI circuits to transfer to potentially cheap and fast 
hardware some of the software algorithms; (2) initial development of 
techniques to synthesize by learning vision algorithms; and (3) several 
projects involving autonomous navigation of small robots. 
GRA 

TYPE 1/4/30 
Quest Accession Number : 90N22242 
90N22242*# NASA STAR Conference Paper Issue 15 
Ames vision group research overview / Abstract Only 
(AA)WATSON, ANDREW 8. 
National Aeronautics and Space Administration. Ames Research Center, 

In its Vision Science and Technology at NASA: Results of a Workshop p 52 
Moffett Field, CA. (NC473657) 

(SEE N90-22216 15-54) 900200 p. 1 In: EN (English) Avail: NTIS €IC 
A04/MF A01 p.2143 

A major goal of the reseach group is to develop mathematical and 
computational models of early human vision. These models are valuable in 
the prediction of human performance, in the design of visual coding 
schemes and displays, and in robotic vision. To date researchers have 
models of retinal sampling, spatial processing in visual cortex, contrast 
sensitivity, and motion processing. Based on their models of early human 
vision, researchers developed several schemes for efficient coding and 
compression of monochrome and color images. These are pyramid schemes that 
decompose the image into features that vary in location, size, 
orientation, and phase. To determine the perceptual fidelity of these 
codes, researchers developed novel human testing methods that have 
received considerable attention in the research community. Researchers 
constructed models of human visual motion processing based on 
physiological and psychophysical data, and have tested these models 
through simulation and human experiments. They also explored the 
application of these biological algorithms to applications in automated 
guidance of rotorcraft and autonomous landing of spacecraft. Researchers 
developed networks for inhomogeneous image sampling, for pyramid coding of 
images, for automatic geometrical correction of disordered samples, and 
for removal of motion artifacts from unstable cameras. 
Author 
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TYPE 1/4/31 
Quest Accession Number : 90N22237 

90N22237*# NASA STAR Conference Paper Issue 15 
Computer vision techniques for rotorcraft low altitude flight 
(AA)SRIDHAR, BANAVAR 
National Aeronautics and Space Administration. Ames Research Center, 

In its Vision Science and Technology at NASA: Results of a Workshop p 
Moffett Field, CA. (NC473657) 

45-46 (SEE N90-22216 15-54) 900200 p. 2 In: EN (English) Avail: NTIS 
HC A04/MF A01 p.2142 

Rotorcraft operating in high-threat environments fly close to the 
earth's surface to utilize surrounding terrain, vegetation, or manmade 
objects to minimize the risk of being detected by an enemy. Increasing 
levels of concealment are achieved by adopting different tactics during 
low-altitude flight. Rotorcraft employ three tactics during low-altitude 
flight: low-level, contour, and nap-of-the-earth (NOE). The key feature 
distinguishing the NOE mode f:rom the other two modes is that the whole 
rotorcraft, including the main rotor, is below tree-top whenever possible. 
This leads to the use of lateral maneuvers for avoiding obstacles, which 
in fact constitutes the means for concealment. The piloting of the 
rotorcraft is at best a very demanding task and the pilot will need help 
from onboard automation tools in order to devote more time to 
mission-related activities. The development of an automation tool which 
has the potential to detect obstacles in the rotorcraft flight path, warn 
the crew, and interact with the guidance system to avoid detected 
obstacles, presents challenging problems. Research is described which 
applies techniques from computer vision to automation of rot.orcraft 
navigtion. The effort emphasizes the development of a methodol.ogy for 
detecting the ranges to obstacles in the region of interest based on the 
maximum utilization of passive sensors. The range map derived from the 
obstacle-detection approach can be used as obstacle data for the obstacle 
avoidance in an automatic guidance system and as advisory display to the 
pilot. The lack of suitable flight imagery data presents a problem in the 
verification of concepts for obstacle detection. This problem i.s being 
addressed by the development of an adequate flight database and by 
preprocessing of currently available flight imagery. The presentation 
concludes with some comments on future work and how research in thds area 
relates to the guidance of other autonomous vehicles. 
Author 

TYPE 1/4/32 
Quest Accession Number : 90N18188 
90N18188# NASA STAR Conference Proceedings Issue 10 
High-Level Vision and Planning Workshop Proceedings 

(AA) ed. 
Institute for Defense Analyses, Alexandria, VA. (IJ564258) 

/ Final Report 
(AA)BLOOM, MICHAEL I. 

AD-A215982; AD-E501178; IDA-D-649; IDAIHQ-89-034738 MDA903-89-C-0003 
890800 p. 256 Workshop held in Rehovot, Israel, 25 Apr. 1988; sponsored 
by DARPA, US-Israel Binational Science Foundation and Institute for 
Defense Analyses In: EN (English) Avail: NTIS HC A12/MF A01 p.1420 

The slides, papers, and graphic illustrations presented at th'e joint 
U.S.-Israeli workshop on artificial intelligence are provided in this 
Institute for Defense Analyses document. This document is based on .3 broad 
exchange of ideas about current approaches and research issues in the 
areas of design automation and autonomous robotic systems. A list of 
participants is provided along with applicable references for individual 
papers. 
GRA 
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TYPE 1/4/33 
Quest Accession Number : 90N16734 
90N16734# NASA STAR Conference Paper Issue 09 
Autonomous automatic landing through computer vision 
(AAISCHELL, R.; (AB)DICKMANNS, E. 0. 
Hochschule der Bundeswehr, Munich (Germany, F.R.). (HV212637) Dept. of 

Aerospace Technology. 
In AGARD, Advances in Techniques and Technologies for Air Vehicle 

Navigation and Guidance 9 p (SEE N90-16731 09-04) 891200 p. 9 In: EN 
(English) Avail: NTIS HC A09/MF A02; Non-NATO Nationals requests 
available only from AGARDIScientific Publications Executive 

The automatic autonomous landing approach through computer vision was 
investigated in a simulation loop with real image sequence processing 
hardware and software. The use of integral spatio-temporal world models is 
the presupposition to achieve real time performance with the 
microprocessors currently available. Results achieved for a business-jet 
aircraft demonstrate that this set up is powerful enough to solve the 
problem of autonomous unmanned landing approach. 
Author 

p.1163 

TYPE 1/4/34 
Quest Accession Number : 90N15453 
90N15453# NASA STAR Technical Report Issue 07 
Research in knowledge-based vision techniques for the Autonomous Land 

(AA)NEVATIA, R. ; (AB)PRICE, K. ; (AC)FRANZEN, W. ; (AD)GAZI.T, S .  ; 

(AA)ed.; (AB)ed. 
University of Southern California, Los Angeles. (U6203125) Inst. for 

Vehicle Program / Final Annual Report, 1 Jun. 1988 - 31 May 1989 

(AE)MEDIONI, G.; (AF)PENG, S . ;  (AG)SAINT-MARC, P. 

Robotics and Intelligent Systems. 

(English) Avail: NTIS HC AO4/MF A01 p.942 
AD-A213440; IRIS-255; ETL-0545 DACA76-85-C-0009 890800 p. 59 In: EN 

The authors' basic approach to detecting and tracking motion is to 
extract and match features, such as lines and regions, from a sequence and 
to generate motion estimates from these. They present one report on 
spatio-temporal analysis for tracking edges through very closely spaced 
sequences. They also present a report on matching edge-based contours 
using edges from multiple scales with low resolution guiding high 
resolution matches. They also present an analysis of estimating 3-D motion 
and structure of moving object with uniform acceleration. 
GRA 

TYPE 1/4/35 
Quest Accession Number : 90A14975 
90A14975 NASA IAA Conference Paper Issue 04 
Image understanding techniques in geophysical data interpretation 
(AA)ROBERTO, V.; (AB)PERON, A.; (AC)FUMIS, P. L. 
(AC) (Udine, Universita, Italy) 
IN: Issues on Machine Vision, course, Udine, Italy, July 1988, 

Proceedings (A90-14971 04-63). Vienna and New York, Springer-Verlag, 1989, 
p. 263-274. 890000 p. 12 refs 9 In: EN (English) p.0 

This paper covers some topics in geophysical signal interpretation, by 
means of Artificial Intelligence (Machine Vision) techniques. In 
particular, the low-level processing modules of a Knowledge-Based System 
for seismic reflection image understanding are presented, as well as an 
explanation of their structural and functional characteristics. 
Preliminary results are also given and discussed. 
Author 



TYPE 1/4/36 
Quest Accession Number : 90A14974 
90A14974 NASA IAA Conference Paper Issue 04 
Neural networks, supercomputers and computer vision 
(AA)JOHNSON, 0 . ;  (AB)PIERONI, G.; (AC)RAKOTOMALALA, M. 
(AA)(Houston, University, TX); (AB)(Udine, Universita, Italy; Houston, 

University, TX) ; (AC) (HARC, Woodlands, TX) 
IN: Issues on Machine Vision, Course, Udine, Italy, July 1988, 

Proceedings (A90-14971 04-63). Vienna and New York, Springer-Verlag, 1989, 
p. 163-175. 890000 p. 13 refs 1.6 In: EN (English) p.0 

A PDP program for simulating neural networks ia applied to prob'lems in 
machine vision. The PDP program avoids explicit pattern matching with 
reference model segments as well as the creation of hypotheses in order to 
utilize the neural networks' ability to perform pattern matching with 
distorted and incomplete data. The problem of recognizing simple 
four-sided polygons in a two-dimensional scene of straight lines is 
considered. Supercomputers which use neural network software are 
discussed. 
C.D. 

TYPE 1/4/37 
Quest Accession Number : 90A14971 
90A14971 NASA IAA Meeting Paper Issue 04 
Issues on Machine Vision, Course, Udine, Italy, July 1988, Proceedings 
(AA)PIERONI, G .  G. 
(AA)ED. 
(AA)(Udine, Universita, Italy) 
Course organized by the International Centre for Mechanical Sciences; 

Supported by CNR, UNESCO, Centro Ricerche FIAT, et al. Vienna and New 
York, Springer-Verlag, 1989, 344 p. For individual items see A90-14972 to 
A90-14975. 890000 p. 344 In: EN (English) $57.20 p.0 

Various papers on machine vision are presented. Individual topics 
addressed include: data processing via associative memory; picture 
labeling and shape descriptors for machine vision; morphological approach 
to industrial image inspection of honeycomb composite mat(aria1s; 
two-dimensional digital filter design by the adaptive differential 
correction algorithm; comparison of hierarchical topologios for 
megamicrocomputers; constrained Delaunay triangulation algorithms for 
surface representation; medium-level language for pyramid architectures; 
vision problems in sparse images; machine vision for inspection; neural 
networks, supercomputers, and computer vision; software issues for machine 
vision; multiresolution approach for segmenting surfaces; signed Euclidean 
distance transform applied to shape analysis; image understanding 
techiques in geophysical data interpretation; knowledge integration for 
machine vision; motion parameter estimation for robot application; and 
industrial applications of machine vision. 
C.D. 
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TYPE 1/4/38 
Quest Accession Number : 90N13235 
90N13235# NASA STAR Technical Report Issue 04 
Research in computer vision for autonomous systems Progress Report, 

Jun. - Sep. 1988 
(AA)KAK, AVI; (AB)YODER, MARK; (AC)ANDRESS, KEITH; (ADJBLASK, STEVE; 

(AE) UNDERWOOD, TOM 
Purdue Univ., West Lafayette, IN. (P9391092) School of Electrical 

Engineering. 
AD-A212420 DAAL01-85-C-0456 880915 p. 532 In: EN (English) Avail: 

NTIS HC A23/MF A03 p.555 

This report addresses FLIR processing, LADAR processing and electronic 
terrain board modeling. In our discussion on FLIR processing, issues were 
analyzed for classifiability of FLIR features, computationally efficient 
algorithms for target segmentation, metrics, etc. The discussion on LADAR 
includes a comparison of a number of different approaches to the 
segmentation of target surfaces from range images, extraction of 
silhouettes at different ranges, and reasoning strategies for the 
recognition of targets and estimation of their aspects. Regarding 
electronic terrain board modeling, it was shown how the readily available 
wire-frame data for strategic targets can be converted into volumetric 
models utilizing the concepts of constructive solid geometry; then is was 
shown how from the resulting volumetric models it is possible to generate 
synthetic range images that are very similar to real LADAR images. Also 
shown is how sensor noise can be added to these synthetic images to make 
them even more realistic. 
GRA 

TYPE 1/4/39 
Quest Accession Number : 90A11742 
90A11742 NASA IAA conference Paper Issue 02 
Real time imaging rangefinder for autonomous land vehicles 
(AAIKERR. J. RICHARD 
iAAj (FLIR Systems, Inc., Portland, OR) 
IN: Mobile robots 111; Proceedings of the Meeting, Cambridge, MA, Nov. 

10, 11, 1988 (A90-11726 02-14). Bellingham, WA, Society of Photo-Optical 
Instrumentation Engineers, 1989, p. 349-356. 890000 p. 8 In: EN 
(English) p. 190 

A three-dimensional sensor that achieves 50  microsteradian resolution 
over a 90 x 4 0  degree field of view (FOV) at full video frame rates has 
been designed for robotic vehicles. A combination of coarse and fine range 
resolution provides sensing from one to approximately 100 meters with 
short-range accuracies of less than 10 cm. The system utilizes an eyesafe 
diode laser configuration along with proprietary mechanical scanning 
elements, wide-field relay optics, and avalanche photodiode detectors. 
Range determination is accomplished with dual subcarrier modulation which 
results in the output of an unambiguous, binary word on a pixel-by-pixel 
basis. The approach also provides for electronic pitch stailization. 
Author 
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TYPE 1/4/40 I Ouest Accession Number : 90A11730 

u-22 

TYPE 1/4/40 
Ouest Accession Number : 90A11730 - 
90A11730 NASA IAA Conference Paper Issue 02 
Terrain classification using texture for the ALV 
(AA)MARRA, MARTY; (AB)DUNLAY, R. TERRY; (AC)MATHIS, DON 
(AC)(Martin Marietta Information and Communications Systems, Denver, CO) 
DACA76-84-C-0005 IN: Mobile robots 111; Proceedings of the Meeting, 

Cambridge, MA, Nov. 10, 11, 1988 (A90-11726 02-14). Bellingham, WA, 
Society of Photo-Optical Instrumentation Engineers, 1989, p: 64-70. 
Research supported by DARPA. 890000 p. 7 refs 13 In: EN (English) p. 
237 

Off-road navigation is a very demanding visual task in which texture can 
play an important role. Travel on a smooth road or path can be done with 
greater speed and safety in general than on rough natural terrain. In 
addition, recognition of off-road terrain types can aid in finding the 
fastest and safest route through a given area. Implementations, of two 
texture methods for identifying certain terrain features in video imagery 
are briefly discussed. The first method uses edge and morphological 
filters to identify roadways from off-road. The second method uses a 
neural net to identify several terrain types based on color, directional 
texture, global variance and location in the image. Plans to integrate the 
terrain labeled image produced by the latter method into the ALV’s 
perception system are also discussed. 
Author 
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An intelligent system for autonomous navigation of airborne vehicles 
(AA)CAMERON, WILLIAM L. ;  (AB)FAIN, HOWARD; (AC)BEZDEK, JAMES C. 
(AB) (Boeing Aerospace, Seattle, WA); (AC) (Boeing Electronics, Seattle, 

IN: Sensor fusion: Spatial. reasoning and scene interpretation; 
Proceedings of the Meeting, Cambridge, MA, Nov. 7-9, 1988 (A90-11676 
02-63). Bellingham, WA, Society of Photo-Optical Instrumentation 
Engineers, 1989, p. 451-469. 890000 p. 19 refs 8 In: EN (English) p. 
143 

WA ) 

Autonomous navigation of airborne platforms requires the integration of 
diverse sources of sensor data and contextual information. This paper 
describes a system that utilizes polarimetric radar cross-section and 
range data to generate position estimates based on four kinds of 
information: area segmentation, ground contours, landmarks, and road 
networks. Ground truth in the form of terrain feature maps is correlated 
with each type of data stream. Finally, an arbitrator integrates these 
inputs with contextual knowledge about the preplanned flight path to 
resolve conflicts and arrive at a final estimate of current position. 
Author 
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Neural network model for fusion of visible and infrared sensor outputs 
(AA)AJJIMARANGSEE, PONGSAK; (AB)HUNTSBERGER, TERRANCE L. 
(AB) (South Carolina, University, Columbia) 
IN: Sensor fusion: Spatial reasoning and scene interpretation; 

Proceedings of the Meeting, Cambridge, MA, NoV. 7-9, 1988 (A90-11676 
02-63). Bellingham, WA, Society of Photo-Optical Instrumentation 
Engineers, 1989, p. 153-160. 890000 p. 8 refs 16 In: EN (English) p. 
235 

Integration of outputs from multiple sensors has been the subject of 
much of the recent research in the machine vision field. This paper 
presents a neural-network model for the fusion of visible and thermal-IR 
sensor outputs. A model is developed based on six types of bimodal neurons 
found in the optic tectum of the rattlesnake. These neurons integrate 
visible and thermal-IR sensory inputs. The neural network model has a 
series of layers which include a layer for unsupervised clustering in the 
form of self-organizing feature maps, followed by a layer which has 
multiple filters that are generated by training a neural net with 
experimental rattlesnake response data. The final layer performs another 
unsupervised clustering for integration of the output from the filter 
layer. The results of a number of experiments are also presented. 
Author 
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Quest Accession Number : 90A11032 

90A11032 NASA IAA Meeting Paper Issue 01 
Optics, illumination, and image sensing for machine vision 111; 

(AA)SVETKOFF, DONALD J. 
(AA) ED. 
(AA) (Synthetic Vision Systems, Inc., Ann Arbor, MI) 
SPIE-1005 Meeting sponsored by SPIE. Bellingham, WA, Society of 

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1005), 
1989, 271 p. For individual items see A90-11033 to A90-11035. 890000 p. 
271 In: EN (English) Members, $41.; nonmembers, $51 p.90 

Various papers on optics, illumination, and image sensing for machine 
vision are presented. Some of the optics discussed include: illumination 
and imaging of moving objects, strobe illumination systems for machine 
vision, optical collision timer, new electrooptical coordinate measurement 
system, flexible and piezoresistive touch sensing array, selection of 
cameras for machine vision, custom fixed-focal length versus zoom lenses, 
performance of optimal phase-only filters, minimum variance SDF design 
using adaptive algorithms, Ho-Kashyap associative processors, component 
spaces for invariant pattern recognition, grid labeling using a marked 
grid, illumination-based model of stochastic textures, color-encoded moire 
contouring, noise measurement and suppression in active 3- D laser-based 
imaging Systems, structural stereo matching of Laplacian-of-Gaussian 
contour segments for 3D perception, earth surface recovery from remotely 
sensed images, and shape from Lambertian photometric flow fields. 
C.D. 

Proceedings of the Meeting, Cambridge, MA, Nov. 8, 9, 1988 
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(AA)ARBIB, MICHAEL A. 
(AA) (Southern California, University, Los Angeles, CA) 
NIH-7-R01-NS-24926 Journal of Parallel and Distributed Computing (ISSN 

0743-7315), vol. 6, April 1989, p. 185-216. 890400 p. 32 refs 102 In: 

Sixth-generation computer architectures are presently conjectured to 
profitably involve networks of one or more specialized devices structured 
as highly-parallel arrays of neuronlike interacting (and perhaps also 
adaptive) components. Schemas are suggested to be a germane basis for the 
programming languages that will. typify sixth-generation computers; the 
characteristics of schemas are illustrated for the case of their use in 
high-level machine vision. An integrated system of investigations, the 
'Rana computatrix', demonstrates the fusion of neural-network and schema 
models of the visuomotor-coordination mechanism in frogs and toads. The 
'domain-specific' structure of neural networks is emphasized. 
O.C. 

EN (English) p.2680 
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(AA)TESCHER, ANDREW G. 
(AA) ED. 
(AA)(Lockheed Research Laboratories, Palo Alto, CA) 
SPIE-974 Meeting sponsored by SPIE. Bellingham, WA, SociJety of 
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1988, 421 p. For individual items see A89-40427 to A89-40452. 8808000 p. 
421 In: EN (English) Members, $44.; nonmembers, $57 p.2673 

Theoretical and applications aspects of digital image processing are 
discussed in reviews and reports of recent investigations. Topics 
addressed include enhancement and restoration, transmission and vision, 
PC-based and graphics applications, architectures and systems, and hybrid 
and unconventional image-processing methods. Consideration is g.Lven to 
morphology in wrap-around image algebra, maximum-likelihood image 
restoration with subpixel accuracy, high-resolution digitization of color 
images, a lighting and optics expert system for machine vision, imaqe-data 
compression in a PC environment, rule-based processing for string-code 
identification, digital-image velocimetry, aircraft navigation using IR 
image analysis, aircraft recognition using a parts-analysis technique, and 
an image-quality measure based on the human visual system. 
T.K. 

San Diego, CA, Aug. 15-17, 1988 
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The document provides the results of a detailed evaluation of the 
current state of Japanese sensor development. The analysis was performed 
by a panel of technical experts drawn from U . S  industry and academia. It 
covers not only specific technical work, but also covers issues of 
organization, trends, funding, and methods of organizing work and setting 
priorities. The topics covered include: Tutorial introduction to sensors, 
machine vision (charge coupled device (CCD) sensors, vision processing 
systems, active 3-D range sensors, Research Institution on Machine 
Vision); sensors for electromagnetic radiation (far infrared, near 
infrared, visible light, X-rays, gamma-rays); sensors for factory 
automation and robotics; micromechanical and superconducting sensors; gas 
sensors; ion sensors; ion selective field effect transistors (ISFET); and 
biosensors. Also included is an extensive listing of Japanese sensor 
manufacturers. 
GRA 
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89N23152# NASA STAR Conference Paper Issue 16 
Combining information in low-level vision 
(AA)ALOIMONOS, JOHN; (AB)BASU, ANUP 
Maryland Univ., College Park. (MI915766) Computer Vision Lab. 
DAAB07-86-K-FO73 In Science Applications International Corp., 

Proceedings: Image Understanding Workshop, Volume 2 p 862-906 (SEE 
N89-23115 16-61) 880400 p. 45 In: EN (English) Avail: NTIS HC A99/MF 
E03 p.2320 

Low level modern computer vision is not domain dependent, but 
concentrates on problems that correspond to identifiable modules in the 
human visual system. Several theories have been proposed in the literature 
for the computation of shape from shading, shape from texture, retinal 
motion from spatiotemporal derivatives of the image intensity function and 
the like. The basic problems with some of the existing approaches if 
several available cues are combined, disappear in most cases; the 
resulting algorithms compute robustly and uniquely the intrinsic 
parameters (shape, depth, motion, etc.). The problem of machine vision is 
explored here from its basics. A low level mathematical theory is 
presented for the unique and robust computation of intrinsic parameters. 
The computational aspect of the theory envisages a cooperative highly 
parallel implementation, bringing in information from five different 
sources (shading, texture, motion, contour and stereo), to resolve 
ambiguities and ensure uniqueness of the intrinsic parameters. 
Author 
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Three-dimensional vision for outdoor navigation by an autonomous vehicle 
(AA)HEBERT, MARTIAL; (AB)KANADE, TAKE0 
Carnegie-Mellon Univ., Pittsburgh, PA. (CH188052) Robotics Inst. 
DACA76-85-C-0003; F33615-87-C-1499; NSF DCR-86-04199 In Science 

Applications International Corp., Proceedings: Image Understanding 
Workshop, Volume 2 p 593-601 (SEE N89-23115 16-61) 880400 p. 9 In: EN 
(English) Avail: NTIS HC A99/MF E03 p.2315 

Progress in range image analysis for autonomous navigation in outdoor 
environments is reported. The goal of the work is to use range data from 
an ERIM laser range finder to build a three-dimensional description of the 
environment. Techniques are described for building both low-level 
description, such as obstacle maps or terrain maps, as well as higher 
level description using model-based object recognition. These te#Chniques 
have been integrated in the NAVLAB system. 
Author 

TYPE 1/4/49 
Quest Accession Number : 89N23121 
89N23121# NASA STAR Conference Paper Issue 16 
An operational perception system for cross-country navigation 
IAA)DAILY. MICHAEL J.: IAB)HARRIS. JOHN G.: IAC)REISER. KURT . .  . . I  

HuqAes Research Labs., Calabasas, CA. (H5849026) Artificial 
Inteiligence Center. 
DACA87-85-C-0007 In Science Aoolications International Coro.. 

Proceedings: Image Understanding Wokkshop, Volume 2 p 568-57'5 (SEE 
N89-23115 16-61) 880400 p. 8 In: EN (English) Avail: NTIS HC A99/MF 
E03 p.2314 

An operational perception system for cross-country navigation which has 
been verified in both simulated and real world environments is presented. 
Range data from a laser range scanner is transformed into an al.ternate 
representation called the Cartesian Elevation Map (CEM). A detailed 
vehicle model operates on the CEM to produce traversability information 
along selected trajectories. This information supports a real-time 
reflexive planning system. The successful demonstration of obstacle 
detection and avoidance algorithms on board an Autonomous Land Vehicle is 
discussed. 
Author 
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Using flow field divergence for obstacle avoidance in visual navigation 
(AA)NELSON, RANDAL C.; (AB)ALOIMONOS, JOHN 
Maryland Univ., College Park. (MI915766) Computer Vision Lab. 
In Science Applications International Corp., Proceedings: Image 

Understanding Workshop, Volume 2 p 548-567 (SEE N89-23115 16-61) 
Sponsored in part by DARPA, Washington, DC 880400 p. 20 In: EN 
(English) Avail: NTIS HC A99/MF E03 p.2314 

The practical recovery of quantitative structural information about the 
world from visual data has proven to be a very difficult task. In 
particular, the recovery of motion information which is sufficiently 
accurate to allow practical application of theoretical shape from motion 
results has so far been infeasible. Yet a large body of evidence suggests 
that use of motion is an extremely important process in biological vision 
systems. It has been suggested that qualitative visual measurements can 
provide powerful perceptual cues, and that practical operations can be 
performed on the basis of such clues without the need for a quantitative 
reconstruction of the world. The use of such information is termed inexact 
vision. The investigation of one such approach to the analysis of visual 
motion is described. Specifically, the use of certain measures of flow 
field divergence was investigated as a qualitative cue for obstacle 
avoidance during visual navigation. It is shown that a quantity termed the 
directional divergence of the 2-D motion field can be used as a reliable 
indicator of the presence of obstacles in the visual field of an observer 
undergoing generalized rotational and translational motion. Moreover, the 
necessary measurements can be robustly obtained from real image sequences. 
A simple differential procedure for robustly extracting divergence 
information from image sequences which can be performed using a highly 
parallel, connectionist architecture is described. The procedure is based 
on the twin principles of directional separation of optical flow 
components and temporal accumulation of information. Experimental results 
are presented showing that the system responds as expected to divergence 
in real world image sequences, and the use of the system to navigate 
between obstacles is demonstrated. 
Author 
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Quest Accession Number : 89N23118 
89N23118# NASA STAR Conference Paper Issue 16 
Dynamic model matching for target recognition from a mobile platform 
(AA)NASR, HATEM; (AB)BHANU, BIR 
Honeywell Systems and Research Center, Minneapolis, MN. (HY989092) 
DACA76-86-C-0017 In Science Applications International Corp., 

Proceedings: Image Understanding Workshop, Volume 2 p 527-536 (SEE 
N89-23115 16-61) 880400 p. 10 In: EN (English) Avail: NTIS HC A99/MF 
E03 p.2314 

A novel technique called dynamic model matching (DMM) is presented for 
target recognition from a moving platform such as an autonomous combat 
vehicle. The DMM technique overcomes major limitations in present 
model-based target recognition techniques that use a single, static target 
model, and therefore cannot account for continuous changes in the target's 
appearance caused by varying range and perspective, DMM addresses this 
problem by combining a moving camera model, 3-D object models, spatial 
models, and expected range and perspective to generate multiple 2-D image 
models for matching. DMM also generates recognition strategies that can 
emphasize different object features at varying ranges. DMM operates within 
a larger system for landmark recognition based on the perception, 
reasoning, action, and expectation paradigm called PREACTE. Results are 
presented on a number of test sites using color video data obtained from 
the autonomous land vehicle. 
Author 
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Quest Accession Number : 89N23115 
89N23115# NASA STAR Meeting Paper Issue 16 
Proceedings: Image Understanding Workshop, volume 2 / Annual T(8chnical 

(AA)BAUMANN, LEE S .  
(AA)ed. 
Science Applications International Corp., McLean, VA. (SD708880) 
AD-A197559 N00014-86-C-0700; ARPA ORDER 5605 880400 p. 678 Itlorkshop 

held in Cambridge, MA, 6-8 Apr. 1988; sponsored by DARPA In: EN (]English) 

Annual progress reports and technical papers presented by the 
participants at the Image Understanding Workshop sponsored by the 
Information Science and Technology Office, Defense Advanced Research 
Projects Agency are presented. Also included are copies of invited papers 
presented at the workshop and additional technical papers which were not 
presented (volume 2). Topics addressed included: intelligent image 
understanding, machine vision and robotics, knowledge-based systems, 
motion detection and tracking, object and target recognition, parallel 
computation, stereo vision, and image processing. For individual titles, 
see N89-23116 through N89-23180. 

Report, Feb. 1987 - Apr. 1988 

Avail: NTIS HC A99/MF E03 p.2313 
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Integration effort in knowledge-based vision techniques for the 

autonomous land vehicle program 

University of Southern California, Los Angeles. (~6203125) Inst. for 
Robotics and Intelligent Systems. 
DACA76-85-C-0009 In Science Applications International Corp., 

Proceedings: Image Understanding Workshop, Volume 1 p 417-422 (SEE 
N89-23074 16-61) 880400 p. 6 In: EN (English) Avail: NTIS HC A22/MF 
A01 p.2312 

(AA)PRICE, KEITH; (AB)PAVLIN, IGOR 

A methodology is presented and some early results are demonstrated in 
the integration of knowledge-based image analysis programs. The domain of 
complete three-dimensional motion analysis in the context of the 
Autonomous Land Vehicle is specifically addressed. The integrated system 
exploits the strengths and minimizes the weaknesses of the individual 
techniques, resulting in performance which is considerably improved over 
the performance of any of the independently developed programs. 
Author 
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Autonomous navigation in cross-country terrain 
(AA)KEIRSEY, DAVID M.; (AB)PAYTON, DAVID W.; (AC)ROSENBLATT, J 
Huqhes Research Labs., Calabasas, CA. (H5849026) 

KENNETH 
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Inteiligence Center. 
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Proceedings: Image Understanding Wo;kshop, Volume 1 p 411-416 ('SEE 
N89-23074 16-61) 880400 p. 6 In: EN (English) Avail: NTIS HC A22/MF 
A01 p.2312 

Progress and experimentation with an autonomous robotic vehicle in 
cross-country terrain is described. Experiments were performed on the 
Autonomous Land Vehicle in natural terrain. An overview of the software 
architecture used for this achievement is discussed; descriptions of 
experiments and details of planning techniques are presented. Experiments 
describe the vehicle's avoidance of both known and unknown obstacles in 
its path. 
Author 
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Kalman filter-based algorithms for estimating depth from image sequences 
(AA)MATTHIES, LARRY; (AB)SZELISKI, RICHARD; (AC)KANADE, TAKE0 
Carnegie-Mellon Univ., Pittsburgh, PA. (CH188052) Dept. of Computer 

Science. 
F33615-87-C-1499 In Science Applications International Corp., 

Proceedings: Image Understanding Workshop, Volume 1 p 199-213 (SEE 
N89-23074 16-61) 880400 p. 15 In: EN (English) Avail: NTIS HC A22jMF 
A01 p.2309 

Using known camera motion to estimate depth from image sequences is an 
important problem in robot vision. Many applications of depth from motion, 
including navigation and manipulation, require algorithms that can 
estimate depth in an on-line, incremental fashion. This requires a 
representation that records the uncertainty in depth estimates and a 
mechanism that integrates new measurements with existing depth estimates 
to reduce the uncertainty over time. Kalman filtering provides this 
mechanism. Previous applications of Kalman filtering to depth from motion 
have been limited to estimating depth at the location of a sparse set of 
features. A pixel-based (iconic) algorithm is introduced which estimates 
depth and depth uncertainty at each pixel and incrementally refines these 
estimates over time. The algorithm for translations parallel to the image 
plane is described and its formulation and performance contrasted to that 
of a feature-based Kalman filtering algorithm. The performance of the two 
approaches is compared by analyzing their theoretical convergence rates, 
by conducting quantitative experiments with images of a flat poster, and 
by conducting qualitative experiments with images of a realistic outdoor 
scene model. The results show that the method is an effective way to 
extract depth from lateral camera translations and suggest that it will 
play an important role in low-level vision. 
Author 
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The MIT vision machine 
(AA)POGGIO, T.; (AB)LITTLE, J.; (AC)GAMBLE, E.; (AD)GILLETT, W.; 

(AE)GEIGER, D.; (AF)WEINSHALL, DAPHNA; (AG)VILLALBA, M.; (AH)LARSON, N.; 
(AI)CASS, TODD ANTHONY; (AJ)BUELTHOFF, H. 
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial 

Intelligence Lab. 
In Science Applications International Corp., Proceedings: Image 

Understanding Workshop, Volume 1 p 177-198 (SEE N89-23074 16-61) 880400 
p. 22 In: EN (English) Avail: NTIS HC A22/MF A01 p.2309 

The vision Machine, its goals, and achievements to date are described. 
The Vision Machine is a computer system that attempts to integrate several 
vision cues to achieve high performance in unstructured environments for 
the tasks of recognition and navigation. It is also a test-bed for 
theoretical progress in early vision algorithms, their parallel 
implementation and their integration. The Vision Machine consists of a 
movable two-camera Eye-Head system (the input device) and a 16K Connection 
Machine (the main computational engine). Several parallel early vision 
algorithms which compute edge detection, stereo, motion, texture and 
surface color in close to real-time were developed and implemented. The 
integration stage is based on the technique of coupled Markov Random Field 
models, and leads to a cartoon-like map of the discontinuities in the 
scene, with a partial labeling of the brightness edges in terms of their 
physical origin. Available recognition algorithms will interface with the 
output of the integration stage and the analog and hybrid very Large Scale 
Integration (VLSI) implementations of the Vision Machine main components 
has begun. 
Author 
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The Maryland approach to image understanding 
(AA)ALOIMONOS, JOHN; (AB)DAVIS, LARRY S.; (AC)ROSENFELD, AZRIEL 
Maryland Univ., College Park. (MI915766) Computer Vision Lab. 
DAAB07-86-K-F073 In Science Applications International Corp., 

Proceedings: Image Understanding Workshop, Volume 1 p 154-165 (SEE 
N89-23074 16-61) 880400 p. 12 In: EN (English) Avail: NTIS HC A22fMF 
A01 p.2309 

In an effort to understand images, while still working on initial 
processes of low and middle level vision, emphasis is being placed on the 
integration of multiple sources of information for visual reconstruction, 
on navigation and on object recognition. A methodological paradigm for 
research in vision is introduced, namely: while research is continuing 
top-down in the Marr paradigm, work also progresses in a bottom-up fashion 
in that paradigm. It is suggested that the Marr paradigm (comput.ationa1 
theory, algorithms, data structures, and implementation) should be 
augmented with one more level, that of robustness, that Marr left implicit 
in his writings. 
Author 
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Image understanding and robotics research at Columbia University 
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Proceedings: Image Understanding Workshop, Volume 1 p 78-87 (SEE N89-23074 
16-61) 880400 p. 10 In: EN (English) Avail: NTIS HC A22/MF A01 p. 
2307 

Diverse research investigations in vision and robotics are identified 
and summarized. Since it is difficult to separate those aspects of robotic 
research that are purely visual from those that are vision-like (for 
example, tactile sensing) or vision-related (for example, integrated 
vision-robotic systems), all robotic research that is not purely 
manipulative is listed. Areas of research that are identified are 
low-level vision: theories involving stereo, data representations, and 
applications to graphics; middle-level vision: regularized surface 
reconstruction and stereo, sensory fusion, shape from dynamic shadowing, 
and application to range data; spatial relations: representations of 
objects and space, and theory and practice of navigation; parallel 
algorithms: low- and middle-level vision theory, research and applications 
on tree machines, and research and applications on pipelined machines; 
and, finally, robotics and tactile sensing: system development, and 
multi-fingered object recognition. 
Author 
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Massachusetts 
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Applications International Corp., Proceedings: Image Understanding 
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(English) Avail: NTIS HC A22JMF A01 p.2307 

Several areas of research in the Image Understanding Program are 
summarized, including: (1) knowledge-based vision; (2) database support 
for symbolic vision processing; (3) motion processing; (4) perceptual 
organization (grouping); (5) image understanding architecture; (6) 
integrated vision benchmark for parallel architectures; and (7) mobile 
vehicle navigation. A fundamental goal of the computer vision research 
environment is the integration of a diverse set of research efforts into a 
system that is ultimately intended to achieve real-time image 
interpretation. Two major system integration efforts are the VISIONS 
static interpretation system, which is a knowledge-based computer vision 
system utilizing parallel modular processes that communicate via a 
blackboard, and an autonomous mobile vehicle for navigation through a 
partially known environment. 
Author 
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Image understanding research at SRI International 
(AA)FISCHLER, MARTIN A.; (AB)BOLLES, ROBERT C. 
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Intelligence Center. 
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International Corp., Proceedings: Image Understanding workshop, Volume 1 p 
53-61 (SEE N89-23074 1 6- 6 1 )  880400 p. 9 In: EN (English) Avail: NTIS 
HC A22/MF A01 p.2307 

The Image Understanding research program is a broad effort spanning the 
entire range of machine vision research. The progress in two programs is 
described: the first is concerned with modeling the earth's surface from 
aerial photographs; the second is concerned with visual interpretation for 
land navigation. In particular, the following are described: progress in 
the design of a core knowledge structure; representing, recognizing, and 
rendering complex natural and man-made objects; recognizing and modeling 
terrain features and man-made objects in image sequences; interactive 
techniques for scene modeling and scene generation; automated detection 
and delineation of cultural objects in aerial imagery; and automated 
terrain modeling from aerial imagery. 
Author 

TYPE 1/4/61 
Quest Accession Number : 89N23076 
89N23076# NASA STAR Conference Paper Issue 16 
USC imaqe understandinq research: 1987-1988 
(AAINEV~TIA, RAMAKANT 
Universitv of Southern California. Los Ancreles. fU6203125) Irist. for 

Robotics ani Intelligent Systems. 
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University of Southern California Image Understanding research projects 
are summarized and references to more detailed projects and papers are 
provided. The work has focussed on the topics of: mapping from aerial 
images, robotics vision, motion analysis for autonomous land vehicles 
(ALV), some general techniques, and parallel processing. 
Author 
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TYPE 1/4/62 
Quest Accession Number : 89N23075 
89N23075# NASA STAR Conference Paper Issue 16 
MIT progress in understanding images 
(AA)POGGIO, T. 
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial 

Intelligence Lab. 
In Science Applications International Corp., Proceedings: Image 

Understanding Workshop, Volume 1 p 1-12 (SEE N89-23074 16-61) 880400 p. 
12 In: EN (English) Avail: NTIS HC A22/MF A01 p.2306 

Work in the past year has concentrated on three main projects, each one 
representing a complementary aspect of a complete vision system. The first 
project - a parallel Vision Machine - has the goal of developing a system 
for integrating early vision modules and computing a robust description of 
the discontinuities of the surfaces and of their physical properties. 
Additional goals of the project are the refinement of early vision 
algorithms and their implementation on a massively parallel architecture 
such as the Connection Machine System. The second project concerns visual 
recognition; several schemes for model based recognition were developed 
and implemented. Finally, work has continued on autonomous navigation. 
Around these main themes, additional work, at the theoretical and 
implementation level, has been done in motion analysis, navigation, 
photogrammetry, visual routines, and learning. 
Author 

TYPE 1/4/63 
Quest Accession Number : 89N23074 
89N23074# NASA STAR Meeting Paper Issue 16 
Proceedings: Image Understanding Workshop, volume 1 / Annual Technical 

(AA) BAUMANN, LEE S .  
(AA)ed. 
Science Applications International Corp., McLean, VA. (SD708880) 

Report, Feb. 1987 - Apr. 1988 

AD-A197558 N00014-86-C-0700; ARPA ORDER 5605 880400 p. 525 Workshop 
held in Cambridge, MA, 6-8 Apr. 1988; sponsored by DARPA In: EN (English) 

and technical papers 
presented on the research activities in image understanding at a workshop 
conducted on 6 to 8 April 1988, in Cambridge, Massachusetts. Also included 
are copies of invited papers presented at the workshop and additional 
technical papers from the research activities which were not presented due 
to lack of time but are germane to this research field. Topics discussed 
include: intelligent systems, robotics, knowledge-based vision, 
algorithms, pattern matching, feedback, tracking, autonomous navigation, 
parallel processing, target recognition, data integration, motion 
recognition, and image analysis. For individual titles, see N89-23075 
through N89-23114. 

Avail: NTIS HC A22/MF A01 p.2306 

This document contains the annual progress reports 



TYPE 1/4/64 
Quest Accession Number : 89N22597 
89N22597# NASA STAR Technical Report Issue 16 
Dynamic image interpretation for autonomous vehicle navigation 1 

(AA)RISEMAN, EDWARD M.; (AB)HANSON, ALLEN R. 
Massachusetts Univ.. Amherst. (MK149394) Dewt. of Comwuter and 

Annual Report, 26 Feb. 1987 - 25 Feb. 1988 

AD-A204167; ETL-0516 DACA76-85-C-OOC~ ~~~ A~ ~ ~ - \ - - - - >  

Avail: NTIS HC A03/MF A01 p.2222 

Information Science. 
18 880900 13. 33 Tn: EN (Xnolish) 

The results of the project on Dynamic Image Interpretation for 
Autonomous Land Vehicle (ALV) Navigation is presented for the time period 
2/26/87 to 2/25/88. The purpose of the ALV project is to develop 
algorithms and tools to enable a vehicle to navigate autonomously through 
realistic landscapes. Contents: Visual Motion Analysis- Computation of the 
Optical Flow Field; The Recovery of Environmental Motion and Structure 
from a Mobile Vehicle; Alternatives to General Motion Analysis; 
Stereoscopic Motion Analysis; Analysis of Constant General Motion; 
Token-Based Approaches to Motion and Perceptual Organization; Mobile 
Vehicle Navigation; Perceptual Organization (Grouping)- The Perceptual 
Organization of Image curves; Extracting Geometric Structure; Database 
Support for Symbolic vision Processing- ISR1, ISR2, Generic Vi.ews and 
Indexing. 
GRA 

TYPE 1/4/65 
Quest Accession Number : 89A21185 
89A21185* NASA IAA Journal Article Issue 07 
Model-based orientation-independent 3-D machine vision techniques 
(AAIDE FIGUEIREDO, R. J. P . :  (AB\KEHTARNAVAZ, N. 
(AAj (Rice University, Houston,' TX) ; 

Rice univ., Houston, TX. (RV347060) 
NAG9-192; NAG9-208 (California Institute of Technology, Workshop on 

Space Telerobotics, Pasadena, Jan. 1987) IEEE Transactions on Aerospace 
and Electronic Systems (IS5N 0018-9251), vol. 24, Sept. 1988, p .  597-607. 
Research supported by Texas Instruments, Inc. 880900 p. 11 refs 17 In: 
EN (English) p.1037 

(AB) (Texas A & M University, College 
Station) 

Orientation-dependent techniques for the identification of a 
three-dimensional object by a machine vision system are represented in 
parts. In the first part, the data consist of intensity images of 
polyhedral objects obtained by a single camera, while in the second part, 
the data consist of range images of curved objects obtained by a laser 
scanner. In both cases, the attributed graphic representation of the 
object surface is used to drive the respective algorithm. In this 
representation, a graph node represents a surface patch and a link 
represents the adjacency between two patches. The attributes assimped to 
nodes are moment invariants of the corresponding face for polyhedral 
objects. For range images, the Gaussian curvature is used as a 
segmentation criterion for providing symbolic shape attributes. 
Identification is achieved by an efficient graph-matching algoritihm used 
to match the graph obtained from the data to a subgraph of one of the 
model graphs stored in the commputer memory. 
I.E. 
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TYPE 1/4/66 
Quest Accession Number : 89~19165 
89~19165 NASA STAR Conference Paper Issue 11 
Automatic shape parametrisation in machine vision 
(AA)LEAVERS, V. F.; (AB)BOYCE, J. F. 
Kings Coll., London (England). (KV801251) Dept. of Physics. 
In Optical Society of America, Topical Meeting on Machine Vision p 93-96 

(SEE ~89-19145 11-74) 800000 p. 4 In: EN (English) Avail: Issuing 
Activity p. 1591 

A fully automatic, computational method is proposed which will allow 
the extraction of parameters characterising various shape primitives in 
the image space from their shape indicative distributions in a two 
dimensional parametric transform space. It is known that the parametric 
transformation of image data allows space characterising parameters to be 
determined. The usefulness of such methods is always qualified by the 
erroneous assumption that its drawbacks are an exponential growth of 
memory space requirement and computational cost as a function of the 
number of parameters. A general method is presented which uses the 
definition of a Radon transform as a means of defining a two dimensional 
transform space in which information about shape primitives may be 
simultaneously encoded. Examples are given illustrating how the shape 
indicative distributions within the transform space may be deduced. The 
results show that each set of coded information is transparent to any 
other and that each shape indicative distribution may be located using a 
convolution mask peculiar to that distribution. 
Author 

TYPE 1/4/67 
Quest Accession Number : 89~17426 
89N17426# NASA STAR Technical Report Issue 09 
Temporal pattern recognition 
(AA)PRIEBE, CAREY E.; (AB)SUNG, CHEN-HAN 
(AB)(San Diego State Univ., CA.) 
Naval Ocean Systems Center, San Diego, CA. (NR473487) Architecture and 

Applied Research Branch. 
AD-A200090; NOSC/TD-1332 Prepared in cooperation with California univ., 

san Diego, La Jolla 88ogoo p. 7 In: EN (English) Avail: NTIS HC A02/MF 
A01 p.1285 

A self-organizing network architecture for the learning of recognition 
codes corresponding to temporal patterns is described. The problem 
presents itself in many real-world situations. In any non-trivial 
environment in which a proposed system will function the spectre of 
temporal information (information coming into the system over a period of 
time) is evident. In many cases it is not sufficient to process the 
information independent of its relative time-order. Disciplines as diverse 
as speech recognition, robotics and data fusion/situation analysis require 
that temporal aspect of the data be considered. In temporal environments 
such as these the information lost when using a non-temporal approach can 
be prohibitive. This approach is formulated to make use of this important 
temporal information. The network described takes as its input individual 
incoming events. Sequences of these events (letters, phonemes, or, more 
abstractly, object sightings in a vision system), received by the system 
over time are categorized as specific sequences by the temporal system. 
The Temporal system produces Gaussian classifications that represent the 
statistics of the temporal data, and the system uses a noisy environment, 
giving as output a Gaussian distance from the stored sequence, thus 
providing an analog measure of closeness of fit to currently known 
patterns. 
GRA 



TYPE 1/4/68 
Quest Accession Number : 89N17236 
89N17236# NASA STAR Technical Report Issue 09 
3-D vision techniques for autonomous vehicles 
(AA)HEBERT, MARTIAL; (AB)KANADE, TAKEO; (AC)KWEON, INS0 
Carnegie-Mellon Univ., Pittsburgh, PA. (CH188052) Robotics Inst. 
AD-A199643; CMU-RI-TR-88-12 DACA76-85-C-0003; NSF DCR-86-04199; ARPA 

ORDER 5351 880800 p. 68 In: EN (English) Avail: NTIS HC A04JMF A01 
p.1252 

A mobile robot needs an internal representation of its environment in 
order to accomplish its mission. Building such a representation j.nvolves 
transforming raw data from sensors into a meaningful geometric 
representation. In this paper, we introduce techniques for building 
terrain representations from range data for an outdoor mobile robot. We 
introduce three levels of representations that correspond to levels of 
planning: obstacle maps, terrain patches, and high resolution elevation 
maps. since terrain representations from individual locations are not 
sufficient for many navigation tasks, we also introduce techniques for 
combining multiple maps. Combining maps may be achieved either by using 
features or the raw elevation data. Finally, we introduce algorit.hms for 
combining 3-D descriptions with descriptions from other sensors, such as 
color cameras. We examine the need for this type of sensor fusion when 
some semantic information has to be extracted from an observed scene and 
provide an example application of outdoor scene analysis. Many of the 
techniques presented in this paper have been tested in the field csn three 
mobile robot systems developed at CMU. 
GRA 

TYPE 1/4/69 
Quest Accession Number : 89A14255 
89A14255 NASA IAA Journal Article Issue 03 
Parallel architectures for vision 
(AA)MARESCA, MASSIMO; (AB)LAVIN, MARK A.; (AC)LI, HUNGWEN 
(AA)(Genova, Universita, Genoa, Italy); (AB)(IBM Thomas J. Watson 

Research Center, Yorktown Heights, NY); (AC)(IBM Almaden Research Center, 
San Jose, CA) 
IEEE, Proceedings (ISSN 0018-9219), vol. 76, Aug. 1988, p. 970-981. 

IBM-supported research. 880800 p. 12 refs 103 In: EN (English) p.383 

Options are examined that drive the design of a vision-oriented 
computer, beginning with the analysis of the basic vision computation and 
communication requirements. The classical taxonomy is briefly reviewed for 
parallel computers, based on the multiplicity of the instruction and data 
stream. A recently proposed criterion, the degree of autonomy of each 
processor, is applied to further classify fine-grain SIMD 
(single-instruction, multiple-data-stream) massively parallel computers. 
Three types of processor autonomy, namely, operation autonomy, addressing 
autonomy, and connection autonomy, are identified. For each type, the 
basic definition is given and some examples shown. The concept of 
connection autonomy, which is believed to be the key point in the 
development of massively parallel architectures for vision, is pre.sented. 
Two examples are shown of parallel computers featuring different types of 
connection autonomy-the Connection Machine and the Polymorphic-Torus-and 
their cost and benefits are compared. 
I.E. 
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TYPE 1/4/70 
Quest Accession Number : 89N13222 
89N13222# NASA STAR Technical Report Issue 04 
Adaptive machine vision / Annual Report 
(AA)STONER, WILLIAM W.; (AB)BRILL, MICHAEL H.; (AC)BERGERON, DOREEN W. 
science Applications International Corp., Billerica, Mass. (SD705905) 
AD-A197039 N00014-86-C-0601 880308 p. 91 In: EN (English) Avail: 

The mission of the Strategic Defense Initiative is to develop defenses 
against threatening ballistic missiles. There are four distinct phases to 
the SDI defense; boost, post boost, midcourse and terminal. In each of 
these phases, one or more machine vision functions are required, such as 
pattern recognition, stereo image fusion, clutter rejection and 
discrimination. In this document the SDI missions of coarse track, stereo 
track and discrimination are examined from the point of view of a machine 
vision system. 
GRA 

NTIS HC A05/MF A01 p.552 

TYPE 1/4/71 
Quest Accession Number : 88A42656 
88A42656 NASA IAA Conference Paper Issue 17 
Video road-following for the autonomous land vehicle 
(AA)TURK, MATTHEW A.; (AB)MORGENTHALER, DAVID G.; (AC)GREMBAN, KEITH D.; 

(AD)MARRA, MARTIN 
  martin Marietta Corp., Denver, CO) 
DACA76-84-C-0005 IN: 1987 IEEE International Conference on Robotics and 

Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1 
(A88-42626 17-63). Washington, DC, IEEE Computer Society Press, 1987, p. 
273-280. 870000 p. 8 refs 15 In: EN (English) p.2922 

A description is given of the vision system for Alvin, the Autonomous 
Land Vehicle, addressing in particular the task of road-following. The 
system builds symbolic descriptions of the road and obstacle boundaries 
using both video and range sensors. Road segmentation methods are 
described for video-based road-following, along with approaches to 
boundary extraction and the transformation of boundaries in the image 
plane into a vehicle-centered three-dimensional scene model. Alvin has 
performed public road-following demonstrations, traveling distances up to 
4.5 km at speeds up to 20  km/hr along a paved road, equipped with an RGB 
video camera with pan/tilt control and a laser range scanner. 
I.E. 



TYPE 1/4/72 
Quest Accession Number : 88A42649 
88A42649 NASA IAA Conference Paper Issue 17 
Structure and motion from two noisy perspective views 

(AA)TOSCANI, G.; (AB)FAUGERAS, 0. D. 

(for mobile robot 
navigation) 

(AB)(Institut National de Recherche en Informatique et en Automatique, 
Le Chesnay, France) 

IN: 1987 IEEE International conference on Robotics and Automation, 
Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1 (ABS-42626 
17-63). Washington, DC, IEEE Computer Society Press, 1987, p. 221-227. 
870000 p. 7 refs 26 In: EN (English) p.2922 

An acute problem of determining the motion from two perspective views 
has to be solved in order to make mobile robot navigation work. Structure 
from motion is needed in many applications including monitoring dynamic 
industrial processes and image processing. It is known that existing 
techniques for motion estimation perform poorly on real images, when the 
image-point feature are noisy. The authors describe robust techniques to 
recover structure and movement from noisy images. Closed-form solutions 
are derived for the case of general three-dimensional motion. These 
solutions are used as initial estimates for another technique, called 
reconstruction and reprojection. The authors also present a solution for 
the case of planar motion, which is the case of a mobile robot mov.ing over 
a flat surface. These techniques have been tested on synthetic as well as 
real images and the test results are described and compared with an 
improved version of the Longuet-Higgins technique. 
I.E. 

TYPE 1/4/73 
Quest Accession Number : 88A36311 

88A36311* NASA IAA Conference Paper Issue 14 
Real-time model-based vision system for object acquisition and tracking 
(AA)WILCOX, BRIAN; (AB)GENNERY, DONALD B. ; (AC)BON, BRUCE; (AD)LITWIN, 

(AD) (California Institute of Technology, Jet Propulsion Laboratory, 

Jet Propulsion Lab., California Inst. of Tech., Pasadena. (JJ574450) 
IN: Optical and digital pattern recognition; Proceedings of the Meeting, 

Los Angeles, CA, Jan. 13-15, 1987 (A88-36301 14-63). Bellingham, WA, 
society of Photo-Optical Instrumentation Engineers, 1987, p. 276-281. 
870000 p. 6 refs 9 In: EN (English) p.2278 

A machine vision system is described which is designed to acquire and 
track polyhedral objects moving and rotating in space by means of two or 
more cameras, programmable image-processing hardware, and a 
general-purpose computer for high-level functions. The image-processing 
hardware is capable of performing a large variety of operations on images 
and on image-like arrays of data. Acquisition utilizes image locations and 
velocities of the features extracted by the image-processing hardware to 
determine the three-dimensional position, orientation, velocity, and 
angular velocity of the object. Tracking correlates edges detected in the 
current image with edge locations predicted from an internal model of the 
object and its motion, continually updating velocity information to 
predict where edges should appear in future frames. With some 10 frames 
processed per second, real-time tracking is possible. 
V.L. 

TODD 

Pasadena) 



TYPE 1/4/74 
Quest Accession Number : 88A35988 
88A35988 NASA IAA Meeting Paper Issue 14 
Image understanding and the man-machine interface; Proceedings of the 

Meeting, Los Angeles, CA, Jan. 15, 16, 1987 
(AA)PEARSON, JAMES J.; (AB)BARRETT, EAMON 
(AA)ED.; (AB)ED. 
 lock lock heed Missiles and Space CO., Inc., Sunnyvale, CA) 
SPIE-758 Meeting sponsored by SPIE. Bellingham, WA, Society of 

Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 758), 
1987, 191 p. For individual items see A88-35989 to A88-35993. 870000 p. 
191 In: EN (English) Members, $33.; nonmembers, $43 p.2329 

Various papers concerning image understanding concepts and models, image 
understanding systems and applications, advanced digital processors and 
software tools, and advanced man-machine interfaces are presented. 
Individual topics addressed include: prospects for artificial neural 
systems in vision computations, optical bidirectional associative 
memories, model-based approaches for some image understanding problems, 
strategic computing computer vision, organizing the landscape for image 
understanding purposes, issues in image registration, and smoothing 
splines with discontinuities for image analysis. Also considered are: 
connection machine vision applications, parallel processor for dynamic 
image processing, LISP-based PC vision workstation, separation of form 
perception and stereopsis, automating knowledge acquisition for aerial 
image interpretation, toward an ideal three-dimensional CAD system, and 
object-oriented image analysis. 
C.D. 

TYPE 1/4/75 
Quest Accession Number : 88A34852 
88A34852 NASA IAA Conference Paper Issue 13 
Vision-based road following in the autonomous land vehicle 
(AA)SEIDA, STEVEN; (AB)MORGENTHALER, DAVID G.; (AC)PODLASECK, MARK; 

(AE) (Martin Marietta Corp., Denver, CO) 
DACA76-84-C-0005 IN: IEEE Conference on Decision and Control, 26th, Los 

Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3 (A88-34702 13-63). New 
York, Institute of Electrical and Electronics Engineers, Inc., 1987, p. 
1814-1819. 870000 p. 6 In: EN (English) p.2164 

The navigation system for Martin Marietta Denver Aerospace’s autonomous 
land vehicle project receives information from the vision system about 
road boundaries and obstacle locations. This information is used in an 
optimization equation to create trajectory points on the road. The 
operation and the algorithms of the vision subsystem are described 
briefly. The operation and algorithms of the navigation, or reasoning, 
subsystem is then considered. An obstacle-avoidance navigator is 
presented. 
I.E. 

(AD)DOUGLAS, BOB; (AE)MCSWAIN, JON 



TYPE 1/4/76 
Quest Accession Number : 88A29425 
88A29425 NASA IAA BookjMonograph Issue 11 
Pattern recognition and natural language understanding by a computer ( 

Russian book) 
Paspoznavanie obrazov i mashinrioe ponimanie estestvennogo iazyka 
(AA)FAIN, VITAL11 SAMOILOVICH 
Moscow, .Izdatel'stvo Nauka, 1987, 176 p. In Russian. 870000 p. 176 

An approach to the problem of the interaction in the system 
user-computer-production (or control) environment is presented for the 
case of a stationary environment. It is shown that problems in a number of 
areas of computer science, such as artificial intelligence, natural 
language understanding, and half-tone computer vision, are reducead in the 
case of stationary environments to pattern recognition problems, which in 
many cases provides for more efficient solutions. Data on the p:ractical 
applications of the methods described here are presented. 
V.L. 

refs 68 in: RU (Russian) p.0 

TYPE 1/4/77 
Quest Accession Number : 88A22798 
88A22798* NASA IAA Conference Paper Issue 07 
Applications of artificial intel.ligence to rotorcraft 
(AA)ABBOTT, KATHY H. 
(AA) (NASA, Langley Research Center, Hampton, VA) 
National Aeronautics and Space Administration. Lanqley Research Center, - -  

Hampton, Va. (ND210491) 
IN: AHS. Annual Forum. 43rd. Saint Louis. MO. Mav 18-20. 1987. 

I~ 

Proceedings. Volume 2 ' (A88-25726 07-01). Alexandria; VA, American 
Helicopter Society, 1987, p. 1011-1019. 870000 p. 9 refs 17 In: EN 
(English) p. 1084 

The application of AI technology may have significant potential payoff 
for rotorcraft. In the near term, the status of the technology will limit 
its applicability to decision aids rather than total automation. The 
specific application areas are categorized into onboard and nonflight 
aids. The onboard applications include: fault monitoring, diagnosis, and 
reconfiguration; mission and tactics planning; situation assessment; 
navigation aids, especially in nap-of-the-earth flight; and adaptive 
man-machine interfaces. The nonflight applications include training and 
maintenance diagnostics. 
Author 
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TYPE 1/4/78 
Quest Accession Number : 88A20288 

88A20288* NASA IAA Journal Article Issue 06 
The cortex transform - Rapid computation of simulated neural images 
(AA) WATSON, ANDREW B . 
(AA) (NASA, Ames Research Center, Moffett Field, CA) 
National Aeronautics and Space Administration. Ames Research Center, 

Moffett Field, Calif. (NC473657) 
Computer Vision, Graphics, and Image Processing (ISSN 0734-189X), vol. 

39, Sept. 1987, p. 311-327. 870900 p. 17 refs 31 In: EN (English) p. 
852 

With a goal of providing means for accelerating the image processing, 
machine vision, and testing of human vision models, an image transform was 
designed, which makes it possible to map an image into a set of images 
that vary in resolution and orientation. Each pixel in the output may be 
regarded as the simulated response of a neuron in human visual cortex. The 
transform is amenable to a number of shortcuts that greatly reduce the 
amount of computation. 
I.S. 

TYPE 1/4/79 
Quest Accession Number : 88N15464 
88N15464# NASA STAR Technical Report Issue 07 
Proceedings of Image Understanding Workshop, volume 2 / Annual Report, 

Dec. 1985 - Feb. 1987 
(AA)BAUMANN, LEE S .  
Science Awwlications International Corw.. McLean. Va. (SD7088801 
ADlA18610b- ~ N00014-86-C-0700; ARPA ORDER 5605 870200 'p. 613 Workshop 

held in LOS Angeles, calif., 23-25 Feb. 1987 In: EN (English) Avail: 
NTIS HC A99/MF A01 p.902 

The partial contents of the Proceedings of the Image Understanding 
Workshop are as follows: Guiding an Autonomous Land Vehicle Using 
Knowledge-Based Landmark Recognition; The Image Understanding 
Architecture; Initial Hypothesis Formation in Image Understanding Using an 
Automatically Generated Knowledge Base; What Is a Degenerate View; 
Recognizing Unexpected Objects: A Proposed Approach; Minimization of the 
Quantization Error in Camera Calibration; Tracing Finite Motions Without 
Correspondence; The Formation of Partial 3D Models from 2D Projections - 
An Application of Algebraic Reasoning; Qualitative Information in the 
Optical Flow; Detecting Blobs as Textons in Natural Images; and Parallel 
optical Flow computation. 
GRA 
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TYPE 1/4/80 
Quest Accession Number : 88A13400 
88A13400 NASA IAA Conference Paper Issue 03 
An emergency command recognizer for voiced system control 
(AA)WETTERLIND, P.; (AB)JOHNSTON, WAYMON L. 
(M)(California State University, Bakersfield);  texas A & M 

University, College Station) 
IN: SAFE Association, Annual Symposium, 24th, san Antonio, 'rx, Dec. 

11-13, 1986, Proceedings (A88-13376 03-54). Newhall, CA, SAFE Association, 
1987, p. 181-184. 870000 p. 4 refs 16 In: EN (English) p.313 

An algorithm for accepting speaker-independent voiced input, aimed 
especially at accommodating emergency acoustic commands, is described. The 
algorithm is directed toward correctly identifying co~nmancls from 
speaker-independent acoustic input using machine recognition of common, 
standarized phonemic input, using these recognized sounds to reconstruct 
entire words and phrases. Speaker-dependent phonemes are not used during 
the command reconstruction process, so that speaker idiosyncrac!ies are 
accommodated. Machine recognition extends to voice pitch and eniotional 
tension characteristics. 
C.D. 

TYPE 1/4/81 
Quest Accession Number : 87A42734 
87A42734 NASA IAA Journal Article Issue 19 
Associative network applications to low-level machine vision 
(AA) OYSTER, J. MICHAEL; (AB) VICUNA, FERNANDO; (AC) BROADWELL, WALT'ER 
(AA)(Hughes Image and Signal Processing Laboratory, El Segundo, CA); 

Applied Optics (ISSN 0003-6935), vol. 26, May 15, 1987, p. 1919-1926. 
(AC) (IBM Los Angeles Scientific Center, CA) 

870515 p. 8 refs 15 In: EN (English) p.3064 

This paper explores the applioation of a parallel computational model, 
the associative network, to problems in low-level machine vision. A formal 
description of the associative network model is presented. Then 
associative networks are designed for performing Boolean functions, edge 
detection, and the Hough transform. Associative networks feature very 
flexible processor interconnections. The flexible processor 
interconnections allow for parallelism in the algorithm design beyond what 
is feasible in other parallel computational models. This work demonstrates 
that image processing transformations, often too slow to be practical on a 
sequential machine, can be executed rapidly with associative networks. 
Author 
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TYPE 1/4/83 
Quest Accession Number : 87A31115 
87A31115# NASA IAA Preprint Issue 12 
Computational themes in applications of visual perception 

(AC)(Michigan, University, Ann Arbor) 
I (AA)JAIN, M E S H ;  (AB)SCHUNCK, BRIAN G.; (AC)WEYMOUTH, TERRY 

AIAA PAPER 87-1674 AIAA, NASA, and USAF, Symposium on Automation, 
Robotics and Advanced Computing for the National Space Program, 2nd, 
Arlington, VA, Mar. 9-11, 1987. 10 p. 870300 p. 10 refs 47 In: EN 
(English) p.1842 

The paper summarizes the current research in the Computer Vision 
Research Laboratory at the University of Michigan. The laboratory 
concentrates on developing generic vision algorithms for industrial 
applications. vision algorithms can be applied to a wide variety 
of inspection problems. The paper includes a discussion of the current 
state of the machine vision industry and provides recommendations for 
improving the transfer of vision technology from research to practice. 
Author 

I 

Generic 

TYPE 1/4/84 
Quest Accession Number : 87N24891 
87N24891# NASA STAR Technical Report Issue 18 
Representation and control in the interpretation of complex scenes / 

Final Scientific Report, 1 Oct. 1984 - 30 Sep. 1985 
(AA)HANSON, ALLEN R.; (AB)RISEMAN, EDWARD M. 
Massachusetts Univ., Amherst. (MK149394) Dept. of Computer and 

Information science. 

p. 61 In: EN (English) Avail: NTIS HC A04/MF A01 p .0  

The system being developed, called VISIONS, is an investigation into 
issues of general computer vision. The goal is to provide an analysis of 
color images of outdoor scenes, from segmentation through symbolic 
interpretation. The output of the system is intended to be a symbolic 
representation of the three-dimensional world depicted in the 
two-dimensional image, including the naming of objects, their placement in 
three-dimensional space, and the ability to predict from this 
representation the rough appearance of the scene from other points of 
view. The emphasis of the research over the past year has been on three 
issues critical to furthering our understanding of machine vision. The 
first area addresses the issue of image segmentation and the failure of 
recent research to provide robust procedures applicable to complex 
imagery. The second area focusses on the use of domain knowledge in the 
interpretation task. The third area focusses on techniques for controlling 
the use of system resources during interpretation and on ways of resolving 
conflicting partial interpretations. 
GRA 

AD-A179116; AFOSR-87-0301TR F49620-83-C-0099; AF-AFOSR-0005-85 870000 
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TYPE 1/4/85 
Quest Accession Number : 87N23017 
87N23017# NASA STAR Technical Report Issue 16 
Computer vision research and its applications to automated cartography 

SRI International Corp., Menlo Park, Calif. (SY423852) 

/ Final Report, 11 Jun. 1984 - 31 May 1986 
(AA)FISCHLER, MARTIN A. 

AD-A178815 MDA903-83-C-0027; ARPA ORDER 5355 870300 p. 19 In: EN 
(English) Avail: NTIS HC AOZ/MF A01 p.0 

The SRI Image Understanding program is a broad effort spanning the 
entire range of machine vision research. Three major concerns are: (1) to 
develop a computational description of the physics and mathematics of the 
vision process; (2) to develop a knowledge-based framework for 
interpreting sensed (imaged) data; and (3) to develop a machine-based 
environment for effective experimentation, demonstration, and evaluation 
of our theoretical results, as well as providing a vehicle for tec:hnology 
transfer. This final report summarizes progress in these and related 
areas. 
Author (GRA) 

TYPE 1/4/86 
Quest Accession Number : 87N20138 
87N20138# NASA STAR Technical Report Issue 12 
Domain-dependent reasoning for visial navigation of roadways 
(AA)LEMOIGNE. JACQUELINE . .  ~. 
Maryland Univ., College Park. (MI915766) Center for Automation 

Research. 

p. 36 In: EN (English) Avail: NTIS HC A03IMF A01 p.1701 

A Visual Navigation System for Autonomous Land Vehicles includes several 
modules, among them a Knowledge-based Reasoning Module that is described 
in this report. This module utilizes domain-dependent knowledge (in this 
case, road knowledge) in order to analyze and label the visual features 
extracted from the imagery by the Image Processing Module. Knowledge and 
general hypotheses are given in Section 2. The Reasoning Module itself is 
described in Section 3 and results are presented in Section 4. Finally, 
some conclusions are proposed in Section 5. 
GRA 

AD-A174786; CAR-TR-230; CS-TR-1721; ETL-0445 DACA76-84-C-0004 861000 

TYPE 1/4/87 
Quest Accession Number : 86N32751 
86N32751# NASA STAR Technical Report Issue 24 
Biological visual systems structures for machine vision applied to 

(AA)INIGO, R. M.; (AB)HSIN, C. H.; (AC)NARATHONG, C.; (AD)MCVEY, E. S.; 

Virginia Univ., Charlottesville. (V3127208) Dept. of Electrical 

robotics / Final Report, 15 Sep. 1984 - 31 Jan. 1986 

(AE)MINNIX, J. I. 

Engineering. 
AD-A168521; WA/525647/EE86/101; AFOSR-86-0282TR AF-AFOSR-0349-84 

860200 p. 333 In: EN (English) Avail: NTIS HC A15/MF A01 p.373:7 

This report describes the research on a biological visual system (BVS) 
based sensor with possible applications to robotics and automation. The 
report covers the following subjects: sensor configuration; edge det:ection 
modeling for the human visual system and edge detection using the BVS 
sensor. qualitative motion detection using the BVS; target tracking 
algorithms for the BVS; and microsaccadic eye movement in the human visual 
system (HVS) . 
GRA 



TYPE 1/4/88 
Quest Accession Number : 86N30333 

Novel architectures for image processing based on computer simulation 
and psychophysical studies of human visual cortex / Final Report, 15 
Apr. 1983 - 15 Apr. 1985 

(AA)SCHWARTZ, E. L. 
New York Univ. Medical Center. (N0098273) 
AD-A166222; AFOSR-86-0059TR F49620-83-C-0108 860102 p. 96 In: EN 

(English) Avail: NTIS HC AOS/MF A01 p.3353 

86N30333# NASA STAR Technical Report IsSue 21 

This final report consists of two parts. The first part is a computer 
simulation of the functional architecture of the visual cortex, and an 
examination of the possible significance that this architecture may have 
for understanding both human visual computation and machine vision. The 
second part of this report is a psychophysical investigation of human 
shape perception in terms of boundary descriptors of curvature. 
GRA 

TYPE 1/4/89 
Quest Accession Number : 86N29120 
86N29120# NASA STAR Technical Report Issue 20 
Exploiting sequential phonetic constraints in recognizing spoken words 
(AA)HUTTENLOCHER, D. P. 
Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial 

Intelligence Lab. 

Avail: NTIS HC A03/MF A01 p.3158 
AD-A165913; AI-M-867 N00014-80-C-0505 851000 p .  28 In: EN (English) 

Machine recognition of spoken language requires developing more robust 
recognition algorithms. A recent study by Shipman and Zue suggest using 
partial descriptions of speech sounds to eliminate all but a handful of 
word candidates from a large lexicon. The current paper extends their work 
by investigating the power of partial phonetic descriptions for developing 
recognition algorithms. First, we demonstrate that sequences of manner of 
articulation classes are more reliable and provide more constraint than 
certain other classes. Alone these results are of limited utility, due to 
the high degree of variability in natural speech. This variability is not 
uniform however, as most modifications and deletions occur in unstressed 
syllables. Comparing the relative constraint provided by sounds in 
stressed versus unstressed syllables, we discover that the stressed 
syllables provide substantially more constraint. This indicates that 
recognition algorithms can be made more robust by exploiting the manner of 
articulation information in stressed syllables. 
GRA 
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Quest Accession Number : 86N24536 
86N24536*# NASA STAR Conference Paper Issue 14 
Machine vision and the OMV 
(AA)MCANULTY, M. A. 
Alabama Univ., Birmingham. (AM538929) Dept. of Computer and 

Information Science. 
In NASA. Marshall Space Flight Center Research Reports: 1985 

NASA/ASEE Summer Faculty Fellowship Program 24 p (SEE N86-2450'7 14-80) 
860100 p. 24 refs 0 In: EN (English) Avail.: NTIS HC A99/MF :E04 p. 
2388 

The orbital Maneuvering Vehicle (OMV)  is intended to close with orbiting 
targets for relocation or servicing. It will be controlled via video 
signals and thruster activation based upon Earth or space station 
directives. A human operator is squarely in the middle of the control loop 
for close work. Without directly addressing future, more autonomous 
versions of a remote servicer, several techniques that will doubtless be 
important in a future increase of autonomy also have some direct 
application to the current situation, particularly in the area of image 
enhancement and predictive analysis. Several techniques are presentet, and 
some few have been implemented, which support a machine vision capability 
proposed to be adequate for detection, recognition, and tracking. Once 
feasibly implemented, they must then be further modified to operate 
together in real time. This may be achieved by two courses, the use of an 
array processor and some init.ia1 steps toward data reduction. The 
methodology or adapting to a vector architecture is discussed in 
preliminary form, and a highly tentative rationale for data reduction at 
the front end is also discussed. As a by-product, a working implementation 
of the most advanced graphic display technique, ray-casting, is described. 
Author 

TYPE 1/4/91 
Quest Accession Number : 86N20008 
86N20008# NASA STAR Technical Report Issue 10 
Hierarchical multisensor imaqe understandinq I Final Report, Oct. 1983 - . 

- AUg. 1985 

(AEIMADER, S .  
(AA)AGGARWAL, R. K.; (AB)BAZAKOS, M.; (AC)BUDENSKE, J.; (AD)KIM, Y.; 

Honeyweil Systems and Research Center, Minneapolis, Minn. (HY989092) 
AD-A160324; AFOSR-85-0801TR F49620-83-C-0134 850800 p. 129 In: EN 

(English) Avail.: NTIS HC A07/MF A01 p.1651 

This report describes the research results on Honeywell's Hierarchical 
Multisensor Image Understanding program. Honeywell is developing a unified 
framework for the different hierarchical levels of image processing such 
as segmentation, detection, classification, and identification of outdoor 
scenes and across different sensor modalities such as millimeter wave, 
infrared, and visible. Current activities on the project are reviewed 
under the following headings: (1) A Survey of Multisource Information 
Fusion Systems; (2) The Role of Structure in Human and Machine Perception; 
(3) A Knowledge Based Image Segmentation System; (4) The Use of 'Optical 
Flow as a Depth Cue in Scene Analysis; and (5) Belief Maintenanc'e for A 
Fuzzy Reasoning System. 
GRA 
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Ouest Accession Number : 86N19085 I 

86N19085# NASA STAR Technical Report Issue 09 
Computing visible-surface representations 
(AA) TERZOPOULOS, D. 
Massachusetts Inst. of Tech., Cambridge. (MJ70080 Artifi ial 

Intelligence Lab. 

Avail.: NTIS HC A04/MF A01 p.1494 
AD-A160602; AI-M-800 N00014-75-C-0643 850300 p. 6 4  In: EN (English) 

The computational framework offered in this paper addresses, in a 
unified way, certain visual information processing tasks involved in the 
representation of visible surfaces. Particular emphasis is placed on 
utilizing highly parallel, cooperative processing to integrate surface 
shape information over multiple visual sources, to fuse it across a 
multiplicity of spatial resolutions, and to maintain the global 
consistency of the resulting distributed shape representations. The issues 
are first investigated in terms of a surface reconstruction model rooted 
in mathematical physics. This formal analysis is augmented by an empirical 
study of the resulting algorithms, which feature multiresolution iterative 
processing within hierarchical surface shape representations. The approach 
is guided by current knowledge of how humans perceive visible surfaces, 
while applications in machine vision provide a testbed for the algorithms. 
GRA 

TYPE 1/4/93 
Ouest Accession Number : 86A18651 

~ 

86A18651 NASA IAA Journal Article Issue 06 
Machine perception of visual motion 
(AA)BUXTON, B. F. ;  (AB)MURRAY, D. W.; (AC)BUXTON, H.; (AD)WILLIAMS, N. 

S.  
(AB) (General Electric Co., PLC, Research Laboratories, Wembley, England) 

; (AD)(Queen Mary College, London, England) 
GEC Journal of Research (ISSN 0264-9187), vol. 3 ,  no. 3 ,  1985, p. 

145-161. Research supported by the Ministry of Defence (Procurement 
Executive). 850000 p. 17 refs 66 In: EN (English) p.0 

An attempt at devising a system for using visual motion to obtain 
three-dimensional information at the level of Marr's (1982) 
two-and-one-half-dimensional sketch is described. The algorithm proposed 
can be implemented efficiently on an SIMD processor array and in the ideal 
case of a direct 1:l mapping of the image pixels onto the processor array 
run at speeds approaching real-time video frame rates. The processing 
scheme has a potential for performing a multiple regression by introducing 
new surface and motion parameters to explain variations in the visual 
motion data and thus can be adapted for a segmentation procedure based on 
the description of the visible surfaces. 
I.S. 
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Quest Accession Number : 86A17019 
86A17019 NASA IAA Meeting Paper Issue 05 
Pattern recognition and artificial intelligence; French Congress, 4th, 

Paris, France, January 25-27, 1984, Lectures. volumes 1 & 2 
Reconnaissance des formes et intelligence artificielle; Congres 

Francais, 4th, Paris, France, January 25-27, 1984, Conferences. Volumes 1 
& 2  
Congress sponsored by the Ministere de 1’Industrie et de la Recherche, 

Association Nationale du Logiciel, and International Associat:ion for 
Pattern Recognition. Le Chesnay, France, Institut National de Recherche en 
Informatique et en Automatique, 1984. Vol. 1, 579 p.; vol. 2, 5;!4 p. In 
French. For individual items see A86-17020 to A86-17024. 840000 p. 1103 
In: FR (French) p.0 

Two broad topics are addressed: (1) the processing, analysis, and 
understanding of images; and (2) the analysis and Understanding of words. 
Particular consideration is given to image segmentation; scene analysis; 
the representation and analysis of two- and three-dimensional forms; 
industrial vision; and special architectures. Attention is also given to 
the understanding of natural languages, programming languages, learning 
theory, and expert systems. 
B . J .  

TYPE 1/4/95 
Quest Accession Number : 85N35634 
85N35634# NASA STAR Issue 24 
Selected publications in image understanding and computer vision from 

1974 to 1983 
(AA)VERLY, J. G. 
Lincoln Lab., Mass. Inst. of Tech., Lexington. (LQ054005) 
AD-A156196; TR-716; ESD-TR-85-180 Fl9628-85-C-0002; ARPA ORDER 4881 

850418 p. 100 In: EN (English) Avail.: NTIS HC A05/MF A01 p.4136 

A list of selected publications in image understanding and computer 
vision is presented. The list was compiled as part of work for the 
DARPA-sponsored Autonomous IR Sensor Technology program, and the ch’oice of 
references was directly influenced by the needs of that program. 
Therefore, emphasis was placed on theories, techniques, and systems for 
interpreting complex imagery; the more classical fields of image 
processing, e.g., filtering, enhancement, restoration, coding, and 
reconstruction, were not included. The topics of edge detection and region 
segmentation as well as the well-known scene analysis problems o f  shape 
recognition from stereo, shading, texture, and motion were also excluded. 
The bibliography covers the last decade (1974-1983) and is based on the 
yearly surveys published by A. Rosenfeld in the Journal initially called 
Computer Graphics and Image Processing (CGIP) and now Computer Vision, 
Graphics, and Image Processing (CVGIP). 
GRA 
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TYPE 1/4/96 
Quest Accession Number : 85A24997 
85A24997 NASA IAA Conference Paper Issue 10 
Optics for machine vision 
(AAISTRAND, T. C. 
(AA)(IBM Research Laboratory, San Jose, CA) 
IN: Optical computing; Proceedings of the Meeting, Los Angeles, CA, 

January 24, 25, 1984 (A85-24990 10-60). Bellingham, WA, SPIE - The 
International Society for Optical Engineering, 1984, p. 86-93. 840000 p. 
8 refs 23 In: EN (English) p.0 

Current developments in manufacturing technologies have caused a demand 
for automated inspection and assembly tools. A key requirement regarding 
such tools is related to machine vision. The term 'machine vision', as 
used in this discussion, includes any automated acquisition of information 
via optical sensors. The primary information to be sought with vision 
systems is spatial information. The normal detection scheme provides all 
but one of the generally desired variables. The variable not provided is 
the longitudinal position variable. Information regarding this variable is 
called 'range information'. The present investigation is mainly concerned 
with the means of acquiring the range variable. Attention is given to 
geometric range measurement techniques, time-of-flight range measurement 
techniques, interferometric techniques, and diffraction range measurement 
techniques. 
G.R. 

TYPE 1/4/97 
Quest Accession Number : 84A44308 
84A44308 NASA IAA Journal Article Issue 21 
Parallel processing in machine vision 
(AA)STERNBERG, S. R. 
(AA)(Machine Vision International, Ann Arbor, MI) 
Robotica (ISSN 0263-5747), vol. 2, Jan. 1984, p. 33-40. 840100 p. 8 

refs 21 In: EN (English) p.3102 

Machine vision systems incorporating highly parallel processor 
architectures are reviewed. A new processor architecture, the image flow 
computer, is presented in detail. An interactive image processing 
programming language based on mathematical morphology is then presented. A 
detailed example of the use of the system for the inspection of a 
particular industrial part concludes the presentation. 
Author 
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Quest Accession Number : 84N23123 
84N23123# NASA STAR Technical Report Issue 13 
Machine vision: Three generations of commercial systems / Interim 

(AA)CROWLEY, J. L. 
Carnegie-Mellon Univ., Pittsburgh, Pa. (CH188052) Robotics Inst. 
AD-A139037; CMU-RI-TR-84-1 840125 p. 40 In: EN (English) Avail.: 

Report 

NTIS HC A03/MF A01 p.2024 

Since 1980, machine vision systems for industrial application have 
enjoyed a rapidly expanding market. The first generation machines are 
two-dimensional binary vision systems, patterned after the SRI Vision 
Module. These systems will soon be joined by a second generation, based on 
edges description techniques. Both the first and second generation systems 
are pattern recognition machines. Research in machine vision is leading 
towards vision systems that will be able to dynamically model the 
three-dimensional (3-D) surfaces in a scene. This research will lead to a 
third generation of vision systems which will provide a dramatic increase 
in capabilities over the first two generations. This article describes 
these three generations of vision systems. The algorithms, data 
structures, and hardware architecture are presented for binary vision 
systems and edge-based systems. A framework is presented for the research 
problems which must be solved before a commercial vision system can be 
produced based on dynamic 3-D Scene analysis techniques. 
Author (GRA) 

TYPE 1/4/99 
Quest Accession Number : 83A44078 
83A44078 NASA IAA Journal Article Issue 21 
Machine vision for robotics 
(AA)CORBY, N. R., JR. 
(AA) (GE Corporate Research and Development Center, Schenectady, NY) 
IEEE Transactions on Industrial Electronics (ISSN 0278-004b), vol. 

IE-30, Aug. 1983, p. 282-291. 830800 p. 10 refs 14 In: EN (E:nglish) 
p.3135 

When applied to robotic tasks, computer or machine vision involves time 
and space interactions among manipulators, tools, and objects in the work 
space. Such vision must ultimately be three-dimensional. Attention is 
given to fundamental characteristics of machine vision processing for 
binary, grey, and fully three-dimensional cases, and the architectures and 
control structures for several different vision processing approaches are 
explored. 
O.C. 
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Quest Accession Number : 83A13450 
83A13450 NASA IAA Meeting Paper Issue 03 
Perceptual capabilities, ambiguities, and artifacts in man and machine 
(AA)GINSBURG, A. P .  
(AA) (USAF, Aviation Vision Laboratory, Wright-Patterson AFB, OH) 
AD-A109864; AFAMRL-TR-81-142 In: 3-D machine perception; Proceedings of 

the Conference, Washington, DC, April 23, 24, 1981. (A83-13444 03-35) 
Bellingham, WA, SPIE - The International Society for Optical Engineering, 
1981, p. 78-82. 810000 p. 5 refs 11 In: EN (English) p.383 

Certain advances in visual science suggesting that perception may be 
structured from a hierarchy of filtered images are summarized. It is shown 
that a small numbered set of images created from filters based on 
biological data can provide a rich array of information about any object: 
contrast, general form, identification, textures and edges. It is 
contended that machine perception will require similar parallel processing 
of an array of filtered images if human-like visual performance is 
required. Such visual problems as certain visual illusion, multistable 
objects, and masking are analyzed in terms of the limitations of 
biological filtering. Machine solutions to these problems are then 
discussed. 
C.R. 

TYPE 1/4/101 
Ouest Accession Number : 83A13444 - 
83A13444 NASA IAA Meeting Paper Issue 03 
3-0 machine perception; Proceedings of the Conference, washington, DC, 

April 23, 24, 1981 
(AA)ALTSCHULER, B. R. 
(AA) (ED.) 
(AA)(USAF, School of Aerospace Medicine, Brooks AFB, TX) 
Conference sponsored by SPIE - The International Society for Optical 

Engineering. Bellingham, WA, SPIE - The International Society for Optical 
Engineering (SPIE Proceedings. Volume 283), 1981. 145 p. (For individual 
items see A83-13445 to A83-13450) 810000 p. 145 In: EN (English) 
MEMBERS, $31.; NONMEMBERS, $37 p.324 

Topics discussed include three-dimensional surface mapping and analysis, 
applications and interfacing, and the three-dimensional display of 
internal structures. Papers are presented on coherent optical methods for 
applications in robot visual sensing; real-time three-dimensional vision 
for parts acquisition; perceptual capabilities, ambiguities, and artifacts 
in man and machine; and a computerized anatomy atlas of the human brain. 
Attention is also given to noncontact visual three-dimensional ranging 
devices, to the application of digital image acquisition in anthropometry, 
to an overview of data acquisition and processing for three-dimensional 
displays of internal structures, and to a three-dimensional viewing device 
for examining internal structure. 
C.R. 
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Quest Accession Number : 83A13353 
83A13353* NASA IAA Journal Article Issue 03 
Feature Identification and Location Experiment 
(AA)SIVERTSON, W. E., JR.; (AB)WILSON, R. G.; (AC)BULLOCK, G. F.; 

(AC)(NASA, Langley Research Center, Hampton, VA); (AD) (Martin Marietta 

National Aeronautics and Space Administration. Langley Research Center, 

Science, vol. 218, Dec. 3, 1982, p: 1031-1033. NASA-supported research. 
821203 p. 3 refs 5 In: EN (English) p.357 

The Feature Identification and Location Experiment (FILE), which was 
flown on the second Space Shuttle flight to test a technique for 
real-time, autonomous classification of water, vegetation and bare land as 
well as clouds, snow and ice, senses earth radiation in spectral bands 
centered at 0.65 and 0.85 microns. The radiance ratio classification 
algorithm has successfully made automatic data selection decisions. A 
classification image obtained on the mission is providing data needed to 
evaluate the FILE algorithm and overall system performance. 

(AD) SCHAPPELL, R. T. 

Aerospace, Denver, CO) 

Hampton, Va. (ND210491) 

O.C. 

TYPE 1/4/103 
Quest Accession Nun 
83A12880 NASA I 

3r : 83 
i Meet 

12880 
ng Paper Issue 02 

Fast adaptive algorithms for low-level scene analysis - Applications of 
polar exponential qrid /PEG/ reDresentation to hiah-soeed. 
scale-and-rotation invariant target segmentation 

- 
(AA)SCHENKER, P. S . ;  (AB)WONG, K. M.; (AC)CANDE, E. G. 
(AC) (Brown University, Providence, RI) 
In: Techniques and applications of image understanding; Proceedings of 

the Meeting, Washington, DC, April 21-23, 1981. (A83-12875 02-35) 
Bellingham, WA, SPIE - The International Society for Optical Engineering, 

This paper presents results of experimental studies in image 
understanding. Two experiments are discussed, one on image correlation and 
another on target boundary estimation. The experiments are demonstrative 
of polar exponential grid (PEG) representation, an approach to sensory 
data coding which the authors believe will facilitate problems in 
three-dimensional machine perception. The discussion of the image 
correlation experiment is largely an exposition of the PEG-representation 
concept and approaches to its computer implementation. The presentation of 
the boundary finding experiment introduces a new robust stochastic, 

1981, p. 47-57. 810000 p. 11 refs 18 In: EN (English) p.181 

parallel computation segmentation algorithm, the PEG-Parallel Hierarchicai 
Ripple Filter (PEG-PHRF) . 
(Author) 
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Ouest Accession Number : 83A12878 - 
83A12878 NASA IAA Meeting Paper Issue 02 
Application of image understanding to automatic tactical target 

(AA)HELLAND, A. R.; (AB)WILLETT, T. J.; (AC)TISDALE, G. E. 
(AC) (Westinghouse Electric COrp., Systems Development Div., Baltimore, 

MD ) 
In: Techniques and applications of image understanding; Proceedings of 

the Meeting, Washington, DC, April 21-23, 1981. (A83-12875 02-35) 
Bellingham, WA, SPIE - The International Society for Optical Engineering, 
1981, p. 26-31. 810000 p. 6 refs 15 In: EN (English) p.133 

Real-time equipment has been developed and is now being tested for 
automatic recognition of targets on an individual basis. The recent use of 
frame-to-frame integration techniques has significantly improved the 
classification performance with this equipment to the point where the 
human interpreter can sometimes be surpassed. For some imagery, however, 
initial target segmentation remains unsatisfactory, causing targets to be 
missed, and the level of false alarms may be too high. As a result, more 
sophisticated image processing techniques are now being addressed which 
could provide a comprehensive understanding of overall image content. 
These include the use of such scene analysis operations as the derivation 
of motion vectors for passive ranging, false alarm discrimination, and 
detection of target motion. Additional areas of interest lie in the 
'intelligent' tracking of multiple targets, and the autonomous handoff of 
targets between sensors. The paper discusses the evolution of these areas, 
and their probable impact on the target acquisition process. It also 
addresses their impact on hardware implementation. 
(Author) 

acquisition 

TYPE 1141105 
Quest Accession Number : 83A11460 
83A11460 NASA IAA Meeting Paper Issue 01 
Symbolic pattern matching for target acquisition 
(AA)NARENDRA, P. M.; (AB)GRABAU, J. J.; (AC)WESTOVER, B. L. 
(AC)(Honeywell Systems and Research Center, Minneapolis, MN) 
DAAK70-79-C-0114 In: Conference on Pattern Recognition and Image 

Processing, Dallas, TX, August 3-5, 1981, Proceedings. (A83-11409 01-63) 
New York, Institute of Electrical and Electronics Engineers, Inc., 1981, 
p. 481-486. 810000 p. 6 refs 16 In: EN (English) p.8 

This paper describes a symbolic pattern matching system for autonomous 
target acquisition, which requires matching widely disparate views of a 
scene. The pattern matching system exploits both the object-to-object 
similarities in the two images and the consistency of configurations of 
candidate matches. The consistency is evaluated under a general 
transformation which accounts for a large difference in the sensor 
positions between the two views. The matching of the symbolic features 
between the two images is cast in a combinatorial framework. An efficient 
branch and bound algorithm is developed to find the best match optimizing 
the criterion function, which measures the goodness of a candidate match. 
The result of applying the pattern matching system simulation to several 
pairs of real infrared images are presented both to illustrate the 
approach and to quantify its performance. 
(Author) 
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Quest Accession Number : 82N31312 
82N31312# NASA STAR Technical Report Issue 22 
Flight plan filing by speech recognition / Final Report 

Federal Aviation Administration, Atlantic City, N.J. (FI751336) 
(AA)SHOCHET, E, ; (AB)QUICK, P. ; (AC)DELEMARRE, L. 

Technical Center. 
DOT/FAA/RD-82/39; DOT/FAA/CT-81/64 FAA PROJ. 131-402-540 820700 p .  67 
In: EN (English) Avail.: NTIS HC A04/MF A01 p.3080 

Automatic flight plan filing by machine recognition is discusssed. The 
utterance recognition device (URD) was upgraded in preparation for testing 
the capabilities of voice input for automatic flight plan filing. The URD 
was modified to include more reliable components, where advisabh, and a 
larger memory to handle the expanded vocabulary. In addition, a dialect 
study was conducted to determine the locations for collecting a nationally 
representative voice sample in order to create reference patterns capable 
of performing well on all American dialects. Subsequently, over 5,000 
voices from 24 cities throughout the United States were collected and 
processed. Initial tests were conducted in which subjects filed simulated 
flight plans directly into the URD over the telephone. The results 
indicated that the prototype system, as demonstrated using the adaptation 
strategy for flight plan filing, has definite potential for application in 
Model two of the flight service automation program. Moreover, a comparison 
between the old and new recognition algorithms indicates that the 
improvement in accuracy with the new data base raises the performance of 
the mass weather dissemination program to a level quite satisfactory for 
the general pilot population. 
S.L. 

TYPE 1/4/107 
Quest Accession Number : 81A44700 
81A44700 NASA IAA Meeting Paper Issue 21 
Image processing design for autonomous acquisition of targets 
(AAjBOYD, W. W.; (ABjMACPHERSON, C. A.; (AC)TAYLOR, J. LI; (AD)TASKETT, 

J. M.: (AE)LINEBERRY, M. C. 
(AE) (Texis Instrumknts, Inc., Dallas, TX) 
In: SOUTHEASTCON ‘81; Proceedings of the Region 3 Conference and 

Exhibit, Huntsville, AL, April 5-8, 1981. (A81-44676 21-31) Pisc!ataway, 
NJ, Institute of Electrical and Electronics Engineers, Inc., 1981, p. 
285-290. 810000 p. 6 In: EN (English) p.3617 

Primary considerations in designing an image-processing system t.hat can 
autonomously acquire high-value tactical targets are discussed. Attention 
is given to establishing requi.rements, and the implications ctf these 
requirements on the image-processing algorithms are analyzed. It is 
pointed out that through these st.eps, detection and acquisition times can 
be estimated and, hence, algorithm processing times established. The 
results of certain candidate algorithms that show promise of meeting 
mission goals are presented. The design process described takes account of 
the geographical and climatological features of the area of intended use. 
Aircraft maneuverability and human factor limits are also considered in 
establishing system requirements. Analysis shows the feasibility and 
desirability of employing the seeker and terrain features to cue the 
aircraft to the target. 
C.R. 
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81~39349 NASA IAA Meetinq Paper Issue 18 
Model-based scene matching 
(AA)TSENG, D. Y.; (AB)CONTI, D. K.; (AC)ECKHARDT, W. 0.; (AD)OLIN, K. E. 

: (AEIMCCULLOH. T. A.: (AF)NEVATIA. R. I 
' i A D i  (Hughes .Research' Laboratories, Malibu, CA) ; (AE) (Hughes Aircraft I 
co:, culver City, CA) 
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of the Seminar, San Diego; ck, July 29-August 1, 1980. (A81-393.26 18-04) I 
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pattern matching techniques were developed that are capable of 
matching complex terrain scenes for use in midcourse navigational updating 
of aircraft and missiles. This method utilizes key features in an image to 
represent scene content. The key features are converted into a line-based 
model, which is then used in the actual matching process. The 
pattern-matching approach is more tolerant of scene diversities than are 
correlation techniques, and it can match scenes containing severe contrast 
reversal, small prominent features, or scale and orientation differences. 
Both high- and low-altitude flight profiles are considered, with matches 
performed for each case. Comparisons with conventional correlation are 
made for a variety of scenes. 
(Author) 
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Application of exact area registration to scene matching 
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p. 166-177. 800000 p. 12 In: EN (English) p.3128 

A description is given of the Exact Area Registration process, which can 
be used to remove all geometric distortions in autonomous scene-matching 
systems. It is shown that match noise statistics can be approximated by a 
set of functions, each one corresponding to an a priori designated region 
of the reference image. These functions define the confidence level of the 
scene model as depicted in the reference image within the corresponding 
image. It is suggested that, for autonomous scene matching under a wide 
range of conditions, an autonomous smart sensor needs a 'knowledgeable' 
reference which will not only predict the expected conditions of the 
sensed image but also define the confidence levels of the prediction. In 
this way, the autonomous device can make match judgements in a way 
analogous to that of a human scene matcher. 
O.C. 
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(AA)NAGIN, P. A. 
Massachusetts Univ., Amherst. (MK149394) Dept. of Computer and 

Information Science. 

and relaxation / Ph.D. Thesis 
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The research in this thesis has focussed upon the algorithms and 
structures that are sufficient to generate an accurate description of the 
information contained in a relatively complex class of digitized images. 
This aspect of machine vision is often referred to as 'low-level' vision 
or segmentation, and usually includes those processes which function close 
to the sensory data. The bulk of this thesis devotes itself to the 
exploration of some of the problems typically encountered in segmentation. 
In addition, a new and robust algorithm is presented that avoids most of 
these problems. The analysis is carried out through the use of a series of 
computer-generated tests images with known characteristics. Segmentation 
algorithms of varying degrees of complexity are applied to each image and 
their performance is carefully evaluated. It will be shown that even the 
most sophisticated algorithms that are currently in use often perform 
poorly when confronted with certain apparently simple images. In 
particular, it is shown that techniques which rely on histogram clustering 
often generate gross segmentation errors due to overlap in the 
distributions of the individual objects in a scene. Moreover, the 
relaxation processes used to correct these errors are themselves prone to 
errors, but of a different kind. Both techniques, clustering and 
relaxation, fail because they are based on information which is too global 
to be effective in complex scenes. 
GRA 
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Vocabulary speciPication for automatic speech recognition in aircraft 

(AA)PETERSEN, R. J.; (AB)LEE, N.; (AC)MEYN, C.; (AD)REGELSON, E.; 

Logicon, Inc., San Diego, Calif. (L3152614) Tactical and Training 

cockpits / Final Report, Sep. 1978 - Jun. 1979 

(AE) SATZER, W. 

Systems Div. 

Avail.: NTIS HC A05/MF A01 p.592 
AD-A073703 N00014-78-C-0692 790831 p. 92 refs 0 In: EN (English) 

The general focus of this research was to design a communication media 
(a vocabulary) that is advantageous to both machine recognition and human 
production of speech events. The problem was analyzed from a human factors 
perspective that centered upon the man-computer dialogue (interaction) 
required for cockpit application of ASR. The results indicated that phrase 
familiarity and stimulus familiarity had major impact on the learning and 
utilization of the phrases in the paired-associate task. Phrase length and 
meaningfulness did not appear to differentially affect either the learning 
or utilization of the paired associate. In addition, pretraining of 
stimulus familiarity did not seem to result in improved performance. 
Acoustic lexical confusability also was discussed in (general 
methodological terms. The results of the study were interpreted in terms 
of a contextualist viewpoint with the necessity of a broader contextual 
manipulation being pointed out as a requirement for further research. 
GRA 
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A description is given of part of the research which led to the 
development of the first demonstrable live system for machine 
understanding of connected speech: the HEARSAY system. This system uses 
syntactic, semantic, and contextual information, as well as the more 
traditional domains of acoustic-phonetic, phonological, and lexical 
knowledge, in order to recognize and understand utterances. The efforts 
involved fall into two classes: (1) the design and implementation of the 
HEARSAY system itself and ( 2 )  the careful construction of an environment 
within which research in machine perception of speech may be pursued by a 
number of researchers over a period of years. This consideration for an 
evolving experimental environment is a prime motivation and direction of 
the work. Thus, the system itself is viewed as a tool for on-going 
experimentation. 
Dissert. Abstr. 

environment and system for machine understanding of connected speech 
/ Ph.D. Thesis 
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73N261878 NASA STAR Technical Report Issue 17 
Eves and ears for comvuters (Machine perception of speech and vision) 
(L)REDDY, D. R. 

- - 
Carnegie-Mellon Univ., Pittsburgh, Pa. (CH188052) Dept. of Computer 

science. 

9769 730300 p. 34 refs 0 In: EN (English) Avail.: NTIS p.2002 

paper presents a unified view of the research in machine perception 
of speech and vision in the hope that a clear appreciation of similarities 
and differences may lead to better information-processing models of 
perception. Various factors that affect the feasibility and performance 
of perception systems are discussed. To illustrate the current state of 
the art in machine perception, examples are chosen from the HEARSAY speech 
understanding system and the image processing portion of the SYNAPS neural 
modelling system. Some unsolved problems in a few key areas are 
presented. 
Author (GRA) 

AD-760153; AFOSR-73-0742TR F44620-70-C-0107; NSF GJ-32784; AF PROJ. 
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A procedure for the machine recognition of speech (Computer program for 

(AA)MEDRESS, M. 
Sperry Rand Corp., St. Paul, Minn. (SX655732) 
In IEEE The 1972 Conf. on Speech Commun. and Process. p 113-116 (SEE 

machine recognition of distinctive features in words and sentences) 

N73-23119 14-07) 720222 p. 4 refs 0 In: EN (English) p.1623 

hierarchical and fundamental procedure for the machine recognition of 
words and sentences is proposed, and a preliminary implementation of that 
procedure is described. The computer program attempts to ,estimate 
distinctive features information about some stops, fricatives, and vowels 
in multi-syllabic words and short sentences without referenoe to a 
lexicon, and independent of a speaker. Average correct recognition scores 
of 92% to 95% were obtained for five adult male speakers and three 
different vocabularies ranging from 6 0  short sentences to 100 
multi-syllabic words. only one of the five speakers was used to develop 
the recognition program; the other four were completely new to the system. 
Author 
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73N22127 NASA STAR Issue 13 
Speech generation and recognition under hybrid computer control f 

Ph.D. Thesis (Synthetic speech generation and recognition under hybrid 
computer control, using one set of linguistic rules) 

(AA)DOUBLIER, R. M. 
University of Southern California, LOS Angeles. (U6203125) 
720000 p. 239 In: EN (English) Avail: Univ. Microfilms Order No. 

72-26009 p.1496 

This research was concerned with the design, development and testing of 
the hardwarefsoftware systems necessary to produce synthetic speech, using 
a set of linguistic rules as its only input data. Evaluation of the 
quality of the artifically-produced speech is made not only from a 
spectral analysis standpoint, but also through carefully constructed and 
administered intelligibility tests. The set of linguistic rules developed 
as a basis for the generation of artificial speech can be adapted to the 
initial phases of research into machine recognition of human spee.ch, and 
several fundamental considerations towards the eventual solution of this 
problem are presented. 
Dissert. Abstr. 
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