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Abstract

Human perceptual capabilities involve the extraction of task-oriented information from environmental stimulithrough physical
sensing and the use of background knowledge.

There are many activities underway aimed at providing similar capabilities of artificial machine perception. Some success is
achieved by exploitingwhat is known of corresponding human cognitive processes and by making use ofthe increasing power of
information processing techniques. For this purpose, the recognition of sharply contrasted as well as fuzzy patterns (stationary
or dynamically changing) plays an important role along with other aspects of processing of complex information structures.

These techniques are beginning to be applied in guidance and control, in particular with regard to artificial visual perception and
speech understanding. Thisapplication promises majorbenefitswith the advent of autonomous vehicleand mission control, and
of intelligent systems for situation awareness support of human operators.

This Lecture Series covers the following subjects:

— Pattern recognition techniques
— Real time visual machine perception, principles and applications in G&C
— Real time speech recognition and understanding in the G&C domain.

This Lecture Series, sponsored by the Guidance and Control Panel of AGARD, has been implemented by the Consultant and
Exchange Programme.

Abrege

Les capacités de perception humaines permettent Pextraction de données orientées-taches des stimuli du milieu environnant
par le biais de la detection physique et par Papplication de connaissances préalables.

Un grand nombre d'activités sont enterprises a I'heure actuelle, dans le but de creer des capacités similaires de perception
artificielle machine. Un certain progres est rialisable en exploitant les processus cognitifs humains connus et en se servant de la
puissance de calcul grandissante des techniques de traitement des données. Dans ce contexte, la reconnaissance d'images &
contrast marque, ainsi que de motifs flous(stationnaires ou en evolution dynamique) joue un rdie important, conjointement avec
d'autres aspects du traitement des structures de donnees complexes.

Ces techniques commencent a trouver des applications dans le domaine du guidance et du pilotage, en particulier en ce qui
concerne la perception visuelle et la reconnaissance de la parole. Cettc derniére application doit donner de bons résultats avec

larrivée du contrdle autonome des véhicules et des missions et de systémes intelligents d'aide a la perception de la situation.
Ce cyclede conferences portera sur les sujets suivants:

—les techniques de reconnaissance de motifs
— la perception visuelle machine cn temps riel, principes et applications dans le domaine du guidage et du pilotage
— la reconnaissance et la comprehension de la parole, aspects guidage et pilotage.

Ce cycle de conferences est présenté par le Panel AGARD de Guidage et de Pilotage; et organise dans le cadre du programme
des Consultants et des Echangcs.
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INTRODUCTION

Relner Onken

Universitit der Bundeswehr Miinchen
Werner-Heisenberg-Weg 39
8014Neubiberg
Germany
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In airborne guidance and control both completely autonomous process control and autonomous knowledge-based
assistance for the pilot in process control are of prime interest, includingautonomous situation assessment, planning
with decision-makingand problem solving and execution services.

The lectures start on the first day with machine perception of speech, its recognition and understanding (Mangold).
This perceptual task is very essential for operator (crew) assistance in order to offer natural conmunication means
human individuals are used to. The source of information to be perceived is the human being hiraself. Speech
productionisbasedon the specific sound generation which is possible using the articulatory organs. Man has developed
very special decoding and understanding mechanisms to extract from the speech signal all the information.

The remaining part of the lectures are exclusively devoted to vision, starting with approaches for sensing and
interpretationof 3 D shape and motion (Kanade) and elementary functions to be implemented onan electronicretina
(Zavidovique).

The capabilities and performance of vision systems using monocular stereo, and image sequence analysis with pixel
and feature processing will be discussed in the third lecture (Baker), as will their respective utilities to vision-based
autonomous guidance. The principal focus will be on the relationship between optic flow technique for image pair
analysis of motion and depth and spatio-temporalmanifold analysis.

The second day is more application-oriented. It starts with a lecture on3D vision application fornavigationandcontrol
of mobile robots (Garibotto). This contribution describes a binocular stereo vision module for obstacle detection with
no precise calibration at fastrate, atrinocular stereo vision based onsegmentprimitivesfor the reconstruction of free
space for navigation, and landmark detection for self-positioningand orientation of the mobile vehicle.

The following contribution adresses image sequence understanding with application examples like road vehicle
guidancewith obstacle avoidance, vehicle docking and aircraft landing approach guidance (Dick™).  High-level
spatio-temporalmodels of the processes of interest in the real world are exploited for automatic feature tracking.
Other properties like feature grouping through ’Gestalt’idea, fixation-type vision, feature adaptation lo the actual
shape and feature selectionin a situation context are incorporated in thiSapproach.

The lastlecture considers two scenarios of the application of 3D computer vision using passive imaging sensors (Evans).
First, a general scene is analysed without any prior information concerningits structure. Thiswould be the case when
wishing to control, for example, a vehicle moving off-road across unknown terrain. Secondly,in the converse case the
motion is analysed of a well defined object, for example when tracking a known aircraft. A review of techniques used
will be presented followed by further description of particular systems.

The lecturers come from several of the participating AGARD countries, specifically France, Germany, Italy, the
United Kingdom and the United States. There are seven lectures followed by a round table discussion at the end of
the second day.



jon—-Based and Machine-Oriented Si

af Processin

within Speech Understanding Systems

Helmut Mangold
Daimler-Benz, Research Center Ulm
Institute for Information Technology
7900 Ulm, Germany

Summary

Automatic recognition and understanding of
speech signals™ is one of the key issues of
advanced information technology. Language
and speech are the relevant topics of cog-
nition_ and therefore to understand spoken
and written !angua?e offers basic capapbili-
ties for universal processing of informa-
tion.

is man’s generic communication me-
dium. Information transfer is widely done
by speech communication_ between humans.
There is a basic commonality of understan-
ding each other’s spoken messages._ This
common understanding must be the basic of
machine understanding toco.

Speech

Automatic recognition and understanding of
spoken Ianﬁga e is done in a multistep ap-
proach, which_ starts with the 1low level
signal processing. The output of the recog-
nifion step is word recognition. Many pos-
sible words, the so called word hypotheses
are the basis for intensive linguistic pro-
cessing.

Lin?uistic processing cares_for syntactic
analysis and semantic analysis. The_seman-
tic analysis needs again many additional
parameters from spoken language, like_into-
nation and prosody to derive the meaning of
a spoken phrase.

All the processing of natural speech is
narrowly related to human information pro-
cessing. It is therefore possible to learn
much from our human processing or from mo-
dels of this processing. On the other side
statistical methods of information proces-
sing offer rather systematic and in many
cases_advanced methods _for handling much_of
the information contained in sgeech using
purely statistic aﬁproaches. To _estimate
the advantages of the more statistical ap?—
roaches or more rule based approaches will
be a great challep?e for future research.
Human perception will alwax§ be a guide how
to process speech with machines.

1. speech - Mn"s  Tool for communication

Speech as man®s generic communication med-
ium is fully adapted to the capabilities of
the human individual. speech production 1s
based on the specific method of sound gene-
ration which is possible using the articu-
latory organs and, on the other side, per-
ception is based on very special methods to
extract all _the relevant_information from
the speech signal, which is encoded through
the time- and frequency characteristics of
this signal.

But this level of signal processing is only
a _very small part of the human processes
which “are involved if we produce and per-
ceive speech. It has become rather common
to call the speech signal as spoken langua-

ge. This terminology shows clearer that
many scientific areas are contributing to
these processes and have therefore io be
addressed if we want to compare _human
speech perception and machine perception of
spoken language. It is quite clear that due
to the_inherent adaﬂtatlon between speech
production and speech perception a good un-
derstanding of the generative processes ne-
cessa to produce speech signals may be
helpful for designing and understanding all
the methods which are relevant for machine
perception of speech, and that of course a
deep understanding of human speech percep-
tion may be helpful too.

This multilevel process of speech percep-
tion and understanding ranges from low-
level _signal processing UR to high level
cognitive processes. speech signals are our
natural tool for human information transfer
and, far beyond this, speech and language
are the basis of nearly all our cognitive
processes. We shall therefore have to care
about signal processing,_ parameter extrac-
tion. phonetic coding, linguistic Structur-
ing and analyzing, and finally about all
the cognitive processes which _we include
in realizing natural language dialogues.

2. The speech Signal

2.1 Signal Characteristics Based on the Na-
tural Production Process

In a communication theoretic based view of
the speech signal we may interpret it as a
complex coded signal which includes diffe-
rent sorts of information that are coded_in
very specific manners. This may be easil

understood if we look at the natural speec

production process.

i o frequency
articulation filtering

Hl excitation spectrum

frequency

7~ vocal cords excitation

Fig.2.1: Princigje of natural speech
production (voiced sounds).

From Fi%:z-].we may see that the natural
articulation systen first produces an exci-
tation signal resulting from the larynx for
voiced sounds like vowels, and a noiSe sig-
nal for_unvoiced sounds like the fricati-
ves. This excitation signal covers a broad
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spectral range. It consists of a collection
of many harmonic frequencies in the case of
the voiced excitation_signal and of a noise
spectrum in the unvoiced case. The basic
pitch frequency distinguishes male and fe-
male voices and glyes a good deal of the
information which is relevant for natural
intonation and for the prosodic part of the
speech signal. For male voices this basic
frequency_is centered at around 100 rz, for
female voices it is about twice this value
at around 200 Hz.

The actual_sound_information is modulated
on this basic excitation spectrum. The en-
velope of the speech spectrum carries
through its spectral resonance characteri-
stics, the formants, the information about
different sounds. So. _we have mainly _two
parts in every speech signal; the excita-
tion, which “carries much of the prosodic
information and the short term spectral en-

velope, which is representing the phonemic

quality.

This short term spectral envelope is per-
ar-

manently changed through the process of ar
ticulation. This has led to a vivid opti-
cal representation of speech signals as
three-dimensional spectrograms, called so-
nagrams. _Such a sonagram of the German word
"lesen" 1S shown in Fig.2.2.

fE?Hds ﬁ%ﬁﬁﬁ%kﬁgaﬁg
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-
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Fig.2.2: sonagram of the German word "le-
sen""with indication of the se-

cond formant.

The horizontal axis represents the time
scale. the vertical axis the frequency
scale._The energy of the different frequen-
cies 1is represented through the darkness.
The darkest areas represent the formants,
which are the resonances of the vocal tract
and which represent different sounds. This
means that the most important information
is represented by these formants.

The course of the second formant is_manual-
Iﬁ_drawn into the sonagram. The position of
this formant is continuously changing_as
the sounds change during the articulation.
Such a sonagram seems to be rather easily
readable and some attemps have been under-
taken to use spectrograms as another repre-
sentation of speech, e.g. for deaf people,
but in practice spectrogram reading ,needs
extensive_ training_and even then it _is
not possible to do it _in realtime. This
means finally that optical _perception of
relevant speech information is_ practically
not possible. But our natural speech per-

ana-

ception system is based on spectral
ana-

lysis and higher level parametrical
lysis of a similar manner.

2.2 Natural Decodina of Speech Signal
Information

The decoding of the information contained
in the speech signal is done in a multile-
vel process. The primary processing is done
within the different parts of our external
and internal ear. The sensitivity range
of the ear is extremely high. Its lower Ii-
mit is given by the noise produced throu?h
hydrogen molecules in the air. The whole
range reaches up to 120 de. This huge range
is necessary to guaragtee that the ear, can
perceive every ~sound or noise which is
practically possible.

Fig.2.3 gives a schematic overview about
the primary _organ. The middle =ar is main-
ly responsible for a resistance adapta-
tion of the resistance_of the air to_ the
resistance_ of the liquid within the  Inner
ear. This inner part of the ear consists of
a spiral tube which is separated into two
parts through the basilar membrane. This
carries around tenthousand sensor:; to mea-
sure the movement of this membrane. The
membrane itself realizes a sort of mechani-
cal short-time frequency analysis, produ-
cing nothing else than"a spectral pattern
like that in Fig.2.2.

Fig.2.3: Schematic drawing of the ,structure
of the iInner ear with the cochlear
tube stretched from spiral form to
a linear form for clearness.

The endings of the auditory nerve are di-
rectly processing the signal from the basi-
lar sensors. The auditory nerves do not
only transmit the pulse "frequency coded
signal, but_through intensive interaction
of neighbouring nerves many enhancements of
the _spectral resolution_ are realized. In
physics we have the basic principle that
the product of spectral and time resolution
in spectral analysis is constant. This
means that always a better spectral. resolu-
tion requires worse time resolution and
vice versa. The mechanical spectral_analy-
zer of the basilar membrane underlies of
course the same rules. Only the very speci-
fic processing afterwards cares for a much
better spectral and time resolution than
might be possible through the mechanical
analysis alone.



We have already seen that the dynamic range
of our hearing covers around 120 4B in sig-
nal energy._ This loudness sensitivity 1s
nearly logarithmic, i.s. already the hear-
ing cells on the basilar membrane have such
an inherent logarithmic sensitivity. The
spectral sensitivity is not uniform over
the whole hearing range from around. 16 Hz
up to near to 20 kHz. Fig.2.4 shows_ the
frequency dependent amplitude sensitivity
of the éar which peaks in the 1 to 2 kHz
range._Especially in this frequency range
there is normally the important second for-
mant of the different sounds, which is re-
sponsible for distinguishing many_ sounds
from each other. Already a long time ago
psychoacoustic experiments have shown that
the transmission of the frequency range
between around 800 Hz and 2 kBz is suffici-
ent for getting a certain basic in-
telligibility (zwi67).

20 [

SkHz 10 20

—

Fig.2.4: Frequency dependent amplitude
sensitivity of human hearing.

A very important aspect of differentiating
one spectral pattern from another one is
frequency selectivity. This is usually mea-
sured by psychoacoustic experiments asking
test [listeners to detect small changes in
the frequency of test tones. This leads to
a perceptual frequency scale, which iIs con-
stant over the first few hundred Hertz and
which then _decreases with increasing fre-
quency. _This degradation of the _frequency
resolution at higher frequencies is combi-
ned with improvement on temporal resolution
at these hlgher frequencies. This fact 1is
well adapted to the characteristics of the
speech sounds themselves. The higher for-
mants have usually higher bandwidth and it
is therefore not necessary to analyse their
mid frequencies as precise as for the lower
formants. On the other side for sounds
where the spectral energy is_ concentrated
on higher freguencies like voiceless plosi-
ves, spectral changes are happening much
faster than .g. for vowels. Voiced sounds
require theref%re good spectral resolution,
thle voiceless sounds need good time reso-
ution.

Combined with this varying spectral resolu-
tion is _the spectral discrimination of
neighbouring frequencies. 1t is highly am-
plitude dependent. This means that a = fre-
uency _near to another one cannot be

iscriminated from the first if it does not
reach a certain amplitude. Our hearing ca-
pabilities have a sort of band structure,
where all frequencies which are near to
each other are weighted with a bandfilter

1-3

characteristic defined through the maximal
frequency energg within this band. Fig.2.5
shows these bandfilter characteristics
which are based on the one side on the non-
linear frequency sensitivity along the mel-
scale and on thé other_side on the spectral
masking which is done in the low level ner-

vous processing (pies5).

A
bl

| /'0
] llm.ummm\

Fig.2.5: Frequency characteristic of
18 channels of a mel-scale based
filter system as used for auto-
matic speech recognition (similar
to the filterin? in the human
auditory system).

W
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The whole frequency scale is covered by 24
such frequency bands. Their bandwidths are
highly different depending on the mel-
scale. As we can see from the figure, where
the frequency scale is logarithmic, such
frequency masking works mainly upwards to
higher frequencies.

Besides this spectral masking, we can also
experience a time-dependent temporal_ mask-
ing. Such forward or backward masking is
produced by stronger components coming be-

fore or after a weaker component.
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1. cochlear nerve 3. trapezoid body
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2. nucleus dorsalis 4. colliculus inferioris

Fig.2.6: Enhancement of spectral selectivi-
ty on different positions of the
auditory nerve apart from the
basilar membrane.
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The general idea of all these effects is to
strengthen_ the _strong components in the
signal. This again is necessary to care for
a good robustness of our human” speech reco-
nition process. Measurements in the lower
evel auditory nerves have shown this_ too,
where the Tormants are systematically
enhanced in the run of the nerve from thé
auditory cells. Fig.2.6 shows some spectral
characteristics measured on auditory nerves
on_different positions from the audltorY
cells.  the top left image_shows spectra
sensitivity of the cochlea itself for some
few tones. The second image and the further
images stem from nerves in the lower level
of the brain, measured within the acoustic

nerve. We can _very clearly see, that the
spectral sensitivity Is more and more en-
hanced.

2.3 Robustness of the pecoding Process

Of course all the_speech decoding done in
the human perception process is not _ongy
based on the signal processing described.
It includes much higher level processing,
but many of the processing steps are alrsa-
dy responsible Tor the high level of ro-
bustness which 1S possible in the human de-
coding process. We shall later see, that
this robustness is by far better than the
robustness we can today realize with ma-
chine recognition of speech.

Robustness concerns many aspects of speech
perception, like

* wide dynamic range,

* tolerance against background noise,

* recognition of a large variety of diffe-
rent voices, dialects etc.,

* tolerance against spectral changes,

* high recognition rate even with badly
articulated speech signals,

* resistance against nonlinear distortion.

Fi%-2-7 gives an example for such a para-
meter dependency. Here the_intelligibility
for meaningless syllables is shown depen-
ding from the boarder frequency of a high-
pass and a lowpass filter for different
speech levels. We can see_that_even with
very small bandwidth there is still a good
intelligibility of such meaningless syllab-
les possible.

% 1 |
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Y

level 28 A=0254,
27 oy &
‘ ] 3 17
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Fig-2.7: Intelligibility of meaningless
syllables (logatomes) depending
on the boarder frequency_of a
lowpass and a highpass Tilter.

Ve interesting again is the fact that
both curves have their crossover at around
2 kHz, the Tfrequency where already iIn

Fig.2.4 we have seen the highest auditory
sensitivity.

3. Machine rRecognition of Speech - Pattern
Recognition

3.1 Structure of Word Rscoanition

Most today available speech recognizers are
word recognizers. which are based on pat-
tern rgcognltlon of spectral patterns like
that in Fig.2.2. _The basic structure of
such a word recognizer is shown in Fig-3.1.

syntactic and
linguistic
processing

patlern
matching

basic —J_L

i

|

|

’ :
adoptation L[ reference
memory

recognition
result

definition
D* of speech  [—

spectrum

word P pre-
segmenlation praocessing

Fig.3.1: Basic structure of a word recogni-
tion system.

First the speech spectrum is continuously
measured. Besides the static spectrum dy-
namic parameters like changes in the spec-
trum are measured too. n the last few
years _the usage of a mel-spectrum based
analysis has proven to deliver optimal re-
cognition results. Besides this approach
there are still adaptive spectral filtering
procedures used, where the spectral enve-
lope is approximated through least squares
approximation. This technique which is
called linear predictive coding LeC gives a
rather good approximation too (Ma76). Like
the perception based approach_this offers
the possibility to make a detailed analysis
of ‘the spectral characteristics ina Tle-
xible manner. Fig.3.2 shows such an LPC-
based spectral approximation for different
deqrees of the approximating filter.

I R

° —f ¢ paz »F
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\-_,/\ 7 \___/\../\
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Fig.-3.2: LPC-Analysis of a speech spectrum
using diTferent degrees of filte-
ring. upper left: speech spectrum



Using such a method for spectral estimation

we get a spectral pattern for further pro-
cessing like that in Fig.3.3, where we have
shown, ,a spectral pattern for the spoken
word They". Here we can clearly see, how
the changing formants of the speech spec-
trum are modelled.

time A—}/\,\
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» |
-
100-.-./\}]\/\
:/\_/\/\/\ e
20+ th
10 r i kHz
2 4
— frequency

Fig.3.3: LPC-Spectrum of the word "They"

3.2 The Pattern Recoanition Process

After the primary parameter definition some
normalization stages are usually important
for temporal and energy _normalization.
Through this processing it is possible to
widen the dynamic range of the system. But
it s of course possible too to include
here some normalization which goes far bey-
ond such rather simple procedures. This
concerns mainly the normalization of dif-
ferent speakers®™ voices._ to get a true
speaker independent recognition.

Such a speaker adaptation is first done for
the _spectral parameters which define the
specific vqoice sound of different speakers.
One approximation may be used to adapt fe-
male and male voices to each other. But it
i1s not yet possible to adapt all the dyna-
mic variations_ of _different speakers to
each other. This will still be a topic for
basic research. some primitive approxima-
tions to this problem are already included
in some existing word recognizers using a
linear or a nonlinear time normalization of
the varying speed of articulation.

Another important aspect of Breprocessing
is the enhancement of noise robustness. Due
to many levels of perception our human per-
ception of speech is highly robust against
environmental noise. Fi1g.3.4 _compares the
capabilities of human perception and todays
existing speech recognizers. We can see
that existing word recognizers are still at
least 10 de away from the SNR which people
can tolerate.

recognition rate
intelligibility
100
VA
80

60|

L@

2 6 -3 L3 a6 9 42 450D

signal-to-noise-ratio

Fig.3.4: Human and machine recognition of
speech under noisy conditions.

Especially the recognition of sentences
uses a high degree of redundancy, while the
good results of human digit "recognition
comes from the few numbers of possibilities
to be distinguished.

The classification stage itself_ makes a
more or less sophisticated comparison of a
sort of reference pattern and the new pat-
tern to _be classified. = The reference
pattern is usually defined during the
Ttraining process. For this training a user
or many users have to utter every word to
be recognized or at least some representa-
tive words for the vocabulary to be_ recog-
nized. The system then stores_ this_ word
patterns or special representations of the
:nformation contained within these pat-
erns.

As shown in Fig.3.5 every classification
makes a measurement of distances between a
reference pattern and the new pattern.

pattern o be
recognized

reference pattern

energy

— time

Fig.3.5: Pattern classfication through
distance measurement.

Often the distance measurement includes
some _normalization procedures like in _the
dynamic time warp approach. The principle
of this approach is shown in Fig.3.6.
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optimal distance
path

time —»

reference pattern

pattern to be
recognized

frequency — =

—s time

sI: ba n

Fig.3.6: g{wnciple of dynamic time warping

DTW makes first a local comparison of all
short time spectra (10 ms-spectra) of the
reference pattern and the new pattern to be
recognized. In a second_step the best path
through the resulting distance matrix 1is
computed. This optimal distance path then
is a measure on the double time scale how
both spectral patterns may be optimally
adapted to each_other throu?h dynamic adap-
tation of the time scales. ITf we may assume
that the spectral deviations of both pat-
terns are to be ignored - which 1is only
allowed for speaker dependent _recognition_-
then the deviation from the linear path is
a good measure of similarity between both
patterns

Word recognizers based on this principle
have _brought the first breakthrough_ for
practical applicability of word recognition
due to their _good recognition_results in
speaker adaptive word recognition (cla%2).

Another method of whole word based pattern
recognition is done with artificial neural
networks. Here again some_assumptions about
the physiological perception of speech are
the basis for the technical apﬁroach- A
neuron as the basic_element of physiologi-
cal ﬁroce33|ng consists of the cell corpus
which has many dendrites arising from :it.
These dendrites are ending on other cells
making contacts on their surface, the syn-
apses. So they form a network for exchange
of information. Fig.3.7 shows a schema of a
physiological neuron and its electrical e-
quivalent, the neural network basic element.

Through combination of many such neurons we
can build a neural network which is able to

clectrical peuron
(bazic element)

dendrites

%
x‘%\
O

i it
mtyy/
XN-t

N-1
¥y = !(z w|x|-9)
1=0

output

Fig.3.7: Schematic draw of a neuron and its
electrical model.

make_distance measurements between two-di-
mensional patterns. A schematic draw of
such a network is shown in Fig.3.8. There
are at least three signal layers necessary.

input layer

' weights hidden layex

zpectral eurput layer

pattern
P

a, clags 1

clasg 3

<o
4 :. . \
O

Fig.3.8: schematic drawing of a neural net-
work .

The Tirst_one is the input layer where we
are |nputt|ng the result of the preproces-
sing. ¢.g. the spectral pattern of the word
to be recognized. Fol!0W|ng_|s the network
of artificial neurons including the weight-
ing factors w, from Fig.3.7. The hidden
layer_ combines the information from the
training procedure. This means that we can
interpret its function as a sort of refer-
ence pattern. The output layer_finally com-
bines the_ input from the input ° layer
weighted with the information from the hid-
den layer to a measure of class membership.
The darkness of the neurons within the lay-
ers gives First the spectral energy and fi-
nally the membership._ Neural networks are
nothing else than a distance measure Scheme
which usually includes some_nonlinearity in
the behaviour of the weighting factors.” It
is of course possible to include more than
one_ hidden layer. But then the amount of
training samples becomes very 1large. The
advance_ of_neural network speech recogni-
zers lies in the fact that_this -technique
concentrates on the discriminative aspects
of the different spectral parameters.




Through intensive training the network is
therefore able to learn even rather small
distances _between different word classes,
e.g, to_differentiate between phonetically
rather similar words. The main _drawback is
still that the amount of training to make
such differentiations is often not toler-
able and so presently there is not yet, any
specific advantage of word recognizers
based on neural networks compared to con-
ventional statistic methods.

3.3 capabilities and Limitations of Whole-
Word Recognizers

The recognizers thus Tar described are
based on purely whole word patterns. There
is no knowledge included about the . struc-
ture of speech or words, which consist of
single sounds to be articulated in concate-
nation. The recognition process takes the
word as the basic element with all the pro-
blems which are arising from the fact that
¢.g. normalization of rhythmic differences
in° the articulation of a word §s_ not so
easy. DTW_ has found a nice technique for
this, but it has on the other side problems
with adaptation of spectral changes for
speaker independent or speaker adaptive re-
cognition.

Another problem is the recognition of con-

nected words with the methods mentioned.

Here usually some parts of the words are

coarticulated, such that the single words

are _no more articulated in the same manner

%5 if they would have been spoken in isola-
ion.

A more detailed adaptation to the structure
of the language itself would_therefore of-
fer more possibilities to widen the scope
of speech recognition to better word recog-
nizers and on the other side to recognition
of continuous speech and thus to real
speech understanding systems.

4.1 Sounds and Phonemes

Historically the first approaches to auto-
matic_ speech recognition started with at-
tempting to recognize single sounds, or
still more easier to recognize single lst-
ters to Make an automatic typewriter. But
all these attempts have not been very suc-
cessful and so the practical solution was
to make whole word pattern recognition for
command applications. This is mainly due to
the fact, that the word is the smallest
%nlt which can easily be produced in 1so-
ation.

on the other side the smallest unit_pre-
sently used in spectral pattern matching is
the 10 ms-spectrum. The usual speaking rate
of human speaking is around 20 soundS per
second for even a fast speaker. If the
spectrum_of a word is calculated every 10ms
then it is possible to describe every sound
with around 5 spectral patterns. So, also
rather short sounds like plosive bursts are
at least described by one spectrum. This
10ms unit is a rather artificial unit which
is only rougply oriented at the structure
of the speech signal.

Much _better units are phonologically based
on distinctive parts of the continuous sig-
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nal. such units _should fulfil at least the
following criteria:
* - -
They should have phonological meaning.
* They should be eaS|I¥ separable out of
the continuous speech signal. )
* They should not change too much _if they
are coarticulated with other units.
Coarticulation of such units should not
be possible too much.

*

We can at least identify two such units,
the speech sound with its abstract repre-
sentation the phoneme and the syllable,
which is mainl¥ ? unit used in wr%tten re-
presentation of language but which has si-
multaneously an important aspect in spoken
language.

The advantage of the phoneme as basic unit
is the limited number of them. The usual
large languages can be described by around
40 phonemes. But the number of syllables is
between 100 and 1000 times larger. from
which many are rather seldom. The phoneme
seems to be a_rather recommendable basis
for a description of the language. A still
pertinent problem is of course that there
is no direct and reversible transform be-
tween phonemes in a word, 1its sound struc-
ture and the typing of the word. There are
rule based_systems to do this, but these
sometimes miss the correct spelling. To use
lexica needs on the other side extensive
human work and never will be complete.

The question for the selection of the best
units can perhaps be answered if we ask for
our human perception. Here the answer 1is
rather_simple: It is surely not onlﬁ_a pure
phonemic_decoding. We experience this Tact
clearly if we want to recognize meaningless
words.  Even to recognize such meaningless
syllables is complicated. On the other side
Iong_ experience from optical spectrogram
reading has_shown that trained_ users are
able to attain a correct phonetic decoding
of between 80 and 90 percent.

4.2 SPeech Structure and pPerception Models

our daily experience shows rather clearly
that our speech perceﬁtlon process includes
a huge amount of knowledge. The basic
guestion will be if, and how this knowledge
is practically combined with the existing
structure of the speech signal itself. |Is
there =.¢g. a substantial amount of _ phono-
logic knowledge directly influencing the
perception on a sound or word level?

Cole et.al. have described a basic collec-
tion of rules for such a perception model.
These are(Co80):

* words are recognized through the interac-
tion of _sound and knowled%e=

* Speech is processed sequentially word by
word. Each word"s [eco?nition locates the
onset of _the immediately following word
and orovides svntactic and semantic con-
straints to recognize the immediately
following word. )

* Words are accessed from the sounds which
begin them. ) )

*x A word_is recognized when the sequential
analysis of its acoustic structure elimi-
nates all candidates but one.

truc-
role.

In this terminclogy the phonologic
‘¢ OF he speech p.ays an importa
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Even if the definition does not include any
intermediate structures like syllables,
these may be included in the recognition of
word structures. The composition of words
from syllables and the relevance of syl-
lable perception is shown very clearly in
perception experiments. We have no problem
to reconstruct missing sounds in a word,
but we have much more problems to recon-
struct missing S¥I!ables. Syllables may al-
ready have a certain_semantic role, it we
look™ at prefixes which may change totally
the semantics of a word.

The stratificationmodel of speech percep-
tion and speech structure in Fig-4.1 shows
this fact. The linear structure of the pho-
nemic chain is changed into a netstructure
at the higher levels (wWing3).

Semotactics

Meaning

Conceptual

Realization rules Lexotaclics

é sememes

Semolexemic

Realization rules Morphotactics

Lexomorphemic
Realization rules Phonotactics
Morphophenemic
Realization ru'es

Phonic
Reatizalion rules

Sound

Fig.4.1:The stratification model of speech
(from wing3) .

5. The Role of Words and Sentences

5.1 The Word as a semantic unit

The bottom-up approach of speech perception
which has been reflected in the existing
work in automatic speech understanding has
stressed the _importance of all these “small
units, starting from a 10 ms feature vector
over the phoneme, syllable up to the word.
Other investigators. motivated chiefly by
developments In ﬁeneratlve linguistics, ha-
ve proposed much larger units for perceﬁ—
tion like clauses or sentenges(pis75). The
word plays here an intermediate role, as we
already may see in the stratificational mo-
del from Fig. 4.1.

It is of course in the meantime clear that
there is now sufficient psychological_ evi-
dence that all these Ia¥ers of analysis are
available simultaneously. Many models of
brain functions favour a layered model for
the processes done in the "brain, and of
course these layers are permanently active
during the process of perception.. It has
become clear from brain physiological
studies that only if all layers are activ

a perception of speech is possible. O

course the problem is still under discus-

sion how far speech based semantic _proces-
ses need speech perception as_a basic. . Fi-
nally this means that cognitive processes
are ultimately based on a language and
speech processing procedure.

The word fulfills many of these require-
ments. It has a semantic meaning. As we
know from some conversations, especially in
foreign languages it is widely possible to
arrange a fully word based conversation,
leaving out all the rest of the sentence.

5_2 svntactic and Semantic structures

Words _ presented in a sentence ccantext are
more intelligible than presented in isola-
tion. The same is true if we present words
in_a_nonsense environment. Then the recog-
gnition of the word may be worsened. Some
traditional assumptions about the contri-
bution of syntax and semantics in the per-
ception_process underestimated the rele-
vance of the cooperation of all the levels.
This view gave them only the role to
restrict the multitude of possible alterna-
tives. The process of speech perception was
in this model based on a strict serial or-
ganization, where the phonemic characteris-
tics of the speech signal are more or less
directly extracted from the acoustic pro-
perties of the signal.

Phonetic experiments in transcription_of
Sﬁokeg language have shown in the meantime,
that it is nearly impossible_to decode the
correct_phonemic” representation of an utte-
rance without higher level lexical and syn-
tactical information.

Finally it is important not to forget the
prosodic information which exists on a ra-
ther 1low word level, but which is mostly
relevant on the sentence or phraszes level.
Only in the last few years the _importance
of prosody for human perception i:;_investi-
gated deeper and this understanding then
offers new chances for machine perception
of speech.

5.3 spoken Language and Information
Processing

Communication_ and _information processing
are two very _intensively connected topics.
There is no information processing possible
without any communication and we know that
this communication process does not only
cover the internal process of communication
within the brain of_a human_but that the
interpersonal communication is more or less
the basic force for every advance_in cogni-
tion. Spoken language communication is one
of our basic communication media, it is at
least_the most spontaneous medium. Compared
to written communication it _offers so many
additional parameters like intonation, pro-
sody, stress to underline certain semantic
facts and to give a much wider_scope of in-
formation than it ever is possible through
written language.

There is some ps&chophysical evidence that
written and spoken_language use the_same
phonetic code which “is derived_ in a
similar way from written or s?oken informa-
tion. This phonetic code could then be the
basis for most_of our language based infor-
mation processing steps.




6. Machine Speech Understanding

Und

cCllras

svstems

standin

After these views into the structure of our
human information processing, especially
related to speech perception, it will now
be interesting to look back again at the
state of machine perception of speech. If
we try to make a true analogy to our models
of_ human speech perception we can have _in
principle two apgroaches, the strict serial
system and the blackboard approach where
every part of ﬁroce35|ng can permanently
access to all the steps. Fig-6.1 shows the
schematic structure of a serial speech un-
derstanding system.

knowledge

sermantics

Sentence {Language)

texicon
syntax syntax
rules |
_—— 71—“"' — 7 Word — —“""——'g“—"‘
template lexicon template
matching rules matching
j Sound \
signal lexicon signal \
processing § phonological rules synthesis

\ Speech /

Fig.6.1: Steps _in a serial speech under-
standing and dialog system.

Such a system includes not only the under-
standing stage up to the analysis of seman-
tics but it must have additionally the re-
verse information channel for outputting of
the answer.

All the steps_ which have to be treated
start and end with the acoustic signal and
they end with the semantic representation
of " the content of the spoken signal. The
first steps in the analysis part are rather
similar to a word recognizer, as was alrea-
dy described. Such speech understanding
systems usually have to understand conti-
nuous speech and _therefore it is never very
helpful to_consider the words as isolated
events but it will be much better to repre-
sent every_word by a collection of much
smaller units, usually the phonemes. We
shall see in the following chapter, which
methods are today existing to recognize
words on the basis of phonemes and how it
is possible to care for different alterna-
tives of ever¥ word and simultaneously _to
provide the following linguistic processing
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with a sufficient number of possible words
for the sentence to be analyzed.

After the _signal cessing the _linguis-
tfg processingg?s fgf?omﬁng %h}ch is 8ased
mainly on syntactic and semantic ana-
lysis. OT _course the top level proceSS|ng
is depending on all the pragmatics_ base

kngwledge, which controls the _dialogue
and the internal knowledge processing. he
output channel is doing rather_ similar
things in a reverse manner, This means
that from semantic concepts via syntactic
design a text is created which then 1is

transferred into. an acoustic signal
through_  phonologic steps and signal
synthesis.

This [linear approach_to speech understan-

ding gives good insight into _the_ single
steps and offers good possibilities Tfor
control of the different processing levels.
A totally different approach is the lack-
board based approach, where basically a si-
multaneous acces to _all levels of " signal
processing 1is possible, from low level
acoustic signals up to semantic _and
pragmatic processing. _This approach offers
the principal capability to make easy re-
quests between all _these domains, but the
main problem_is still, to decide, how all
these domains are to be coordinated,
Fig.6.2 glves a rough schema of such a
blackboard based approach.
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Fig-6.2: Blackboard approach for speech
understanding.

The 1important part in every blackboard

BBRAoaSE Aot AatRBasT S Fo Rt o Fifer Mt
parts are represented. It must of course
include a measure for the vagueness of the
special results which again could be the
basis for interactions between the domains.

OF course the basic question is and will
be, which of both concepts offers the best
and .on a long term basis the most possibi-
lities for inclusion of much phonologic and
linguistic knowledge and has ~_simultaneous-
ly %oog capabilities for getting enough in-
sight into the behaviour of the models. AS
we have_already seen, psychoacoustics and
psycholinguistics offer some 1ideas about
this question. but it seems that our human
information processing scheme does some-
thing serially and some other things are
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done in parallel. At least the higher le-
vels seem to have much parallelism using a
sort of blackboard approach, while the ve-
ry _low level parameter extraction is done
serially. Technical solutions of course
Brefer_systems where most of the steps can

e designed separately. This is the case in
both examples, but the interaction In the
serial system is much_simpler. Therefore in

most technically realized cases the =serial
approach 1is used and up to now 1s surely
more advanced, even 1if_in a long term
sight this approach will be replaced

through more and more parallelism.

6.2 _word Recoanition in speech Under-
standina systems
As we have already seen the most Tlexible
way _ to describe continuous speech is on_ a
basis of the phonemes or the sounds which
describe the realization of the phonemes.
Every word to be recognized can be modelled

using such a phoneme chain. The single pho-
neme again can be modelled on the basis of
spectral patterns or special features of
such spectral patterns, like positions of
formants, wvoiced/unvoiced characteristics
or spectral energy distribution. such a
systematic model based aﬁproach is based on
the theory of Markov Models, which had
first been used to describe the statistical
characteristics of  written language.
Fig.6.3 shows_the results of a Markov Model
for German written text, where statistical
relations up to the degree 3 are used. The
statistical degree r=O uses only the dis-
tribution_ of letters and blanks in German
texts, while £=3 includes the statistics_of
the distributions of the three following
letters.

7 ==0: aiobninstarsfneonlpiitdregedcoax+ds*exdbieastin

dnurlarslssomntkeusssvdleeoieeix. ..
erxagepteprieiningeit«gerelensrexunk=vesrmte
nzerurboma ...

r—=1:

: billuntenszugen+diexhin*sesschrwelswars gen-
nicheleblantsdiertunderstims ...
eistrdes«nich=intden+plassenxkann=tragenswa
zufahrs ...

r=1.

Fig.6.3: Markov Chains based on statistics
of German texts.

Already with r=2 there are some short mea-
ningful words received and this becomes
better and better with rising r.

On the basis of Markov chains for _spectral
patterns we then model in a similar way

the signal characteristics of spoken lan-
uage up to the word level. OF course, as
arkov _ himself has _ done,_  such _

statistical modelling ist still possible
beyond the word level. 1t is principally
possible to model ~whole sentences, even
the characteristics. of texts can be

included in a statistical model.

To recognize words it is then possible to

use Hidden Markov Models HMM for every word
and for every phoneme to be recognized,
which can be trained through spoken speech
and thus become more and more representa-
tive for the word to be recognized itself.

The basic structure which can be described
Ey g 4Hldden Markov Model 1s shown in
19.6.4.

state i

transition ij

P bt P P b

@ @ g

Fig.6.4:Basic structure of a Hidden Markov
Model .

There are states and transitions, both with
robabilities for them. These states sn can
e Tollowed by another state but also by

themselves. e structure of the model de-

fines, which transitions are principally
possible. Of_course the most general model
offers possibilities for every transition,
but such models are practically not calcu-
lable due to restrictions in the statisti-
cal representation_in a _limited training
material. So. experience is requested about
the best structure for such models. Every

state of a word model is again based on a

smaller sound model, which usually has at

least three states which model the onset,
the stationary part and the final part of
such a sound. "“The statistical model has to

include not only durational models for eve-
rg state but it must also have information
about the probability of a selected spec-
tral pattern_being in the position of any
state. This Is necessary because the spec-
tral variations in the articulation of dif-
ferent words are rather high. This_ can be
seen in formant maps, where the position of
the first two formants for the vowels have
E@en analyzed. Such a map 1is shown 1n
ig.6.5.

If we look at such a plot, we can see, that
there is much overlap of the different vo-
wel spectra. This means that it is _not pos-
sible to differentiate them_ clearly. This
becomes much more complex with mores dynamic
sounds, which consist mainly of changing
parameters. Therefore the characteristics
of the different states in the HWM must be
described by their probable distribution

within the set of parameters, =.g._ the
spectrum. It has become usual _to do this on
a soft decision basis, meaning “that the
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Fig.6.5: r2/Fl1-rlot of the Swedish vowels.
(Fan59%)

membership to one parameterset, =.g. in the
Fl/F2-area IS _described by the probability
that a certain vowel has a certain F1/F2-
parameter. OFf course this needs_ immense
statistic work with different voices and
different examples of speech, but finally
this leads to_a chance to characterize the
sounds even in a speaker independent way,
if the statistical distribution of all the
parameters 1s measured over many speakers.

It is highly agtonishin? how we human re-
cognize speech in a widely sBeaker indepen-
dent way. There seems to be not a long

adaptation_procedure necessary to recognize
totally different voices, e.g. during a
conversation with very differnt people.” It
is up_ to the moment not yet_ clear which
sort of spectral and phonologic adaptation
we can make to have a practically unlimited
capability to recognize nearly every spea-
ker. 1t seems obvious that mainly higher
level processes are responsible for such a
capability because there is no signal pro-
cessing known which could do this. Since
many years speech research has looked, ,for
the so _called "distinctive features in
speech. These are parameters which could be
independent of the special speaker and of
the word where a special sound has been
spoken. But there has nothing been found
which fulfils all the expectations. For the
moment therefore the solution is to adapt a
word recognizer in a short training phase
to a new speaker"s voice. This 1s_ done
with a spectral transformation. Fig.6.6
shows the B[lﬂClple of such a transforma-
tion. In a bilateral transformation the pa-
rameters (normally the spectral pattern) of
the new speaker and of a well defined re-
ference speaker_are transformed into a new
parameter area in such a way that the dif-
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ference between both speakers becomes mini-
mal. Through this transformation better re-
sults are possible than through a single
sided transformation of the new speaker In-
to a reference speaker.

nev common
pattern space
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Fig.6.6: Principle of a two-sided trans-
formation of speaker parameters.

IT we look again on our human technique of
adaptation such spectral adaptation is su-
rel¥ of minor Importance, much more impor-
tant seems to be an adaptation to the dyna-
mic articulation.

After all these pattern oriented processing
the word recognizer itself has again _to
identify the spoken word correctly. Using
the Hidden Markov Technique it is again im-
portant to measure distances between the
trained model and the chain of spectral
states of the word to be recognized. Usual-
ly we get many word hypotheses. Especially
in_the case of cgntinuous Sgﬁeca th$se hy-
potheses are defining a network of words

which may all be possible at different time
slots. Fig.6.7 shows the principle.
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fuh—

word 7 word 13

word 17

word 14
ward 2 word9
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word 3

word 15

AT 9,

word 10 word 16

Y

Time

Fig.6.7: Word net as the result of the word
recognition.

In a serial understanding system it will
now be the task of the linguistic proces-
sing to define first the correct word chain
and  in the following stage to_analyze all
the contents of the phrase which had been
spoken.
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6.3 Lansuage Models and Parsers

Similar to the definition of the most pro-
bable word, it is possible again to gefine
the_ most probable chain_ of words using
again statistical analysis of a huge col-
lection of texts, which should be as far as
possible reﬁresentative for the texts to be
analyzed. Then alone statistics may help to
define from the word network the most_ pro-
bable sentence, based on the statistics of
the most probable chain of words. We _call
such a method a language model, even if we

know that every language model is rather
restricted to the texts that had been the
basis for the training of the model. so. if
for example a speech understanding system
should be able to write special letters for
patent counselors, the training material
should come from many such letters.

Such a statistics based approach has the
advantage _that there are no rules and_ it
can be easily_adapted to other applications
if the training material is changed. The
important drawback lies in the fact, that
the language model may fail totally if the
application domain is changed without new
training. In some cases the result of such
a recognizer may be worse than without any
language model’.

Therefore a systematic, rule based
proach is an alternative which often
better results on average texts,
course it may totally fail on syntactic
constructions for which there is no rule
based model foreseen. Especially in the ca-
se of spontaneocus speech understanding
there are often phrases used which are not
following any grammatical rule.

ap-
gives
but of

The approach of transformational grammar
had seemed to offer a rather easy capabili-
to derive very different grammatical
structures from some basic principles.
Fig.6.8gives an example from (wing3).

Ve vp
NP NP /\ NP N4

A Verb A vert  Adj A Aux  Agj A Verb /_\

X salisty Sam  bg easy Sam be eager Sam salisly X

N/
/\/vp

™~
NP /E\\
A A_ux Adj Prt

Verb

Sam s ceagery o satisty

easy

Fig.6.8: Sentences with different deep
structure transformed into the
same surface structure.

The deep structure of a sentence IS related
to the semantic content, while the surface

structure is describing all the syntactic

relations within this sentence. If there is
a sentence with the same deep structure as
another sentence it may be possible that
they have different surface structures and
vice versa. If we start with a syntactic
analysis for the processing of the sentence
we may see very similar surface _structures
for two sentences but the semantic content,
;epresented by the deep structure is dif-
erent.

#ig.6.9 shows a model of linguistic compe-
tence of the adult. This means that the
main language capabilities are in a mature
state and the actual usage 1is dominating
over the acquisition of language capabili-

ties.
Extra-linguistic
factors

Language Pardormance
use mechanisms
comprehension

production

Linguistic Competence T

Semantics Syntax Phanoclogy

3

Language
acquisition
device

Primary
linguistic data

Y

Fig-6-9: Model of the basic human language
capability. From (win83).

This model has three main components, the
central linguistic competence, the language
acquisition device and the performance
mechanism. Linguistic competence 1is the
source of our iIntuitions about_grammati-
cal structure. The language acquisition de-
vice 1is permanently bringing new informa-
tion about deep and surface structures and
is permanently widening the linguistic com-
petence. OF course as already mentioned in
the adult user this is no moré as active as
in the case of a child acquiring most of
the [linguistic competence. The model has
the three main factors. semantics, syntac-
tics and phonology in parallel as we  have
already seen in the blackboard model.

Another rather imPortant relation happens
within this model between the boxes _for
language use and the performance mechanism.
The™ permanent interaction between the
speech production mechanism and the percep-
tion mechanism has been stated many years
ago already in_the Motor Theory of Speech
Perception.” This theory says ~that every
perception process is in parallel connected
to an internal production process_ within
the brain of the human perceiving the
speech signal. All these theories very de-
finitely_ state that there is an intensive
interaction between both sides and that it
is nearly impossible_to perceive speech _if
the internal production_capability is dis-
torted. of course it is clear that this
does not concern the external mechanisms
of speech production.



If we_ look at Fig.6.1 the syntactic
processing stage refers to the word lexicon
which is always the one basis of its analy-
sis. The other _thing are the necessary
rules which identify the relations of words
within a phrase or sentence. We can there-
fore state that the basic elements of a
syntax are:

* a lexicon_of allowed types of words,

* a collection of allowed types of
sentences and o

* a rule system combining both.

with
at two
contents
totally

As an example for
syntactic analysis we can look
different syntax types. But the
of the sentences are in this case

similar.

the problems

Example sentences (1):

“Are there new papers from Maier?"

"Do you have five recently published re-
ports from Mr. Miller?"

"Existed there a new report from the

ministry?”

Equivalent syntactic description:
[number ][date]fpaper][author]

Example sentences (2):

"Has Mr. Maier recentlv written some new
papers?" ) } )

'Has Mr. Miller newly published five new
reports?"

"Has the ministry presently published a
new paper?"

Equivalent syntactic description:
[auxiliary verb){author)ldate)(verb) [num-
var)[paper]

These two small examples may show that
there are very many possible ~descriptions
of the sape fact. 1t is without any large
amount of_effort possible to_create some
thousand different versions of grammar de-
scribing the same content, but there are
the same amount of versions which lead to
misunderstanding.

Within today existin
systems the number o
rather restricted,

speech understanding
sentences allowed is
beln? a basic problem
how this can be permanently adapted to_ the
actual versions of speaking habits. Every
living language is permanently changing its
habits and this means that even the syntac-
tic constructions allowed are changina opPT-
manently. Every syntactic rule system
should " therefore have the caBability to
adapt itself to new speaking habits.

There are mainly two ways to realize adap-
tive grammar systems in understanding, to
include elements of generative grammar or
to do it in a sort of interactive learning
throggh dialogue, which is in principlé
possible within a man-machine system.

6.4 The role of semantics and praamatics

We know from our everyday experience that
we do not only rely on our language know-

ledge if we try to understand the meaning
of sentences_spoken through a human part-
ner, but we include much unconscious know-
ledge. These are elements which we call

world knowledge or more general Eragmatic
knowledge. That is eyerythin%_we now from
the Special application on which we make
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our discussions but far beyond this all the
knowledge from our life. “Therefore often
understanding via a telephone call is less
easier than a direct conversation, where we
can include behaviour of our partners too.

The model of Fia.6.9 covers therefore only
the limited and narrow speech model. It has
for practical reasons to be widened with a
special channel prowviding the non-speech
experience and a knowledge base for all
these non-speech experiences

In the schema of a linear speech understan-
din?_ system of Fig.6.1 this pragmatic and
application oriented processing and data-
base forms the top level processing part of
the whole system. In our human_ processing
this knowledge is surely distributed over
the whole cognitive processes of the brain.

For a [limited technical application of
speech understanding there are some chances
to include such knowledge in a practical
accessible manner. It will then be intermi-
xed with the semantic analysis part.

Semantic anal¥sis may rely on many diffe-
rent aspects of the speech structure. The
most important of them are represented
through the following parameters:

* syntactic structure o
The_ order of words within a phrase
defines widely the _semantic content of
a sentence. The main problem_is that
there are extreme possibilities for am-
biguities which may not be _resolved
through a syntactic analysis alone, but
which need additional knowledge.

* Vocabulary o )

The vocabulary can within technical
systems be restricted to a rather limi-
ted amount of words. If a user is able to
handle such a limited amount of words and
he can express all his 1deas with this
lexicon, than it is possible to define
the semantics of the words used in a ra-
ther consistent way, such that possible
misunderstandings are rather limited.

* Prosody )
This parameter characterizes all the
relevant aspects of extra-linguistic
but speech oriented behaviour of a
human. Examples are intonation. stress
for words or sentences, rhythm of spea-
king, up to hesitations. A detailed
analysis of such parameters is_present-
ly not yet possible in automatic sys-
tems, but there are many scientific
approaches to use much more of these
parameters for semantic analysis.

* Phonology and Articulation
How sounds are spoken and how they
are combined to words characterizes
partly intonation and partly some
special knowledge about the speaker
himself. We can detect from this in-
formation something about things
which are directly relevant on the
background on which the speech to
be understood is articulated. Here
non-speech articulations, like ah"s
and m"s etc. are relevant too.

* Acoustics _ i} ) o
External noise, distortions, limited
bandwidth give us some semantic in-
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formation _about the speech signal and
its location of production and there-
fore _about the speaker®s present si-
tuation.

* Discourse structure i

Evgrﬁ dialogue has a certain structure

which depends on_many factors, like
speaker habit, dialogue content, dial-
logue stress, relevance of content etc.
It is even for human auditors not easy
to assess all these different aspects
from the speech signal alone. For ma-
chine speech understanding it is pre-
sently nearly impossible to rely on
such an_analysis. Here still much re-
search is necessary, which must include
ergonomic aspects as well as _application
oriented and phonologic details.

* Dialogue stile
People are used to adapt themselve under
different conditions to different stiles
of dialogue. This aspect is narrowly re-
lated to the problems of analysis of dis-
course structure. It is more or less the

top level aspect of the dialogue
scenario.
These aspects which should be included in
the semantic analysis task are widely
intermixed with each other such that it is

not so easy to separate them definitely and
to describe their influence under semantic
aspects in a very definite manner. Additio-
nally some parameters are often only occa-
sionally _changed and give some unconscious
information. but often do not reflect the
conscious intention of the speaker. Often
they reflect the special habits any special
sgeaker has. and so they characterize more
the speaker and not so much the semantics
of the speech itself.

Tﬂe basic tasks of semantic analysis are
then:

* to create a logic description of the con-
tent of a sentence,

* to describe within this logic description
relations with a world model, and

* describe possible semantic alternatives
as a source for the future dialoge.

Practically this_task needs very _powerful
tools for _describing all the possibilities
and relations efficiently and in such a way
that definite semantics are coming out and
not ambiguity.

Within the examples given for syntactic
analysis we can see where some difficul-
ties are. For example semantic rules may
be:

* Make a list of all words which have
been attributed to [author]. )

* If the word for the date is defined as a
year, then check if this is a meaningful
year)(whlch should be between 1900 an
1992

Within the First example, _
thors 1is not easy to be implemented, be-
cause authors are here not only people with
names but they can be an official agency, a
confederation etc. All these can be_ "the
source of documents, and in the definition
of our syntax they can be authors.

the list of au-

A %Qod_p(osodic analysis will resolve some
ambiguities, but most must be done by in-
clusion of pragmatic_knowledge coming di-
rect from the s?e0|f|c application and
additional usage of world knowledge. Both
can be gained within the understanding sys-
tem through the dialogue.

6.5 Dialooue with Sveech Hnrdesrstanding
Svstems

In our human communication we _do many
clarification by dialogue. Within these
dialogues we learn not only the actual si-
tuation of information processing but the
long term knowledge. That is the knowledge
which we build up during our life and which
we therefore call world knowledge. There
are nice examples for computer-man dia-
logues_ from the First start of artificial
intelligence research and the first

investigation into man-machine dialogue.
These TFirst exam?les have been realized
with the system called £liza at the MIT_ by
Joseph Weizenbaum. It had been realized
already in the sixties, when computers had
become” enough powerful to handle nearly in
realtime such linouistic problems {(We166).
Fig.6.10 gives an example of such a
dialogue.

Men are all alike
IN WHAT WAY

They’re always bugging us about something ¢r other
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, ny boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says i'm depressed much of the time.

I AM SORRY TO HEAR YOU aRE DEPRESSED

I need some help, that much seems certain.

WHAT WOULD 1T MEAN TO YOU IF YOU GOT SOME HELP
Perhaps | could learn to ger along with my mother
TELL ME MORE ABOUT YOUR FaMILY

Fig.6.10: Example of a man-machine dialogue
with Eliza. Written language.

The analysis of meaning was not really rea-
lized 1in Eliza,_ it had been more or  less
only a pattern identification and we feel
spontaneously _that the dialogue is rather
schematic_and it turns around itself. Only
an analysis of the deeB structure may have
overcome all these problems.

But of course_the main_problem was that no
real pragmatics was implemented. So the
dialogue 1tself was senseless and therefore
it looks like a tgplcal ﬁ@rty dialogue,
where ﬂeople who have nothing to say to
each other are speaking and have a nice en-

tertainment.

A real pragmatik and semantic analysis,
which includes knowledge must be based on
extensiye datapases and the correct. inclu-
sion © a?? tﬁe knowqedge stored En these
databases. It is clear that this problem is
again a language analysis problem because
much of the knowledge in these databases

willl again ge stored using language as the
adequate medium.




Speech recognition and
their applications

7.1 Technical state of speech reco

derstanding and

itien

Speech recognition systems today available
are concentrating on very special tasks. In
Fig.7.1 we have shown the available systems
on a three dimensional specification map.

public
information
syslems

Prafessiongl
lorge scate
syslems

main oreq
of today's
syslems

) II

syslems (—I—> "
speaker
ley systems
. dependence
specker mdependent

speaker dependent

N

isolated

I
!
!
I
|
|
|
!
|
f

&

connected &

&
words &

5

continuens

Fig.7.1: Three dimensional representation
of the _major aspects of speech
recognition systems.

The relevant parameters used for this

classification are:

* The system prize, which usually repre-
sents the technical capabilities of a
system, ie. a_good recognizer for iso-
lated words with high recognition rate
is gsqaléy more expensive than one with
a limited recognition rate. )

* The sort of speaking required, isolated
or connected or totally continuous.

* The _degree of speaker dependence, adap-
tation or totally speaker independence.

The main areas of practical systems concern
the recognition of isolated words _for com-
mand applications. These applications often
require speaker independent recognition if
they are _used over the telephone in public
applications. Another class of recognhizers
addresses the problem of connected words.
Speaker independence is here still a prob-
lem because the coarticulation problems of
different speakers are not so easy to be
predicted and modelled. Another aspect,

which could only be described in terms of
prize IS robustness against__background
noise, speaker variations, limited band-

width etc. Finally we have not included _in
the presentation the vocabulary size, which
can vary from very few words (10 to 20) for
limited command input into machines up to
many thousand words, when one wants to rea-
lize a dictation machine.

The recognition rates today possible differ
very high, _dgpendinﬁ on the difficulty of
the recognition task. It can be_ near to
100% for good quality speech, a limited vo-
cabulary with trained speakers, but it can
be 20% worse for untrained speakers in the
same application task and it can even be as

low as some ten percent Tor larger
vocabulary _ under noisy conditions.
Therefore i1t does not make much sense to

give here figures. Every application task
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must be carefully investigated, user beha-
viour must be modelled and the man-machine
dialogue must be designed as carefully.

The application of §Beech understanding_ is
still not yet possible because_ practical
and applicable speech understanding systems
which_can understand continuous speech in-
put with naturally spoken sentences are not
et on the market. There are speech dia-
ogue systems available with word recogni-
tion as input and with a continuous_ speech
output. For most practical applications
such systems fulfill the need of the user,
if the user himself cares for a careful
isolated or connected spoken input.

Fig.7.2 shows schematically how speech in-
put and output may bring'a human and a
system together.

common Speech System
Sense Input Background
1
( Application
Knowledge! Human J
Pragmatic Speech I 1 system
Knowledge output Reaction

L ]

Fig.7.2: Functional relations in speech
controlled systems.

On the one side we find the human opera °T
with its knowledge, based on very differ 1t
sources. On the other side there ishe
application system, which _is contair ﬁ%
different forms of _information and wt C
will show very specific reactions.

we have roughly two different forms of
users, the occasional user and the pro-
fessional user. The occasional user uses

speech communication with machines only for
very specific applications and rather rare-
ly. He 1is not trained to usage of speech
systems and handles them as 1If he would
speak to a human. The professional user on
the_ other side is a daily user and 1is
trained to do the right things,_ 1e. speak
in the manner required and knowing the vo-
cabulary allowed.

we can distinguish two forms of dialogues,
the action dialogue and the information
dialogue.

Fig.7.3 shows the essential elements of an
action dialogue, where the user wants to
get rather _simple precise actrons. The
%oals of this activity are_ rather clear
he user has to command his request an
gets then hopefully the correct system re-
action. here syntactic and pragmatic pro-
cessing steps are mostly included covering

very restricted and specific pragmatic
aspects. Simple examples of such dialogues
are speech based machine control.
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Fig.7.3: Structure of an action dialogue

In Fig.7.4 the basic elements of an infor-
mation dialogue are presented. Here_ the
user does not want to produce direct

actions but he wants to get information _in
a more or less natural dialogue. The
primary goal of such a dialoque is to make
a real information exchange

user speach input / output applications
system

1
t syntachic
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speak recognizer ! pragmalic . data base
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]
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E 3.7.4: Structure of an information
dialogue.

Usually here the level of information ex-
change goes much deeper than in the action
dialogue. Therefore the analysis of meaning
is the additional component ~characterizing
such_a dialogue. Examples of such dialoges
are information systems, e.g. for flight
time tables or for general "public infor-
mation like weather forecast. Such systems
will become more and more important already
in the near future and they will then need
good speech understanding.

8. Future Developments

Machine perception of spoken and written
language is surely one of the most advan-
ced cha!len%es of_information_technology.-
Speech is the basis of most of our cogni-
tive processes. If we can ?et a deeper and
deeper understanding of all the processes
related to speech production and speech
understanding we will get access to much
better understanding of the understanding
process itself. It is clear from the
laborious research in speech understanding
in the past_that we are presently only 1In
the begin-ning to understand speech and
all the structure behind it better and
that there is still a long way to go.

Presently available systems which can be
useful tools for man-machine communication
have in many areas profited from models of
our human speech processing. Such models
will _in the future help to understand all
the important processing steps better. A
system_approach to integrate the different
steps into a more syner?gtlc concept may be
better than the purely linear step-by-step
approach.

Deeper insight into the mechanisms of
speech will help us not only in .systemsfor
easy information processing, it will help
us In speech translation and in cooperative
knowledge processing.

Speech interactive systems will offer us_ a
true human access to machine information
and they will in such a way widen the scope
of practical applications of information
technology in the same way as the basic in-
sight into it.

Literature

(c1a%92)

Class F, Katterfeldt H, Regel P: Methoden
und Algorithmen der Worterkennung, in Man-
gold H: Sprachliche Mensch-Maschine-Kommu-
nikation. Oldenbourg, Munchen 1992.

{CoB80) :

Cole R A, Jakimik J: A Model of Speech Per-
ception, in Perception and Production of
Fluent Speech. Erlbaum. Hillsdale 1980.

(Fan59) :

Fant G: Acoustic _analysis and synthesis of
Speech with application to Swedish.
Ericsson Technics 1,1.(1959)

(Ma76):
Markel J.D, Gray a.#: Linear Prediction of
Speech. Springer, Berlin 1976.

(PieBS5) : _ o
Pieraccini R, Rainieri r, Giordana A, La-
face , Kaltenmaier A, Mangold H:

Algorithms for Speech Data Reduction and
Recognition. ESPRIT 85, Elsevier Science

(Pis75)

Some Stages of Processing in Speech Percep-
tion, in Structure and Process in Speech
Perception. Springer, Berlin, 1975.

(Weibs) :

Weizenbaum J:211Za. CACM $81966), 36-45
(Win83)

Winograd T.: Language as a Cognitive Pro-
cess. Addison-Wesley, 1983. Réading, Mass

(Zwib7) :
Zwicker E, Feldtkeller R: Das Ohr als
Nachrichtenempfanger. Stuttgart 1967




2-1

Sensing and Interpretation of 3D Shape and Motion

Takeo Kanade
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890, USA

Abstract

Robotics is where artificial intelligence meets the physical
world. Computer vision provides robots with the perceptual
capabilities which are especially critical for robots which op-
eratein an unconstrained natural environment.

In computer vision, recovery of 3D shape and motion is the
key to understandingscenes. Thus, the problem has attracted
much of theattention of vision researchersover the last decade,
and many sophisticated algorithms have been developed. |

am going to talk about three recently developed methods for
sensing and interpreting 3D shape and motion:

e The factorization method for image sequence analysis
e Very fast range imaging by analog VVLSI smart chip
e The multi-baselinestereo method.

It is interesting to note that while the performance of these
methodsbasexceededthatof previous methods, the algorithms
themselves are simpler and more straightforward. In addi-
tion to enhanced performance, these algorithms are suitable
for real-time parallel implementation by special hardware or
VLSI.

The following three parts provide detailed descriptions of
these methods.

The Factorization Method for

Shape and Motion Recovery
from Image Streams:

Inferring scene geometry and camera motion from a
stream d images is possible in principle, but is an ill-
conditionedproblem when the objects are distant with re-
spect to their size. We have developed a factorization

"This researchwas performedby Carlo Tomasi and Takeo kanade, and
was supported by the Defense Advanced ResearchProjects Agency (DOD)
and monitored by the Avionics Laboratory, Air Force Wright Aeronautical
Laboratories, Aeronautical Systems Division (AFSC) Wright-Patterson
AFB, Ohio 45433-6543 under Contract F33615-87-C-1499, ARPA Order
No. 4976, Amendment 20. The views and conclusions wnlained in
this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA
or the U.S. government.

method tha: can overcome this difficulty by recovering
shape and motion without computing depth as an inter-
mediate step.

An image stream can be represented by the 2F x P
measurement matrix ofthe image coordinates d P points
tracked through F frames. We show that under ortho-
graphic projection this matrix is d rank 3.

Using this observation, thefactorization method uses the
singular value decomposition technique tofactor the mea-
surement matrix into two matrices which represent object
shape and camera motion respectively. The method can also
handle and obtain afull solutionfrom a partially filled-in
measurement matrix, which occurs whenfeatures appear
and disappear in the image sequence due to occlusions or
trackingfailures.

The method gives accurate results, and does not intro-
duce smoothing in either shape or motion. We demonstrate
this with a series of experiments on laboratory and outdoor
image streams, with and without occlusions.

1 Introduction

The structure from motion problem - recovering scene ge-
ometry and camera motion from a sequence of images -
has attracted much of the attention of the vision commu-
nity over the last decade. Yet it is common knowledge
that existing solutions work well for perfectimages, but are
very sensitive to noise. We present a new method called
the factorization method which can robustly recover shape
and motion from a sequence of images without assuminga
model of motion, such as constanttranslation or rotation.
More specifically,an image sequencecan be represented
asa2F x P measurement matrix ¥, which is made up of
the horizontal and vertical coordinates of P points tracked
through F frames. If image coordinates are measured with
respect to their centroid, we prove the rank theorem: under
orthography, the measurement matrix is of rank 3. Asacon-
sequence of this theorem, we show that the measurement
matrix can be factored into the product of two matrices R
and S. Here, R isa2F x 3 matrix that represents camera
rotation, and Sisa3x P matrixwhich represents shapein a
coordinate systemattached to the object centroid. The two
componentsof the cameratranslation alongthe imageplane
are computed as averages of the rows of 1. When features
appear and disappear in the image sequence due to occlu-
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sionsor tracking failures, the resultant measurementmatrix
W is only partially filled-in. The factorization method can
handle this situation by growing a partial solution obtained
from an initial full submatrix into'a full solution with an
iterative procedure.

The rank theorem precisely captures the nature of the
redundancy that exists in an image sequence, and permits
a large number of points and frames to be processed in a
conceptually simple and computationally efficient way to
reduce the effects of noise. The resulting algorithmis based
on the singular value decomposition, which is numerically
well-behaved and stable. The robustness of the recovery
algorithm in tum enablesus to use an image sequence with
a very short interval between frames (an image stream),
which makes feature trackingrelatively easy.

We have demonstrated the accuracy and robustness of
the factorization method in a series of experiments on labo-
ratory and outdoor sequences,with and without occlusions.

2 Relation to Previous Work

In Ullman's original proof of existence of a solution [U1179]
for the structure from motion problem under orthography,
as well as in the perspective formulation in [RA79}, the
coordinates of feature points in the world are expressed in
a world-centered system of reference. Since then, how-
ever, this choice has been replaced by most computer vi-
sion researchers with that of a camera-centeredrepresenta-
tion of shape [Pra80], [BH&3), [TH84], [Adi85], [WW8S5],
[BBMS87), (HHNgS], [HI83], (Hee89), [MKS89], [SAR9],
[BCCS0]. With this representation, the position of feature
points is specified by their image coordinates and by their
depths, defined as the distances between the camera cen-
ter and the feature points, measured along the optical axis.
Unfortunately, although a camera-centered representation
simplifies the equations for perspective projection, it makes
shape estimation difficult,unstable, and noise sensitive.

There are two fundamental reasons for this. First, when
cameramotionis small, effects of camera rotationand trans-
lation can be confused with each other: for example, small
rotation about the vertical axis and small translation along
the horizontal axis both generate a very similar change in
an image. Any attempt to recover or differentiate between
these two motions, though doable mathematically, is natu-
rally noise sensitive. Second, the computation of shape as
relative depth, for example, the height of a building as the
difference of depths between the top and the bottom, is very
sensitiveto noise, since itis asmalldifference between large
values. Thesedifficultiesare especiallymagnifiedwhen the
objects are distant from the camera relative to their sizes,
which is usually the case for interesting applications such
as site modeling.

The factorization method we present in this paper takes
advantage of the fact that both difficulties disappear when
the problem is reformulated in world-centered coordinates,
unlike the conventional camera-centeredformulation. This
new (old - in a sense) formulation links object-centered
shape to image motion directly, without using retinotopic

depth as an intermediate quantity, and leads to a simpleand
well-behaved solution. Furthermore, the mutual indepen-
dence of shape and motion in world-centered coordinates
makesit possibleto castthe structure-from-motionproblem
as a factorization problem, in which a matrix representing
image measurements is decomposed directly into camera
motion and object shape.

We firstintroduced this factorization method in [TK90a,
TK90b], where we treated the case of single-scanlineim-
ages in a flat, two-dimensional world. In [TK91] we pre-
sented the theory for the case of arbitrary camera motion
in three dimensions and full two-dimensional images. This
paper extends the factorization method for dealing with
feature occlusions as well as presenting more experimen-
tal results with real-world images. Debrunner and Ahuja
have pursued an approach related to ours, but using a dif-
ferent formalism [DA90, DA91). Assuming that motion is
constant over a period, they provide both closed-formex-
pressions for shapeand motion and an incremental solution
(one image at a time) for multiple motions by taking advan-
tage of the redundancy of measurements. Boult and Brown
have investigated the factorization method for multiple mo-
tions [BB91], in which they count and segment separate
motions in the field of view of the camera.

3 The Factorization Method

Givenanimagestream, supposethatwehave tracked P fea-
ture points over F frames. Wethenobtaintrajectories of im-
age coordinates{(usp, vsp) | f = 1,...,F,p =1,...,P}.
We write the horizontal feature coordinates uy,, into an
F x P matrix U: we use one row per frame, and one col-
umn per featurepoint. Similarly,an F x P matrix V is built
fromthe vertical coordinates vs,. The combined matrix of

Size2F x P
U
W = [_
A"
is called the measurement matrix. The rows ofthe matrices
U and V are then registered by subtracting from each entry
the mean of the entries in the same row:

Ufp = upp—ay 1
Vigp = vfp_bf: ()
where
1 P
ar = qufp
p=1
1 P
by o= B
p=1

This produces two new F x P matrices U .. [@s,] and
V = [¥5p]. The matrix

W=l

is called the registered measurement matrix. This is the
input to our factorization method.
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Figure 1: The systems of reference used in our problem
formulation.

3.1 The Rank Theorem

We now analyzethe relation between cameramotion, shane,
and the entries of the registered measurement matrix W .
This analysis leads to the key result that W is highly rank-
deficient.

Referring to Figure 1,supposewe place the origin of the
world reference systemz —y — z at the centroid of the P
points s, = {(2p, ¥p, 2p)%,» = 1,.,.,P}, in space which
correspond to the P feature points tracked in the image
streatn. The orientation of the camera reference system
correspondingto frame number f is determined by a pair
of unit vectors, iyand j¢, pointing along the scanlinesand
the columns of the image respectively, and defined with
respect to the world reference system. Under orthography,
all projection rays are then parallel to the cross product of
if&!ldjjl

ky=1f xjs.
From Figure 1 we see that the projection (u sp, vsp}), i.e.,
the image feature position, of points, = (Zp, ¥p, 2p)* ONtO
frame f is given by the equations

ifT(SP —tf)
jfT(sP - tf) ’

wherety = (ayp,bys,cp)” is the vector from the world origin
to the origin of image frame f. Here note that since the
origin of the world coordinates is placed at the centroid of

objectpoints,
L
r=1

We cannow write expressionsfor the entries s, and v sp

defined in (1) of the registered measurement matrix. For
the the registered horizontal image projection we have

Ufp =
Yfp =

)T

Ufp = ufp— @
1 e, 7
= i (sp —ts) - jszif (s¢ —ty)
g=1
1 P
= i.fT sp—-Fng
g=1
= ifTsy, . (2)
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We can write a similar equation for #y,.. To summarize,

Ufo =

+ T
if's,
ur 3

3, TSP .
Because of the two setsof F x P equations(3), the regis-

tered measurement matrix W can be expressedin a matrix
form:

W = RS (4)
where
T
ip
R=] .k (5)
3
| i

represents the camerarotation, and

S = [51 sP] (6)

is the shape matrix. In fact, the rows of R represent the
orientations of the horizontal and vertical camerareference
axes throughout the stream, while the columns of S are
the coordinates of the P feature points with respect to their
centroid.

SinceRis2F x 3andS is3x P ,the equation (4) implies
the following.

Rank Theorem: Without noise, the registered
measurement matrix W is at most of rank three.

The rank theorem expressesthe fact thatthe 2 F x P image
measurements are highly redundant. Indeed, they could all
be describedconciselyby giving F framereference systems
and P point coordinate vectors, if only these were known.

Fromthefirstand the lastline of equation(2), the original
unregistered matrix W can be written as

W = RS +te}, (7

where t = (ay,. ..,ap, b1, ... ,bp)7 is a 2F-dimensional
vector that collects the projections of camera translation
along the image plane (see equation (2)), and ef =
(1,...,1)isavector of P ones. In scalar form,

Ufp =

Ygp =

i}—sp + ajy
§ise Tor . @®

Comparing with equations (1), we see that the two com-
ponents of camera translation along the image plane are
simply the averages of the rows of W .

In the equationsabove, iy andj; are mutually orthogonal
unit vectors, so they must satisfy the constraints

fir] = lisl =1 i$jy=0. ©

Also, the rotation matrix R is unique if the system of ref-
erence for the solution s aligned, say, with that of the first
camera position, SO that:

iy = (1,0,007

and

and j, =(0,1,00T.  (0)
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Theregisteredmeasurementmatrix ¥ must be at most of
rank three without noise. When noise corrupts the images,
however, W will not be exactly of rank 3. However, the
rank theorem can be extended to the case of noisy measure-
ments in a well-defined manner. The next subsectionintro-
duces the notion of approximate rank, using the concept of
singular value decomposition {GR71}.

3.2 Approximate Rank

Assuming? that 2F > P ,the matrix W can be decomposed
[GR71] intoa2F x P matrix Oy, adiagonal P x P matrix
Z,and a P x P matrix O,

W =030, , (11)

such that OTOy = OO, = 0,07 = T, where T is
the P x P identity matrix. £ is a diagonal matrix whose
diagonal entries are the singular values oy > ... > op
sorted in non-decreasing order. This is the Singular Value
Decomposition (SVD) ofthe matrix .

Suppose that we pay attention only to the first three
columns of O,, the first 3 x 3 submatrix of Z and the first
three rows of O,. If we partition the matrices Oy, Z, and

O, as follows:
O [0 |Of | }er

o
3 P-3

(12)

we have
O\Z0, =0, + 072" 0F

LetW  be the ideal registered measurement matrix, that
is, the matrix we would obtain in the absence of noise.

Becauseoftheranktheorem, W hasatmostthreenon-zero
singular values. Sincethe singularvalues in £ are sorted in
non-increasingorder, =’ must containall the singularvalues
of W that exceed the noise level. As a consequence,
the term O['Z"O5 must be due entirely to noise, and the
best possible rank-3 approximation to the ideal registered

measurementmatrix W is the product:
W =

We can now restate our rark theorem for the case of noisy
measurements.

00,

2This assumption is not cruclal: if 2F < P,everything can be repeated
for the transpose of W',

Rank Theorem for Noisy Measurements: All
the shape and rotation information in W b
contained in its three greatest singular values,
together with the corresponding left and right
eigenvectors.

Now if we define
O}z
s = [0,

we can write

W = RS. (13)
Thetwo matrices Rand $ are of the same size as the desired
rotation and shapematrices R and S: R is 2F x 3,and .§
is 3 x P. However, the decomposition (13) is not unique.
In fact, if Q is any invertible 3 x 3 matrix, the matrices RQ
and @~1$ are also a valid decomposition of i, since

(RQ)(Q™'8) = R(QQ™ NS =RS=W .

Thus, R and § are in general different from Rand 5. A
striking fact, however, is that exceptfor noise the matrix Ris
alinear transformation of the hue rotation matrix R, and the
matrix &' is a linear transformation of the true shape matrix
S. Indeed, in the absence of noise, R and R both span the
column space of the registered measurement matrix W =
W™ = W. Since that column space is three-dimensional
because of the rank theorem, Rand R are differentbases for
the same space, and there must be a linear transformation
between them.

Whether the noise level is low enough that it can be
ignored at this juncture depends also on the camera motion
and on shape. Notice, however, that the singular value
decomposition yields sufficient information to make this
decision: the requirement is that the ratio between the third
and the fourth largest singular values of W be sufficiently
large.

3.3 The Metric Constraints

We have found that the matrix R is a linear transformation
of the hue rotation matrix R. Likewise,$ is a linear trans-
formation of the hue shape mamx S. More specifically,
there existsa 3 x 3 matrix Q such that

R RQ

s = Qls. (14)

In orderto find () we observe that the rows of the true rota-
tion matrix R are unit vectors and the first F are orthogonal
to corresponding F in the second half of R. These metric
constraints yield the over-constrained. quadratic system

0Ty = 1
QT = 1 (15)
Ry = 0

in the entries of Q. This is a simple data fitting problem
which, though nonlinear, can be solved efficiently and re-
liably. Its solution is determined up to a rotation of the




whole reference system, since the orientation of the world
reference system was arbitrary. This arbitrariness can be
removed by enforcingthe constraints (10), that is, selecting
the x —y axes of the world reference systemto be parallel
with those of the first frame.

3.4 Outline of the Complete Algorithm

Based on the development in the previous sections, we
now have a complete algorithmdfor the factorization of the
registered measurementmatrix ¥ derived from a streamof
images into shape Sand rotation R as defined in equations
) - (6).

1. Compute the singular-value decomposition W =
0120,.

2. Define R = O}(¥}/? and S = ()70, where the
primes refer to the block partitioning definedin (12).

3. Compute the matrix Q in equations (14) by imposing
the metric constraints (equations (15)).

4. Computethe rotation matrix R and the shapematrix S
asR=RQand S =Q'$.

5. If desired, align the first camerareference systemwith
the world reference system by forming the products
RRy and R S, where the orthonormal matrix Ro =
liy §; ki) rotates the first camerareference systeminto
the identity mahix.

4 Experiment

We test the factorization method with two real streams of
images: one taken in a controlled laboratory environment
with ground-truthmotion data, and the other in an outdoor
environmentwith a hand-held camcorder.

4.1 ""Hotel*Image Stream in a Laboratory

Some frames in this stream are shown in figure 3. The
images depict a small plastic model of a building. The
camera is a Sony CCD camerawith a 200 mm lens, and is
moved by means of a high-precisionpositioning platform.
Camerapitch, yaw, and roll around the model are all varied
as shown by the dashed curves in figure 4. The translation
of the camerais such as to keep the building within the field
of view of the camera.

For feature tracking, we extended the Lucas-Kanade
method described in [LK81] to allow also for the automatic
selection of image features. The Lucas-Kanade method
of tracking obtains the displacementvector of the window
around a feature as the solution of a linear 2 x 2 equation
system. As good image features we select those points for
which the above equation systems are stable. The details
are presented in [Tom%1, TK92].

The entire set of 430 features thus selected is displayed
in figure 5, overlaid on the first frame of the stream. Of
these features, 42 were abandonedduring tracking because
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their appearance changedtoo much. The trajectories of the
remaining 388 features are used as the measurementmatrix
for the computation of shape and motion.

The motion recovery is precise. The plots in figure 4
compare the rotation components computed by the factor-
ization method (solid curves)with the values measured me-
chanically from the mobile platform (dashed curves). The
differences are magnified in figure 6. The errors are ev-
erywhere less than 0.4 degrees and on average 0.2 degrees.
The computed motion follows closely also rotations with
curved profiles, such as the roll profile between frames 1
and 20 (secondplot in figure4), and faithfullypreservesall
discontinuitiesin the rotational velocities: the factorization
method does not smooth the results.

Between frames 60 and 80, yaw and pitch are nearly
constant, and the camera merely rotates about its optical
axis. That is, the motion is actually degenerate during
this period, but still it has been correctly recovered. This
demonstratesthat the factorization method can deal without
difficulty with streams that contain degeneratesubstreatns,
because the information in the streamis used as a whole in
the method.

The shape results are evaluated qualitativelyin figure 7,
which shows the computed shape viewed from above. The
view in figure 7 is similar to that in figure 8, included for
visual comparison. Notice that the walls, the windows on
the roof, and the chimneys are recovered in their correct
positions.

To evaluate the shape performance quantitatively, we
measured some distances on the actual house model with a
ruler and compared them with the distancescomputed from
the point coordinates in the shape results. Figure 9 shows
the selected features. The diagram in figure 10 shows the
distances between pairs of features measured on the actual
model and those computed by the factorization method.
The measured distances between the steps along the right
side of the roof (7.2 mm) were obtained by measuring five
steps and dividing the total distance (36 mm) by five. The
differences between computed and measuredresults are of
the order of the resolution of our ruler measurements (one
millimeter).

Part of the errors in the results is due to the use of or-
thography as the projection model. However, it tends to
be fairly small for many realistic situations. In fact, it has
been shown that errors due to the orthogrphicdistortion are
approximately aboutthe same percentageas the ratio of the
object size in depth to the distance of the object from the
camera[Tom91].

4.2 Outdoor ""House'" Image Stream

The factorization method has been tested with an image
stream of a real building, taken with a hand-held camera.
Figure 11 shows some of the 180 frames of the building
stream. The overall motion covers a relatively small ro-
tation angle, approximately 15 degrees. Outdoor images
are harder to process than those produced in a controlled
environment of the laboratory, because lighting changes
less predictably and the motion of the camera is more dif-




2-6

ficult to control. As a consequence, features are harder
to track: the images are unpredictably blurred by motion,
and corrupted by vibrations of the video recorder's head,
both during recording and digitization. Furthermore, the
camera’s jumps and jerks produce a wide range of image
disparities.

The features found by the selection algorithm in the first
frame are showninfigure 12. Therearemanyfalsefeatures.
Thereflectionsin the window partially visible in the top left
of the image move non-rigidly. More false features can be
found in the lower left comer of the picture, where the
vertical bars of the handrail intersect the horizontal edges
of the bricks of the wall behind. We masked away these
two parts of the image from the analysis.

In total, 376 features were found by the selection al-
gorithm and tracked. Figure 13 plots the tracks of some
(60) of the features for illustration. Notice the very jagged
trajectories due to the vibrating motion of the hand-held
camera.

Figures 14 and 15 show a front and a top view of the
building as reconstructed by the factorization method. To
render these figures for display, we triangulated the com-
puted 3D points into a set of small surface patches and
mapped the pixel values in the first frame onto the resulting
surface. The structure of the visible part of the building's
three walls has clearly been reconstructed. In these fig-
ures, the left wall appears to bend somewhat on the right
where it intersects the middle wall. This occurred because
the feature selector found features along the shadow of the
roof just on the right of the intersection of the two walls,
rather than at the intersection itself. Thus, the appearance
of a bending wall is an artifact of the triangulation done for
rendering.

This experiment with an image stream taken outdoors
with the jerky motion produced by a band-held camera
demonstrates that the factorization method does not require
a smooth motion assumption. The identification of false
features, that is, of features that do not move rigidly with
respect of the environment, remains an open problem that
must be solved for a fully autonomous system. An initial
effort has been seen in [BB91).

5 Occlusions

In reality, as the camera moves, features can appear and
disappear from the image, because of occlusions. Also, a
featuretracking method will not always succeed in tracking
features throughout the image stream. These phenomena
are frequent enough to make a shape and motion computa-
tion method unrealistic if it cannotdeal with them.
Sequenceswith appearing and disappearing features re-
sult in a measurement matrix W which is only partially
filled in. The factorization method introduced in section3
cannotbe applied directly. However, there is usually suffi-
cientinformation in the stream to determine all the camera
positions and all the three-dimensional feature point coor-
dinates. If that is the case, we can not only solve the shape
and motion recovery problem fromthe incomplete measure-

) ? s

—

[

Figure 2: The Reconstruction Condition. If the dotted
entries of the measurement matrix are known, the two un-
known ones (question marks) can be reconstructed.

ment matrix W ,but we can even hallucinate the unknown
entries of W by projecting the computed three:-dimensional
feature coordinates onto the computed camera positions.

5.1 Solution€or Noise-Free Images

Supposethata featurepoint is not visible in a certain frame.
If the same feature is seen often enough in other frames, its
position in space should be recoverable. Moreover, if the
frame in question includes enough other features, the cor-
responding camera position be recoverable as well. Then
from point and camera positions thus recovered, we should
also be able to reconstruct the missing image measurement.
Formally, we have the following sufficientcondition.

Condition for Reconstruction: In the absence
of noise, an unknown image measurement pair
(wgp, vgp) inframe T canbereconstructedifpoint
pisvisible in at least three more frames f; , f», f3,
and if there are at least three more points ), p2, ps
that are visible in all the four frames: the original
f andtheadditional fy, f2, f5.

Refemng to Figure 2, this means that the dotted entries
must be known to reconstruct the question marks. This is
equivalent to Ullman's result [Uli79] that three views of
four points determine structure and motion. In this sub-
section, we prove the reconstruction condition in our for-
malism and develop the reconstruction procedure. To this
end, we notice that the rows and columns of the noise-free
measurement matrix W can always be permuted so that
h=p=1f=p =28 =p3 =3, f =p =4
We can therefore supposethat 44 and vy are the only two
unknown entries in the 8 x 4 matrix

Uy Uz U3 Ul
U21  Urz U2z Uy
U3y Uzz U3z U
W= [_L_r_] _ | v ue ua  ?

Vil V2 Y13 v
Va1 Vn V3 Uy
U3 Uz Uiz Uy
Vg1 V42 V43




Then, the factorization method can be applied to the first
three rows of U and V, that is, to the 6 x 4 submatrix

%11 U2 u13 U
U2t U2 U2z UM
Wexs = ©3] U3z U3z UM
i vz VY13 Uu
l V21 V2 V23 U4 J

(16)

231 Uzx U V34

to produce the partial translation and rotation submatrices

iT

ai .a_'

az L

a3 ig‘
tows = ; and Rexs= | ¢ a7

1 3

by i

b3 i

and the full shape matrix

S=[s s s s ] (18)

such that -
Wexs = Rex3S Ttoxie]

where ef = (1,1,1,1).

To complete the rotation solution, we need to compute
the vectorsiy and j,. However, aregistration problemmust
be solved first. In fact, only three points are visible in the
fourth frame, while equation (18) yields all four points in
space. Since the factorization method computes the space
coordinates with respect to the centroid of the points, we
haves; Ts, Tss *s4 = 0, while the image coordinates in
the fourth frame are measured with respectto the centroid
of just three observed points (1, 2, 3). Thus, before we can
compute is and j; we must make the two origins coincide
by referringall coordinatesto the centroid

1
¢ = §(51 ts t s3)

of the three points that are visible in all four frames. In the
fourth frame, the projection of ¢ has coordinates

|
ay = g(%u + 42 + ta3)

1
by, = ;:;(1141 + vap + ta3)

so we can define the new coordinates

s,=s,—¢c for p=123
in spaceand

0y = U4 _al

dp =T T4 for p=1,2,3

i n
vy, = Vap — by

io the fourth frame. Then, is and j, are the solutions of the
two 3 x 3 systems

i {s s 8]
iWls s 8)

[“:’41 Uy ui\s] =

[vh oy v ]

(19)
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derived from equation (4). The secondequationin (17)and
the solutionto (19) yield the entire rotation matrix R, while
shape s given by equation (18).

The components a¢ and &4 of translation io the fourth
frame with respect to the centroid of all four points can
be computed by postmultiplying equation (7) by the vector
ns =(1,1,1,0)7:

W = RS, Helna

Sinceelns = 3, we obtain

t= él(W— RS)ns .
In particular, rows 4 and 8 of this equation yield a4 and bs.
Notice that the unknown entries %44 and v4s are multiplied
by zerosin equation (20).

Now that both motion and shape are known, the missing
entriesuag, v44 Of the measurement matrix W can be found
by orthographic projection (equation (8)):

(20)

s = 184+ a4
Vag — j:{s4+b4-

The procedure thus completed factors the full 6 x 4 sub-
matrix of W and then reasons on the three points that are
visible in all the frames to compute motion for the fourth
frame.

Altematively, one can start with the 8 x 3 submatrix

ujl ul2 %13 |
U1 U2z U2
U3l U3z U3z
U4 Ug U4
Wexs = ™11 Yz Y13
vy Uz V23
U3l V2 V33
|_ Va1 Va2 V43 _|

(21)

In this case we firstcompute the full translation and rotation
submatrices, and then from these we obtain the shape coor-
dinates and the unknown entry of W for full reconstruction.

In summary, the full motion and shape solution can be
found in either of the following ways:

1. row-wise extension: factor Wesxa to find a partial mo-
tionand full shapesolution, and propagate it to include
motion for the remaining frame (equations(19)). This
will be used for reconstructing the complete W by
row-wise extension.

2. column-wise extension: factor Wgxs to find a full mo-
tion and partial shape solution, and propagate it to
include the remaining feature point. This will be used
for reconstructing the complete W by column-wise
extension,

5.2 Solution in the Presence of Noise

The solutionpropagation method introduced in the previous
subsectioncan be extended to 2F x P measurement matrices
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with F > 4 and P > 4. In fact, the only difference is that
the propagation equations (19) for row-wise extension and
those for column-wise extension become overconstrained.
If the measurement matrix W is noisy, this redundancy is
beneficial. since equations (19) can be solved in the Least
Square Error sense, and the effectof noise is reduced.

In the general case of a noisy 2F x P matrix W the
solutionpropagationmethodcan be summarized as follows.
A possibly large, full subblock of W is firstdecomposed by
factorization. Then, this initial solution is grown one row
or one column at a time by solving systems analogous to
those in (19) in the Least Square Error sense.

However, because of noise, the order in which the rows
and columns of W are incorporated into the solution can
affect theexactvalues ofthe find motion andshapesolution.
Consequently, once the solution has been propagated to
the entire measurement matrix W , it may be necessary to
refine the results with a steepest-descent minimization of
the residue

1
1w —RS - Stef|

(see equation (7)).

There remain the two problems of how to choose the
initial full subblock to which factorizationis applied and in
what order to grow the solution. In fact, however, because
of the final refinement step, neither choice is critical as
long as the initial matrix is large enough to yield a good
starting point. We illustrate this point in the next sectionof
experiments.

6 More Experiments

We will firsttest the propagation method with image streams
which include substantial occlusions. We first use an image
stream taken in a laboratory. Then, we demonstrate the
robustness of the factorization method with another stream
taken with a hand-held amateur camera.

6.1

A ping-pong ball with black dots marked on its surface is
rotated 450 degrees infrontofthecamera, sofeaturesappear
and disappear. The rotation between adjacent frames is 2
degrees, so the stream is 226 frames long. Figure 16shows
the firstframe of the stream, with the automatically selected
features overlaid.

Every 30 frames (60 degrees) of rotation, the feature
tracker looks for new features. In this way, features that
disappear on one side around the ball are replaced by new
ones that appear on the other side. Figure 17 shows the
tracks of 60 features, randomly chosen among the total 829
found by the selector.

If all measurementsare collected into the noisy measure-
ment matrix W, the U and V parts of W have the samefill
pattern: if the z coordinate of @ measurementis known, S0
is the y coordinate. Figure 18 shows this i matrix for our
experiment. This matrix has the same size as either U or
V, thatis, ' x P. A column correspondsto a featurepoint,

""Ping-Pong Ball** Image Stream

andarow to aframe. Shadedregionsdenotelmownentries.
The fill matrix shown has 226 x 829 = 187354 entries, of
which 30185 (about 16 percent) are known.

To startthe motion and shape computation, the algorithm
finds a large full submatrix by applying simple heuristics
based on typical pattems of the fill matrix. The choice
of the starting matrix is not critical, as long, as it leads to
a reliable initialization of the motion and shape matrices.
The initial solution is then grown by repeatedly solving
overconstrainedversions of the linear systemcorresponding
to (19) to add new rows, and of the system for the column-
wise extension to add new columns. The rows and columns
to add are selected so as to maximize the redundancy of
the linear systems. Eventually, all of the motion and shape
values are determined. As a result, the unknown 84 percent
of the measurement matrix can he hallucinated from the
known 16 percent.

Figure 19 shows two views of the final shape results,
taken from the top and from the side. The missing features
at the bottom of the ball in the side view conrespond to the
part of the ball that remained always invisible, because it
rested on the rotating platform.

To display the motion results, we look at the i and j,
vectorsdirectly. We recall thatthese unitvectors point along
the rows and columns of the image frames / in 1,. .. ,F.
Because the ping-pong ball rotates around a fixed axis,
both iy and j, should sweep a cone in space, as shown
in Figure 20. The tips of iy and j, should describe two
circles in space, centered along the axis of rotation. Figure
21 shows two views of these vector tips, from the top and
from the side. Those trajectories indicate that the motion
recovery was done correctly. Notice the double arc in the
top part of figure21 corresponding to more than 360 degrees
rotation. If the motion reconstruction were perfect, the two
arcs would be indistinguishable.

6.2

In this subsectionwedescribean experiment with a natural
scene including occlusion as a dominant phenomenon. A
hand holds a cup and rotates it by about ninety degrees in
front of the camera mounted on a fixed stand. Figure 22
shows four ont of the 240 frames of the stream.

An additional need in this experiment is figure/ground
segmentation. Since the camera was fixed, however, this
problem is easily solved: features that do not move belong
to the background. Also, the streaminclndes some nonrigid
motion: as the hand turns, the configurationand relative po-
sition of the fingerschanges slightly. This effect, however,
is small and did not affect the results appreciably.

A total of 207 features was selected. Occlusions were
marked by hand in this experiment. The fill matrix of figure
24 illustrates the occlusion pattern. Figure :23 shows the
image trajectory of 60 randomly selected features.

Figures 25 and 26 show a frontand a top view of the cup
and the visible fingers as reconstructed by the propagation
method. The shape of the cup was recovered, as well as
the rough shape of the fingers. These renderings were
obtained, as for the "House" image stream in subsection4.1,

"Cupand Hand'" Image Stream




by triangulating the tracked feature points and mapping
pixel values onto the resulting surface.

7 Conclusion

The rank theorem, which is the basis of the factorization
method, is both surprising and powerful. Surprising be-
cause it states that the correlation among measurements
made in an image stream has a simpleexpressionno matter
what the camera motion is and no matter what tze shape
of an objectis, thus making motion or surfaceassumptions
(such as smooth, constant, linear, planar and quadratic)
fundamentallysuperfluous. Powerful because the rank the-
orem leads to factorizationof the measurement matrix into
shape and motion in a well-behaved and stable manner.

The factorization method exploits the redundancy of the
measurement mafrix to counter the noise sensitivity of
structure-from-motion and allows using very short inter-
frame camera motion to simplify feature tracking. The
structural insight into shape-from-motion afforded by the
rank theorem led to a systematic procedure to solve the
occlusion problem within the factorization method. The
experimentsin the lab demonstratethe high accuracy of the
method, and the outdoor experiments show its robustness.

The rank theorem is strongly related to Ullman's twelve
year old result that three pictures of four points determine
structure and motion under orthography. Thus, in a sense,
the theoretical foundation of our result has been around for
a long time. The factorizationmethod evolvesthe applica-
bility of that foundation from mathematical images to actual
noisy image streams.

120 ‘ 150

Figure 3: Some frames in the sequence. The whole se-
guenceis 150 frames.
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Figure 5: The 430 features selected by the automaticdetec-
tion method.
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Figure 7: A view of the computed shape from approxi-  The comparisonis shown in figure 10.
mately above the building (compare with figure 8).
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Figure 16: The first frame of the ping-pong stream, with

overlaid features.
Figure 19: Top and side views of the reconstructed ping-

pong hall.

Figure 17: Tracks of 60 randomly selected features from
the stream of figure 16.

...

Figure 20: Rotational component of the camera motion for

; , . . : ; the ping-pong stream. Because rotation occurs around a
18: - . . . -

Figure 18: The fillmahix for the ping-pong ball experiment fixed axis, the two mutually orthogonal unit vectors i ; and

Shaded entries are known. . L .
J#» pointing along rows and columns of the image sensor,
sweep two 450-degree cones in space.
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Figure 23: Tracks of 60 randomly selected features from
the cup stream.

Figure 21: Top and side views of the iy and j; vectors
identifying the camerarotation. SeeFigure 20.

Figure 24: The 240 x 207 fill matrix for the cup stream
(figure22). Shadedentries are known.

LU 240

Figure 22 Four out of the 240 frames of the cup image

stream.
Figure 25: A front view of the cup and fingers, with the
originalimage intensities mapped onto the resulting surface.



Figure 26: A view from above of the cup and fingers with
image intensities mapped onto the surface.
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A VLSI Smart Sensor
for Fast Range Imaging !

We have built a range-image sensor that acquires a com-
plete 28 x 32 rangeframe in as little as ore millisecond.
Using VLSI, sensing and processing are combined into a
unique sensing element that measures range in a fully-
parallel fashion. The accuracy and repeatability of the
sensed data is 0.1%or berrer. In this paper; we review the
cell-parallel method used, describe our VLSI implemen-
tation outline proceduresfor calibrating the ce-paraile!
sensor and present some experimental results. Weconclude

"This researchwas done by Andrew Gruss, Shigeyuki Tada and Takeo
Kanade, and was supported in part by an AT&T Foundation Grant, the
National Science Foundation. under grant MU-8915969, and the Defense
Advanced Research Project! Agency, ARFA Order No. 7511, monitored
by the NSF under grant MIP-9047590.
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Sensor ~
Figure 1: Traditional light-stripe range imaging

by describing a second-generation range sensor integrated
circuitwhich is now being tested.

1 Introduction

A cell-parallel implementation greatly improves the per-
formance of a light-stripe range-imaging sensor[Gru91,
KGC91, GKC91]. Though equivalent to conventional
light-striping from optical and geometrical standpoints,
cell-parallel light-stripe sensors incorporate a fundamen-
#H improvement in the range measurementprocess. As a
result, the acquired range data is more robust and more ac-
curate. Furthermore, range image acquisitiontime is made
independent of the number of data points in each frame.
By fully exploiting the capability of VLSI to both sense
and process information, we have built a smart sensor that
acquires a complete frame of 10-bitrange image data in a
millisecond.

2 A Cell-Parallel Approach to Light-
Stripe Range Imaging

Range information is crucial to many robotic applications.
A range image is a 2-D array of pixels, each of which
represents the distanceto a pointin the imaged scene. Many
techniques for the direct measurement of range images have
been developed[Bes88). Of these, the light-stripe methods
have proven to be among the most robust and practical.
Fig. 1 illustrates the principle on which a light-stripe
sensoris based. The sceneto be imaged is lit by a stripe —
aplane of light formed by fanning a collimated source in
one dimension. The stripeis projected in aknowndirection
using a precisely controlled mirror. When viewed by an
imaging sensor, it appears as a contour which follows the
profile of objects. The shape of this contourencodesrange
information. In particular, if projector and imaging sensor
geometry are known, the distance to every point lit by the
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Figure 2: Cell-parallel light-stripe range imaging.

stripe can be determined via triangulation.

A conventional light-stripe range sensor builds a range
image using a “step-and-repeat’ procedure. A stripe is
projected onto a scene, as described above, and one column
of range image data is measured. The stripe is stepped to
a new position and the process is repeated until the entire
scene has been scanned.

Unfortunately, step-and-repeat implementation:; are
slow. In order to build a complete range image using data
from N stripe positions, N intensity images are required.
The total time 7;"*° to acquire the range frame is

I = NI, (1)

Assuming 7, = 1/30second and N = 100, 7} =
3.3 seconds is required.

The frame time of a step-and-repeat sensor has been
improved by imposing additional structure on the light
source. For example, the gray-coded sources used by
Inokuchi[ISM84] reduce the factor of N in (1) to log, N.
However, achievable frame rates are still too slow and
the fundamental problem remains — range frame time in-
creases with spatial resolution.

2.1 The Cell-Parallel Method

The cell-parallel technique is an elegantmodificationof the
basic light-stripe algorithm. The technique is a dynamic
one, with time an important aspect of the range measure-
ment process[ASP87].

Consider the geometry of a three-pixel, single-row cell-
parallel range sensor, seen from above in Fig. 2. In the
figure, the stripe plane is perpendicular to the page. The
stripe is quickly swept across the scene from right to left.
briefly illuminating object features. A sensing element, say
S», monitors the lightintensity 7, retumed to it along a fixed
line-of-sightray R,. When the position of the stripe is such
that it intersects R, at a point on the surface of an object,a
“Rash will be observed by the sensing element.

Range to the object is measured by recording the rime #,
at which the Rash is seen. The location of the stripe as a
function of time is known becauseits projection angle 8;_(t)
is controlled by the system. The “time-stamp” ¢, acquired
by the sensing element measures the position of the stripe
when its light is reflected back to the sensor. The three-
dimensional coordinates of one object point are uniquely
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Figure 3: Cell-parallel system geometry.

determined at the intersection of the line-ol’sight ray R,
with the stripe plane at 6. (t2) on the surface of the object.

A sensorwhich collects a denserange image is formed by
arranging identical sensingelementsinto a two-dimensional
array. The cells of the array work in parallel, gathering a
range image during a single pass of the light stripe. The
time required to acquire the range frame is independent of
its spatial resolution —

TfsCell - TfStripe. (2)
The frame time .’I}SMW of a cell-parallel sensor is set
by the bandwidth of the photo-receptorused in its sensing
elements. Very high frame rates (1 /7;""°) can be achieved.
The photodiodes used in our cell design have bandwidth into
the megahertz. They can detect a stripe moving at angular
velocities in excess of 6,0001pm.

2.2 Cell-Parallel System Geometry

Cell-parallel system geometry can be described using ho-
mogeneous coordinate transformations[BB82, NS79]. Re-
femng to Fig. 3, the origin of the frame O is placed at
the optical center of the imager. The stripe is a half-plane
which radiates out from an axis-of-rotation aligned with the
y-axis of the frame and passing through the point

xx=[b 0 0 1], (3)

Stripe rotation ;. is measured counter-clockwise about its
axis when viewed from the positivey direction and defined
to be zero when the stripe lies in the yz-plane. In a homo-
geneous representation, a plane is described in terms of a
column vector P that satisfiesthe scalar product xP = 0,
where X is a homogeneous point that lies in P. In the sensor
coordinate frame defined above, the stripeplane is modeled
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in terms of b and &y, as

[ —cos o
0
sin &
bcosfy

P, = (4)

The position xs = {zs,ys, zs) Of a sensing element on
the sensorimage plane definesthe line-of-sightray Rs. The
parametric equation for a line in three dimensions is used
to representRs as

X = L (xg — Og) + 05 (5)
s

where rs = ||xs|| = /@% + & + z§. The line parameter
7, when normalized by s, is simply the distancealong R

measured from Og heading toward the object.
The point of intersectionxo, between the stripe and the
line-of-sight, is found by solvingxP =0 forr:

b’]’s
T_ms—zstanBL' (6)
In the coordinate frame of the sensor, this point is
xo = %&zs Zys Lz 1]. (7)

Thus, the 3-D position xo of imaged object points can be
recovered from the scalar distance measurement r.

3 VLSI Range Sensor

A practical implementation of the cell-parallel range imag-
ingalgorithmrequires asmartsensor — oneinwhichoptical
sensing is local to the required processing. Silicon VLSI
technology provided the means for building such a sensor.

Fig. 4 summarizesthe operation of elementsin the smart
cell-parallel sensor array. Functionally, each must convert
light energy into an analog voltage, determine the time at
which the voltage peaks and remember the time at which
the peak occurred.

3.1 A28 x 32 Cell-Parallel Sensor Chip

Colomn Readount
Y A & Output Buffering
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Figure 6 Sensingelementcircuitry.

The multi-pixel cell-parallel range sensor we have devel-
oped is shown in Fig. 5. This chip consists of 896 sensing
elementsarrangedin a28 x 32array. Itwas fabricatedusing
a2 gm p-well CMOS, double-metal, double-poly process
and measures 9.2mm X 7.9 mm (width x height). Of the
total 73 mm? chip area, the sensing elementarray takes up
59mm?, read-out column-selectcircuitry 0.37 mm? and the
outputintegrator 0.06 mm?, The remaining 14 mm? is used
for power bussing, signalwiring, and die pad sites.

3.2 Sensing Element Design

The architecture chosen for the range sensing elements is
shown in Fig. 6. Areas of interest in the diagram include
the photo-receptor (PDiode), the photo-current transimpe-
dance ampiifier (PhotoAmp), threshold comparison stage
(n2Comp), stripe event memory (RS_Flop), time-stamp
track-and-hold circuitry (PGateI/CCell) and cell read-out
logic (PGate0/TokenCell).

In operation, sensingelementscycle between two phases
—acquisition and read out.

During the acquisition phase, each sensing element im-
plements the cell-parallel procedure of Fig. 4. The photodi-
ode within a cell monitors light energy reflected back from
the scene. Photocurrent output is amplified and continu-
ously compared to an external threshold voltage Vth. When
photoreceptor output exceeds this threshold, the "'stripe-
detected” latch in the cell is tripped. The value of the
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Figure 7: Non-linear transimpedance amplifier.

time-stamp Voltage at that instant is held on the capacitor
CCel1l, recording the time of the stripe detection.

The acquisition phase is synchronizedwith stripe motion
and ends when the stripe completes its scan. At that time,
the array sensing elements recorded a range image in the
form of held time-stamp values. This raw range data must
now be read from the chip.

A time-multiplexed read-out scheme off loads range im-
age data in raster order through a singlechip pin. One bit of
token state is passed through the sensing element array, se-
lecting cells for output. Dual »/p-transistor pass gate struc-
tures are used throughout the time-stamp data path. They
permit the use of rail-to-rail time-stampvoltages, maximiz-
ing the dynamic range of the analog time-stamp data.

3.3 Stripe Detection

One of the more challenging aspects of the cell design in-
volved the circuitry which detected the stripe.

A photodiode forms the light sensitive area within each
cell. This diode is a vertical structure, built using the n-
substrateas the cathodeand thep-well of the CMOS process
asthe anode. An additional p* implant, driven into the well,
reduces the surfaceresistivity of the anode andincreasesthe
device bandwidth.

The non-linear transimpedance amplifier of Fig. 7 was a
key element of the sensor cell design. Reflectedlight from
the swept stripe source generates nano-amp photo-current
pulses and thus a very high-gain amplifier is required to
convertthis current into a usable voltage. In addition, very
little die areacould be devoted to photo-current amplifica-
tion if cell area was to be kept small. The three transistor
amplifier design of Fig. 7 satisfies both requirements. Its
logarithmic transfer characteristic provides freedom from
output saturation even when input light levels vary over
several orders of magnitude. The output rise-time of pho-
todiode/amplifier test structures in response to a stripe was
measured to be a few microseconds.

3.4 Analog Signal Processing

Analog signal processing techniques played an important
role in the design of this smart sensor. As shown in Fig. 6,

Figure 8: The cell-parallel range-finding system.

Table 1: CELL-PARALLEL SENSOR SYSTEM SUM-
MARY

Baseline 300 mm

Laser Source  Laser Diode (Collimated)
Wavelength ~ 780nm
OutputPower 30 mW
Stripe Width 1 mm
Stripe Spread  40° (3dB)

Sweep Assembly  Rotating Mirror

Sweep Angle  40°

Sensor Optics  1/2"-Format CCD Zoom Lens
Focal Length  12.5t0 75mm
f-number f/1.8

A/D Precision  12bits

sensing elementsuse analog circuitry to amplify the photo-
current, to detect the stripe and to record the per-cell time-
stamp information. Stripe timing is represented in analog
formas a0-5 V sawtooth broadcast to all cells of the array.
This allowed the time-stamp value to be stored as charge
on the 1pf capacitorwithin each cell. The digital equiva-
lent of latching a count into a multi-bit register would be
significantly larger in area and would require that the dig-
ital time-stamp counters run during the acquisition phase.
Thus, analog processingkept cell area small and minimized
digital switching noise during photo-current measurements
in the acquisition phase.

4 Prototype Range Image Sensor

The 28 x 32 element VVLSI sensor prototype described in
the previous section was incorporated into the light-stripe
range system shown in Fig. 8. System components visihlein
the photograph include (from the left) the stripe generation
assembly, the VLSI sensor chip and its interface electron-
ics, a calibration target and the 3-DOF positioning system.
Table 1 provides details of the configuration shown.
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5 Cell-Parallel Sensor Calibration

Calibration provides the complete specification of system
geometry necessaryfor convertingcell time-stamp data into
range images. Two sets of calibration parameters must be
measured. First, 3-D sensor chip geometry and optical
parameters must be measured — the imager model. Next, a
mapping between time-stamp values és and distance = for
all sensing elements is developed — the szripe model.

5.1

This method measures component model geometry using
reference objects, manipulatedin the sensor's field of view
with an accurate 3-DOF (degreeof freedom)positioning de-
vice. The following two-step procedureis used (Fig. 3):

Imager Model Calibration

e the line-of-sightrays Rs for a few cells are measured,
and

e apinhole-cameramodel is fitto measuredline-of-sight
rays in order to approximateline-of-sights for all sens-
ing elements.

A planer target ont of which a triangular hole has been
cut as shown in Fig. 9 is used to map ont sensing element
line-of-sight rays. The target is mounted on the positioner
so that its surface is parallei to the world-xy plane.

A single 3-D point on the line-of-sight of a particular
sensing element is found as follows. The target is moved
to some z-position in world coordinates and held. The
bottom edge of the triangular hole is located by moving
the target around in x and y as indicated in Fig. 9. When
a small motion in either x or y causes a large change in
the time-stamp value reported by the cell, occlusion of the
line-of-sightat an edge of the triangular cut is indicated.

Once many points along the bottom edge are located, a
line, known to lie in the plane of the target, is fit. The
location of the top edge is found in a similar fashion. The
intersection of the top and bottom edge lines define one 3-D
point that lies on the cell's line-of-sight. A number of these
points are located by moving the target in z and repeating
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the process. The line-of-sight for a single cell can then be
identifiedby fittinga 3-D line to these points. Experimental
data from the calibration of one sensingelement's line-of-
sightis shown in Fig. 10.

Mapping the lime-of-sightrays for all 896 sensing ele-
ments in this manner is too time consuming. In practice,
line-of-sightinformation is measured for 25 cells, evenly
spaced in a 5grid. The geometry of the remaining cells is
approximated using a pinhole-camera model.

The pinhole-cameramodet[WCH90] constrainsall sens-
ing elementline-of-sightrays to pass through a single point
focus of expansion at the optical center of the camera.
Fig. 11graphicallyillustrates the process. Sensingelement
locations are assumed to lie in some sensorplane, at loca-
tionsevenly spaced in a 2-D grid on the plane. Elevenmodel
parameters must be determined thatidentify the transforma-
tion matrix Tsw and the geometry of the the sensor plane.
A least-squares procedure is used to fit pinhole-model pa-
rameters to line-of-sight information measured in the first
calibration step. Imager model geometry is now fully cali-
brated.
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5.2 Advanced Imager Model Calibration

Unfortunately, calibration of the imager model via line-of-
sight measurement is not suitable for use outside of the
laboratory environment. “One-at-a-time” measurement of
sensing element geometry, as outlined above, is slow and
cumbersome.

We are developing a faster, more precise method for
imager model calibration. In this new calibration method,
the 3-DOF positioning system is replaced with a liquid
crystal display (LCD) mask that need only be accurately
positioned along one degree of freedom. The LCD mask
is used to define precise black-and-white images that are
“seen” by the range sensor. The method relies on intensity
image information, measuring geometry through analysis
of reference objectimagesf ABA*87).

The LCD mask is placed between a diffuse planer target
andsensorchipataknownpositionandis backlitby shining
the system stripe source on the planer target. The pattem
displayed on the LCD forms a black-and-white image on
the sensor. Only illuminated sensing elements will latch
the stripe-detected condition (Section 3-3.2). A single-bit
intensity image is derived by identifying the time-sfamp
output of illuminated sensing elements.

Sensing element line-of-sightgeometry is found by vary-
ing the LCD mask pattern in a controlled fashion. For ex-
ample, a circular pattem, whose 3-D center is known, can
be projected. A calibration point is found by measuring the
2-D location of this circle’s center in the intensity image
returned by sensor. Additional calibration data is measured
by varying the position of the circle on the LCD mask and
the position of the LCD along zs. Also, by measuring the
center different radii of the circle at a fixed position, we
can compensate for the low spatial resolution ofthe current
sensor. The new sensor chip design, discussedin Section 7,
returns multi-bit intensity image data which further assists
imager geometry Calibration.

Use of the LCD mask significantly reduces the time re-
quiredto perform imager-model calibration. In the previous
method, two edges of a triangular hole had to be mapped
out, viaaccurate hack-and-forthmovement, in: order toyield
a single calibration point. In the new method, one calibra-
tion point is measured from a single LCD-generated pattem
without mechanical X-Y movement. Precise calibration of
the low-spatial resolution range sensor is possible because
high-precision pattems are generated by the LCD mask.

The use of an LCD mask to project precise 2-D pattems
has application beyond the calibration of our light-stripe
range sensor. For example, this technique could be used
to assist more traditional camera calibration procedures or
to present training data to image-based neural net systems.
LCD displays have several advantages over CRT displays
for applications like these — they are fast, they are static
(not refreshed), and they form images which are stable and
well defined.

5.3 Stripe Model Calibration
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Figure 12: Time-stamp calibration
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Figure 14: Cell (13,15) range-datahistograms.

The second part of the calibration procedure determines
the mapping between time-stamp data and range along all
sensing element line-of-sight rays. As shown in Fig. 12,a
planer target with no hole replaces the target used in step
one. The new target is held at a known world-t position,
parallel to the zy plane, and time-stamp readings ¢s from
all sensors are recorded. This process is repeated for many
z positions. Using this information, the function which
maps cell time-stamp values és into line-of-sight distance
7 for each sensing element is approximated by fitting a
parabola to each. Experimental data, showing the fitted =
verses 8s functions for several sensing elements, is shown
in Fig. 13. Calibration of the cell-parallelrange sensor is
now complete.

6 System Performance

6.1 Range Accuracy and Repeatability

The quality of the range data produced by the cell-parallel
range sensor was measured by holding a planer target at
a known world-z position with the 3-DOF positioning de-
vice. In the experimental setup, the world-z axis heads
almost directly toward the sensor with the zw = 0 point
roughly 500mm away. Analog time-stamp values from the
sensorarray were digitized, using a 12-bitanalog-to-digital
converter(AID), and recorded for 1,000 trials. Light-stripe
sweep (acquisitionphase) time for each scan was 3msec.

A histogram of the range data reported by one cell is
plotted in Fig. 14. The horizontal axis represents the dig-
itized time-stamp value, convertedto world-z distance via
the calibration model. Data for six world-z positions are
combined in this plot. The vertical axis shows the number
of times (plotted logarithmically), out of the 1,000 trials,
that the sensing element reported that world-t distance.
The sharpness of each peak is an indication of the stability
(repeatability) of the range measurements.

Averaged statistical data for 25 evenly-spaced sensing
elementsis plotted in Fig. 15. In orderto measure accuracy
and repeatability, the position of the target, as reported by
the cell-parallel sensor, is compared to the actual target
z position. The “boxed” points in the plot represent the
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Figure 15: Range data accuracy and repeatability.

mean absolute error, expressed as a fraction of the world-
+ position and averaged for the 25 elements at zw. One
standarddeviation of “spread”, also normalized with zw, is
shown (%) above and below each box.

The experiments show the mean measured range value
to be within 0.5mm at the maximum 500 mm z — an ac-
curacy of 0.1%. The aggregate distance discrepancy be-
tween world and measured range values remains less than
0.5 mm over the entire 360mm to 500mm z range. The
cell-parallel sensorrepeatability is found by computingthe
standarddeviation of the distancemeasurements. The mea-
sured repeatability of histogram data is less than 0.5 mm
— 0.1% at the maximum 500 mm positioner translation.
The 0.5 mm repeatability decreaseswith the distance to the
sensor — essentially with the slope of the time-stamp to
distance mapping function (Fig. 13).

6.2 Range Image Acquisition

Fig. 16shows a wire-frame representation of one 28 x 32
range image produced by the sensor. The imaged object
is the cup shown in the figure, approximately 80 mm in
diameter at its opening and 80 mm high. The range sensor
is looking directly at the object from a distance of 500 mm.
The viewpoint of the plot is at a point directly above the
optical center of the sensor. The complete range image
was acquiredduring a 3msec stripe scan. The intersection
points of the wire-frame plot are positioned on cell line-of-
sight rays at the measured distance along the ray and the
focus of expansionis located in front of the cup. Thus, the
smaller “squares”representobject surfacepatches closerto
the sensor. This is opposite the manner in which straight
perspective would make an object with a grid painted on
it appear, and at first glance gives the false impression that
the “mold” ussd to make the cup has been imaged.

The curved smooth front surface of the object is clearly
visible in the range data. The 20mm handle of the cup is
readily distinguished, as is the planer background behind
the cup. The curved surfaceof the object halfway down the
cup directly across from the bottom of its handle includes
a slightshift of the wire-frame. The imaged cup is slightly
narrower at its base by about2 mm. The cell-parallelsensor
is measuring this small 3-D feature at the S00 mm object
distance.
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Figure 16: Range data wire frame.

Table 22 CELL-PARALLEL SENSOR PERFORMANCE
SUMMARY.
Spatial Resolution 28 x 32
FrameTime Upto lmsec
Operating Distance 350 to 500 mm
Accuracy < 0.5mm
Repeatability < 0.5mm

Figure 17: Second-generationrange sensor integrated cir-
cuit.

6.3 Sensor Performance Summary

A summary of the cell-parallel sensor system performance
is given in Table 2.

7 A Second Generation Sensing Ele-
ment

A second-generationimplementatiorof the light-stripe sen-
sor array has been fabricated. This new chip, seen in
Fig. 17, incorporates several advantages over the first de-
sign. The die area of the new cell, shown in Fig. 18, is
216 pm x 216 pm, 40% smaller than that of the cells of the
first-generation sensor (photoreceptorarea has been kept
constant). Stripe detection is done in @ more robust manner
and range data read-out circuitry has been simplified. In
addition, the new cell provides a means to record and read
out the value of the peak intensity seen when it acquires a
range data sample. The peak intensity information provides
a direct measure of scene reflectance because stripe output
power is known and distance to the object point is mea-
sured. In addition, the availability of intensity information
allows for efficient sensor calibration (Section 5-5.2).

Peak detection is done using the circuitof Fig. 19. Oper-
ation of the circuit is straightforward. The source following
transistor Q, enables capacitor Cy to track the rising inten-
sity input voltage transitions. No path is provided for C, to
dischargewhen photoreceptor outputtransitions downward
At the end of a scan, the largest intensity reading observed
will be held. Stripe detection is easily accomplished by
comparing the peak-intensity value V¢ with the amplified
photodiode output V.. When V, falls below the Vi, the
output from the comparator is used to record a time-stamp




Figure 18: Second-generationsensingelement layout.
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Figure 20: Second-generation sensing element simulation
result.

value.

Using Spice[HSp90], operation of of the second-
generation sensing element design was simulated. The
simulation results are plotted in Fig. 20. The output from
the peak-following circuit XLSCELL .30 acts as a dynamic
threshold for each cell, replacing the extemally applied
global threshold of the first-generationdesign (Section 3-
3.2). Comparator input offset mismatch made setting a
global threshold level, valid for all cells in the array, dif-
ficult. Thus, stripe detection is made more robust by this
modification. In addition, the ""hue" peak detection of the
new design provides better quality range data because the
new stripe detection scheme identifies the location of the
peak in time more accuratelythan simple thresholding.

The peak-intensity value held within the second-
generation cell is an important artifact of the ranging process
and, in the new design, is provided as an additional sensing
element output. The illumination source in the system, the
stripe, is of known power. Intensity reduction from 1/7-
type losses can be accountedfor becauserange to the object
is measured. The intensity value therefore provides a direct
measure of scene reflectanceproperties at the stripe wave-
length. It is an image aligned perfectly with range readings
from the cell array.

The area in each cell dedicated to time-stampread out is
much smaller in the new design. Direct addressing of the
cell tn be read, using row and column selects, eliminates
the token state necessaryin the first-generation design. The
N x M array isread using N row selectlines and M col-
umn select lines. A given cell is enabled for read out by
asserting the row and column select lines that correspond
to the location of the cell in the array. The two-level bus hi-
erarchy has been maintained, however, to keep bus loading
at a minimum. The area savings of the new read selection
method has made cell area of the second-generationdesign
smaller despite the additional peak detection circuitry.
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8 Conclusion

We have presented the design and construction of a very
high-performance range-imaging sensor. This sensor ac-
quiresacomplete 28 x 32 range-data framein a few millisec-
onds. Its range accuracy and repeatability were measured
to be less than 0.5nun on average at half-meter distances.
The success of this implementation can be attributed to the
use of a VLSI smart sensor methodology that allowed a
practical implementation of the cell-parallel technique.
While the advantages of processing at the point sensing
have been advocated by many, few practical smart-sensor
implementations have been demonstrated. The cell-parallel
range imager presented here bridges the gap between smart
sensor theory and practice, demonstrating the impact that
the smart sensor methodology can have on robotic percep-
tion systems, like automated inspection and assemhlytasks.
Smart VLSI-based sensors, like the high-speed range
image sensor presented here, will be key components in
future industrial applications of sensor-based robotics.
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A Multiple-baseline Stereo
Method:

Abstract

This paper presents a stereo matching method which uses
multiple stereopairs with various baselines to (obtainprecise
distance estimates without suffering from ambiguity.

In stereo processing, a short baseline means that the es-
timated distance will be less precise due to narrow trian-
gulation. For mnre precise distance estimation, a longer
baseline is desired. With a longer baseline., however, a
larger disparity range must be searched to find a match. As
a result, matching is more difficult and there is a greater
possibility of a false match. Sothere is a trade-off between
precision and accuracy in matching.

The stereo matching method presented in this paper uses
multiple stereo pairs with different baselines generated by
a lateral displacement of a camera. Matching is performed
simply by computing the sum of squared-difference (SSD)
values. The SSD functions for individual stereo pairs are
represented with respect to the inverse distance (rather than
the disparity, as is usually done), and then are simply added
to produce the sum of SSDs. This resulting function is
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called the SSSD-in-inverse-distance. We show that the
SSSD-in-inverse-distancefunction exhibits a unique and
clear minimum at the correct matching position even when
the underlyingintensity pattems of the scene include ambi-
guities or repetitive pattems. An advantage of this method
is thatwe can eliminate false matches andincrease precision
without any search or sequential filtering.

This paper first defines a stereo algorithm based on
the SSSD-in-inverse-distance and presents a mathematical
analysis to show how the algorithm can remove ambiguity
and increase precision. Then, a few experimental results
with real stereo images are presented to demonstrate the
effectivenessof the algorithm.

1 Introduction

Stereois a useful technique for obtaining 3-D information
from 2-D images in computer vision. In stereo matching,
we measure the disparity d, which is the differencebetween
the corresponding points of left and right images. The
disparity d is related to the distance = by

1
d=BF-, (1)

where B and E are baseline and focal length, respectively.

This equation indicates that for the same distance the
disparity is proportional to the baseline, or that the baseline
length B acts as a magnification factor in measuring 4 in
order to obtain =, That is, the estimated distance is more
precise if we set the two cameras farther apart from each
other, which means a longer baseline. A longer baseline,
however, poses its own problem. Becausea longerdisparity
range must be searched, matching is more difficultand thus
there is a greater possibility of a false match. So there is
a trade-off between precision and accuracy (correctness) in
matching.

One of the most common methods to deal with the prob-
lem is a coarse-to-fine control strategy [1] = [5]. Matching
is done at a low resolution to reduce false matchesand then
the result is used to limit the search range of matching at
a higher resolution, where more precise disparity measure-
ments are calculated. Using a coarse resolution, however,
does not always remove false matches. This is especially
m e when there is inherent ambiguity in matching, such
as a repeated pattern over a large part of the scene (eg.,
a scene of a picket fence). Another approach to remove
false matches and to increase precision is to use multiple
images, especially a sequence ofdensely sampled images
along a camera path [6) —[2]. A short baseline between a
pair of consecutiveimages makes the matching or tracking
of featureseasy, while the structure imposed by the camera
motion allows integration of the possibly noisy individual
measurements into a precise estimate. The integration has
been performed either by exploiting constraints on the EPI
{61177 or by a sequential Kalman filtering technique(8][9].

The stereo matching method presented in this paper be-
longs to the second approach: use of multiple images with
different baselines obtained by a lateral displacement of a
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camera. The matching technique, however, is based on
the idea that global mismatches can be reduced by adding
the sum of squared-difference (SSD) valnes from multiple
stereo pairs. Thatis, the SSD values are computed first for
each pair of stereo images. We represent the SSD values
with respect to the inverse distance 1/z (rather than the
disparity 4, as is usually done). The resulting SSD func-
tions from all stereo pairs are added togetherto produce the
sum of SSDs, which we call SSSD-in-inverse-distance. \We
show that the SSSD-in-inverse-distance function exhibitsa
unique and clear minimum at the correctmatching position
even when the underlying intensity pattems of the scene
include ambiguities or repetitive pattems.

There have been stereo techniques that use multiple im-
age pairs taken by cameras which are arrangedalonga line
[107{11){12), in the form of a triangle [13][14)[15] (called
trinocular stereo), or in the other formation {16]). How-
ever, all of these techniques, except [10] and [16], decide
candidatepoints for correspondencein each image pair and
then search fnrthe correctcombinations of correspondences
among them using the geometrical consistencies that they
must satisfy. Since the intermediate decisions on corre-
spondences are inherently noisy, ambiguous and multiple,
finding the correctcombinations requires sophisticatedcon-
sistency checks and search or filtering. In contrast, our
method does not make any decisions about the correspon-
dencesin each stereoimagepair; instead, it simply accumu-
lates the measures of matching (SSDs) from all the stereo
pairs intoa singleevaluationfunction,ie., SSSD-in-inverse-
distance, and then obtains one correspondingpoint fromit.
In other words, our method integrates evidence for a final
decision, rather than filtering intermediate decisions. In
this sense, Tsai [16] employed strategy very similarto ours:
he used multiple images to sharpen the peaks of his over-
all similarity measures, which he called JIMM and WVM.
However, the relationshipbetween the improvement of the
similarity measures and the camera baseline arrangement
was not analyzed, nor was the method tested with real im-
agery. In this paper we show both mathematical analysis
and experimental results with real indoor and outdoor im-
ages, which demonstratehow the SSSD-in-inverse-distance
function based on multiple image pairs fromdifferent base-
lines can greatly reduce false matches, while improving
precision.

In the next sectionwe presentthe method mathematically
and show how ambiguity can be removed and precision in-
creased by the method. Section 3 provides a few experi-
mental results with real stereo images to demonstrate the
effectiveness of the algorithm. Section 4 presents conclu-
sions.

2 Mathematical Analysis

The essence of stereo matching is, given a point in one
image, to find in another image the corresponding point,
such that the two points are the projections of the same
physical point in space. This task usually requires some
criterion to measure similarity between images. The sum
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of squared differences (SSD) of the intensity values (or
values of preprocessed images, such as bandpass filtered
images) over a window is the simplest and most effective
criterion. In this section, we define the sum of SSD with
respect to the inverse distance (SSSD-in-inverse-distance)
for multiple-baseline stereo, and mathematically show its
advantage in removing ambiguity and increasing precision.
For this analysis, we use 1-D stereo intensity signals, but
the extension to two dimensional images is straightforward.

2.1 SSD Function

Suppose that we have cameras at positions Py, Py, . .., Py,
along a line with their optical axes perpendicular to the
line and a resulting set of stereo pairs with baselines
By, By,...,B, asshownin figure 1. Let fo(z) and fi(z)
be the image pair at the camerapositions 7, and £, respec-
tively. Imagine a scene point Z whose distance is e. lts
disparity d,.(;) for the image pair taken from 7, and F; is
dr(i) = E}j

We model the image intensity functions fo(z) and fi(z)
near the matching positions for Z as

fo(x) flz) + nol(x)
filz) = flz—dup) Tni(z), 3)
assuming constant distance near Z and independent Gaus-
sian white noise such that
no(z), ni(z) ~ N(0,02). (4)
The SSDvalue e4;, over awindow W at a pixel position

x of image fo(z) for the candidate disparity d;) is defined
as

eatiy(,dey) O ) (folz +5) — filzw +dgy + 7)) (5)

JEW

where the 3 .y, Means summation over the window. The
d(;y that gives a minimum of eq(i)(z, dgiy) is determinedas
the estimate of the disparity at z. Since the SSD measure-
ment eqq;y (z, d;y) is a random variable, we will compute
its expected value in order to analyze its behavior:

Eleq(#,43;))]

E Y (flz+3)— o +du ~ dusy + 7)
JEW
+no{z + j) — nilz + digy + 7))°]

Z (f(z+7) = flz +dgy —dugiy +3))7 + 2Nw0?2,
JjEW

il

(6

where NV, is the number of the points within the window.
For the rest of the paper, E[] denotes the expected value of
arandomvariable. In derivingthe above equation, we have
assumed that d..(;) is constant over the window. Equation
(6) says that naturally the SSD function eg;y (2, d(sy) IS
expected to take a minimum when dg;y = d,;), i.e., at the
right disparity.

Let us examine how the SSD functione;y(z, d;)) be-
haves when there is ambiguity in the underlying intensity
function. Suppose that the intensity signal!_{(:c) has the
same pattem around pixel positions z andz T a,

fz+i)=Fflz+a+j), jeWw (7)

where a # 0is a constant. Then, from equation (6)
E[ed(i) (:1':, d"{f))] = E[ed(i) (331 dr(z’) + a)] = 2Nw°’i» (8)

This means that ambiguity is expectedin matching in terms
of positions of minimum SSD values. Moreover, the false
match at d,; + a appears in exactly the same way for
all #; it is separated from the correct match by a for all
the stereo pairs. Using multiple baselines does not help to
disambiguate.

2.2 SSD with respect to Inverse Distance

Now, let us introduce the inverse distance ¢ such that

>From equation and (2),

BiF¢r (10
B F(, (11)
where ¢, and ¢ are the real and the candidate inverse dis-

tance, respectively. Substitutingequation (11) into (5), we
have the SSD with respect to the inverse distance,

eci(2:€) = Y (folz+j) = filz+ BFC+5))%, (12)

JEW

at position 2 for a candidate inverse distance(. Its expected
value is

Elecy(z, 0] = Y (f(o+5)~ F(2+BiF((~()+i)) 2 +2N,02.

JEW

(13)

Finally, we define a new evaluation function

e¢(12.--ny (2, ), the sum of SSD functions with respect to

the inverse distance (SSSD-in-inverse-distance) for multi-

ple stereo pairs. It is obtained by adding the SSD functions
e¢(i)(z, ¢) forindividual stereo pairs:

T

€4(12:n) (=, Q) = Z Bc(i)(ﬂv‘sC)v

i=1

(14)
Its expected value is

Elecua.my(z, Q)] = Z Efecii{e, )]
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fle+BiP(C = G) + 1))

Zn)Z(f(a:Jrj)—

i=1 jeW

+2nNyol. (15)

lo the next three subsections,we will analyze the character-
istics of these evaluation functionsto see how ambiguity is
removed and precision is improved.

2.3 Elimination of Ambiguity (1)

As before, suppose the underlying intensity pattem f(z)
has the same pattern around X and x + a (equation (7)).
Then, according to equation (13), we have

Elecy(z,¢r)] = Elecy(z, G+ -3%;)] = 2Nyl (16)
We still have an ambiguity; a mlnlmum is expected at a
false inverse distance (¢ = ¢~ + =%=. However, animpor-
tant point to be observed here is that thls minimum for the
false inverse distance ¢y changes its position as the base-
line B; changes, while the minimum for the correctinverse
distance(,. doesnot. This isthe property that the new evalu-
ation function, the SSSD-in-inverse-distance(14), exploits
to eliminate the ambiguity. For example, suppose we use
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two baselines By and B> (8| # B;). >From equation (15)

Elecq12y(2, ()]
= 3 (fle+5) - Hz+BIF(¢—¢) +4)°

JEW
+ Y (fm+]) - fla+ BF(C - () +3))
JEW
+ an,o2 17
We can prove that
E[eC(H)(maC)] > 4Nw‘712: = EIEC(IZ)(‘T:Q)} for ¢ # (.
(18)

(refer to appendix A) In words, ec(12)(x, ¢) IS expected to
have the smallest value at the correct . That is, the ambi-
guity isliely to be eliminated by use of the new evaluation
function with two differentbaselines.

We can illustrate this using synthesized data. Suppose
the point whose distance we want to determine isatz = 0
and the underlying function f(z) is given by

f@={;

Figure 2 (a)showsaplotof f(z). Assumingthatd,;y = 5,
o2 = 0.2,and the window size is 5, the expected values of
the SSD function eg4¢1y (X d(1y) are as shownin figure2 (b).
We see that there is an ambiguity: the minima occur at the
correct match d¢yy = 5 and at the false match d¢;y = 13.
Which match will be selected will depend on the noise,
search range, and search strategy Now suppose we have a
longer baseline B, such that £z 5 = 1.5. >From equations
(6) and (10), we obtain E[ed(z)] as shown in figure 2 (c).

Again we encounteran ambiguity, and the separation of the
two minima is the same.

Now let us evaluate the SSD values with respect to the
inversedistance( rather than the disparity d by using equa-
tions (12) through (15). The expected values of the SSD
measurements Efec(1y] and Ele;(z)] with baselines By and
B, are shown in figures 2 (d) and (e), respectively (the plot
is normalized such that B; F = 1). Note that the minima at
the correct inverse distance (( = 5) does not move, while
the minima for the false match changes its position as the
baseline changes. When the two functions are added to
produce the SSSD-in-inverse-distance, its expected values
Ele¢12)} are as shown in figure 2 (f). We can see that the
ambiguity has been reduced because the SSSD-in-inverse-
distance has a smaller value at the correct match position
than at the false match.

cos(fzx)+2 if—4<z <12

ifx < —40r12< x. (19)

24 Elimination of Ambiguity (2)

An extreme case of ambiguity occurs when the underly-
ing function f(z) is a periodic function, like a scene of a
picket fence. We can show that this ambiguity can also be
eliminated.

Let f(z) be a periodic function with period T. Then,
each ey (%, ¢) is expected to be a periodic function of ¢

with the perlod 7. This means that there will be multiple
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Figure 3: "Town" data set: (a) Image0; (b) Image9

minima of e¢(;)(z, ) (i.e., ambiguity in matching) at inter-
vals of in <. When we use two baselines and add their
SSD values, the resulting e¢ 12y (z, ¢) will be still aperiodic
function of ¢, but its period T35 is increased to

).

where ZC'M () denotes Least Common Multiple. That is,
the period of the expectedvalue of the new evaluation func-
tion can he made longer than that of the individual stereo
pairs. Furthermore, it can be controlled by choosing the
baselines By and B, appropriately so that the expected
value of the evaluation function has only one minimum
within the search range. This means that using multiple-
baseline stereo pairs simultaneously can eliminate ambi-
guity, although each individual baseline stereo may suffer
from ambiguity.

T T

B F 3 'E'?'-_F: (20)

Ty =LCM (

Wk illustrate this by using real stereoimages. Figure 3(a)
shows an image of a sample scene. At the top of the scene
there is a grid board whose intensity functionis nearly pe-
riodic. We took ten images of this scene by shifting the
camera vertically as in figure 4. The actual distance. be-
tween consecutive camerapositions is 0.05 inches. Let this
distance be b. Figure 3 shows the firstand the last images
of the sequence. We selecteda point = within the repetitive
grid board area in image9. The SSD values ¢ (z, {) over
5-by-5-pixelwindows are plotted forvarious baseline stereo
pairs in figure 5. The horizontal axis of all the plots is the
inverse distance, normalized such that 867 = 1. Figure 5
illustrates the trade-offbetween precision and ambiguityin
terms of baselines. That is, for a shorter baseline, there are
fewer minima {i.e. less ambiguity), but the SSD curve is
flatter (i.e. less precise localization). On the other hand,
for a longer baseline, there are more minima (.. more
ambiguity), but the curve near the minimum is sharper; that
is, the estimated distance is more precise if we can find the
correctone.

Now, letus take two stereoimage pairs: onewith B =56
and the other with B = 8b. In figure6, the dashed curve
and the dotted curve showthe SSD for B = 5band B = 8b,
respectively. Let us suppose the search range goes from 0
to 20 in the horizontal axis, which in this case corresponds

imageQ
image!
image2
image3
imaged
image5
image6

image?

e 9 & & & 0 0

image8

T

b Zb 3b 4b 5b 6b 7> 8b 9b

image9 4

Baseline

(®)
Figure 4: "Town" data set image
sequence

(,,)?z §

(b)§ g

Figure 5: SSD values vs. inverse depth: (a) E = b; (b)
E = 2b; () E = 3b;(d) B = 4b; (e) B = 5b;(f) B = 6b;
(g) B == 7b;(h) B = 8b. The horizontal axis is normalized
suchthat 86 F = 1.

1t 12 to oo inchesin distance. Thoughthe SSD values take
a minimum at the correctanswernear ¢ = 5, there are also
other minima for both cases. The solid curve shows the
evaluation function for the multiple-baseline stereo, which
is the sum of the dashed curve and the dotted curve. The
solid curve shows only one clear minimum; that is, the
ambiguity is resolved.

So far, we have considered using only two stereo pairs.
We can easily extend the idea to multiple-baseline stereo
which uses more than two stereo pairs. Corresponding to




g 14000
k] —e— B=5
1 s e B=8b
& roer —%— B=3b&%b
g
g 10000 -
K]
3 so00f
6000
2000
o L
0 ] 10 15 F.
inverse depth
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Figure 7 : Combining multiple baseline stereo pairs

equation (20), the period of Efe¢(12...n){%, ¢)] becomes
crnef T T T

e =Y\ BF BE B,..F) (21)
where By, B,, . ..,B, arebaselines for each stereo pair.

We will demonstrate how the ambiguity can be further
reduced by increasing the number of stereo pairs. >From
the data of figure 4, we firstchooseimagel and image9 asa
longbaseline stereopair, ie. (1)B = 8h. Then, we increase
the number of stereopairs by dividing the baseline between
imagel and image9, i.e. (2) B = 4band 8b, (3) B = 24,
4b, 6b and 8b, (4)B = b, 2b, 36, 4b, 5b, 6b, 7b and 8b.
Figure 7 demonstrates that the SSSDs-in-inverse-distance
shows the minimum at the correct position more clearly as
more stereo pairs are used.

25 Precision

We have shown that ambiguities can be resolved by us-
ing the SSSD-in-inverse-distancecomputed from multiple
baseline stereopairs. The techniquealsoincreasesprecision
in estimating the true inverse distance. We can show this
by analyzing the statistical characteristicsof the evaluation
functions near the correct match.

>From equations (3), (10), and (12}, we have

ecy(z,0) = D (Flz+5) - fle+ BiF( = &) +4)

JEW
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+no(z + j) — ni(e + BiF¢+ )% (22)

By taking the Taylorexpansionabout{ = ¢ up to the linear
terms, we obtain

Flo+BiF((—Cr)+]) = f(:c+j)+B,-F(c—g,.)f'(xJ(r3g).

2
Substituting this into equation (22), we can approximate
ec(iy(#,€) near ¢~ by a quadratic form of ¢:

e¢(iy(z; <)

ST (=BiF(¢ = G} f' (@ + )

JEW

tno(z T3) - ni(z +B;F¢ 7))

= BIFa(z)(¢ - ¢)? T2BiFhi(2)(¢ - ¢&) T4

2

24)
where
a(z) = D (f=+0)) (25)
JEW
bi(z) = Y flz+i)nilz+ BiFC+j) — no(z + 7))
JEW
(26)
c(z) = Y (nlz+BiF¢+7)—no(z+3))% @7

JEW

The estimated inverse distance §,(;)is the value ( that makes
equation(24) minimum;

bi(z)
&t = ¢ — BiFa@)

Since B[b;(z)} = 0, the expectedvalue ofthe estimate &-(:y
is the correct value ¢, but it varies due to the noise. The
variance of this estimate is:

(28)

Var(bi(z))
BIF(u(z)?
202
B?F2a(z)’

Basically, this equation states that for the same amount of
image noise o2, the varianceis smaller (theestimateis more
precise) as the baseline B; is longer, or as the variation of
intensity signal,a(z}, is larger.

We can follow the same analysis for e¢(12...n) (2, {} of
(14), the new evaluation function with multiple baselines.
Near ¢, itis

Var (fr(i))

29)

eg1z-m (@, ¢) & (Z B?) Fla(z)(¢ - ¢)°

+2F (i Bibi(m)) (¢-¢)+ i ci{z). (30)
=1

The variance of the estimated inverse distance ¢(12...n) that
minimizes this function is
202

Vaﬁ"(f‘,.(m...n)) = (E:-L] B?)"an(w). (31)
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>From equations (29) and (31), we see that

1 - 1
Var(€:i2-n)) ; Var () ' (32
The inverse of the variance represents the precision of the
estimate. Therefore, equation (32) means that by using
the SSSD-in-inverse-distce with multiple baseline stereo
pairs, the estimate becomes more precise. We can confirm
this characteristic in figures 6 and 7 by observing that the
curve around the correct inverse distance becomes sharper
as more baselines are used.

3 Experimental Results

This section presents experimental results of the multiple-
baseline stereobased on SSSD-in-inverse-distance with real
2D images. A complete description of the algorithm is
included in Appendix B.

The first result is for the "Town" data set that we showed
in figure 3. Figures 8 (a) and (b) are the distance map and
its isometric plot with a short baseline, E = 3b. The result
with a single long baseline, B = 9%, is shown in figure
9. Comparing these two results, we observe that the dis-
tance map computed by using the long baseline is smoother
on flat surfaces, i.e., more precise, but has gross errors in
matching at the top of the scene because of the repeated
pattem. These results illustrate the trade-off between am-
biguity and precision. Figure 10,0n the other hand, shows
the distance map and its isometric plot obtained by the new
algorithmusingthreedifferent baselines, 35, 6b, and 95. For
comparison, the corresponding oblique view of the scene is
shown infigure11. We can note that the computed distance
map is less ambiguous and more precise than those of the
single-baseline stereo.

Figure 12 shows another data set used for our experi-
ment. Figures 13 and 14 compare the distance maps com-
puted from the short baseline stereo and the long baseline
stereo: the longer baseline is five times longer than the
short one. For comparison,the actual oblique view roughly
corresponding to the isometric plot is shown in figure 15.
Thoughnorepetitivepattemsareapparentintheimagesyve
can still observe gross errors in the distance map obtained
with the long baselinedue to false matching. In contrast, the
result from the multiple-baseline stereo shown in figure 16
demonstrates both the advantage of unambiguous matching
with a short baseline and that of precise matching with a
long baseline.

4 Conclusions

In this paper, we have presented a new stereo matching
method which uses multiple baseline stereo pairs. This
method can overcome the trade-off between precision and
accuracy (avoidance of false matches) in stereo. The
method is rather straightforward: we represent the SSD
values for individual stereo pairs as a function of the in-
verse distance, and add those functions. The resulting

function, the SSSD-in-inverse-distance, exhibits an unam-
biguous and sharper minimum at the correct matching po-
sition. As a result there is no need for search or sequential
estimation procedures.

The key idea of the method is to relate SSD values to
the inverse distance rather than the disparity. As an af-
terthought, this ideais natural. Whereas disparity is a func-
tion of the baseline, there is only one true (inverse) distance
for each pixel position for all of the stereo pairs. Therefore
there must be a single minimum for the SSD values when
they are summed and plotted with respect to the inverse
distance. We have shown the advantage of the proposed
method in removing ambiguity and improving precision by
analytical and experimental results.
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A SSSD-in-inverse-distance for Am-
biguous Pattern
Proposition: Suppose that there are two and only two

repetitions of the same pattem around positions z and x +a
where a # 0is a constant. Thatis, forj E W

F(z+j) = f(€+§), ifandonlyifé =zoré=2z%ta

(33)
Then, if By # By, forV({,( # ¢,
Ele¢z) (=, )]
= > (flz+5)- flz+ BIF((— ) +7))
jEW
+ Y (f@+75) = flz+ BaP(¢ = ) +5))* + 4Nuo?,
JEW
> 4N,0l = Elecnn(z, ) (34)

Proof: Tentatively suppose that for 3¢y, (¢ # (o,

STz +5) - Fa+ BiF(( - G)+ 1)

jew
Y (flz+71) - f@+ B F (G — G) +5))
JEW
= 0 (35)
Then, it must be the case that
fle+j) = fla+a+))
and f(z+j) = flz+a+7), (36)




(b)

Figure 8: Result with a shortbaseline, B = 3b: (a) Distance map; (b) Isometric plot of the distancemap from the upper
left comer. The matching is mostly correct, but very noisy.

correct distance
) .

@ (b) N
Figure 9: Resultwith a long baseline, B = 9b: (a) Distance map; (b) Isometric piot. The matching is less noisy when it is

correct. However, there are many gross mistakes, especially in the top of the image where, due to a repetitive pattem, the
matching is completely wrong.
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Figure 10: Result with multiple baselines, B = 3b, 6b, and 9b: (a) Distance map;“(b) Isometric plot. Compared with
figures8(b) and 9(b), we see that the distance map is Jess noisy and that gross errors have been removed.

Figure 11: Oblique view
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Figure 1 2 "Coal mine" data set, long-baselinepair
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Figure 13: Result with a shortbaseline: (a) Distance map; (b) Isometric plot of the distance map viewed from the lower
left comer
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Figure 14: Result with a long baseline: (a) Distance map; (b) Isometric plot
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Figure 16: Multiple baselines: (a) Distance map; (b) Isometric plot



for § E W, where

o = BiF(-G)
w = BiF((—G).

Since By # B2 and ¢ # ¢y,

a1 # as. (37)

So, we have

f(g;.*-j):f(g-}-j)’ for{zm,:c+a1,orx+c(12.)

38
Since this contradicts assumption(33), equation (35) does
not hold. Its left hand side must be positive. Hence (34)
holds.

B Multiple-Baseline Stereo Algorithm

We present a complete description of the stereo algorithm
using multiple-baseline stereo pairs. The task is, given n
stereopairs, find the ¢ that minimizes the SSSD-in-inverse-
distance function,

$SSD(%,¢) = f D (folz+1) = filz + BiFC+ )2

i=l jJEW
(39)
We will perform this task in two steps: one at pixel res-
olution by minimum detection and the other at sub-pixel
resolution by iterative estimation.

Minimum of SSSD at Pixel Resolution

For convenience, instead of using the inverse distance, we
normalize the disparity values of individual stereo pairs
with different baselines to the correspondingvalues for the

largest baseline. Suppose By < B, < -+ < B,. We
define the baseline ratio R; such that
B;
;= —, 4
Ri= g (40)
Then,
B;F(=R;B,F( = R;d(n), (41)

where d(,,) is the disparity for the stereopair with baseline
B,. Substituting this into equation(39),

SSSD(x,d(m) = Y, ¥ (folw+i)— file+Ridy+))
i=1 jew

(42)
We compute the SSSD function for a range of disparity
values at the pixel resolution, and identify the disparity that
givesthe minimum. Note thatpixel resolutionfor the image
pair with the longest baseline (B,,) requires calculation of
SSD values at sub-pixelresolutionfor othershorterbaseline
stereo pairs.

Iterative Estimation at Sub-pixel Resolution
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Once we obtain disparity at pixel resolution for the longest
baseline stereo, we improve the disparity estimate to sub-
pixel resolution by an iterative algorithm presented in
[12]{17). For this iterative estimation, we use only the
image pair fo{z) and f,(z) with the longest baseline. This
is due to a few reasons. First, since the pixel-level esti-
mate was obtained by using the SSSD-in-inverse-distance,
the ambiguity has been eliminated and only improvement
of precision is intended at this stage. Second, using only
the longest-baselineimage pair reduces the computational
requirement for SSD calculation by a factor of n, and yet
does not degrade precision too significantly.

In the experiments shown in section 3, we used the fol-
lowing algorithm fur sub-pixel estimation: Let d,y be
the initial disparity estimate obtained at pixel resolution.
Then, a more precise estimate is computed by calculating
the following two quantities:

Adyn)
2iewlfol@ +3) = falz + dogny + 1)) fa(x + dogmy + 7)
B 2 iew(fale +domy + 1))
43)
2 202
- n | 44
78dm 2 iew (falz + dogny + 502 “o

The value Ady,,) is the estimate of the correction of the
disparity to further minimize the SSD, and Uid(,,) is its
variance. We iterate this procedure by replacing do(,y by

do(n) — dofn) + Adin) (45)

until the estimate convergesor np to a certain maximum
number of iterations.

References

[1] D. Marr and T, Poggio. A theory of human stereo
vision. In Proc. Roy. Soc. London, volume vol. B 204,
pages 301-328,1979.

[2] W.E.L. Grimson. Computational experimentswith a
feature based stereoalgorithm. ZEEE Transactionson
Pattem Analysis and Machine Intelligence, 7(1):17-
34, January 1985.

(3] StephenT. Bamard. Stochasticstereo matching over
scale. Zntemational Journal d Computer Vision

pages 17-32,19809.

l

{4] M.J.Hannah. A system for digital stereo image match-
ing. PhotogrammetricEngineering and Remote Sens-
ing, 55(12):1765-1770, Dec 1989.

{5 Jer-Sen Chen and Gerard Medioni. Parallel multi-
scale stereo matching using adaptive smoothing. In
ECCV90, pages 99-103,1990,

[6]R. C. Bolles, H. H. Baker, and D. H. Marimont.
Epipolar-plane image analysis: An approach to de-
terniming structure from motion. Zntemational Jour-
nal of Computer Vision,1(1), 1987.



2-36

[7] Masanobu Yamamoto. The image sequence analy-
sis of three-dimensional dynamic scenes. Technical
Report 893, Electrotechnical Laboratory - Agency of
Industrial Science and Technology, Tsukuba, Ibaraki,
Japan, May 1988.

[8] Larry Matthies, Richard Szeliski, and Takeo Kanade.
Kalman filter-based algorithms for estimating depth
fromimage sequences. International Journal of Com-
puter Vision, 3:209-236, 1989.

[9] Joachim Heel. Dynamic motion vision. In Proceed-
ings f the DARPA Image Understanding Workshop,
pages 702-713, Palo Alto, Ca, May 23-26 1989.

[10] B. Wilcox. Telerobotics and Mars Rover research at
JPL. Lecture at CMU, Oct. 1987.

[11] Hans P.Moravec. Visual mapping by a robot rover.
In Proc. IJCAI’79, pages 598600, 1979.

{12] Larry Matthies and Masatoshi Okutomi. A bayesian
foundation for active stereo vision. In SPZE, Sensor
Fusion Z2 Human and Machine Strategies, pages 62—
74, November 1989.

[13} M_Yachida, Y. Kitamnra,and M. Kimachi. Trinocular
vision: New approach for correspondenceproblem. In
Proc. ZCPR, pages 1041-1044,1986.

[14} Victor J. Milenkovic and Takeo Kanade. Trinocular
vision using photometric and edge orientation con-
straints. In Proceedings of the Image Understanding
Workshop,pages 163-175,Miami Beach, Florida, De-
cember 1985.

[15] N. Ayache and F. Lustman. Fast and reliable passive
trinocular stereovision. In Proc. ICCV’87, pages422-
426,1987.

[16] Roger Y. Tsai. Multiframe image point matching
and 3-d surface reconstraction. ZEEE Transactions
onPattem Analysis and Machine Intelligence, PAMI-
5(No.2), March 1983.

[17) Masatoshi Okutomi and Takeo Kanade. A locally
adaptive window for signal matching. In Proc. of Int’l
Conf. on Computer Vision, December 1990.




3-1

Building and Using Scene Representations
In Image Understanding

H. Harlyn Baker’
Acrtificial Intelligence Center
SRI International
Menlo Park, CA 94025, USA

1. SUMMARY

The task of having computers able to understand their
environments through direct imaging has proved to be
formidable. With its beginnings about 30 years ago (1),
the field of computer vision has grown as a major part
of the pursuit for artificial intelligence. Most elements
of this pursuit - language understanding, reasoning and
planning, speech - are very difficult challenges, but vi-
sion, with its high dimensionality of space, time, scale,
color, dynamics, and so forth, may be the most challeng-
ing. Early attempts to develop computer vision focused
on restricted situations in which it was feasible to pro-
vide the computer with fairly complete descriptions of
what it would encounter. In such cases, single images
provided the sensory information for analysis. As the
domains of application grew, the requirements for more
competent descriptions of the world increased. Dealing
with three-dimensional (3D) dynamic structures (the real
world) from 3D dynamic platforms (we humans) calls for
greater capabilities on both the analysis and synthesis
sides of the issue. The analysis side is the processing of
sensory data for such tasks as recognition and navigation,
and a number of techniques are discussed here for dealing
with these twe-, three~, and higher-dimensional data, The
synthesis side is the construction of ‘internal” descriptions
of what is seen in the environment - constructed now so
that they may be used subsequently far the above tasks.
This latter issue is the underlying theme we pose in this
paper - developing representations from vision that will
later enable effective automated operation in our 3D dy-
namic environments.

2. INTRODUCTION

Vision, which appears so easy for all of us, has proved to
be an extremely complex task when addressed with com-
puters. Despite early expectations in the field for realiza-
tion of machine vision capabilities, it has grown to occupy
a large proportion of the continuing artificial intelligence
research effort. Understanding the coarse structure, let
alone the nuances, of our environment continues to he a
large and, in many parts, elusive challenge.

*The SRI research discussed here has been sponsored by
DARPA under contracts DACA-76-85-C-0004, DACA-76-
90-C-0021,and DACA-76-92-C-0003, and by Fujitsu System
Integration Laboratory.

2.1 Knowledge for Analysis

A major component of the vision effortsseen today still
parallels approaches taken throughout the years — the
building in to the system of specific knowledge of the do-
main it will encounter. Vision does not take place without
memory. As sighted individuals, we have a great deal of
expertise, accumulated over years of observing and inter-
acting with our 3D dynamic environments. Undoubtedly,
certain capabilities appear with us at birth. Experience,
however, and the memory that it accumulates, is equally
critical to our performance. It enables us to rapidly and
robustly interpret situations and events, recognize the fa-
miliar, and react opportunely to what we see. Since expe-
rience appears so necessary to our performance, it seems
essential that a computer charged with seeing also have
access to some equivalent sort of background knowledge.
Although seldom enunciated, how this knowledge is given
to the system, how it is represented, and how it is used
in analysis of the visual imagery turn out to be principal
issues in computer vision.

These knowledge issues occur at all levels of the analysis,
from deciding what useful information from small parts
of individual images to extract for subsequent process
ing (e.g., brightness values, gradients, contour elements),
to considering what is relevant for identifying a striding
distant silhouette as one’s Uncle Bob. At some levels of
the analysis there are generally accepted definitions of
the knowledge that is appropriate (for example, the use
of spatial-frequency-tuned filters), but, mostly, very little
is understood and very little is agreed upon about these
matters.

2.2 Representational Limitations

My discussion here relates to this knowledge-source issue.
I phrase it as building and using computational represen-
tations in the task of understanding what is presented in
an image of ascene. | present a number of pieces of work,
indicating the capability they were designed to provide,
the role of this capability in a vision system, and the level
of initial-state knowledge provided to the system along
with its ability to augment this through time. The main
point | draw out is that all computer vision systems begin
with an alphabet of operational primitives used to repre-
sent the image data. They have a vocabulary of combina-
tions of these that they can deal with for scene interpreta-
tion. The capability of the system is set by its expressive
power in this vocabulary, while its utility in a broader
context is determined by the breadth of these definitions
and its ability to grow beyond their limiting bounds. The
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latter issuc pushes up against generic ‘learning,” an area
of artificial intelligence probably unparalleled in both its
potential and the ratio of its promise to its realization.’
However, the issue of a system’s repertoire of expression —
its ability to build representations from imaged data and
use them in understanding the visual situation —provides
a key measure of its contributions: its contribution in
solving the particular problem it addresses as well as its
contribution to the computer vision task in general.

Two major determinants of the capabilities of a vision
system are (1)the modes of imaging used, and (2) the el-
ements on which it bases its analysis. In the next section |
will provide a reference framework for these by discussing
the principal modes of image data acquisition (single im-
ages, binocular stereo, and dynamic sequences) and the
two choices for processing styles - homogeneous versus
structured. The comparisons of image understanding sys-
tems | make in the following sections will be framed by
these categories.

3. IMAGING MODALITIES

Imagery for scene analysis comes in three principal forms:
monocular views; binocular views, and multi-image se-
quences of views - looking at a photograph, looking with
your two eyes without being able to move your head, and
the general situation of two eyes on a mobile head. Each
form of data contributes differently to the scene represen-
tation and image understanding tasks.

31 Dynamic Scenes

Image sequences may provide information about scene dy-
namics (other moving objects), or give differing perspec-
tives an a scene viewed as the sensor moves around. This
is a mode of operation that people are clearly very capa-
ble of using, as we observe our dynamic world and move
around in it, exploring. The relatively new area of “ac-
tive’ vision (as in a sensor that adjusts its perspective to
satisfy its requirements) studies acquiring and exploiting
these sorts of data. Since, from the viewpoint of sur-
vival, anything that is in motion in our vicinity is of spe-
cial interest to us, the analysis of dynamic imagery may
be expected to play a critical part in a computer vision
system.” Taking the more active role in data acquisition
- moving around and collecting information from a va-
riety of perspectives - leads to considerably more robust
and more precise scene measurements. The cost is con-
siderably more processing.

32 Binocular Viewing

What a single moving sensor does not provide is precise
3D measurement of moving objects. To determine the
three-space position of an object requires seeing it from
several (at least two) known perspectives simultaneously.
A moving object viewed by a moving sensor is viewed
from only one perspective at any instant.

“Thequestion of learning is probably at the root of the ques-
tion of intelligence.

2 An immediate question with such analysis lies in what is
being tracked through the dynamic sequence, and we will
return to a discussion of this.

Binocular views, image pairs captured simultaneously
from different locations (as the eyes provide), can give
sufficientinformation to enable 3D interpretation of both
static and dynamic elements of a scene. That is, simple
triangulation (back projection) can be applied to corre-
sponding points in two images from known viewing po-
sitions to determine the location of the observed point
in three-space. The higgest problem in stereo — one that
has been with us from the beginning - is developing reli-
able techniques for determining which point in one image
corresponds to a point in the other. This is the ‘corre-
spondence’ problem - matching elements® between views.
Although static binocular viewing is unusual — in human
vision mast binocular perception is dynamic - it is cer-
tainly effective, as viewing Figure 5 (subsection 6.3.3) will
show. Depth is a powerful aid to scene understanding.

3.3 Single Images

With a stationary sensor viewing a nonchanging scene,
a single snapshot view may be all that is available, and
alone must be the basis far scene interpretation. That
humans can operate with such a deficiency of informa-
tion, for example in viewing photographs, lacking dynam-
ics and explicit three-dimensionality, reveals the power of
our processing and the value of memory and experience.

Mast early theses in computer vision dealt with analysis
of single images, and their failings immediately taught us
the lesson of extensibility. Lacking access to the rich in-
formation of depth and motion, systems for single-image
analysis were initialized with specific knowedge of the sim-
ple objects with which they could deal, and .had no way
to grow beyond this aside from reprogramming.

If all that is presented is a single image, and never in the
context of a dynamic sequence, any interpretation will
have to forego explicit temporal or 3D analysis. Since
we presumably do not begin life with explicit. knowledge
of 3D structures, such as houses and cars, .yet develop
understanding of them over time (with both stereo and
temporal data available), it is inconceivable that memory
could operate without temporal analysis.

34 Processing Elements

A distinction within the different modes of operation that
will be contrasted throughout this article is the choice of
analytic element used in the analysis - image pixels or
‘higher-level’ features such as contrast edges or extended
contours. These are often termed pixel-based and feature-
based processing. At the pixel level, image intensity val-
ues are treated in an undifferentiated way, and the result-
ing representation is often termed “retinotopic” for its re-
semblance to a retinal layout. Featurebased processing
and description works with a distinguished subset of the
image information, and leads to scene descriptions that
are more sparse but, through better localization, are also
more precise. Although in truth this dichotomy is more
of a continuum, | will exclusively consider tke latter as
structured abstractions from the imagery - the features
will be edge elements or parts of contours.

3 A variety of choice of ‘element’have been developed.




4. SINGLE IMAGE ANALYSIS

A common task in computer vision is to identify or clas-
sify items in a single image taken of some scene. For
example, the task may be to identify and assemble com-
ponents of a small machine, or to identify targets in an
aerial view of a military installation. Clearly, single snap
shot images of such a scene will lack 3D and dynamic in-
formation. The processing must rely on some comparison
of what the computer expects to see with descriptions it
extracts from the single image.

At the pixel level, the comparison may aim to group parts
of the scene based on textural and other classifications.
For example, a region that exhibits high spatial intensity
variation (texture) may be classified as vegetation if the
scene is expected to contain vegetation. Homogeneous re-
gions may be sky if,again, the domain is known to be a
natural scene out of doors. Anticipated relations between
classified regions may provide use of mutual consistency
to make the interpretation more robust. For example, if
sky must be above vegetation, which is generally above
the ground, then these spatial relations should be required
of the classified regions. The major determinants of the
capability of the system are the quality of the classifiers
and the suitability of the relations. One may appreci-
ate that determining effectiveclassifications and relation-
ships, valid across a wide range of realistic situations,
might be difficult.

At the feature level, 2D shape descriptors are typically
extracted from such imagery, for example straight lines,
curves, and smooth contours, grouped into contiguous
pieces. Some previous automated or interactive process
has led to the development of a ‘model vocabulary’ - a
set of feature groupings that can be composed together
to represent the range of objects anticipated in the scene.
Recognition involves comparing the extracted features
(e.g., lines, arcs) and their interrelationships with those
represented by the models.

What is probably most important to observe in this
single-image analysis is that the processing mnst be pre-
ceded by defining what is expected to be seen in the im-
ages. Since 3D shape and motion are not available to
the analysis, recognition must be based solely on the 2D
information that can be obtained.

4.1 Interpretation through Pixel Classification
Strat (2) has demonstrated an impressive capability at in-
terpreting natural scenes with a pixel-based classification
system along the lines outlined above. He points out that
most recognition schemes are based on geometric repre-
sentations and matching of discrete features, yet natural
scenes are neither well described by geometry nor char-
acterized by specific localizable features. Taking a more
eclectic approach, he develops a battery of filters that at-
tempt to classify image regions, and builds a relational
network among these descriptors. What brings the clas-
sifiers together is ‘context’ - the expected relationships
between labeled components. These contexts are estab-
lished manually in advance of any processing, and are
individually constructed for specific domains.

By making the recognition context sets very specific, for
example identifying ‘foliage against sky’ rather than sim-
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ply ‘foliage,”they can be made more reliable. At the same
time, generic contexts can be defined that may be satis-
fied when more specific ones cannot. Context sets may
include components that are both positive (for example,
tree trunks tend to be vertical), and negative (ground can-
not extend above the skyline). A variety of grouping and
segmentation techniques are used over a variety of scales
to produce candidate scene region labelings — estimates
of pixel groupings (similar intensity or color), similar tex-
ture, horizontal or vertical orientation, line-like structure,
and so forth, Robust operation is attained through use of
overlapping or redundant filters. For example, sky may
be either an untextured homogeneous region of high in-
tensity or an area of smoothly varying general brightness
above most other areas in the image. Cliques — mutu-
ally consistent sets of classifications — are sought over the
image. The clique providing the greatest reliability and
coverage is chosen as the best interpretation of the scene.

Using an auxiliary knowledge representation system (the
Core Knowledge System, CKS (3)), a sequence of images
may be processed, accumulating and sharing constraints
from their individual interpretations. This, together with
a coarse use of stereo (4}, enables Strat’s system to build
up a rough symbolic 3D map of the area being viewed.

The examples Strat presents are in outdoors scenes of
trees, rolling hills, and pathways. Figure 1 shows a 3D
reconstruction of an outdoor scene analyzed with this sys-
tem
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Fig. 1. Ground and vegetation interpreted
from a single Image.

While demonstrating a good capability at classifying im-
age components in domains where the relationships have
been prespecified, this approach is unlikely to provide the
depth of interpretation needed for general scene nnder-
standing. One factor in this is that the system would
require a significantly larger vocabulary of objects witht
increasingly tight constraints on their interpretation to
distinguish, for example, among different types of trees
or, more critically, to recognize specific trees, such as the:
one with a broken branch on the top of acertain hill. This
requires geometric understanding rather than an under-
standing of certain relationships. In addition, no mecha-
nism is presented for abstracting the required rules from
the data. If one wants the system to show a utility be-~
yond simple domains, this generative aspect is essential,
and geometry probably cannot be avoided. Nevertheless,,
relational measures are generally missing from geometric-
based recognition systems, and the use of this relationall
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approach in a partnership with the more metric approach
of shape- and structure-based techniques should lead to
more reliable operation for both.

4.2 Shape from a Single Image

A difficulty in trying to obtain information about shape or
3D structure from asingle image is that a particular single
image could arise from an infinity of scene configurations.
The simplest example of this is an image of the image
itself, where there is clearly no three-dimensionality to be
observed, only interpreted. Interpretation requires knowl-
edge, including knowledge of the physics of the imaging
process and the local implications of intensity variation
with respect to the shape of the imaged surface. Never-
theless, we all have the ability to interpret single images
as 3D scenes, and there has been considerable effort in
the field to develop similar capabilities in the computer.
Using iterative optimization techniques and models of il-
lumination, reflectance, and variations including albedo,
Leclerc and Bobick (5), and others, have demonstrated
the ability to recover surface height from simple measures
on the imagery.

That such analysis cannot be guaranteed correct is ap-
parent from its fundamental assumptions. The interplay
of reflectances and shadowing could cause havoe with the
modeling, which presumes fairly simple relationships be-
tween light source and reflecting surface. Any variation
is interpreted as either surface shape or simple albedo
change. Such shading analysis probably will have its
greatest use where other depth measurement techniques,
such as binocular stereo, have insufficient information to
operate, yet can provide 3D constraint to limit ambiguity.

4.3 Models in Interpreting Single Images
Undoubtedly, much of the world is quite well described
geometrically or by discriminable aspects of coloring, tex-
ture, or structure. Since the world is three-dimensional,
a critical element of scene analysis must be the ability to
represent and recognize 3D objects. In these cases, recog-
nition may be attained by locating specific scene features
and comparing their parameters with those chosen in ad-
vance to represent specific objects. Recognition, here,
may be viewed as searching through a set of 3D object
descriptions and finding the mapping of position, orienta-
tion, and scale that provides the most satisfactory corre-
spondence. Aside from the selection of feature descriptors
and the inevitable question of haw to acquire the object
descriptions in the first place, the major challenge in this
work is effectivesearch through the potentially enormous
set of match possibilities.

Two pieces of research can highlight the approaches taken
to this shape-based or structural recognition. While ad-
dressing 3D recognition, each uses information from single
images for its recognition. The first represents objects as
integrated networks of 3D points. The second provides
coverage of the 3D situation by storing a range of rep-
resentations, each pertaining to a small set of viewing
perspectives.

4.8.1 8D Models with Image Matching in 2D

Huttenlocher and Ullman (6)introduced the term ‘align-
ment’ - a method to match stored models with features
obtained from a view of a scene. In their work, the fea-

tures - both in the scene and in the model - are two-
dimensional contours (each classified by its shape) and
their endpoints, if a straight contour, or midpoints oth-
erwise. A model is a set of 3D points forming triangles
(planar facets), and the contours of which they are part.
Alignment is the process of selecting pairs of correspond-
ing triangles (from the model base and from the imagery)
and using the transformation implied by their match to
map the rest of the contonr description. The transfor-
mations are simple translations, rotations, iand scalings.
Estimating the goodness of fit of the resulting transforms
enables selection of a “best’ interpretation.

4.8.2 OD Models and Image Matching

Chen and Mulgaonkar (7) address the problem of model-
matching using 2D image data in a more methodical and
practical manner. While using a related approach to
the matching - hypothesizing ‘alignment’ transforms and
mapping the related constraints for validation with the
data, the detail of their strategy offers considerable ad-
vantage.

Two characteristics of their work stand out. First, they
build their models in a semiautomated way by showing
the system parts from various perspectives and under dif-
ferent lighting conditions. Model acquisition is a crucial
and potentially* very time-consuming component of set-
ting up a recognition task, and a which technique that
automates this using the results of its own analysis imme-
diately has more utility. Each model is structured as a set
of classified contour elements - straight and curved seg-
ments - ordered by their relevance to the matching task.
Features that are detectable most often in the training
set and are found most likely to be correctly identified in
the data are ranked higher in importance. These should
be the first to be sought in the matching. This ‘learning’
strategy enables each model to be organized in a man-
ner that is mast effective for establishing its presence or
absence in the scene. In effect, a model is a sequence
of instructions for validating an object’s presence in the
image - it is a program.

Their representational system is 2D, and a single object
will be composed of several perspective models, with each
covering a small range of viewing angles - plus or minus
perhaps 15 degrees in each direction. This is not as sat-
isfying a solution as building a unified 3D model of each
object; however, it has practical advantage!: in that it
simplifiesboth the modeling task and recognition.

The system was developed and demonstrated on an in-
dustrial assembly operation, involving about two dozen
parts, and has since been used for identifying objects in
a dynamic context (see subsection 6.3.3).

4.4 Prospect Beyond Single Images

The techniques described above have relied primarily, if
not totally, on 2D information, both in their models and
in their image understanding. The use of 3D information
for model representation and recognition has had less and
generally more recent investigation. The principal differ-
ence in these works arises from the necessity of obtaining
3D information from the scene. This cannot be done from

4 “potentially” because very few object recognition system
have any sizeable model repertoire



single images, and requires either active ranging (for ex-
ample, structured lighting, sonar, radar) or at least two
simultaneous perspectives from passive sensors such as
cameras.

This step to three dimensions lays the foundation for the
distinction | wish to make in approaches to image nnder-
standing. If the system has no recourse to 3D temporal or
spatial information, then its knowledge is limited to what
the developer programs in: if the system has an ability
to integrate information across space or time, then it can
begin to meaningfully augment its knowledge base. Ac-
quisition of this 3D information is the focus of the next
two sections.

5. SCENE MODELING FROM STEREO

Image pairs, providing two perspectives of a scene, pro-
vide the data for inferring the range to points in a scene.
This is termed binocular ‘stereo’ processing, after its re-
sulting solid three-space description of the scene. The
goal of stereo analysis is to obtain the best estimate pos-
sible of the range to points in the scene. ‘Best’ may de-
pend on a number of requirements, including speed. The
point to observe about these systems, however, is that
they have some knowledge about the state of the world
they are looking at - knowledge that serves to constrain
the solution they present - and they have the common
goal of developing a 3D description of the scene. It is
common in stereo research to produce a range map, but
very uncommon to do anything further with it, for exam-
ple, navigating or controlling a robot arm.

Once the camera position and correspondences are
known, estimating the range to some feature in the scene
is a simple matter of triangulation. An effective mecha-
nism for limiting the cost of determining these correspon-
dences lies in using the ‘epipolar constraint.” Knowing
the two camera relative positions and attitudes enables
definition of the expected pattern of disparity on the im-
ages. For cameras directed in parallel, the disparities will
only be lateral, while for converging cameras the patterns
will be radial. This camera information is used to shape
the search window for possible corresponding elements, so
it both reduces ambiguity and decreases computational
cost.

5.1 Pixels versus Features

Within stereo processing, two major approaches are taken
in selecting correspondences, one based at the pixel level
and the other at the feature level. The objective within
the two is the same, however - recovering the 3D struc-
ture of the scene as represented by the 3D location of its
components. The main distinction lies in what consti-
tutes these ‘components.’

5.2 Scene Geometry from Image Pair Pixels

In pixel-based stereo processing, the objective is to la-
bel each point in an image (where possible) with a range
value. If the relative positions of the cameras are known
and corresponding pixels can be found in the two views,
then relative range can be estimated directly by trian-
gulation. Absolute range comes from knowing absolute
camera displacements. The techniques used for solving
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the correspondence problem generally involve correlation
- estimating the similarity between image regions in the
two views. This similarity is usually measured as a local
differencein intensity value between corresponding parts
of the two images, with secondary constraints being in-
troduced to enforce global consistency. The former, lo-
cal measure, uses a small support function - typically a
square or circular region centered on a pixel - with the
similarity being either a simple sum-of-squared differences
(SSD), or a correlation coefficient measure. The correla-
tion coefficient measure may be normalized to eliminate
the effect of linear variations that might arise, far ex-
ample, from viewing at different times of the day, under
differing light conditions, or with separate automatic gain
adjustments on the two cameras.

In SSD matching, the expression to be minimized at any
pixel (z,y) is:

58Dey =3 Un(z+7s,y+7y)—In(z+detrs, y+dy+7,)]°
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where (ds,dy) is a displacement from the source image
pixel I'.(z,¥), and (rz,ry} defines a region of integration
in the destination image, Ir(z T dz,y T dy). This sum
may be weighted to diminish the effect of brightness vari-
ance with radius. The vector {dz,dy) with minimal sum
8SD,, is selected as the image of the pixel at (z,y) in
the second frame.

In normalized correlation, optimization is based on the
measure:

E= Er,,r, [Ir(z,y) — [L)[Ir(z,3) — iz
\/ir’ Ty [IL (.?J, y) - jL]2 zr, Ty [Iﬂ(zi 3/) - fR]Z

where [ is the mean brightness over the image region
(rz,ry) centered at (z,y).

5.2.1 Normalized Cross Correlation

A typical approach to pixel-based stereo analysis is that
of Hannah(4). Here, normalized correlation provides the
matching metric, and processing in a resolution hierar-
chy provides a global consistency constraint. This use
of a resolution hierarchy is fairly common in computer
vision. It involves building a pyramid-like structuring
of the image data, with the bottom level being the full-
dimensioned image, and successively higher levels being
the half-resolution versions of the one below them. The
top level is a small, very highly reduced, and subsampled
version of the original image — ithas only very low spatial
frequency components, with the higher frequencies being
removed by the successive averagings.

A strategy often used in computer stereo vision is to
match coarse features first (low spatial frequencies), and
then use the results at this scale to constrain finer scale
matching (higher spatial frequencies).> Beyond this con-
straint, Hannah also requires that her correspondences
are the same in left-to-right matches as they are in right-
to-left matches. Analysis of the correlation coefficientand

51t s always possible to show images in which such an arbi-
trary direction of progression will give the wrong answer.
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an autocorrelation measure enables this process to ignore
matches that have insufficient evidence for reliable esti-
mation. This has the benefit that hallucinations, such as
giving range to the sky, do not occur often. This tech-
nique, however, is costly in computation.

5.2.2 Stochastic Stereo

An alternate that is particularly suitable for implementa-
tion on a SIMD parallel processor is a stochastic method,
developed by Barnard, using a simulation of the physi-
cal process of annealing to enforce global consistency (8).
This method uses a composite similarity measure — image
intensity difference and a gradient constraint that biases
the solution in favor of a flat disparity map. The stochas-
tic element enters the analysis in the way the individual
difference measures are combined in looking for a global
solution for the image pair. As in annealing, the system
is injected with energy (heat), allowed to cool, heated
up again — although less — then cooled again, repeating
until there is very little change between these heat/cool
cycles. The measured change is this similarity measure —
a weighted sum of intensity differenceand implied dispar-
ity gradient for the selected pixel matches. The different
‘heat’ settings allow a varying range of disparity adjust-
ments in the pixel matching.

The measure minimized for optimization in stochastic
stereo is:

Eij =) (I8L;1+MVDi)),

)

with Al;, = Ir(%,j T D;;), where I and Ix are the left
and right brightness values, and ¥V D;; is the gradient of
the associated disparity estimate; A balances the bright-
ness and smoothness constraints.

Even when a parallel processor is used, the cost of iter-
ation makes this a fairly time-consuming technique. Im-
ages of size 512 by 512 pixels require about 10 minutes
of processing time on an 8000-processor Connection Ma-
chine (CM).

5.2.8 Real-Time SSD Matching

A third technique worth examining for its simplicity
and effectiveness is an SSD method implemented on
both a 16000-processor CM and on a coarse-grained (5-
processor) 1860 parallel processing system (9). Much ef-
fort was invested in making this process run as rapidly as
possible to support real-time control, and it can perform
stereo matching on images 256 pixels square at about 40
Hz on the CM and 10 Hz on the i860 configuration. The
SSD phase gives velocity estimates for each pixel, mode
analysis of this velocity distribution selects the major dis-
crete motions, and an adjustment phase tracks regions
over time. It has been used to control a robotic arm in
tasks such as maintaining centered view on pedestrians
and on another robot arm.

5.2.4 Considerations

Both of these parallel approaches share a common draw-
back. They process only in integer units of disparity, so
deliver just a small number of bits of range resolution.
In the case of the stochastic stereo, this was about 5 bits

(32 levels), while with the SSD method it was about 3
bits (8 levels). Any change in this precision incurs added
computational cost. Hannah’s method delivered subpixel
correlation measures, and was precise down to small frac-
tions of a pixel unit.

5.3 Structured Stereo Processing

Another approach to stereo analysis for obtaining 3D in-
formation about a scene involves the processing of not
pixel values but abstracted features - contour elements as
produced by zero-crossing operators. Marr and Poggio,
Baker, and Mayhew and Frisby were the early developers
of this feature-based approach to stereo matching.

Marr and Poggia (10), later joined by Grimson (11),
worked with zero crossings of the Laplacian of a Gaus-
sian (LOG), and progressed from large Gaussians to small
Gaussians in a hierarchic-pyramid manner. Matches ob-
tained at the coarse level constrained the possible matches
at finer levels. A consistency measure was implemented
by insisting that disparities over a small region were iden-
tical. An unfortunate artifact of this is tbat their re-
sults tend to represent the scene as planar chunks at
different ranges. Mayhew and Frisby (12), later joined
by Pollard (13), used a figural continuity constraint to
enforce connectivity of depth estimates for LOG fea-
tures that were connected in projection. They also used
peaks and troughs of this signal, presenting evidence from
psychophysics supporting human use of these in vision,
and introduced a variation of the scale analysis of Marr
and Paggio - looking for consensus in neighboring bands
rather than in successive coarse-to-fine levels, Baker (14)
used a form of figural continuity as well, and followed his
feature matching (extrema of intensity gradient related
to zeros of the LOG) with constrained intensity matching
to provide a dense range map. Grimson used a surface-
fitting technique to interpolate between matched features
to estimate this map.

The fact that feature-based stereo results in sparse range
measures has been raised as a criticism. Dense results are
preferred. Feature-based approaches have greater preci-
sion, however, as they focus on the more localizable parts
of the imagery. Scale processing is felt to be a key to pro-
viding dense results. Pixel-based techniques have been
more easy to implement on SIMD parallel processors, so
they may have an inherent advantage for real-time devel-
opment.

Much other research has addressed pixel-based and
feature-based stereo, including using a third camera to
provide an ambiguity-resolving perspective and introduc-
ing other constraints (arecent survey paper covers much
of this area well (15)). Among some dozen and a half sys-
tems evaluated competitively a few years ago (16), Han-
nah’s system was ranked first across a majority of the
categories {17).

5.4 Differential Techniques: Motion and Range

A different approach to disparity estimation has been
developed for motion processing - optic-flow analysis -
where the objective is to estimate movements in a scene
(18). Under certain conditions these techniques may
also be used for stereo range estimation. Two principal
points distinguish this work from pixel- and feature-based




matching approaches.
there is very little differencefrom one image to the next -
motion processing allows this, whereas typical stereo has
a sufficiently large baseline that images may differ signif-
icantly. Second, differential techniques are used that do
not depend on feature localization in the image.

First, the presumption is that

5.4.1 Optic-Flow Analysis

Horn and Schunk (19) developed the brightness-
constancy constraint, which relates variation of intensity
between successive images with the underlying variation
in the scene. The principle behind this differential tech-
nique is that derivatives of the spatiotemporal intensity
data indicate rate of image change. If the image change is
due only to camera displacement, then simple derivative
convolutions on the spatiotemporal intensity data can be
used to estimate scene distances. If the change is due
to scene motion, then the technique estimates velocities.
Since the expression for the variation at a single point
is underconstrained, the solution involves a least-squares
approximation that integrates over some local neighbor-
hood, and this makes the result sensitive to the density
of discrete motions in the vicinity. The estimates are best
where there is strong local texture (surface detail) with
a single velocity. Where the texture is weak (there is lit-
tle distinctive detail) or the local vicinity contains more
than one motion (such as occnrs at object boundaries),
the estimate can be rather meaningless. Despite this, the
results tend to be generally credible.

With the differential approach, image disparity (or veloc-
ity) {d=, d,) at frame ¢ can be determined by minimizing
the following expression:

Z [d,,-I;(:B, y,t) + dyI;(-": ¥ 1)+ Iz, 'y:”}z:

L

where I%, Iy, and I; are spatial and temporal derivatives
of image intensity I(z,y,1).

The summation is again taken over a local region of the

image {*«,7y). One finds the least-squares solution, in
closed form, by taking derivatives of this expression with

respect to d and dy. The least-squares estimate is given
by:

d=-Mp,
where
Mo (SE Lo
SLL DL
and

b= &5
2L
This expression has minimum error when
doI TdyI, + 1] = 0,

that is, when the observed image gradient vector
({2, 1, 1) is orthogonal to the observed disparity (or ve-
locity) vector {d:,dy,1). Figure 2 shows the optic flow
computed for the motions of a sedan and van against a
stationary background, the imagery of which is shown at
the top of Figure 5.
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Y'ig. 2. Optic Flow for Moving Sedan and Van.

5.4.2 Hierarchic Optic-Flow Computation

Hanna has presented a method for extending the appli-
cability of the gradient-based technique to images with
significant variation between frames (20). This operates
through a hierarchic-pyramid analysis, beginning with
low-resolution coarsely sampled imagery, and progressing
through to the full resolution data. A unit of pixel mea-
surein the coarse imagery corresponds to a 2'* by 2™ pixel
region at highest resolution n jlevels finer, so a gradient
computed at this single unit can identify the predomi-
nant motion over that much larger window. Recursive
processing of this motion estimation followed by image
remapping - to bring the corresponding image locales into
alignment for the next gradient analysis — may be viewed
as delivering the n-bit motion vector abit at a time, start-
ing from the highest-order bit. What isimportant to note
is that with this hierarchic approach, gradient-based o p
tic flow can also be used for stereo range estimation —
large disparities are handled by the coarser scales. The
major difficulty remains, however, that there can be no
guarantee this coarse-to-fine progression will give correct
results. A small feature that is moving to the left while
the predominant region motion at a coarse level moves
to the right will be 'mapped’' in the wrong direction for
being detected at any of the succeeding levels.

An iterative remapping method very similar to Hanna's
was used much earlier by Quam in his Aierarchical warp
stereo process (21). The matching metric in this work was
correlation, rather than gradient-based optic flow.

5.5 Issuesin Stereo Processing

A number of questions must follow any depth recovery
process, such as: Are there measures of confidence asso-
ciated with individual estimates? Isthe result conclusive?
Are there errors of omission (gaps) or commission (range
estimates where there can be none)? Does the process
deliver a description of objects or just an array of num-
bers that represent a range 'map?" How relevant is the
resulting description to the intended use? Since the pur-
pose of range recovery is tied to some other task, such
as understanding the scene or moving about in it, these
questions can determine the utility of the whole exercise.

One of the principal dissatisfactions in stereo analysis has
been in its reliability. Perhaps 90% of a scene can be
adequately modeled with the above techniques, but the
remaining 10% failure can make the results almost un-
usable. Higher reliability is needed before one can trust
an autonomous device for guidance. There is very lit-
tle opportunity to obtain better accuracy when presented
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with only two perspectives of a scene. Ambiguities are
difficult to detect, and cannot be resolved without the
introduction of more information. This information has
often taken the form of a priori knowledge about scene
and object types (for example, that the scene confains
static opaque rectilinear structures).

Better additional information that is not domain specific,
is provided by ‘trinocular stereo,” which involves acquir-
ing a third view of the scene. This was first introduced
by Burr (22) and later followed by Faugeras’s group in
France (23). This third view, if noncollinear with the
other two, provides a second epipolar constraint that can
disambiguate potential match uncertainties.

Almost without exception, stereo techniques have diffi-
culty in correct handling of occlusion (where a feature
does not have a match in the corresponding view), image
reversals (where feature left-to-right ordering is inverted
between views), transparency (where multiple ranges are
associated with individual view points), and canopy phe-
nomena (where there are a few predominant and quite
different depth ranges over a small region of the view).
These are significant issues for depth estimation and nat-
ural scene interpretation.

A more general comment on two- or three-view stereo is
that the resulting descriptions are not of the same qual-
ity as those we perceive when we as humans observe a
scene. Stereo results look like cut-outs, with a series of
ranges computed for certain directions of the camera. The
same can be observed in looking at a stereo pair of pho-
tographs - the perception is likely to have a flat, disjoint,
and chunky appearance. The perception we have under
natural conditions is more continuous and connected, and
this results from our ability to observe in the continuum
through time. We change our viewing position to suit
our demands for fill-in and clarification, and integrate in-
formation through active control of the viewing process,
such as obtaining a description of some novel 3D object
by grasping it and manipulating it before the eyes.

6. SCENEMODELING FROM SEQUENCES

Recent approaches to 3D vision have addressed this pro-
cessing of image sequences, where a sequence comprises
many views from different positions. This more closely
resembles the operation of the human system, where we
observe with eyes that are free to move, collecting in-
formation from various perspectives. This multiple-view
approach could provide considerably more complete de-
scriptions of a scene, revealing, for example, what the
back side of an object looks like, and could do so with
much less ambiguity. Aside from restricted cases, how-
ever, it has proved difficult to exploit this extra data in
the coherent manner required. One of the problems lies in
organizing and maintaining coherent descriptions of the
rather massive amount of data involved -sequences could
be hundreds of frames long, or more.

6.1 Correspondence Through Time

Sequence processing shares many of the computational is-
sues of stereo. The principal problem in stereo processing
has been identified as putting into correspondence, accu-

rately and reliably, features that appear in two views of
a scene. Determining the correspondence is an ill-posed
problem: ambiguity, occlusion, image noise, and other
influences resulting from the differing appesrance of ob-
jects in the two views make feature matching: difficult. In
sequence analysis, where rapid image sampling produces
images that change little from one to the rext, matching
is less problematic. In some approaches this is taken to
an extreme, with sampling sufficiently rapid that images
vary smoothly between views. The following sections de-
scribe how this temporal continuity has been developed
and exploited for robust tracking and estimation of scene
features.

6.2 Pixel-Based Sequence Analysis

As was the case with stereo analysis (cross-correlation and
gradient analysis), there are two principal approaches to
pixel-based motion analysis. In correlation, the objec-
tive is to determine for each pixel in one frame, its im-
age in the next frame. Techniques as described in sec-
tion 5.2 are used for this. SSD is more typical than nor-
malized correlation in sequence analysis. With temporal
sampling sufficiently fine that brightness changes are of
a smaller magnitude than changes due to motion, there
is little requirement for accommodating to varying illu-
mination. With the optic-flow approach, on the other
hand, explicit matching is avoided, and motion is derived
directly through differential analysis, as described in sec-
tion 5.4.

Another problem both correlation and optic-flow analyses
encounter is that they are designed for pair-wise compu-
tation rather than for sequential tracking. Since they are
referenced on the center of a pixel in one image, their dis-
placements are not easily chained with precision through
asequence. Range estimates will be imprecise over a short
baseline, so the reliability and precision obtainable for
matches over a long baseline become crucial questions.

Pixel-based and point-based reconstruction techniques,
where they have been developed to the stage of integrat-
ing measures over a sequence (for example, (24, 25)), do
not exploit the continuity of observations. Rather, they
treat observations from different perspectives as disjoint,
and pool them in (more or less estimation-theoretic) vol-
ume sets.

A recent innovation - the use of a singular value decom-
position procedure - uses intermediate feature trackings
to synthesize along baseline through many small changes.
It recovers both the shape and motion observed in trans-
formation of a rigid body (26). The tracking employed
uses an autocorrelation measure to select distinctive im-
age features (in a spirit similar to that of Hannah). By
tying observations together through the sequence, it ob.
tains the benefits of a large baseline with the reduced
error of small-increment image variation.

A difficulty with local-support integration techniques
(pixel-based approaches in general) is that when the lo-
cal region of integration overlaps different range distribu-
tions, the estimate may be quite meaningless. Since these
bounding areas are of particular interest in most 3D tasks
—such as grasping and navigating - this deficiency can be
quite severe. The issue is particularly salient in motion
analysis, where an intermediate velocity estimate is much




more misleading than an intermediate range estimate. In-

telligent window shaping may improve the situation, al-
though at significant cost (27).

6.3 Structured Processing — EPI Analysis

There is much more in an image sequence than is being
processed by techniques such as those described above.
Selecting only highly localizable features leads to sparse
scene descriptions, while use of the full image contents,
as in optic-flow and correlation approaches, leads to much
uncertainty, weak localization, and fragmented tracking.
An alternative exists in utilizing the three-space correlate
of 2D image contours. The motivation of this ‘structured’
approach to sequence analysis is that dynamic imagery
has both spatial and temporal structure, while pixel-
based techniques represent neither and must determine
them both during its operation. Pixel-based techniques
compute the temporal structure by ‘tracking’ features us-
ing correlation or optic-flow analysis, and determine the
spatial structure by grouping results after temporal track-
ing, And yet the structure is there in the data.

Epipolar Plane Image (EPI) Analysis is such a technique
that holds particular promise for scene reconstruction
(28). It integrates throughout the data acquisition and
has several major advantages over other approaches, such
as not requiring correlation or any similar matching strat-
egy, and dealing explicitly with spatial and temporal con-
tinuity. The features utilized are at object and texture
discontinuities, so do not involve integration across dif-
ferent range distributions. This technigue was the first to
exploit small increments over a large integrated continu-
ous baseline for the ideal mix of reliability and precision
in motion analysis. The geometry and intuition of imag-
ing in this situation are a little unusual, so | will review
the implications of the generally used epipolar constraint
in the context of sequence processing.

6.8.1 Epipolar Geometry

In Figure 3 (left), a camera is shown at two different posi-
tions along a linear path. At each of the sites the camera
is looking at right angles to the path, and a feature such
as P will appear displaced to the right in the second view
with respect to the first. This displacement is along the
projection of the plane formed by P and the two camera
centers. This plane is termed an “epipolar plane,” For
a continuing sequence of such images, the point P will
stay on the same image scan line from frame to frame.
Because of this epipolar structuring, we can confine our
depth analyses in right-angled linear motions to single
sets of scan lines. Figure 4 shows a volume formed by
stacking up the data collected in an image sequence and
slicing horizontally to reveal such a set of scan lines. The
pattern of streaks in this slice makes the lateral displace-
ment character quite apparent and their interpretation
quite direct: Near features have streaks with low slopes,
more distant features have higher dope. Stereo process-
ing of such a scene would correspond to comparing fea-
tures between, say, the first and the last frame, or the
first and last line of this image. The continuity evidenced
here takes the uncertainty out of the matching process.
Analysis of these slice images, termed epipolar-plane im-
ages (EPI images) after their composition from samples
of a single epipolar plane, led to an effectivetechnique for
estimating the range to features in a scene.
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Fig. 4. Spatiotemporal Image Volume.

6.8.2 Spatiotemporal Manifolds

To expand the technique to more complex viewing situa-
tions such as nonlinear and varying-velocity camera paths
with varying camera orientations, as would be found when
a human moves through a scene (Figure 3 (right) shows
patterns of epipolar lines that arise for linear motion and
varying view direction), it was necessary to generalize the
geometric representations used. In the earlier work, EPI-
based linear features - representing the evolution of indi-
vidual features over time - were detected and processed.
In generalizing the approach, spatiotemporal manifolds —
representing the time evolution of whole spatial contours
— were constructed and used in inferring scene structure

(29).

This reformulation brought another advantage: Repre-
senting the time-evolution of contours rather than indi-
vidual features would produce connected 3D space curves
rather than isolated points. Grouping of scene measures
into meaningful and related structures remains one the
largest problems in vision. Since even the most reliable
and precise depth map is only another input to the scene-
understanding process, any technique that can deliver di-
rect segmentation and grouping information with its mea-
sures will have a great impact on the use and reliability
of its data.
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6.8.8 Tracking and Identification

Figure 5 shows a composite development in tracking and
identification using the spatiotemporal manifolds for fea-
ture localization in space and time, and the 2D modeling
facility of Chen (7) for object recognition. The figure
shows in successive steps the strongest zero-crossing con-
tours in three adjacent frames (the first and last of which
are shown at the top), with the final view showing the
results of identifying a van and sedan in these data. The
bottom of the figure shows the models used in the recogni-
tion. These were constructed in a earlier training phase.
An added benefit in this figure is that it demonstrates
the value of stereo in perception: The paired figures are
presented for crossed-eye viewing and, when fused into
a single percept, will reveal a considerably mote coher-
ent interpretation, one that may be impossible to obtain
monocularly.

6.4 Stereo and Motion

Undoubtedly, simultaneous stereo and motion analysis
must be obtained for us to hope to achieve the capa-
bilities of the human mobile-binocular system. Stereo is
essential, as motion can only compute range to stationary
objects and for known camera motion. At the same time,
motion and sequence analysis are essential, as the active
element in exploring an environment, both for modeling it
and for navigating through it, cannot be met from asingle
perspective or even a set of predetermined perspectives.
While the number of research efforts addressing stereo
and motion analysis is small (9, 24, 25, 30), a coherent
approach to integrating these two related modalities will
be essential to capturing the true three-dimensionality of
our environment, Figure 6 shows an integration of this
sort of stereo range estimation and sequence processing
operating on afield of rocks. The initial description (mid-
dle) is refined from subsequent views resulting in better
definition an object 3D shape (bottom). The computa-
tional requirements for this data-intensive challenge are
now being met by multi- and parallel-processors, with a
number of research groups investigating stereo sequence
analysis in high-performance computing environments.

6.5 Recognition of 3D Shape

The techniques described above have addressed the is-
sue of obtaining estimates of scene 3D structure from two
or more views. The major purpose of this is to provide
the third dimension for tasks involving recognition and
navigation. Unfortunately, very little has been done in
using the 3D estimates produced. An early effort that
took on this problem was my modeling research in Edin-
burgh (31). Models of 3D shape were constructed through
analysis of objects observed rotating about a known axis.
Using a 3D alignment technique, models built from cui-
rent imagery were compared-with models stored in the
training phase, and the closest 3D fit was selected as the
match.

Although mare refined techniques have been developed in
the interim, for example the work of Szeliski (32) in build-
ing 3D representations using rotation, the majority of re-
search in 3D model matching has used either very simple
representations, such as rectilinear blocks (33), or direct

ranging techniques, such as provided by structured light Fig. 5. Object Recognition in Spatiotemporal Tracking,.

or laser devices (34). Where 3D objects have been recog-
nized, they have rarely been modeled by the same process

used for their recognition. An exception to this lack of
acquisition and use of 3D information in computer vision
is in autonomous navigation systems (35, 36), although
most systems use active ranging. Some of these systems
are capable of extracting 3D scene features and then using
these in obstacle-avoiding traversal of the area. Again,
however, the representations tend to be simple (boxes,
paints) and not adequate for representing anything of the
sophistication and detail of our environments. A good re-
view of 3D object description techniques may be found in
a paper by Besl (37). Some of the works he cites address
the issue of model building within a recognition context.




Fig. 6. Reflned Scene Model from Stereo Sequence.

7. CONCLUDING REMARKS

A system that is to operate in the real world - that is,
to find its way around and interact with other processes
in the environment - must be able both to use informa-
tion about the scene and to derive information during
its operations through wuse of its sensors. This building
and using of information in scene analysis, both geomet-
ric and otherwise, is an essential element for autonomous
operation. Given sufficiently expressive modeling, single
images will be adequate for interpretation, but to capture
these models requires developing temporal and stereo in-
tegration techniques, and ones that encompass both geo-
metric and relational information about objects and their
surroundings. The alternative - programming in advance
whatever is to be seen - cannot deliver the flexible capa-
bilities needed for operation in the relatively unstructured
and unconstrained domains in which we hope to operate
our vision systems.

When looking at the challenge of precision operation in
a world with the complexity of ours, we can see we have
come a long way, yet still have considerably more to ac-
complish. Techniques for analysis over scale, 2D and 3D
object modeling, optic-flow and spatiotemporal analyses,
combining with object recognition using 2D and 3D ge-
ometric and relational descriptors, are leading ns in the
direction of attaining these capabilities.
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the vision process are listed and discussed. But analog is not enough for really smartening
retinas . Then, an additional plausible coat of cellular boolean iterative processing in these
"human size" vision machines is described, and commented on through examples.

Vision - integrated smart sensors - cellular and neural processing - basic vision operators -
anlog vs digital implementations

B.Z. Université Paris XI - IEF - Bat. 220 91405 ORSAY cedex France et ETCA/CREA, 16 bis, Ave Prieur de la
Cdte d'Or, 94114 Arcueil cedex France - email zavido @ etca.etca.fr
T.B. ETCA/CREA 16bis, Ave Prieur de la Cole d'Or, 94114 Arcueil cedex France - email VG @ etca.etca.fr



http://etca.etca.fr
http://etca.etca.fr

4-2

I - A GLANCE AT VISION

Visual perception performed by computers is
usually decomposed as a chain of processes, as
shown on Fig.l.

Analog Analog Low-level High-level Decision
Image _‘ to Digital L1 Imege [ Image .—{ &
Acquisition Conversion Processing Processing Aciion

Figure 1 : Classical Visual Perception.

Low-level image processing is meant t0 extract
pertinent informations like edges and regions,
depths, movements... However, in most realistic
enough robot vision applications only candidate-
feature subsets are extracted at this level. Then
these parts remain t0 be cleaned, gathered and
organized into features which are 2-D projections
of some at least 3-D phenomenon. So, at low
level, the processed objects (images) are
characterized by their 2-D topology, the local
nature of inter-pixel correlation, and the a priori
even distribution of information among pixels.
Processes are thus shift-invariant with supports
limited to small neighborhoods. They can hence
take great advantage of specific computer
architectures featuring massive spatial parallelism
and simple processor interconnections.

Once the information from the original image
has been filtered and concentrated into structural
or semantic knowledge, the 2-D topology
disappears. This is where high-level processing
starts. The objects become arbitrary graphs,
whose processing poses serious connectivity
and/or programmability problems on
multiprocessor architectures.

Let us underline the clear semantic gap
between the so-called low and high level
processings : as soon as it is somewhat fancy,
any feature extraction has to be controlled by a
more intelligent procedure which takes advantage
of explicit description of an object model, or
structure, Or situation... While not compensating
for this gap in a permanent and fundamental
manner*, the "smart retina" concept brings a
solution; it is at least a technological solution, but
some of its instances show cheering features of
optimality, when they are embedded in the
context of the whole pattem recognition process.

Now, current robotics is not only moving
towards involving complicated senses such as
vision Or aerial acoustics but it aims at associating
several of them within sensor fusion schemes.
Theoretical results like the so called “multiarmed
bandit” theorem tend to prove that it is worth
implementing some local computing power closer
to sensors, when the communication bandwidth
necessary for control is already causing
problems.

This makes another reason to focus On smart
retinas, vision being likely to play, as in the

* there is no clear evidence, however, that this
gap be anything but artificially added by
techniques.

human case, a major part in robot perception.

A smart retina is a device which intimately
associates an optoelectronic layer with some
processing facility. The closeness definitely
suggests a VLS| implementation approach,
possibly monolithic. But, so far, only elementary
feature extraction, up to limited object
identification, has been proved technologically
feasible.

In that case, why should "smart retina" imply
"integrated retina"? Here is a non exhaustive list
of possible answers:

* vision usually means immense amounts of
input data

» the current state of wiring technology causes
the signal/noise ratio to fall drastically at circuit
output

* in any case, changing the computing
topology is often very power consumming

* the tradeoff to be made between precision
and quantity of information is likely to benefit
from massive loose computational style rather
than the common precise computational style

» analog to digital conversion is a waste in
many respects:

.. there is a loss of information due to
conversion,

..there is a loss in speed and functionality
(artificially added operations to calculus),

.. exploiting the natural correlation in
images will require rebuilding the initial topology,

.. it puts processing apart from data flow

« real extemal conditions for vision require fast
feedback loops (from adapting to light, up to
feature extraction)

Topropose a more definitive answer, we first
give a slightly more precise definition together
with

first properties (§1II), we then explain some
very primitive examples (§I11a) to illustrate:

« first, the concept of smart retinas

» second, the input-output problem

In these examples, the outside world is
simplified (either exhaustively described or in
translation). Then, a bit of analog processing
followed by a uniform result gathering performs
the intended task, and only one or two global
outputs are produced.

However, the preceding experiences suggest
potential benefits from "analog thinking" when an
algorithmic concept comes 10 cohabit with analog
implementations of early vision processes.
Descriptions of analog phenomena inside the
system provide a language which helps to
drastically compact any design, and enforces
some interesting improvements at the algorithmic
level. This fact is illustrated in (§IiIb) by
comparisons between implementations of the
convolution or other basic operations like
differentiation. Indeed, in less toy-like cases than
§ IIla's, current robot vision does not allow
routine actions in such a direct manner and




anyway, such actions would be mggered on a
larger set of parameters.

This shows integrating is not enough, even
associated with analog thinking, hence
introducing the concept of "rough vision", based
on separating the structure of the image from the
semantics it refers to. It applies first to object
recognition thanks to neighborhood combinatorial
logic which is easy enough to implement on
retinas. Logical implies binary, but in this process
the adapted binarization will be made a true
processing operation, possibly a feature
extraction and not only an A/D conversion. This
is described and commented on in § 1V before
conclusion.

II. THE "RETINA CONCEPT" : A
PANACEA ?

Let us define more precisely "smart retinas™ as
tentative "human-size" vision machines,
intimately associating optoelectronic devices with
analog-to-digital converters and (minimal) digital
processors to be integrated on monolithic
(CMOS) circuits.

Such circuits can be viewed then as stacks of
"3" intermixed functional layers :

Boolean ProcessorsArray

Optoelectronic Devices
Figure 2 : The "Retina" circuit (cross section).

From a VLSI point of view, a Retina structure
is up-to-date. It exploits today's abilities of
submicronic technologies to allow a
rapprochement between acquisition and
processing (up to few 100's x 100's elementary
Brocessors, with few dozens transistors each, can

e gathered on a monolithic circuit using a 1um
CMOS technology). The intimate association of
different functional layers however is subject to
strong topological constraints. These are
suggested to be naturally satisfied on fig.1.

While certainly related to existing biological
visual systems (but still very far and caricatural),
the "retina concept" features numerous and
fruitful advantages considering § I

- The classical serial bottleneck separating
acquisition from processing is replaced by a
parallel conversion layer. Instead of artificially
breaking and then reconstructing the 2-D
topology (because of limited I/O bandwidth), the
analog-to-digital conversion is harmoniously
"sandwiched" between analog acquisition and
digital processing.

- A/D conversion is non-standard but well
managed. Image sequences are known to be
locally correlated both in the space and time
domain. This can be advantageously exploited to
encode the analog image flow into compact digital
representations. For the sake of topology, this
naturally leads
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to a binary image representatlon, most often
based on a one-to-one mapping between analog
and binary pixels. If the sole spatial correlation is
taken advantage of, the analog-to-binary encoding
procedure is called "halftoning™. We will show in
section IVb this can be neatly implemented in
silicon. But a tradeoff occurs: more pixels for less
grey levels, or the opposite.

- Though halftoning can be considered as an
unavoidable quantization operation implying a
loss of information, which has to be minimized
with respect tu some peculiar signal processing
criterion (as we do in section V), it actually acts
as an information filter, which can enhance
specific early vision features, such as edges,
regions, movements, optical flow, depth... (cf
[Mea 88] &[Hut88]). Processing inside the
retina thus appears as a close cooperation between
an analog layer and a boolean one.

- The analog information representation, right
after acquisition, is so heavy that arbitrary
interactions between pixels cannot be
implemented easily to be programmable. Only
information processing structures provided with a
highly physical meaning that map straight into
silicon, leave some hope to avoid the burden of
storing, duplicating and moving analog pixels.

- By massive parallelization of both
information flows and processings, operations
inside the retina are brought closer in space and
time. This emphasizes the interest of bidirectional
(instead of only bottom-up) information flows,
because the top-down feedback can be fast
enough to ensure some convergence properties.
For example, a complex problem like matching
successive images of a moving scene, is reduced
to its simpler expression when the sampling
frequency is high enough.Another example is
neural interactions between analog and boolean
layers.

Thanks to these advantages, it becomes
possible to output meaningful results in
accordance with the claim of smartness, but due
to technology, there still remains an additional
price to pay: either to deal with very specific
applications or to particularize vision in some
other manner like restricting it to a rough type
(see § IVa). On top of that, the above list shows
anyway a need for a fair share of analog
contribution to meet the constraints of rapidity
and compacity as imposed by real time robot
vision. This makes the layers in fig.2 become the
3 mousqueteers of robot vision as they are
actually four, being joined by an analog
processing layer of prime importance. We now
analyze significant research results within that
perspective, prior to detailing more of our own
work.

III - ANALOG ELECTRONICS AND
RETINAL FUNCTIONS

Illa - Specific attempts
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As far as we know, the tirst significant attempt
to introduce some intelligence within the sensor
chip goes back to [L.yo81] with the desire for a
high-reliability mouse (used to track the
movement of a workstation user's hand) with no
moving parts. As the "optical mouse" is
downward looking at the special pattern of a pad
on which it is moved around, motion is detected
and measured. The "optical mouse" is a mostly
digital sensor used in a very cooperative
environnement : an hexagonal grid. However,
important features like the local automatic gain
control (AGC) are already present through the use
of self-timed circuit techniques and mutually
inhibating light sensors. The tracking algorithm,
which compares 2 successive 4x4 images is
based on a case by case approach, dealing with
the 900 possibilities of image couples.

The theme of motion detection on uniformly
moving scene has generated a fair amount of
work since then. In [Bis84], the stress is put on
high resolution 1-D motion detection, in order to
determine 3-D motion from several sensors. In
[Tan84], a "paperless" version of the optical
mouse is integrated, to deal with less cooperative
environnements. An image of an arbitrary scene
is sensed by the array of photodiodes, stored and
correlated with the next image taken on the next
cycle. The position of maximum correlation
indicates the relative motion of the image during
the time between samples. A global AGC is used,
and correlation computations are both analog and
digital. Finally, a fully analog and time-
continuous version has been integrated, as
described in [Tan88] and [Meag&8], that makes
full use of global collective neural computations
to output the velocity vector of the image.

For these applications, the output problem is
implicitely solved because only one or two global
informations about the scene are actually extracted
from the sensor chip. This is also the case for
sensors that deal with simple target tracking
applications, like following the brightest spot on
an image [DeW8g] or following a spot among
other bright spots [Umm&9]}, and for which only
a couple of coordinates have to be output.

However, early vision, which takes full
advantage of collective computation based on
only local connections within VLSI circuits,
generally does not change the topology of the
processed objects : an image is transformed into
another image. In this context, CCD technologies
can support a large family of linear operations,
particularly needed for spatial and temporal
convolutions as in [Bea89). These operators can
be completed by simple saturation based non-
linearities as thresholding or magnitude
comparison as done in [Eid88]. Early vision has
also been integrated in standard CMOS
technologies, from compact spatio-temporal
differentiation in the "silicon retina" described in
[Siv87] and [Mea&8], up to expensive optical
flow computation in [Hut8§].

At last, various approaches ry to deal more or
less successfully with the problem of outputting

the intormation present on the image. In |Ging§],
only the areas of interest are output from the
sensor. The image may be also binarized or
halftoned as in [Mar89]. Three-diaiensionnal
integration as presented in {Kio88] and [Kat86],
is also a possible way allowing the superposition
of different processing levels on the input image,
and thus allowing the output of only high-level
compact information.

IlIb - A more structured approach
towards vision

Transducing light into current,

Standard CMOS technologies are well-adapted
to visible light detection : when an optical signal
impinges on a p-n junction operated under reverse
bias, the depletion region' serves to separate
photogenerated electron-hole pairs, and an electric
current flows in the extemal circuit. This light-
matter interaction has to be considered as the very
start of the vision process. Several configurations
using different devices are available, ofwhich the
choice is not neutral and can be more or less
adapted to the subsequent hardware and/or
software vision layers.

The simplest light detector is the photon flux
integration mode photodiode used in CCD
cameras. It is simply constructed by diffusing a
highly n-doped area at the surface of a p-type
substrate (an NMOS technology is sufficient).
After being initially reverse biased, the junction
capacitance is discharged by the photogenerated
current. At the end of the exposure, the voltage
decrease is about exponentially related to the
illumination level and integration time : log[
VO/V(0) ]« - a.t.

When response speed is not critical, but power
is needed, a natural byproduct of the CMOS
process [Mea88] can be used : the vertical bipolar
transistor. The base is an isolated section of well,
the emitter is a diffused area in the well, and the
collector is the substrate. Electron-hob: pairs are
generated at the well-substrate interface where the
p-n junction is reverse-biased. For every
photogenerated majority carrier amvirig into the
thin base (from the collector), about a thousand
minority carriers pass through it (from emitter to
collector) before the necessary recoimbination
finally occurs : this is the phototransistor action.
This natural current gain can be used before
subjecting the signal to any noise from
subsequent amplification stages. It can also be

! When a p-n junction is formed between two
oppositely doped semiconductor,a charge depleted region
appears at the interface in which very high electric fields
arc encountered. Instead of getting recombined, electron-
hole pairs generated in this zone are violently separated.




controlled making the vision sensitivity possibly
dynamically shifted.

Incident light on a region of the surface of a
semiconductor is also known to cause a local
change in that region's conductivity. As noticed
in [Her89), this effect can be exploited to
construct a global representation of incident
images, which possibly allows faster pattern
recognition processes by implicitely solving the
image outputproblem.

Logarithmic representation of illumination,
intensity.

In order to properly operate in outdoor scenes
(say from moonlit to sunlit scenes), electronic
photoreceptors must give meaningful outputs
over several orders o magnitude of illumination
Intensity. The linear light to intensity conversion
occurring within depleted devices like
photodiodes and phototransistors thus must be
followed by some further non-linear conversion.
Moreover, as pointed out in {Mea8§), it is very
desirable to make the voltage differencebetween
rwo points depend only on the contrast ratio
between the two corresponding points in the
image. Indeed, in a simplg modeled scene, this
contrast ratio is a ratio between reflectances,
which are independent of the relative illumination
level. This mathematically implies the use of an
exponential law. Fortunately, exponential
phenomena exist in a semiconductor like silicon :
the appearance of the source-to-drain channel in
MOS transistors is ruled by the Fermi-Dirac
distribution (stastistical physics & Boltzmann
law) which ensures that charge carrier
concentrations within the channel depend
exponentially on the gate voltage along about a
half volt wide interval, which is called the weak
inversion (or subthreshold) region. This has been
used by [Mea88] where the current from a
phototransistor is fed into two diode-connected
MOS transistors in series operating in the weak
inversion region, and providing a 0.2 volt output
voltage decrease per decade increase in current
(see Fig.3).

Figure 3 : Logarithmic Photoreceptor.

Using the MOS transistor in the weak
inversion region to exploit its exponential
behavior is a first example of the search (among
the wide variety of analog VLSI phenomena) for
adequate non linear operators, which arefinally
the ones to extract the important informationfrom
the input image signal. Among others, non
linearities that easily map into silicon are the
square law, the sigmoid function, saturation and
hysteresis phenomena, and comparison
operators. For example, hysteresis inverters are
fundamental devices in the "analog toolbox™ as
shown in [Ber88) and [Smi89).These non-
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linearities play key roles jrom simple yet time
consuming operations like thresholding up to
advanced neural optimization algorithms like
neural halftoning /[Ber90] or optical flow
computation involving line processes /Hut88].

Linear functions.

Besides the use of tricky non linear devices,
analog implementations of vision processes rely
on the existence of a "library" of (hopefully)
compact cells that embed more regular
transformations, such as storage, duplication,
addition, substraction, multiplication but also
piecewise linear functions like the absolute value,
and more generally conditional functions like the
maximum or minimum functions. However,
implementations depend on wether the input
signal is a voltage, a current or a charge. One of
the skill of the designer is to find the right
information supports to embed a particular vision
algorithm efficiently. This is nothing but the
equivalencyfor type conversion of variables in
programmed image processing 1

The charge domain, taking full advantage of
CCD processes [Boy70] in which a charge can be
stored or spatially shifted at negligible loss, is
unsurprisingly suited to linear image processing
[Tie74]. Charge mixing or sharing are the basic
operations for additive functions, we will see in
the next paragraph how they can naturally
implement very useful spatial convolutions. But
substraction can also be implemented thanks to 3-
D coupling as used in [Fos84] :besides the usual
lateral coupling used in charge nansfer devices,
the vertical coupling between the charge on the
electrode and the charge in the channel embeds a
natural differencing phenomenon. Charge
splitting, which is equivalentto multiplying by a
positive coefficient less than one, can also be
implemented as explained in [Ben84]. If CCD's
are used in conjunction with active CMOS
transistors, they can implement up to charge
magnitude comparison and non destructive
sensing and amplification (cf [Col87] &
[Fos87]). Time delaying is also easily embedded
as it is controlled by external clocking sequences :
this is a definite advantage for motion detection
applications. However, clocking requirements
and difficulties to implement non-linear operators
in the charge domain, other than saturation
nonlinearities, suggest that currents and voltages
are indispensable alternative system variables for
the analog implementation of vision processes.

Linearity in the current/voltage domain looks
less natural since operators generally involve the
use of MOS transistors, possibly associated with
bipolar transistors (BiCMOS technology), all of
which are all but linear. Ranges of linearity are
consequently narrower than in the charge domain,
with widths possibly as small as 0.2V In the case
of [Mea88]. A common operation is the
duplication of a signal, illustrated on fig.4, either
by a current mirror or by a voltage follower. As
can be noticed, the price to pay for the same
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operator can seriously ditter, depending on the
type of the input signal.

1 £

Figure 4 : Current Mirror ( 12 =11 =IO
), Voltage Follower ( lout = 0 = Vout = Vin )
and Gilbert Multiplier ( Iout o
Ibias o [V1-V2] e [V3-V4] )

Another important operation is the four-
quadrant multiplication that can be implemented
thanks to the "two-stage" differential pair shown
on fig.4, and known as the CMOS version of the
Gilbert multiplier [Gil68] : A triple product is
actually performed, between two algebraic
quantities (V1-V2) and (V3-V4) and a positive
quantity Ipias, Which is the current flowing in the
lower transistor and set by Vpias. HOwever,
image processing often involves the interaction of
larger sets of input signals. The fundamental
autocorrelation properties of images are
responsible for the central importance of
smoothing and differentiating operators in both
the spatial and temporal domain. As far as motion
detection is concemed, electronic time constants
must fit the time scale of motion events in the
observed scene : unfortunately, the largest RC
constants that can be controlled in silicon are
smaller than 0.1ms = 10MQ X 10pF, which is too
fast for our real world. This problem can be
avoided by discretizing time, or using peculiar
controllable resistive circuits such as the one
presented in [Siv87]. After this general and brief
presentation of a starting repertoire of general
analog operators that can be used in "analog
vision"”, we now present a few examples where
physical laws inherent in electronic have met the
operating or computionnal need of certain aspects
of vision.

Gaussian Suatial Convolution.

Gaussian kernels have been shown to be of
primary importance in edge detection algorithm
(cf [Can86}). Thanks to the Central Limit
Theorem, the repeated binomial convolution of a
signal or an image is a good approximation to
gaussian filtering. Sharing and halving charge
packets is easily performed in the charge domain,
particularly with the help of charge coupled
devices. So binomial convolution can be
performed in a CCD imaging array clocked by an
unconventional method as described in [Sage85
and generalized in [MIT88). Fig.5 shows a nove
2-D CCD convolution cell to be used in an
hexagonal tiling. The boundary of the cell is
indicated by a shaded area. The structure of the
cell is simplified : after a certain clock sequence,
charges are transferred from bucket to bucket
according to the arrows.

Halving Y. Mixing Halving X Mixing

Figure 5 : 2-D Parallel and Pipelined Binomial
Convolution

The left part of the cell performs a binomial
convolution along the vertical axis, while the right
part convolves along the horizontal axis in a
manner which is similar to implementations of
FIR filters in classical signal processing pipelined
architectures. The image is input column after
column on the left side. The final network's
heigth matches the number of rows in the image,
while its width depends on the gaussian kernel's
variance to be implemented. Finally an input
image is massively convolved in a parallel
pipelined fashion, and the /7O problem is
degenerated from 2-D to 1-D. Moreover, the
variance o of the gaussian kernel can be
controlled by using a partial width of the
network, hence adapting the resolution which the
image isprocessed at.

Whereas the choice of the binomial filter is just
one efficient way to iteratively approach the
gaussian shape, there are other diffusion or
relaxation processes that are more typical of
fundamental electric equilibria found in VLSI,
and that we present now.

Diffusion-Based Suatial Convolution.

Static image processing 1S fundamentally based
on spatial interactions berween pixels or sub-
structures that are more or lessfar apart in the
processed image. This corresponds to the
structural approach of vision, which car actually
take place at every level of vision. When
performed at the lowest level anywuy, these
spatial interactions are extremely computationally
intensive and would definitely benefit from
"natural”physical interaction phenomena.

When statistically considered, images have to
be processed in a shift-invariant manner, without
privileging any particular direction. Moreover, it
makes sense to weaken their interaction as pixels
get further apart from each other. We are thus
looking for a shift-invariant phenomenon
allowing the isotropic but radially decreasing
diffusion of a physical quantity towards its
neighborhood. This can be implemented thanks to
current diffusion in resistive materials, which is a
linear process : if a current is injected at some
point of a resistive sheet of conductive material
featuring a uniform surfacic leakage resistance
towards some source of potential (e.g. ground),
the induced voltage profile or impulse response is
indeed a rotation-invariant kernel (cf [Ber88))
whose radial shape is given by the first modified
Bessel function : V(r) « Kp(r) ,where r is an
absolute normalized radius. Before discussing rhe
relevance of the "diffusionkernel™ shape for
vision purposes, let us characterize it more
precisely. To get some physical intuition about




Ko(r), We can consider tne current dittusion in
the adjacent dimensions : 1-D and 3-D. For a
resistive line V(r) « exp(-r), and for a resistive
volume V(r) = exp(-r)/r . As expected Ko(r)
shows an intermediate behavior that we can
precise thanks to equivalent forms for small and
large arguments :Ko(r) 7 -log(r) and Ko(r)

= exp(-DAT .

In a VLSI circuit however, we are bound to
spatially discretize this current diffusion process
onto a resistive ladder network of the type shown
on fig.6. This network is shift-invariant.
Horizontal resistors are called diffusion resistors
with value Rq4. Vertical resistors are connected to
ground, and called leakage resistors with value
R;. Input injected currents X; diffuse all over the
network contributing to the output node voltages
V;. This process is linear such that we get
V=K*X, where K is a characteristic convolution
kernel depending on the sole ratio Ry/Rq. If this
ratio is variable, this is truly a multiresolution
facility which is available to the analog vision
algorithm designer IRecent devolopments about
the use of wavelets ﬁcf [Mal89] & [Mal90]) in
image processing still enhance the importance of
such afeature.

Figure 6 : A Resistive Diffusion Network (1-D
version).

In the 1-D case, the kernel voltage profile is
simply exponential (as in the continuous model),
that is K(r) « exp(-r) or K(x) < exp(-Ixl) because
Kirschoff laws can be written In a recurrent
manner. In the 2-D case however, there is no
closed form giving K(x,y). There are actually at
least 2 network topologies that can be used :
either rectangular or hexagonal. The continuous
model proves useful to understand the asymptotic
behavior (towards <=). Unlikewise, close to O,
that is for the central pixel on which the unity
current is injected and for its neighbors, infinite
voltages forecasted by the continuous model
vanish ;the node voltages are finite and have to
be estimated thanks to iterative algorithms.

It is fairly easy however to derive analytically
K*-1, the inverse of K for convolution (regardless
of the dimension or the network topology) which
in turn yields FT(K), the Fourier transform of K
(with K considered as a distribution). This is a
door to understanding the effect of the discrete
current diffusion in terms offrequential analysis.

By expressing Kirschoff laws for each node of
arectangular 2-D extension of the network shown

on fig.6, we get (Vie Z) (Vje 2)
Xij =(1/R1+4/Ra)-V‘\;}
- YRG(Vi1,i+Vis1 j+Vij-1+Vije1)
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Figure 7: Laplacian Kernels in the rectangular
case Ay and the hexagonal case Ap.

By using the dirac distribution & and the
rectangular laplacian Ay =4.3¢,0 -6.1,0 -81,0 -80,-1
-8p,1 (shown on fig.7), Kirschoff laws yield :

X = (8/Ri+A/Rg)*V, where * stands for
convolution. But V =K*X ,s0 :

K*-1 = (8/Ri+A/Rq ) (1) .
We can now switch to the frequency domain to
get the periodic Fourier transform of X*-1 and

finally K, with frequency coordinates wx and ty :
FT(K*-1) = 1/R1+4/Rq. [sin2(wx/2)+sin2(0dy/2)]
= FT(K) = (1/R+4/Rq.[sin2(®x/2)

+sin2(wy/2)])1 (2")

We have just been characterizing 2-D
"diffusion kernels" in many aspects. We have
now gathered enough information about them to
show their relevance for vision purposes.

Within recent years, much work has been
devoted to the optimization of smoothing
diffusion kernels allowing the removal of noise
before edge detection. Beside the "gaussian
hegemony" mentionned in the previous section,
exponential filters have also been proved in
[She86) and [She87], to be optimal for a
multiedge model. Now, when a straight edge is
convolved by a 2-D diffusion kernel X, K is
actually projected according to the direction
perpendicular to the edge into ...an exponential
rilter ' The edge detection capabilities of the
"silicon retina" described in [Mea88] are the
straightforward application of this property. We
have also proposed (but not implemented) a more
sophisticated edge detection algorithm
implementation based on diffusion kernels in
[Bel88].

We will also show in § /Vb that diffusion
kernels are particularly suited to the halftoning
problem, that is the analog-to-binary conversion
of images, as mentioned in [Ber90].

Though the fully 2-D parallel implementation
of diffusion kernels seems much more "natural”
than that of gaussian kernels, there remains a few
difficulties to solve before it can be really mapped
into silicon. As previously mentioned , it is very
desirable to implement controllable resistors (at
least the leakage resistors which are the less
numerous) in order to benefit from an analog
multiresolution facility. This apparently requires
the use of active resistors. The natural compacity
of the diffusion network allows a large number of
pixels to be integrated on the same circuit,
however it also raises severe power consumption
problems. Using transistors in the weak inversion
region is a potential solution to lower current
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values, as explained and applied 1n [Meag¥]. In
that case, resistors are controlled thanks to the
tunable transconductance of a CMOS differential
amplifier used as a unity-gain follower. Yet, the
linearity range is not larger than 200mV. When
the device gets saturated, it turns out to perform a
simple but automatic segmentation of the input
image by preventin?1 two neighbor pixels from
exchanging more than a fixed current upper
bound.

However, considering the uncertainty on each
transistor characteristics in the weak inversion
region (up to an equivalent gate voltage
uncertainty of a few tens of millivolts), the linear
range narrowness seems more undergone than
desired : it requires dynamic selfcorrecting
circuitry or static a posteriori analog
compensation by EPROM-like techniques?, all of
which may be area-consumming. Further more,
such analog voltage precision seems to prevent
the cohabitation with digital layers which requires
extemal clocks, inducing significant amounts of
noise.

We have been studying an alternative solution
to the implementation of diffusion filters based on
an unconventionnal use of switched capacitors (cf
{Ber88) and [Ber90)). This approach leads to
reasonnable power consumptions : To give an
order of magnitude, if a (fairly large) 1pF
capacitor was to be charged and discharged from
OV to 5V at a IMHz frequency at every pixel site,
a 100x100 pixels retina would demand a power
of about 0.1W. However, either it requires an
analog CMOS process providing a double
polysilicium layer, or "slightly” non-linear p-n
junction capacitances have to be used (cf
[Ber891). In the latter case, it is amazing to notice
how many roles the same simple device canplay :
a strip of n-diffusion over the p-substrate will be
used a) to connect two pixels, b) to act as a
switched capacitor and ¢) to convert light into
current.

Finally, a globally better precision can be
achieved with comparable silicon area, partially
because capacitors are really easy-to-use
bidirectional media to perform "type conversion"
between charges and voltages.
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Figure 8 : 4 cells from 1-D switched capacitor
diffusion network and associated clocking
cycle.

Fig.8 shows how a 1-D image X, input through
voltages sources, can be convolved by a diffusion
kernel on a switched capacitor network.
Horizontal and vertical capacitors are called
respectively diffusion and leakage capacitors. A
few peculiarities have to be emphasized. The

2Such techniques provide long term analog storage of
charges.

convolution 1s only asymptoucally obtained atter
a sufficient number of elementary switching
cycles. About 10 are necessary to reach a 0.1%
precision when Cy4=Cj . The ouput voltages are
somewhat immaterial since only half of them are
available each time clock ¢35 is high in the clock
cycle. "Neurons" (pixels) are indeed separated
according to their parity. This iterative aspect
allows to share a single leakage capacitor between
a pair of odd and even neurons. This neatly
generalizes to 2-D, where neurons are separated
in a checkerboard fashion. Now only the
elementary cycle is presented on fig.3. Though
capacitances have static values, a discrete
multiresolutionfacility is recovered thanks to the
use of more complex cycles in order to obtain
narrower diffusion kernels or even different types
(e.g. gaussian-like) of kernels at no further
implementation cost !

We have just been comparing different
implementations of regular diffusion networks.
However, when resistors can be separately and
dynamically controlled, resistive networks can
have much broader early vision applications (cf
[Hor86),[Koc86],[Hut88] and [Kocg9)). The
price to pay is area, but also algorithm complexity
: for example, negative resistors, which are area-
consumming, can also pose convergence
problems.

From edee to motion detection

The above examples have made tangible the
intuition that vision can be fruitfully thought
about in an analog manner. But even more
exciting are the unifying "shortcuts” that simple
analog devices, within a continuous range of
operating conditions, can provide between
usually well separated vision concepts.

The silicon retina described in [Mea88] is an
examplary case embedding into a regular resistive
and capacitive network both edge and motion
detection, in a tunable manner. A schematic and
linear version is shown on fig.9.
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Figure 9 : A 1-D linearized version of the
"silicon retina" (cf [Mea88])

The resistive part isjust an equivalent version
of the current diffusion network shown on fig.6,
but inputs are now voltages, which dynamically
represent the light intensity falling on each pixel
(this was actually an intermediate step of the
metamorphosis of the resistive network shown on
fig.6 into the switched capacitor network shown
on fig.8). The equivalence is a direct consequence
of the Northon-Thevenin theorem. Besides, one
capacitor has been added to each network node,
in order to perform temporal differentiation. The
outputs of the network are the voltages across the




leakage resistors. ‘the spatial and temporal
network behavior is described by its space and
time constants. The space constant depends on
the sole ratio Rdeléif diffusion resistance are cut,
R4 gets infinite and the space constant becomes
0), whereas the time constant varies linearly with
R; and R4. So the same simple network used with
different resistance values can continuously
switch from edge to motion detection. Beyond
this linearized view of the "silicon retina"”, the
devices sarurability also plays a significantrole in
the overall computation.

From mean to median filtering

The saturation of a unity gainfollower, when
used as a resistor between the output node and the
input node (which appears as a voltage source),
can be clearly interpreted from a vision point of
view when used ina "follower aggregator circuit"
(cf {(Mea881) as shown on fig,10 ST e Gi are the
respective conductances of the voltage followers
in their linear region).
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Figure 10: Follower aggregation circuit.

As explained in [DeW88}, if all the V; voltages
are within the same 200 mV wide interval, all the
voltage followers are operated in their linear
region. As the sum of the currents at the output
node must be zero, a weighted mean of the input

voltages is computed ~ Vou =2 Gi.V; / Z G,

On the other hand, if the V; voltages are to0
further apart from each other, a large majority of
voltage followers will be saturated, that is they
will act as current sources. The saturation current
is known to be proportional to the
transconductance G;. If all voltage followers were
saturated, the
final output voltage would be such that :

2Gi = G
Vi<Vour Vi>Vour . .
This computation defines a weighted median.

Finally the quantities on which the
computation is performed appear to be the
conductances Gj. They are set by the bias voltage
of the differential amplifiers, and can represent
the incident light as is the case in {DeW§8]. On
the other hand, the input voltages are used to
control the type of computation. If a spatially
increasing profile of voltages is input to the
network (such that voltages differences Vi41-Vi
are constant), Vou will naturally indicate the area
on which the incident light is maximal.
Depending on the slope of the voltage profile, the
precise value of the "pointer" ¥y, will result of a
weighted mean (small slope) or weighted median
(large slope) or a tunable combination of both, in
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order,for example, to perform an adequate noise
removal on the input image.

IIIc - Does ™"analog™ mean ''smart
enough™ ?

We have just been browsing from the most
specific analog attempts to integrate vision up to
more structured approaches, putting in evidence
may be unexpectedly strong relationships
between analog techniques and "high level”
vision concepts. We have illustrated the versatile

ower of analog hardware within VLSI circuits,

ut also its limitations due to technological and
more %enerally physical constraints, which, for
example, can make the cohabitation with digital
hardware uneasy.

However, very few people have proposed
even partial solutions to solve the output problem
for general enough applications. Many research
groups in the field do claim that this problem of
input output in vision is smartly solved thanks to
windowing i.e. reducing the field of processing,
then the number of processed pixels, by
approximately two orders of magnitude. Thus
processing inside the shrunk data may be more
sophisticated. They dangerously underestimate
the control problem of positioning the window,
now well-known as the problem of "narrow in
wide angle”, or of attention focusing. In the
research about multisensor fusion, most proposed
solutions to it ask for advanced stochastic control
(Bar84, Mer88 ) or extended linear
filtering(Bar89). Other smart attempts closer to
smart sensors deal with fovealisation
(multiresolution in silicon) and or active vision
i.e. short loop between camera actuators and data
processors to come up with natural regularisation.

IV - YET ANOTHER MESH ARRAY
SMART SENSOR?

IVa - Rough vision

In order to get to some programmable or
adaptative recognition, on top of analog thinking
we still had to adapt the retina concept jointly
from the technical point of view of the
implementation, and the more fundamental one of
vision.

On the technical ground:

- As far as the digital layer is concemed (the
top one on fig.2), the choice of a binary image
representation is the crux of the matter. First, the
maximization of computational power at fixed
implementation cost is likely to strongly benefit
from the boolean nature of the quantized images.
The complexity of a processor as a function of the
number of bits it processes is at least quadratic
(e.g. for a multiplication operation). By its deep
homogeneity, the binary representation
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(1vit/pixel) allows the use of really "bare"
monobit processors (about only 25 transistors).
Their interconnection with their four closest
neighbors turns the top layer into a cellular mesh
array that can implement any shift-invariant
boolean function (cf. Gar88). The larger the
function support, the longer its computation. The
function support is indeed scanned thanks to
iterative image shifting. So supports are
practically limited to local neighborhoods. This is
why we have called those boolean operators :
NCP's, standing for Neighborhood
Combinatorial Processings.

- NCPs are well-adapted to low-level image
processing. More generally, NCPs allow the
implementation of a "rough but complete" type of
vision, for which NCP algorithms results can be
output from the retina in a concentrated fashion
(such as the image integral, higher order
moments, or sparse pixel coordinates) thus
avoiding a potential communication bottleneck
with the extemal world.

- Last but not least, the binary representation
provides a fruitful duality between operators and
objects. Any NCP can be simply interpreted as
the alternative recognition of a set of boolean
patterns. Now, on the one hand, any image
portion inside the retina is a potential NCP
pattern. On the other hand, any pattern can be
processed as an image inside the retina. This
confers autoprogrammation abilities on the retina,
which are of particular interest for tracking
purposes (Garg8).

On the vision ground:

The magic in the previous section becomes the
halftoning process which makes the whole NCP
concept available and sensible. Now there is
again certainly something to pay for it. Let us
explain right away the trade-off hiding behind a
"rough but complete™ vision, by giving first more
formal definitions and properties.

1) NCP's (Neighborhood Combinatorial
Processings) are exactly the shift-invariant
operators on binary images. We have concisely
defined them using set theory, where binary
images can be represented as finite subsets of Z2.
FP(Z?) standing for the set of finite subsets of Z2
(binary images), NCP t v is defined thanks to

two parameters, Ve FP(Z2) and UcP(V) (set of
the subsets of V), by

FP(Z2) — FP(Z%)

tU,VI —tyy (l):(ZEZZ/('Z+I)mVEU]

2) NCPs are stable through the composition
operation o :

YV 1€ EP(Z2), YU CP(V1), ¥ Voe FP(Z2),

YU2CP(V2),
ty,vi O t U2,v2 is an NCP t u,v whose
parameters are

V=VigV2 and U =ty vi -1 (U9).

Therefore, NCPs can be decomposed along a
noise and distorsion tolerant structure revealing
process, according to the scheme shown on
fig.11. We note L this decomposition operation
based on a context specific pattern base, ¢
detailed in (§IVc)

- e
L L = | . ¢
3 D@ p;l:’? . °

Figure 11: N.C.P. Functional Decomposition.

So, if all semantics or context handling is
"subcontracted"” to a controller which could be
nothing more than a boolean pattern base
manager, then in many well delimited cases (up to
target tracking and more!) recognition is merely a
tolerant dot pattern matching at some point
generalizing both the notion of interest: (say area
of) and multiresolution. Figure 12displays some
suggestive graphic examples:
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Figure 12 : Structure, Semantics and
Multiresolution

It is easy to understand that such
considerations hold only for very restric ted cases,
making up the "rough™ vision. The direct
counterpart of the rough character of the retina
vision is its completeness, i.e. the ability to carry
out vision processes from acquisiticn to decision
(cf fig.1).

This highly pragmatic tradeoff remains most
valuable compared to other potentially monolithic
and complete vision systems, such as pattern
recognition neural networks. As far as Hopfield
networks are concerned, it is currently admitted
that at least 10 neurons are required per basin of
attraction. Similar properties hold for the Hebb's
rule. Now VLSI technologies currently limit the
number of highly interconnected neurons on the
same circuit from a few tens up to a few hundreds
(when interconnection tricks are exploited). So
the number of patterns that can be recognized by
today's integrated neural networks is bound to a
few tens, and it is not likely to increase
significantly but if a radical mutation occurs to
solve the "interconnection™ problem. On the
contrary, the Retina concept makes a better use of
today's integrating facilities. Due to the "vision




roughness"”, there is no need for more than about
a hundred of patterns, that are to be provided by a
robust enough controller. Pattern recognition is
certainly slower than when performed by analog
neural networks, since computations are iterated
inside the Retina. However it is so easy for the
retina to pass from one context to another by
changing the pattern base, whereas neural
networks have to enter a long learning phase.

If integrated neural pattern recognition is still
several orders of magnitude ahead, a neural
approach however is of immediate interest for
simpler and more regular operations like non-
standard A/D conversions within the Retina
context. The section IVb explains why,
displaying an exemplary application. As already
mentioned in § 1I, the filtering associated to
halftoning does influence NCP to be used and
determines the "retina vision”. Soin § IVc, we
finally come to grey level picture processings
inside the retina.

IVb - Analog-to binary conversion and
halftoning

Again, the whole structure and in particular the
conversion layer can take full advantage of the
computational abilities of highly interconnected
analog networks. In particular, the homogeneity
of the binary representation is determinative. The
even distribution of information over all bits (each
one will support an information of physically
equivalent importance) has a direct influence on
the "energetic landscapes™ used in early vision
optimization problems. This especially prevents
local minima from being too shallow and hence
improves the performances of neural
computations. A well-known counter-example is
the 4-bit A/D converter studied in [Tan86) and
ISmi86} where the presence of such undesirable
local minima is put in evidence.

Halftoning techniques deal with the bilevel
rendition of continuous tone pictures. The retina
structure requires a fast and parallel halftoning
technique with good fidelity at low
implementation cost! Unfortunately, among usual
halftoning techniques, none meets all these
constraints. A state of the art can be found in
[Bil83] and [U1i88]. Error diffusion methods,
considered to be the best, are inherently
sequential, hence unappropriate. Ordered dither
(cf.[Bay73]) is the only "cheap" parallel
technique, but with quite a poor fidelity.

We have dealt with halftoning as a first
general-purpose milestone for the conversion
layer of our retina , towards a more advanced
vision system. As reported in previous work
[(Ber88} analog neural networks provide a very
attractive alternative to the halftoning problem.

The energy approach
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'f'he retina structure provides a one-to-one
mapping between analog (bottom layer on fig.2)
and binary pixels (top layer). So, for any site in
the retina array, whose index is k (k e Z2, where
Z is the integer set), an analog signal X(k){0,1]
is received from a photosensitive device and a
binary information B(k)e {0,1} is produced by
the halftoning conversion.

We want to keep B close to X according to a
tonal/spatial fidelity criterion. We choose to
minimize a frequency-weighted squared error
between X and B. Through Parseval equality, it
is mathematically equivalent to perform the
minimization of the following quadratic energy E
( . stands for image dot product and * for
convolution product) :

E=12.[L*B-X)] .[L*B-X) 1

L must be considered as an intermediate
convolution kernel whose coefficients are related
to the above frequency weights through Fourier
transform. We mainly use kemel K =L*L, which
is of immediate meaning for the actual
implementation of the procedure.

As shown in [Ber90}, local minima of E prove
to be fixed points of a compact evolution equation

B - HinVK(o) 0] [K*(B"X>] (2)

Hinv, which stands for Hysteresis Inversion,
appears as a fundamental non-linearity in the
"analog toolbox". It is illustrated on fig.13. The
hysteresis cycle width is responsible for the
convergence properties of the whole network.

A

Hinv
A Hysteresis
LY » Inverter
Y Symbol.

>

Figure 13 : Hysteresis inversion : a
fundamental non-linearity.

Along with compactness, the choice of a
diffusion based neural interconnection satisfies
two natural physical constraints in the world of
images : shift-invariance and isotropy. No
halftoning technique has ever gathered both
properties. Based on threshold matrices, ordered
dither methods (cf. [Bay73}) ignore both of them
which contributes to their poor spatial and tonal
fidelity. Currently considered as the best, random
2-D error diffusion methods (cf {Uli881) are shift-
invariant but naturally anisotropic due to the raster
order of processing, triggering the appearance of
undesirable correlated artifacts. So, unlike the
other techniques, our method features sine qua
non properties to reach a really high fidelity. Only
its isotropy is imperfect due to rectangular grids
not being radially symmetric.

Moreover, the corresponding minimized
quadratic energy can be advantageously
interpreted in the frequency domain, where it has
an exact and simple mathematical expression,
regardless of the dimension (1-D or 2-D for.us).
Fig. 14 displays some interesting samples. Due t
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the decreasing shape of their Fourier transtorm,
diffusion kernels are able to keep faithfully low
frequencies by hiding the quantization noise
within higher frequencies.

1 Frequency weight for different ratios Cd/ClL,
0,9 4
0.8 -
0,7 1
0,6
0.5 -
0,4 1
0,3 1
0,2 1
01 ]

0

0 01 02 0,304 05 06 07 08 09 1
Normalized frequency.,

Figure 14 : Frequency Weights for various
Kernels K.

But are these curves optimal for halftoning
purposes ? The answer is in the affirmative.
Tonal resolution is the only potential
weakness of shift-invariant halftoning techniques
(like ours). Its separate (but constrained)
optimization with respect to kemel K is not likely
to spoil an already excellent existing spatial
resolution. Now if we restrict ourselves to 1-D
constant images, £-A modulation can be shown
both to be optimal for halftoning purposes and to
perform tl}e optimization of the MSE between the
integrals JX(k) and /B(k), with k varying in Z.
This again justifies previous attempts (cf [Uli88])
to extend L A modulation to 2-D. A major
conmbution of our work is that we have done so
without introducing an arbitrary order on Z2
(unlike existing 2-D error diffusion methods).

Let us note 8(k) the dirac distribution in site k,
D=8(1)-S(0) the derivation filter, and
a=D*D=2.8(0)-5(-1)-8(1) the laplacian filter.
Besides, a -1 exponent means the inverse for
convolution. -4 modulation on constant images
thus appears as the minimization of the following
frequency weighted MSE criterion :

|| D1*(B-X) ||z = 1/2 [A"1*(B-X)1.(B-X)
(3)

Though physically unrealizable, (3) has a sense

from a formal calculus point of view and turns all

the closer to (2) as we show K-! to be a slightly
modified laplacian filter ! :

Picture Processing Examules.

The shape of the diffusion kernel K is derived
from Kirschhoff laws. Using ratio Cg¢/Cy
(switched capacitor) instead of Ry/Rq, we get : K-
1 = Cy/Cl.at+s (see § diffusion based
convolution in 1l1b)

If we spread kernel K by making C4/C; larger
and larger, (2) becomes asymptotically equal to
(3) and global minima of (2) become optimally
halftoned images. The relationship K- = Cy4/C.4
+ & actually characterizes resistive diffusion
networks regardless of the dimension. However,
when kernel K gets wider, the local minima of (2)
become more numerous and subsequently of a
lesser quality. The problem is that the neural
optimization can get stuck in any of them :this is
the very limitation of our method. We need to
make a trade-off between the quality of criterion
(2) and the quality of its local minima. After
having extensively experienced the procedure, it
empirically appears that suitable ratios C4/Cy go
from 2 to 8.

Resistive & switched capacitor

imnlementations.

Equation (3) is so neat that the choice of K is
definitely the crux of the matter. We have insisted
in the previous section on the key role played by
simple resistive networks (as presented on fig.6)
for a highly compact implementation of
appropriate shift-invariant synaptic weights. So,
much of the work is done, and the transcription
of the transformation equation (2) into the
resistive electronic circuit shown on fig.15 is
straightforward. The resistive implementation
proves extremely simple and regular. The
switched capacitor implementation is detailed in
(Ber90].

XG-1) X() X@i+1) Analog

Image

Synaptic

Diffusion —a

Network

Neurons Linear

(Schmidt Voltage-

Triggers) Controlled

Binary Current
Source

Image

B(-1) B(i) B(i+1)

Figure 15 : 1-D resistive neural halftoning
network.
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IVe - More about NCP and retinian
visions

To begin with, let us explain the way
combinatorial boolean operators can be used on
thresholded images (see {Pre79] and [Ros82]). A
template (element of U) is determined thanks to
two parameters O and Z, which are two disjoint
subsets of V: the template [V, O,Z] is the set of
all subsets of V which include O and are disjoint
from Z. It can be conveniently represented by a
picture displaying i's at the sites of O, Os at the
sites of Z and "don't care" at the sites of V which
belong neither to O nor to Z. In this case, the
application of the NCP with parameters (V, ([V,

Oi, Zi])i} to a binary picture | (considered as a
subset of ZxZ) is the following subset of ZxZ:

tQy ={zE ZxZ, (-z+D "V E Ui[V,0;.Z;].

Now, let us explain how to use a NCP
sequence for boolean template matching. First,
consider a small binary picture P included in a
rectangular window R. The picture t(I} which
results from the application of the NCP whose
parameters are (R, [R,P, R\P])to a binary picture
| is given by the following equation:

tI) = {z E ZxZ, (-z4]) ARE{R,P, R\P] ) =
{zE ZXZ, (-z+]) "R =P)

This means that the pixels of t(I) are located at
the sites z whose neighborhood (z+R) matches
pixel by pixel the template [R,P, RV]. Of course,
If one performs this matching process to match
copies of a window of an acquired picture P in an
acquired picture |, then the resulting picture will
be black, i.e. no match will occur. Thus, one
needs a way to handle some similarity relation
between templates. A conventional template
matching approach is to define some similarity
measure between pictures [Bar 72]. Now, the
point is that as NCP operate through logical
operations exclusively, to compute some
numerical distance with them is not very
welcome, and thus one has to rely on some
geometric similarity.

A first approach consists in substituting to the
template [R,P,R\P] the template. {R,Pn,(R\P)n},
where Pn and (R\P)n are the erosion of
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respectively P and (R\P) by a square of size n.
The pictures this template matches, are
geometrically similar to {R,P,R\P].

A more sophisticated approach relies in the
continuous plane RxR, where R is the set of real
numbers, on Hausdorff's distance. Between two
compact subsets of RxR it is given by the
following equation:

I(AB)=inf(e E R, B®Dg)>Aand (A D
D¢) o B}

where @ is the Minkowski's sum and D¢ a
disk of radius E.

Thus, the Hausdorff distance of A and B is
less than E as soon as (B @ Dg) > A and (A ©

D¢) o B. By analogy, consider an elementary

square Sp of size n. Then we will mark the points
Z where

(zZAP) @ Sp n z+V) A L, (1D Sp) o (z+P)

This does not exactly check whether the

Hausdorff distance between (z+V) ™ | and (z+P)
is less than n, but this approximation gives good
results and remains easy to compute on the fly.
To go further, we want to introduce some
structural similarity between templates while still
relying on NCP operations. For that purpose, let
us choose two square windows R1, R2 such that

R =R] @ R2. Let G be a regular square grid
included in R2. Now, consider the windows
extracted at the sites of G in P, i.e. for each site z

of G, let Wz be R n (-z+P). Let Tz be the
template [Ri, Wz, R1\Wz] and ti the NCP

defined by the template (Tz)ze G. Besides, let t2

be the NCP defined by the template [R2,G,&1].
Now, let us choose the grid step and the size
of R1, such that in the one hand the windows

W21, Wz2 in G overlap and such that P »
Uze G(z+W3).
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Structural NCP decomposition
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Through the successive application of t; and
to, one matches pictures which are generated by
swapping the windows (W,) between the sites of
G (fig.11 and 16 ): for real pictures, most often
the only permutation which meets overlaping and

P-covering results in P. Now let us introduce
some geometrical similarity between t{ templates

as previously. Then introduce some structural
similarity by matching points which are located in
the neighborhood of G sites and by allowing
some of G sites to have no match. For this
purpose, the picture t7 () resulting from the
application of ty to a picture | is dilated by Sn
before the application of t. Moreover, ty is
modified to allow that no match occur at a small
number of G sites (introduction of "don't care").
Thus, a unique process of NCL decomposition
into a map product, holds an elastic match
between patterns. Moreover, this process may be
iterated according to stuctural picture complexity.
Examules on tank pictures are given below.

Initial sequence of half-toned pictures

e A e =

e e s

Result of t1: first NCP iteration

Result of t2; second NCP iteration

Numbers of suitable operators can be
implemented, not only straight recognition. Of
course, as it is, the retina can perform
combinatorial cellular logic operations [Pre79].
These include erosion, dilation, and their
iterations as opening, closing, ... All operations
relying on template matching are easily
implemented too: they include primarily binary
edge detection, shrinking and thinning.Other
useful primitives like binary propagation [Duf86},
turn out to require supplementary memory points.

The addition of extra memory points (one or
two per PE) allows implementing number of
other algorithms which are better (fully and
systematically) investigated considering a precise
designed device. Now, the power of a full
preprocessing stage for binary pictures towards
statistical pattern recognition could be reached
thanks to a global counter. It allows the
computation of the area of patterns and thus
combining geometric operators with counting
yields the full range of numerical features as area,
intercept number, connectivity number, and also
various histograms and granulometries. After
illustrating that point, through a non trivial
example, let us show how to perform a counter in
the smart sensor itself.

Ex.1: an NCP
skeletonization

A local operation as the pseudo euclidian
skeletonization may be done inside a smart
sensor. In the algorithm described in [Lev 75],
height templates Ti are given (Al, Bl,..., A4,
B4), and must be applied successively.

pseudo-euclidian

00. .00 .1. .I.
000 1.0 .1l 0.
011 110 110 o011
. 110 1. 011
11. ..0 000 0.1
Ao 1. .00 o0o0.
Al A2 A3 A4

B1 B2 B3 B4
For one iteration, all the uoints of an image |
corresponding to the template Ti must be removed
to perform the image J ( - , I, & stand
respectively for negation, logical or and logical
and):




F& (¢ Ti(l) )

= L (TyM )
tl (t2 (1))
So, this operation is the composition of two
NCP 11 and t2;, defined as:
tl =
12i

—_
— +TI

The application of the eight templates Ti is
implemented by NCP composition. It makes the
main loop of this pseudo-euclidian skeletonization
to be performed by our smart retina.

Ex. 2 : An NCP counter

In the resulting image of counter
algorithm, all the black pixels will be concentrated
upon a border of the sensor. To count the number
of black pixels, we only use the output of the
number of black points along its edges.

The projection of the binary picture | upon the
bound B of the sensor, translates all the black
pixels with a given direction GD, up to the
resulting image J, where all the black pixels are
concentrated on B. This algorithm is presented in
[Tof87]. Here is a NCP equivalency. For a
projection from east to west, NCP p is as:

p 10x + xI1
nl1 + n2

Templates 4 1and 2 represent respectively
a progression of one unit to the right, and the
meeting with an obstacle. The projection consists
of iterating p. up to a constant image.

All the Freeman vector projection may be
given by rotation of p. These projections will use
a reduced support (3x3 pixels). The projection p'
from north-west to south-east is

Ixx XXX
p' = X0X +  xIx
XXX xx 1

/I >\ L — A\
pl p0 p7 pb PS p4 p3

Elementary projections pi.

If no Dborder constraint exists, black
propagated pixels will progressively disappear
(translation effect of 1), Contrarily, if one
bggder B is black, B will be an obstacle (effect of
i

If n is the number of pixels of I, and L = +/n
the width of the retina, the number of iterations is

n.
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If we consider a composition ot projection pi.
then the stability region of semi-planes will be the
intersection of stability regions Ry of each pi.
Now, map multiplying elementary projections pi
to concentrate all the black pixels of the binary
picture | upon a bound of the retina, consists in
operating one or more cycles of n projections cy

= (pi,k0--0pn,k)» and iterating ck until
convergence. The choice of the projections is
critical, because there are invariant pictures under
two projections. For instance, the stability region
of projections p5 and p7 is not empty [Rei85 ].

The convergence will be obtained with
projection without stability region, and a good
convergence is experimentally got with cG and c|
cycles. In that case, the counter algorithm needs
four cycles, c0, cl, ¢0, cl.

cO
cl

pOop70pb
p4dop5Sopbd

Real pictures are not well captured by
thresholding; and introducing a threshold does
not fit exactly the flavor of autonomy. To perform
recognition from grey level images, two avenues
make sense a priori:

« to rend automatically a picture under a form
of black and white compact regions. Such a
blackening process is again a cellular automaton
implementable as NCP ([Rei&8}) which can be
added directional properties to. It allows to
execute all previously defined operators although
tolerance in decomposing is harder to justify.
But, learning vanishes here in a way or is
drastically changed up to contradict our approach
of direct learning by the image itself.

* to generalize the NCP decomposition
algorithm to multilevel images so as to analyze
directly halftoned images. A new step is required
to extract key structures related to grey levels,
grey level sets or density gradients... Then,
recognition comes as before from the control of
key juxtaposition, which at that point fits
perfectly a search for optimal equilibrium between
B-coding (halftoning) and NCP. The approach
relies on detecting regions as they gather some
repartition of grey levels, knowing that a given
halftoning process greatly constrains the possible
repartitions. Particular NCPs made of sub-
templates which get the same density in templates
are true spatial counters, and give a hint on grey
level repartition inside a region. Technically a
marge is introduced again under the form of don't
care pixels in the sub-templates. This
fuzzyfication is shown to result into a potential
spatial shift of key-templates. So, in practice, if
templates T as given through windows, are
subdivided into wj's which number of occurences
are rendered by a given dot configuration Mj, the
tolerance on grey level configurations is made of
both don't care pixels in Wj ang little shifts in Mj.
We illustrate the results by tracking the same
tanks as before.
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V - CONCLUSION.

While technologically realistic, the rapprochement
between acquisition and processing within smart
sensors opens doors towards peculiar types of
interaction between analog and digital
computations. The technological constraints
however are strong enough to impose a pragmatic
approach for setting the analog/digital balance
along with the overall performances of the
sensor. From this point of view, our Retina mes
to be exemplary. Its vision is particularized to
allow the use of really bare boolean processors,
and consequently the monolothic integration of a
significant number of them (100x100 in 1pm
CMOS technology). Besides, the "roughness” in
the image representation (1 bit/pixel) is
compensated for by analog processing on the
acquired image, which exploits natural correlation
properties of the images. Neural techniques are of
great interest for such purposes as shown in the
halftoning case. They can also be used to enhance
particular early vision features thus leading to
more specific retinas.

More generally, there is an unsurprising need at
every level of vision for arranging non linearities,
function of knowledge and recognition to be
performed. Allowing analog layers to cooperate
intimately with programmable binary layers
(binary on a first phase?) certainly is a good
solution, at least in vision which can make do
with quite spacially limited connections. Analog
suggests rather isotropic communications, where,
at most, natural nonlinearities are taken advantage
of, while digital suggests more complex
interconnections by iterating or programming,
hence possibly premeditated anysotropy and
nonlinearities.

But, may be the most important aspect of research
in the field of analog vision is that concepts or
paper work MUST one day be confronted with
actual implementation. Though it is an expensive
approach, technological constraints impose some
sound realism, in front of algorithmic claims. In
this confrontation, "silicon" proves to be a most

valuable source ot inspiration, as it might be
translating some fundamental laws where physics
encompasses information processing.
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1 SUMD! ARY

This note is aimed to investigate how much visual sen-
sors may be effective in supporting autonomous navi-
gation of mobile robots. Although in practical realiza-
tions, with robustness and reliabity constraints, it is
always necessary to integrate multi sensor modalities,
the discussion here isjust limited to analyze computer
vision advantages and disadvantages, with particular
attention to:

e a binocular stereo vision module for obstacle de-
tection, with no precise calibration (reactive pro-
cess to operate at fast rate, from 5 to 10 Hz.).

e trinocular stereovision based on segment primi-
tives for the reconstruction of free space for navi-
gation, in which case an accurate calibration pro-
cedure is requested.

¢ landmark detection for self-positioning and ori-
entation of the mobile vehicle, using perspective
invariants, for indoor navigation.

Some comments are also provided on computer vision
architectures to support real time implementations. A
real-time front end vision subsystem is described, be-
ing able to compute 3D segment based stereovision
at 5Hz and segment token tracking at 10 Hz. Fi-
nally, some demo arrangements are briefly referred,
where an intense experimentation of such results is in
progress, as a test bed for different industrial applica-
tions.

2 INTRODUCTION

The interest in free-ranging mobile robots is no more
limited to the classical industrial AGV market, but is
increasing in a wide range of potential applications re-
quiring great operational flexibility in less structured
environments. Hence, it turns out that typical exter-
nal sensors, guidance methodologies and control ar-
chitecture are no more satisfactory for the new set of
challenging requirements.

Passive computer vision has been traditionally con-
sidered non-competitive against other sensors due to

the high cost and lack of robustness of the algorithms,
but the recent progress in theoretical issues, availabil-
ity of special hardware architectures and the increase
in complexity of applicative tasks and scenarios make
computer vision a key technology also from an indus-
trial exploitation point of view.

This paper is intended to give an overview of the re-
search activities of Elsag Bailey in the field of visual
navigation. Particular emphasis is given to the exper-
imental evaluation of the different approaches and a
critical analysis of engineering trade-offs which make
it possible to implement computer vision techniques
in real applications.

A further goal of this work is to discuss how to insert
different perception, planning and control modules in
a coherent logical architecture and how to implement
this architecture on real time hardware.

Visual navigation modules can be classified in many
ways: a classical approach consists in considering the
operative range, that is the distance of the workspace
from the vehicle, which leads to split the general nav-
igation task in three levels: long-range, intermediate-
range and short-range. A different but related tax-
onomy concerns the temporal updating rate of each
module, according to real time requirements in real
applications.

An alternative approach [1] suggests to consider vi-
sual competencies instead of modules, that is to de-
compose the navigation system in behaviour layers in-
stead of funcisonal modules. This idea, as discussed in
(2], embodies some advantages such as a more direct
integration of perception and actuation.

The paper is organized as follows: the next section
presents the applicetive scenario and introduces the
experimental evaluation criteria, sections 4 to 6 de-
scribe visual modules and techniques, from the short
range to global navigation. Each part refers to exper-
iments and industrial evaluation with respect to alter-
native solutions, including some literature references.
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8 APPLICATIVE SCENARIO AND TECH-
NOLOGY EVALUATION

Industrial AGVs (Autonomous Guided Vehicles) are
already an in-use technology, with known limits and
problems. Vision is likely to provide the basis for the
second generation AGVs, the so-called “free ranging”
AGVs. Currently AGVs navigate using the inductive
guidance principle, that implies expensive and unflex-
ible buried wires, or following reflective tape sealed on
the floor, that does not resist to the harsh conditions
of the industrial environment.

Safety is achieved by ultrasound belts, which limit the
vehicle maximum speed and create problems of en-
cumbrance in cramped environments. Moreover, cer-
tain types of obstacles like holes, steps, smooth sur-
faces, thin metallic objects such as chair legs, are not
detected at all, underlining the limits of current tech-
nology.

GEC Electrical Projects marketed on a Caterpillar ve-
hicle [3] one of the few commercially available free
ranging AGV, that will be considered as a reference
for the experimental evaluation of our passive vision
based system. GEC vehicle makes use of triangu-
lation laser systems with retro-reflective bar-coded
targets spread all over the workspace. Security is
achieved through IR proximity sensors and mechani-
cal bumpers. The main reported drawbacks includes
the loss of maneuvering capability in constrained envi-
ronments due to the encumbrance of the bumpers, the
necessary limit to the maximum velocity due to the
short operative range for a reliable IR obstacle detec-
tion, the difficultyto operate in scarcely structured or
cluttered environments, such as warehouse or in lorry
loading, where targets could be occluded or difficult
to he placed. Moreover the process of docking work-
stations or loading/unloading in unconstrained condi-
tions are tasks still too hard for standard technologies.

A novel, promising market sector potentially inter-
ested in advanced mobile robots is represented by Ser-
vice Robotics [4). Service robotics refers to a novel
concept and usage ofindustrial robots in tasks that are
not highly repetitive and not too much constrained.
Service robots therefore require much more intelli-
gence, flexibility and sensory capabilities than their
industrial ancestors and the application opportunities
and potential markets of this emerging technology lie
outside the domain of traditional industrial robots.

Mobile robots with relatively simple locomotion can
be used in indoor environments to automate routine
transport activities. The main examples include hos-
pitals where samples, specimens, medicines and meals
have to he carried around, and large offices, hanks or
postal offices where mail, documents and other items
have to be transported through corridors, hallways
and other pre-assigned routes. Specifications for these
mobile robots include free ranging capabilities, flexi-

bility in reconfiguring pre-planned router;, safety even
in peopled areas, and a simple man-machine interface.

Helpmate@) from TRC [4] is one of the first service
indoor robot in use. It exploits multiple sensors to
achieve the required autonomy: ultra-sounds are used
for safety and guidance (wall following), flashing IR
lamps and a CCD camera are arranged to form a
structured light obstacle detector. Monocular pas-
sive vision is also used to maintain the heading di-
rection by following the ceiling lamps in long and
homogeneous corridors. Algorithms and system ar-
chitectures presented below will be evaluated against
generic tasks, but representative of the mentioned ap-
plication classes.

4 SAFETY LEVEL: GROUND PLANE OB-
STACLE DETECTION

The safety level refers to the Capability of detecting
unexpected, possibly moving, objects which can ob-
struct the navigation path. An obstacle can be defined
as everything with a positive or negative height with
respect to the ground level, whose amount exceeds
the robot capability to overcome it. Negative heights
refers to holes, stairs and any abrupt interruption of
the ground, which is as dangerous for navigation as
any other obstacle.

The general problem definition is usually completed
by a few simplifying hypotheses:

¢ the vehicle moves on a flat floor;
e the tilt angle between the cameras and the floor
is known and constant.

In the domain of indoor navigation those constraints
are usually verified, therefore algorithms are still valid
in operative conditions as well.

A generalization of the obstacle detection problem in-
cluding also navigation planning and control aspectsis
called obstacle avoidance, that is the robot capability
to plan and execute locally a trajectory to overcome
the obstacle and recover the originally planned path.
In the following we focus on the sensory technologies
and algorithms to address these two problems.

Obstacle detection modules, regardless the adopted
sensory technology, have to be evaluated with refer-
ence to some established design specifications and per-
formance parameters:

e Fast computation: the module response rate
affects, together with the field-of-view (FOV) of
the sensor, the vehicle cruise velocity, which is a
major system parameter.

e Interface with planning: some modules just
detect obstacles, others return an estimation of
their positions and dimensions to be fed to a plan-
ner in order to compute an avoidance trajectory.

e Robustness and reliability: a safety module
must be highly reliable. False alarms just delay




navigation but failures in detecting objects af-
fects the vehicle integrity and the safety of people
around. Crucial parameters to evaluate are the
dependency on the obstacle appearance (shape,
colour, texture) and the algorithm sensitivity to
drifts of the a priori hypotheses (flat floor, set-up
angles, etc.).

Obstacle detection and avoidance are deemed to be
critical in autonomous navigation, therefore there ex-
ist many different approaches, using passive vision,
laser, ultrasonics, IR proximity sensors or some com-
bination of them, to solve the problem but none is
considered fully satisfactory. Here we try to demon-
strate that passive vision is a feasible and powerful
sensor compared to alternative current technologies
and can be the core of a safety subsystem.

Proposed approaches range from binocular stereo to
monocular dynamic systems. Binocular stereo sys-
tems [6, 5] reconstructs the world in order to detect
3D structures in an alarm zone ahead the robot within
the FOV. The knowledge of the position of the ground
plane with respect to the cameras is commonly used
to speed up processing and to focus on 3D data not
lying on the ground.

41 A stereo Ground Plane Obstacle Detector

The algorithm, originally developed at the University
of Genoa (7], is based on a fast comparison between
the current stereo disparity and a reference disparity
map of the ground floor.

An automated off-line procedure is necessary to pro-
duce a reference map of the ground floor, which is
supposed flat. However there is no need of an explicit
calibration of the stereo rig parameters as requitred
by stereo matching algorithms.

The calibration process consists of a correlative stereo
algorithm, based on a coarse-to-fine correlation proce-
dure. The disparity map is computed iteratively and
averaged by including new stereo views of some ran-
dom patterns placed on the ground floor, until the
variance of the disparity points is low enough. During
on-line operations, to check the presence of an obsta-
cle inside the selected windows a correlation approach
is used.

The left image of the stereo pair is subdivided in
square patches of size 16 x 16; each one has an ex-
pected disparity value given by the pre-computed dis-
parity map of the ground floor. Making the correla-
tion between a patch of the left image and the cor-
respondent patch on the right image shifted. of the
expected ground plane disparity it is possible to verify
whether an upstanding object violates the expected
match of the two image patches. In practice, the usual
stereo matching process is reversed: instead of corre-
lating many patches to detect the right disparity for
each patch, it is used the a priori knowledge of the
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disparity in the "no obstacle" case to check whether
the correlation is good, otherwise a collision alarm is
generated (see Figure 1).
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Figure 1: On-line obstacle detection mechanism: the
disparity map of the ground floor is used to select the
patches in the stereo pair to correlate.

Thisapproach solves the problem of obstacle detection
very efficiently and rapidly even if the 3D structure of
the obstacle is not explicitly reconstructed and, there-
fore, a local map of the free-space cannot be available
for path planning.

Actually a qualitative obstacle avoidance strategy has
been implemented: it is possible to roughly evaluate
the position of the obstacle by looking at the image
parts where the expected disparity has been violated,
and to decide whether the occlusion is on the left, on
the right or straight ahead of the vehicle.

4.2 Real-time parallel implementation

The pressing computational performance require-
ments, estimated in about 10 Hz to cope with the stan-
dard speeds of mobile robots, leads to the need for a
dedicated hardware implementation of the GPOD al-
gorithm. Currently tworeal time implementations are
available: at the University of Genoa on a VDS 7001
Eidobrain workstation, equipped with a special image
processing board where the kernel of the algorithm
has been microcoded, and at Elsag Bailey on the mul-
tiprocessor EMMA2© where the algorithm has been
parallelized.

The Eidobrain image processing board supports the
contemporary acquisition of a stereo pair and a high
communication throughput among frame buffers and
the Arithmetic Unit. Therefore, although sequentially
implemented, the algorithm runs at 10 Hz.
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A parallelisation study, preliminary to the develop
ment of a more appropriate hardware front-end, has
been conducted on the MIMD EMMAZ2 computer.
A three-processor module is involved in the compu-
tational part of the algorithm. Each of the 3 Intel
1APX286 performs the same task, by means of a data
partitioning approach. The computation of the cor-
relation value is speeded up by a custom mathematic
coprocessor, made by Elsag Bailey, associated to each
processing element.

There is also another level of temporal parallelism: a
pipeline scheme allows the master processor to control
acquisition of a new stereo pair while the previous one
is still in the processing phase.

This implementation runs at about 4 Hz, due to de-
lays on the transmission of images on the system bus,
which is not a video bus, but guarantees.the parallel
processing of the whole images and, therefore, an in-
creased reliability as compared to the sequential ver-
sion which stops the raster scan as soon as a single
patch detects an alarm.

4.3 Technical evaluation of the GPOD

The requirements of a safety module for navigation
are very strict in terms of robustness if it has to be
integrated on a real vehicle, particularly in application
involving the presence of people.

Basically we can recall the following advantages:

- the method allows fast implementations, up to
10 Hz, even on a limited amount of hardware,
and good computational performances leading to
safe navigation at a relatively high speed of the
vehicle;

- the algorithm does not require complex, time-
consuming or frequent re-calibration procedures
and so it may be continuously run, without hu-
man intervention;

- vision based correlative stereo permits to navi-
gate in constrained environments and detect thin
metallic obstacles (such as stool legs) and smooth
edges which typically are critical for ultrasonic
Sensors;

and the following drawbacks:

- the success rate depends on the amount of tex-
ture on the obstacle. Complete absence of texture
or pictorial evidences causes a failure as, for in-
stance, in front of a white wall. However, this
criticism is valid for any passive vision system
and can be easily removed by using some active
sensor, such as IR or ultrasounds, in combination
with vision.

- polished floors with particular illumination con-
ditions, prevent a correct hehaviour since high-
lights on the floor hold a disparity, as opposed
to markings on the ground plane, and violates

the prerecorded disparity map constraints, gen-
erating false alarms. The use of polarizing filters
on the cameras improves the performance by cut-
ting down some highlights. Anyway, the problem
is not completely solved because polarizing filters
are optimised on a particular incidence angle and
cannot entirely remove these effects.

- the implemented process is without imemory and
does not support common path planning algo-
rithms. Such purely reflexive navigation strategy
can cause problems while maneuvering in narrow
environments.

6 Exploratory level: free space map building
and local path planning

The task is to build local representations of the robot
environment to map free space which can be used to
plan and update suitable trajectories to reach a se-
lected target position. The final goal of this task is to
improve incrementally this 2D map by including new
data acquired by visual sensors and keeping memory
of the past viewpoints. Of course a prerequisite is
to perform such a process quickly enough to support
real-time navigation. The present implementation de-
scribed in the paper is performed at discrete steps,
by stopping the vehicle and exploring the scene to do
map integration and decide the next robot action.

The obtained 2D representation is local both in space
and time with no semantic information. It isjust a
boundary of the free space around the robot, to pro-
vide the current state of the environment, including
unforeseen events or unpredictable objects and obsta-
cles. This local representation is passed to the higher
level, slower process, which is supposed to plan a safe
medium range trajectory. Otherwise, this information
can he sent directly to a remote station and displayed
to the human operator, for teleguidance control super-
vision. This is a very simple and reliable way to close
the loop at a higher level, on the basis of a very nar-
row bandwidth channel. An example of this approach
is briefly referred in the following sections.

Different approaches are referred in the literature to
compute this local map. In [8]a volumetric recon-
struction of the scene is obtained through dense stereo
correlation. Voxels are integrated in the vertical di-
rection and the results are then projected onto the
floor, with selected resolution, to achieve an occu-
pancy map of the environment. Major limitations of
this approach are the computation cost of the volu-
metric reconstruction and the large amount of data
produced, which require additional compression of in-
formation to find out free space in front of the vehicle.
In fact it is always necessary to reach a compromise
between the required resolution and a manageable size
of the volume of data.

The approach proposed here consists in computing




sparse 3D segments which are representative of visible
features in the scene, using a suitable stereo arrange-
ment and then projecting to the floor the most rele-
vant part of them. In fact these data are cut between
a lower value (afew centimeters above the floor) and
a higher value (slightly above the height of the robot).
In this case we assume the ground plane to be almost
flat. Segment primitives are considered appropriate
to describe an indoor environment with man-made
objects and furniture. Of course appropriate light-
ing conditions are required to provide the necessary
image contrast for feature detection. In the follow-
ing the adopted stereovision process is briefly recalled
as well as the real-time processing architecture which
has been realized to implement it at rates faster than
1 He.

5.1 Trinocular stereovision

A trinocular stereovision approach [8], based on the
matching of line segment tokens has been imple-
mented for depth computation. The preprocessing is
arranged in a pipeline fashion, that is, a sequence of
cascaded algorithms each one elaborating the output
of the previous stage.

The major processing steps are:

e non-maxima suppression edge detection as an ex-
tension of the original Canny approach [IO];

e edge linking using a two-step procedure for list
making in a raster scanning and fusion and merg-
ing of the generated edge lists (G.Giraudon).

e polygonal approximation of edge chains using a
modification of a Sklansky approach.

The stereo algorithm is based on three cameras placed
at the vertices of a almost equilateral triangle, and
roughly converging to a common fixation area. The
processing chain of the trinocular stereovision process
is recalled in figure 2.

The matching algorithm follows a prediction/-
verification scheme; at first, a match hypothesis be-
tween two segments from two different views is cre-
ated on the basis of geometrical criteria; then, the po-
sition of the corresponding segment on the third image
is predicted. A global validation procedure is finally
used, by including additional constraints of regularity
and smoothness in the reconstructed 3D scene, and
discarding ambiguous matches.

A precise calibration of this arrangement is a key point
for the success of stereo matching. The third camera
is primarily used for consistency check of match hy-
potheses and the main advantages of this approach,
with respect to binocular solutions, are:

e the implementation of stereo matching is simpler
and faster,

e the system is more robust against ambiguous sit-
uation.
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Besides, also 3D reconstruction is improved by reduc-
ing data uncertainty from three different viewpoints.

5.2 Red-time processing architecture

The hardware architecture, depicted in figure 3, re-
flects the algorithmic structure. This front-end unit
has been developed within the framework of the ES-
PRIT Project P940. This computer vision machine
is called DMA from the acronym of the project it-
self Depth and Motion Analysis and is used in other
Telerobotic experiments as described in [11].

The video-bus for image transfer at video-rate is the
Datacube MAXBUS, which connects all modules deal-
ing with raster image data. The system bus for data
transfer, system control, and host interface is the
VME bus; all the boards are connected to it and follow
the interfacing and arbitration VME standard.

Edge detection is implemented at TV rate according
to Canny’s approach. Two boards have been pro-
duced: the former is composed by 4 FIR building
blocks (LSI logic L64240); the latter implements, on
dedicated hardware, the “Non-maxima Suppression”
algorithm.

The edge linker board is based on 2 fixed point digital
signal processors (Analog Devices ADSP-2100) with 2
piggy-back coprocessors to provide fast implementa-
tion of a set of primitives (detection and analysis of 8-
connected edge pixels and memory occupancy checks).

Polygonal approximation and trinocular stereo match-
ing make use of symbolic information instead of image
data. Moreover the stereo matching algorithm struc-
ture requires different data partitioning, among the
DSPs working in parallel, at the various steps of the
process. For these reasons the two algorithms reside
on a flexible multi-DSP architecture based on Mo-
torola DSP56000. Data flow control among the dif-
ferent DSPs and the execution of sequential process-
ing steps are performed by a standard 68020 CPU,
which in this case plays also the role of master board.
A very powerful floating-point multi-DSP board, con-
taining 4 DSP96002 from Motorola has been realized
on a double-Europe VME card. This unit is partic-
ularly effective in 3D reconstruction and high level
floating point computation. A Token Tracker module
is also available on a single DSP (ADSP2100) board
and is able to perform segment feature tracking in a
temporal sequence at a maximum rate of 10 He.

The software architecture of the machine can be de-
scribed by the following levels:

e the core of the system can be represented as a
state machine where each state represents a single
DMA function (acquisition, FIR, edge detection,
etc.). The state machine works as a task alloca-
tor: it selects the different drivers of the DMA
boards according to the DMA process sequence
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Figure 2: Trinocular stereo vision; a)preprocessing chain for each vision channel; b) stereo matching algorithm.
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{Sun3) ].
FIR filtering 39.4 S 40 ms
+ (filter 11X11)
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Edge Linking 4.1 s 120 ms
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A first step of processing consists in simplifying the
bunch ofthe projected segmentsto avoidlocal clusters
and intersections, which badly affect the triangula-
tion process. This Delaunay triangulation is also per-
formed as a support for further higher level processing.
In fact in [12] the empty triangles, corresponding to
free space, are easily identified, through visibility con-
straints. The corresponding graph, formed by such
triangles, is used to generate collision free trajecto-
ries for the robot. Moreover, this representation is
particularly suitable for an updating process. In fact,
when new sensory data are acquired from stereovision,
the ground floor map is updated by including new seg-
ments into the Delaunay triangulation and the process
is iterated. An example of the reconstructed map and
planned path is shown in fig. 4 corresponding to a
recent on-line demonstration of the system at INRIA,
in Nice.

Table 1: Computational performance of the different
processing modules compared to a software implemen-
tation on a Sun3 workstation

required by the application program, loads the
correct parameters, coordinates the pipeline acti-
vation of the modules.

e A portion of the control system is dedicated to the
MD56 multi-DSPs boards, that can be considered

e Possible passage

Paths that go 1o ai! the
possible passages

Part of the boundary of
the free space made of
real chstacles

Projected segments

Delaunay triangles whose

as a MIMD machine since each DSP can host dif-
ferent applicative programs, exploiting the avail-
able synchronization and communication primi-
tives. Moreover the 68020 CPU acts as the mas-
ter processor of the MD56 multiprocessing sys-
tem, hosting the main of the applicative software

- centers have been used lo
comptte the paths

Part of the boundary oi the
- free space that is neither
apassage nor an obstacle

@ Thegoal the robal must

(polygonal approximation and stereo matching so
far).

e Finally there is the interface towards the host en-
vironment, composed by a communication pro-
tocol between the DMA machine and the user
interface running on the host workstation and a
command interpreter, which decodes the instruc-
tions received from the host.

Table 1 refers the computation time required by the
individual processing modules, as compared to a soft-
ware implementation on a SUN3 workstation. Such
results refer to the processing of typical scenes in our
laboratory environment (mechanical pieces and indoor
scenes).

5.3 Free space computation as the upper en-
velope of the computed 3D segments

As already mentioned, the basic idea consists in pro-
jecting the reconstructed 3D segments onto the floor
(known by calibration) and then process them to ob-
tain the free-space navigation map. There are dif-
ferent ways to do that. One approach is referred in
[12] where a 2D Delaunay triangulation on the ground
floor is used, to better organize the available data.

reach

Figure 4: Example of a path computed from the graph
formed by the free Delaunay triangles.

Another approach, which has been investigated in [13]
consists in performing 3D interpolation of the recon-
structed 3D segments in the scene, through a Con-
strained Delaunay triangulation (CDT). The purpose
here is to recover a planar surface approximation of
the objects close to the robot, using visibility con-
straints, as a series of triangular patches whose sides
include the extracted 3D stereo segments. The nav-
igation map is obtained by projecting onto the floor
all possible paths across those triangular patches and
merging them in a lower radial boundary (LRB), com-
puted from the current position of the robot, which is
the origin of the polar map. Thisis definitely the most
complete and robust approach for the free space com-
putation, since it makes use of the full perceived stereo
information, although at the price of a high compu-
tational complexity. Actually an efficient algorithm
for 3D interpolation has been implemented as a 2D
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Delauney triangulation on the image plane (14] and
real time performance may be easily foreseen on suit-
able processing architectures (it takes about 10 sec-
onds on a standard SUN3 workstation). To simplify

—~
S

Figure 5: Computation of the Lower Radial Boundary
(LRB), by polar scanning around the viewpoint V.

this situation, a suboptimal scheme has been adopted
in our experiments, by computing directly the LRB
of the free space, without any surface interpolation
of the scene. This is obtained by a polar scanning,
around the reference viewpoint on the mobile robot,
of all projected segments as shown in fig. 5. The pro-
cess is incremental and is based on a module which
performs the fusion of two LRB’s from the same view-
point. Actually asingle segment may be considered as
a special case of a LRB with a small radial extension.
The implemented algorithm for the fusion is based. on
the sweepline technique applied to the intervals deter-
mined by the endpoints of all segments and their in-
tersections. The theoretical computational complex-
ity of the algorithm is estimated to be quadratic with
the number of segments, although from experimental
results a linear dependence has been found.

Fig. 6 shows the reconstructed map for a scene of
our lab with a chair, a desk and an industrial robot.
The line segmentsin the map have different meanings.
Solid lines correspond to real edge segments detected
by stereovision. Dashed lines are virtual boundaries
due to visibility constraints, since nothing is visible
beyond them. As such no decision can be taken on
the free space available in such areas and a next stereo
reconstruction from another viewpoint is necessary to
improve both the density of the scene and the confi-
dence in the reconstructed map. Actually some irreg-
ularities are detectable in the map expecially for those
features which are far away from the robot position,
where the stereovision process is less accurate. Any-

way, the obtained map is quite sufficient to plan a safe
trajectory and reach another position from which to
explore again the environment.

The availability of the previously described hardware
for 3D stereovision at high speed permits an intense
experimentation of this tool in a telegnidance mode of
operation, as referred in section 7.

8 Global navigation: Landmark detection

and self-positioning

A common approach to global navigation, that is the
capability to perform complex and long missions au-
tonomously, consists in programming the robot to fol-
low a predetermined path by dead reckoning, using
landmarks or beacons to correct errors in the position
estimate. Dead reckoning is the estimate of the robot
position and orientation from measurements of wheel
motion (odometry). Odometry alone does not guaran-
tee to accomplish the navigation task since it suffers
from several sources of inaccuracy such as wheel slip-
page, therefore, an external sensor, able to reset every
now and then odometric errors is necessary.

Industrial AGVs use generally active beacons in
shopfloor applications, such as IR laser scanner and
bar-coded retroreflective targets [3]). On the contrary,
we claim that in non-industrial indoor environments
(offices, hospitals) a valid alternative approach is rep-
resented by passive vision which does not need poten-
tially dangerous laser emissions and high cost for the
installation of the devices.

The passive vision approach relies upon landmarks,
that is known scene entities which allow to recover
the robot position and orientation from their appear-
ance onto the image (or images). Landmarks can be
natural entities or objects already present in the en-
vironment whose position and image appearance can
be recorded by the robot through a learning by show-
iy procedure. This approach, followed by {5} and
(15], is the most general and challenging since does
not require any intervention ontothe environment. A
more conservative but reliable alternative consists in
the installation of pre-designed landmarks in order to
simplify their recognition and pose computation.

Another way to classify passive vision-based self loca-
tion techniques is on the basis of the technique for the
estimation of the landmark position:

e stereo-based 3D feature extraction and model
matching (2 or 3 cameras);

e triangulation of features detected and matched
in multiple images through robot motion [15] (1
camera);

e monocular model-based perspective backprojec-
tion of the landmark (1camera).

Our approach relies on the 3D pose recovery of a pre-
selected landmark from the perspective inversion of
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Figure 6: a. The original scene; b. The scene map after projection of the 3D line segments onto the ground
floor; c. The Lower Radial Boundary of the freespace.
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its projection on a single image. The main advantages
over the other self-location methods are:

e there is no need to match features among different
images;

e no complex generic object recognition is required,
since the landmark recognition is performed by a
dedicated procedure;

e the a priori map is very synthetic since there is
no need for a complete description of the environ-
ment in geometric terms; in fact alist oflandmark
positions suffices;

e processing of a single image for each self-
positioning operation;

» no triangulation is required and, therefore, a less
dense landmark distribution in the environment
is necessary, since there is just one landmark for
each recalibration point.

6.1 Landmark design and the relative self-
positioning algorithm

Even if the fundamental property of a landmark is
the possibility to successfully apply a perspective in-
version procedure to its image, other desirable char-
acteristics should be the following:

e detectability in the image by a fast and robust
algorithm;

e robustness with respect to partial occlusions;

e easy and reliable discrimination among different
instantiations of the same landmark type;

e the achievable accuracy must be good enough to
allow the reset of odometry errors;

As such a simple and promising landmark to inves-
tigate is a circle, producing in the sensor image an
elliptical edge.

From a mathematical point of view, the problem of
the perspective inversion of an ellipse generated by a
circle in the space, is reduced to find out those planes
whose intersections with the cone over the ellipse and
with vertex in the origin are circles (see fig. 7). We
can only determine the normal to the right planes,
and not the distance from the origin, because parallel
sections of a cone are all similar geometric entities.
The a priori knowledge of the landmark radius value
allows us to choose among the parallel planes which
one corresponds to the actual case and, therefore, to
estimate the landmark-to-robot absolute distance.

Avoiding special cases, there are two possible nor-
mals for every ellipse, i.e. two possible sets of parallel
planes: this intrinsic perspective ambiguity is solved
by making the assumption that landmarks lie on walls,
that is surfaces perpendicular to the navigation floor,
whose pose with respect to the camera can be cali-

brated.

A key point is the existence of a a robust and reliable
method to extract elliptic arcs from image contours.

Figure 7: 3D circle and corresponding projected image
ellipse.

The approach, outlined in fig. 8, is characterised by a
preliminary stage of geometric reasoning on the seg-
ments coming from the polygonal approximation of
the edge chains of the image. As such it is possible to
deal successfully with outliers and noise of real scenes
[16). Then, an ellipticity test is carried out on candi-
date chains of segmentsin order to select the contours
which can be fitted by an ellipse equation.

In this way the 3D position of the robot is computed
with respect to a frame of reference centered on the
current landmark. Hence, it is necessary to fully iden-
tify such landmark in order to provide a global po-
sitioning of the vehicle in the navigation map. Un-
fortunately a landmark consisting of a single circle
cannot guarantee a unique identification, therefore a
more complex configuration is proposed: the circular
annulus (see fig. 6.1).

An invariant physical feature of the landmark is a
good candidate to be used in identification, the prob-
lem being how to measure it from images By means
of the ellipse perspective inversion algorithm it is pos-
sible to compute the linear relation between the ra-
dius of a circle and the distance of its centre from the
camera pinhole; therefore, if we observe two different
concentric circles we are always able to compute the
ratio of their radii. If such concentric cir¢le pairs with
different radius ratios are used as landmarks, the ratio
between the inner and the outer circle can then be ex-
tracted independently of the robot pose and used for
identification. The two concentric circles forming the
landmark have different purposes: the outer is used
to determine the pose of the camera with respect to
it; the inner is used to identify the landmark by the
radius ratio.
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Figure 8: Flowchart of the ellipse detection algorithm

Figure 9. The concentric circles which forms the land-
mark

6.2 The landmark based navigation strategy

Mission plans describing possible robot paths are se-
qguences of points of interest that the robot has to
reach. Each one has a local reference system attached
toitand at least a recognizable landmark with known
position in this local frame. With respect to these
landmarks the robot can estimate its values of posi-
tion and orientation in the environment.

During navigation, self-positioning is performed
whenever, according to odometry data, the robot
should have reached the supposed destination posi-
tion. In this case the robot stops and, using its knowl-
edge about the environment, turns on itself trying to
acquire the landmark in the field of view of the cam-
era.

Through landmark identification and its perspective
inversion, the mutual rough position estimate is com-
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puted and the resulting state vector of the robot is
passed to the pilot module in charge of planning the
route towards the next point of interest listed into the
mission file. If the odometric errorslead the robot out-
side the landmark visibility region, the landmark de-
tection module communicates its failure and the robot
rotates on its own axis in order to search for it. More-
over, the system robustness is improved by the ability
to recognise each single landmark so that even if the
robot get lost, he can recover his mission by searching
for the nearest landmark visible in the camera field of
view.

7 A comprehensive demonstration of visual
navigation

Within the framework of the European research
project ESPRIT P2502 (VOILA) an experimental
platform for robotic navigation has been set up. The
general architecture is based on the following ele-
ments:

1. the TRC Labmate© mobile platform, control-
lable via an RS-232 serial port. The vehicle is
equipped with odometric sensors.

2. Three CCD cameras mounted on an appropriate
rig;

3. EMMA2, an ELSAG-made multiprocessor [?],
that provides parallel processing capabilities;

4, a PC 486 equipped with a frame grabber for
monocular scene analysis, directly connected to
EMMAZ2 which acts as the application supervi-
sor;

5. the already described DMA vision front-end,
again connected to EMMA2 through a dedicated
parallel interface.

6. A host minicomputer (Q-bus and VMS operating
system) to be used as host for EMMA2,

7.1 Description of the demonstration

This demonstration is primarily intended to exploit a
Teleguidance mode of operation supported by remote
visual perception. It is worthwhile to stress the prac-
tical relevance of many short term applications where
the presence of the human operator in the loop cannot
be removed.

Three visual navigation functionalities are demon-
strated showing different levels of integration between
the human operator and the robot.

According to the kind of operator interface and the
competencies of the vehicle three subdemonstrations
are experimented:

(i) Direct Teleguidance;

(i) Landmark-based Teleguidance;
(iii) Exploration and map building.
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7.2 Direct Teleguidance

This demonstration shows the possibility to inspect or
control an indoor environment with a mobile platform.
It is not necessary to have a model of the environment
or to build a global map of it.

The two principal actors of the demonstration are the
autonomous mobile robot and a human operator. The
architecture of the demonstration must clearly distin-
guish between the local site, where is the human o p
erator and the remote site, where the mobile robot
works.

One CCD camera provides the operator with a display
of the remote site. Pure teleoperation is limited to
the interactive choice of the navigation goal through
a joystick, to select a target point on the digplayed
scene, as shown in fig. ??.

v

30 Goal Polnt
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I

Figure 10: The direct teleguidance concept: the oper-
ator clicks onto the computer screen the position that
the robot must reach autonomously.

This point is backprojected onto the floor, using some
a priori knowledge about the set-up. Then, it becomes
the goal of the mobile vehicle, which has to navigate
to it without any additional intervention of the human
operator, unless some special events occur.

During the local navigation to the subgoal the vehi-
cle will be completely autonomous and will detect the
presence of unexpected obstacles. The task of obsta-
cle detection will be performed by the ground plane
obstacle detector (GPOD Jlgorithm. When an obsta-
cle is detected the robot avoids it and tries to recover
the original path using odometry. Finally, at the end
of the robot action, the human operator resumes the
system control and decides a new subgoal.

7.9 Landmark-based Teleguidance

Landmarks are very useful also in a Telegnidance
scheme. The operator's job is simplified if the
workspace is synthetically described in terms of pre-
defined landmarks. The robot mission can be con-
trolled at the Task Lewvel by issuing commands like
go from landmark z to landmark y.

Moreover, the presence of the operator at a super-
vision level can be exploited for recovering from un-
foreseen situations without aborting the mission. In
particular, the operator can correct the vehicle ori-
entation whenever the odometric drifts prevent the
camera from framing the expected landmark or solve
high level ambiguities in the recognition phase.

7.4 Exploration and map building

In this demonstration the robot utilizes the capability
to recover the free space in order to plan safe trajecto-
ries towards a given goal avoiding unknown obstacles.

Here the three cameras are set up in stereo configu-
ration and connected to the DMA machine real time
stereovision system which provides a wireframe 3D re-
construction of the scene.

The demonstration shows a mobile robot which
reaches a goal specified by the operator, finding out
autonomously a collision free trajectory without any a
priori knowledge about the environment. At the end
of the run, a freespace map is available proving the
ability not only to navigate but also to explore the
scene.

As the field of view of the stereo rig is relatively small,
it is necessary to get a panoramic view of the envi-
ronment by panning the stereo rig through a robot
rotation.

d Conclusion

The paper refers on the use of artificial vision tools to
support autonomous navigation of mobile robots for
indoor applications. Even if we look at the challenging
scenario of service robotics, the considered examples
here are referred to a teleguidance mode of operation,
which is typical of hostile environment applications
and surveillance tasks. In this case, the human op
erator acts as a mission supervisor at an appropriate
level, depending also from the degree of autonomy and
safety of the robot action.

In practical situations the mobile robot will be nec-
essarily equipped with multiple sensors (lasers, IR,
ultrasounds, tactile bumpers, etc.) beside vision, to
obtain the more appropriate solution for the specific
problem at hand.

This paper is not intended 1o promote any particu-
lar industrial or commercial product, nor to address a
precise application task. Besides, its aim is to investi-




gate potential advantages, and limitations, of passive
vision using ordinary TV cameras in different configu-
rations, to provide differentlevels of perception com-
petencies.

The first level is that of safety, to detect and avoid
static and moving obstacles and allow the vehicle to
move also in peopled areas. The second one is the
exploratory level, to compute the free space available
around the robot, and apply a short term strategy of
navigation planning. A further level of competence
is that of self orientation with respect to the environ-
ment, using landmark recognition and 3D positioning.
The most promising control scheme to fully exploit
this hierarchy of competencies is the subsumption ar-
chitecture which is implemented here on a multipro-
cegsor machine.

Finally the problem of real-time processing is con-
sidered, with the description of a modular hardware
front-end unit, able to perform 3D stereovision at a
very fast rate (over 1 Hz).

The achievement of these results has been possible
only through a fruitful cooperation with many ad-
vanced research teams from Universities and from In-
dustries in Europe, within the framework of the ES-
PRIT programme. Most of these modules are already
integrated in our development experimental system,
which represents a very powerful and flexible envi-
ronment for industrial exploitation of such advanced
research results.
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ABSTRACT

A paradigm for machine perception is presented which
takes time and 3D space in an integrated manner as the
underlying framework for internal representation of the
sensorially observed outside world. This world is con-
sideredtoconsistof material and mental processes evolv-
ing over time. The concept of state and controlvariables
developed in the natural sciences and engineering over
the last three centuries is exploited to find a new, more
natural access to dynamic real-time vision and intel-
ligence. A. Schopenhauer's conjecture of "'The world as
evolving process and internal representation’ (1819) is
combmed with modem recursive estimation techniques
[Kalman 60] and some components from geometry and
Al inorder to arrive at a very efficientscheme for auton-
omous robotic agents dealing Wih evolving processes in
the real world in real time. Application to autonomous
mobilerobots is discussed.

CONTENT

Introduction
The development of technical vision systems
Lessons learned from the natural sciences, mathematics
and engineering
- three-dimensional (3D) space and time
- 3D shape and perspective mapping
- dynamical models of physical processes
- state and control variables, process parameters
- feedforwardand feedback control loops
(cybernetics)
- dynamicsystemsdesign
- Kalman's recursive state estimation technique
* Gauss's model based least squares measurement
interpretation scheme
* from generic solution curves to differential equa-
tion models
* extended and sequential (numerically favorable)
_recursionschemes
Stimuli from philosophical thoughts
The integrated 4D approach to dynamicvision
- basicscheme
from features to physical objectsin space and time
reflex-like egomotion behavior
objects, subjectsand situations
mental states and intelligence

Systems architecture based on the integrated 4D ap-
proach
- temporal structuring
- hierarchicalstructuring
- expectation based data fusion
Experimentalresults
- road vehicle guidance
- aircraft landingapproach
Conclusions
Literahue

INTRODUCTION

Webster's Seventh New Collegiate Dictionary gives the
following definitions of terms in connection with the word
‘perception’:

Perceive: 1.to attain awareness or understandingof, 2.to
become aware of through senses. Percept: an impression
of an object obtained by use of senses.

Perception: 1: consciousness;2a;: a result of perceiving;
observation;2b: a mental image: concept; 3a: awareness
of the elements of environment through physical sensa-
tion; 3 b physical sensationin the light of experience; 4a:
direct or intuitive cognirtion: insight; 4 b a capacity for
comprehension.

Perceptual: relating to, or involving sensory stimulus as
opposed to abstract concept.

These definitions clearlyindicate a wide range of mean-
ings, however, a close linkage to physical sensing in
general and to vision in special (2b, 3b, 4a); ‘objects’ as
‘elements of environment' are referred to, as well as to
the fact that perception is a mentally based activity (3a to
4b). However, the bottom-up dataprocessingaspects are
emphasized more than abstract concepts. Definition 3b
may be the most appropriate one in the context of ma-
chine perception; With regard to applications, 4b covers
the task context (see also 'perceive’ and 'percept’).

‘Understanding' or'’comprehending’ includes knowledge
about semantical relationship in the context of action
sequencesor goal functions to be optimized. So, percep-
tion gains its value in connection Wit control achvities,
or at least with preparations for future ones. Without the
capability of control actuation, perception would be
meaningless (and frustrating?).
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Intelligent systems are capable of handling complex sets
of goal functions over time and of taking advantage of
processes happening in their environmentfor achieving

their goals.

Because of its remote sensing capability, the sense of
vision ist the major source of information in our natural
environment. The state of development of microelec-
tronics today allows to tackle machine vision as a very
promisiig next step in the evolution of technology on
Earth. This section is devoted to dynamic vision as one
major component in machine perception for locomotion
control.

THE DEVELOPMENT OF TECHNICALVISION
SYSTEMS

Computer vision has evolved from digital image pro-
cessing over the last three decades, Therefore, itis usually
embedded in a quasistaticframework of snapshot inter-
pretation. On the contrary,biologicalvisionsystemsseem
to have developed for motion detectionand controlin an
ever changing physical environment. Are the best suited
methodsfor both tasks the sameor are there fundamental
differences?

In the Artificial Intelligence (Al) community the vision
problem has initially been tackled as a quasistaticprob-
lem. Much effort hasbeen devoted to the inversionof the
perspective mapping process taking several (consecu-
tive) frames into account; for a survey see [Nagel 83]. This
does not take advantage of the temporal continuity con-
ditions in the physical world to which all material
processes are usually subjected.

In physics, especially in mechanics, powerful methods
have been developed over the last three centuries in
order to describe the observed behavior of material
processes. In engineering, over the last three decades
these methods have been supplemented by featureswell
adapted for recursive digital data processing. Recursive
in TS context means that least squares data interpreta-
tion is achieved step by step as new data arrive. The
discipline of systems dynamics evolved out of these ac-
tivities encompassing aspects of several fields: from sen-
sor technology, signal processing, control theory and
design, actuatortechnology through dynamicbehavior of
systems.

In this article, the systems dynamics approach is applied
to the field of visual dynamic scene understanding mo-
tioncontrolandintelligence. Offthebeatentrackofmain
streamresearch into computer vision, this approach has
been developed over the last decade. Combining well
proven engineering methods with knowledge from
geometry (perspective mapping) and some new aspects
of Al, a surprisingly powerful and efficient scheme for
the general task of dynamic machine vision using dis-
tributed processing resulted. Thebasic connecting link is
a very old idea which the German philosopher Arthur
Schopenhauer conjectured more than 170 years ago [Die
Welt als Wille und Vorstellung’, 1819, freely translated
The world as evolving process and intemal repre-
sentation)].

Buildingon I. Kant’s basic result from two centuries ago,
which also formed the foundation for Schopenhauer’s
conjecture,namelythat space and time arenot attributes
of objects but are carried into the world through our
perception and analysissystem, it was decided to repre-
sentspaceand time directlyin the interpretation scheme.
In addition, the constraint was deliberatelyimposed on
the approachthat it should work in real time, i.e. that the
computationalprogressover time is directly linkedto the
progress of the physical processobserved and controlled,
and not limited by the present state of computer hard-
ware performance. Of course, this confined the problems
to be treated considerably in the early 80-ies. It had the
members of the team look at problems in a different way,
however, and both image processing and scene inter-
pretation algorithms developed differently as compared
to the results of other groups who worked under the
paradigm that the increasing processing power of future
miroprocessorgenerationswill solve all the performance
problems with respect to real time.

After a decade of steadily increasing complexity of the
problems solved and with experience in five different
problem areas, it seems timely to present the approach
and the basicideashbehind it ina comprehensiveway; the
sevendissertationsinwhichmostofthematerialhasbeen
originallypublished are in German language and, there-
fore, not readily accessible to the general public. The
surveyarticle[Dickmanns and Graefe88] triggered much
interest which was one of the driving factors for writing
this document.

The present article is intended as a general introduction
to the 4D approach' for all those interested in machine
vision applications in real world dynamical scenes. Em-
phasis is put on exploiting knowledge about the physical
world and temporal processes; image sequences are
nothing but discrete and systematically impoverishedin-
termediate carriers of information about the spatio-tem-
poral world. It is the main goal of the article to shift the
paradigm for dynamic machine vision from more aca-
demiccomputerscienceto practical applications in phys-
ics and engineering and to the corresponding methods.
Practitionersshould find it particularly attractive to ex-
perience the direct connections from s modern, very
promising field of development to well proven methods
in conventional applied sciences.

Resorting to these tools, hopefully, will not have Al-re-
searchers tum away immediately. It is the blend of
methodswhichwill lead to efficientmachine intelligence
systems.

LESSONS LEARNED FROM THE NATURAL
SCIENCES, MATHEMATICS AND ENGINEERING

The intention of this approach is not primarily to
generate some artificial counterpart of what is called
intelligence, but to enable machines with complex
sensorysystemsandthe capability of self-controlled loco-
motion to get around i the real world in a meaningful
way; by doing this, some kind of intelligence will emerge
more as a side effect in a natural way.




In physics and the engineering sciences mankind has
learned over the last centuries how to analyse and repre-
sent natural and artificial objects and processes in the
environment efficiently. The condensed results of this
longterm endeavor of interest to the field of dynamic
vision are reviewed briefly in the following sections.

Three-dimensional (3D) space and time

Early geometricians, already millennia ago, discovered
that the space we happen to live in can be exhaustively
analysed usingthree independent coordinates. After the
more modem French scientist Descartes the orthogonal
(‘Cartesian)  coordinate systems in wide use today are
named.

The relationshipbetween space and time has been more
obscure for a long time. It was Newton who in the 17-th
century invented the differential calculus and applied it
to motion analysis. This step in the natural sciences to-
getherwith the introductionof the inversesquarefield of
gravity brought about a revolution in motion under-
standing. After thisstep the geometricallyknown orbits
of planets (Kepler's ellipses) could be linked to a few
dynamical motion parameters. The time derivativeof the
moment of momentum (the second time derivative of
position variables in cases of constant mass) was postu-
lated to be proportional to forces, which in a gravity field
wereinturn linked to position.

The generaldescription of this famousmotion law, which
despite modem theory of relativity is well justified in
conventional mechanics still today, may be written in
vector notation as (° =d()/dt)

£ =fu,pt), ®

where x is the state vector with n components, & the
controlvector of dimensionr tobe freelyselectedateach
point in time, and p the parameter vector of dimensiong
characterizing the special problem. In each degree of
freedom, since accelerationasthe second time derivative
is proportional to forces or moments, two state com-
ponents (position and velocity) have to be taken into
account. Therefore a particle moving freely in 3D space
hastobe describedby 12 state variables, 6 for translation
and 6 for rotation, 3 each for position and velocity. For
motion in a plane, 6 state variables are sufficient.

It istheintegral relationshipfromaccelerationtovelocity
and from velocity to position which constitutesessential
(implicit) knowledge about the temporal behavior of
massive objectsin the real world. We humans do not have
to learn this knowledge consciously, since it is absorbed
subconsciously duringthe firstyears of our liveswhilewe
learn to crawl and walk and to react to other moving
objectsor subjectsproperly. Some individuals develop a
special skill in #6respect; they are good sportsmeneven
though they may not be able to explicitly formulate how
they behave. A wealth of knowledge about the real world
is acquired and coded in our neural nets this way even
though it is not yet known how.

3D shapeand perspective mapping
A similar situation may prevail with respect to our 3D
shapeunderstandingthroughvision. Geometricmapping
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has been applied for many millennia in all cultures
around the globe. Sensible theories about the vision
process are less than one millenium old; a nice survey on
early vision theories is given in [Lindberg 76]. The diffi-
cult problem in vision is that even though the input into
data processing is a 2D matrix (spherically arranged in
the eye or planar in a camera) the conscious interpreta-
tion should be spatial according to the relative physical
positions of objects in the real world. For one single
photographic snapshot this problem cannot be solved;
much effort in computer vision has been devoted to the
problem of how many different images are sufficient for
uniquely reconstructingthe spatial scene.

The law of perspective projection, accordingto which
each visible particle emanates or reflects straight-line
light rays from its spatial position to the receiver, is
consideredto be a sufficientlygoodmodel, discardingall
side effects of real lensesand mapping devices.

Theshape of real bodieshas to be inferred from intensity
distributionsover its visible surfacesand their behavior
over time during relative motion. Oftentimes, physical
edgesandregionboundariesonthesurfaceleadto inten-
sityedgesintheimageplanewhich,whenobservedunder
steadily changing aspect conditions, may allow the
proper spatial interpretation (shape from X).

For the representation of 3D shapes the engineering
sciences have perfected a 2D representation scheme
showingparallel projection views from three (or all six)
mutually orthogonaldirections. If the object has a plane
of symmetry, two (four) of these viewing directions
should preferably lie within thisplane. One or two refer-
ence axes are usually chosenin such a way that the object
is oriented in a functionally proper way under normal
Earth gravity conditions (e.g. a car with all four wheels
touching the ground plane). Nonunique interpretation
possibilities (e.g. in concavities) may be disambiguated
by special 2D cuts through these regions. A skilled and
trained person can imagine the proper perspectiveview
of this object from any aspect condition. For practical
purposes, only approximatelycorrect 3D views (towithin
a few percent accuracy) are often sufficient for object
recognition; this can be achieved using relatively simple
heuristics for fast and efficient computation of the per-
spective image given the 2D normal views. 2D shapes with
smoothly curved contours and corners can be efficiently
represented in a translation, rotation- and scale- invari-
ant form by Normalized Curvature Functions (NCF)
[Dickmanns 851 which in tum are easily measurable by
tangency operations in the image plane.

Dynamical models of physical processes

The term ‘dynamical model' in mechanics, systems dy-
namics and control theory means a generic differential
equation description (like in eq. @) for some motion
process. We confine the discussion here to motion of
massive bodies, be it rigid or elastic. In the case of rigid
bodies, classical mechanics has shown that the overall
motion canbe decoupledinto translation of the center of
gravity (cg) and rotation around the cg. In the case of
elastic bodies some deformation may be superimposed
which in the case of free motion usually is an oscillation
around a reference shape.
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For massive rigid bodies, the forces and moments acting
on a specific body are usually very limited in magnitude
leadingto a characteristicmotion behavior over time like
aballflyingthroughthe air in the gravity field; gravity and
its secondary effects like friction in sliding or rolling
motion as well as fluid dynamic drag predominate many
motion processes in the real world. Once these basic
influences are properly understood (internally repre-
sentedby a model), apredictionof physical motion in 3D
space becomes easy. Combining this with the perspective
mapping knowledge of the previous section allows to
predict motion appearing in the image plane. Note that
for the motion in the image plane no similarly simple
duect models canbe given due to the nonlinear perspec-
tive mapping involved.

The use of dynamical models enforces the internal rep-
resentation to be in space and time simultaneously (4D).
Since the image sequence is discretized over time (50 or
60 Hz correspondingto a video cycle time T' of 20 or 16
2/3 ms), this basic cycle time T' or an integer multiple T
thereof is used to transform the differential equation (1)
into a difference equation leading to a state transition
matrix A and a control input matrix B

x [(k+D)T]=AG, p, kT) - x(kT)+B(x, p, u, kT) -u(kT),(2)

whichyield avery compactknowledge representationfor
the temporal evolution of physical processes in the real
world. Note that in the second additive term on the right
hand side the effect of control action is contained; this
makes this type of representation especially attractive
since it allows to include the intelligent motion control
part into the prediction scheme. For more long term
prediction, probably for investigating the effect of some
future control time history of the own vehicle (maybe
even several alternatives thereof) this eg. has to be eval-
uated as many times as requested intothe future, thereby
allowing a simple means for temporal reasoning. Entire
action sequences may be investigated (simulated) this
way before decision taking.

State and control variables, process parameters
In an efficient description of real world processes there
are three types of variablesinvolved

1. Those which can be changed at any time at will: e.g.

steeringwheel turn rate of acar, voltageappliedto an
electromotor, force applied to an aircraft control
stick, throttle position of an engine. These variables
are called control variables u(t).
Note that this definition is somewhat arbitrary: If the
force applied to an aircraft control stick is such that
the desired control stick position is reached before
the aircraft starts moving in its eigenmodes, the con-
trol stick position could have been chosen as the
control variable (as has been done with the engine
throttle). The essential point is that the control mo-
tion has to have a dynamichehavior at least one order
of magnitude faster than the controlled process.

2 Thosevariableswhich cannot be changeddirectly but
which only evolve over time: these are the socalled
state variables x(f). Their evolution over time is as
characteristicfor an objectin the temporaldomainas

shape is in the spatial domain. Exploitingthis knowl-
edge about moving objects in addition to shape con-
stancy results in much more efficientrecognition and
tracking schemes for moving objects. Note that the
spatial velocity components of objects are state vari-
ables in this sense; again, this is a strong argument for
favoring an internal representation in 2D space and
time via dynamical models.

3. Variables which are fixed over periods of time and
which may be selectedat some discrete point in time,
including the system design phase: socalled system
parameters p. Typical examples are shi gear posi-
tionin a car, landingflappositionin anaircraft, switch
positionsetc. and the constantsin the system matrices
A and B. This set of system variables canbe con-
sidered constant over time for short term motion
behavior even though there may occur a slow change
due to wear and tear or environmental effects like
temperature or humidity.

Knowledge about a dynamical system is firstly coded in
the set of parameters p and the structure of the matrices
A and B as well as their numerical entries. Equally im-
portant in the temporal domain is, however secondly,
knowledge of how the system is going to bebave with
respect to its state variables in response to some control
inputover time. Especially, the question of how a desired
set of state components canbe achieved (efficientlyby
appropriate control input time histories is practically
relevant; the entire field of ‘optimal control theory and
application' is devoted to this problem. Mathematicians
have developed the calculusof variation for this purpose
[Euler1744] and the 'Maximum principle' [Pontryagin et
al. 62}, which especiallyinaerospace engineeringbut also
inmany other fieldshas importantand widespread appli-
cations since the time that digital computers allow to
solve the corresponding difficult numerical problems
[Bryson,Ho 75].

To intelligent agents the control variables are of special
importancesince they constitute the only means through
which any influence can be exerted on an evolving
process in the real world. Discretely selectable parame-
ters like a switch or flap position may be viewed as
‘control parameters' and handled correspondingly. Con-
trolsin this sense are the extremely important parts of a
system where 'a free will' working on information col-
lected by sensors can exert an influence or: the process
under control. The provocative term ‘free Wil will be
discussed later.

Feedforwardand feedback control loops (cybernetics)

When an experienced person drives a car and wants to
switch lane on a highway she or he implements an ap-
proximately sinusoidal steering wheel maneuver over
time without thinking about it. The amplitude and the
time rate are adjusted in such a way that the car finishes
this maneuver approximately in the center of the new
lane. This canbe done in one smooth overall maneuver.
A beginner, on the contrary, since unfamiliar with the
behavior of the car,will tend to use small incremental
controlinputs and observe the reaction of tihe car which
in turn will lead him to select the next control input step
until the car will finally also end up in the new lane,




however, much later and without a smooth control time
history. The experiencedperson since knowing the tem-
poral response of the G to a ‘feedforward control’ time
history made use of this knowledge leading to better
performance; the beginner observing the actual discre-
pancy between desired and actual state used the differ-
ence in some way to feed the control input accordingto
somerule (e.g. a constantfactor timesthe negative differ-
ence).

By applying a ‘feedback control law' the behavior over
time of the controlledvehicle is fixed, but modified rela-
tiveto the *open loop’~behavior without any controlinput.
The actuator need not be a person but may be some
suitabletechnical subsystem like an electro-motoror an
hydraulic actuator leading to an automated system.

Control engineering and mathematics have developed
theoretical and numerical methods which allow design-
ingclosed-loop systemswith complexeigenbehavior. Lit-
erature abounds inthis field;just one among many others
is [Kailath&0].

Dynamic sytems design

With the powerful digital microprocessors available
today, combinations of event-triggered parameterized
feedforward control time histories and robust feedback
controllawsfor differentsubtasks allowthe development
of very flexible and high performance automaticsystems.

Even though the theories developed are mostlybased on
the assumptionofa linear systemdescription,a very large
percentage of the generally nonlinear 'plants' (the tech-
nical systems to which automation is applied) can be
handled this way since linearisationsaround the actual
reference point usually are sufficiently good approxima-
tionsto the system, especiallysince feedback controllers
keep the system actively in tisdomain by their function-
ing. By adding a system identification component, the
temporal change of system parameters can be detected
and the control scheme may be adjusted accordingly
without human intervention.

Modem trends go towards coupling automatic control
systemswithexpertsystemsinordertoimprove flexibility
and robustnessof the overall systemunder awide variety
of operating conditions. The system discussed in the
sequel for real time machine vision may be subsumed
under this category.

Kalman's recursive state estimation technique

For interpreting measurements, modem control systems
theory has deviced an elegant scheme, how optimal esti-
mates of the actual state of internally represented objects
from the real outside world may be arrived at in an
efficientway exploiting dynamical models about spatio-
temporal relationships of the processes involved. It al-
lows recovering the full state vector even in cases where
only partial measurements of some output variables can
be taken. These output variables have to be linked to the
state variables by some smooth functional relationship.
This scheme is extremelywell suited to vision processes
where the depth componentis systematically lost during
imaging and where partial occlusions are more the rule
than an exception.
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Measurements usually are noise corrupted. Therefore,
good state estimation can only be achieved when pro-
cessing many more data than are minimally required. A
brief sketch of the historical development of this tech-
nique is given in the following subsections.

Gauss's model based leastsquares schemefor measure-
ment interpretation: When the structure of the motion
trajectory is known in advance like for ellipses in
planetary motion around the central star, thisknowledge
canbe used efficientlyinorder to smoothnoisy measure-
ment data. Themathematician K.F.Gauss hasintroduced
the technique offitting curvesof known structure to noisy
data by minimizing the sum of the squares of the residues.
This has lead to much improved accuracies in orbit de-
termination and general curve fitting.

Note, that thisSimprovementis achieved by using solution
curves of motion processes, and that a set of measure-
ment datahas to be batch-processedat a time.

From genetic solution curves to differential equation
models: If the goal is to have good actual motion state
estimates while motion is in progress one would like to
have a schemewhich gives an incrementalupdate at each
point in time when new data become available. If the
process observed canbe influenced by control input, no
a priori structure for the solution curve canbe given. In
these cases, instead of exploiting solution curves the
underlying generic differential equations are more ap-
propriate. For the linear case with knownnoise statistics
[Kalman 1960] has givena recursiveleastsquaresscheme
which allows optimal state estimationfrom a reduced set
of output measurements. Space does not allowto gointo
details here; the interested reader is referred to [May-
beck 79]. The known systemstructure of eq. (2) allows to
recover state components which are not directly
measured by substituting structural knowledge for
missing measurements, observability given. The error
covariance matrix plays an important role in thisprocess
and maybe exploitedfor the removal of outliers, thereby
stabilizing the interpretation process.

The big advantage of this recursive state estimation
scheme isthatalwaysonlythelastmeasurements are used
for updating the best estimates without the need for
storing previous data, which is especially rewarding in
image sequence processingwhere each image comprises
enormousamountsof data (10° to 10 Bytes). The result
of all previous data is the present best estimate for the
state vector of objects and the covariance matrix corre-
sponding to a storage requirement in the order of mag-
nitude 102 per object tracked.

Extended and sequential (numerically favorable) recur-
sion schemes: In the case of nonlinear componentsin the
system description, the socalled extended Kalman filter
has been developed based on linearisationsaround the
actual reference point.

In order to keep the covariance matrix symmetric, the
upper triangle factorizationUDUT has been introduced
[Bierman 75; Maybeck 79]. It IS numerically more effi-
cient and stableand is being widely used.
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If the state update is computed every time one single
measurement component is acquired, the use of two-di-
mensional arraysin the program maybe reduced, leading
to faster execution. In addition, this scheme allows an
easy adjustment for image sequence processing in the
case where - due to occlusion or some other cause - the
number of measurement components varies from frame
to frame. In our software, thisfeature has been adopted
as ageneral standard [Wuensche 88, Christians 89, Mys-
liwetz 99].

Real-time vision, in our approach, is considered to be a
measurement process with remote access to the system-
atically transformed object state (by perspective projec-
tion); identification of the object has to be achieved
simultaneously with the determination of the motion
state.

For image sequenceprocessing, the reeursive estimation
scheme had to be further extended for the nonlinear
perspective mapping of point and line features. In addi-
tion, the relationship between the dynamical model for
cg-motionandthe position and orientationof featureson
the surface of the body had to be incorporated. The
resulting overall scheme will be described next.

STIMULIFROM PHILOSOPHICAL THOUGHTS

Humanswith their capability of locomotion and complex
information processing may be considered as very com-
plex dynamical systemswith a mental component by far
not yet understood. Philosophersfor millenniahavetried
to understand human performance in different fields.
The natural sciencesjoined in thisendeavor since more
thanthree centuriesin amore systematicfashion, but still
one isway from having satisfactoryanswers, though con-
siderableprogress has been made recentlywiththe help
of information processing technology.

On the basis of Newton's laws of motion and the new
understanding of time, Kant in the 18-th century clarified
the situation in philosophy by his main works 'Critiques
... [Kant 1780-ies] to a considerable extent. He sepa-
rated space and time from attributes of objects granting
the former ones a special basic quality. He also intro-
duced a clear distinction between a material object (the
'thing by itself* = "dasDing an sich”(in German)) and a
human's notion aboutthis object. The succeeding'ldeal-
ist'-philosophers at the turn from the 18-thto the 19-th
century may have turned world interpretation ‘upside-
down' by giving ideas priority over matter and over the
outside world; at least, this was Schopenhauer's impres-
sion. In an attempt to put the world from this position
'back onto the feet again’, he speculatedabout the inter-
dependencebetween the material processes in the world
and mind. The basic idea behind the second part of his
book title 'The world aswill and internal representation’
[Schopenhauer 1819] may be considered to be a major
breakthrough in conceptsabout cognition.

Thisbasicidea has been adopted as the focal point in our
approach to machine vision irrespective of all previous
philosophical and psychological_controversy. It is not
intended to get involved into this discussion as far as

humans are concerned; however, this idea has been -
probably for the first time - put to work in the context of
cognitivemachines.

Let us assume there is a material world to which an
autonomousagent, say based on a conventionalwheeled
road vehicle, itself being part of thisworld, has limited
access(with regard to physical state measurements), This
may be achieved through a multi-sensor system encom-
passing properly calibrated odo- and velocimeters, sen-
sors for control inputs, inertial sensors for translation
(accelerometers) and rotation (angular rate and position
sensors), a microphone for audio-inputand imaging sen-
sorsin some spectralbands. All these signals are fed into
a computer system with properly suited data processing
programs.

The autonomous system is assumed to be endowed with
all the relevant knowledge componentsdiscussed in the
previoussection.Provisionhas been takenthat the engine
IS running, the sensory and motor control systems are
operative and that there is enough computing power
available for properly processing the sensory data; the
computer system has access to the control actuation
subsystems (even includingvoice output, say).

The yet open question is: Is it possible to generate an
overall system capable of demonstrating a behavior
which is qualitatively similar to that of intelligent
humans?

THE INTEGRATED 4D APPROACH TO DYNAMIC
VISION

The main goal of thisapproach from its beginningin the
early 80-ieshas been to take advantageof the Tl spatio-
temporal framework for internal representation and to
do as fewreasoning aspossible in the image plane and in
between frames. Instead, temporal continuity in physical
spaceaccording to some model for the motion of objects
is beinﬁ_exploited in conjunction with spatial shape rigid-
ity in this ‘analysis-by-synthesis' approach.

Basic scheme

Dynamical models Irktime to spatialmotion, in general.
The shape models exhibitthe spatial distribution of visual
features on the surface which allow objects to be recog-
nized and tracked. In order to exploit both types of
models at the same time, the prediction error feedback
scheme for recursive state estimation developed by Kal-
man and successors has been extended to image
sequence processing by our group [Kalman 60;
Wuensche 88]. There are so many publications on this
approach that only a short summary will be given here
(see e.g. the survey article[Dickmanns and Graefe 88]).

Figure dshowsthe resulting coarse overallblockdiagram
of the vision systembased on these principles. To the left,
the real world is shown by a block; control inputs to the
ownvehiclemay lead to changesin thevisual appearance
of the world either by changing the viewing direction or
through egomotion. The continuous changes of objects
and their relative position in the world over time are
sensedby CCD-sensor arrays (shown as converging lines
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Figure 1. Basic scheme for 4D-image sequence understandingby prediction error minimization

to the lower right, symbolizingthe 3D to 2D data reduc-
tion). They record the incoming light intensity from a
certain field of view at a fixed sampling rate. By this
imagingprocesstheinformationflowistiscretized in two
ways: There is a limited spatial resolution in the image
plane and a temporal discretization of 162/3 or 20 ms
(due to the different video standards), usually including
some averagingover time.

Instead of trying to invert this image sequence for 3D-
scene understanding, a different approach by analysis
through synthesishas been selected, taking advantage of
the availablerecursive estimationscheme after Kalman.
From previous human experience, generic models of
objects in the 3D-world are known in the interpretation
process. TS comprises both 3D shape, recognizable by
certain feature aggregations given the aspect conditions,
and motion behavior over time. Inan initialisationphase,
starting from a collection of features extracted by low
level picture element (pel) processing (lower center left
in fig. 1), object hypotheses including the aspect condi-
tions and the motion behavior (transition matrices) in
space have to be generated (upper center left in fig.1).
They are installed in an internal 'mental’ world repre-
sentation intended to duplicate the outside real world.
After the philosopher K.Popper thisis sometimes called
Wworld?,  asopposed to the real ‘world-1".

The initialisation is the most difficult part and has been
solved for well defmed simple problems only. A more
general capability is being developed presently. It con-
sistsof both data drivenbottom up and model driven top
down components cooperating over time as discussedin
the next section.

Once an aggregation of objects has been instantiated in
the world—2, exploiting the dynamical models for those
objects allows the prediction of object states for that
point in time when the next measurementsare going to

be taken. By applyingthe forward perspectiveprojection
to those featureswhich willbe well visible, using the same
mapping conditions as in the TV-sensor, a model image
can be generated which should duplicate the measured
image if the situationhas been understood properly. The
situation is thus 'imagined" (right and lower center right

in fig. 1). The big advantage of thiSapproach is that due

to the internal 4D-model not only the actual situation at

the present time but also the sensitivity matrix of the

feature positionsand orientations with respect to all state
component changes can be determined, the socalled

Jacobianmatrix (upper block in center right, lower right

corner). This need not necessarilybe done by analytical

meansbut maybe achievedwithlittleprogrammingeffort
by numerical differentiationexploitingthe mapping sub-

routines already implementedfor the nominal case.

This rich information is used for bypassing the perspec-
tive inversionvia recursive least squares filtering through
feedback of the prediction errors of the features. Unfor-
tunately, spacedoes not allowtogointomoredetailshere
(see [Dickmanns and Graefe 88]).

This approach has several very important practical
advantages:

- no previous imagesneed be stored and retrieved for
computing optical flow or velocity componentsin the
image plane as an intermediate step in the interpreta-
tion process,

- the transition fromsignals (pel data in the image) to
symbols (spatio-temporal motion state of objects) is
done in a very direct way, well based on higher level
knowledge, the 4D world model integrating spatial
and temporal aspects;

- intelligent nonuniform image analysis becomes
possible, allowing to concentrate limited computing
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resources to areas of interest known to carry mean-
ingful information;

- the position and orientation of well visible features
can be predicted and the feature extraction algo-
rithms can be provided with information for more
efficientlyfindingthe desired ones; outliers caneasily
be removed thereby stabilising the interpretation
process.

- viewing direction control canbe done directly inan
object-oriented manner.

Processing a variable number of featuresmeasured from
frameto frameis alleviatedby using the sequentialfilter-
ing version. For improving numerical performance, the
UD-factorized version of the square-root-filteris used
[Bierman 75]. Details may be found in [Wuensche 88;
Mysliwetz 90; Bierman77; Maybeck 79]. By exploitingthe
sparseness of the transition matrix in the dynamical
model a speedup may be achieved.

Two interpretation phases have to be distinguished: First
the initialisation phase when no previous knowledge
about the scene is available, and second the continuous
tracking phase, when objects have been recognized and
their future behavior is being observed.

From features to physical objects in space and time

In the first phase, usually not time critical, like initialisa-

tion while at rest, regions in the image are systematically
searchedfor feature groupingsindicativeof some known

object (lower center of fig. 2). From the collection of

features found, object hypotheses have to be generated

as to which objects are being viewed under which aspect
conditions.

Depending on the task context the higher levels to which
the results of feature extraction are reported have to
come up with hypothesesfor generic objectsfitting these
data by proper parameter adjustment. Several such hy-
potheses will usually be generated. They allow to make
specific predictions as to where which other features
should be found if the hypothesis is correct. Checking
these predictions over time, the best hypothesis will
hopefully be arrived at by eliminating the less likely ones.

With this information, suitable dynamical models to-
getherwithbody-shapesand aspectconditionshaveto be
instantiated in the recursive estimation loop (shaded
blocks in center of figure 2, started by the right column
of the inverted U-shaped outer frame). The dynamical
models are then used to predict the cg-motion and body
rotations around the cg. This information is combined
with geometrical shape in order to determinethe spatial
position and orientation of well visible features. Their
positionsinthe image plane are predictedandthefeature
extractors in the image processing systemare directed to
these regions and orientations (geometric reasoning-
block in lower center right of fig. 2).

The differences between measured and predicted fea-
ture data are used in conjunction with the filter gain
matrix in order to update the predicted state variables
after removal of disturbances recognized (upper right

center in fig. 2). The temporal sequence of errors is also
used for checking the validity of the hypotheses underly-
ingthe actual recursivecomputation, If consistentlypoor
predictions are obtained, the corresponding hypothesis
has to be adjusted;this may concern shape components,
parameters in the dynamical model or the complete
model. This part up to now has been implemented in a
rather rudimentary form. For more compllex dynamical
scenesthantheonestreatedupto now, anolbjectoriented
database @ the computersciencesense) for a variety of
physical objects (i the common sense) has to be imple-
mented; this work has just been started (upper right
corner in fig. 2).

A dynamical model has to be instantiated for each physi-
cal object capable of being moved. In road vehicle
guidance thisis not only the ego-vehicle and other ve-
hicles but also the road, the appearance of which varies
while driving upon it, at least in the general case with
horizontal and/or vertical curvature. Thisis indicated in
fig. 2 by the perspectively shown multiple boxes in the
recursive center part.

The state of several objects in conjunction with en-
vironmental parameters and the active goal function of
the ego-vehicle constitute a situation, to be discussed
below. After recognizing the situation (center of upper
bar in fig. 2) control modes or actual control time histo-
riesmay be selectedand implemented in an efficientway.

Reflex-like egomotion behavior

Seinthe internal representation scheme.chosen both
thespatio-temporalstatevariablesandthe controlsat the
disposal of the system are explicitly represented, it is
straightforward to apply the concept of state variable
feedback in order to obtain optimal behavior for well
defined tasks. Modern control theory provides the pro-
ven background for thisapproach. For each class of tasks,
like lane following, convoy driving etc. in visual road
vehicleguidance, a specialfeedbackcontrol lawtuned to
the actual dynamic parameters of the vehicle yields a
characteristichehavioral mode.

Since the computation required is but a matrix-vector-
multiplication, this simple operation can be done addi-
tionally at the lower level where the recursive state esti-
mationis performed, therebyalleviating the higher levels
fromanyinvolvement inhigh frequencycontrolcomputa-
tion; in addition, this eliminatesthe incrementaltime lag
which would have been introduced by the communica-
tion between the hierarchical levels required. With this
workload sharing the higher levels may run at consider-
ably lower cycle times (limited only by the requested
lumped reaction time delay to some eventrequiring con-
trol mode switching). For systemswith dynamical capa-
bilities in the range of humans, several hundred millisec-
onds reaction time delay may be acceptable, while the
recursive state estimation with reflex-like feedback con-
trol may run at 40 to 120 ms cycle time (twoto six video

cycles) typically.

In case a new event in the outsideworld requires special
action, like the detection of an obstaclein the lane at a
certainlook-aheaddistance, the upper decisionlevel may
trigger some predefinedfeedforward controltime history
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Figure 2. Gross flow chart of the 4D approachto real-timevision

(leftinfig.2) witha set of parametersknownto be ableto
deal with this new situation (for example either braking
or lane changing).

Theconceptsuptothispointhavebeenimplementedand
proven to be very efficient computationally and robust
enough for real world applications. The following sec-
tions deal with extensions under way and planned forthe
near future. The integrated 4D internal representation
includingtime derivatives of statevariables and the effect
of control actuation over time yields a rich background
for action planning and prediction of possible future
evolution of the situation. Thus, based on fast forward
simulation, temporal reasoning becomes relatively
simple and complex situations may be handled in a
straight forward manner.

Objects, subjects and situations

Before dealinginmore detailwith the notion of situations
abrief review of the concept of subjectsasintroducedin
[Dickmanns 89] will be given: Mobile entitiesin the ob-
served outside world may be classified accordingto the
fact whether or not they have the capabilityof activating
some locomotion or perception system control at their
disposal. There exists a large variety of systems with many
shades of sophistication. Those which perform internal
sensor data processing in such a way that control actua-
tion is not directly coupled to measured data will be
called 'subjects’. They are separated from the rest called
objects (proper) because they require additional (inter-
nal or 'mental’) state variables in order to completely
describe their state. (Deliberately, no attemptis made to
remove the grey zone implicit in this definition.)

For most real autonomous systems it will be impossible
to determine their internal state completely. For most
practical applications it will be sufficientto grossly know
that part of the internal state of an autonomous partner
which is relevant for the task at hand. This may be its
actual view of the situation, its actual goal function (or

system of goal functions together with a likely control
strategy) and its way of arriving at decisionsin the situa-
tion as perceived.

Since usually all control decisionsare based on more or
less inexact estimates and since too many parameters of
other systems are incompletely known, it seems wise to
refrain from computing too detailed expectations of
other subjects'behavior but onlyprepare reactionsto the
most likely ones; careful observation of the development
of motion trajectoriesof the physical body of other sub-
jects will give indications of its likely intentions. The most
1ikely behaviors to be expected may be derived from
decision and control strategies which oneself would
adopt in the other subject's situation.

Thisway of defining a situation is in agreement with the
one proposed in [Nagel 88]. Here however, the state of
the objectsand subjects is assumed to be known asgood
as possible through the recursive estimationscheme, and
one is looking for a suitable control decision, the effect
of which on the future evolution of the situation can be
predictedbyutilizing the dynamicalmodels for dll objects
and subjectsinvolved (assuming likely control inputs).

Mental states and intelligence

For an independent outside observer the internal repre-
sentation of objects and their states in another subject
constitute an increase in state variables of the entire
systemsincethe other subjectmay base control decisions
onits actual ‘view of the world"; these 'mental' stateswill
then have their effect on the physical world when the
resulting control action starts changing the real physical
state of objects in the world. Therefore, these mental
statesare decisive factorsin understandingsituations; in
the German language the word "Wirklichkeit’, usually
translated as a synonym for 'reality, allows a different
interpretation including these action-consequence ef-
fects: Ideas too may be part of ’reality’ in the sense of
*Wirklichkeit’ sincethey may effectchangesin the evolu-
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tion of processes in the real world. (The word *wirken’,
from which Wirklichkeit is derived, means 'to effect
changes or reactions'.)

Fixing the way how intemal representationsare arrived
at, when sets of input data are given, therefore, is a
decisive factor in the design and shaping of cognitive
systems. [Maybethe hard core of human cultures, essen-
tially, is an equivalent to thisprocess on a very sophisti-
cated level.] Thericher an intemal representationcanbe
made by linking incoming data to predefined interpreta-
tion structures or to previously stored experience with
differenttypes of objects and subjects, the better will the
system be able to deal with a variety of situations in the
sense of achievingits goals despite perturbing factors. If
rich interpretational schemes are available, a cognitive
system may recognize situations or courses of actions
fromshortsubsequences,and itmaybe abletoreact early
in an efficient, god oriented way.

This capability seems to be at the core of the ancient
definition of intelligence: The word ‘intelligence'was
claimed to have originated from the Latin verb ‘inter-
legere’ meaning to be able to read in between of lines:
those facts or hints which are not explicitly written down
but which canbe concluded fromthe context. Translated
to the more modem usage of the word this would mean
that a system could be called intelligent if it is able to
recognize an action or a process sequence, especially a
future one, from partial observationsonly; given an early
correct interpretation, such a system would be able to
alsoactearly and adequately and to have advantagesover
lower performancecompetitivesystems. Thisinterpreta-
tion seems to be in agreement with the general usage of
the word intelligence in everyday life. Note that this
interpretation is a quite natural outgrowth of the basic
approach taking spatio-temporal representations and
the definition of controlsin this context into account.

Especially with the sense of vision it is possible to appre-
hend situations 'at a glance' if typical arrangements of
objects and subjects and short but typical action frag-
ments canbe observed. This, however, is only possible if
the temporal domain is adequately represented by
proper models

SYSTEM ARCHITECTURE BASED ON THE
INTEGRATED 4D APPROACH

In our vision system the main sensors are two passive
monocular imaging arrays (CCD-cameras, black and
white) mounted on a two-&-platform  fixed to each
other with a given relative orientation. Their viewing
direction canbe controlledby the interpretation system
accordingto itsneeds in the actual context; the controller
is integrated into the image processing system.

Based on the concepts discussed above the system
developed also has a temporal structuring besides the
usual structuring with respect to subtask hierarchies;
both aspects will be discussed in the following subsec-
tions.

Temporal structuring

Video signal processing of course is linked to the 50 Hz
video framerate; thiSyields the basic cycle time of 20 ms
forimagefeature extractionof which all slower cyclesare
integer multiples. The only faster cycle up to now is the
viewing direction control for active vision and stabiliza-
tion; it may use inertial angular rate signals at a small
fraction of the video cycle time (typically 5:ms).

Recursive state estimation is done at the rate necessary
for control computation: If the vision based automatic
system s expected to have aboutthe samedynamic range
as the human operator, its comer frequency should be
around 2Hz, Taking sampled controltheoryinto account,
s results in a reasonable sampling frequency of 10 to
25Hz yieldingbasic control cycle times from 2to 5 video
cycles(40 to 100ms). The largest value means at a speed
of 30 m/s (108 km/h) a new image every 3 meters, the
smallest every 1.2m. This is considered to be sufficient
irrespective of the computing power available.

At thisrate the complete physical state of all interesting
objects is being recursively estimated. Using state feed-
back control laws, behavioral competencesof the auton-
omous vehicle can be realized for different tasks and
situations by simple matrix vector multiplication. This
providesthe vehicle with fast reflexlike behavioral modes
without having to resort to the higher knowledge levels.

scheme r

/ scheme ;
situation analysis; = ln;ule :
control mode scheme 2 ase
decision n
;‘: scheme 1 ;
- — 4} _ - feed-forward = . _
control program
iode m
n
2 reflex-
Mode 3 li
1 ——— ike
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State 1 = Mode 2
estimation —
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Figure 3.
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control law 1

ctable fast, reflex like feedback control determination with triggered feed forward components;
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This temporal integration of perception is considered to
be an essential component of learningtemporal motion
behavior like step responses and eigenfrequencies of
objectsand subjectsin the real world.

From the representational point of view, it corresponds
to establishing the link between the differential repre-
sentation valid for the point 'here and now' and the
integral representation of resulting maneuver elements
based on some stereotypical control input time history.
Theresult of parameterizedstereotypical controlactions
can thus be represented by a few symbolic parameters
linking by a maneuver element two discrete states tem-
porally well apart; an agent capable of understanding
these symbols in connection with dynamical models and
the temporalintegrationprocedure may manipulate aset
of these elements in a quasistaticmanner into a proper
sequencein order to achieve some overall mission. This
is the approach usually taken in Al motion planning,
however, very often without caring about the underlying
dynamical control aspects.

For fast, efficient and smooth control of processes in the
real world this underlying (in biological systems mostly
implicit) knowledge has to be exploited; the 4D-ap-
proach provides exactly this Ik (which our human
neural net builds up during early phases of (nonintel-
ligent) life in childhood).

Up to now the designer has built these capabilitiesinto
our technical systems. However, no principial difficulty
canbeseeninprovidingamore advancedsystemwiththe
proper tools available in the engineering community for
developing thison their own.

Theseactivitiesmay run in parallel on additionalproces-
sors using software packages developed in the field of

control engineering, system analysis and systems identi-
fication; the resulting parameters may be. used in the
decision and control processes thereby allowing adapta-
tions to changing situationsand environmental parame-
ters (for example roads on a winter afternoon turning
from wet to icy).

In the long run, even more deeply structured temporal
activities may be considered Given the availability of
proper software,the systemmayworkonstoreddatatime
histories during periods where computing power is not
needed for actual locomotion control (in parking condi-
tion). Several alternative control time histories and the
resulting values of the goal function may be evaluated by
simulation with the dynamical model available, for the
situation considered. This 're-thinking' of situationswith
a reference outcome meanwhile known, may lead to
changes in decision parameters for future action, consti-
tuting one component of learning. Another form may be
the retrospective comparison of maneuvers performedin
similar situationswith different control options showing
the relative performance achieved; this would be the
learning of appropriate behavioral decisions.

Typically during this process, the amount of data to be
stored Is reduced considerably leading to condensed
descriptionsof system characteristics (class properties,
learningabout factsand appropriatebehavioral parame-
ters). These characteristics, usually, are no more state
variable time historiesbut systemand control parameters
or condensed average state descriptions (e.g. mean
values, variances).

In thisway, the 'present awareness subsystem' based on
differential representationsin the 4D-approach working
around the point ‘here and now' (centralbleb in figure5)
can be exploited in several directions by the knowledge



based subsystem shown in the rectangular box to the
lower left; the latter one represents integral effects
derived from experienceover time for specificsituations
and tasks.

Expectation based data fusion

When a complex perception systemfed by different sen-
sors with different delay times in the data processing
pipelinehasto deal with the realworld, control decisions
should be taken based on situation assessment for one
single point in time. A control output to the real world
can only be effected at the temporal point 'now.

Knowing what the time delay in the control actnation
sequence from decisiontaking to real world implemen-
tation is, and having temporal (dynamical) models for the
process to be controlled available, it seems to he wise to
exploitthesemodels for making predictionsof objectand
subject states exactly for the point of control implemen-
tation. If allmeasurementtakings are geared to the same
point kT, an especiallyefficient system design results.

The different time delays in the data paths may now be
compensated by corresponding numbers of prediction
stepsapplyingthe objectspecificdynamical models. With
redundant data sets the Kalman filter approach allows
recursive least-squares-error datainterpretation exploit-
ing knowledge both about the real world process and
about the various measurement subprocesses. Removal
of outliersexploitingthe covariancematrix helps stabiliz-
ing the interpretation.

Hierarchical structuring

With respect to behavior control, in fig. 4 the resulting
hierarchical scheme has been given. Table 1shows the
hierarchical structuring with respect to measurement
and scenerecognition aspects. No speciallow levelimage
preprocessing Is performed; instead, the algorithm for
feature extraction on the basis of controlled correlation
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[Kuhnert 88; Mysliwetz 90] are designed in such a way as
to exhibit good noise reduction properties. Mainly, edge
element and corner features have been used up to know.
There isno final decision made with respect to ‘optimal’
featuresbasedonbottomupdataonly;accepted features
for object interpretation are selected on the basis of an
overall'Gestalt-idea derived from perspective maptping
of aninternal 3D shape representation (second line from
bottom in table 1). At the single object level, time is
introduced via the dynamical models for 4D repre-
sentation; up to now, no interframe differencing as in
optical flow has been applied. The future has to show
whether this type of image sequence processing will be
necessary at all. (It is well known that nature in its bio-
logical systems does make me of it; this has triggered
quiteabit of activitiesin thisarea alsofor technical vision
systems. Whether and under which circumstances thisis
advantageoushasyet to be determined). In our approach
a 'virtual optical flow' for features is computed on the
basis of the internal spatio-temporalrepresentation and
perspectiveforward projection.

The levels discussed up to now have been implemented
inthe imagesequence processing system BVV_2 [Graefe
85; Mysliwetz 90] and more recently in a transputer net-
work [Thomanek, Dickmanns 92; Behringer et al. 92].
The scene understanding (upper) partintablel hasbeen
implemented on a PC-AT in the past andhasbeenported
onto a transputer system also. From several objects and
environmental data the situation is recognized and
checked against the requirements for task achievement.
If no specialaction is needed the system continuesin its
present mode; if some change of the operational mode
becomes necessary a replanning is performed and the
resultingmode change is triggered.

The control output is fed back to the internal repre-
sentation via the prediction step, updating all the lower
levels, thereby adjusting the measurement and inter-
« pretation process to the actual state.

ivi - i resuft
activity level | nracessors operation This frequent and fast traversion both
. — | bottomupand top downin the interpreta-
sontrol level | MPS | compute expectations v . tion scheme assures efficient exploitation
Control ol d"eclm’“ ~ acton of both high level knowledge and most
o : apply vehic etcon“o recent measurement data.
h=]
é _ The gross flow chart corresponding to
g :ask level MPS relative.goai state plan-n.lng, table 1 has been discussed alreadyas fig_
5 evaluation decisions ure 2 above. It has been arranged in such
2 t t t away that the procedural recursive state
S estimation techniques using control en-
objsct level MPS | situation assessment < | situation gineering methods form the core of the
parameter adaption figure while the more knowledge based
A higherlevela vi + ¢g pe i
t t ! this center showing the interaction paths.
§ leature level 4D-OP |- feature aggregation objects’in - A different viewpoint for subdivision
E spacefime showing other facets of the same system
3 t t t has been given at the end of {Dickmanns
2 , _ and Graefe 88]; the completely autono-
7 | pel level PP~ feature extraction features In ~ + 1 moys simulation capability inherent in
image plane this approach, and referred to already
i L 1 1

Table 1. Modular processing structure for complex tasks

above, may evenworkwithoutany sensory
input normally being the driving factor.




6-14

Stored data may possiblybe taken as startingpoints or as
reference trajactories to study variations around; inter-
esting questionswith respect to 'mind’ and dreams’ may
come up.

EXPERIMENTAL, RESULTS

The general scheme of dynamic machine vision and ex-
pectation based perception discussed above has been
developed during parallel application to four different
areas, after the ideahad come up around 1980in connec-
tion with the problem of visually balancing an inverted
pendulum on an electrocart [Meissner, Dickmanns 83].
The first application oriented problem was planar dock-
ing of a reaction propelled air cushion vehicle with three
fully independently controllable degrees of freedom
[Wuensche 86, 88] simulating autonomous spacecraft
docking. The second area was road vehicle guidance to
be discussed in somewhat more detail below. The third
one was birdlike autonomous landing approaches for
conventional aircraft under visual ilight conditions; this
may be of interest for unmanned vehicles or as basis for
an electronic copilot and will also be briefly discussed
below.

Autonomously guided vehicles for transportation tasks
on the factory floor are the fourth application area; in
this context, the capability of landmark navigation has
been developed and demonstrated [Hock 91]. Autono-
mous visual guidance of helicopters has been tackled in
1992.

Road vehicle guidance

The application area of autonomous road vehicle

guidance is by far the most developed one: A 5ton van

"VaMoRs’ of our Universityaswellasa 10tbusanda 7.5

t van "VITA’ of the Daimler-Benz AG have been

equippedwith our vision system. In experimentsranging

over sixyearsby now. the followingcapabilities have been
demonstrated:

- Lane following at high speed 100 km/h have been
achieved limited only by engine performance of
VaMoRs. On well marked empty freeways much
higher speeds could be handled by the method; limi-
tationsmayfirstcomefromcameraresolutionat large
look-ahead ranges. Both horizontal and vertical cur-
vatures can be estimated to sufficient accuracy [Mys-
liwetz 90; Mysliwetz, D ic k ” 92} to allow velocity
control in order not to exceed preset acceleration
limits.

= Lane following on unmarked cross-country roads
with shadows from trees and buildings on the road.
Speeds up to 60 km/h on empty roads have been
demonstrated; even driving under light rain fall with
wipers operating in front of the cameras has been
shown.

- Night driving on well marked dry roads with normal
headlightsat low speedshas been performedwith the
Daimler-Benzbus and VITA on test tracks.

- Driving on unsealed countryroadsat speedsbelow20
km/h has been achieved by VaMoRs; however, in

order to obtain more robust performance, computing
power both for image processing and on the higher
levels has to be expanded.

- Recognition of well visible obstacles of more than 0,5

m? cross-section (black trash can) in a look-ahead
range of 30 to 50 m has been demonstrated at speeds
up to 50 km/h on unmarked two-lane roads. The
situationassessmentlevel decideswhether thevehicle
is autonomously stopped at a safe distance in front of
the obstacle or whether a lane change and passing
maneuver is performed. Similardemonstrationshave
been performed with the Daimler bus stopping in
front of another bus. Passenger cars can be detected
at ranges up to 100 m with a 25 mm tele-lens. Mono-
cular distance estimation through motion stereo (an
inherent property of the 4D approach exploitingdata
fusion from odometry) is achieved with sufficient ac-
curacy up to about 50 m; the introduction of inertial
gaze stabilizationwill allow larger focal lengths with
correpondingly improved viewing ranges.

- Convoying behind another vehicle has been initially
demonstrated in our hardwarein-the-loop simula-
tion facility, lateron with the test vehicles; ’stop-and-
go’ experiments are a special case of this capability
shownin 1990.

- Lane changings to the left and right have been per-
formed in daytime and at night, triggered by the
human operator who has to take care for other ve-
hicles in neighboringlanes.

- Driving on public German ’Autobahnen’ has been
startedin 1992 with the transputer systemasthelatest
achievement. Besides lane recognition two other ob-
jects may be detected, tracked and interpreted in
parallel.

Aircraft landing approach

One of the most crucial maneuvers in autonomous ilight
is the final approach phase to the landing strip. Under
good visual conditions, human pilots are able to land an
aircraft safely without any support from the ground by
using just visual cues from the airport environment and
the runway. In 1982we started studying this problem in
the simulation loop with the goal to develop methods
which would allow autonomous unmanned aircraft with
the capability of machinevision to do the same. G. Eberl
inhis dissertationwork [Eberl 87] laid the foundation for
the solution available now. From 1987 onward, R. Schell
continued the development till the first flight experiments
successfullyperformed in 1991,

The initial 9 years of development have been performed
in the simulation loop exclusively. Results have been
published in [Dickmanns 88; Dickmanns, Schel! 89], Over
the years, realism in simulationand the use of real image
processing hardware has been steadily increased. Space
doesnot allowto describe the systemdeveloped in detail,
the interested reader is referred to [Schell 92; Schell,
Dick” 92).

The achievements may be considered a breakthrough in
machine vision application. It has been shown that Tl




spatial motion inall rotatory and translatory degrees of
freedom can be controlled by onboard autonomous dy-
namicmachinevision with a relatively small set of today’s
microprocessors, using the 4D approach. In simulation,
the control loophas been closed and landingapproaches
have been performed from about 1.5 km distance till
touchdown, includingwind effects and gusts. Fig. 6 shows
a simulated approach situation with the hashed squares
indicatingthe image areas evalnated for informationex-
traction. In both the simulationloop and inthe real fight
experiments the camera was suspended on a two-axis
pan-and-tilt platform for visual runway fixation.
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Figure6. Simulated landingapproachwith subareas
evaluatedfor informationextraction

Inthe fight experiments, funded by the German Science
Foundation (DFG) and performed with the twin turbo-
prop aircraftDornier Do-128of the University of Braun-
schweig (see fig. 7), inertial angular rates and orienta-
tions have been measured by gyros and were fed into the
interpretation system, with data fusion performed
through the two sixth order dynamical models separated
for the longitudinal and lateral degrees of freedom.

Since the aircraft was not yet certified for active com-
puter control, only the real-time state estimation part

Figure7. Testaircraft Do-128 of TU-Braunschweig
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exploiting dynamicvision could be tested. This, however,

has been very successful,, after only one week of installa-
tion work and interface testing, due to the careful pre-
parations performed In the simulation loop with the
completevision system, first trajectory and state estima-
tion results could be achieved. Fig. 8 shows the visually
estimated altitude as compared to a radio-altimeter
measurements and those from the Global Positioning
System (GPS). The landingapproacheswere abandoned
at about 5 m altitude In order to make a fly-around for
the next trial. It canbe seen that visually estimated and
radio-altimeter measurementsagree very well in the vi-
cinity of the runway (time > 13 sec); aircraft speed was
about55m/s (200km/h). Estimation quality of the longi-

tudinal position was considered sufficiently good
whereas lateral position estimation fluctuatedwithabout
2 m amplitude relative to the GPS-results; thiswill have
to he studied further.
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Figure 8. Estimated altitude time history

CONCLUSIONS

Machine perception and vision-based intelligent motion
control should take advantage of the recursive state esti-

mation techniques developed In
control engineering. The 4D ap-
proach’ developed at UniBwM over
the last decade generalizes the ex-
tended Kalman filter to image
sequence processing. In its sequen-
tial formulation it is well suited for
solving major parts of the problem
of dynamic scene understanding
even under the condition of occlu-
sion. The dynamical modelsarewell
suited for knowledge repre-
sentation in the spatio-temporal
domain.

The 4D approach has been
developed with the goal in mind to
achieve dynamic vision perform-
ance Similar to the human one, at
least in motion control. Introducing
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time asan independentvariable right from the beginning
as the basis for integral spatio-temporal object models,
allowsto develop very efficient data processing schemes.
Unlimited image sequences may be processed without
the need for storing previous images; the effects of his-
torical development are accumulated in the state of
physical objects, internally represented in 3D space and
time.

It has been shown in several application areas, that mi-
croprocessors available today, already allow surprising
performance levels when exploiting this method as com-
pared to quasi-steady approaches usually studied in Ar-
tificial Intelligence. For high level performancein com-
plex scenes, these engineering-basedmethodsneed to be
complemented with ones well suited for explicit knowl-
edge representation and decision making.

It has been sketched how machine intelligence can
possibly be developed based on the feedback scheme for
motion control exploiting the high-level spatio-temporal
world models which are at the core of recursive state
estimation. In human history of science, dynamicalmod-
els (i.e. differential egs.) have been arather late but very
consequential achievement in understanding the world
we happen to live in. This powerful insight in basic prop-
erties of processes in the real world should be exploited
for making machine perception more effective.
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1. SUMMARY

Imaging sensors are powerful tools enabling remote
control, by tele-operation, of numerous tasks where the
operator requires an appreciation of the three-dimensional
structure of the viewed scene. Passive video sensorsalso
lend themselves to tasks where covert operation or
electromagnetic compatibility is required. A commonly
mooted tele-operational task is that of driving a known
vehicle through an unknown terrain - or keeping station
on a known object moving through an unknown terrain.
The computer vision aspects of automating this task are
divided into two separate vision functions, which are the
subjects of this paper:

*  Analysis of image sequences of a general scene to
extract its three dimensional (3D) structure without
any prior information,

* Analysis of images of a well defined object, to
extract its 3D position and orientation relative to
the sensor.

For both these functions, the paper provides a brief
innoduction to possible techniques followed by further
description of particular systems, DROID and RAPiD,
developed by Roke Manor Research Limited. DROID is
a general, feature-based 3D vision system using the
structure-from-motion principle. That is, it uses the
apparent image-plane movement of localised features
viewed by a moving sensor to extract the three-
dimensional structure of the scene. RAPID is a model-
based real-time tracker which extracts the position (X,Y,
Z) and orientation (roll, pitch, yaw) of a known object
from image data. The system operates iteratively, using a
prediction of object pose (position and orientation) to cue
the search for selected edge features in subsequentimagery.
This approach results in minimal processing of image
pixels, so that the system can be implemented at full
video rate using modest hardware.

2. INTRODUCTION

A video image, as displayed on a TV monitor, is
intrinsically a two dimensional object, yet a human
operator can remotely control a wide range of tasks in the
three-dimensional world by use of a video lirk. In such
cases it tempting to ask if such tasks can be automated as

the raw data used by the operator - the video data - has
already been captured electronically.

The task of following or keeping station, or performing
some manoeuvre with respect to a known object, is a
commonly hypothesised example. If the application is to
keep in formation with a nearby aircraft, dock a satellite
module, or even to follow a cooperating vehicle over the
uncluttered desert sands, we are generally concerned with
known objects which can be defined in some detail in
advance. More generally we may wish to manoeuvre a
vehicle in a cluttered scene. In such cases the possibility
of obstructions of an unknown shape will be a major
concern, and the system will need to estimate the sensor
platform’s path relative to any obstacles.

Work at Roke Manor Research Limited has been directed
towards both of the vision tasks implied above. This
work has resulted in two systems, DROID and RAFID,
for estimating structure from image sequences and model-
based tracking respectively. These systems enable 3D
structure and relationships to be established. While some
interpretation of 3D measurements is performed by
DROID, interpretation of the 3D structure is largely
beyond its scope, as are the functions of path planning or
control of the movement of the sensor platform.
DROID and RAPID have now reached some maturity, but
the methods have not been integrated into a single
demonstration, S0 it must be admitted that the vision task
described above is a focus of attention and the two
systems will largely be described separately in what
follows.

This introduction continues with a non-mathematical
overview of the algorithms developed by Roke Manor for
extracting scene structure from image sequences and for
tracking theposition and orientation of a modelled object,
A more detailed mathematical description of the
algorithms then follows in sections 3 and 4; the reader
may wish to omit that description and skip to section 5,
which iltustrates the techniques in the context of a typical
office corridor scene. The remaining sections of this
paper describe the development status of the work
(including real-time implementation),and provide a brief
critical discussion and concluding remarks.

© Roke Manor Research Limited 1992. All rights reserved.
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2.1 Structure from Motion

A human controller in a tele-operated system can employ
a wide range of depth cues. Given a single static image
he may use his general knowledge of the scene's domain
to perform scene understanding, and this may be very
precise in providing a 3D interpretation in certain
domains. He may also use more general cues such as
perceived surface shading or shadows. There are many
such shape-from-X cues (where X stands for shading,
shadows, reflectance, texture, perspective, etc.), though
for computer vision these approaches currently seem
applicable only to simple constrained scenes. In contrast,
given a sequence of images, the assumption of scene
rigidity and the invariance of 3D geometry with changing
viewpoint provides a powerful lever which can be used to
automatically extract quantified stuctural information by
triangulation. This, the structure from motion approach,
is of course only applicable if the correspondencebetween
(image) features observed from differing view-points can
be established, and if the movement of the sensor can be
estimated between images.

Solutions to the image correspondence problem could be
sought in a spatially continuous form as an optical flow
field, defining for every point in one image of a sequence,
the image coordinates of the corresponding point in the
subsequentimage. Images frequently contain large bland
regions, however. and in such areas a flow field is ill-
defined. Altematively images could be analysed for
discrete image tokens, or features, that are likely to
correspond to objective 3D scene elements. The
attraction of using features, as compared to a spatially
continuous method (such as the gradient optical-flow
technique [13), is that appropriately chosen features
encapsulate the highest quality information, forming
"seeds of perception” {2], and processing effort is not
wasted on low quality regions of the image. This is of
considerable interest in a real-time application, as an
image containsa very large amount of data.

A further attraction of discrete features, is that they can be
developed directly into high-level 3D scene descriptors.
These provide a convenient mechanism for passing
information across a potentially unlimited number of
images, SO the geometric accuracy of feature-point
measurements can be refined over increasingly long
triangulation base-lines. A number of algorithms have
been proposed for the detection of point-features,
sometimes referred to as 'interest' points or ‘comers'.
DROID uses a proprietary method (described in section 3)
which proves to be robust both as a feature detector and in
providing reliably matched features between image
frames

Following feature or comer extraction on the first two
frames of a sequence, DROID's function is to estimate
sensor and featurepositions. The processing of these two
frames constitutes DROID's hoot phase. Thereafter, in
DROID's run mode, the system functions on an iterated
cycle updating sensor and feature positions (and
instantiating positions of newly detected features). It
would be desirable if DROID could optimally update its
state-vector of sensor pose (position and orientation) and
feature positions. There are typically many tens -

possibly hundreds - of 3D features being processed at any
time, however, and it is impracticable lo consider a
treatment of all correlations between egomotion errors
and feature-pointposition errors (and between one feature-
point and another), and consequently the update is
performed in two passes:

» calculation of sensor platform motion, i.e. ego-
motion,

= optimal instantiation and update of feature 3D
positions, assuming the ego-motion calculation is
correct.

This simplification leads to a viable system whose
overall cycle of algorithm steps is shown in Figure 1.
Steps of particular interest are:

2D-2D feature matching: This concerns the: matching of
uninstantiated features (i.e. those extracted from a
previous image frame but which are yet to be projected
into 3D) to newly extracted features. The process is based
on a combination of spatial constraints (in the image
plane) and feature attributes, which describe the
characteristics of a feature point. Spatial search regions
are bands centred on epi-polar lines. These lines are the
projections onto a later image frame of rays passing from
the pinhole of the camera through the feature positions
seen in an earlier frame. (This projection requires a prior
estimate of ego-motion.)

Ego-motion calculation: Ego-motion is estimated by
minimising the discrepancy between the observed and
predicted positions of matched features. In the boot case,
a feature can only be predicted to lie at some point on an
epi-polar line, so that the measured discrepancy is based
on the perpendicular distance to epi-polars as shown in
Figure2. Inrun mode, i.e. from frame 3, the discrepancy
is based on projection of 3D points; see Figure 3. At
boot some prior estimate of motion is required; thereafter
the system can be fige running or use constraints based on
past motion to ensure a smooth track estimate.

2D-3D feature matching: Matching of already instantiated
3D features to newly extracted 2D features is similar to
the 2D-2D process, but, with an estimate of feature
position now available, spatial search constraints are
based on a projection of estimated positional error into
the image plane.

Kalman filter instantiation/update: feature point positions
areestimated and updated in an optimal weighting of new
observations and previously estimated (3D)) positions.
The process can be visualised aS in Figure 4, where the
uncertainty in feature position is depicted by an elliptical
error surface. The new observation constitutes a
cylindricalerror surface centred on the ray to the observed
feature position. Intersection of these error surfaces
results in a new smaller error ellipse, which is gradually
refined by subsequent observations.

2.2 Model Based Tracking

Three-dimensional (3D) model-based vision is concerned
with finding the occurrence of a known 3D object within
an image, and obtaining a quantitative measure of the




object’s location in three-dimensional space. The location
of the object can then be used for tasks such as robotic
manipulation, process monitoring, vehicular control, etc.
As only certain aspects of the object are utilised, these
aspects are said to form a model of the object: it is the
occurrence of the model that is sought. A geometric
model is attractive to work with, because the 3D geometry
ofan object is invariant to changes in view-point and so
can provide reliability and computational simplicity.
Additionally, the results from a geometric model will be
quantitative. Non-geometric models, utilising such
attributes as colour and texture, may serve to reveal the
existence of the object, but not a quantitative measure of
its 3D location.

Model-based tracking is model-based vision applied to a
sequence of video images. Model-based tracking appears
initially to be a much more difficult problem than model-
based vision, due to the high data-rate in an image
sequence (up to 10 Mbytes/second at video-rate). The
continuity between successive images can, however, lead
to it being a much easier problem, because the motion of
the object can be predicted with some precision. It can
thus be advantageous to process at the maximum rate,
which is at field rate. (S0Hz) for standard video cameras.
The geometric model features used for tracking must be
cheap to extract, computationally, if processing is to
proceed at near videurate. Computationally expensiveand
unreliable model features, such as closed regions
representing surfaces, cannot be afforded. This indicates
the use of simple local features such as points (or
‘comers’)and edges.

The tracking of rigid and jointed objects has been
performed by Lowe [3] using straight edge segments
extracted over the entire image area. This approach is
computationally expensive and slow, and has been
demonstrated at about 1 Hz using Datacube image-
processing hardware. The strength of the approach is that
a prior estimate of object pose is not necessary. Another
full-image method is that of Bray [4], who uses the
discrepancies of the locations of extracted Canny edgels
from the projected model to update the pose, and thus
needs a good pose estimate. The approach of Stephens[S]
is closest to Roke Manor's RAPID, his model consisting
of control points on high-contrast edges, but
determination of the pose change, from frame to frame, is
performed using many iterations of a Hough transform.
Stephens’ system has been demonstrated in real-time
(about 10Hz) using a small Transputer array.

The approach taken in RAPID is to use a 3D model
consisting of selected control points situated on high-
contrast object edges, such as surface markings, fold edges
(such as edges of a cube), and profile edges (such as the
outline of a sphere). The processing cycleis illustratedin
Figure 5. Given a prior estimate of object pose, these
model points are simple to project onto the image. and the
corresponding image edges simple to locate by searching
the image pixels perpendicularly to the expected edge
direction. The set of measured displacements of these
edges is used to refine, or update, the cstimatc of model

pose. Since the estimated model pose must be close to
the true model pose for the correct image edges to be
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associated with the model points, the update equationscan
be safely linearised. This linearisation, together with the
minimal image processing required to locate edges at
control points, enables RAPID to function at full video
rate using only modest processing hardware in many cases
of interest.

If the target object is moving across the image, the above
method of updating the object pose will produce a result
that lags behind the true pose. Thus it is desirable to
include a predictive element in the tracking loop. This
prediction is most simply achieved by using a position
and velocity predictor/smoother, such as the so-called
alpha-beta tracker {63, but, with more sophistication, a
Kalman filter [7} can be used to greater effect. The
Kalman filter enables the relative uncertainties in the
estimated pose to be weighted appropriately and the
expected dynamics of the object and the sensor platform
can be included in the smoothing/prediction process.
Thus RAPID can be used for tracking a moving object
with a fixed camera, or altematively if a stationary scene
is tracked as the camera moves, the pose of the camerais
determined.

A number of RAPiD's features make it very robust in
operation. The use of a model defined by selected control
points on object edges makes it unnecessary to extract the
whole of a edge, thus obviating a step which (for simple
techniquesat least) is generally prone to error in the form
of fragmentation and incomplete termination. As will be
apparent from the mathematical description, failure to
detect an edge at a control point is not catastrophic,
though failure to detect features degrades the accuracy of
pose estimates: the measurement error model used in the
Kalman filter enables the changed uncertainties in
measurements to be taken into account in the
smoothing/prediction process.

The required model is a small data structure of typically
2040 control points. These should be placed on straight
edges (edges of low curvature are also acceptable) or
certain kinds of profile edge, such as conic sections or,
surfaces of revolution. Additional robustness can be
provided by specifying the expected image polarity of an
edge, which can prevent RAPID being seduced by
background edgesin a cluttered scene.

3. THE DROID ALGORITHMS

31 Feature Extraction

The primitive featuresextracted by DROID are feature-
points or corners, which abound in natural and man-made
scenes. Feature-points are likely to correspond to real 3D
structure, such as comers of objects and surface markings,
and also to texture of an appropriate scate. The spatial
localisation of feature-pointscan give good repeatability,
even for natural scenes where an image decomposition
into straight-line fragments is highly erratic. The
extraction of feature-points is a spatially and temporally
local operation, and .is both repeatable and
computationally (comparatively)cheap.

On each image processed by DROID, discrete feature-
points are first extracted, with feature extraction performed
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independently on each image. Feature-points are detected
by use of a local auto-correlation operator [8]. Letting
the image intensity (grey-level) be I(x,y), at each point in
the image constructthe 2x2 matrix

( <(Qlox)y%>

<(A1/ax).(31/3y)> <(d1/3y)%>

<(dlfax).(dl/dy)> )

where angle braces indicate local Gaussian smoothing of
the arguments (a smoothing size of 1 to 2 pixels is
commonly used), and the first gradients, 0I/ox and d1/dy,
are obtained by use of a 5x5 mask. The eigenvalues of M
encode the shape (the principal curvatures) of the local
auto-correlation function: if both are large, the local grey-
level patch cannot be moved in any direction on the
image-plane without significant grey-level changes
occurring, while an edge or line will have one large and
one small eigenvalue. A corner responsefunction, R, is
formulated to respond to both eigenvalues being large,
while not requiring explicitevaluation of the eigenvalues:

R = det(M) - [ race(M) 12. k/ (k+1)2

The subtracted term makes the above formulation to some
extent 'edge-phobic’, to ensure it does not fire off
pixellation on strong edges, a common failing of some
comer detectors. The value of the parameter k is the
maximum ratio of eigenvalues of M to which the
response function is positive. Typically a value of 25 is
used. The local (3x3) maxima in the response function
form candidate comers, and we select either the n
strongest, or else all those exceeding a predefined
threshold. The former selection procedure is better suited
to image sequences with a widely varying content, frame-
to-frame. The convolutions used in obtaining the
response function may cause a feature-pointto be slightly
mis-positioned, but the mis-positioning will usually be
consistent over time and so be of little importance. By
performing a local quadratic fit to the response function,
the feature-points can be located to sub-pixel accuracy.

The most important property [9] of feature-point
extraction is high repeatability; with this algorithm often
over 80% of the extracted points are matchable between
frames. To each feature-point is associated descriptive
grey-level attributes, explicitly the local grey-level (as
defined by a Gaussian smoothing mask), and the
smoothed first spatial gradients. These attributes are
assembled into an attribute vector, a, which will be used
to disambiguate matches.

Feature-points are attractive to work with as they are
simple to track over time, and are easy to handle in 3D.
Straight edge features are similarly attractive and can be
handled by DROID, but they are more suited to man-made
environments than natural environments, in which they
are scarce[10, 11). Although curving and squiggly edges
are abundant in natural scenes, they can be temporally
unstable, and present formidable problems in finding a
suitable representation to handle the geometric
information they contain.

32 Camera Calibration
Since DROID is based on the geometry of image features,
it is essential that an accurate interpretation of the

location of the features is performed. In particular, it is
necessary to know the direction in space towards which
each of the pixels in the image is looking: this is called
the geometric calibration of the camera. By modelling
the camera as a pin-hole camera with specific distortions
(eg. radial lens distortions), and using only CCD cameras
whose sensing elements form a stable rectangulararray, a
parametric form for the geometric camera calibration can
be devised. This model has been found to be good for
many CCD cameras and lenses. Camera calibration is
performed using two images of an accurately known
planar Calibration tile [12], resulting in accurate
measurements of the focal length, aspect ratio, location of
the optical centre, and up to two terms of radial
distortion.

The calibration enables the extracted feature-point
locations to be uansformed to an 'ideal' distortion-free
pin-hole camera of unit focal-length (UFL), whose image-
plane is positioned in front of the camera. pin-hole to
avoid tiresome minus signs. A Cartesian camera
coordinate system is defined to have its origin at the pin-
hole of the camera and Z axis aligned along the optical
axis. The X and Y axes are parallel to the image plane.
The image X axis is horizontal and pointing to the right,
while the image y axis is vertical and pointing
downwards. This gives a right-handed coordinate system,
as illustrated in Figure 6. A point positioned at R =
(X,Y,Z) in local camera coordinates will be imaged in
UFL camera coordinatesat
r =(xy)=(X/Z ,Y/Z)

This is the perspective projection, and henceforth all
image positions will be expressed in UFL coordinates.

It will often be necessary to represent the same 3D point
in two different coordinate systems, for example in
camera coordinates and global coordinates. Consider a
point located at R in a fist coordinate system, and at

R4 in a second coordinate system. These point locations
will be related by

Ry =A@®)T (R - 1)
R;=A®0) Ry tt

where the rotation matrix, A{®8), and the translation
vector, t, describe respectively the attitude and the
location of the second coordinate system with respect to
the first. (The superscriptT denotes matrix transpose.)

Rotations are represented by a 3-vector O, whose direction
is the axis of rotation, and whose magnitude is the (right-
handed) angle of rotation in radians. The elements of the

orthonormal 3x3 rotation matrix, A(8), ae:
A A . A
Ajj = cos08jj+ (1-cos0)6; 05 - sin 0 X ejjk Ok
k

1<ij<3

A
where & = 16l and 6 =6/6, and &k is the Levi-Civita
symbol. The representation is singular at =2, but
this is avoided by working always with 6 5. Note that




rotation vectors are neither commutative nor associative
(unlessthey are parallel), and that successive applications
of rotationsare best handled using quaternions.

The location and attitude of the camera is generally
referred to as its ego-motion, expressed as the ‘6-vector‘.q
= (8,t). The ego-motion may be measured from the
global origin (& illustrated in Figure 6), or may be in
some convenient local coordinates. The location and
attitude of a rigid body with respect to a reference
coordinate system is called its pose. The pose of a body
is the rotation, 0, and the translation, t, that must be
applied to the body coordinate system so as to correctly
position the body.

33 Boot-Strap Processing

The task of boot-strap processing is to initiate the 3D
representation of the viewed scene from feature-points
found in the first images, without assuming any
knowledge of the scene content. The 3D representation
will be in terms of Kalman filtered points. For a
monocular system, the fust 2 images of the sequence are
used for boot. DROID canbe operated in a stereo mode
[13], in which case boot consists of a conventional stereo
process performed on the 2 or more simultaneously
captured images comprising the first frame.

331 Boot Matching

The processing of a monocular image sequenceis initiated
with the fust two images. Using a prior estimate of the
camera motion, each extracted feature-point from one
image generates on the other image an epi-polar search
line near which candidate matches are sought. If the prior
ego-motion estimate from frame 1to frame 2 is q = (0.¢),
and the observed point on frame 2 isat ry = (x5,y,), then

the epi-polar line on frame 1 will pass through the image
points (tx.ty)/ty and (Px.Py)/pz. where p = A(6)
(xz,yz,I)T. The epi-polar line is broadened out into a

band in which match candidates are sought, and this
broadening is chosen to reflect both the uncertainty in the
prior estimate of the camera motion and errors in feature-
point positioning. The length of the epi-polar line may
be truncated a minimum and maximum depths, to reduce
the number of spurious match candidates. Matching
ambiguities are resolved by use of the grey-level
attributes. If the attribute vectors for two points are a

and a,, then the attribute mismatch between the points is
m1,2=|al -azl/\f(lal I.|32I)

For a successful match, the mismatch value must be
lower than a set threshold, and if there are several
candidates, the one with the lowest mismatch is chosen.
Typically over 80% of the feature-pointsare found to be
correctly matchable, and the few incorrect matches are
discounted by outlier removal procedures (see below).
Unmatched feature-points are kept for possible future
matching; they are said to be placed in limbo.

332 Boot Ego-Morion
Using the feature-point matches, the camera ego-motion,

g =(@,t), is next determined. The boot-strap ego-motion
is calculated by an iterative multi-dimensional Newton
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scheme, minimising the image-plane distances between
the location of feature-pointsand the truncated epi-polar
lines of their matching features [14). To cope with mis-
matches, a robust minimisation is performed. The
starting point of the iterative scheme is the prior estimate
of camera motion, and good convergence is usually
achieved in 4 to 6 cycles. Prior knowledge about the
camera motion may be imposed by a set of soft
constraints quadratically linking the 6 ego-motion
parameters, q. By varying the constraint coefficients,
planar, linear, or curved motion may be imposed. It is
essential that a translational constraint is imposed at boot
to resolve the speed-scale ambiguity, which is otherwise
left entirely unresolved by the visual data. The
minimisation scheme and the form of the constraints is
described below in section 3.4.2.

Once ego-motion has been determined, the 3D locations
of matched points Can be estimated by triangulation. The
uncertainty in the image-plane position of a feature-point
leads to uncertainty in its 3D location. This uncertainty
is used to start-up a Kalman filter (K¥) for each point,
whose variables represent the spatial probability
distribution function of the point, and consist explicitly
of a 3D mean position and covariance. Strictly, it is
extended Kalman filters that are being used, as the time
evolution of the filter is only being approximated as
linear. The KF enables subsequent observations of tte
point to be optimally and cheaply combined, and hi‘g;?a
spatial accuracy achieved. The updateand initiation of
KFs is described below in section 3.4.3.

34 Run Mode

After tre 3D representation has been initiated in the boot-
mode, successive framesare processed in the run-mode.
The run-mode provides an evolving 3D representation,
which increases in accuracy and completeness as more
frames are processed. Accuracy is achieved by using
Kalman filtering to optimally combine observationsof an
individual feature-point seen over an extended period of
time. The representation evolves by the inclusion of
newly seen feature-points, and the exclusion of points
that are no longer visible. In this way, an unlimited
sequence of images Canbe processexd.

Much of the work of DROID is performed in so-called
disparity space, for reasons of speed and numerical
stability. A point at R = (X,Y,Z) in Cartesian camera
coordinates has coordinates S = (x,y,z) = (X/Z,Y/Z,1/Z)
in the corresponding disparity space. Thus the fust two
components of S are the image coordinates of the
perspective projection of R, and the third component is
the reciprocal depth. Note that straight linesin Cartesian
space are straight in disparity space, and similar
relationshipshold for both planes and conics. The KF of
each feature-point contains in disparity space a mean
position (or centroid), Sgz, and an estimated error

covariance Zg- (a 3x3 matrix). These can be thought of
as defining a normal probability distribution function in
disparity space.

341 Run Matching

In the run mode, matches are sought between extracted
image feature-points and existing KFs by projecting the
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KFs down onto the image-plane. First of all, the KFs
must be hansformed from the previously used disparity
space to the disparity space of the current estimate of
camera ego-motion. This is straightforward for the
centroid (by transforming to and from Cartesian space),
but for the covariance, using Cartesian space is
inadvisable for distant points because of poor numerical
conditioning. To overcome this problem, a direct
disparity-to-disparity transform has been devised. which
uses a well-conditioned similarity ransform. By these
means the KFs are brought into the currently used

disparity space.

The projection of the KF covariance, Zy g, onto the
image-plane is obtained by pre- and post-multiplying

. L . 0
with the projection matrix, P = (1)(1)0
transpose, which simply serves to extract the upper 2x2
block of Zxp. By linearly combining the projected KF

covariance with the observation covariance, Zyps, @
matching covariance matrix is obtained

— T
‘match = Xobs-Zobs * Kproj ¥ kF P

where the two coefficients k govem chosen levels of
statistical significance. The observation covariance,
Zobs., is usually taken to be diagonal and equivalent to,
say, one pixel. The observation covariance coefficient is
chosen to be sufficiently large for it to account for
uncertainty (error) in the prior estimate of camera motion.
Ifrg  is the perspective projection of the KF centroid,

rgr =P Skp

, and its

(trivially, the fust two coordinates of S, and Tobs is

the location of an extracted feature-point, then the feature-
point is a match candidate. if

(rgg- robs)T 'maIlch (FKg ~Tobg) < 1

that is, it lies in an ellipse cestred on the projected KF
centroid. The searching for candidates is accelerated by
using a coarse binning scheme for the feature-points, and
only examining the bins which the ellipse overlays.
Candidate matches are assessed using their grey-level
attributes, and irresolvable contentions are discarded to
ensure that no multiplydefined KFs are generated.

3.4.2 Run Ego-Motion

Once feature-pointmatches have been obtained, the ego-
motion, q, is determined by finding the camera attitude
and location that brings projected KF centroids, r(g), into
best alignment with their matching observed feature-
points, rops. If R is a KF centroid location in

Cartesian camera coordinates, then a relative ego-motion
q =(8.t) of the camera will make the centroid project
onto the image at

r(@) =X@).Y{@) / Z(@

where

R(@) = (X(@),Y(@).Z(q)) = A(0) R +1

The measure of 'best alignment' used above is given by a
matching covariance, zmatch’ which is, as before, an

appropriate combination of the observation and projected
KF covariances. The contribution of the ith matched
point to an objective function to be minimised is thus

Bi(@ = (7(@) - o) T Eprmarcn @) - Ygpe)

The ego-motion determination is performed by
minimising a single objective function, E,..,(q). Which
is composed of a weighted sum of contributions from
each matched point. together with a prior-constraint term
producmg soft constraints: ]

Eiotal(q) _ 4T Zpltlorq + X wiE(
points i

For there to be no bias from the prior-constraint term, the
ego-motion g is taken to be relative to the expected or
anticipated camera pose. Global ego-motion is not used
because rotation vectors can only be approximated as
commutativenear g = 0.

The objective function is minimised by using a multi-
dimensional Newton minimisation, for which the first
and second differentials of te objective function must be
calculated. These are constructed analytically by using
expressions for the fust differentials of the projected KF
centroids, dr{q)/dq, and by assuming that there is
negligible dependence of the matching covariances on g.
Each cycle of the Newton scheme produces a new (and, it
is to be hoped, better) estimate of the ego-motion, ¢!,

from a prev|0u a%?hmam n- .
= q- [ Eyo1)/0q2 1- 1 [0y ,)/q]

The starting guess of the minimisation is with the camera
at its expected position (ie. g = 0), and usually 4-6
iterations give a good convergence.

The main cause of error in the ego-motion calculation is
incorrect matches, which, if uncorrected, significantly
bias the result This problem is overcome both by using
robust minimisation techniques to de-weight the effect of
the mismatches, and by performing the complete
matching/ego-motion cycle twice, with tighter search
regions on the second pass. The robust minimisation
technique ascribes a weight to each point on each cycle of
the Newton minimisation. The weight, w;, of the i'th

point on the current cycle depends exponentially on its
contribution, E;(q), to the objective function of the point

on tepreviouscycle:
Wl =¢Xp - (CEI q)/El(q) )

The denominator is the (weighted) average objective
function contribution of all the points, and is used to
estimate the distribution of the E;’s, and this results in

outliersbeing continuously and strongly de-weighted.

Ego-motion determination is generally very accurate in
the short to medium term. An example is quoted by
Harris [15] of a short sequenceof 10 images taken from a
helicopter with a generally forward translation of about 10
feet per frame. The accuracy of the attitude component of
the ego-motion, the difference between the DROID
analysis and the ground truth data, is better than 0.25'.




though the helicopter undergoes a yaw of 15'. The
accuracy of the translational components is less then 0.7
feet, which is less then 0.8% of the total flight distance.

In a long image sequence, fong-term drifts can occur, in
which both the ego-motion and perceived structure are
self-consistently in error. For example, ‘both the camera
position and the perceived structure might come to be
displaced 1 metre to the right of their tru¢ values, and yet
the visual observations will be entirely self-consistent.
Although there is no feedback mechanism to correct such
an error from the imagery alone, external ego-motion
measurements (eg. odometry) may be of use in resolving
these ambiguities. Drifting can occur in both attitude and
translation, and also in the speed-scale factor. Speed-scale
drift is where both the speed of the camera and the
perceived scale of the structure are in error by the same
factor. The speed-scale ambiguity is resolved by using
stereo, as the stereo base-line provides a yard-stick for the
structure. The problem of drift is exacerbated by the
camera turning by an angle greater than the width of its
field-of-view, SO that previously established structure is
lost from sight and no longer acts as a stable reference.

3.4.3 Kalman Filter Update

Each time a point is observed and rnatched, a more precise
estimate of its 3D position may be obtained. This is
because the new observation provides further information
relating to the 3D position of the point. Kalman filtering
is a method of combining a number of noisy
measurements which is, in certain circumstances,
statistically optimum. In DROID, each tracked point has
its own filter whose job is to estimate both the point's
most likely 3D location, and its positional uncertainty.
An alternative approach, that of using a single high
dimensionality filter containing the coupled coordinates of
all the points, permits the imposition of geometric
constraints{16], but at a high computational cost, and a
danger of irrecoverably couplingunassociated features.

To explain the use of the KF, consider just a single
point, as all are treated independently and in a similar
fashion. Let the feature-pointbe observed in the current
image at image-plane position, ry; this is the KF
measurement. Its estimated positional accuracy is
specified by the observation covariance matrix, Zghs.
The state space for the KF is the 3D location of the point
in disparity space. Let the current estimate for the point's
location be Sg g (called the centroid), and the

accompanying estimate of its positional accuracy be
given by the covariance Zg . The covariance and

centroid after updating the KF with the current
observations are given by

Ev = [ "‘1 + PT Eall)s P ]'1
L — ¥ -1 T =1
Skp=Zkr [ZZESKF * P ZgpgFobs )

where, as before, P is the projection mahix. (The process
noise term, often used in Kalman Filtering, has been
omitted from the filter because past observations of a
point are considered to be as valid as current observations,
and there is no time-evolution because the points are
assumed to be staticary in Global coordinates.) As
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DROID in fact works with the inverse covariance matrix,
the former equation reduces to a matrix addition, and the
latter to solving a set of 3 simultaneous linear equations.
If, after update, the disparity coordinate of the centroid is
negative, it is reset to a small positive value to prevent
te point subsequently flipping behind the camera.

The KF update process is illustrated in Figure 4, in which
surfaces of constant probability density are shown in
disparity space. The vertical tube represents the observed
feature-point and its covariance, while the larger and
smaller ellipsoids represent the KF before and after update
respectively.

344 Kalman Filter Creationand Destruction

The feature-points on the current frame that fail to match
to existing K¥s, may be epi-polar matched {i.e. 2D to 2D
matched) to those trat remained unmatched from earlier
frames and were retained in limbo. This enables KFs for
new points to be initiated. The epi-polar matching is the
same asS in boot (section 3.3.1). The KF initiation,
which is also the same as boot, simply makes use of the
KF update equations applied to the pair of initial
observations.

KFs which repeatedly fail to match are discarded or
purged. whilst those leaving the field of view are retired
(matches are no longer sought), but kept on for a while
for use in the structural representation. Points that are
incorrectly matched at boot will cause KFs to be initiated
at locations that in general will not be supported by
matches on subsequent frames, and so these erroneous
KFRs will be purged from the system.

35 Surface Interpretation

A 3D geometrical representation should ideally describe
all the visible surfaces, seen in the current image or in the
past, and should perhaps even infer the existence of
unseen surfaces (eg. the continuity of a wall behind a
lamp-post). An ideal surface representation would use
high-level components, such as planes and conics, to
describe the scene, but in unconstrained environments,
especially natural scenes, such components may be rare,
ill-fitting or ill-conditioned. =~ A more adaptable
representation is needed, one which can cope with the
inaccurate and spatiaily non-uniform data that is obtained
from real vision systems. Since surfaces cannot be
directly measured, and must be inferred from surface
markings, bounding edges, etc.. a flexible interpolation
scheme based on tte measured geometric features would

be appropriate.

The maintenance of a low-level geometric representation
for parts of the scene that have left the field of view For a
period of time does not seem worthwhile: it is expensive
to maintain (in computer time and space), and even if
low-level features are seen again, they arenot | i | y to be
recognised as the Same ones because of changes of
appearance (scale, aspect, reflectance. etc.). Such a
forgetful' system operates both in people, as the
‘persistence of vision', and in DROID. Using the
currently visible features to construct surfaces leads lo an
ego-centric representation, such as a depth-map or the
2.5D sketch [17].
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3.5.1 Planar Facet Representation

The 3D points from DROID form a sparse depth map,
bland regions of the image containing no points. To
obtain a surface representation, an interpolation scheme
based on the current image is used to construct a full
depth map. As only currently visible points on the
image are maintained in 3D. a single-valuedsurface (in
range) passing through them should approximate to the
depth map. The use of an ego-centric (camera-based)
representation avoids the need for multiply-valued surfaces
with the associated danger of incorrect point assignment,
which could occur, for example. with overhanging
structure in a plan-view projection. Working with points
that are sufficiently mature to be reliable, the depth map
is filled-out by a piece-wise linear interpolation between
the image-plane locations of the 3D points. This is
performed by using the Delaunay triangulation in the
imageplane: each resulting triangle is interpreted asa 3D
triangular planar facet passing through three 3D points.
The Delaunay triangulation is chosen as it forms compact
triangles (long thin triangles are physically implausible),
and is cheap to compute (nearly linear in the number of
points). The resulting surface is continuous and single-
valued in range, but will not fill the entire image-plane
unless supported by previously seen points now outside
the image. The surfacemay be relatively coarse as it can
be no finer than the separation of the features, and S0
cover over fine structure in the manner of a draped-sheet.
Depth discontinuities in the surface are not currently
permitted. As the surface is constructed anew at each new
image, it will quickly respond to changes in the structure,
but it does suffer from an amount of temporal instability.

3.5.2 Using Surfaces

The explicit 3D structural information made available by
DROID is intended for open-ended use in a range of high-
level tasks, such as obstacle detection, recognition,
navigation and path-planning. Such tasks are currently
being investigated in relation to performing automatic
visual guidance of wheeled or tracked robot vehicles in
both indoor and outdoor environments. The most
immediate task is to provide safe operation (don’t crasht),
and this is performed by locating upstanding structural
elements in the planar facet surfacerepresentation.

For movement in the vicinity of man-made structures, the
location of prominent structural elements such as vertical
walls and corridors, is of value. Detection of such
structures can lead to map registration and on to more
sophisticated navigational abilities. The detection of
vertical walls around a ground vehicle is being undertaken
by considering the plan-view coordinates of DROID
points with heights above the floor level. A vertical wall
should appear as a straight line in plan-view. and this
may be extractable using a Hough transform.

4. THE RAPID ALGORITHMS

4.1 Single Frame Pose Estimation

The coordinate systems used in RAPIiD are shown in
Figure 7. Define the Cartesian camera coordinate system,
which has its origin at the camera pin-hole, Z-axis aligned
along the optical axis of the camera, and X and Y axes

aligned along the horizontal (rightward) and vertical
(downward) image axes respectively. Imaging of pointsin
3D will be handled by the introduction of a conceptual
image-plane situated at unit distance in front of the camera
pin-bole. The conversionto these coordinates from pixels
is facilitated by the use of the geometric calibration of the
camera, and henceforth all image locations will be
expressed in these conceptual image-plane units, and not

in pixels. A point at position R = (X,Y,Z)T in camera
coordinates will project to image position r = (x,y)T =
xzyz)’.

Define a model coordinate system, with origin located at
T in camera coordinates, and with axes aligned with the
camera coordinate system. (A different orientation of
model axes may be more suitable for the original
specification of the control points of the model: in which
case assume that the model is pre-rotated from a reference
attitude used for specification.) Consider a control point
on the model located at P in model coordinates, and
situated on a prominent 3D edge. This control point will
project onto the imageat r =(Ty+Py, Ty+Fy} [ (T, +P;).
Let the tangent to the 3D edge on which the control point
is located be called the control edge. The orientation of
the edge at the control point is defined by specifying a
companion control point to P, often also located on the
same physical edge, and which projects onto the image at
S. By considering the image displacement between r and
s, the expected orientation of the control edge on the
image can be determined. Let this be an angle a from the
image x-axis, so that
SX -t s,

(ﬁ) , sino= (:‘;%LJ

cos Q=

As a step towards refining an initial pose estimate, we
wish to find the perpendicular distance of projected model
control point r from the corresponding imaged object
edge. Assuming that the orientations of the imaged edge
and the projected model edge are nearly the same, a one-
dimensional search for the image edge can be (conductedby
looking perpendicularly to the expected control edge from
r. To search for the edge along an exact perpendicular
would, however, require finding the image intensity at
non-pixel positions. To avoid this inconvenience and
computational cost, teedge search is performed in one of
four directions: horizontally, vertically, or diagonally (that
is, by simultaneous unit pixel displacements in both the
horizontal and vertical directions). If the pixels are square,
the diagonal direction will be at 45°, but with different
image aspect ratios, other angles will be traversed. The
direction which is closest to perpendicular to the control
edge is chosen, and a line of pixel values centred onr, the
projection of the control point, is read from the image.

Write the orientation of the line of pixels from the x-axis
on the image-plane as the angle B, as shown in Figure 8.
On the image-plane, let the dimensions of a pixel be k
and ky in the X and y directions respectively (thus k, is
the reciprocal of the focal length in pixels). Hence the
orientation of the diagonal directions of the row of pixels

will be B =+ B¥, where tan ]3* = ky/kx.




The position of the actual edge brightness step within the
extracted line is located by a simple threshold crossing.
Suppose the imaged edge is encountered at a displacement
from the projected control point r of ny pixels in the x-
direction and ny pixels in the y-direction. (For diagonal
directions, n, =% ny, otherwise either n, or ny will be
zero.) Then the image-plane distance of r from the image
edge along the mw of pixels will be

d=v ny 2,2 +0y2k,2

y

and the perpendiculardistance to the edge will be
| =d sin (B-x)

Let n be the number of pixel steps (horizontal, vertical or
diagonal) traversed along the row of pixels before the edge
is encountered. For the four permissible orientations of
the mw of pixels, the above equation for Lis explicitly:

Horizontal (3 =0)
Vertical (B =-§) [=nk, cosa

Updiag=8*  1=n(kycos a- kysin &)
Down diag 3 =" [ =n(kycos a+ kysin

1=-nky sina

Each control point will result in @ measured perpendicular
distance, 1, as illustrated in Figure 9. The set of these
perpendicular distances will be used to find the small
change in the object pose that should minimise the
perpendicular distances on the next frame processed.

Consider rotating the model about the model origin by a

small angle ©, and translating it by a small distance A.
Write these two small displacementsas the 'six-vector', g.
This will move the model point P, located in model
coordinatesat R = P + T, to R"in camera coordinates

R'(q) =x.Y )T
=T+A+P+0OxP

x+Ax+Px+8yP;-6,Py
= | Ty+Ay+Py+8,Py-6,P,
T, +A7+P7+0,Py-8yPy

This will project onto the image at
rq) = \y) =(X/Z,Y/Z)

Expanding in small A and €, and retaining terms up to
first order, gives

X'=x [ Ax TOyP, "8,Py - x Ay +8;Py -
6yPy) ] | [Ty +Py]

Y'=Y+{Ay"'esz'expz'Y(Az"'exPy
8yP)] / [Tz +Py]

Thus ¥'(q) can be written

r@)=r+ 2;’,‘,)
Where
a=(xP
b= (yPy-Py ¥Pg Py, 0, 1, T/ (TP

T
y* XPx-i' st “Pys 1; Oa -X) I (TZ+PZ)

Hence the perpendicular distance of the image edge from
the contml point is
INCOY) =1t+g.asina- gq.b cosa
=1tq.c
Where i
c=asina-bcosa
and1 is the measured distance to the edge.

Consider now not just one control point, but N control
points, labelled i = 1.N. The perpendicular distance of
the ith control point to its image edge is

i) =1j + q.¢

We would like to find the small change of pose, q, that
aligns the model edges precisely with the observed image
edges, that is to make all I';(q) zero. If the number of
control points, N, is greater then 6, then this is not in
general mathematically possible as the system is over-
determined. Instead, we choose to minimise an objective
function, E, the sum of squares of the perpendicular

By setting to zero the differentials of E with respect to q,
the following equationsare obtained

N N
( ciciT q = 'Elici
i=1

i=1

This is a set of 6 simultaneous linear equations, and so
can be solved using standard lirearalgebra.

The pose change, q = (©,4), in the model pose specified
by the above algorithm must now be applied to the

model. Applying the change in model position is
straightforward
T:=T+ A

The change in object attitude, however, causes some

practical difficulties. Conceptually, the positions of the

control points on the model should be updated thus
P;:=P; T©xP;

After thousands of cycles of the algorithm, finite
numerical precision and the approximation to rotation
represented by the above equation, results in the control
points no longer being correctly positioned with respect to
each other, and thus the model distorts. To overcome this
problem, the attitude of the model is represented by the
rotation vector ¢ (a 3-vectorwhose direction is the axis of
rotation and whose magnitude is the angle of rotation
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about this axis), which rotates the model from its
reference attitude, in which the model has its axes aligned
with the camera coordinateaxes. From the rotation vector
# can be constructed the orthonormal rotation matrix
A(s), which appropriatelyrotates any vector to which it is
applied. Conceptually, the rotation mahix, A(s), should
be updated by the model attitude change, 8 ,thus

Ad) = AO) A)

but by doing this, the orthonormality of the rotation
matrix may be lost in time due to rounding errors, since,
even allowing for the symmetry of the rotation matrix, it
is still redundantly specified. Instead, the rotation vector,
#, is updated directly by use of quaternions. If A(#) s the
rotation matrix after the rotation vector has been updated,
and the i'th model point is located in some reference
coordinates at Pi(fef), then the position of this point in

model coordinates at the beginning of the next cycle will
be

P; = A(g) P;(ref) |

42 Kalman Filter

When applying the RAPID technique to a practical case of
a moving object, it is possible, in principle, to use the
pose estimate, calculated by processing one video frame,
as the initial estimate of the object's pose in the next
video frame. This approach to tracking a moving object
has the disadvantage that the object's motion would be
limited to small movements between frames since RAFID
searches for model edges in a limited region about the
predicted position. This problem can be overcome by
using a simple predictor, such as an a,p tracker which
also has the advantage of performing a temporal
smoothing of pose estimates. In practice however, it has
been found difficult to set the hacker parameters as the
measurement noise depends on the number and position of
edges found, and also on the current pose of the object. In
some extreme cases, the edges detected in a particular
frame may not define all the object's degrees of freedom;
clearly a more sophisticatedpredictor/filter is required.

4.2.1 Kalman Filter OQutline

This section repeats the formulation of a standard Kalman
filter [19]. A good description of the Kalman filter and
associated techniquesis given by Bar Shalom {20].

Let % be a vector that represents the estimated state of a
system at time t. Given a new measurement, y¢, made at
that same instant, the state vector estimate is updated to
X'y, given by

't = X¢ + K(y - HI©),

where K is the Kalman gain matrix and H is a matrix
which maps the estimated state to the corresponding
expected observation. Between observations it is assumed
that the true state of the system evolvesaccording to

Xt+1 = AX¢ +Et

where the process noise, €t, is a random variable of zero
mean and covariance defined by the matrix Q¢ Thus
given &', X4 =A &'t If the error in the observation y¢
has zero mean and covarianceR¢, and the error in 8¢ has

zero mean and covariancePt, then treoptimal choice of K
(that which minimises the trace of P'¢, the covariance of
R is

K = PHT[HPHT +Ryy1, and

P‘t = Pt - KI'IP{«

In the time to the next observation, however, confidence
in the state vector estimate worsens because of the
uncertainty in evolution, thus

Pri1 = APAT +Qy.

4.2.2 The Object Motion Model

In this application of Kalman filtering, the: RAPID pose

estimate, yy, IS the 6-vector change in pose found by the

minimisation of E($.  In the simplestmoving object case

we assume uniform motion, so the state vector contains

both position and velocity terms. In particular we write,
x=(r, ¢ T,

where r is the object's position 3-vector (relative to the

camera), and 6 is a rotation 3-vector defining its

orientation;

Is I
A=[06 Ié]and
H=16 05 ],

where Ig and Og are the 6-by-6 identity and zero matrices.
We assume that the above motion model is accurate apart
from a random fluctuation in velocities due to forces
acting on the model making it accelerate, so that the state
covariance is of the form
06 06]
Q=[ 0g Qs

The form of Qg will depend on the the dynamics of both
the camera and the tracked object and their relative
position [71.

4.2.3 The Measurement Model
If the object pose is in error by q, then the probability of
getting the set of measurements {1;} is

P((L;} 1q) o Hexp-—2;2-[1i+q.ci 12

where the measurement accuracies in determining an
individual edge position are assumed to be uncorrelated and
of size . Using Bayes theorem, the probability of the
pose being in error by an amountq is

1
P(q ! {}) = exp -;;2[%*‘ q.c; 12
We can re-write this equation in the usual form of a
multivariate normal distributionas follows
P(q i {L}) o exp -%[Q-QQ]TR'l[tI-qo}

where gy, is the best estimate for the pose error, and the
observation error covariance, R, is given by

R= 52 [ZciciT]-l

Unfortunately, when fewer than 6 control pints are
detected, the matrix inverse cannot be calculated because of




rank deficiency. This is also hue in certain situations
when the detected control points do not fully define the
pose of the object. The formula defining the Kalman
filter gain can be re-arranged, however, to avoid the need
to compute the inverse, thus

K =PHTRI[ HPHTR! +1 7]

With this formulation for K. the filter gain can be
calculated robustly for each filter cycle, weighting each
measurement according to its expected accuracy.

5. ILLUSTRATIVE EXAMPLES

The operation of DROID is illustrated in Figures 10 to 13
for the application of DROID to an image sequence
recorded in a typical corridor of an officebuilding. Figure
10 shows two consecutive frames of the sequence, which
is processed at an image resolution of 256 by 256 pixels
over a field of view of about 50 degrees. The distance
moved between processed frames in this sequenceisabut
3-5cm, depending on the speed of the sensor platform.

Superimposed on the grey levels of Figure 10 are the
positions of extracted point features; these are the points
which are tracked from frame to frame. While a few of
these features are not detected in every frame the majority
are sufficiently stable to be hacked over several frames.
Such persistent features are shown in Figure 11; these are
the points at which 3D information is available.

Though range estimates are only generated for the hacked
feature points, ranges to other pints can be obtained by
assuming some model of an interpolating surface.
DROID assumes the surface can be described by planar
triangular facets, the triangles themselves being drawn by
a Delauney triangulation process with results shown in
Figure 12. This triangulation method hies to avoid long
thin triangles and it is seen to be successful near the centre
of the image. Near the boundaries of the described
shucture, triangles tend to be less good natured and an
erroneous depth estimate for a particular feature can have
an unwanted effectover a large part of the soere.

Once the triangulation is determined, contours can be
drawn on the interpolated surface as in Figure 13.
'Contours' here are drawn 20¢m apart down-range and
cross-range. (Imagine a net of 20cm squares projected
onto the scene from above.) We see that the general
structure of the Scene has been captured - a flat floor with
vertical walls to the left, right and in front. The system
does not quite have sufficient resolution, however, to
clearly distinguish the presence of the pile of rubbish
stacked in the right-hand comer. An interesting feature of
these results is the cluster of erroneous feature depths on
the door to the left of the framed certificate on the wall.
These arise from structure seen in reflectionson the shiny
door surface! 3D edge processing in a scene such as this
would have considerable advantages, with the crisp man-
made skirting bards and wall parels.

The operation of RAPID is illustrated in Figures 14 to
18. These show RAPID tracking a 'bat' symbol. The
scenario is shown in Figure 14, with the camera on a
remotely controllable platform, though in this
demoasiration the target is to be moved relative 0 a
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stationary camera. The particular target here is a planar
object, which is convenient for laboratory trials, but
RAPID is not limited to this class of target. The
definition of the corresponding target model is given in
Figure. 15. Figure 16 shows two views of the target as
seen by the tracking camera, with graphics generated by
RAPID superimposed. These mark selected parts of the
target outline and show estimates of the target's position
and attitude relative to the camera. Note the outline
segmentsshown are not generated by 2D edge extraction,
but are the result of projecting the model, in its estimated
pose, onto the image plane. The close alignment, of the
modelled target edges with the real ones, indicates the
accuracy of the estimated track. (The superimposed
outline is difficult to see in monochrome imagery.) The
white. spots around the bat mark the control points at
which RAPID is searching for edge information.

Figure. 17 shows a plot of track parameters for the portion
of movement between the above images. Using a planar
target and a single image, RAPID is unable to determine
very accurately the direction of the perpendicular to the
model surface (pitch and yaw) when the orientation is very
near fronto-parallel. but with Kalman filtering, the
orientation of the target and its position in camera
coordinates are generally stable. RAPiD can be applied to
a range of objects, with non-planar models. In such cases
the relative accuracy of the differentpose. components is
improved.

In addition to the example illustrated here, DROID has
been demonstrated in other domains:

*  ahypothetical robot work-cell [18]

country lane and DRA laboratory grounds {21}

pot plant foliage! (22]

laboratory and office scenes [13)

a circular vehicle test track [23]}

an airfield laid out with parked vehicles, viewed from
a low flying helicopter {15}

Similarly RAPID has a wide range of applicability. See
for example Figure 18. Other reported applications
include:

*  laboratory demonstrations with, a floppy disc box,
painted cone, and an egg! (6}

* anairfield runway viewed from a descending aircraft
7

» airborne object release monitoring, and following a
Land Rover along a test track {24].

6. DEVELOPMENT STATUS

DROID has been developed as an off-line process using
general purpose hardware. In this form DROID has been
applied to a range of domains. The initial development
was in the context of a laboratory robot work-cell, but
DROID has performed well in other indoor and outdoor
contexts, including scenes dominated by natural
vegetation, and othersstructured with human artefacts.

In a software implementation, feature detection is the
slowest component in DROID, taking 2 seconds on a
Sparc 2 workstation for a 256x256 pixel image, while the
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subsequent geometric processing takes 0.2 - 0.3 seconds
per frame.

Dedicated video-rate hardware (25Hz) will shortly be
available fram Roke Manor to perform feature extraction
for either 512x512 pixel imagery, or up to 4 camera
stereo imagery at 256x256 pixels. (Note that use of
512x512 pixel imagery would indicate the use of a frame-
capture camera, since the two fields producedl by
conventional cameras are captured at 1/50'th second
intervals and would be ton apart even by moderate camera
motion.) DROID systems, based on this front-end
hardware, are currently in development: these are expected
to perform overall at near video rate.

Given the modest hardware requirements of RAPiD,
development has been basedon real-time assessment from
the beginning. Near real-time performance was originally
achieved with a multi-user VAX 3400! Current
development and applications work is generally for the
analysis of video recorded trials, such as the analysis of
released-store trajectories and the landing path of
unmanned aircraft. For convenience of software
development, and ancillary facilities, RAPID has been
implemented on workstations supplemented by a video
capture/display card. In a dedicated application, a two-card
solution is readily feasible.

7. A CRITICAL DISCUSSION

DROID and RAPID might be considered to lie at
opposite ends of the range of computer vision tasks, with
DROID extracting the 3D structure of unknown scenes
and RAF'D plotting the position of a known object. The
two systems have developed in this fashion, but it is
possible to imagine a unified DROID-RAPID system.
Instead of fully known models we may imagine partially
known models in which either () newly observed features
- specified by DROID-like processing - are added to an
existing model, or (b) known yet approximately specified
features of a model are refined. Similarly RAPID
processing of a modelled component in a scene may
generate ego-motion estimates for use in instantiating
previously unknown features.

Returning to the original focus of attention for this paper,
(i.e. the following of a known object through unknown
terrain), it would be appropriate to consider some apparent
deficiencies with the DROID-RAPiID approach. The
greatest limitation would seem to lie at the outset with
the feature-based approach. While DROID can be
demonstrated to provide measurements with at times
surprising accuracy, the concentration on high quality
features leads to a sparse representation of the viewed
structure; the sparsenesscan be catastrophic in very bland
scenes. This underlines the power of the human brain in
using a wide range of depth cues, general scene
understanding, shape from shading and the other shape-
from-X methods. Work is in progress to enrich DROID's
structural representation by the use of edge features which
should be beneficial in man-made environments
particularly. It seems apparent, however, that DROID
should be regarded as a measurement system and some
applications may require a further tier of image
interpretation to achieve a complex objective.

A second weakness expected in the DROID philosophy
lies in DROID's use of structure to derive ego-motion and
vice versa. This is particularly important in the
transition from boot to run-mode processing as errors in
structure made at boot may be frozen into the system at
an early stage, leading to future errors in ego-motion and
subsequent structure errors in future structure. In practical
cases, however, this does not appear to be a problem,
with initial errors decaying over the fist few processed
framesof a sequence. The resulting structure may well be
erroneous with respect to an initial global coordinate
frame, but it seems to be generally accurate with respect
to local coordinates.

An observed weakness in DROID has been a long term
drift in the estimated ego motion, though short term
performance is believed to be generally good. This drift
Is important if it is required to relate currently viewed
structureto features which have long ago left the camera's
field of view. (This effect is more pronounced with
cameras of a narrow field of view. and when the features
of the viewed scene are concentrated in a small range of
depths.) A particularly common drift has been observed
in the estimated speed of estimated sensor motion, which
results in a corresponding drift in the estimated scale of
theviewed scene. This speed-scaledrift does not apply to
the use of DROID in a stereo mode [13, 23], which bas a
generally stabilising effect, particularly at boot. Drifts in
the ego-motion estimates may also be stabilised by use of
external odomeuy; other motion constraints, such as
constant forward speed may be appropriate in particular
circumstances.

Turning to the use of RAF'ID to follow known objects, a
major weakness here is the reliance on a specific
geometric model. This may not be a problem with
cooperating targets, especially as the complexity of the
required model is not onerous, though the readiness of
new models may limit the system's flexibility. With
non-cooperating targets, there is a system requirement to
identify the object to be tracked so that the appropriate
model can be applied. It is feasible that RAPID can be
extended to include estimation of a small number of
model parameters, and perhaps a model might be defined
to minimise reliance on variable components, but it
remains that RAPiD, as currently formulated, is not
applicable to the problem of tracking a freely moving
genericobject

8. CONCLUDING SUMMARY

It has been demonstrated that DROID can extract sensor
ego motion and scene structure to some accuracy, and
RAPiD with suitable models can track known objects to
high precision. DROID has been applied successfully in
a range of indoor ani outdoor scenes, and RAPiID too has
been used in a range of applications. Together these
systems make a considerable contribution to the task of
obstacle avoidance and object following.

This paper has described the basic structure-from-motion
algorithms used by DROID to generate a description of
scene structure and sensor motion from a mono image
sequence. The resulting scene structure is represented by
the estimated 3D positions of localised point features.




This paper has also described the basic algorithms of the
RAPID tracker. RAPID is eminently suited to real-time
processing with modest hardware, and real-time processor
implementationsof DROW are now in development.

In addition to the techniques detailed here, DROIJJ has
been extended to stereo operation and use of edge features
is being researched. Stereo generally enhances the
stability of the system and edges are expected to enrich
the available 3D structural representation, though this
will be of most utility in man-made environments.

This paper has also mentioned possible weakness in the
DROID/RAPID approach, in particular the sparseness of
output in bland scenery and the need for target-specific
models. To perform complex tasks, we may need to use
these methods as measurement subsystems within a larger
processing and interpretation framework. It is clear
however that DROID and RAPID are powerful tools in
their own right, as shown by the range of environments
in which they have been demonstrated.
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Figure 12. Delauney triangulation of image plane using tracked features.

Figure 13. Contour map of scene derived by Interpoiatlon between
feature-points using triangulated surface.
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Figure 16. Two images of target as seen by the RAPID camera with
target outlines and pose data superimposed.
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this method, the training is used to find an optimum connectivity pattern
of a fixed number of inputs that have fixed weights, rather than the usual
technique of finding the optimum weights for a fixed connectivity. The
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first layer consists of image edge vectors in four directions. Each neuron
in the second layer has a fixed number of connections that connect only to
those first layer edges that are best for distinguishing the object from a
confusing background. Simulated annealing 1is used to Tfind {he best
parameters for defining edges in the first layer, as well as the pattern
of connections from the irst to the second layer. Weights of the
connections are either plus or minus one, so that multiplications are
avoided, and the system speed is considerably enhanced. In industrial
applications on a low-cost parallel SIMD (single instruction multiple
data) architecture, objects can be trained by an unskilled user in less
than 1 min, and after training, parts can be located in about 100 ms. This
TeEhod has been found to work very well on integrated circuit patterns.

TYPE 1/4/2
Quest Accession Nun :r : 91 1433

91A44332# NASA IaA Preprint Issue 18

Computer vision of the Martian rover - Hardware/softwars technique

(AA) SHAMIS, V.; (AB)AVANESOV, G.; (AC)KOGAN, A.; (AD)LANGE, M.;
(AE)sHAMANOV, L.

(AE) (AN 3s8R, Institut Kosmicheskikh Issledovanii. Moscow, USSR)

AIAA  PAPER 88-5012 AIAA and NASA, International Symposium®cn Space
Automation and Robotics, 1st, Arlington, VA, Nov. 29, 30, 1988. 8 p.

881100 p. 8 In: EN (English) p.3073

The present study examines principles of computer vision dssign for
autonomous planetary rovers. Some optional computer vision system (CVS)
techniques used to measure environment parameters of the Martian rover are
compared, with due account Por its diminished payload. Expert estimates of
the main design parameters for every feasible option of the rover"s CVS
are adduced. Attention 1is given to the CVS optical range finder, stereo
system with [linear source, stereo system with matrix source (active
systems), and stereo system with edge detection, multistereo system, and
stereo system with mapped search (passive systems). Consideration is given
to CVS detection of obstacles within a viewing angle. The algorithm used
to detect local obstacles is described.

P.D.
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Quest Accession Number : 91A35147

91435147 NASA 1AA Conference Paper Issue 14

Environment learning using a distributed representation

(AA) MATARIC, MAJA J.

(AA) (MIT, Cambridge, MA)

N00014-86-K-0685 IN: 1990 IEEE International Conference on Robotics and
Automation, Cincinnati, OH, May 13-18, 1990, Proceedings. Vol. 1
(a91-35126 14-63). Los Alamitos, CA, IEEE Computer Society Press, 1990, p.
402-406. Hughes Aircraft co.-supported research. 900000 p. 5 refs 15
In: EN (English) p.2354

A method for robust mobile robot navigation and environmental learning
is presented. It was implemented and tested on a physical robot. The
method consists of a collection of simple, incrementally designed robot
behaviors. The behaviors receive sonar and compass data which they use to
dynamically detect Ilandmarks and construct a distributed map of the
environment. The map is represented as a graph in which each node is a
collection of augmented finite state machines functioning a parallel. The
distributed nature of the map allows for localization In constant time.
The method utilizes a modified spreading of activation scheme to
accomplish robust linear-time path ﬁlanning- It is capable of generatin
both +topologically and physically shortest paths to the goal. The metho
uses local information to achieve the global task without having to replan
if the robot becomes lost or strays off the desired path.

I.E.

TYPE 1/4/4
Quest Accession Number : 91a35146

31435146 NASA 1AA Conference Paper Issue 14

Robot navigation using an anthropomorphic visual sensor

(AA) TISTARELLI, MASSIMO; (aB)sanpIinI, GIULIO

(AB) (Genova, Universita, Genoa, ltaly)

IN: 1990 IEEE International Conference on Robotics and Automation,
Cincinnati, OH, May 13-18, 1990, Proceedings. Vol. 1 (A91-35125 14-63).
Los Alamitos, ¢a, IEEe Computer society Press, 1990, p. 374-381. Research
supported by CNR and NATO. 900000 p- 8 refs 24 In: EN (English) p.
2354

The use of an anthr0ﬁomorphic, retinalike visual sensor for navigation
tasks 1s iInvestigated. The main advantage, besides the topological scaling
and rotation invariance, stems from the considerable data reduction
obtained with nonuniform sampling, in conjunction with high resolution in
the part of the Ffield of view corresponding to the focus Of attention.
Active movements are also considered to be a beneficial feature, solvin

the depth-from-motion problem and maintaining a three-dimensiona

representation of the viewed scene. For short-range navigation, a tracking
egomotion strategy 1is adopted which greatly simplifies the motion
equations and complements the characteristics of the retinal sensor (the
displacement 1is smaller wherever the 1image resolution is higher). An
algorithm for the computation of depth from motion is developed for image
sequences acquired with the retinal sensor, and an error analysis Is
carried out to determine the uncertainty of range measurements. An
experiment is presented in which depth maps are computed from a sequence
of 1iImages sampled with the retinalike sensor, building a volumetric
representation of the scene.

l.E.
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Quest Accession Number : 91a30851

51430851 NASA 1AA Meeting Paper Issue 12

NAECON 90; Proceedings of the IEEE National Aerospace and Electronics
Conference, Dayton, OH, May 21-25, 1990. vols. 1-3

(A2) PALAZZO, FRANK L.

(AA) ED.

(aA2) (Questech, Inc., Dayton, OH)

Conference soonsored by IEEE. New York, Institute of Electrical and
Electronics Engineers, Inc., 1990, p. Vol. 1, 466 p.; vol. 2, 456 p.; vol.
3, 424 p. For 1individual items see 291-30852 tO A%91-31031. 900000 P.
1346 In: EN (English) Price of three vols., members, $70.; nonmembers,

$140 p.1899
The present conference discusses advancements in VLSI
components/packaging, signal processing, airborne computers,, data

transmission, advanced avionics architectures. optical applications, data
control and display, airborne iImage processing, target acquisition and
recognition, airborne radar and fire control, navigation, weapons guidance
and interfaces, Kalman filtering, power generation and control, and
command control and communications. Also discussed are flight control
reconfiguration, multivariable control theory, Tflight management, Ada
language applications, _ object-oriented Ada simulations, software
management and quality assurance, visual system software,

voice-interaction applications, human/machine interfaces, pilot
acceleration protection, electronic combat analysis, modular avionics,
expert systems, machine vision/optical 1image processing, adaptive
networks, logistics readiness, automated testing, and total quality
management.

0.C.

TYPE 1/4/s6
Quest Accession Number : 91N30843

91N30843# NASA STAR Thesis Issue 22

Application of Gestalt theory concepts fTor image interpretation for
robot movement navigation s M.S. Thesis - 14 Feb. 1990

UMA  APLICACAO DE CONCEITOS DA TEORIA DE GESTALT NA INTERPRETACAO DE
IMAGENS PARA A NAVEGACAO DE ROBOS MOVEIS

(Aa)yoDpasHIMA, EUNICE KINUYO

Instituto de Pesquisas Espaciais, Sao Jose dos Campos (Brazil). (

I0601891)
INPE-5225-TDL/438 910300 p- 144 In PORTUGUESE; ENGLISH summary In:

AA (Mixed) Avairl: NTIS Hc/MF AO7  p.3741

Research involved the development of machine vision Tfor a vehicle
capable of moving from one placa to another while employing collision
avoidance capabilities. The specific objective of the study was the use of
image segmentation of the interior space and the obstacles therein to
construct a cognitive map of the robot"s movements. The paradigm is based
on Gestalt psychology and geometry.

Author
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91N29801# NASA STAR Conference Proceedings lIssue 21

Workshop on Automation and Robotics: Proceedings

Lawrence Livermore National Lab., CA. (LH075075)

DE91-015175; CONF-910274 W-7405-ENG-48 910200 p. 243 Workshop held
in Livermore, CA, 6 Feb. 1922 1In: EN (English) Avail: NTIS Hc/MF Al
p-3562

This workshop provided a forum in which Lawrence Livermore National
Laboratory scientists and engineers exchanged ideas and information on the
latest internal developments iIn the Tfield of robotic and automation
technologies. The material presented constitutes most of the presentations
given during the workshop. Presentations were given on the following
session  topics: robotics and automation In hazardous environments;
laboratory and machine tool automation; neural networks, machine vision,
and sensors; applied real time control; future technologies and
applications; intelligent man-machine interaction 1issues. Individual
papers have been cataloged separately.

DOE

TYPE 1/4/8
Quest Accession Number : 91A29762
918297624 NASA 1AA Journal Article Issue 11
Star pattern identification aboard an inertially stabilized aircraft
(AAYKOSIK, JEAN CLAUDE
(AR) (CNES, Toulouse, France)
Journal of Guidance, Control, and Dynamics (ISSNo0731-5090), vol. 14,

Mar.-Apr. 1991, p. 230-235. 910400 p. 6 refs 6 In: EN (English) p.
1713

Comparative statistical analyses are conducted for several
star-identification algorithms applicable to 1inertially stabilized
spacecraft: polygon—matchin%, . the pole technique, polygon
angular-matching, ~“and orientation-angle-magnitude. While  the pole
technique was both the most complex and least efficient, so that the
polygon-match algorithm was superior even without any a priori information
on attitude, the possession of crude attitude data allowed the polygon
angular-matching algorithm to yield the best results; i1ts code was nearly
as simple as that for the polygon-match, and its efficiency was shown by
the present probabilistic approach to be greatly improved over the
alternatives.
0.cC.
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Quest Accession Number : 91428855

91228855 NASA 122 Journal Article Issue 11

Background characterization techniques for target detection using scene
metrics and pattern recognition

(AA)NOAH, PAUL V.; (AB)NOAH, MEG A.; (AC)SCHROEDER, JOHN; (aAD)CHERNICK,
JULIAN

(Ac) (ontar Corp., Brookline, MA); (ap)(u.s. Army, Material Systems
Analysis Activity, Aberdeen Proving Ground, MD)

DAAA15-88-C~-0021 Optical Engineering (ISSN 0091-3286), vol. 30, Jan.
1991, p- 254-258. 910100 p- 5 refs 11 In: EN (English) p.1827

Autonomous homing munitions (AHM) using infrared, visible, millimeter
wave and other sensors have been iInvestigated in order to develop ground
target detection and identificaton systems in a clutter enviroment.
Pattern recognition and artificial intelligence techniques combined with
multisensor data fusion have been used to evaluate a set of Image metrics
applied to infrared terrain clutter scenes. The application of
discriminant Tfunction analysis to target detection and identification is
gegonstrated-

TYPE 1/4/10
Quest Accession Number : 91N27411
91N27411# NASA STAR Technical Report Issue 19
The effects of user®s training on the performance of an automatic speech
recognizer for a self-paced task / Final Report
(aa) sMYTH, CHRISTOPHER C.
Human Engineering Labs., Aberdeen Proving Ground, MD. (H6521544)
AD~A235344; HEL-TM-10-91 DA PROJ. 1L1-62716-AH~70 910400 p. 84 In:
EN (English) Avail: NTIS HC/MF AO5 p.3150

The results of a recent experiment concerning the effects of training on
the performance of subjects using the automatic speech recognizer are
reported. Over a b5-day period, 20 military enlisted grade male subjects
were trained and tested in using a connected speech (speaker-dependent)
machine automatic speech recognizer 1in a self-paced task controlling a
generic tactical display by voice command. Experimental results show that
a majority of the subjects had little difficulty with the automatic speech
recognizer and that Tfor these subjects training produced only a slight
improvement in recognizer performance. These subjects performed at a high
machine recognition rate. However, during the Tfirst session, a large
minority (35 percent) of the subjects had difficulty training their speech
to be machine recognizable. These subjects required at least two training
sessions to perform the task at their best ability, and even after they
were trained, their performance never reached the performance level of
ggger subjects.
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Quest Accession Number : 91N26315
91N2638154 NASA STAR Technical Report Issue 18
Northeast Artificial Intelligence Consortium (NAIC). Volume 1: Executive
summary / Final Report, Sep. 1984 - Dec. 1989
(AA)WELSS, VOLKER; (AB)BRULE, JAMES F.
Northeast Artificial Intelligence Consortium, Syracuse, NY. (M4144152)
AD-a2343880; RADC-TR-90-404-VOL-1 F30602-85-C-0008 901200 p. 71 In:
EN (English) Avail: NTIS AC¢/MF AO4  p.3045

The Northeast Artificial Intelligence Consortium (NAIC) was created by
the Air Force Systems Command, Rome Air Development Center, and the Office
of Scientific Research. Its purpose was to conduct pertinent research in
artificial intelligence and to perform activities ancillary to this
research. This report describes progress during the existence of the NAIC
on the technical research tasks undertaken at the member universities. The
topics covered in general are: (1) versatile expert system for equipment
maintenance; (2) distributed Al for communications systems control; (3)
automatic photointerpretation; (4) time-oriented problem solving; (&)
speech understanding systems; (6) knowledge-based reasoning and planning;
and (7) a knowledge acquisition, assistance, and explanation system. This
volume provides the executive summary of the NAIC.

GRA

TYPE 1/4/12
Quest Accession Number : g1N26792
91N26792# NASA STAR Technical Report Issue 18
Using qgenetic algorithms to select and create features for pattern
classification
(asycHaws, E. L.: (asyrniphbuanN, RICHARD P.
Massachusetts Inst: of Tech., Lexington. (#J728827) Lincoln Lab.
AD-A235165; TR-892; ESD-TR-90-144 F1%628-90-C~0002 910311 p. 90 In:
EN (English) Avail: NTIS Hc/Myr AOS  p.3042

Genetic algorithms were used to select and create features and to
select reference exemplar patterns for machine vision and speech pattern
classification tasks. On a 15-feature machine-vision inspection task, it
was Tfound that genetic algorithms performed no better than conventional
approaches to feature selection but required much more computation. For a
speech recognition task, genetic algorithms reguired Nno more computation
time than traditional approaches but reduced the number of features
required by a Tfactor of five (from 153 to 33 features). On a difficult
artificial machine-vision task, genetic algorithms were able to create new
features (polynomial functions of the original features) that reduced
classification error rates from 10 to almost o percent. Neural net and
nearest-neighbor classifiers were unable to provide such low error rates
using only the original Tfeatures. Genetic algorithms were also used to
reduce the number of reference exemplar patterns and to select the value
of k for a k-nearest-neighbor classifier. On a 338 training pattern vowel
recognition problem with 10 classes, genetic algorithms simultaneously
reduced the number of stored exemplars from 338 to 63 and selected k
without significantly decreasing classification accuracy. In all
applications, genetic algorithms were easy to apply and found good
solutions iIn many fewer trials than would be required by an exhaustive
search. Run times were long but not unreasonable. These results suggest
that genetic algorithms may soon be practical for pattern classification
problems as faster serial and parallel computers are developed.

GRA
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TYPE 1/4/13
Quest Accession Number : s1A26612

91a26612% NASA ITAA Conference Paper Issue 10
_ Kalman Tfilter based range estimation for autonomous navigation using
imaging sensors

(AA)SRIDHAR, B.; (AB)CHENG, V. H. L.; (AcC)PHATAK, A. V.

(AB) (NASA, Ames Research Center, Moffett Field, CA) ; (AC) (Analytical
Mechanics Associates, Mountain View, CA)

National Aeronautics and Space Administration. Ames Research Center,
Moffett Field, CA. (NC473657)

IN: Automatic control in aerospace; IFAC Symposium, Tsukuba, Japan, July
17-21, 1989, Selected Papers (as1-26606 10-12). Oxford, England and New
York, Pergamon Press, 1990, p. 45-50. 900000 p- 6 refs 12 In: EN
(English) p.1553

The ability to detect and locate obstacles using on-board sensors and
modify the nominal trajectory is necessary for safe Ilanding of an
autonomous Qlander on Mars. This paper examines some of the issuel; in the
location of objects using a sequence of Images from a passive sensor, and
describes a Kalman Tfilter approach to improve the range estimation to
obstacles. The Filter is also used to track features in the images leading
to a significant reduction of search effort in the feature extraction step
of the algorithm. The lack of suitable flight imagery data presents a
problem in the verification of concepts for obstacle detection. An
experiment 1s designed to acquire a sequence of images along with sensor
motion parameters and the range estimation results using this imagery are
presented.

Author

TYPE 1/4/14
Quest Accession Number : 91425349

91a26349 NASA 1AA Book/Monograph lIssue 09

Intelligent robotics (Book)

{(AA)LEE, MARK H.

(AA) (University College of Wales, Aberystwyth)

Research supported by University of Auckland and SERC. New vork/Milton
Keynes, England, John Wiley & Sons/Open University Press, 1989, 224 p.
890000 p. 224 refs 55 1In: EN (English) $61.95 p.1454

The fundamental principles of intelligent-robot design and application
are discussed in a general introduction for engineering students and
practicing engineers. Chapters are devoted to the current status oF
robotics technology, sensor technology, artificial sight, the problem of
perception, building a knowledge base, and machinery for thinking about
actions. Also considered are the emulation of an expert; errors, failures
and disasters; a robotic assembly system; and proposals for a science of
physical manipulation. Extensive diagrams, drawings, and graphs are
provided.

T.K.
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91N24046%# NASA STAR Conference Paper Issue 15

Intelligent vision system for autonomous vehicle operations

(AA)3CHOLL, MARIJA s.

Jet Propulsion Lab., California Inst. of Tech., Pasadena. (JJ574450)

In NASA, Washington, Technology 2000, Volume 2 p 34-43 (SEE N91-24041
15-99) 910000 p. 10 In: EN (English) Avail: NTIS Hc/rr A6 p.2536

A complex optical system consisting of a 4f optical correlator with
programmatic Filters under the control of a digital on-board computer that
operates at video rates for filter generation, storage, and management is
described.

Author

TYPE 1/4/16 _
Quest Accession Number : 91N23768
21N237664# NASA STAR Technical Report Issue 15

Synergetic multisensor fusion / Final Report, 1 Jul. 1987 - 30 sep.
1990

(33d) AGGARWAL, J. K.

Texas Univ., Austin. (TT634128) Computer and Vision Research Center.

AD-A232089; ARO-25021.5-PH  DAAL03-87-K-0089 901130 p. 60 In: EN
(English) Avail: NTIS uc/MF AO4  p.2486

Synergetic multisensor fusion iIs the process of integrating information
obtained from different sensing modalities In order to extract additional
information that cannot be obtained by separately processing the signals
from the different sensors. The development of a computer vision system
using synergetic multisensor fusion is a complex task which encompasses:
sensor modeling; environment modeling; determining the analytic models
used to interrelate the different sensing mechanisms; determining the
models used to interrelate the sensed parameters of imaged objects (such
as thermal emissivity, visual reflectance, and radar reflectance); and
devisin algorithms to exploit the derived models. We have developed
powerful and robust algorithms for computer vision tasks based upon
synergetic multisensor fusion. Our approach is suitable for applications
such as object recognition, tracking, surveillance, and autonomous
guidance.

GRA
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31823123 NASA 1AA Journal Article Issue 08

The DARPA Image Understanding Benchmark for Parallel comwuters

(AAYWEEMS, CHARLES; (AB)RISEMAN, EDWARD; (AC) HANSON, ALLEN;
(ADY ROSENFELD. AZRIEL

(AC) (Massachusetts, University, Amherst); (AD)(Maryland, uUniversity,
College Park)

DACA76-86-C-0015 Journal of Parallel and Distributed computing (ISSN
0743-7315), wvol. 11, Jan. 1991, p. 1-24. Research supported by DARPA.

910100 p. 24 vrefs 15 In: EN (English) p.1258

DARPA has undertaken an evaluation of parallel architectures applicable
to knowledge-based machine vision, with a view to the formulation of a
benchmark capable of addressing the issue of system performance on an
integrated set of tasks. This Integrated Image Understanding Benchmark
encompasses a model-based object-recognition problem, two sources of
sensor-input and 1intensity and range data, and a data base of candidate
models consisting of rectangular surface configurations in orthographic
projection in the presence of both noise and spurious nonmodel surfaces.
The benchmark can be used to gain insight into processor strengths and
weaknesses, thereby guiding the development of next-generation
parallel-vision architectures.
o.cC.

TYPE 1/4/18
Quest Accession Number : 91N22769

91N22769%# NASA STAR Conference Proceedings Issue 14

The 1991 Goddard Conference on Space Applications of artificial
Intelligence

(AA)RASH, JAMES L.

(AA)ed.

National Aeronautics and Space Administration. Goddard Space Flight
Center, Greenbelt, MD. (NC99%967)

NASA-CP-3110; REPT-91B00064; NAS 1.55:3110 Washington 910500 p. 361
Conference held in Greenbelt, MD, 13-15 May 1991 1In: EN (English) Avail:
NTIS Hc/Mr Al6  p.2312

The purpose of this annual conference is to provide a forum in which
current research and development directed at space applications of
artificial intelligence can be presented and discussed. The papers in this
proceeding fall into the following areas: Planning and scheduling, fault
monitoring/dlagnosis/recovery, machine vision, robotics, system
development, information management, knowledge acquisition and
representation, distributed systems, tools, neural networks, and
miscellaneous applications. For individual titles, see N91-22770 through

N91=-22797.
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91220480 NASA 1AA Meeting Paper Issue 06

Intelligent robots and computer vision VIII: Systems and applications;
Proceedings of the Meeting, Philadelphia, PA, Nov. 9, 10, 1989

(AA) BATCHELOR, BRUCE G.

(AAXED.

(AA)Y (cardiff, University College, Wales)

SPIE-1193 Meeting sponsored by SPIE. Bellingham, WA, Society of
Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1193},
1990, 356 p. For individual items see A51-20481 to A91-20484. 900000 p.
356 In: EN (English) Members, $51.; nonmembers, $64 p.918

Recent advances in robot optical sensors and their applications are
discussed 1in reviews and reports. Sections are devoted to planning
schemes, intelligent robots, industrial robots, and sensors and
processing. Particular attention is given to planning based on multisensor
input, an object-oriented approach to simulation of perception and
navigation TfTor mobile robots, Tfast visual Tfoothold Tfinding for an
autonomous bipedal robot, hierarchical modeling of mobile seeing robots, a
robot tactile sensor for peghole assembling, incorporating ultrasound into
robot vision, the use of prgjection to extract a range map, the tracking
of partially occluded two-dimensional shapes, and corner detection from
thinned-edge images using a Kalman filter.

T.K.

TYPE 1/4/20 _
Quest Accession Number : 91220226

91a20226 NASA IAA Meeting Paper Issue 06

Mobile robots 1V; Proceedings of the Meeting, Philadelphia, PA, Nov. 6,
7, 1989

(apYwoLFE, WILLIAM J.:. (aB)cHUN, WENDELL H.

(AA)ED,; (AB)ED,

(AAd) (Colorado, University, Denver); (AB)(Martin Marietta Space Systems
co., Denver, CO)

SPIE-1195 Meeting sponsored by SPIE. Bellingham, WA, Society of
Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1195),
1990, 420 p. For individual items see A91-20227 to A91-20231. 3800000 p.
420 In: EN (English) Members, $45.; nonmembers, $56 p.918

The present conference on mobile robot systems discusses high-speed
machine perception based on passive sensing, wide-angle optical ranging,
three-dimensional path planning for flying/crawling robots, navigation of
autonomous mobile iIntelligence in an unstructured natural environment,
mechanical models for the locomotion of a four-articulated-track robot, a
rule-based command Blanguage for a semiautonomous Mars rover, and a
computer model of the structured light vision system for a Mars rover.
Also discussed are optical Tflow and three-dimensional information for
navigation, feature-based reasoning trail detection, a symbolic neural-net
production system for obstacle avoidance and navigation, intelligent path
Elannlng for robot navigation In an unknown environment, behaviors from a

terarchical control system, stereoscopic TV systems, the REACT language
for autonomous robots, and a man-amplifying exoskeleton.

0.C.
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Quest Accession Number : 91A19827

91a19827 Nasa 1aa  Journal Article Issue 06

Estimating 3-D egomotion from perspective iImage sequences

(AA) BURGER, WILHELM; (aB)BHANU, BIR

(AA) (Linz, Universitaet, Austria); (AB)(Honeywell Systems and Research
Center, Minneapolis, MN)

DACA76-86-C-0017 IEEE Transactions on Pattern Analysis and Machine
Intelligence (ISSN 0162-8828), vol. 12, Nov. 1990, p. 1040-1058. Research
supported by DARPA. 901100 p. 19 refs 33 1In: EN (English) p.916

Computing sensor motion from sets of displacement vectors obtained from
consecutive pairs of Images is discussed. The problem is investigated with
emphasis on 1its application to autonomous robots and land vehicles, The
effects of 3-D camera rotation and translation upon the observed image are
discussed, particularly the concept of the focus of expansion (FOE). It is
shown that Hlocating the FOE precisely is difficult when displacement
vectors are corrupted by noise and errors. A more robust pesrformance can
be achieved by computing a 2-D region of possible FOE locations (termed
the fuzzy FOE) 1instead of looking for a single-point FOE. The shaps OF
this FOE region is an explicit indicator of the accuracy of the result, It
has been shown elsewhere that given the fuzzy FOE, a number of gpowsirful
inferences about the 3-D sense structure and motion become possible. The
aspects of computing the Tfuzzy FOE are presently emphasized, and the
performance of a particular algorithm on real motion sequences taken from
a moving autonomous land vehicle is shown.

I.E.

TYPE 1/4/22
Quest Accession Number : $1219501

912419501 NASA 1Iaa Meeting Paper Issue 06

Intelligent robots and computer vision VIII: Algorithms and techniques;
Proceedings of the Meeting, Philadelphia, PA, Nov. 6-10, 1989. Parts 1 ¢ 2

(AA)CASASENT, DAVID P.

(AA) ED.

(AA) (Carnegie-Mellon University, Pittsburgh, PA)

SPIE-1192 Meeting sponsored by SPIE. Bellingham, WA, Society of
Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1192),
1990, p. Pt. 1, 512 p.; pt. 2, 382 p. For individual items see 291-1%502
to A91-19509. 900000 p. 894 In: EN (English) Price of two parts,
members, $73.; nonmembers, $91 p.928

Theoretical and practical aspects of computer-vision systems for
robotics applications are discussed in reviews and reports. Sections are
devoted to pattern recognition for intelligent robots and computer vision;
segmentation, image processing, and feature extraction; three-dimensional
shape determination and representation; color and range image processing;
and neural networks and associative processors Tor advanced vision
processing. Also considered are the biological basis for machine vision,
fuzzy logic in intelligent systems and computer vision, iImage
understanding and analysis, time-sequential image processing, and polar
exponential grid processing for synthetic vision systems. Extensive
diagrams, graphs, and sample images are provided.

T.
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Quest Accession Number : 91216419

91816419 NASA TAA Meeting Paper Issue 04

Optics, illumination, and 1image sensing TfTor machine vision 1V;
Proceedings of the Meeting, Philadelphia, PA, Nov. 8-10, 1989

(AA) SYETKOFF, DONALD J.

(AAED.

(AA) (Synthetic Vision Systems, Inc., Ann Arbor, MI )

SPIE-1194 Meeting sponsored by SPIE. Bellingham, WA, Society of
Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 1194),
1990, 317 p. No individual items are abstracted in this volume, 900000
p- 317 In: EN (English) Members, $45.; nonmembers, $56 p.514

Various papers on optics, illumination, and image sensing for machine
vision are presented. Individual topics addressed include: extraction of
the "time to contact®™ from real visual data, position-decoupled optical
inspection relay system, TDl imaging in_industrial inspection, time delay
and integration camera for machine vision, special scanning modes in CCD
cameras, scale-invariant processing mult;ple wavelengths, i1ncoherent
optical correlators, light-source models for machine vision, design and
testing of a microscopic reflectometer, prediction scheme fTor a
verification vision system, accurate calibration technique for 3-D laser
strip sensors, triangulation-based camera calibration for machine-vision
system. Also discussed are: 3-D gradient and curvature measurement using
local image information, depth from defocus of structured light, range
sensing by projecting multiple slits with random cuts, use of linear
arrays iIn electronic speckle pattern interferometry, new 3-D vision sensor
for shape-measurement applications, 3-D imager with wide area and high
dynamic range, integration of stereo camera geometries, surface
orientation fTrom two-camera stereo with polarizers, application-oriented
8%§rview of stereoscopic vision.
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TYPE 1/4/24
Quest Accession Number : 91N13941

91N13941*# NASA STAR Technical Report Issue 05

A discrepancy within primate spatial vision and its bearing on the
definition of edge detection processes in machine vision

(Aa)JOBSON, DANIEL J.

National Aeronautics and Space Administration. Langley Research Center,
Hampton, VA. (ND210491)

NASA-TM-102739; NAS 1.15:10273%9 307-51-10 900900 p- 31 In: EN
(English) Avail: NTIS Hc/MF AO3 p.707

The visual perception of form information is considered to be based on
the Tfunctioning of simple and complex neurons in the primate striate
cortex. However, a review of the physiological data on these brain cells
cannot be harmonized with either the perceptual spatial Tfrequency
performance of primates or the performance which is necessary for form
perception iIn humans. This discrepancy together with recent interest in
cortical-like and perceptual-like processing in image coding and machine
vision prompted a series of image processin% experiments intended to
provide some definition of the selection o image opsrators, The
experiments were aimed at determining operators which could be used to
detect edges in a computational manner consistent with the visual
perception of structure in images. Fundamental issues were the selection
of size (peak spatial frequency) and circular versus oriented operators
(or some coinnatio??. In a previous study, circular
difference-of-Gaussian (DOG) operators, with peak spatial frequency
responses at about 11 and 33 cyc/deg were found to capture the primary
structural information in images. Here larger scale circular DOG operators
were explored and led to severe loss of image structure and introduced
spatial dislocations (due to blur) in structure which is not consistent
with visual perception. Orientation sensitive operators (akin to one class
of simple cortical neurons) introduced ambiguities of edge extent
regardless of the scale of the operator. For machine vision schemes which
are functionally similar to natural vision form perception, two circularly
symmetric very high spatial frequency channels appear to be necessary and
sufficient for a wide range of natural images. Such a machine vision
scheme 1is most similar to the physiological performance of the primate
Iatﬁral geniculate nucleus rather than the striate cortex.

Author
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Background characterization techniques Tfor pattern recognition
applications

(AAYNOAH, MEG A.; (aB)dNoAH, PAUL V.; (AC)SCHROEDER, JOHN; (AD)KESSLER,
B. V. ; (AE)CHERNICK, JULIAN

(AC) (ontar Corp., Brookline, MA); (aD) (U.s. Navy, Naval Surface Warfare
Center, White Oak, MD); (AE) (U.s, Army, Army Material Systems Analysis
Activity, Aberdeen Proving Ground, MD) o

N860921=-87-C~0044; DAAAL15-88-C-0021 IN: Aerospace pattern recognition;
Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989 (A90-37401
16-63) - Bellingham, WA, Society of Photo-Optical Instrumentation
Engineers, 1989, p. 55-70. 890000 p. 16 refs 14 In: EN (English) p.
2594

The development of such sensor hardware as that of large IR and mm-wave
detector arrays fTor ailr and ground vehicle detection in a cluttered
battlefield environment has outpaced the development of signal processing
techniques. Attention 1is presently given to a novel methodology for
background clutter characterization, target detection, and target
identification, employing multivariate statistical analysis to evaluate a
set of image metrics applied to IR cloud imagery and terrain clutter
scenes. This methodology is here applied to (1) the characterization of
atmospheric water vapor cloud scenes for the u.s. Navy’s IR Search and
Track system, and (2) the detection of ground vehicles for the U.S. Army’s
Autonomous Homing Munitions problem.

0.C.
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An update on strategic computing computer vision - Taking image
understanding to the next plateau

(An)sIiMpsoN, ROBERT L.. JR. ) )

(AA) (DARPA, .Information Science and Technology Office, Arlington, VA)

IN: Image understanding and the man-machine interface II; Proceedings of
the Meeting, Los Angeles, CA, Jan. 17, 18, 1989 (A30-32151 13-63).
Bellingham, wa, Society of Photo-Optical Instrumentation Engineers, 1989,
p- 52-58. 890000 pr. 7 In: EN (English) ©p.z064

Development of knowledge-based technology enabling the construction of
complete robust high-performance image understanding systems iIs addressed.
A new-generation system, visual modeling and recognition, dynamic scene
and motion analysis, obstacle detection and avoidance, parallel computing
environment for vision, and technology transfer are covered among
important accomplishments achieved iIn the first phase of the research, and
the project summaries of the above developments are outlined. Integration
of the component technologies iInto a new-generation system and
demonstration of the utility of emerging vision software for autonomous
navigation tasks are emphasized. The Integration task represents a major
research 1itself, since it addresses the architectural problems of sensor
Jq?ion and communication between the sensing and reasoning modules.
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Neural networks for computer vision - A framework for specifications of
a general purpose vision system

(AA) SKRZYPEK, JOSEF; (aB)MESROBIAN, EDMOND; (AC)GUNGNER, DAVID

(AC) (California, University, Los Angeles)
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(A30-32151 13-63). Bellingham, WA, Society of Photo-Optical
Instrumentation Engineers, 1989, p. 16-29. Research supported by 1BM
Corp., Hewlett Packard Co., and University of California. 890000 p. 14
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A general-purpose machine vision system capable of perceiving and
understanding 1images 1In an unconstrained environment 1s considered.
Fifteen systems built during the last ten years are analyzed along five
dimensions - 1mage attributes, perceptual primitives, knowledge base,
object representation, and control strategy. The human visual system is
analyzed as an underlying mechanism necessary Tfor the development of
general purﬁose vision. An interdisciplinar¥ approach to vision research
based on the combination of computational neuroscience with computer
science and electrical engineering 1is proposed. A mnethodolagy TFor
synthesizing a framework for a general-purpose machine vision system is
addressed, and visual tasks such as edge detection and texture
discrimination are covered, along with complex pattern analysis and the
formation of visual categories.

V.T.
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Dynamic_ monocular machine vision and applications of dynamic monocular
machine vision

(AA)DICKMANNS, ERNST DIETER; (AB)GRAEFE, VOLKER

Universitaet der Bundeswehr Muenchen, Neubiberg (Germany, F.R.). (
Uu1005765) Inst. fuer Systemdynamic und Flugmechanik.
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A new approach to realtime machine vision 1in dynamic scenes 1is
presented. It 1is based on special hardware and methods for feature
extraction and information processing. Using integral spatio-temporal
models, it bypasses the nonunique inversion of the perspective projection
by applying recursive least squares TFiltering. By prediction error
feedback methods, all spatial states variables including the velocity
components are estimated. Only the last image of the sequence needs to be
evaluated. Two applications in the field of robotics are given.
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Parallel algorithms for computer vision / Final Report, 31 Aug. 1988 -
31 Jan. 19%0
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Intelligence Lab.
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An iIntegrated vision system, (the Vision Machine) based on a parallel
supercomputer, 1s examined. The core of the Vision Machine is i1n fact a
set of parallel algorithms for visual recognition and navigation in an
unstructured environment. The present version of the Vision Machine was
demonstrated to process images 1In close to real time by: (1) computin?
first several low Ilevel cues, such as edges, stereo disparity, optica
flow, color and texture, (2) integrating them to extract a cartoon-like
description of the scene 1In terms of the physical discontinuities of
surfaces, and (3) using this cartoon in a recognition stage, based on
parallel model matching. In addition to the development of the parallel
algorithms, their iImplementation and testing, work was performed in
several areas that are very closely related. These include: (1) design and
fabrication of VLSI circuits to transfer to potentially cheap and fast
hardware some of the software algorithms; (2) initial development of
techniques to synthesize by learning vision algorithms; and (3) several
gggjects involving autonomous navigation of small robots.
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Ames vision group research overview / Abstract Only
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National Aeronautics and Space Administration. Ames Research Center,
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In 1ts Vision Science and Technology at NASA: Results of a Workshop p 52
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A major goal of the reseach group 1is to develop mathematical and
computational models of early human vision. These models are valuable in
the prediction of human performance, in the design of visual coding
schemes and displays, and 1In robotic vision. To date researchers have
models of retinal sampling, spatial processing iIn visual cortex, contrast
sensitivity, and motion processing. Based on their models of early human
vision, researchers developed several schemes for efficient coding and
compression of monochrome and color images. These are pyramid schemes that
decompose the image into features that vary 1in location, size,
orientation, and phase. To determine the perceptual fidelity of these
codes, researchers developed novel human testing methods that have
received considerable attention in_ the research community. Researchers
constructed models of human visual motion processing based on
physiological and psychophxsical data, and have tested these models
through  simulation and human experiments. They also explored the
application of these biological algorithms to applications in automated
guidance of rotorcraft and autonomous landing of spacecraft. Researchers
developed networks for inhomogeneous image sampling, for pyramid coding of
images, fTor automatic geometrical correction of disordered samples, and
Iorhremoval of motion artifacts from unstable cameras.
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Computer vision techniques for rotorcraft low altitude flight

(AA) SRIDHAR, BANAVAR

National Aeronautics and Space Administration. Ames Research Center,
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Rotorcraft operating_ in high-threat environments fly close to the
earth"s surface to utilize surrounding terrain, vegetation, Or manmade
objects to minimize the risk of being detected by an enemy. Increasing
levels of concealment are achieved by adopting different tactics during
low-altitude flight. Rotorcraft employ three tactics during low-altitude
flight: low-level, contour, and nap-of-the-earth (NOE). The key feature
distinguishing the NOE mode from the other two modes is that the whole
rotorcraft, including the main rotor, is below tree-top whenever possible.
This leads to the use of lateral maneuvers for avoiding obstacles, which
in fact constitutes the means for concealment. The piloting of the
rotorcraft 1is at best a very demanding task and the pilot will need help
from onboard automation tools 1iIn order to devote more time to
mission-related activities. The development of an automation tool which
has the potential to detect obstacles in the rotorcraft flight path, warn
the crew, and interact with the guidance system to avoid detected
obstacles, presents challenging problems. Research is described which
applies techniques from computer vision to automation of rotorcraft
navigtion. The effort emphasizes the development of a methodology for
detecting the ranges to obstacles in the region of interest based on the
maximum utilization of passive sensors. The range map derived from the
obstacle-detection approach can be used as obstacle data for the obstacle
avoidance 1iIn an automatic guidance system and as advisory display to the
pilot. The lack of suitable flight imagery data presents a problem in the
verification of concepts for obstacle detection. This problem i.s being
addressed by the development of an adequate flight database and by
preprocessing of currently available flight imagery. The presentation
concludes with some comments on future work and how research in this area
relﬁtes to the guidance of other autonomous vehicles.
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High-Level Vision and Planning Workshop Proceedings , Final Report
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Defense Analyses In: EN (English) Avail: NTIS HC a12/dp AO1 p.1420

The slides, papers, and graphic illustrations presented at the joint
U,s,-Isra=)li workshop on artificial intelligence are provided in this
Institute for Defense Analyses document. This document is based on a broad
exchange of ideas about current approaches and research issues in the
areas of design automation and autonomous robotic systems. A list of
participants is provided along with applicable references for individual
papers.
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Autonomous automatic landing throu computer vision

(AA)SCHELL, R.; (AB)DICKMANNS, E. 0.

Hochschule der Bundeswehr, Munich (Germany, F.R.). (Hv212637) Dept. of
Aerospace Technology.

In AaGARD, Advances 1iIn Techniques and Technologies for Air Vehicle
Navigation and Guidance 9 p (SEEN%0-16731 09-04) 891200 p. 9 In: EN
(English) Avail: NTIS HC aog/Mr AO02; Non-NATO Nationals requests
available only from aGarD/scientific Publications Executive p.1163

The automatic autonomous Rlanding approach through computer vision was
investigated iIn a simulation loop with real Image sequence processing
hardware and software. The use of integral spatio-temporal world models is
the presupposition to achieve real time performance with the
microprocessors currently available. Results achieved for a business-jet
aircraft demonstrate that this set up is powerful enough to solve the
proElem of autonomous unmanned landing approach.
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Research In knowledge-based vision techniques for the Autonomous Land
Vehicle Program / Final Annual Report, 1 Jun. 1988 - 31 May 1989

(AA)NEVATIA, R.; (AB)PRICE, K. ; (AC)FRANZEN, W.; (AD)GAZIT, S.;
(ABYMEOTONI, G.; (AF)PENG, S.; (AG)SAINT-MARC, P.
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Robotics and Intelligent Systems.
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The authors®™ basic approach to detecting and tracking motion is to
extract and match features, such as lines and regions, from a sequence and
to generate motion estimates from these. They present one report on
spatio-temporal analysis for tracking edges through very closely spaced
sequences. They also present a report on matching edge-based contours
usin? edges from multiple scales with low resolution guiding high
resolution matches. They also present an analysis of estimating 3-D motion
and structure of moving object with uniform acceleration.
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(AA)ROBERTO, V.; (AB)}PERON, A.; (AC)FUMIS, P. L.
(AC) (Udine, Universita, ltaly)
IN: Issues on Machine Vision, course, Udine, Italy, July 1988,
Proceedings (490-14971 04-63). Vienna and New York, Springer-Verlag, 1989,
p- 263-274. 890000 p. 12 refs 9 In: EN (English) p.0

This paper covers some topics in geophysical signal interpretation, by
means O Artificial Intelligence (Machine Vision) techniques. 1In
particular, the Jlow-level processing modules of a Knowledge-Based System
for seismic reflection iImage understanding are presented, as well as an
explanation of their structural and  functional characteristics.
Preliminary results are also given and discussed.

Author
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Neural networks, supercomputers and computer vision

(AA) JOHNSON, ©O.; (AB)PIERONI, G.; (AC)RAKOTOMALALA, M.

(AA) (Houston, University, TX); (aAB) (Udine, Universita, ltaly; Houston,
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Proceedings (a90-14971 04-63). Vienna and New York, Springer-Verlag, 1989,
p- 163-175. 890000 p. 13 refs 16 In: EN (English) »p.o

A PDP program for simulating neural networks ia applied to problams iIn
machine vision. The PDP program avoids explicit pattern matching with
reference model segments as well as the creation of hypotheses in order_ to
utilize the neural networks®™ ability to perform pattern matching with
distorted and incomplete data. The problem of recognizing simple
four-sided polygons in a two-dimensional scene of straight lines is
considered. Supercomputers which use neural network software are
gigcussed-
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Issues on Machine Vision, Course, Udine, Italy, July 1988, Proceedings

(AA)PIERONI, G. G.
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Supported by CNR, UNESCO, Centro Ricerche FIAT, et al. Vienna and New
York, Springer-Verlag, 1989, 344 p. For individual items see 32950-14%72 toO
A%0-14975. 890000 p. 344 In: EN (English) $57.20 p.o

Various papers on machine vision are presented. Individual topics
addressed include: data processing via associative memory; picture
labeling and shape descriptors for machine vision; morphological approach
to industrial image inspection of honeycomb composite materials;
two-dimensional digital filter design by the adaptive differential
correction algorithm; comparison of ierarchical topologies Tfor
megamicrocomputers; constrained Delaunay triangulation algorithms for
surface representation; medium-level language for gyramid architectures;
vision problems 1In sparse images; machine vision for inspection; neural
networks, supercomputers, and computer vision; software issues for machine
vision; multiresolution approach for segmenting surfaces; signed Euclidean
distance transform applied to shape analysis; 1image understanding
techiques i1n geophysical data interpretation; knowledge integration for
machine vision; motion parameter estimation for robot application; and
industrial applications of machine vision.

C.D.
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Research i1n computer vision for autonomous systems / Progress Report,
Jun. - Sep. 1988

(AA)KAK, AVI; (aB)YoDER, MARK; (ac)anbpress, KEITH; (AD)BLask, STEVE;
(AE)UNDERWOOD, TOM

Purdue Univ., West Lafayette, IN. (P9391092) School of Electrical
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This report addresses FLIR processing, LADAR processing and electronic
terrain board modeling. In our discussion on FLIR processing, Issues were
analyzed TfTor classitiability of FLIR features, computationally efficient
algorithms for target segmentation, metrics, etc. The discussion on LADAR
includes a comparison of a number of different approaches to the
segmentation of target surfaces from range images, extraction of
silhouettes at different ranges, and reasoning strategies for the
recognition of targets and estimation of thelr aspects. Regarding
electronic terrain board modeling, it was shown how the readily available
wire-frame data for strategic targets can be converted into volumetric
models utilizing the concepts of constructive solid geometr¥; then i1s was
shown how from the resulting volumetric models i1t is possible to generate
synthetic range 1images that are very similar to real LADAR images. Also
shown 1s how sensor noise can be added to these synthetic images to make
them even more realistic.
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Real time imaging rangefinder for autonomous land vehicles

(AA)KERR, J. RICHARD

(aa) (FLIR Systems, Inc., Portland, OR)

IN: Mobile robots 111; Proceedings of the Meeting, Cambridge, MA, Nov.
10, 11, 1988 (a9n-11726 02-14). Bellingham, WA, Society of Photo-Optical
Instrumentation Engineers, 1989, p. 349-356. 890000 p- 8 In: EN
(English) p. 190

A three-dimensional sensor that achieves 50 microsteradian resolution
over a 90 Xx 40 degree field of view (FOV) at full video frame rates has
been designed for robotic vehicles. A combination of coarse and fine range
resolution provides sensing from one to approximately 100 meters with
short-range accuracies of less than 10 cn. The system utilizes an eyesafe
diode laser configuration along with proprietary mechanical scanning
elements, wide-field relay optics, and avalanche photodiode detectors.
Range determination is accomplished with dual subcarrier modulation which
results in the output of an unambiguous, binary word on a pixel-by-pixel
basis. The approach also provides for electronic pitch stailization.
Author
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Terrain classification using texture for the ALV
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Society of Photo-Optical Instrumentation Engineers, 1989, p. 64-70.
Research supported by DARPA. 890000 p. 7 refs 13 In: EN (English) p.
237

Off-road navigation is a very demanding visual task in which texture can
play an important role. Travel on a smooth road or path can be done with
greater speed and safety 1in general than on rough natural terrain. In
addition, recognition of off-road terrain types can aid in finding the
fastest and safest route through a given area. Implementations,of two
texture methods for identifyin% certain terrain features in video imagery
are briefly discussed. The iIrst method uses edge and morphological
filters to identify roadways from off-road. The second method uses a
neural net to identify several terrain types based on color, directional
texture, global variance and location in the image. Plans to integrate the
terrain labeled image produced by the Jlatter method into the 2Lv’s
perception system are also discussed.
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An intelligent system for autonomous navigation of airborne vehicles

(AA)caMERON, WILLIAM L.; (aB)FrAIN, HOWARD; (AcC)BEZDEK, JAMES C.
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Proceedings of the Meeting, Cambridge, MA, Nov. 7-9, 1988 (A%0-11675
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Engineers, 1989, p. 451-469. 890000 p. 19 refs 8 In: EN (English) p.
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Autonomous navigation of airborne platforms requires the integration of
diverse sources of sensor data and contextual information. This paper
describes a system that utilizes polarimetric radar cross-section and
range data to generate position estimates based on four Kkinds of
information: area segmentation, ground contours, landmarks, and road
networks. Ground truth in the form of terrain feature maps is correlated
with each type of data stream. Finally, an arbitrator integrates these
inputs with contextual knowledge about the preplanned flight path to
resglve conflicts and arrive at a final estimate of current position.
Author
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Integration of outputs from multiple sensors has been the subject of
much of the recent research iIn the machine vision field. This paper
presents a neural-network model for the fusion of visible and thermal-IR
sensor outputs. A model is developed based on six tyﬁes of bimodal neurons
found iIn the optic tectun of the rattlesnake. These neurons integrate
visible and thermal-IR_ sensory inputs. The neural network model has a
series of layers which include a layer for unsupervised clustering in the
form of self-organizing feature maps, Tollowed by a layer which has
multiple filters that are generated by training a neural net with
experimental rattlesnake response data. The final layer performs another
unsupervised clustering for iIntegration of the output from the filter
Aayﬁr. The results of a number of experiments are also presented.
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Optics, illumination, an image sensing for machine vision 111;
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Various papers on optics, 1llumination, and image sensing for machine
vision are presented. Some of the optics discussed include: illumination
and imaging of moving objects, strobe illumination systems for machine
vision, optical collision timer, new electrooptical coordinate measurement
system, Tlexible and pi=zoresistive touch sensing array, selection of
cameras for machine vision, custom Fixed-focal length versus zoom lenses,
performance of optimal phase-only TfTilters, minimum variance SDF design
using adaptive algorithms, Ho-Kashyap associative Erocessors, component
spaces Tor 1Invariant pattern recognition, grid labeling using a marked
grid, illumination-based model of stochastic textures, color-encoded moire
contouring, noise measurement and suppression in active 3-D laser-based
imaging systems, sStructural stereo matching of Laplacian-of-Gaussian
contour segments Tor 3D perception, earth surface recovery from remotely
sensed iImages, and shape from Lambertian photometric flow fields.
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Schemas and neural networks for sixth generation computing
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Sixth-generation computer architectures are presently conjectured to
profitably involve networks of one or more specialized devices structured
as highly-parallel arrays of neuronlike interacting (and perhaps also
adaptive) components. Schemas are suggested to be a germane basis for the
programming languages that will. typify sixth-generation computers; the
characteristics of schemas are illustrated for the case of their use in
high-level machine vision. An iIntegrated system of investigations, the
"Rana computatrix®, demonstrates the fusion of neural-network and schema
models of the visuomotor-coordination mechanism in frogs and toads. The
"domain-specific® structure of neural networks is emphasized.
0.cC.
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Applications of digital image processing XI; Proceedings of the Meeting,
san Diego, CA, Aug. 15-17, 1988
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Theoretical and applications aspects of digital image processing are
discussed in reviews and reports of recent Investigations. Topics
addressed i1nclude enhancement and restoration, transmission and vision,
PC-based and graphics applications, architectures and systems, and hybrid
and unconventional iImage-processing methods. Consideration IS given to
morphology in wrap-around image algebra, maximum-likelihood image
restoration with subpixel accuracy, high-resolution digitization of color
images, a lighting and optics expert system for machine vision, image-data
compression in a PC environment, rule-based processing for string-code
identification, digital-image velocimetry, aircraft navigation using IR
image analysis, aircraft recognition using a parts-analysis technique, and
an 1mage-quality measure based on the human visual system.
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JTECH _(Japanese Technology Evaluation Program) panel report on advanced
sensors In Japan

(AAYMILLER, G. L.; (AB)GUCKEL, H.; (AC)HALLER, E.; (AD)KANADE, T.;
(aByKo, W.; (AF)RADEKA, V.

Science applications International corp., McLean. VA. (8D708880)

P389-158760 Sponsored by NSF, washington, DC; DARPA, Arlington; VA and
Department of Commerce, Washington, DC 890100 p- 293 In: EN (English)
Avail: NTIS HC a13/MF A0L1  p.3012

The document provides the results of a detailed evaluation of the
current state of Japanese sensor development. The analysis was performed
by a panel of technical experts drawn from u.s industry and academia. It
covers not only specific technical work, but also covers issues of
organization, trends, funding, and methods of organizing work and setting
priorities. The topics covered include: Tutorial introduction to sensors,
machine vision (charge coupled device (CCD) sensors, vision processing
systems, active 3-D range sensors, Research Institution on Machine
Vision); sensors fTor electromagnetic radiation (far infrared, near
infrared, visible light, X-rays, gamma-rays); sensors fTor Tactory
automation and robotics; micromechanical and superconducting sensors; gas
sensors; ion sensors; ion selective field effect transistors (1sreT); and
biosensors. Also included is an extensive listing of Japanese sensor
manufacturers.
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Combining information in low-level vision

(AA) ALOTIMONOS, JOHN; (AB)BASU, ANUF

Maryland Univ., College Park. (MI915764) Computer Vision Lab.

DAABO7 -86-K-F073 In Science Applications International Corp.,
Proceedings: Image Understanding Workshop, Volume 2 p 862-906 (SEE
N89-23115 16-61) 880400 p- 45 In: EN (English) Avail: NTIS HC a99/MF
EO3 p.2320

Low level modern computer vision is not domain dependent, but
concentrates on problems that correspond to identifiable modules in the
human visual system. Several theories have been Eroposed in the literature
for the computation of shape from shading, shape from texture, retinal
motion from spatiotemporal derivatives of the image intensity function and
the like. The basic problems with some of the existing approaches if
several available cues are combined, disappear iIn most cases; the
resulting algorithms compute robustl¥ and uniquely the iIntrinsic
parameters (shape, depth, motion, etc.). The problem of machine vision is
explored here from 1ts basics. A low level mathematical theory is
presented for the unique and robust computation of Intrinsic parameters.
The computational aspect of the theory envisages a cooperative highly
parallel implementation, bringing in information from Tfive different
sources (shading, texture, motion, contour and stereo), to resolve
Embgguities and ensure uniqueness of the Intrinsic parameters.
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Three-dimensional vision for outdoor navigation by an autonomous vehicle
(2a)HEBERT, MARTIAL; (AB)KANADE, TAKEO
Carnegie—Mellon Univ., Pittsburgh, PA. (c4i33052) Robotics Inst.
DACA76-85-C-0003; F33615-87-C-1499; NSF DCR-86-04199 In Science
Applications International Corp., Proceedings: [Image Understanding
WorkshOﬁ, Volume 2 p 593-601 (SEE N89-23115 16-61) 880400 p. 9 In: EN
(English) Avail: NTIS HC as9/MF EO3  p.2315

Progress in range image analysis for autonomous navigation in outdoor
environments is reported. The goal of the work is to use range data from
an ERIM laser range finder to build a three-dimensional description of the
environment. Techniques are described for building bot low-level
description, such as obstacle maps or terrain maps, as well as higher
level description using model-based object recognition. These technigues
haVﬁ been integrated in the NAVLAB system.
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An operational perception system for cross-country navigation

(2A)DAILY. MICHAEL J.; (AB)HARRIS. JOHN G.: (AC)REISER, KURT

Hughes  Research Labs., Calabasas, CA. (H5849028) Artificial
Intelligence Center.

DACA87-85-C-0007 In Science Apolications International Corp.,
Proceedings: Image Understanding workshop, Volume 2 p 568-575 (SEE
N89-23115 16-61) 880400 p. 8 In: EN (English) Avail: NTIS HC a99/MF
EO3 p.2314

An operational perception system for cross-country navigation which has
been verified in both simulated and real world environments is presented.
Range data from a laser range scanner is transformed into an alternate
representation called the Cartesian Elevation Map (CEM). A detailed
vehicle model operates on the CEM to produce traversability information
along selected trajectories. This information supports a real-time
reflexive planning system. The successful demonstration of obstacle
detection and avoidance algorithms on board an Autonomous Land Vehicle IS
discussed.

Author
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Using flow field divergence for obstacle avoidance in visual navigation

(AAYNELSON, RANDAL C.; (aB)apoIMonos, JOHN

Maryland Univ., College Park. (M1915765) Computer Vision Lab.

In Science Applications International Corp., Proceedings: Image
Understanding Workshop, Volume 2 p 548-567 (SEE N89-23115 16-61)
Sponsored in part by DARPA, Washington, DC 880400 p. 20 In: EN

English) Avail: NTIS HC ass/MF EO3 p.2314

The practical recovery of quantitative structural information about the
world from visual data has proven to be a very difficult task. In
particular, the recovery of motion_ information which is sufficiently
accurate to allow practical application of theoretical shape from motion
results has so far been infeasible. Yet a large body of evidence suggests
that use of motion iIs an extremely important process in biological vision
systems. It has been suggested that qualitative visual measurements can
provide powerful Berceptual cues, and that practical operations can be
performed on the basis of such clues without the need for a quantitative
reconstruction of the world. The use of such Information iIs termed inexact
vision. The 1Investigation of one such approach to the analysis of visual
motion 1is described. Specifically, the use of certain measures of flow
field divergence was iInvestigated as a qualitative cue for obstacle
avoidance during visual navigation. It is shown that a quantity termed the
directional divergence of the 2-D motion field can be used as a reliable
indicator of the presence of obstacles iIn the visual field of an observer
undergoing generalized rotational and translational motion. Moreover, the
necessary measurements can be robustly obtained from real Image sequences.
A simple differential procedure for robustly extracting divergence
information from image sequences which can be performed using a highly
parallel, connectionist architecture is described. The procedure is based
on the twin principles of directional separation of optical flow
components and temporal accumulation of information. Experimental results
are presented showing that the system responds as expected to divergence
in real world image sequences, and the use of the system to navigate
Eetween obstacles is demonstrated.
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Dynamic model matching for target recognition from a mobile platform
(AA)MNASR, HATEM; (AB)BHANU, BIR
Honeywell Systems and Research Center, Minneapolis, MN. (HY989092)
DACA76-86-C~0017 In Science Applications International Corp.,
Proceedings: Image Understanding Workshop, Volume 2 p 527-536 (SEE
N89-23115 16-61) 880400 p- 10 In: EN a%nglish) Avail: NTIS HC a99/uF
EO3 p-.2314

A novel technique called dynamic model matching (DMM) is presented for
target recognition from a moving platform such as an autonomous combat
vehicle. The DMM technigue overcomes major limitations 1In_ present
model-based target recognition techniques that use a single, static target
model, and therefore cannot account for continuous changes in the target"s
appearance caused by varying range and perspective, DMM addresses this
problem by combining a moving camera model, 3-D object models, spatial
models, and expected range and perspective to generate multiple 2-D image
models for_ matching. DMM also generates recognition strategies that can
emphasize different object features at varying ranges. DMM operates within
a larger system for landmark recognition based on the perception,
reasoning, action, and expectation paradigm called PREACTE. Results are
presented on a number of test sites using color video data obtained from
Xhehautonomous land vehicle.
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Proceedings: Image Understanding Workshop, volume 2 / Annual Technical
Report, Feb. 1987 - Apr. 1988
(AA) BAUMANN, LEE s.
(aA)ed.
Science Applications International Corp., McLean, VA. (5D708880)
AD-A197559 N00O0O14-86-C-0700; ARPA ORDER 5605 880400 p. 678 workshop
held in Cambridge, MaA, 6-8 Apr. 1988; sponsored by DARPA In: EN (English)
Avail: NTIS HC assg/MF EO3 p.2313

annual progress reports and technical papers presented by the
participants at the Image Understanding Workshop sponsored by the
Information Science and Technology Office, Defense Advanced Research
Projects Agency are presented. Also included are copies of invited papers
presented at the workshop and additional technical papers which were not
presented (volume 2). Topics addressed included: intelligent image
understanding, machine vision and robotics, knowledge-based systems,
motion detection and tracking, object and target recognition, parallel
computation, stereo vision, and image processing. For individual titles,
see N89-23116 through N89-23180.
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Integration effort in knowledge-based vision techniques for the
autonomous land vehicle program

(AAYPRICE, KEITH; (aBs)pavLIn, IGOR

University of Southern California, Los Angeles. (uUs203125) Inst. for
Robotics and Intelligent Systems.

DACA76-85-C-0009 In Science Applications International Corp.,
Proceedings: Image Understanding Workshop, Volume 1 p 417-422 (SEE
N89-23074 16-61) 880400 p. 6 1In: EN (English) Avail: NTIS HC a22/MF
A0l p.2312

A methodology 1is presented and some early results are demonstrated in
the integration of knowledge-based image analysis programs. The domain of
complete three-dimensiona motion analysis in the context of the
Autonomous Land Vehicle is specifically addressed. The integrated system
exploits the strengths and minimizes the weaknesses of the individual
techniques, resulting 1in performance which is considerably improved over
the performance of any of the independently developed programs.

Author




TYPE 1/4/54
Quest Accession Number : 89N23107
39n23107# NASA STAR Conference Paper lssue 16
Autonomous navigation in cross-country terrain
(AA)KEIRSEY, DAVID M.; (aB)payToyn, DAVID W.; (Ac)ROSENMBLATT, J KENNETH

Hughes  Research Labs., Calabasas, CA. (H5849028) rtificial
Intalligence Center. ) ) i i
DACA76~85-C-0017 In  science Apolications International corp.,

Proceedings: Image Understanding W®Workshop, Volume 1 p 411-416 (SE
N89-23074 16-61) 880400 p. 6 In: EN (English) Avail: NTIS HC a22/MF
AO1 p.2312

Progress and experimentation with an autonomous robotic vehicle iIn
cross-country terrain 1Is described. Experiments were performed on the
Autonomous Land Vehicle in natural terrain. An overview of the software
architecture used Tor this achievement 1is discussed; descriptions of
experiments and details of planning techniques are presented. Experiments
describe the wvehicle"™s avoidance of both known and unknown obstacles in
its path.
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Kalman filter-based algorithms for estimating depth from Image sequences

(AAYMATTHIES, LARRY; (aB)sze2LISKI, RICHARD; (AC)XANADE, TAKEOC

Carnegie-Mellon Univ., Pittsburgh, PA. (cH188052) Dept. of Computer
Science.

F33615-87-C-1499 In Science Applications International Corp.,
Proceedings: Image Understanding Workshop, Volume 1 p 199%-213 (SEE
N89-23074 16-61) 880400 p. 15 1In: EN (English) Avail: NTIS HC az22/uF
A0l p.2309

Using known camera motion to estimate depth from iImage sequences IS an
important problem in robot vision. Many applications of depth from motion,
including navigation and manipulation, require algorithms that can
estimate depth in an on-line, incremental Tfashion. This requires a
representation that records the uncertainty iIn depth estimates and a
mechanism that iIntegrates new measurements with existing depth estimates
to reduce the uncertainty over time. Kalman TfTiltering provides this
mechanism. Previous applications of Kalman filtering to depth from motion
have been [limited to estimating depth at the location of a sparse set of
features. A pixel-based (iconic) algorithm is introduced which estimates
depth and depth uncertainty at each pixel and incrementally refines these
estimates over time. The algorithm for translations parallel to the image
plane is described and i1ts Tformulation and performance contrasted to that
of a feature-based Kalman filtering algorithm. The performance of the two
approaches is compared by analyzing their theoretical convergence rates,
by conducting quantitative experiments with images of a flat poster, and
by conducting qualitative experiments with images of a realistic outdoor
scene model. The results show that the method is an effective way to
extract depth from lateral camera translations and suggest that it will
Rla an important role in low-level vision.
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The MIT vision machine

(Ad) POGGIO, T.; (AB)LITTLE, J.; (AcC)camMBLE, E.; (ao)srvverr, W.;
(AE)GEIGER, D.; (AF)WEINSHALL, DAPHNA; (AG)VILLALBA, M.; (AH)LARSON, N.;
(AI)cass, TODD ANTHONY; (AJ)BUELTHOFRP, H.

Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial
Intelligence Lab.

In Science Applications International Corp., Proceedings: Image

Understanding Workshop, Volume 1 p 177-198 (SEE N89-23074 16-61) 880400
p- 22 In: EN (Englishg Avail: NTIS HC azz/uMr AO1  p.2309

The vision Machine, its goals, and achievements to date are described.
The Vision Machine is a computer system that attempts to integrate several
vision cues to achieve high performance in unstructured environments for
the tasks of recognition and navigation. It 1is also a test-bed for
theoretical progress in early vision algorithms, their parallel
implementation and their integration. The Vision Machine consists of a
movable two-camera Eye-Head system (the input device) and a 16K Connection
Machine (the main computational engine). Several parallel sarly vision
algorithms which compute edge detection, stereo, motion, texture and
surface color in close to real-time were developed and implemented. The
integration stage is based on the technique of coupled Markov Random Field
models, and leads to a cartoon-like map of the discontinuities in the
scene, with a partial labeling of the brightness edges in terms of their
physical origin. Available recognition algorithms will interface with the
output of the integration stage and the analog and hybrid very Large Scale
Integration (VLSI) implementations of the Vision Machine main components
has begun.
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The Maryland approach to image understanding

(Aa)aLoIMonos, JOHN; (aB)pavis, LARRY S.; (AC)ROSENFELD, AZRIEL

Maryland Univ., College Park. (mMI915765) Computer Vision Lab.

DAABO7-86-K-F073 In Science Applications International Corp.,
Proceedings: Image Understanding Workshop, Volume 1 p 154-165 (SEE
N89~23074 16-61) 880400 p. 12 1In: EN (English) Avail: NTIS HC az22/MF
AO1  p.2309

In an effort to understand images, while still working on initial
processes of low and middle level vision, emphasis is being placed on the
integration of multiple sources of information for visual reconstruction,
on navigation and on object recognition. A methodological paradigm for
research in vision 1is introduced, namely: while research Is continuing
top-down in the Marr paradigm, work also progresses in a bottom-up fashion
in that paradigm. It is suggested that the Marr paradigm (computational
theory, algorithms, data structures, and implementation) should be
augmented with one more level, that of robustness, that Marr left implicit
in his writings.
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Image understanding and robotics research at Columbia University
(AA)XENDER, JOHN R.; (asyaLLeEn, PETER K.; (ac)souLT, TERRANCE E.;
(AD) IBRAHIM, .HUSSEIN A. H.
Columbia Univ.. New York, Nv. (cv148013) Dapt. OF computer Science.
DACA7 6-86-C-0024 In Science Applications International Corp.,
Proceedings: Image Understanding Workshop, Volume 1 p 78-87 (SEE N89-23074
16-61) 880400 p- 10 In: EN (English) Avail: NTIS HC a22/MF AO1 p.
2307

Diverse research investigations 1in vision and robotics are identified
and summarized. Since i1t i1s difficult to separate those aspects of robotic
research that are purel visual from those that are vision-like (for
example, tactile sensing) or vision-related (for example, integrated
vision-robotic s¥stems), all robotic research that is not purely
manipulative is isted. Areas of research that are 1identified are
low-level vision: theories i1nvolving stereo, data representations, and
applications to graphics; middle-level vision: regularized surface
reconstruction and stereo, sensory fusion, shape from dynamic shadowing,
and application to range data; spatial relations: representations of
objects and space, and theory and practice of navigation; parallel
algorithms: low- and middle-level vision theory, research and applications
on tree machines, and research and applications on pipelined machines;
and, Tfinally, robotics and tactile sensing: system development, and
multi-fingered object recognition.
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Summary  of image understanding research at the University of
Massachusetts

(AAYRISEMAN, EDWARD M.: (aB)HamsoN, ALLEN R.

Massachusetts Univ.,. Amherst. . (MK149394) Dept. of Computer and
Information science.

DACA76~85-C-0008: DACA76-86-C-0015: F30602-87-C-0140; N00Qd14-82-K-0464;
DMA800-85-C-0012; AF-AFOSR-0021-86;. NSF DCR-85-00332 In Science
Applications International Corp., Proceedings: Image Understanding
Workshop, Volume 1 p 62-72 (SEE N89-23074 16-61) 880400 p- 11 In: EN
(English) Avail: NTIS HC a2/ AOL p.2307

Several areas of research 1iIn the Image Understanding Program are
summarized, including: (1) knowledge-based vision; (2) database support
for symbolic vision processing; 3) motion processing; (4) perceptual
organization (grouging%; (5) 11mage understanding architecture; 6)
integrated vision benchmark for parallel architectures; and (7) mobile
vehicle navigation. A fundamental goal of the computer vision research
environment is the integration of a diverse set of research efforts into a
system that 1is ultimately intended to achieve real-time image
interpretation. Two major system integration efforts are the VISIONS
static interpretation system, which is a knowledge-based computer vision
system utilizing parallel modular processes that communicate via a
blackboard, and an autonomous mobile vehicle for navigation through a
partially known environment.
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Image understanding research at SRI International
{AA)Y FISCHLER, MARTIN A.; (aB)BOLLES, ROBERT C.

SRI International Corp., Menlo Park, CA. (5¢Y423852) Artificial
Intelligence Center.
MDA903-86-C-0084 ; DACA76-85-C~-0004 In Science Applications

International Corp., Proceedings: Image Understanding workshop, Volume 1 p
53-61 (SEE N89-23074 16-61) 880400 p. 9 In: EN (English) Avail: NTIS
HC a22/MF 201  p.2307

The Image Understanding research program is a broad effort spanning the
entire range of machine vision research. The progress in two programs is
described: the first is concerned with modeling the earth"s surface from
aerial photographs; the second is concerned with visual interpretation for
land navigation. In particular, the following are described: progress in
the design of a core knowledge structure; representing, recognizing, and
rendering complex natural and man-made objects; recognizing and modeling
terrain fTeatures and man-made objects in image sequences; interactive
techniques for scene modeling and scene generation; automated detection
and delineation of cultural objects in aerial imagery; and automated
terrain modeling from aerial imagery.
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USC image understanding research: 1987-1988
(AA)NBVATIA, RAMAKANT
Universitvy of Southern California. Los angeles. (U5203125) Inst. for

Robotics ani Intelligent Systems. ) )
DACA76-85-C-0009; F33615-87-C-1436 In Science Applications

International Corp., Proceedings: Image Understanding Workshop, Volume 1 p
13-16 (SEE wN89-23074 16-61) 880400 p. 4 1In: EN (English) avail: NTIS
HC a22/Mr AO1 p.2306

University of Southern California Image Understanding research grojects
are summarized and references to more detailed projects and papers are
provided. The work has focussed on the topics of: mappin? rom aerial
images, robotics vision, motion analysis for autonomous land vehicles
(AH¥), some general techniques, and parallel processing.
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MIT progress in understanding iImages
(AA) POGGTIO, T.

Massachusetts Inst. of Tech., Cambridge. (MJ700802) Artificial
Intelligence Lab.
In Science Applications International Corp., Proceedings: Image

Understanding Workshop, Volume 1 p 1-12 (SEE N89-23074 16-61) 880400 p.
12 In: EN (English) Avail: NTIS HC a22/MF AO1 p.2306

Work in the past year has concentrated on three main projects, each one
representing a com?lementary aspect of a complete vision system. The Ffirst
project = a parallel Vision Machine - has the goal of developing a system
for integrating early vision modules and computing a robust description of
the discontinuities of the surfaces and of their physical properties.
Additional goals of the project are the refinement of early vision
algorithms and their implementation on a massively parallel architecture
such as the Connection Machine System. The second project concerns visual
recognition; several schemes for model based recognition were developed
and i1mplemented. Finally, work has continued on autonomous navigation.
Around these main themes, additional work, at the theoretical and
implementation Hlevel, has been done in motion analysis, navigation,
Rhoﬁogrammetry, visual routines, and learning.
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Proceedings: Image Understanding Workshop, volume 1 / Annual Technical
Report, Feb. 1987 - Apr. 1988
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Science Applications International Corp., McLean, VA. (SD708880)
AD-A197558  1100014-36-C~0700; ARPA ORDER 5605 880400 p. 525 Workshop
held In Cambridge, MA, 6-8 Apr. 1988; sponsored by DARPA In: EN (English)
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This document contains the annual progress reports and technical papers
presented on the research activities iIin Image understanding at a workshop
conducted on 6 to 8 April 1988, in Cambridge, Massachusetts. Also included
are copies of iInvited papers presented at the workshop and additional
technical papers from the research activities which were not presented due
to lack of time but are germane to this research field. Topics discussed
include: intelligent systems, robotics, knowledge-based vision,
algorithms, pattern matching, feedback, tracking, autonomous navigation,
parallel processing, target recognition, data integration, motion
recognition, and 1Image analysis. For individual titles, see N89-23075
through N89-23114.
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Dynamic 1image interpretation for autonomous vehicle navigation ¢
Annual Report, 26 Feb. 1987 - 25 Feb. 1988

(AA)RISEMAN, EDWARD M.; (AB)HANSON, ALLEN R.

Massachusetts Univ.. Amherst. (MK149394) Dewt. of Comwuter and
Information Science.

AD-A204167; ETL-0516 DACA76-85-c-00d8 880900 p. 33 In: EN (English)
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The results of the project on Dynamic Image Interpretation for
Autonomous Land Vehicle (ALV) Navigation is presented for the time period
2/26/87 to 2/25/88. The purpose of the ALV project is to develop
algorithms and tools to enable a vehicle to navigate autonomously through
realistic landscapes. Contents: Visual Motion Analysis- Computation of the
Optical Flow Field; The Recovery of Environmental Motion and Structure
from a Mobile Vehicle; Alternatives to General Motion Analysis;
Stereoscopic Motion Analysis; Analysis of Constant General Motion;
Token-Based Approaches to Motion and Perceptual Organization; Mobile
Vehicle Navigation; Perceptual Organization (Grouping)- The Perceptual
Organization of Image curves; Extracting Geometric Structure; Database
Support for Symbolic vision Processing- 1sRL, ISR2, Generic views and
éggexing.
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Model-based orientation-independent 3-D machine vision techniques

(AAYDE FIGUEIREDO, R. J. P.: (ARYKEHTARNAVAZ., N.

St(%%) Rice University, Houston,® TX); (AB)(Texas A & M University, College
ation

Rice univ., Houston, TX. (RV347060)

NAG9-192; NAG9-208 (California Institute of Technology, Workshop on
Space Telerobotics, Pasadena, Jan. 1987) IEEE Transactions on Aerospace
and Electronic Systems (issN 0018-9251), vol. 24, Sept. 1988, p. 597-607.
Research supported by Texas Instruments, Inc. 880900 p. 11 refs 17 In:
EN (English) p.1037

Orientation-dependent techniques Tfor the identification of a
three-dimensional object by a machine vision system are represented in
parts. In the TFirst part, the data consist of iIntensity images of
polyhedral objects obtained by a single camera, while in the second part,
the data consist of range images of curved objects obtained by a laser
scanner. In both cases, the attributed graphic representation of the
object surface 1is used to drive the respective algorithm. In this
representation, a graph node represents a surface patch and a link
represents the adjacency between two patches. The attributes assigned tO
nodes are moment invariants of the corresponding face for polyhedral
objects. For range 1images, the Gaussian curvature is used as a
segmentation criterion for providing symbolic shape attributes.
Identification 1is achieved by an efficient graph-matching algorithm used
to match the graph obtained from the data to a subgraph of one of the
Togel graphs stored in the commputer memory.
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Automatic shape parametrisation in machine vision
(AA)LEAVERS, V. F_.; (aB)80oYcE, J. F.
Kings coll,, London.§England)- (kv801251) Dept. of Physics.
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In Optical Society America, Topical Meeting on Machine Vision p 93-96
(SEE wn89-139145 11-74) 800000 p- 4 In: EN (English) Avail: Issuing
Activity p.1591

A Tfully automatic, computational method is proposed which will allow
the extraction of parameters characterising various shape primitives in
the 1mage space from their shape indicative distributions 1iIn a two
dimensional parametric transform space. It is known that the parametric
transformation of image data allows space characterising parameters to be
determined. The usefulness of such methods is always qualified by the
erroneous assumption that 1its drawbacks are an exponential growth of
memory space requirement and computational cost as a function of the
number of parameters. A general method 1S presented which uses the
definition of a Radon transform as a means of defining a two dimensional
transform space 1i1n which i1nformation about shape primitives may be
simultaneously encoded. Examples are given illustrating how the shape
indicative distributions within the transform space may be deduced. The
results show that each set of coded information Is transparent to any
other and that each shape indicative distribution may be located using a
convolution mask peculiar to that distribution.
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Temporal pattern recognition

(AAyPRIEBE, CAREY E.; (AB)SUNG, CHEN-HAN

(AB)ESan Diego State Univ., CA.) )

Naval Ocean Systems Center, San Diego, CA. (NrR473437) Architecture and
Applied Research Branch.

AD-A200090; nosc/TD-1332 Prepared in cooperation with California univ.,
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A self-organizing network architecture for the Iearning T recognition
codes corresponding to temporal patterns 1is described. The problem
presents itself In many real-world situations. In any non-trivial
environment In which a proposed system will function the spectre of
temporal i1nformation (informationcoming into the ?¥stem over a period of
time) 1iIs evident. In many cases it 1Is not sufficient to process the
information independent of i1ts relative time-order. Disciplines as diverse
as speech recognition, robotics and data fusion/situation analysis require
that temporal aspect of the data be considered. In temporal environments
such as these the information lost when using a non-temporal approach can
be prohibitive. This approach is formulated to make use of this important
temporal information. The network described takes as its input individual
incoming events. Sequences of these events (letters, phonemes, or, more
abstractly, object sightings in a vision system), received by the system
over time are categorized as specific sequences by the temporal system.
The Temporal system produces Gaussian classifications that represent the
statistics of the temporal data, and the system uses a noisy environment,
giving as output a Gaussian distance Trom the stored sequence, thus
providing an analog measure of closeness of Tit to currently known
patterns.
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3-D vision techniques for autonomous vehicles
(AA)HEBERT, MARTIAL; (AB)KANADE, TAKEO; (AC)KWEON, INSO
Carnegie-Mellon Univ., Pittsburgh, PA. (CcH188052) Robotics Inst.
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ORDER 5351 880800 p. 68 1In: EN (English) Avail: NTIS HC ao4/MF AO1
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A mobile robot needs an internal representation of its environment in
order to accomplish its mission. Building such a representation involves
transforming raw data from sensors iInto a meaningful geometric
representation. In this paper, we iIntroduce techniques Tor building
terrain representations Tfrom range data for an outdoor mobile robot. We
introduce three levels of representations that correspond to levels of
planning: obstacle maps, terrain patches, and high resolution elevation
maps. since terrain representations from individual locations are not
sufficient for many navigation tasks, we also introduce techniques for
combining multiple maps. Combining maps may be achieved either by using
features or the raw elevation data. Finally, we iIntroduce algorithms for
combining 3-D descriptions with descriptions from other sensors, such as
color cameras. We examine the need for this type of sensor fusion when
some semantic information has to be extracted from an observed scene and
provide an example application of outdoor scene analysis. Many of the
techniques presented iIn this paper have been tested in the field cn three
mobile robot systems developed at CMU.
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Parallel architectures for vision

(AA)MARESCA, MASSIMO; (aB)LAVIN, MARK A.; (AC)LI, HUNGWEN

(AA) (Genova, Universita, Genoa, Italy); (aB)(iBM Thomas J. Watson
Research Center, Yorktown Heights, NY); (Ac) (1M Almaden Research Center,
San Jose, Ca)

IEEE, Proceedings (ISSN 0018-%219), wvol. 76, Aug. 1988, p. 3270-931,
IBM-supported research. 880800 p. 12 refs 103 In: EN (English) p-383

Options are examined that drive the design of a vision-oriented
computer, beginning with the analysis of the basic vision computation and
communication requirements. The classical taxonomy is briefly reviewed for
parallel computers, based on the multiplicity of the iInstruction and data
stream. A recently proposed criterion, the degree of autonomy of each
processor, is applied to further classify fine-grain SIMD
ﬁfingle-instruction, multiple-data-stream) massively parallel computers.
Three types of processor autonomy, namely, operation autonomy, addressing
autonomy, and connection autonomy, are identified. For each type, the
basic definition is given and some examples shown. The concept of
connection autonomy, which 1is believed to be the key point in the
development of massively parallel architectures for vision, 1S presented,
Two examples are shown of parallel computers featuring different types of
connection autonomy-the Connection Machine and the Polymorphic-Torus-and
their cost and benefits are compared.
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Adaptive machine vision / Annual Report
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science Applications International Corp., Billerica, Mass. (SD705905)
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The mission of the Strategic Defense Initiative is to develop defenses
against threatening ballistic missiles. There are four distinct phases to
the SDI defense; boost, post boost, midcourse and terminal. In each of
these phases, one or more machine vision functions are required, such as
pattern recognition, stereo image fusion, clutter rejection and
discrimination. In this document the SDI missions of coarse track, stereo
track and discrimination are examined from the point of view of a machine
gision system.
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Video road-following for the autonomous land vehicle

(AA) TURK, MATTHEW A.; (aB)MORGENTHALER, DAVID G.; (AC)GREMBAN, KEITH D.;
(AD) MARRA, MARTIN

(AD) (Martin Marietta Corp., Denver, co)

DACA76-84-C-0005 IN: 1987 IEEE International Conference on Robotics and
Automation, Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1
(A88-42626 17-63). Washington, DC, IEEE Computer Socie%g Press, 1987, p.-
273-280. 870000 p. 8 refs 15 In: EN (English) p.292

A description is given of the vision system for Alvin, the Autonomous
Land Vehicle, addressing 1in particular the task of road—following- The
system builds symbolic descriptions of the road and obstacle boundaries
using both video and range sensors. Road segmentation methods are
described for video-based road-following, along with_ approaches to
boundary extraction and the transformation of boundaries In the image
plane into a vehicle-centered three-dimensional scene model. Alvin has
performed public road-following demonstrations, traveling distances up to
4.5 km at speeds up to 20 xm/nr along a paved road, equipped with an RGB
video camera with pan/tilt control and a laser range scanner.
l1.E.




B-38

TYPE 1/4/72
Quest Accession Number : 88a42649

83242649 NASA [1AA Conference Paper lIssue 17

Structure and motion from two noisy perspective views (for mobile robot
navigation)

(AA)TOSCANI, G.; (AB)FAUGERAS, O. D.

(AB) (Institut National de Recherche en Informatique et en Automatique,
Le Chesnay, France)

IN: 1987 I1EEE International conference on Robotics and Automation,
Raleigh, NC, Mar. 31-Apr. 3, 1987, Proceedings. Volume 1 (ABS-42626
17-63). Washington, DC, IEEE Computer Society Press, 1987, p. 221-227.
870000 p. 7 refs 26 In: EN (English) p.2922

An acute problem of determining the motion from two perspective views
has to be solved iIn order to make mobile robot navigation work. Structure
from motion 1s needed in many applications including monitoring dynamic
industrial processes and image processing. It is known that existing
techniques Tor motion estimation perform poorly on real images, when the
image-point Teature are noisy. The authors describe robust techniques to
recover structure and movement from noisy images. Closed-form solutions
are derived for the case of general three-dimensional motion. These
solutions are used as initial estimates for another technique, called
reconstruction and reprojection. The authors also present a solution for
the case of planar motion, which is the case of a mobile robot moving over
a Tlat surface. These techniques have been tested on synthetic as well as
real 1images and the test results are described and compared with an
imEroved version of the Longuet-Higgins technique.
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Real-time model-based vision system for object acquisition and tracking
O(AA)WILCOX, BRIAN; (aB)GedNNERY, DONALD B. ; (ac)eoN, BRUCE; (AD)LITWIN,
TODD

(AD) (California Institute of Technology, Jet Propulsion Laboratory,
Pasadena)

Jet Propulsion Lab., California Inst. of Tech., Pasadena. (JJ574450)

IN: Optical and digital pattern recognition; Proceedings of the Meeting,
Los Angeles, <c¢a, Jan. 13-15, 1987 (a88-36301 14-63). Bellingham, wa,
society of Photo-Optical Instrumentation Engineers, 1937, p- 276-281.
870000 p. 6 refs 9 In: EN (English) ©.2273

A machine vision system iIs described which is designed to acquire and
track polyhedral objects moving and rotating in space by means of two or
more cameras, programmable image-processing hardware, and a
general-purpose computer Tfor high-level functions. The image-processing
hardware is capable of performing a large variety of operations on images
and on image-like arrays of data. Acquisition utilizes image locations and
velocities of the features extracted by the image-processing hardware to
determine the three-dimensional position, orientation, velocity, and
angular velocity of the object. Tracking correlates edges detected in the
current 1image with edge locations predicted from an internal model of the
object and its motion, continually updating velocity information to
predict where edges should appear in future frames. With some 10 frames
processed per second, real-time tracking is possible.
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Image understanding and the man-machine interface; Proceedings of the
Meeting, Los Angeles, CA, Jan. 15, 16, 1987

(AA) PEARSON, JAMES J.; (AB)BARRETT, EAMON

(AA) ED.; (AB)ED,

(aB) (Lockhzed Missiles and Space ¢o., Inc., Sunnyvale, CA)

SPI1E-758 Meeting sponsored by SPIE. Bellingham, wa, Society of
Photo-Optical Instrumentation Engineers (SPIE Proceedings. Volume 758),
1987, 191 p. For individual i1tems see A88-35989 to A88-35993. 870000 p.-
191 In: EN (English) Members, $33.; nonmembers, $43 p.2329

Various papers concerning image understanding concepts and models, iImage
understanding systems and applications, advanced digital processors and
software tools, and advanced man-machine iInterfaces are presented.
Individual topics addressed include: prospects for artificial neural
systems In vision computations, optical bidirectional associative
memories, model-based approaches for some image understanding problems,
strategic computing computer vision, organizing the landscape for Image
understanding purposes, 1Issues In 1Image registration, and smoothing
splines with discontinuities fTor 1image analysis. Also considered are:
connection machine vision applications, parallel processor for dynamic
image processing, LISP-based PC vision workstation, separation of form
perception and stereopsis, automating knowledge acquisition for aerial
image interpretation, toward an ideal three-dimensional CAD system, and
object-oriented image analysis.
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Vision-based road following in the autonomous land vehicle

(AA)seIpa, STEVEN; (aB)MORGENTHALER, DAVID G.; (AC)PODLASECK, MARK;
(aAD)DboucLas, BOB; (AE)ucswaIN, JON

(AE) (Martin Marietta Corp., Denver, CO)

DACA76-84-C=-0005 IN: IEEE Conference on Decision and Control, 26th, Los
Angeles, CA, Dec. 9-11, 1987, Proceedings. Volume 3 (a3s8-34702 13-63). New
York, Institute of Electrical and Electronics Engineers, Inc., 1987, p.
1814-1819. 870000 p. 6 In: EN (English) p.2164

The navigation system for Martin Marietta Denver Aerospace’®s autonomous
land vehicle project receives information from the vision system about
road boundaries and obstacle locations. This information is used iIn an
optimization equation to create trajectory points on the road. The
operation and the algorithms of the vision subsystem are described
briefly. The operation and algorithms of the navigation, or reasoning,
subsystem is then considered. An obstacle-avoidance navigator 1Is
?rgsented-
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Pattern recognition and natural language understanding by a computer (
Russian book)
Paspoznavanie obrazov i mashinnos ponimaniz estestvennogo iazyka
(AA)FAIN, VITALII SAMOILOVICH
Moscow, Izdatel’stvo Nauka, 1987, 176 p. In Russian. 870000 p. 176

refs 68 iIn: RU (Russian) p.o

An  approach to the problem of the interaction 1in the system
user-computer-production (or control) environment 1is presented for the
case of a stationary environment. It is shown that problems in a number of
areas of computer science, such as artificial intelligence, natural
language understanding, and half-tone computer vision, are reduced In the
case of stationary environments to pattern recognition problems, which in
many cases provides for more efficient solutions. Data on the practical
applications of the methods described here are presented.

V.L.
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Applications of artificial intelligence to rotorcraft

(AA)ABBOTT, KATHY H.

(AA) (NASA, Langley Research Center, Hampton, VA)

National Aeronautics and Space Administration. Langley Research Center,
Hampton, Va. (ND210491)

IN: AHS. Annual Forum. 43rd, Saint Louis. MO. Mav 18-20. 1987.
Proceedings. Volume 2 (A88-22726 07-01). Alexandria; VA, American
Helicopter Society, 1987, p. 1011-1019. 870000 p. 9 refs 17 In: EN

(English) p. 1084

The application of Al technology may have significant potential payoff
for rotorcraft. In the near term, the status of the technology will limit
its applicability to decision aids rather than total automation. The
specific application areas are categorized into onboard and nonflight
aids. The onboard applications include: fault monitoring, diagnosis, and
reconfiguration; mission and tactics fplanning; situation assessment;
navigation aids, especially in nap-of-the-earth flight; and adaptive
man-machine interfaces. The nonflight applications include training and
maintenance diagnostics.
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The cortex transform - Rapid computation of simulated neural Images

AA)NVATSON, ANDREW B.

EAA (NASA, Ames Research Center, Moffett Field, CA)

National Aeronautics and Space Administration. Ames Research Center,
Moffett Field, Calif. (NC473657)

Computer Vision, Graphics, and Image Processing (ISSN 0734-189%X), vol.
39, Sept. 1987, p. 311-327. 870900 p. 17 refs 31 1In: EN (English) p.
852

With a_ goal of providing means for accelerating the image processing,
machine vision, and testing of human vision models, an image transform was
designed, which makes 1t possible to map an Image Into a set of Images
that vary in resolution and orientation. Each _pixel iIn the output may be
regarded as the simulated response of a neuron iIn human visual cortex.” The
transform is amenable to a number of shortcuts that greatly reduce the
amount of computation.
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Proceedings of Image Understanding Workshop, volume 2 / Annual Report,
Dec. 1985 - Feb. 1987

(aA) BAUMANN, LEE S.

Science Amwlications International Corw., McLean. va. (SD708830)

AD-AL86104 NOD0O14-86~C-0700; ARPA ORDER 5605 870200 p. 613 Workshop
held iIn Los Angeles, calif., 23-25 Feb. 1987 1In: EN (English) Avail:
NTIS HC a99/Mr AO1L p.902

The partial contents of the Proceedings of the Image Understanding
Workshop are as follows: Guiding an Autonomous Land Vehicle Using
Knowledge-Based Landmark Recognition; The Image Understanding
Architecture; Initial Hypothesis Formation in Image Understanding Using an
Automatically Generated Knowledge Base; What 1s a Degenerate View;
Recognizing Unexpected Objects: A Proposed Approach; Minimization of the
Quantization Error in Camera Calibration; Tracin? Finite Motions Without
Correspondence; The Formation of Partial 3D Models from 2D Projections -
An Application of Algebraic Reasoning; Qualitative Information in the
Optical Flow; Detecting Blobs as Textons in Natural Images; and Parallel
optical Flow computation.
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An emergency command recognizer for voiced system control

(AAYWEDTRRLIND, P.; (aB)JoHwnsTon, WAYMON L.

(ad) (California State University, Bakersfield); (aB)(Texas A & M
University, College Station)

IN: SAFE Association, Annual Symposium, 24th, San Antonio, X, Dec.
11-13, 1986, Proceedings (A8s5-13376 03-54). dewhall, CA, SAFE Association,
1987, p- 181-184. 870000 p- 4 refs 16 In: EN (English) p.313

An algorithm for accepting speaker-independent voiced input, aimed
especially at accommodating emergency acoustic commands, s described. The
algorithm is directed toward correctly identifying commands from
speaker-independent acoustic input using machine recognition of common,
standarized phonemic input, using these recognized sounds to reconstruct
entire words and phrases. Speaker-dependent phonemes are not used during
the command reconstruction process, so that speaker idiosyncracies are
accommodated. Machine recognition extends to voice pitch and emotional
tension characteristics.
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Associative network applications to low-level machine vision
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(AA) (Hughas Image and Signal Processing Laboratory, El Segundo, CA);
(ac) (I8M Los Angeles Scientific Center, CA)
Applied Optics (ISSN 0003-6935), vol. 26, May 15, 1987, p. 1919-1926.
870515 p. 8 refs 15 In: EN (English) ©p.3054

This paper explores the application of a parallel computational model,
the associative network, to problems in low-level machine vision. A formal
description of the associative network model is presented. Then
associative networks are designed for performing Boolean functions, edge
detection, and the Hough transform. Associative networks feature very
flexible processor interconnections. The flexible processor
interconnections allow for parallelism in the algorithm design beyond what
is feasible in other parallel computational models. This work demonstrates
that image processing transformations, often too slow to be practical on a
sequential machine, can be executed rapidly with associative networks.
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Computational themes i1n applications of visual perception

(AA) JAIN, RAMESH; (AB)SCHUMCK, BRIAN G.; (AC)WEYMOUTH, TERRY
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AIAA  PAPER 87-1674 AlAA, NASA, and USAF, Symposium on Automation,
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Arlington, VA, Mar. 9-11, 1987. 10 p. 870300 p. 10 refs 47 In: EN
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The paper summarizes the current research iIn the Computer Vision
Research Laboratory at the University of Michigan. The [laboratory
concentrates on developing generic vision algorithms for _industrial
applications. Generic vision algorithms can be applied to a wide variety
of iInspection problems. The paper includes a discussion of the current
state of the machine vision 1Industry and provides recommendations for
impgoving the transfer of vision technology from research to practice.
Author
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Representation and control in the interpretation of complex scenes /
Final Scientific Report, 1 Oct. 1984 - 30 Sep. 1985

(aayHaNsow, ALLEN R.; (AB)RrRIsEMaM, EDWARD M.

Massachusetts Univ., Amherst. (MK149394) Dept. of Computer and
Information science.
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The system being developed, called VISIONS, i1s an investigation into
issues of general computer vision. The goal i1s to provide an analysis of
color images of outdoor scenes, from segmentation through symbolic
interpretation. The output of the system is intended to be a symbolic
representation of the three-dimensional world depicted in the
two-dimensional image, including the naming of objects, their placement in
three-dimensional space, an the ability to predict from this
representation the rough appearance of the scene from other points of
view. The emphasis of the research over the past year has been on three
issues critical to furthering our understanding of machine vision. The
first area addresses the issue of Image segmentation and the failure of
recent research to provide robust procedures applicable to complex
imagery. The second area focusses on the use of domain knowledge In the
interpretation task. The third area focusses on techniques for controlling
the use of system resources during interpretation and on ways of resolving
gonflicting partial interpretations.

RA




B-44

TYPE 1/4/85
Quest Accession Number : 87N23017
87N23017# NASA STAR Technical Report Issue 16
Computer vision research and its applications to automated cartography
/ Final Report, 11 Jun. 1984 - 31 May 1986
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The SRI Ima?e Understanding program 1is a broad effort spanning the
entire range of machine vision research. Three major concerns are: (1) to
develop a computational description of the physics and mathematics of the
vision process; (2) to develop a knowledge-based framework for
interpreting sensed (imaged) data; and (3) to develop a machine-based
environment for effective experimentation, demonstration, and evaluation
of our theoretical results, as well as providing a vehicle for technology
transfer. This final report summarizes progress 1In these and related
areas.
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Domain-dependent reasoning for visual navigation of roadways
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A Visual Navigation System for Autonomous Land Vehicles includes several
modules, among them a Knowledge-based Reasoning Module that is described
in this report. This module utilizes domain-dependent knowledge (in this
case, road knowledge) in order to analyze and label the visual features
extracted from the imagery by the Image Processing Module. Knowledge and
general hypotheses are given in Section 2. The Reasoning Module itself is
described 1in Section 3 and results are presented in Section 4. Finally,
some conclusions are proposed in Section 5.
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Biological visual systems structures fTor machine vision applied to
robotics / Final Report, 15 Sep. 1984 - 31 Jan. 1986

(2A) INIGO, R. M.; (AB)HSIN, C. H.; (AC)NARATHONG, C.; (AD)MCVEY, E. S_.;
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This report describes the research on a biological visual system (BVS)
based sensor with possible applications to robotics and automation. The
report covers the following subjects: sensor configuration; edge dstection
modeling for the human visual system and edge detection using the BVS
sensor. qualitative motion detection using the BVS; target tracking
algorithms for the BVS; and microsaccadic eye movement in the human visual
system (HVS).
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Novel architectures for iImage processing based on computer simulation
and psychophysical studies of human visual cortex / Final Report, 15
Apr. 1983 - 15 Apr. 1985
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This final report consists of two parts. The first part iIs a computer
simulation of the functional architecture of the visual cortex, and an
examination of the possible significance that this architecture may have
for understanding both human visual computation and machine vision. The
second part of this report 1is a psychophysical investigation of human
shape perception in terms of boundary descriptors of curvature.
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Exploiting sequential phonetic constraints iIn recognizing spoken words

(AA) HUTTENLOCHER, D. P.
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Machine recognition of spoken language requires developing more robust
recognition algorithms. A recent study by shipman and Zue suggest usin
partial descriptions of speech sounds to eliminate all but a handful o
word candidates from a large lexicon. The current paper extends their work
by investigating the power of partial phonetic descriptions for developin%
recognition aI?orithms- First, we demonstrate that sequences of manner o
articulation classes are more reliable and provide more constraint than
certain other classes. Alone these results are of limited utility, due to
the high degree of variability iIn natural speech. This variability is not
uniform however, as most modifications and deletions occur In unstressed
syllables. Comparing the relative constraint provided by sounds in
stressed versus unstressed syllables, we discover that the stressed
syllables provide substantially more constraint. This indicates that
recognition algorithms can be made more robust by exploiting the manner of
articulation information in stressed syllables.
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Machine vision and the OMV
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2388
The orbital Maneuvering Vehicle (oMv) is intended to close with orbiting
targets for relocation or servicing. It will be controlled via video

signals and thruster activation based upon Earth or space station
directives. A human operator is squarely in the middle of the control loop
for close work. Without directly addressing future, more autonomous
versions of a remote servicer, several techniques that will doubtless be
important in a future increase of autonomy also have some direct
application to the current situation, particularly in the area of image
enhancement and predictive analysis. Several techniques are presantet, and
some few have been implemented, which support a machine vision capability
proposed to be adequate for detection, recognition, and tracking. Once
feasibly implemented, they must then be further modified to operate
together 1in real time. This may be achieved by two courses, the uge oOF an
array processor and some initial steps toward data reduction. The
methodology or adapting to a vector architecture 1is discussed in
preliminary form, and a highly tentative rationale for data reduction at
the front end is also discussed. As a by-product, a working implementation
of ﬁhe most advanced graphic display technique, ray-casting, is described.
Author
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Hierarchical multisensor image understanding / Final Report, Oct. 1983
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This report describes the research results on Honeywell®s Hierarchical
Multisensor Image Understanding program. Honeywell is developing a unified
framework for the different hierarchical levels of Image processing such
as segmentation, detection, classification, and identification of outdoor
scenes and across different sensor modalities such as millimeter wave,
infrared, and visible. Current activities on the project are reviewed
under the following headings: (@) A Survey of Multisource Information
Fusion Systems; (2) The Role of Structure in Human and Machine Perception;
(3 A Knowledge Based Image Segmentation System; (4) The Use of "Optical
Flow as a Depth Cue in Scene Analysis; and (5) Belief Maintenance for A
Fuzzy Reasoning System.
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The computational framework offered iIn this paper addresses, in a
unified way, certain visual information processing tasks_involved in the
representation of visible surfaces. Particular emphasis 1is placed on
utilizing highly parallel, cooperative processing to integrate surface
shape information over multiple visual sources, to fuse it across a
multiplicity of spatial resolutions, and to maintain the global
consistency of the resulting distributed shape representations. The 1ssues
are Tirst investigated in terms of a surface reconstruction model rooted
in mathematical physics. This formal analysis is augmented by an empirical
study of the resulting algorithms, which feature multiresolution iterative
processing within hierarchical surface shape representations. The approach
is_ guided by current knowledge of how humans perceive visible surfaces,
while applications in machine vision provide a testbed for the algorithms.
GRA
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Machine perception of visual motion

(AA) BUKTON, . F.; (AB)MURRAY, D. W.; (AC)BUXTON, H.; (AD)WILLIAMS, N.
S.

(AB)(General Electric Co., PLC, Research Laboratories, Wembley, England)
; (AD) (Queen Mary College, London, England)

GEC Journal of Research ISSN 0264-9187), wvol. 3, no. 3, 1985, p.
145-161. Research supported the Ministry of Defence (Procurement
Executive). 850000 p- 17 refs 66 In: EN (English) p.0

An attempt at devising a system for using visual motion to obtain
three-dimensional information  at the level of Marr's (1982)
two-and-one-half-dimensional sketch 1is described. The algorithm proposed
can be implemented efficiently on an SIMD processor array and in the ideal
case of a direct 1:1 mapping of the image pixels onto the processor array
run at speeds approaching real-time video frame rates. The _processing
scheme has a potential for performing a multiple regression by introducing
new surface and motion parameters to explain variations in the visual
motion data and thus can be adapted for a segmentation procedure based on
the description of the visible surfaces.

1.8.




B3-48

TYPE 1/4/94
Quest Accession Number : 86A17019

86217019 NASA 1AA Meeting Paper Issue 05

Pattern recognition and artificial intelligence; French Congress, 4th,
Paris, France, January 25-27, 1984, Lectures. volumes 1 & 2

Reconnaissance des formes et intelligence artificielle; Congres
Francais, 4th, Paris, France, January 25-27, 1984, Conferences. Volumes 1
& 2

Congress sponsored by the Ministere de 1’/Industrie et de la Recherche,
Association Nationale du Logiciel, and International association for
Pattern Recognition. Le Chesnay, France, Institut National de Recherche en
Informatique et en Automatique, 1984. Vol. 1, 579 p.; vol. 2, 524 p, In
French. For individual items see A86-17020 to A86-17024. 840000 p. 1103

In: FR (French) ©p.0

Two broad topics are addressed: (1) the processing, analysis, and
understanding of images; and (2) the analysis and Understanding of words.
Particular consideration 1is given to image segmentation; scene analysis;
the representation and analysis of two- and three-dimensional forms;
industrial vision; and special architectures. Attention is also given to
the understanding of natural languages, programming languages, learning
theory, and expert systems.

B.J.
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Selected publications iIn image understanding and computer vision from
1974 to 1983

(AAYVERLY, J. G.

Lincoln Lab., Mass. Inst. of Tech., Lexington. (LQ054005)

AD-A1561956; TR-716; ESD-TR-85-180 F19628-85-C-0002; ARPA ORDER 4881
850418 p. 100 1In: EN (English) Avail.: NTIS HC aos/Mr AO1l p.4136

A list of selected publications in image understanding and computer
vision is presented. The Ulist was compiled as part of work for the
DARPA-sponsored Autonomous IR Sensor Technology program, and the choice oOF
references was directly influenced by the needs of that program.
Therefore, emphasis was placed on theories, techniques, and systems for
interpreting complex imagery; the more classical fields of image
processing, e.q., filtering, enhancement, restoration, coding, and
reconstruction, were not included. The topics of edge detection and region
segmentation as well as the well-known scene analysis problems of shape
recognition from stereo, shading, texture, and motion were also excluded.
The bibliography covers the last decade (1974-1983) and is based on the
yearly surveys published by A. Rosenfeld in the Journal initially called
Computer Graphics and Image Processing (CGIP) and now Computer Vision,
ggiphics, and Image Processing (CVGIP).
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Optics for machine vision

(AA) sTRAND, T. C.

(Ad) (I1BM Research Laboratory, San Jose, CA) )

IN: Optical computing; Proceedings of the Meeting, Los Angeles, CA,
January 24, 25, 1984 (A85-24990 10-60). Bellingham, WA, PIE - The
International Society for Optical Engineering, 1984, p. 86-93. 840000 p.
8 refs 23 1In: EN (English) ©p.0

Current developments in manufacturing technologies have caused a demand
for automated inspection and assembly tools. A key requirement regarding
such tools is related to machine vision. The term "machine vision®, as
used In this discussion, includes any automated acquisition of information
via optical sensors. The prima information to be sought with vision
systems is spatial information. The normal detection scheme provides all
but one of the generally desired variables. The variable not provided is
the longitudinal position variable. Information regarding this variable is
called “range information®. The present investigation is mainly concerned
with the means of acquiring the range variable. Attention iIs given to
geometric range measurement techniques, time-of-flight range measurement
techniques, interferometric techniques, and diffraction range measurement
techniques.

G-R.
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s4a44308 NASA 1AA Journal Article lIssue 21

Parallel processing In machine vision

(AA) STERNBERG, S. R.

(AA) (Machine Vision International, Ann Arbor, MI)

Robotica (ISSN 0283-5747), wvol. 2, Jan. 1984, p. 33-40. 840100 p. 8
refs 21 In: EN (English) o.3102

Machine vision systems incorporating hi%hly parallel processor
architectures are reviewed. A new processor architecture, the image flow
computer, iIs presented iIn detail. An interactive image processin
programming language based on mathematical morphology is then presented.
detailed example of the use of the system for the inspection of a
Rarﬁicular industrial part concludes the presentation.

uthor
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Machine vision: Three generations of commercial systems /; Interim
Report
(A&) CROWLEY, J. L.
Carnegie-Mellon Univ., Pittsburgh, Pa. (cH188052) Robotics Inst.
AD-A139037; CMU-RI-TR-84-1 840125 p. 40 In: EN (English) Avail.:
NTIS HC ao3/MF AO1l p.2024

Since 1980, machine vision systems for iIndustrial application have
enjoyed a rapidly expanding market. The first generation machines are
two-dimensional binary vision systems, patterned after the srI Vision
Module. These systems will soon be joined by a second generation, based on
edges description techniques. Both the first and second generation systems
are pattern recognition machines. Research In machine vision is leading
towards vision systems that will be able to dynamically model the
three-dimensional (3-D) surfaces in a scene. This research will lead to a
third generation of vision systems which will provide a dramatic increase
in capabilities over the Tfirst two generations. This article describes
these three generations of vision systems. The algorithms, data
structures, and hardware architecture are presented for binary vision
systems and edge-based systems. A framework is presented for the research
problems which must be solved before a commercial vision system can be
produced based on dynamic 3-D Scene analysis techniques.

Author (GRA)
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Machine vision for robotics

(aAA)corBY, N. R., JR.

(AA) (GE Corporate Research and Development Center, Schenectady, nY)

IEEE Transactions on Industrial Electronics (ISSN o0273-0046), vol.
'%5%?’ Aug. 1983, p. 282-291. 830800 p. 10 refs 14 In: EN (English)
p-3135

When applied to robotic tasks, computer or machine vision involves time
and space interactions among manipulators, tools, and objects i1n the work
space. Such vision must ultimately be three-dimensional. Attention is
given to Tfundamental characteristics of machine vision processing for
binary, grey, and fully three-dimensional cases, and the architectures and
control structures for several different vision processing approaches are
explored.

0.C.
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Perceptual capabilities, am

(AA)GINSBURG, A. P.

(AA) (USAF, Aviation Vision Laboratory, Wright-Patterson AFB, OH)

AD-3A10%364; AFAMRL-TR-81-142 In: 3-D machine perception; Proceedings of
the Conference, Washington, DC, April 23, 24, 1981. (A83-13444 03-35)
Bellingham, WA, SPIE - The International Society for Optical Engineering,
1981, p. 78-82. 810000 p. 5 refs 11 In: EN (English) p.383

gurties, and artifacts in man and machine

Certain advances iIn visual science suggesting that perception may be
structured from a hierarchy of filtered images are summarized. It is shown
that a small numbered set of 1Images created from TfTilters based on
biological data can provide a rich array of information about any object:
contrast, general Tform, identification, textures and edges. It 1is
contended that machine perception will require similar parallel processing
of an array of fTiltered images 1i1f human-like visual performance is
reqguired. Such visual problems as certain visual i1llusion, multistable
objects, and masking are analyzed iIn terms of the Ilimitations of
biological filtering. Machine solutions to these problems are then
discussed.

C-R.
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3-D machine perception; Proceedings of the Conference, Washington, DC,
April 23, 24, 1981

(AAYALTSCHULER, B. R.

(AA) (ED.)

(aa) (usar, School of Aerospace Medicine, Brooks AFB, TX)

Conference sponsored by SPIE - The International Society for Optical
Engineering. Bellingham, WA, SPIE - The International Society for Optical
Engineering (SPIE Proceedings. Volume 283), 1981. 145 p. (For individual
items see A83-13445 to A83-13450) 810000 p- 145 In: EN (English)
MEMBERS, $31.; NONMEMBERS, $37 p.324

Topics discussed include three-dimensional surface mapping and analysis,
applications and interfacing, and the three-dimensional display of
internal structures. Papers are presented on coherent optical methods for
ipplications in_ robot visual sensing; real-time three-dimensional vision

or parts acquisition; perceptual capabilities, ambiguities, and artifacts
in man and machine; and a computerized anatomy atlas of the human brain.
Attention 1s also given to noncontact visual three-dimensional ranging
devices, to the application of digital image acquisition In anthropometry,
to an overview of data acquisition and processing for three-dimensional
displays of internal structures, and to a three-dimensional viewing device
for examining internal structure.
C.R.
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Feature ldentification and Location Experiment

(AA)SIVERTSON, W. E., JR.; (AB)WILSON, R. G.; (AC)BULLOCK, G. F.;
(AD)SCHAPPELL, R. T.

(AC) (NaAsa, Langley Research Center, Hampton, VA); (AD)(Martin Marietta
Aerospace, Denver, CO)

National Aeronautics and Space Administration. Langley Research Center,
Hampton, Va. (ND210491)

Science, vol. 218, Dec. 3, 1982, p. 1031-1033. NASA-supported research.

821203 p- 3 refs 5 In: EN (English) p.357

The Feature Identification and Location Experiment (FILE), which was
flown on the second Space Shuttle flight to test a technique for
real-time, autonomous classification of water, vegetation and bare land as
well as clouds, snow and ice, senses earth radiation in spectral bands
centered at 0.65 and 0.85 microns. The radiance ratio classification
algorithm has successfully made automatic data selection decisions. A
classification 1iImage obtained on the mission is providing data needed to
evaluate the FILE algorithm and overall system performance.

0.C.
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Fast adaptive algorithms for low-level scene analysis - Applications of
polar exponential grid /PEG/ representation €0  high-soeed,
scale-and-rotation invariant target segmentation

(AA) SCHENKER, P. s.; (AB)WONG, K. M.; (AC)CANDE, E. G.

(AC) (Brown University, Providence, RI)
In:  Techniques and applications of image understanding; Proceedings of

the Meeting, Washington, DC, April 21-23, 1981. (A83-12875 02-35)
Bellingham, WA, SPIE - The International Society for Optical Engineering,
1981, p. 47-57. 810000 p. 11 refs 18 In: EN (English) p.181

This paper presents results of experimental studies in image
understanding. Two experiments are discussed, one on image correlation and
another on target boundary estimation. The experiments are demonstrative
of polar exponential grid (PEG) representation, an approach to sensory
data coding which the authors believe will Tfacilitate problems in
three-dimensional machine perception. The discussion of the image
correlation experiment is largely an exposition of the PEG-representation
concept and approaches to its computer implementation. The presentation of
the boundary finding experiment introduces a new robust stochastic,
parallel computation segmentation algorithm, the PEG-Parallel Hierarchicai
Ripple Filter (PEG-PHRF).

(Author)
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Application of image understanding to automatic tactical target
acquisition

(AA)HELLAND, A. R.; (AB)WILLETT, T. J.; (AC)TISDALE, G. E.

(AC) (Westinghouse Electric corp., Systems Development Div., Baltimore,
MD)

In: Techniques and applications of image understanding; Proceedings of
the Meeting, Washington, DC, April 21-23, 1981. A83-12875 02-35)
Bellingham, WA, SPIE - The International Society for Optical Engineering,
1981, p- 26-31. 810000 p. 6 refs 15 In: EN (English) p.133

Real-time equipment has been developed and 1is now being tested for
automatic recognition of targets on an individual basis. The recent use of
frame-to-frame iIntegration techniques has significantly improved the
classification performance with this equipment to the point where the
human iInterpreter can sometimes be surpassed. For some imagery, however,
initial target segmentation remains unsatisfactory, causing targets to be
missed, and the level of false alarms may be too high. As a result, more
sophisticated 1image processing techniques are now being addressed which
could provide a comprehensive understanding of overall Image content.
These 1nclude the use of such scene analysis operations as the derivation
of motion vectors for passive ranging, false alarm discrimination, and
detection of target motion. Additional areas of interest lie In the
“"intelligent™ tracking of multiple targets, and the autonomous nhandoff OF
targets between sensors. The paper discusses the evolution of these areas,
and their probable iImpact on the target acquisition process. It also
addresses their impact on hardware implementation.

(Author)
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Symbolic pattern matching for target acquisition

(AAYNARBNDRA, P. M.; (A3)GRABAU, J. J.; (AC)WESTOVER, B. L.

(AC) (Honaywell Systems and Research Center, Minneapolis, MN)

DAAK70-79-C-0114 In: Conference on Pattern Recognition and Image
Processing, Dallas, TX, August 3-5, 1981, Proceedings. (A33-11409% 01-63)
New York, Institute of Electrical and Electronics Engineers, Inc., 1981,
p. 481-486. 810000 p- 6 refs 16 In: EN (English) p.8

This paper describes a symbolic pattern matchin? system for autonomous
target acquisition, which_ requires matching widely disparate views of a
scene. The pattern matching system exploits both the object-to-object
similarities iIn the two images and the consistency of configurations of
candidate matches. The consistency i1s evaluated under a general
transformation which accounts. for a large difference in_ _the sensor
B03|t|ons between the two views. The matching of the symbolic features
etween the two Images is cast In a combinatorial framework. An efficient
branch and bound algorithm is developed to find the best match optimizing
the criterion function, which measures the goodness of a candidate match.
The result of applying the pattern matching system simulation to several
pairs of real Infrared images are presented both to illustrate the
approach and to quantify i1ts performance.

Author)
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Flight plan filing by speech recognition / Final Report
(AAd)sHocHET, E,; (AB)QUICK, P.; (AC)DELEMARRE, L.
Federal Aviation Administration, Atlantic City, N.J. (FI751336)
Technical Center.
DOT/FAA/RD-32/39; DOT/FAA/CT-81/64 FAA PROJ. 131-402-540 820700 p. 67
In: EN (English) Avail.: NTIS HC ao4/MF AO1 p.3080

automatic Flight plan Ffiling by machine recognition is discusssed. The
utterance recognition device (URD) was upgraded in preparation for testing
the capabilities of voice input for automatic flight plan filing. The URD
was modified to include more reliable components, where advisable, and a
larger memory to handle the expanded vocabulary. In addition, a dialect
study was conducted to determine the locations for collecting a nationally
representative voice sample in order to create reference patterns capable
of performing well on all American dialects. Subsequently, over 5,000
voices from 24 cities throughout the United States were collected and
processed. Initial tests were conducted in which subjects filed simulated
flight plans directly into the URD over the telephone. The results
indicated that the prototype system, as demonstrated using the adaptation
strategy for flight plan filing, has definite potential for application in
Model two of the flight service automation program. Moreover, a comparison
between the old and new recognition algorithms indicates that the
improvement in accuracy with the new data base raises the performance of
the mass weather dissemination program to a level quite satisfactory for
the general pilot population.
S.L,
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Image processing design for autonomous acquisition of targets

(ad)BoYD, W. W.; (AB)MACPHERSON, C. A.; (AC)TAYLOR, J. L.; (AD)TASKETT,
J. M.; (AB)LINEBERRY, M. C.

(AE) (Texas Instruments, Inc., Dallas, T¥)

In:  SOUTHEASTCON “81; Proceedings of the Region 3 Conference and
Exhibit, Huntsville, AL, April 5-8, 1981. (A31-4467s 21-31) Piscataway,
NJ, Institute of Electrical and Electronics Engineers, Inc., 1981, o.
285-290. 810000 p. 6 In: EN (English) p-3617

Primary considerations in designing an image-processing system that can
autonomously acquire high-value tactical targets are discussed. Attention
is given to establishing rzguirements, and the implications «f these
requirements on the iImage-processing algorithms are analyzed. It is
pointed out that through these steps, detection and acquisition times can
be estimated and, hence, algorithm processing times established. The
results of certain candidate algorithms that show promise of meeting
mission goals are presented. The design process described takes account of
the geographical and climatological features of the area of intended use.
Aircraft maneuverability and human factor limits are also considered in
establishing system requirements. Analysis shows the Teasibility and
desirability of employing the seeker and terrain features to cue the
aircraft to the target.

C-R.
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Model-based scene matching

(AAYTSENG, D. Y.; (aB)coNTI, D. K.; (AC)ECKHARDT, W. O-; (AD)OLIN, K. E.
T (AB)MCCULLOH, T. A.: (AF)NEVATIA, R.

(AD) (Hughes _Research® Laboratories, Malibu, CA); (AE)(Hughes Aircraft
Co., Culver City, <CAa)

F33615-77-C-1227 In: Image wrocessins for missile gquidance; Proceedings
of the Seminar, san Diego; ca, July 29-August 1, 1980. (A81-39326 13-04)
Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1980,
p- 225-231. 800000 p. 7 refs 5 In: EN (English) p.3068

Advanced pattern matching techniques were developed that are capable of
matching complex terrain scenes for use in midcourse navigational updating
of aircraft and missiles. This method utilizes key features In an image to
represent scene content. The key features are converted into a line-based
model, which is then used 1iIn the actual matching process. The
pattern-matchin approach 1is more tolerant of scene diversities than are
correlation techniques, and it can match scenes containing severe contrast
reversal, small prominent features, or scale and orientation differences.
Both high- and low-altitude Flight profiles are considered, with matches
performed for each case. Comparisons with conventional correlation are
made for a variety of scenes.

(Author)
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Application of exact area registration to scene matching

(AAYMERCHANT, J.

(AA) (Honeywel l Electro-Optics Center, Lexington, MA)

DAAK40-78-C-0144 In: Image processing for missile guidance; Proceedings
of the Seminar, San Diego, CA, July 29-August 1, 1980. (A81-39326 18-04)
Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1980,
p. 166-177. 800000 p. 12 1In: EN (English) p.3128

A description is given of the Exact Area Registration process, which can
be wused to remove all geometric distortions in autonomous scene-matching
systems. It is shown that match noise statistics can be approximated by a
set of functions, each one corresponding to an a priori designated region
of the reference image. These functions define the confidence level of the
scene model as depicted in the reference image within the corresponding
image. It is suggested that, for autonomous scene matching under a wide
range of conditions, an autonomous smart sensor needs a "knowledgeable*®
reference which will not onl predict the expected conditions of the
sensed image but also define the confidence levels of the prediction. In
this way, the autonomous device can make match jJudgements in a way
analogous to that of a human scene matcher.

0.C.




B3-50

TYPE 1/4/110
Quest Accession Number : 80N17755

80N17755# NASA STAR Thesis Issue 08

studies in 1image segmentation algorithms based on histogram clustering
and relaxation / ph.D. Thesis

(AA)NAGIN, P. A.

Massachusetts Univ., Amherst. (MK149394) Dept. of Computer and
Information Science.

aD-A076576; COINS-TR-79-15 N00014-75-C-0459 790900 p. 183 refs O
In: EN (English) Avail.: NTIS HC aosg/MF 201 p.1052

The research 1iIn this thesis has focussed upon the algorithms and
structures that are sufficient to generate an accurate description of the
information contained 1in a relatively complex class of digitized images.
This aspect of machine vision is often referred to as /low-level’ vision
or segmentation, and usually includes those processes which function close
to the sensory data. The bpulk of this thesis devotes itself to the
exploration of some of the problems typically encountered in segmentation.
In addition, a new and robust algorithm is presented that avoids most of
these problems. The analysis is carried out through the use of a series of
computer-generated tests images with known characteristics. Segmentation
algorithms of varying degrees of complexity are aPplied to each image and
their performance is carefully evaluated. It will be shown that even the
most sophisticated algorithms that are currently in use often perform
poorly  when confronted with certain apparently simple 1images. In
particular, It is shown that techniques which rely on histogram clustering
often generate (gross segmentation errors due to overlap 1in the
distributions of the individual objects in a scene. Moreover, the
relaxation processes used to correct these errors are themselves prone to
errors, but of a different kind. Both techniques, clustering and
relaxation, fail because they are based on information which is toco global
to be effective in complex scenes.

GRA
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Vocabulary specification Ffor automatic speech recognition in aircraft
cockpits / Final Report, Sep. 1978 - Jun. 1979

(AA)PETERSEN, R. J.; (AB)LEE, N.; (ac)meyN, C.; (AD)REGELSoON, E.;
(AE)SATZER, W.
Logicon, 1Inc., San Diego, Calif. (L3152614) Tactical and Training

Systems Div.
AD-A073703  N00014-78-C-0692 790831 p. 92 refs 0 In: EN (English)
Avail.: NTIS HC aos/MF AO1 p.592

The general Tocus of this research was to design a communication media
(a vocabulary) that is advantageous to both machine recognition and human
production of speech events. The problem was analyzed from a human factors
perspective that centered upon the man-computer dialogue (interaction)
required for cockpit application of ASR. The results indicated that phrase
familiarity and stimulus familiarity had major impact on the learning and
utilization of the phrases in the palred-associate task. Phrase length and
meaningfulness did not appear to differentially affect either the learning
or utilization of the pailred associate. In addition, pretraining of
stimullus TfTamiliarity did not seem to vresult in improved performance.
Acoustic lexical confusability also was discussed in (general
methodological terms. The results of the study were interpreted in terms
of a contextualist viewpoint with the necessity of a broader contextual
manipulation being pointed out as a requirement for further research.

GRA
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An environment and system for machine understanding of connected speech
/ Ph.D. Thesis

(AA) BRMAM, L. D.

Stanford Univ., Calif. (560380476
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A description is given of part of the research which led to the
development of the TfTirst demonstrable live system for machine
understanding of connected speech: the HEARSAY system. This system uses
syntactic, semantic, and contextual information, as well as the more
traditional domains of acoustic-phonetic, phonological, and lexical
knowledge, 1In order to recognize and understand utterances. The efforts
involved fall into two classes: (1) the design and implementation of the
HEARSAY system itself and (2) the careful construction of an environment
within which research in machine perception of speech may be pursued by a
number of researchers over a period of years. This consideration for an
evolving experimental environment is a prime motivation and direction of
the work. Thus, the system itself is viewed as a tool for on-going
experimentation.

Dissert. Abstr.
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Eves and ears for comvuters (Machine perception of speech and vision)
(AAYREDDY, D. R.
Carnegie-Mellon Univ., Pittsburgh, Pa. (cH133052) Dept. of Computer
science.
AD-760153; AFOSR-73-0742TR  F44620-70-C-0107; NSF GJ-32784; AF PROJ.
9769 730300 p. 34 refso In: EN (English) Avail.: NTIS p.2002

The paper presents a unified view of the research iIn machine perception
of speech and vision In the hope that a clear appreciation of similarities
and differences may lead to better information-processing models of
perception. Various Tactors that affect the feasibility and performance
of perception systems are discussed. To illustrate the current state of
the art In machine perception, examples are chosen from the HEARSAY speech
understanding system and the image processing portion of the SYNAPS neural
modelling system. Some unsolved problems in a few key areas are
presented.

Author (GRrA)
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A procedure for the machine recognition of speech (Computer program for
machine recognition of distinctive features in words and sentences)

(AA) MEDRESS, M.

Sperry Rand Corp., st. Paul, Minn. (sX655732)

In IEEE The_1972 Conf. on Speech Commun. and Process. p 113-116 (SEE
N73-23119 14-07) 720222 p. 4 refs O In: EN (English) p.1623

A hierarchical and fundamental procedure for the machine recognition of
words and sentences is proposed, and a preliminary implementation of that
procedure iIs described. The computer program attempts to ,estimate
distinctive features information about some stops, fricatives, and vowels
in multi-syllabic words and short sentences without reference to a
lexicon, and independent of a speaker. Average correct recognition scores
of 92% to 95% were obtained for five adult male speakers and three
different vocabularies ranging from 60 short sentences to 100
multi-syllabic words. only one of the five speakers was used to develop
Xhehrecognition program; the other four were completely new to the system.

uthor
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Speech generation and recognition under hybrid computer control /
Ph.D. Thesis (Synthetic speech generation and recognition under hybrid
computer control, using one set of linguistic rules)

(AA) DOUBLIER, R. M.

University of Southern California, Los Angeles. (U6203125)

720000 p. 239 In: EN (English) Avail: Univ. Microfilms Order No.
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This research was concerned with the design, development and testing of
the hardwarefsoftware systems necessary to produce synthetic speech, using
a set of [linguistic rules as 1its only input data. Evaluation of the
quality of the artifically-produced speech 1is made not only from a
spectral analysis standpoint, but also throu%h carefully constructed and
administered intelligibility tests. The set of linguistic rules developed
as a basis for the generation of artificial speech can be adapted to the
initial phases of research into machine recognition of human speach, and
several fundamental considerations towards the eventual solution of this
problem are presented.

Dissert. Abstr.
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Study of acoustic properties of speech 2, and some remarks on the use of
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