
AGARD-R-807

$ ADVISORY GROUP FOR AEROSPACE RESEARCH 81 DEVELOPMENT
7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE

AGARD REPORT R-80 OT FOR DESTRUCTIOE;

Special Cour
Parallel Computing in CFD
(l'A6rodynamique num6rique et le calcul en paralli3le)

The material assembled in this report was prepared wuier the combined sponsorship of the
AGARD Fluid DyMmics Panel, the Consultant and Exchange Program of AGARD, and the von
Ka- Institute (VKI) for Fluid DyMmics. It was presented in an AGARD-FDP-VKl Special
Course at the W, Rhode-Saint-Gen.?se, Belgium, 15-19 May 1995 and 16-20 October 1995 at
NASA Ames, United States.

I

NORTH ATLANTIC TREATY ORGANIZATION

I

AGARD-R-807

Jorth Atlantic Treaty Organization

ADVISORYGROUP FORAEROSPACERESEARCH &DEVELOPMENT

7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE

AGARD REPORT R-807

Special Course on
Parallel Computing in CFD
(1’ACrodynamique numCrique et le calcul en parallkle)

The material assembled in this report was prepared under the combined sponsorship of the
AGARD Fluid Dynamics Panel, the Consultant and Exchange Program of AGARD, and the von
Karman Institute (VKI) for Fluid Dynamics. It was presented in an AGARD-FDP-VKI Special
Course at the VKI, Rhode-Saint-Geni?se, Belgium, 15-19 May 1995 and 16-20 October 1995 at
NASA Ames, United States.

The Mission of AGARD

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the
fields of science and technology relating to aerospace for the following purposes:

- Recommending effective ways for the member nations to use their research and development capabilities for the
common benefit of the NATO community;

- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research
and development (with particular regard to its military application);

- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;

- Improving the co-operation among member nations in aerospace research and development;

- Exchange of scientific and technical information;

- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;

- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in
connection with research and development problems in the aerospace field.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior
representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of
experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications
Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the
AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced
directly from material supplied by AGARD or the authors.

Published October 1995

Copyright 0 AGARD 1995
All Rights Reserved

ISBN 92-836-1025-3

Printed by Canada Communication Group
45 Sacri-Caw Blvd., Hull (Quibec), Canada K I A OS7

ii

Contents

PrefacePriface

Special Course Staff

Recent Publications of the Fluid Dynamics Panel

Parallel Computers and Parallel Algorithms for CFD: An Introduction
by D. Roose and R. Van Driessche

Load Balancing Computational Fluid Dynamics Calculations on Unstructured Grids
by R. Van Driessche and D. Roose

Parallel Interative Solution Methods for Linear Systems arising from Discretized PDE’s
by H.A. Van der Vorst

Structured Grid Solvers I - Accurate and Efficient Flow Solvers for 3D Applications on
Structured Meshes

by N. Kroll, R. Radespiel and C.-C. Rossow

Structured Grid Solvers I1 - Parallelization of Block Structured Flow Solvers
by B. Eisfeld, H.-M. Bleecke, N. Kroll and H. Ritzdorf

Parallel Automated Adaptive Procedures for Unstructured Meshes
by M.S. Shephard, J.E. Flaherty, H.L. de Cougny, C. Ozturan, C.L. Bottasso and M.W. Beall

Parallel CFD Algorithms on Unstructured Meshes
by T.J. Barth

High Performance Simulation of Coupled Nonlinear Transient Aeroelastic Problems
by C. Farhat

Page

iv

vi

vi i

Reference

1

2

3

4

5

6

7

8

iii

Preface

This volume is a compilation of the edited proceedings of the “Parallel Computing in CFD” course held at the von KArmin
Institute (V U) in Rhode-Saint-Genbe, Belgium, 15-19 May 1995 and at the NASA Ames Research Center, Moffett Field,
California, USA 16-20 October 1995.

In order to circumvent the limits posed by processor performance, today’s advanced computer architectures permit
simultaneous computations on multiple functional units. This approach, termed parallel processing, has the potential for a
dramatic improvement in overall computational speed. This revolution in parallel processing is expected to strongly influence
the choice of algorithms used in computational fluid dynamics (CFD).

This series of lectures, supported by the AGARD Fluid Dynamics Panel and the von KArmin Institute, presents and discusses
the latest in advances and future trends in the application of parallel computing to solve computationally intensive problems
in CFD. Topics in this lecture series focus on the increasingly sophisticated types of architectures now available, and how to
exploit these architectures by appropriate algorithms for the simulation of fluid flow.

Some of the subjects discussed are: parallel algorithms for computing compressible and incompressible flow; domain
decomposition algorithms and partitioning techniques; and parallel algorithms for solving linear systems arising from the
discretized partial differential equations.

We want to thank all the speakers for their outstanding work, as well as the organizers at AGARD, V U , and NASA Ames.

iv

Prkface

Ce volume est un recueil des expos& du cours sur <(Le calcul en parallble en CFDB organis6 B I’Institut Von Karman (V U) B
Rhodes-Saint-Genbse, en Belgique, du 15 au 19 mai 1995, ainsi qu’au NASA Ames Research Center, Moffett Field, en
Califomie aux Etats-Unis, du 16 au 20 octobre 1995.

Afin de circonvenir les limitations imposCes par les performances des microprocesseurs, les architectures informatiques
avancCes d’aujourd’hui permettent le calcul simultant rCalisC sur de multiples unitCS fonctionnelles. Cette approche, appelCe
(de calcul en parallble)), pourrait amener une amClioration spectaculaire des vitesses de calcul gCnCrales. Cette rCvolution dans
le calcul en parallble devrait exercer une forte influence sur le choix des algorithmes B utiliser en aCrodynamique numCrique
(CFD).

Ce cours, organis6 sous 1’Cgide conjointe du Panel AGARD de la dynamique des fluides et de I’Institut Von Karman, prCsente
et examine les demiers progrbs rCalisCs ainsi que les perspectives d’avenir en ce qui concerne l’application du calcul en
parallble B la rCsolution de certains problbmes en CFD impliquant une grande puissance de calcul. Les sujets examinks lors du
cours ont porte, principalement, sur les architectures de plus en plus sophistiquCes qui sont actuellement disponibles et sur
leur exploitation par I’intermCdiaire des algorithmes appropriCs, pour la simulation des Ccoulements des fluides.

Parmi les sujets examinks l’on distingue: les algorithmes parallbles pour le calcul des Ccoulements compressibles et non-
compressibles; les algorithmes de dCcomposition de domaine et les techniques de dCcoupage en partitions et les algorithmes
parallbles pour la risolution de systbmes IinCaires rksultant des Cquations aux dCrivCes partielles discrCtisCes.

Nous tenons B remercier I’ensemble des confkrenciers pour la qualit6 de leurs contributions, ainsi que les organisateurs A
I’AGARD, au VKI et au NASA Ames.

V

Special Course Staff

Professor D. Roose
Katholieke Universiteit Leuven
Dept. of Computer Science
Celestijnenlaan 200A
B-3001 Heverlee-Leuven
Belgium

SPECIAL COURSE DIRECTOR

Dr. H. Simon
Silican Graphics

Mail Stop 7L 580
2011 N. Shoreline Blvd.

Mountain View, CA 94043
United States

LECTURERS

Mr. B. Eisfeld
Institute for Design Aerodynamics
DLR, Braunschweig
Germany

Dr. N. Kroll
Institute for Design Aerodynamics
DLR, Lilienthalplatz 7
38108 Braunschweig
Germany

Professor H.A. Van der Vorst
Mathematical Institute
University of Utrecht
P.O. Box 80010
NL-3508 TA Utrecht
The Netherlands

Mr. T.J. Barth
Advanced Algorithms and

Applications Branch
NASA Ames Research Center
Moffett Field, CA 94035
United States

Professor C. Farhat
Dept. of Aerospace Engineering
Sciences and Center for Aerospace

University of Colorado at Boulder
Boulder, CO 80309-0429
United States

Structures

Professor M.S. Shephard
Scientific Computation Research

Rensselaer Polytechnic Institute
Troy, NY 12180-3590
United States

Center

NATIONAL COORDINATORS

Professor H. Deconinck
von Khrmhn Institute for Fluid Dynamics
ChaussCe de Waterloo, 72
1640 Rhode-Saint-Genkse
Belgium

Mr. T.J. Barth
Advanced Algorithms and

Applications Branch
NASA Ames Research Center
Moffett Field, CA 94035
United States

Mail from Europe:
AG ARD/OTAN
Attn: FDP Executive
7 rue Ancelle
92200 Neuilly-sur-Seine
France

PANEL EXECUTIVE

Mr. J.K. Molloy

Mail from US and Canada:
Attn: FDP Executive
PSC 116
AG ARD/NATO
APO AE 09777

vi

Recent Publications of
the Fluid Dynamics Panel

AGARDOGRAPHS (AG)

Computational Aerodynamics Based on the Euler Equations
AGARD AG-325, September 1994

Scale Effects on Aircraft and Weapon Aerodynamics

Design and Testing of High-Performance Parachutes
AGARD AG-319, November 1991

Experimental Techniques in the Field of Low Density Aerodynamics

Techniques expkrimentales likes a I’akrodynamique a basse densite

A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers
AGARD AG-315, May 1989

Reynolds Number Effects in Transonic Flows
AGARD AG-303, December 1988

REPORTS (R)

Optimum Design Methods for Aerodynamics
AGARD R-803, Special Course Notes, November 1994

Missile Aerodynamics
AGARD R-804, Special Course Notes, May 1994

Progress in Transition Modelling
AGARD R-793, Special Course Notes, April 1994

Shock-WavelBoundary-Layer Interactions in Supersonic and Hypersonic Flows
AGARD R-792, Special Course Notes, August 1993

Unstructured Grid Methods for Advection Dominated Flows
AGARD R-787, Special Course Notes, May 1992

Skin Friction Drag Reduction
AGARD R-786, Special Course Notes, March 1992

Engineering Methods in Aerodynamic Analysis and Design of Aircraft
AGARD R-783, Special Course Notes, January 1992

Aircraft Dynamics at High Angles of Attack: Experiments and Modelling
AGARD R-776, Special Course Notes, March 1991

ADVISORY REPORTS (AR)

Aerodynamics of 3-D Aircraft Afterbodies
AGARD AR-318, Report of WG17, September 1995

A Selection of Experimental Test Cases for the Validation of CFD Codes
AGARD AR-303, Vols. I and 11, Report of WG-14, August 1994

Quality Assessment for Wind Tunnel Testing
AGARD AR-304, Report of WG-15, July 1994

Air Intakes for High Speed Vehicles
AGARD AR-270, Report of WG13, September 1991

Appraisal of the Suitability of Turbulence Models in Flow Calculations
AGARD AR-291, Technical Status Review, July 1991

AGARD AG-323, July 1994

AGARD AG-318 (E), April 1991

AGARD AG-318 (FR), April 1990

Rotary-Balance Testing for Aircraft Dynamics
AGARD AR-265, Report of WGl1, December 1990

Calculation of 3D Separated Turbulent Flows in Boundary Layer Limit
AGARD AR-255, Report of WG10, May 1990

Adaptive Wind Tunnel Walls: Technology and Applications
AGARD AR-269, Report of WG12, April 1990

CONFERENCE PROCEEDINGS (CP)
Aerodynamics and Aeroacoustics of Rotorcraft

Application of Direct and Large Eddy Simulation to Transition and Turbulence
AGARD CP-55 1, December 1994
Wall Interference, Support Interference and Flow Field Measurements

Computational and Experimental Assessment of Jets in Cross Flow
AGARD CP-534, November 1993
High-Lift System Aerodynamics
AGARD CP-515, September 1993
Theoretical and Experimental Methods in Hypersonic Flows
AGARD CP-514, April 1993
Aerodynamic EngindAirframe Integration for High Performance Aircraft and Missiles
AGARD CP-498, September 1992
Effects of Adverse Weather on Aerodynamics
AGARD CP-496, December 199 1

Manoeuvring Aerodynamics
AGARD CP-497, November 1991
Vortex Flow Aerodynamics

Missile Aerodynamics
AGARD CP-493, October 1990
Aerodynamics of Combat Aircraft Controls and of Ground Effects

Computational Methods for Aerodynamic Design (Inverse) and Optimization
AGARD CP-463, March 1990
Applications of Mesh Generation to Complex 3-D Configurations
AGARD CP-464, March 1990
Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition
AGARD CP-438, April 1989
Validation of Computational Fluid Dynamics
AGARD CP-437, December 1988
Aerodynamic Data Accuracy and Quality: Requirements and Capabilities in Wind Tunnel Testing

Aerodynamics of Hypersonic Lifting Vehicles
AGARD CP-428, November 1987
Aerodynamic and Related Hydrodynamic Studies Using Water Facilities
AGARD CP-413, June 1987
Applications of Computational Fluid Dynamics in Aeronautics
AGARD CP-412, November 1986

AGARD CP-552, August 1995

AGARD CP-535, July 1994

AGARD CP-494, July 1991

AGARD CP-465, April 1990

AGARD CP-429, July 1988

Parallel Computers and Parallel Algorithms for CFD :
An Introduction

Dirk Roose and Rafael Van Driessche
Katholieke Universiteit Leuven

Dept. of Computer Science
Celestijnenlaan 200A

B-3001 Heverlee-Leuven, Belgium
Email: Dirk.Roose@cs.kuleuven.ac.be

1 SUMMARY

This text presents a tutorial on those aspects of par-
allel computing that are important for the develop
ment of efficient parallel algorithms and software for
Computational Fluid Dynamics.
We first review the main architectural features of
parallel computers and we briefly describe some par-
allel systems on the market today. We introduce
some important concepts concerning the develop
ment and the performance evaluation of parallel al-
gorithms. We discuss how work load imbalance and
communication costs on distributed memory paral-
lel computers can be minimised. We present perfor-
mance results for some CFD testcases. We focus on
applications using structured and block structured
grids, but the concepts and techniques are valid also
for unstructured grids.

2 PARALLEL COMPUTING

2.1 Parallel computer architectures

2.1.1 Classification of Flynn

For many years the taxonomy of Flynn has been used
for the classifcation of high-performance computers.
This classification is based on the way instruction
and data streams are handled (Single or Multiple
Instruction / Data Streams). This leads to a clas-
sification in three main architectural classes, see e.g.
PI.
SISD systems. These are the conventional sys-
tems (workstations, compute-servers) that contain
one CPU and hence can execute one instruction
stream in serial mode. Nowadays many large
compute-servers or mainframes have more than one
CPU but these are most often used to execute un-
related jobs (instruction streams). Therefore, such
systems should be regarded as (a couple of) SISD
machines.

SIMD systems. Such systems have a large num-
ber of (simple) processing units, ranging from 1,024
up to 64K, that all may execute the same instruction
on different data in lock-step. Thus a single instruc-
tion manipulates many data items in parallel. In the
past, SIMD machines such as the Connection Ma-
chine CM-2 of Thinking Machines and the MasPar
have been quite successful. Today, the SIMD archi-
tecture has nearly disappeared, except in systems for
specific application areas, such as image processing,
that are dominated hy highly structured data sets
and data access patterns.

MIMD systems. In ‘Multiple Instruction, Multi-
ple Data’ systems, the processors independently ex-
ecute different instruction streams, each on its own
data. Hardware and software are designed so that
processors can cooperate efficiently. Parallel process-
ing occurs when tasks executed on different proces-
sors together form one single job.

Vector processors are often considered as a subclass
of SIMD systems. Vector processors contain special
hardware (‘vector units’) to perform operations on
arrays of similar data in a pipelined fashion. These
vector units can deliver results with a rate of one,
two and-in special cases-three per clock cycle.
From the programmer’s point of view, vector proces-
sors operate on their data in an almost parallel way
(SIMD-style) when executing in vector mode. Vector
processors are used in the Cray C90, J916 and T90
series, the Convex C-series, Fujitsu VP-series, NEC
SX-series, etc.
The pipelined execution of floating point operations
is also a key concept in RISCprocessors, used in high
performance workstations. Advanced RISC proces-
sors can also execute several instruction in parallel
(e.g. ‘dual instruction mode’).

2.1.2 Memory organisation of MIMD sys-
tems

Parallel computers can also be classified based to
other criteria. MIMD systems are further distin-
guished according to the organisation of the memory.

Poperpresented m M AGARD-FDP-VKI Spec101 Course on ’‘Pamlkl Compurrng in CFD”, held at the VKI, RhodeSamt-Gedse. Belgwm
from IS-19 May 199s and 16-20 October 1992 at NASA A m s , h u e d States and publrshed in R-807.

1 -2

Shared Memory System

cpu-...-. CPU

Network -’(
(a): Cmssbar [b): n-mrwork (E): Central Dambus

Fig. 1: Shared Memory MIMD pamllel
nectaons.

0
1
I
1

I 1

6
i.) 5

0 .
I I
2 I
I 1

I 5
6 6
7 7

(E) , .
computers: possible intercon-

Shared memory MIMD systems. In shared
memory MIMD systems all processors have access
to a common memory. The main architectural prob-
lem in shared memory systems is that of the con-
nection of the processors to the memory (or mem-
ory modules). As more processors are added, the
collective bandwidth to the memory ideally should
increase linearly with the number of processors, P.
Unfortunately, full interconnection is very costly, re-
quiring O (P) connections. So, various alternative
interconnection networks are used, some of which
are shown in Fig. 1. A crossbar uses Pz interconnec-
tions and a omega-network uses PlogzP connections,
while a central bus represents only one connection.
In all present-day multi-processor vector processors,
a crossbar is used. Due to the limited capacity or the
cost of the interconnection network, shared memory
parallel computers are not scalable to a very high
number of processors.

The shared memory concept is used already for f 10
years in multiprocessor vector machines (Cray X-MP,
IBM 3090, their successors and similar systems from
other vendors). However these systems have not been
used very often as truly parallel systems: most jobs
use only one processor. One reason for this is the
limited number of processors (often 4 or 8), which
l i t s the possible ‘speedup’ of the execution. More
over, because of timesharing, the user normally has
no full control on the number of processors allocated
to his job at a particular moment. This may also
limit the speedup that can be achieved.

Nowadays, a number of vendors (Convex, Silicon
Graphics, . . .) offer shared memory MIMD systems
based on RISC processors, with up to f 20 proces-
sors.

Distr ibuted memory MIMD systems. A dis-
tributed memory MIMD parallel computer consists
of a number of processors, each with its own local
memory, interconnected by a communication net-
work. The combination of a processor and its lo-
cal memory is often called a pmcessing node. Each
processing node is in fact a complete computer, o p
erating rather independently from the other nodes.
Processing nodes can only communicate by passing
messages over the communication network.

Also for distributed memory machines, the structure
of the communication network is of crucial impor-
tance. Ideally, one would like to have a completely
connected system where each processing node is di-
rectly connected to every other node. However, this
is not feasible for a large number of nodes. There
fore the processing nodes are arranged in some inter-
connection topology. The richness of the connection
structure has to be balanced against the costs.

The hypercube topology has been used in several sys-
tems in the past. A nice feature is that for a hyper-
cube with P = 2d processing nodes the ‘diameter’ of
the network (i.e. the maximum number of links be-
tween any two nodes) is d. So, the diameter grows
only logarithmically with the number of nodes. In
addition, it is possible to simulate on a hypercube
many other topologies, such as trees, rings, 2-D and
3-D meshes, since these topologies are subsets of the
hypercube topology.

In the current parallel systems, the network topology
and the communication diameter are of less impor-
tance, because these systems employ some form of
‘wormhole routing’ of messages. This means that as
soon as a communication path between two nodes

1-3

is established, the data is sent through this path
without disturbing the operation of the intermediate
nodes. Except for a small amount of time in setting
up the communication path between nodes, the com-
munication time has become virtually independent of
the distance between the nodes.

Some systems use a 2-D or 3-0 mesh structure for
the network. The rationale for this is that this inter-
connection topology is sufficient for most algorithms
used in large-scale scientific computing and that a
richer interconnection structure hardly pays off. In
other systems a multi-stage network is used, e.g. an
omega-network as shown in Figs. 1 and 4. Multi-
stage networks have the advantage that the ‘bisec-
tion bandwidth’ can scale linearly with the number of
processors, while maintaining a fixed number of com-
munication links per processor. The bisection band-
width of a distributed memory system is defined as
the bandwidth available on all communication links
that connect one half of the system (P/2 processors)
with the second half.

An important advantage of distributed memory sys-
tems is that this architecture suffers less from the
scalability problem. The network (with its limited
bandwidth) has to be used only when processing
nodes communicate, not for every memory access.
A disadvantage is that the communication overhead
is (much) higher than the overhead caused by using
shared data in a shared memory system. When the
structure of a problem dictates a frequent exchange
of data between processors, it may well be that only
a very small fraction of the theoretical peak perfor-
mance can be achieved.

The first generation DM-MIMD systems were based
on simple, inexpensive microprocessors. Thus even
when 100 to 1000 processors were interconnected, the
peak performance of these machines was lower than
that of typical vector processors and shared memory
parallel supercomputers. Today, distributed mem:
ory parallel computers are often outperforming more
traditional supercomputers. This is due to the fast
growing performance of the RISC processors used in
distributed memory systems and due to the greatly
improved network technology. Moreover, many sys-
tems now have sophisticated hardware and software
that allow fast parallel 1/0 to disk storage (i.e. a
‘Concurrent File System’). As a result, distributed
memory parallel systems are rapidly gaining impor-
tance in fields where computational performance is
important such as Computational Fluid Dynamics.

Examples of distributed memory machines are the
Intel Paragon, the CM-5 of Thinking Machines, Cray
T3D, IBM SP2. Distributed memory systems with
more than a thousand processors exist, but most sys-
tems have 16 to 128 processors.

Since a few years, networks or clusters of worksta-
tions are used as ‘low cost’ distributed memory paral-
lel computers. A workstation cluster allows to exploit
otherwise unused computing capacity. Of course, if
workstations are simply connected together via Eth-
ernet (or even via a fast FDDI interconnection), the

number of workstation that can be used effectively
together as a parallel system is limited, because
of the limited communication performance. Some
workstation vendors offer interconnection switches to
provide fast communication (e.g. Digital). Such clus-
ters are bridging the gap with ‘truly parallel comput-
ers’.

Thus a whole range of systems are used nowadays as
parallel computers, ranging from small workstation
clusters to large systems with many processors and
sophisticated communication network technology.

Hybrid memory organisations. Although the
difference between shared and distributed memory
systems seems clear cut, many parallel systems have
a hybrid memory organisation. In a shared mem-
ory system, every processor may have a large cache,
which can be considered as a local memory. Some
systems have a two-level organisation: processors are
grouped together in shared memory modules, which
are interconnected via a communication network.
Finally, a distributed memory system may contain
hardware and software support to access data in
other processor’s memories in a way that is trans-
parent to the user. Depending on the precise form of
this support, this is called ‘virtual shared memory’,
‘global shared memory’, ‘global virtual memory’, etc.

Memory hierarchy and performance. Both
vector processors and RISC processors can perform
floating point operations much faster than data can
be read and written into main memory. Vector reg-
isters (in vector processors) or cache memories (in
RISC processors) are placed between the processor
and the main memory. These very fast memory mod-
ules should keep the processors busy with compu-
tation without having to frequently reference main
memory.

Vector registers, caches, local memories and/or the
global (shared) memory form together a memory hi-
erarchy. The performance that can be achieved for a
given application program critically depends on the
(re-)use of data stored in the ‘higher levels’ of the
memory hierarchy. Thus in order to achieve a high
performance, the algorithms should exhibit locality of
data access, both in (address) space and time.

2.2 Programming parallel computers

We have indicated that there is no clear cut distinc-
tion between shared memory and distributed mem-
ory parallel architectures, and that some recent par-
allel systems have a hybrid organisation. However
we can clearly distinguish between two different pro-
gramming models, the shared memory and the dis-
tributed memory programming model.

In both models, the execution of a program is split
in several processes that are executed in parallel. In
most cases, on each processor only one process is ex-
ecuted and therefore we will use the term ‘processor’
in the discussion below, although ‘process’ would of-
ten be more precise.

1-4

2.2.1 Shared memory programming model

Regardless of the physical organisation of the mem-
ory, the shared memory programming model is based
on the existence of a common or global address space,
i.e. every processor can address every memory lo-
cation. Thus processors communicate by accessing
(writing, reading) shared data. The time to access
the shared data may differ very much, depending on
the physical location of the shared data (cache, local
memory, another processor’s memory).

Also, situations are possible where different proces-
sors wish to use a part of the common memory simul-
taneously. In that case synchronisation of the pro-
cesses is necessary. Synchronisation is also needed
before a sequential part of a program, in order to
assure that all processors have finished their parallel
actions prior to this sequential part.

Thus the performance may deteriorate substantially
due to ‘memory conflicts’, synchronisation and ‘se-
quential bottlenecks’. Further, the overhead associ-
ated with the creation of (parallel) tasks can be very
high.

At present, Fortran and C compilers exist that per-
form automatic parallelisation in the shared memory
programming model. The programmer can influence
the parallelisation via directives (as for vector pro-
cessing). Parallelisation can be carried out a t loop
level or at task (or routine) level, also called ‘fine
grained’, resp. ‘coarse grained’ parallelism, or ‘micro-
tasking’ resp. ‘macro-tasking’.

2.2.2 Distributed memory programming
model

In the distributed memory programming or message
passing model, processors can only access their own
private memory. Whenever a processor needs data
that reside in the memory of another processing
node, the data must be sent between the process-
ing nodes. Such a message passing or communica-
tion step involves preparation of the message in the
sending node, transmission over the communication
network and reception of the message in the destina-
tion node. When the message passing model is used
on a shared memory system, the actual transmission
is replaced by storage of the information in shared
memory.

Also in a distributed memory model, synchronisation
problems can occur. It is possible that a processor
does not have the data available yet a t the moment
they are needed by another processor ; at this syn-
chronisation point the processor has to wait for the
other processor to catch up. Synchronisation may
also be needed to assure that the communication be-
tween processors proceeds in a correct way.

Although each processor can execute a different pro-
gram, most often the ‘Single Program, Multiple
Data’ (SPMD) programming style is used: all pro-
cessors execute the same program acting on different
parts of the data set. This requires an appropriate
partitioning (distribution) of the data of the data and

of the operations that have to be performed on them.
The partitioning of the data must be so that the work
load is well balanced between processors and so that
communication and synchronisation is minimised.

Programming in the distributed memory model is
often more difficult than programming in the shared
memory model. The programmer must be aware of
the location of the data in the local memories and
has to move or distribute these data explicitly when
needed. The partitioning of the data and all nec-
essary communication has to be included explicitly
into the program. A sequential program often needs
significant changes in order to parallelise it.

Distributed memory programs are written in conven-
tional languages (Fortran, C, C++, . . .) and a com-
munication library is used to implement the commu-
nication and synchronisation operations. Basic com-
munication routines allow messages to be sent and
received between arbitrary processing nodes. Incom-
ing messages are normally buffered by the operating
system at the destination node until the application
program requests the message. Also various ‘higher
level’ routines are provided, e.g. for ‘global opera-
tions’ on a set of data distributed across the nodes
(broadcast, global sum, global maximum, ...) and
for synchronisation.

In addition to the machine dependent communica-
tion libraries, several machine independent libraries
have been developed. Widely used libraries are
PVM [2], MPI [3], PARMACS [4]. Some of these
libraries or environments (e.g. PARMACS) contain
utility routines that perform automatic partitioning
and mapping of vectors and matrices, and facili-
ties for performance monitoring and analysis. The
PVM environment provides facilities to use a (het-
erogeneous) network of workstations as a distributed
memory parallel computer.

Compilers and software tools that perform (semi) au-
tomatic parallelisation for DM-MIMD machines are
becoming available now. High Performance Fortran
is a set of extensions to Fortran 90 for writing parallel
applications [5]. HPF includes features for mapping
multi-dimensional arrays (i.e. structured data sets)
to parallel processors and for specifying data parallel
operations. Extensions to HPF are being developed
that offer a similar functionality for more complex
data structures, e.g. multi-block grids [6]. FORGE
90 is a software tool for the analysis and the (semi)
automatic parallelisation of existing sequential codes:
based on a user defined partitioning of the data ar-
rays, FORGE allows interactive or automatic selec-
tion of do-loops to be parallelised [7].

2.3 Description of some parallel sys-
t ems

Intel Paragon. The Intel Paragon is a distributed
memory system in which the processing nodes are
interconnected in a 2D mesh network, see Fig. 2. A
Paragon system with 1874 processors is operational
at Sandia Nat. Labs. Two types of processing nodes

1-6

tl t l t l t l t i t i _._-

t l tI .. 11 . ::. t l
-
f

tl

Fig. 2: The architecture of the Intel Pamgon, based o n a two-
dimensional interconnection network.

andthe parallel eficiency E (n , P)

where n denotes the problem size, T (n , l) and
T (n , P) denote the execution times of the algorithm
on one and P processors respectively.

Note that (1) does not give any information about
the quality of the parallel algorithm. It solely mea-
sures how well an algoritbm has been parallelised.
As such, it should always be complemented with
data which indicate the numerical eficiency of the
parallel algorithm, which can be defined as the ra-
tio of the following single processor execution times:
Tb..t(n)/T(n, I), where Tb...t(?%) denotes the time
taken by one processor of the parallel computer ex*
cuting the fastest known sequential algorithm. Com-
bination of the definitions of parallel speedup (or ef-
ficiency) and numerical efficiency leads to the notion
of total speedup and total eficiency, defined by

q n , P) = y)
\ I

E (n ,P) = y = &.& .
Practical considerations limit the usefulness of the
latter definitions. First of all, it is often very difficult
to determine what algorithm is the best sequential
one; this may depend on the problem size n. on the
particular hardware used, on implementation issues,
etc. Moreover, the notion of ‘best’ algorithm may
change in time, as better algorithms become avail-
able. Also, a good implementation of that algorithm
is not always available. In practice one can define
the total speedup by using the execution time of a
good sequential algorithm instead of T*,,,(n).

If we assume that a P-processor machine cannot ex-
ecute more than P times faster than a single proces-

sor machine, we obviously have that S(n, P) I P and
E(n, P) 5 100%. We now enumerate some overheads
that may cause a deviation from linear speedup.

the sequential fraction. The speedup achiev-
able on a parallel computer can significantly be lim-
ited by the existence of a small fraction of inherently
sequential code which cannot be parallelised. This is
expressed by Amdahl’s law, see e.g. [ll]:

Let a be the fraction of operations in a com-
putation that must be performed sequen-
tially, where 0 5 a 5 1. The maximum
speedup achievable by a parallel computer
with P processors is then limited as follows,

1 < - . (3)
1 s(n, P , a + (1 - a) / P - a

For example, when 10% of the code must be executed
sequentially, the maximum speedup is limited by 10,
independent of the number of processors available.

Amdahl’s law has been a central argument of people
doubting the usefulness of massively parallel systems.
Their criticism is justiied as long as one considers
solving a particular problem of a fixed size (i.e., with
a constant value of a). In actual practice, however,
this is rarely the case, as problem sizes tend to scale
with the number of processors and with the comput-
ing power available. (Large scale parallel systems are
used to solved bigger problems than the ones solved
on small-scale parallel systems.)

For many computational problems the sequential
fraction a rapidly goes to zero as the problem size
increases. Consequently, when problem scaling is
in effect, a depends on the number of processors,
and (3) looses much of its significance. An alterna-
tive to Amdahl’s law was formulated by Gustafson
et al. [12][13].

Let d denote the sequential fraction of the
time spent during a computation on a par-

1-5

R8000), having multiple functional units, that can
operate simultaneously. Each processor has a cache
hierarchy with a small, fast on-chip cache and a large,
slower but pipelined off-chip cache. The main mem-
ory can be up to 8-way interleaved.
The Fortran and C compilers are able to restructure
programs to reduce cache misses by interchanging
loops, by ‘tiling’ or ‘blocking’ in case of nested loops,
etc. (Loop blocking is a technique for optimising
the performance of the memory hierarchy, in case of
e.g. operations on matrices.) Further, the compilers
support automatic and user-directed (via directives)
parallelisation of Fortran and C programs. For more
information, see e.g. [lo].
Up to eight Power Challenge systems can be inter-
connected by a (switch-based) communication net-
work, forming a ‘CHALLENGEarray’ system. Com-
munication over this network must be programmed
in distributed memory style using message-passing li-
braries (PVM, MPI) or using High-Performance For-
tran.

Convex Examplar. The Convex Exemplar con-
sists of a number of hypernodes, connected to each
other via a low latency ring network with four in-
terleaved links. Each hypernode is a shared-memory
multiprocessor, consisting of 8 processors (HP PA-
RISC 7200) that are connected to 4 memory modules
by a crossbar, see Fig. 5 .
The Exemplar programming environment provides
both shared memory and distributed memory pro-
gramming support. For message passing, the PVM
communication library is used. The shared memory
programming environment is implemented through
what is called ‘Global Shared Distributed Virtual
Memory’. An application, programmed in shared
memory style, can use processors located on various
hypernodes. In that case, three levels in the memory
hierarchy are used: the large cache of a particular
processor, the global memory of the hypernode to
which the processor belongs and memories located
on different hypernodes.
The time needed to access data located on a differ-
ent hypernode is higher than to access data within a
hypernode. In order to reduce the delay caused by
using the ring interconnect, each hypernode contains
a cache of memory references made over the inter-
connect. The information hold in this cache can be
used to locate any global data that is currently en-
cached in the hypernode. The system automatically
maintains cache coherence between multiple hypern-
odes.

are available, both based on the Intel i860 processor.
General Purpose nodes contain 2 processors (one for
calculation and one for communication) and an 110
expansion port. Multiprocessor nodes contain two
processors for calculation (with shared memory) and
one for communication. Wormhole message passing
through the network is carried out by Mesh Router
Chips, one for each node. The processing nodes are
logically divided into a compute partition (for paral-
lel program execution), an 110 partition (nodes des-
ignated to disk 110 and networking) and a service
partition (interactive use, compilation).
The distributed operating system provides a sin-
gle system image (single process ID space, single
file system, etc.) and automatic scheduling of jobs.
The distributed memory programming model is sup-
ported via Intel’s NX communication system or via
the SUNMOS environment (Sandia). The Parallel
Development Environment contains various tools for
software development and performance monitoring.
For more information, see e.g. [8].

Cray T3D. The Cray T3D is a distributed mem-
ory parallel system with 32 to 2048 processing nodes.
The processing nodes (DEC Alpha processors) are
connected by a bidirectional 3D torus (periodic
mesh) network (each switch of the network is shared
by two nodes), see Fig. 3. Various mechanisms are
implemented to reduce the communication cost over
the interconnection network and to synchronise pro-
cessing nodes. The memory is physically distributed,
but is globally addressable. Hence, three program-
ming models are supported: SIMD (date paral-
lel), shared memory MIMD and distributed memory
MIMD programming styles. The software environ-
ment includes a Fortran compiler with Fortran 90
features (array syntax, etc.) which allows the user to
mix all three programming models in one program.
Also included are PVM, a performance analyser, etc.
The T3D system needs a Cray vector processor as
host system.

IBM SP2. The IBM SP2 is a distributed memory
system with up to 128 processing nodes. Two types
of processing nodes are available, ‘thin nodes’ and
’wide nodes’, both based on the POWER2 proces-
sor. Wide nodes allow larger memories, provide a
faster processor-to-memory connection and allow to
attach various storage devices. The nodes are inter-
connected by a ‘High-Performance Switch’, see Fig.
4. The switch is a multi-stage omega network that
performs wormhole routing. The available communi-
cation bandwidth over the switch scales linearly with
the number of processors. Support for short mes-
sages with low latency and minimal message over-
head is provided. For more information, see e.g. [9].
The AIX Parallel Environment contains a Message
Passing Library (MPL), performance monitoring and
visualisation tools. An optimised version of PVM
is also available. Only the distributed memory pro-
gramming model is supported. Job scheduling sup-
port is provided by the ‘Loadleveler’ software.

Silicon Graphics Power Challenge. The Silicon
Graphics Power Challenge systems are shared mem-
ory multiprocessors, with up to 18 processors (MIPS

2.4 Parallel performance parameters

The quality of a parallel implementation is often
measured by the achieved speedup or eficiency.

The parallel speedup achieved by a parallel algorithm
running on P processors is defined as the ratio of the
execution time of the parallel algorithm on a single
processor and the execution time of the parallel al-
gorithm on P processors. The parallel eficiency is
equal to the speedup divided by P. We have thus the
following definitions for the parallel speedup S(n, P)

1 -7

-X .*: .V

CRAVT3Dram~ute node

Fig. 3: The architecture of the Cmy T3D (three-dimensional inter-
connection network).

Fig. 4: Left: A 16-node bidirectional multi-stage network, forming
the basic building block ('fmmey for the High-Performance
Switch in the IBM SP2. Flight: Twelve fmmes are used to
interconnect 128 processors.

A h

Fig. 5 : The architecture of the Convex Exemplar : logic51 system view
(lee) and physical system view (right).

Uel system with P processors. The maxi-
mum speedup achievable is then limited as
follows,

S‘(n,P) 5 P (1 - 6) + 6 . (4)

S’(n,P) is usually called the scaled speedup. It
is equal to the ratio T’(n, 1) over T‘(n, P), where
T’(n, 1) is the time the parallel program would take
to run on a single processor if sufficient resources
(memory) were available.

In Large scale applications, 6 is often a small num-
ber, and very high scaled speedups are attainable on
large-scale parallel processors. Fig. 6 shows the de-
pendence of S(n, P) and S‘(n, P) on the serial frac-
tion a, resp. 6.

non-optimal a lgori thms and algorithmic
overhead. The best sequential algorithm may of-
ten be difficult or impossible to parallelise (e.g.,
Thomas algorithm for solving tridiagonal linear sys-
tems). In that case the parallel algorithm may have a
larger operation count than the sequential one. Ad-
ditionally, in order to avoid communication overhead
one may wish to duplicate some calculations on dif-
ferent processors, rather than having one processor
doing the calculation and then distributing the result
(e.g. ‘double flux calculations’, see further).

0 software overhead. Parallelisation often results
in an increase of the (relative) software overheads
such as the overheads associated with indexing, p r o
cedure calls, etc. Also, this approach usually results
in shorter loops, thus restricting vector lengths. This
reduces the potential gain of using vectorisation.

load imbalance. The execution time of a par-
allel algorithm is determined by the execution time
of the processor having the largest amount of work.
As soon as the computational workload is not evenly
distributed, load imbalance will result, and proces-
sor idling will occur : processors must wait for other
processors to finish a particular computation.

communication and synchronisation over-
head. Finally, any time spent in communication
and synchronisation is pure overhead.

In the next section, we will discuss in detail these
various sources of overhead.

3 PARALLELISATION OF
GRID-ORIENTED PROBLEMS

3.1 Introduction

In the remainder of this text, we will focus on dis-
tributed memory parallelism for two reasons. Firstly,
parallel systems with only distributed memory sys-
tems have an ‘extreme’ parallel architecture. Sec-
ondly, in the distributed memory programming
model, the parallelism must be introduced explicitly
in the application program. Algorithms designed for
distributed memory systems will also perform well on
shared memory (or hybrid) systems. Data partition-
ing, which is necessary for distributed memory sys-
tems, is also beneficial for shared memory systems.
For example, entire matrices typically do not fit into
the cache. The performance of the memory hierarchy
can be optimised, by decomposing the matrix oper-
ations into submatrix operations, with a submatrix
size chosen so that the operands fit in the cache.

The basic issues of parallel algorithm design ate
nowadays well understood and are described in var-
ious books and papers. The book of G. Fox et
al. [14] is a key reference (although somewhat out-
dated). The textbooks of E. Van de Velde [E]
and C. de Moura [16] also provide a good in t ro
duction. The proceedings of the yearly confer-
ences on Parallel Computational Fluid Dynamics
give an overview of research and achievements in this
field [17,18,19]. Also the proceedings of the Scalable
High Performance Computing Conferences [ZO, 211,
the SIAM Conferences on Parallel Processing for Sci-
entific Computing [ZZ, 231 and the HPCN conferences
[24, 251 are valuable sources of information.

Amdahl's law for P = 128 processors

% 80.
0

6 0 .

40-
Y)

Scaled speedup for P = 128 processors

m
40

2oL ~

0 0.05 0.1 0.15 0.2
serial fraction

Amdahl's law for P = 1024 processors
1000

'"I---------- 100

0 0.05 0.1 0.15 0.2
serial fraction

Scaled speedup for P = 1024 processors

lm0m 800 800 1

I % 600

2 400
3 m

200 I
h
0 0.05 0.1 0.15 0.2

serial fraction

Fig. 6: Dependence of the speedup on the sequential fraction for P =
128 and P = 1024. Left : parallel speedup S (n , P) ; right ;
scaled speedup S'(n, P) .

For grid-oriented problems, such as the numerical so-
lution of partial differential equations, the data are
defined on a discrete grid of grid points or finite vol-
umes or finite elements. In this paper, we will use
the term (grid) point as a generic name for a grid
point, finite volume or element and its data.

Assume that a ZD structured grid is rtitioned in
subdomains of equal size, such that , h processor
deals with n, x ny grid points or celh Lssume fur-
ther that the explicit timeintegration is based on a
five-point stencil, i.e.

Parallelisation of grid oriented applications is seri-
ously facilitated because the calculations on a grid
point typically involve only grid points that are ge-
ometrically adjacent. Parallelisation is achieved by
partitioning the grid into subdomains (subgrids) and
assigning these subdomains to the processors of the
parallel system. Each processor performs the calcu-
lations associated with the subdomain(s) assigned to
that processor. Dependency (and communication)
between subdomains is restricted to the perimeters
of the subdomains.

Many important issues concerning parallelisation of
grid-oriented problems and performance analysis of
parallel algorithms can be understood by studying
the parallel execution of a 'model problem', repre-
senting the explicit timeintegration of a finite differ-
ence or finite volume discretisation of a partial dif-
ferential equation on a structured grid.

Due to the local nature of the calculations, each
processor can perform the updates for all interior
grid points (the white area in Fig. 7). The other
grid points of the subdomain are called (subdomain)
'boundary grid points'. In order to perform the u p
dates of the subdomain boundary grid points, the
processor must know also function values corre-
sponding to grid points lying at the other side of the
subdomain boundaries. This information must be re-
ceived from the neighbouring processors and can be
stored in the overlap regions indicated in Fig. 7. On
the other hand, the boundary grid points must be
send to neighbouring processing nodes, where they
are part of the overlap region. Hence, before each
integration step, neighbouring processors exchange
information with each other, see Fig. 8.

1-10

overlap ngon subdarnyn bundy- boundary ccllr

ny cells

* >

n, cella

Fig. 7: Grid partitioning and communication requirements

0 0

0 0

o e . . . e . . . 0

o e . . . 0

0 . e . . e m e e o

0.....0

0.....0

Fig. 8: Concumnt exchange of local boundaries.

1 1
T =- 3.2 Analysis of the communication E(n, P) =

overhead 1 + 1 + f c

tamea. can be written as

T(n, P) = T'aic + Tcomm

where Tcaic denotes the calculation time and T,,,,
denotes the t i e spent in communication. Assuming
that no other overhead occurs except communication
of the overlap regions, the sequential execution time
is

Hence the speedup and parallel efficiency are given
T(n, 1) = P TCaic

by

The amount of data sent and received per processor is
proportional to the number of boundary cells, while
the amount of computations performed by each pro-
cessor is proportional to the number of interior cells.
For the model problem we have

Tcnie = c1 nrny tc.ic

Tcomm = ca . 2(nz + nv) tcmnm

where teale represents the time required to perform
a floating point operation, t,,,, denotes the time
needed to communicate one floating point number,
and cl, c2 are constants. This leads to the important

1-11

formula

(5)
cz 2(n, + n,) &

t,,lc fc = C, n, x ny

which indicates that the overhead depends on 3 fac-
tors:

1. the size of the subdomain: large subdomains
have a small ‘perimeter to surface’ ratio 2(n, +
nu)/n.n,, leading to a small value for fc;

2. the machine characteristic teomm/teo~e, indicat-
ing how fast communication can be performed
compared with floating point operations;

3. the algorithm via the ratio cl. The overhead
fc will he small for problems for which many
floating point operations per grid point must be
performed (c1 large), compared with the amount
of data to be communicated per grid point (r e p
resented by cz).

Remark. An important characteristic of most
communication systems is the rather high message
startup time. The cost of sending a message between
neighbouring processors can be written as

T(n) = tstortup + n tsend

where n indicates the length of the message (number
of words transferred), t,t,,t, is the message startup
time (caused by hardware and software delays) and
tsend is the marginal communication time per word.
For many systems t,t.,t,,p is much larger than t..,d
(even by a factor 1000). An immediate conclusion is
that sending many short messages should be avoided
if possible.

In (5) t,,,,,, denotes the average time to communi-
cate one word. This clearly depends very much on
the average length of the messages that are sent : for
small messages t,,,, N t,t,,t,p, while for very large
messages tcomm cz teend. This must be taken into
account when analysing parallel algorithms by using
(5) .

A further analysis of this model problem reveals some
important guidelines that should be taken into ac-
count when parallelisiig CFD aigorithms.

Different grid partitioning strategies. For this
model problem, the communication volume is pro-
portional to the number of grid points on the (inte-
rior) subdomain boundaries, i.e. proportional to the
‘perimeter’ of the subdomain. When the size of the
subdomain is fixed, the perimeter (and thus the com-
munication volume) is minimal if the number of grid
poinks in each direction is equal, i.e. n, = nu. We
will use the term ‘square subdomain’ to denote the
latter case. Hence, partitioning into square subdo-
mains leads to a minimal communication volume.

This observation can he generalised as follows. A
stripwise (or one-dimensional) partitioning (Fig. 9,
left) yields subdomains with long boundaries but
with at most two adjacent subdomains. A blockwise
(or two-dimensional) partitioning (Fig. 9, right) gives
subdomains with shorter boundaries but with up to

four neighbours. Thus a blockwise partitioning min-
imises the total communication volume, while a s t r ip
wise partitioning minimises the number of messages.
What will be the best choice depends on the char-
acteristics of the problem and of the parallel com-
puter. When the message startup time dominates
the communication t i e per message the stripwise
partitioning will be beneficial.

Note that the communication requirements are not
always ‘isotropic’ in all directions, but they may de-
pend on characteristics of the problem or the numer-
ical algorithm. This may influence the partitioning
strategy. Consider for example the solution of the
compressible Navier-Stokes equations around an air-
foil. The inclusion of an algebraic turbulence model
may lead to a global dependence (and communica-
tion) in the direction perpendicular of the airfoil.
Then a stripwise partitioning is to be preferred.

Dependence on the size of the subdomains.
When each subdomain contains N = n, x ny grid-
points and a blodtwise partitioning is used with
square subregions (n, = nu), Ekq. (5) yields

This indieates that the communication overhead fc
remains constant, independent of the number of pr-
cessors, as long ag the size of the subdomains remains
constant ! Of course this implies that to maintain a
given parallel efficiency, the total problem size M
must grow when the number of processors P grows,
since M = N x P. The relation fc a also in-
dicates that, for k e d (total) problem size M, the
efficiency and speedup decrease when the number of
processors increases (cf. Amdahl’s law). This analy-
sis is only valid when the only communication is the
exchange of information between neighbouring pro-
cessors. Any ‘global communication’ (e.g., the col-
lection of the local residuals to compute the global
residual) implies an overhead which grows with in-
creasing number of processors. However, the rela-
tive importance of such global communications is of-
ten very low and does not really affect the overall
speedup and efficiency.

Extension to larger stencils and to SD grids.
The analysis presented above remains valid when
other computational stencils are used instead of a
5-point stencil [14]. It may be necessary to use a
larger overlap region, (e.g., with a width of 2 points).
In that case the communication volume increases
(and the constant CZ), but the number of operations
per cell (and thus the constant CI) also increases.
Hence, the communication overhead does not neces-
sarily grow.

In case of three-dimensional grids, 1D-, 2D- and 3D-
partitionings can be used. The communication vol-
ume is then determined by the ‘surface to volume’
ratio of the subdomains, leading to a factor Nils in
Eq. (6) , see e.g. [14].

Dependence on the machine characteristics.
The speedup and parallel efficiency of a given al-

1-12

Fig. 9: Strip- and blockwise partitioning of a grid.

gorithm is proportional to the machine characteris-
tic tc,,,,,,,,/tc,,~c. The various parallel systems avail-
able have quite different values for this character-
istic. Thus the communication overhead may vary
substantially on different machines.

Note that computer manufacturers may upgrade al-
ternatively the processors and the communication
network of their systems. Upgrading the processors
without also increasing the communication speed,
may result in an 'unbalanced' system with a large
ratio tcomm/tcoic.

Dependence on the problem characteristics.
Computational Fluid Dynamics applications are
characterised by a high number of floating point o p
erations per grid point or cell per iteration, while
only a few variables are associated with each point.
Thus the factor c.Jcl in the communication overhead
will be small.

As a result, minimisation of the communication over-
head does not always influence the speedup and par-
allel efficiency very much. However, it is always im-
portant to minimise the work load imbalance. Below
we show that in general a blockwise partitioning also
minimises the load imbalance. Thus in many cases
minimisation of communication overhead and min-
imisation of the load imbalance go hand in hand.

3.3 Analysis of the load imbalance

Let TYlC,i = 1 ... P, denote the time spent by the
i-th processor in calculation, and let T:&gr and
Tgi: denote respectively the average and the maxi-
mum calculation time for the P processors. The load
balance factor is defined as

TC"1"

(7)
average

X(%P) =
m a =

The load balance factor is a good estimate for the
parallel efficiency, if the number of operations to be
performed (counted sequentially) does not depend on
the number of processors, and if the communication

time can be neglected. Indeed, in this case the par-
allel efficiency is given by

and thus E(n ,p) = X(n,p) .

Note that a commonly made mistake is to measure
load (im)balance by comparing the maximum and
the minimum calculation times.

In many applications, the processors are (implicitly)
synchronised by the communication needed to u p
date the 'overlap regions' at the end of each step of an
iterative procedure. In that case, we can determine
the efficiency and speedup by analysing one iteration
step. Assume now that the amount of work per grid
point is constant, and that the communication time
can be neglected. We then obtain

where M is the total number of grid points, N,,, is
the maximum number of grid points in a subdomain

Assume that a rectangular grid is distributed among
P processors. If the grid cannot be equally dis-
tributed among the processors, then a blockwise par-
titioning leads to a higher load balance factor than
a stripwise partitioning. A partitioning into square
subdomains will lead to a maximal load balance fac-
tor, i.e. a minimal load imbalance.

The treatment of boundary conditions is also a PO-
tential source of load imbalance. Indeed, in general
the computational work to be done for boundary cells
M e r s from the work for interior cells. In order to
minimise the load imbalance caused by the treat-
ment of the boundary conditions, the boundary cells
should be distributed as equal as possible among the
processors. This is achieved when the subdomains
are (nearly) square.

The assumption that the amount of work per grid
point or cell is constant is not always valid in CFD.

and Naverage = M / P .

1-13

For example, the computational effort may differ for
cells lying in a subsonic region and in a supersonic
region. This can cause load imbalance, which cannot
be accurately predicted beforehand. Similar prob-
lems arise when the mathematical model differs in
various parts of the domain, e.g. when chemical re-
actions are taken into account in high-temperature
zones.

3.4 Numerical efficiency of parallel al-
gorithms

Until now, we have discussed how the parallel over-
head affects the performance, by comparing the par-
allel execution time with the time needed by the same
algorithm on one processor.

In many cases the algorithm used on the parallel ma-
chine is different from the one typically used on a
sequential machine. In order to obtain acceptable
parallel efficiencies, sequential algorithms are often
modified to decrease the communication volume or
the number of synchronisation points. This may de-
teriorate the numerical efficiency of the algorithm. It
may even be necessary to use a rather different algo-
rithm - with different numerical properties: number
of operations, convergence properties, etc. -on a par-
allel computer, if the sequential algorithm cannot be
parallelised easily and efficiently.

Explicit methods. Explicit methods are inher-
ently parallel and the numerical properties are not
affected by parallelisation (grid partitioning), when
all necessary communication is performed. For ex-
ample, communication is needed after each substep
of a Runge-Kutta method. One can reduce the com-
munication overhead by updating the overlap regions
only after a complete time-integration step. Omit-
ting some communication can result in slightly worse
convergence properties, but can lead to a higher ‘to-
tal speedup’. The effect is very problem depen-
dent. Note that this technique results in a ‘block-
structured’ approach, but here the number of blocks
is determined by the number of processors, not by
the geometry of the domain.

Implicit methods.
when implicit methods are used.

The situation is more complex

0 Assume that the resulting linear systems are
solved by a point relaxation scheme. Jacobi
relaxation is inherently parallel. In this case
the communication requirements are exactly the
same as in the model problem described above
(exchange of the overlap regions). Gauss-Seidel
relaxation usually has better convergence prop-
erties. On a sequential computer, a Gauss-Seidel
iteration typically sweeps through the grid cells
in lexicographic order. On a vector or paral-
lel computer, a Red-Black ordering of the grid
points is necessary. All ‘red’ points can be
updated in parallel, and afterwards the ‘black’
points can be updated. The convergence rate of
lexicographic and Red-Black Gauss-Seidel can
differ substantially. This will be illustrated in
the section 4.

0 When line relaxation schemes are used, (block)
tridiagonal systems must be solved. This leads
to data dependencies between the grid points
lying on the same gridline. If one only sweeps
in one direction, the tridiagonal systems - and
the associated data dependencies - only occur
along that direction. By using a stripwise par-
titioning, one can ensure that each tridiagonal
system belongs to only one processor. Then each
system can be solved by the Thomas algorithm
(i.e. Gaussian elimination), which is the optimal
sequential solver.
The parallelisation of line relaxation is not so
easy, if a blockwise partitioning is used, or
if one performs line relaxation in different di-
rections. Then (part of) the tridiagonal sys-
tems are distributed among processing nodes.
Parallel solvers for (block) tridiagonal systems
have been developed, based on substructured
Gaussian elimination and/or on cyclic reduction
[26][27]. However, the operation count of these
solvers is f 2 times higher than for the Thomas
algorithm - hence their numerical efficiency is
low - and they contain a sequential part. Since
many tridiagonal systems must be solved, the
latter drawback can be avoided by distributing
the sequential parts equally over the processors
(at the expense of some communication). At-
tempts are made to reduce the computational
cost’ of the parallel algorithms by using approx-
imate solvers [28][29].

An alternative is to solve the set of tridiago-
nal systems by using the Thomas algorithm in
a pipelined fashion. This strategy however re-
quires the communication of many short mes-
sages and leads to some load imbalance (during
the start-up and the end phase of the pipeline).
Another alternative strategy to solve tridiago-
nal systems oriented in two directions goes as
follows. We know that when a stripwise parti-
tioning of the data is used, the tridiagonal sys-
tems oriented in one of the two directions can be
solved by the Thomas algorithm. The Thomas
algorithm can be used to solve the tridiagonal
systems in both directions, if in both phases of
the algorithm a different stripwise partitioning
is used, such that in each phase a tridiagonal
system is stored in only one processor. This
requires that a complete ‘data transposition’ is
carried out between both phases. The commu-
nication volume of the data transposition is pro-
portional with the number of grid points per pro-
cessor. Since the same holds for the calculation
cost, the parallel efficiency may still be accept-
able. The latter strategy is the most efficient
one (in terms of total efficiency) to implement
the semi-implicit AD1 time integration scheme
on finite difference grids with irregular bound-
aries [30].

0 Another example of the interaction between nu-
merical and parallel aspects can be found in
multigrid. W-cycles are usually more efficient
than V-cycles in terms of work-units needed to
achieve convergence. On a parallel computer

1-14

4

however, W-cycles result in poor parallel effi-
ciency and one therefore frequently resorts to
V-cycles despite their inferior numerical proper-
ties [31].

Parallel algorithms for solving partial differen-
tial equations can also be based on domain de-
composition in the mathematical sense. Two ap-
proaches are possible.
In the Schwartz domain decomposition ap-
proach, overlapping subdomains are used. The
differential equations are solved on each subdo-
main separately, using an approximation for the
solution at the subdomain boundaries. The re-
sulting approximate solutions provide a new ap-
proximation for the solution on the boundaries
of the (overlapping) neighbouring subdomains.
This process must be repeated in an iterative
way.
In the Schur Complement approach, non-
overlapping subdomains are used. The subdo-
main problems are solved in terms of the vari-
ables on the borders of the subdomains. After
computation of the variables on these borders
(interface or ‘Schur complement’ problem), the
variables on the subdomains can be determined.
Note that both domain decomposition ap-
proaches often require extra calculations com-
pared to when no decomposition is used. These
extra calculations must be considered as al-
gorithmic overhead caused by the parallelisa-
tion. Domain decomposition techniques for
CFD problems are described in e.g. [32, 33, 34,
351.

EXAMPLES

In this section we illustrate some of the concepts in-
troduced in the previous sections. We first discuss
the parallel performance of an explicit Euler Solver
on Intel iPSC/2 and iPSC/860 distributed memory
computers. We show that ‘double flux calculations’,
caused by the grid partitioning, may form a substan-
tial algorithmic overhead in the parallel code. We
comment on various approaches to measure the par-
allel performance and we introduce the effectivity as
an alternative performance measure.

We then present results of experiments on the par-
allelisation of implicit Euler solvers. We discuss the
achieved parallel speedup and parallel efficiency, but
we also show how the numerical efficiency of parallel
algorithms may influence the total speedup and total
eficiency, which is a better measure for the actual
performance.

Finally, we describe results obtained with a block
structured Euler solver, in which an adaptive block
refinement procedure leads to the creation of new
blocks. We show that the use of mapping heuristics
allows to map the block structure onto the processors
of the parallel machine, such that the load imbalance
and the communication cost is low.

4.1 Parallel performance of an ex-
plicit Euler Solver

We first describe some experiments with a parallel
multi-block explicit Euler solver [36,37,38]. We have
used the following schemes:

Scheme 1) a first order upwind discretisation with
Van Leer flux vector splitting, combined with
a forward Euler time integration with local
timestepping;

Scheme 2) a second order Roe scheme, with a min-
mod limiter on characteristic variables, com-
bined with a five stage Runge-Kutta time in-
tegrator.

In the parallel version of the Runge-Kutta scheme,
communication occurs only once per time step, i.e.
before the first stage. Scheme 2 has a much higher
ratio of calculation time to communication than
scheme 1.

We have used the following testcase: transonic flow
around the NACA0012 airfoil, with boundary con-
ditions : M = 0.80 (Mach number), angle of at-
tack of 1.25’, TO = 278K (total temperature) and
Po = 150000Pa (total pressure). The structured C-
grid (240 x 19 cells) shown in Fig. 11 can be split in
2, 4, . . ., 16 blocks of equal size (1D partitioning, or-
thogonal to the airfoil), see Fig. l l a) . Thus all these
partitionings allow a nearly perfect calculation load
balance.

Two sets of tests were done : the first set with N = P
blocks and the second set with N = 16 blocks regard-
less of the number of processors, P. The first case
corresponds to a situation where the grid is parti-
tioned for parallel processing purposes only. Extra
calculations caused by the partitioning must be con-
sidered as algorithmic overhead, as discussed below.
The second case corresponds to a situation where the’
partitioning into blocks results from physical consid-
erations. A sequential code would use the same par-
titioning into blocks.

4.1.1 Algorithmic overhead: double flux
computations

We first discuss a typical ‘algorithmic overhead’ that
occurs in parallel CFD codes. At subdomain bound-
aries, the parallel code cannot exploit the symmetry
properties of the numerical fluxes. The fluxes are cal-
culated twice on every edge of a subdomain bound-
ary, once in every block. If the grid is partitioned for
parallel processing purposes only, these ‘double flux
computations’ form an overhead, not present in the
sequential code. Experiments indicate that the time
required for those extra flux computations is of the
same order of magnitude as or even larger than the
communication time, see [37] and Tables 1 and ??.

Suppose that the number of blocks N is equal to the
number of processors P . The time lost in the extra
flux computations and some additional overhead in-
troduced by splitting the grid in subdomains is given

1-15

2 0.7 4.8 1
4
8
16

1.6 9.0
2.4 12.6
2.7 14.6

Number of processors
2
4

Table 3: Effectivity CY, efficiency E and speedup S on the iPSC/2 for
first order Van Leer, Euler time integrator.

scheme 1 scheme 2
4.7 36.9
3.8 33.3

by tcalc(N = P, P) - tcalc(l , l) , where tcalc(N, P)
denotes the total calculation time on P processors
for a grid partitioned into N blocks. (Note that
tcalc(N1 P) is equal to the sum of the sequential calcu-
lation times for all blocks; communication time and
processor idle time is not taken into account.)

The double flux computation overhead on the
iPSC/2 for the two schemes mentioned above is given
in Table 1. The results show that the time spent in
the extra flux calculations in scheme 1 (first order
Van Leer, forward Euler) is of the same order of mag-
nitude as the communication time, while for scheme
2 (second order Roe, Runge Kutta) the double flux
computation overhead is much larger than the com-
munication overhead. For a Navier-Stokes computa-
tion, the double flux computation overhead would be-
come even more dominant. Table 2 shows the results
obtained on an iPSC/860 system, for which both cal-
culation and communication are much faster than
on the iPSC/2. For this example, the double flux
computation overhead is even larger than on iPSC/2
systems. Note however that the code has not been
optimised for the cache memory on the processors of
the iPSC/860. In an optimised code, the double flux
calculation overhead would be smaller.

This experiment shows that it does not always make
sense to try to minimise the communication time. In
some cases, it would be better to eliminate the double
flux computations via additional communication of
the fluxes.

P

1
2
4
8
16

4.1.2 Parallel performance measurements

We have measured the parallel performance on the
Intel iPSC/2 of the explicit Euler solver using scheme
1 (first order, forward Euler), because this scheme
has a low calculation to communication ratio as com-
pared to other methods, so the parallel performance
of this scheme reflects a worst-case situation.

The parallel efficiency E (N , P) and the speedup
S (N , P) compare the execution times on one and on
P processors. Another measure for the parallel per-
formance of an algorithm can be defined as follows.

The effectivity a of a parallel algorithm is defined as
the amount of time spent in the actual calculation
relative to the total execution time; for a multi-block
code this can be computed as

N = P N = 1 6

99.9 100 1 98.7 100 1
99.7 99.8 1.995 98.4 99.8 1.996
99.1 98.5 3.94 98.1 99.5 3.98
97.9 96.3 7.70 97.1 98.4 7.87
95.9 90.2 14.43 95.9 97.1 15.54

1 4): P) (7) 0 Jqp, P) (7) 0 S(P, P) a (1 6 , P) (7) 0 I &(1 6 , P) (7) 0 S(16, P)

where where ttalc denotes the calculation time for
block i and where T (N , P) denotes the execution
time of a parallel iteration step for an N-block grid
on P processors (incl. communication). The effectiv-
ity takes three factors into account : the load imbal-
ance, the communication overhead and the schedul-
ing overhead. For compute-intensive problems, one
can expect that a (N , P) is approximately equal to
the load balance factor X(N, P) . Note that one must
not be able to run the program on a single processor
to determine a.

In Table 3 we present the parallel efficiency, speedup
and effectivity obtained for the two sets of tests men-

1-16

tioned above : a) N = P blocks; b) N = 16 blocks
regardless of the number of processors. Only in case
a) the extra flux calculations are considered to be a
loss. Therefore, the parallel efficiency and speedup is
higher in case b). However, lower effectivities are re-
ported as more blocks have to be managed and more
interblock communication occurs.

This comparison stresses the importance of clearly
stating how efficiencies and speedups are measured.
It also demonstrates that for this type of applica-
tions, a high parallel efficiency and speedup can be
obtained when load imbalance is insignificant.

4.2 Parallel implicit Euler solvers

4.2.1

In this section we report on some experiments with
parallel implicit Euler solvers. A first series of tests
has been done with a solver, based on a first order
discretisation with Van Leer flux vector splitting and
backward Euler time integration, see e.g. [39]. As
test case, we have used the GAMM channel with
circular bump and inlet Mach number A4 = 0.85,
discretised on a structured grid with 96 x 32 inte-
rior finite volume cells. Treatment of the bound-
ary conditions leads, for each cell on the bound-
ary, to a vector of ‘boundary unknowns’, which can
be associated with a grid point on the boundary.
Thus the computational domain consists of a grid
of m, x my = 98 x 34 ‘grid points’, to be distributed
among up to 16 processors.

We have considered several partitionings of the com-
putational domain, leading to different subdomain
configurations N , x Ny, where N , and Ny denote
the number of subdomains in respectively x- and
y-direction. In all cases, the interior ‘grid points’ are
equally distributed among the processors, but some
load imbalance occurs, due to the unequal distribu-
tion of the boundary points.

In the previous section we have indicated that the
load balance factor (7) gives a good prediction of
the parallel efficiency and the parallel speedup, when
the communication overhead is small and when all
grid points require approximately the same amount
of work. Table 4 presents these predicted efficiencies
and speedups, and also shows the parallel efficiencies
and speedups that are obtained when the linear sys-
tems are solved with a Red-Black Gauss-Seidel relax-
ation scheme on an Intel iPSC/2 parallel computer.
(Similar performances will be obtained on other par-
allel computers with a similar machine characteristic

The results differ from the predicted values for two
reasons : (1) the actual load imbalance is smaller
than predicted because the boundary points (caus-
ing load imbalance) require less operations than the
other points; (2) the parallel overhead is higher
due to the communication overhead. Note that (1)
and (2) have opposite effects on the parallel efficiency
and speedup. Since the ratio mx/my = 98/34 is
approximately equal to 3, subdomain configurations
with Nx/Ny N 3 yield nearly square subdomains.

Influence of the partitioning strategy

~ c o m m l t c a l c .)

The results in Table 4 clearly show that, for a fixed
number of subdomains, the load balance factor and
the achieved parallel efficiency is maximal for nearly
square subdomains.

4.2.2 Total efficiency and speedup

However, to measure the actual performance of a
parallel solver, one should rather consider the to-
tal speedup - see Eq. 2 - instead of the parallel
speedup, by taking into account the numerical qual-
ity of the parallel algorithms. We have therefore com-
pared the convergence properties of Red-Black and
lexicographic Gauss-Seidel relaxation schemes. For
the lexicographic Gauss-Seidel scheme, two sweep
directions were used alternatingly. For this test
problem, the number of relaxation steps required to
achieve convergence for lexicographic and Red-Black
Gauss-Seidel were 492 and 1090 respectively. Thus
the (sequential) execution time with the Red-Black
Gauss-Seidel scheme is more than 2 times higher than
with lexicographic Gauss-Seidel. As a result, the to-
tal efficiency (taking into account the numerical effi-
ciency) of the parallel Red-Black relaxation scheme
is less than 50 %, even when the parallel efficiency is
nearly 100 % !

An alternative is to use a multi-block approach: each
subdomain is treated independently (i.e. in parallel)
and in each subdomain a lexicographic Gauss-Seidel
relaxation is performed. Information on subdomain
boundaries is exchanged after each complete relax-
ation step (i.e. after an upward and a downward
sweep through the cells).

Because the blocks (subdomains) themselves are
treated in a Jacobi fashion, we expect convergence
degradation when the number of blocks grows. This
is indeed the case, as reported in Table 5. The re-
quired number of relaxation steps depends on (a) the
number of subdomains, i.e. the number of proces-
sors and (b) the aspect ratio of the subdomains. Of-
ten, the configuration with nearly square subdomains
yields the fastest convergence.

The total speedup of this multi-block solver can now
be defined as the ratio of the execution times on P
processors and on one processor to reach the pre-
scribed convergence criterion. The achieved total
speedup and total efficiency for some subdomain con-
figurations are given in Table 6. Clearly, for this
test problem and when the number of subdomains is
not too high, the ‘Block Jacobi, lexicographic Gauss-
Seidel’ scheme is to be preferred above the (single
block) Red-Black Gauss-Seidel scheme, because the
total efficiency of the latter scheme is less that 50 %.

The convergence degradation of multi-block implicit
methods due to the increase of the number of blocks
is problem dependent, but in most cases the number
of iterations increases only slightly. In [40] a study
of the performance degradation for several implicit
schemes is presented. The transonic flow computa-
tion over the NACA0012 airfoil (see section 4.1, but
with 0” angle of attack) has been used as a testcase.
In all implicit solvers considered in this study, the Ja-

1-17

su bdomain
configuration

N , x N y
16 x 1
8 x 2
4 x 4
2 x 8
1 x 16
8 x 1
4 x 2
2 x 4
1 x 8
4 x 1
2 x 2
1 x 4
2 x 1
1 x 2
1 x 1

grid points predicted achieved predicted achieved
parallel parallel parallel parallel

Naverage N,,, efficiency (%) efficiency (%) speedup speedup
208.25 238 87.5 90.5 14.0 14.5
208.25 221 94.2 92.0 15.1 14.7
208.25 225 92.6 89.1 14.8 14.3
208.25 245 85.0 83.2 13.6 13.3
208.25 294 70.8 73.4 11.3 11.7
416.5 442 94.2 95.7 7.54 7.66
416.5 425 98.0 97.4 7.84 7.79
416.5 441 94.4 93.4 7.55 7.47
416.5 490 85.0 86.4 6.80 6.92
833 850 98.0 98.9 3.92 3.96
833 833 100 99.3 4.00 3.97
833 882 94.4 94.7 3.78 3.79
1666 1666 100 99.6 2.00 1.99
1666 1666 100 98.9 2.00 1.98
3332 3332 100 100 1 .oo 1 .oo

Table 5: Implicit Euler solver based on a multi-block approach: number
of iterations as function of the subdomain configuration.

subdomain number
configuration of steps

8 x 2 570
4 x 4 574
4 x 2 503
4 x 1 489
2 x 2 467
2 x 1 438
1 x 1 430

total total

11.3 70.4
10.9 67.9
6.66 83.2
3.48 86.9
3.65 91.2
1.96 98.0
1 .oo 100

speedup efficiency (%)

Table 6: Total speedup and efficiency of the multi-block implicit Euler
Solver (Block Jacobi, lexicographic Gauss-Seidel).

1-18

cobian matrices of the residual are evaluated with a
first order upwind discretisation (Van Leer, Approx-
imate Steger-Warming or Yoon-Jameson), while the
residual driven to zero is either first order or second
order. Both line Gauss-Seidel and AD1 methods are
used to solve the linearised system in each time step.
The second order residuals are based on MUSCL ex-
trapolation (third order upwind biased) and a gener-
alised minmod limiter with a compression factor of
2.

The following implicit methods have been investi-
gated, where the first item refers to the implicit solver
and the second item to the residual driven to zero:

0 Van Leer/Van Leer - Line Gauss-Seidel

0 Van Leer/Van Leer - AD1 (VL/VL-ADI)

0 Approximate Steger-Warming/Roe - Line

0 Approximate Steger-Warming/Roe - AD1

0 Yoon-Jameson/Roe - LU-SSOR (YJ/R-LU-

(VL/VL-LGS)

Gauss-Seidel (ASW/R-LGS)

(ASW/R-ADI)

SSOR)

For the line Gauss-Seidel scheme, four different sweep
directions are possible, namely in the positive and
negative i- and j-directions. These sweep patterns
are indicated in Figure 10.

Fig. 10: Sweep patterns for LGS

Experiments indicate that, for the single block case,
fewer iterations are needed when sweeping in the
j-direction (‘j-sweeps’) than when sweeping in the i-
direction (‘i-sweeps’). This is to be expected, since
within a j-sweep, 240 cells along the i-direction are
taken implicitly, while within an i-sweep only 19 cells
along the j-direction are taken implicitly. The higher
implicitness of the solver for j-sweeps leads to faster
convergence. Sweeping in the positive or negative
direction has only a slight influence on the number
of iterations.

Assume now that a multi-block approach is used,
with up to 16 blocks obtained by a 1D partitioning
of the grid, orthogonal to the airfoil (as in Fig. I l a) .

The performance degradation of the multi-block
implementation of the schemes presented above is

shown in Table 7. As an initial guess, a first order
solution computed with the same explicit operator as
the one used in the second order computation, was
employed. The convergence criterion was a reduction
of the residual by a factor of lo4. The first order and
the second order calculations have been done with
respectively CFL = 30 and CFL = 4. For the Line
Gauss-Seidel schemes, j-sweeps were used. The com-
bination ASW/R-LGS did not converge for CFL =
4 in the single block case (a decrease of the CFL-
number was necessary for convergence). The LU-
SSOR scheme needs more iterations than the other
schemes; but one LU-SSOR iteration is considerably
cheaper than an LGS or AD1 iteration.

The results in Table 7 show that no severe degrada-
tion in performance occurs for any of the schemes
tested, with up to 16 blocks. Note that for the
Line Gauss-Seidel schemes, a stronger degradation
is to be expected when j-sweeps are used - as in
the tests reported here - than when i-sweeps are
used. Indeed, because of the 1D partitioning orthog-
onal to the airfoil, the block boundaries are along
the j-direction. When j-sweeps are used, the ‘implic-
itness’ in the i-direction is cut by the block bound-
aries. If i-sweeps would have been used, the implicit-
ness (in the j-direction) would not have been affected
by the partitioning. Thus for a very large number
of blocks, i-sweeps will be more efficient, since line
Gauss-Seidel with j-sweeps degenerates to a point
Jacobi scheme, while with i-sweeps the scheme de-
generates to a line Jacobi scheme, which is still a
powerful scheme. However for a moderate number
of blocks, j-sweeps are more efficient, since only 384
iterations are needed when j-sweeps (in the positive j-
direction) are used, compared to 561 iterations when
+i-sweeps are used.

Convergence degradation can also be observed when
a preconditioned Krylov subspace iteration is used
as linear system solver : often an efficient precondi-
tioner (e.g. ILU) is replaced in the parallel code by a
less effective preconditioner (e.g. diagonal precondi-
tioner), that can be parallelised more easily. Also in
this case, the pure parallel efficiency and speedup are
not the appropriate measures for the performance,
and the different convergence properties of the se-
quential and parallel solver must be taken into ac-
count. Also in this case, a multi-block approach can
be useful [41].

4.3 Load balancing of block struc-
tured CFD codes

We now describe some results on the ‘mapping’ of
block structured grids on distributed memory sys-
tems and the obtained parallel performance. We re-
fer to [37] for more information.

Starting from the grid for the NACA0012 testcase
with 16 blocks, each having the same number of cells,
we have created block structured grids with up to 103
blocks via grid refinement. Blocks have been refined
by doubling the number of grid lines in both direc-
tions, using refinement criteria based on the stream-

1-19

scheme I 1 block I 2 blocks I 4 blocks I 8 blocks I 16 blocks I

Table 7: Number of iterations required to achieve convergence: influ-
ence of the number of blocks (LGS-schemes: sweeps in the
j-direction).

wise entropy gradient. Refined blocks are split into
four blocks. Thus all blocks contain approximately
the same number of cells. The resulting block struc-
tures are shown in figure 11. The first grid counts 16
blocks, the second one 52 blocks and the third one
103 blocks.

A simiiar procedure has been used for a second
testcase : the computation of the supersonic 00w
in a scramjet geometry. The inlet conditions are
M = 3.6, angle of attack of OD, To = 300K and
Po = 100000Pa. The first grid contains 8160 cells,
partitioned into 24 blocks, with sizes varying from
10 x 15 to 34 x 15. The block structure of the refined
grids with 24, 66,132 and 161 blocks (corresponding
to 82152 cells) is shown in figure 12.

Since the grid is already partitioned into blocks, load
balance and communication minimisation must be
achieved by an appropriate mapping of the blocks
onto the processors. Various mapping strategies are
incorporated into a software library, that we have
developed to hide most of the parallel implementa-
tion details from the application programmer [42].
The software library is especially designed to sup-
port run-time load balancing for applications that
use adaptively refined grids, see [37][43][38]. This
software library has been used for the parallelisation
of the multiblock code used for the tests described in
this section and in section 3.1. The mapping strat-
egy used for the test described here was based on
a recursive bisection technique using a costfunction,
that takes into account the calculation cost for each
block, the communication between blocks mapped
onto different processors, and the machine architec-
ture (network topology).

Table 8 shows the eflectruity for a parallel forward
Euler timestep of the multi-block code on an Intel
iPSC/S60. The loss of effectivity is due to load im-
balance and communication overhead. The achieved
load balance is reported in table 9. The correlation
with the effectivity in table 8 reveals that load im-
balance is the dominant loss factor.

For the NACA0012 testcase, all 16 initial blocks have
the same size, which allows a perfect load balance on
up to 16 processors. Refinement of this grid leads
to 52 and 103 blocks of almost equal size. As they
cannot be equally distributed among the processors,
some imbalance remains. For the scramjet testcase,

we start with 24 blocks of varying size. Table 9 shows
that load balancing works very well if the number of
blocks is much larger than the number of processors
(or if the block sizes are well-chosen). A certain vari-
ation in block sizes is beneficial for load balancing.
It is easily verified that the best possible load bal-
ance that can he obtained with blocks of equal size
is worse than the values reported in Table 9.

Table 10 shows the communication cost, including
the overhead of the message preparation (‘packing’
and ‘unpacking’ of the information in buffers). The
communication cost does not grow fast with the num-
ber of processors.

Table 11 lists the estimatedparallel eficiency. It was
impossible to determine the true parallel efficiency
and speedup, as the refined grid did not fit in a single
node’s memory. Therefore, the single processor time
was estimated as the total calculation time plus the
time for copying the data to or from the communica,
tion buffer, using the same block structure. The esti-
mated speedup is reported in table 12. The speedups
obtained are high, due to the good load balance and
the fact that the flow solver is so computeintensive.

These results indicate that the mapping strategy
computes a good mapping of blocks onto processors.
Note that even for block structured grids of moderate
complexity, it is very difficult or even impossible to
find a good block distribution by hand and an autc-
matic procedure is needed. Mapping techniques are
closely related to gnd partrtionrng techniques used to
partition unstructured grids for parallel processing.
A tutorial on grid partitioning techniques is given in
PI.

ACKNOWLEDGMENT

This text presents research results of the Belgian
Incentive Programme ‘Information Technology’-
Computer Science of the Future (IT/IF/5), and the
Belgian programme on Interuniversity Poles of At-
traction (IUAP 17), initiated by the Belgian S t a t e
Prime Minister’s S e r v i c e Federal Office for Scien-
tific, Technical and Cultural Affairs. The scientific
responsibility is assumed by its authors.

1-20

Fig. 1: Block shcture of the NACAOOl2 grids (16, 52 and 103
blocks)

Fig. 12: Block structure of the scmmjet grids (24, 66, 132 and 261
blocks)

number of processors I] 1 I 2 1 4 1 8 1 1 6 1 3 2 1 6 4]

number of processors 1
NACA 16 blocks 100.0
NACA 52 blocks I
NACA 103 blocks
Scramiet 24 blocks I

Table 8: Effectivity CY (%) on the iPSC/860

2 4 8 16 32 64
100.0 98.8 97.7 95.9 48.0
99.7 98.4 92.7 82.8 80.4

100.0 99.8 99.7 94.3 51.0 25.5
I 98.3 97.7 89.6 81.4

Scramjet 132 blocks I I
Scramjet 261 blocks

I 98.3 97.2 92.5 87.8
/ 95.9 94.8 87.8

Table 9: Calculation load balance X (%) on the iPSC/SSO

[number of processors I[1 I 2 I 4 I 8 I 16 I 32 I 64 I
I NACA 16 blocks 1 11 0.5 I 1.1 I 0.8 I 1.7 1 1.3 I 0.6 I

Table 10: Communication cost (%) on the iPSC/SSO

number of processors I[1 I 2 1 4 1 8 1 1 6 1 3 2 1 6 4]

Table 11: Estimated efficiency E (%) on the iPSC/SSO

I number of processors 11 1 I 2 I 4 1 8 1 16 I 32 I 64 I

Table 12: Estimated speedup S on the iPSC/SSO

1-21

1-22

REFERENCES

[l] A.J. van der Steen. An overview of (al-
most) available parallel systems. Ncf re-
port, Stichting Nationale Computerfaciliteiten,
's Gravenhage, the Netherlands, December
1994. (Available via ftp from ftp.cc.ruu.nl, dir.
/pub/BENCHMARKS/reports).

[2] V.S. Sunderam, G.A. Geist, J . Dongarra, and
R. Manchek. The PVM concurrent computing
system: Evolution, experiences and trends. Par-
allel Computing, 20(4):531-746, 1994. (PVM is
available via ftp from netlib2.cs.utk.edu).

(31 D. Walker. The design of a standard mes-
sage passing interface for distributed memory
concurrent computers. Parallel Computing,
20(4):657-673, 1994.

[4] R. Calkin, R. Hempel, H.-C. Hoppe, and
P. Wypior. Portable programming with the
PARMACS message-passing library. Parallel
Computing, 20(4):615-632, 1994.

[5] Ch. H. Koelbel, D.B. Loveman, R.S. Schreiber,
G.L. Steel, and M.E. Zosel. The High Perfor-
mance Fortran Handbook. MIT Press, 1994.

(61 B. Chapman, H. Zima, and P. Mehrotra. Ex-
tending HPF for advanced data-parallel appli-
cations. IEEE Parallel and Distributed Tech-
nology, 2(3):59-70, 1994.

(71 Applied Parallel Research. FORGE 90 Dis-
tributed Memory Paralleliter User's Guide.
APR, Placerville, CA, 1993. (Information
on FORGE available by email request from
forge@netcom.com).

[8] R. Berrendorf et.al. Intel Paragon XP/S -
Architecture, software environment, and per-
formance. Technical Report KFA ZAM IB
9409, Forchungszentrum Julich GmbH, Ger-
many, 1994.

[9] C.B. Stunkel et. al. The SP2 Communica-
tion Subsystem. Technical report, IBM Thomas
Watson Research Center, Yorktown Heights,
NY, 1994.

[IO] Silicon Graphics. The advent of PowerComput-
ing. Technical Report Power Challenge, Silicon
Graphics, CA, 1994.

[Ill J.J. Dongarra, I.S. Duff, D.C. Sorensen, and
H.A. van der Vorst. Solving Linear Systems on
Vector and Shared Memory Computers. SIAM,
1991.

[12] J. Gustafson, G. Montry, and R. Benner. Devel-
opment of parallel methods for a 1024-processor
hypercube. SIAM J. Sci. Statist. Comput.,
9(4):609-638, July 1988.

[13] J.L. Gustafson. Reevaluating Amdahl's law.
Communications of the ACM, 31(5):532-533,
1988.

[14] G. Fox, M. Johnson, G. Lyzenga, S. Otto, and
J. Salmon. Solving Problems on Concurrent
Processors, Volume I. Prentice-Hall, Englewood
Cliffs, 1988.

[15] E. Van de Velde. Concurrent Scientific Comput-

[16] C.A. de Moura. Parallel algorithms for differ-
ential equations. Lectures Notes, LNCC, Rio de
Janeiro, Brazilia, 1994. (Available by email re-
quest from demoura@zeus.funceme.br).

ing. Springer Verlag, 1994.

[17] R.B. Pelz, A. Ecer, and J. Hauser, editors. Par-
allel Computational Fluid Dynamics '92. North-
Holland, Elsevier Science, 1993.

[18] A. Ecer, J. Hauser, P. Leca, and J. Periaux, ed-
itors. Parallel Computational Fluid Dynamics
'93. North-Holland, Elsevier Science, 1995.

I191 N. Satofuka et. al., editor. Parallel Computa-
tional Fluid Dynamics '94. North-Holland, El-
sevier Science, 1995 (to be published).

[20] R. Voigt and J. Saltz, editors. Proceedings of the
Scalable High Performance Computing Confer-
ence '92. IEEE, 1992.

[21] Proceedings of the Scalable High Performance

[22] J. Dongarra et.al., editor. Parallel Processing

[23] D.H. Bailey et. al., editor. Proceedings of the
Seventh SIAM Conference on Parallel Process-
ing for Scientific Computing. SIAM, 1995.

[24] W. Gentzsch and U. Harms, editors. High Per-
formance Computing and Networking, LNCS
796-797. Springer, 1994.

[25] B. Hertzberger and G. Serazzi, editors.
High Performance Computing and Networking,
LNCS 919. Springer, 1995.

[26] A. Krechel, H. Plum, and K. Stuben. Paral-
lel solution of tridiagonal linear systems. In
F. Andr6 and J. Verjus, editors, Hypercube and
distributed computers, pages 49-64, Amsterdam,
1989. North-Holland.

A parallel method for tridiagonal
equations. ACM Trans. on Math. Software,

[28] M. Honman. The use of an approximate tridiag-
onal solver in a parallel AD1 code. In K.G. Rein-
sch et.al., editor, Parallel Computational Fluid
Dynamics '91, pages 227-242. North-Holland,
Elsevier Science, 1992.

[29] E.N. Curchitser and R.B. Pelz. Implementation
of the Euler equations on MIMD, Distributed
Memory multiprocessor computers using cyclic
reduction algorithms. In K.G. Reinsch et.al.,
editor, Parallel Computational Fluid Dynamics
'91, pages 97-1 12. North-Holland, Elsevier Sci-
ence, 1992.

Computing Conference '94. IEEE, 1994.

for Scientific Computing. SIAM, 1993.

[27] H. Wang.

:: 7:170-183, 1981.

1-23

[30] Z.W. Song, D. Roose, C.S. Yu, and J. Berla-
mont. A comparison of parallel solvers for the
2D shallow water equations on distributed mem-
ory parallel computers. In L. Dekker, W. Smit,
and J.C. Zuidervaart, editors, Massively Par-
allel Processing Applications and Development,
pages 87-94. Elsevier,. 1994.

[31] J . Linden, B. Steckel, and K. Stuben. Parallel
multigrid solution of the Navier-Stokes Equa-
tions on general 2D-domains. Parallel Comput-
ing, 7:461-475, 1988.

[32] M.E. Braaten. Development of a parallel CFD
algorithm on a hypercube computer. Interna-
tional Journal for Numerical Methods in Fluids,
12~947-963. 1991.

(331 L.C. Cowsar, E.J. Dean, R. Glowinski,
P. Le Tallec, C.H. Li, J. Periaux, and M.F.
Wheeler. Decomposition principles and their
applications in Scientific Computing. In J. Don-
garra et.al., editor, Parallel Processing for Sci-
entific Computing, pages 213-237. SIAM, 1992.

[34] D. Keyes. Domain decomposition: a bridge be-
tween nature and parallel computers. Technical
Report ICASE Rep. 92-44, NASA Langley Res.
Center, 1992.

[35] C. Farhat and F.X. Roux. Implicit parallel pro-
cessing in structural mechanics. 2:l-124, 1994.

A 2D paral-
lel multiblock Navier-Stokes solver with appli-
cations on shared and distributed memory ma-
chines. In c. Hirsch et.al., editor, Proceedings
of the First European Computational Fluid Dy-
namics Conference. Elsevier, 1992.

[36] C. Mensink and H. Deconinck.

[37] J . De Keyser, K. Lust, and D. Roose. Run-time
load balancing support for a parallel multiblock
Euler/Navier-Stokes code with adaptive refine-
ment on distributed memory computers. Paral-
lel Computing, 20:1069-1088, 1994.

[38] K. Lust, J. De Keyser, and D. Roose. A parallel
block-structured Euler/Navier-Stokes code with
adaptive refinement and run-time load balanc-
ing. In A. Ecer, J. Hauser, P. Leca, and J. Peri-
aux, editors, Parallel Computational Fluid Dy-
namics '93, pages 243-350. North-Holland, El-
sevier Science, 1995.

[39] L. Beernaert, D. Roose, R. Struys, and H. De-
coninck. A multigrid solver for the Euler equa-
tions on the iPSC/2 parallel computer. M A C S
Appl. Num. Math., 7:379-398, 1991.

[40] L. Beernaert and M. Franke. Parallel implemen-
tation of iterative solvers. Study note esa-wp6,
Von Karman Institute & K.U.Leuven, 1993.

[41] G. Degrez and E. Issman. Acceleration of com-
pressible flow solvers by krylov subspace meth-
ods. Von Karman Institute Lecture Series 1994-
05, 1994.

[42] J . De Keyser and D. Roose. Load balancing
data-parallel programs on distributed memory
computers. Parallel Computing, 19(11):1199-
1219, 1993.

Run-time load
balancing techniques for a parallel unstructured
multi-grid Euler solver with adaptive grid refine-
ment. Parallel Computing, 21:179-198, 1995.

[44] R. Van Driessche and D. Roose. Load balancing
computational fluid dynamics calculations on
unstructured grids. In H. Deconinck et.al., edi-
tor, Parallel Computing in Computational Fluid
Dynamics. AGARD FDP / Von Karman Insti-
tute Lecture Notes (this volume), 1995.

[43] J . De Keyser and D. Roose.

2- I

Load Balancing Computational Fluid Dynamics Calculations
on Unstructured Grids

Rafael Van Driessche and Dirk Roose

Katholieke Universiteit Leuven
Dept. of Computer Science

Celestijnenlaan 200A
B-3001 Leuven, Belgium

1 SUMMARY

Efficient use of a parallel computer requires the
data and the operations that must be performed
on them to be distributed over the processors in
such a way that the work load is balanced and
the communication cost minimised. This distri-
bution problem is called the load balancing prob-
lem. For CFD applications, the load balancing
problem amounts to finding a partition of the
grid and subsequently a mapping of the subgrids
to the processors, that balance the work load
and minimise the communication costs. This tu-
torial contains a description of well-established
methods for partitioning and mapping unstruc-
tured grids. They range from simple heurist-
ics, over global optimisation methods to very
powerful and cost-effective algorithms that com-
bine the strengths of simpler heuristics. Most
of the methods that will be discussed, have
been implemented in some well-documented and
-supported partitioning tools. The tutorial dis-
cusses two of the most important ones: Chaco
and TOP/DOMDEC

2 INTRODUCTION

Today’s parallel computers potentially allow very
high performances. Obtaining these in reality
however, requires a careful analysis of the prob-
lem and of the solution methods, and often re-
quires that the characteristics of the parallel com-
puter are taken into account during the develop
ment of the parallel code.
More specifically, to obtain high performance on
a parallel computer, it is of paramount import-
ance to distribute the data and the operations
that have to be performed on them in such a way
that the work load is balanced over the processors
in the parallel computer, while at the same time

the communication cost is kept as small as pos-
sible. We call this distribution problem the load
balancing problem.
In this tutorial, we will discuss the load balan-
cing problem for Computational Fluid Dynamics
(CFD) applications. Most CFD calculations are
grid-oriented, i.e. the data are defined on a dis-
crete grid of points, finite volumes or finite ele-
ments, and the calculations consist of applying
certain operations on (the data associated with)
all the points, volumes or elements of the grid.
Grid-oriented applications are usually parallel-
ised by partitioning the grid and by distributing
the subgrids among the processors of the paral-
lel computer. Each processor then performs the
calculations on its own grid points, volumes or
elements. For grid-oriented problems, the load
balancing problem amounts to finding a partition
of the grid and subsequently a mapping of the
subgrids to the processors, that balance the work
load and minimise the communication costs.

2.1 Static and dynamic load balancing

The grids that are used in Computational Fluid
Dynamics can either be structured or unstruc-
tured, static or adaptive and single level or multi-
level (the latter in case multigrid is used). If both
the grid and the amount of work that is involved
with each grid point do not change during the
calculations, the distribution of a grid-oriented
application can be done statically, usually as a
pre-processing step on a sequential computer. If
the grid or the calculations do change however,
the grid points must be redistributed dynamic-
ally over the processors of the parallel machine
to maintain load balance. This problem is much
more difficult than the static one for several reas-
ons:

Paper presented in an AGARD-FDP- VKI Special Course on “Parallel Computing in CFD”, held at the VKI, Rhode-Saint-Genese. Belgium,
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807.

2-2

1. the performance of the parallel computer
must be monitored to detect the load im-
balance,

2. a decision must be made as to whether the
gain of the redistribution will outweigh the
cost of calculating the new distribution and
transferring the grid points; if this cost is
very high, it can in fact be advantageous to
proceed with an unbalanced distribution,

3. the new distribution must be calculated on
the parallel computer, which requires that
the distribution algorithm is parallelised,

4. the execution time of the balancer is much
more critical than in the static case, because
the new distribution is used for a shorter
time period,

5. the rebalancing algorithm must preferably
find a distribution that is similar to the cur-
rent distribution, so that only a mimimal
number of grid points must be transferred.

When adaptive refinement is used in a CFD-
code, the grid remains fixed during rather long
periods. In this case one can invoke a load bal-
ancer after each grid refinement. This type of
load balancing is called iterative static load bal-
ancing [I, 21 or quasi-dynamic load balancing [3].
The techniques that will be discussed in this tu-
torial are meant to be used for static load balan-
cing, Nevertheless, many of them are also useful
for quasi-dynamic load balancing. More specific
algorithms, that explicitly t ry to take the cost

found in [4, 5, 61.
, of transferring grid points into account, can be

2.2 Partitioning and mapping

While distributing the grid points of a structured
grid among ,the processors of a parallel computer
is a straightforward task, doing the same for an
unstructured grid is very complex. The problem
can be alleviated by performing the distribution
of the grid points among the processors in'two
steps. First, the grid is partitioned in a num-
ber of subgrids and subsequently these subgrids
are mapped onto the processors. Typically, the
number of subgrids is chosen equal to the num-
ber of processors. In principle, the partitioning
only depends on the characteristics of the prob-
lem while the mapping takes the characteristics
of the machine into account. Therefore, these two
separate problems are easier to solve than the ori-
ginal distribution problem. On the other hand,
solving the partitioning problem separately from
the mapping problem usually restricts the quality

of the distribution that can be obtained because
decisions made during the partitioning step may
inhibit finding a good mapping afterwards.

2.3 Requirements for partitioning

In general, an algorithm based on grid parti-
tioning or domain decomposition involves inter-
face operations and local computations. The
interface operations consist of communication
between subdomains and, in some cases, the solu-
tion of a true interface problem (i.e. a Schur-
complement operator) or the assembly of subgrid
quantities at their common interfaces. The local
computations correspond either to the solution of
a local subproblem or simply to the explicit eval-
uation of a subgrid quantity.
I t is clear that in order to keep the global cal-
culation time as small as possible, the interface
operations should take as little time as possible.
The local computations should also take as little
time as possible and should be balanced evenly
among the processors. If this is not the case, the
processors will have to wait for the overloaded
processor(s) to catch up before they can start
with the interface calculations.
From these general requirements, we can deduce
the requirements for a mesh partitioner.

1. The time taken by the interface operations
is a function of the number of points on the
boundary of the subgrid. Very often it is
also a function of the number of adjacent
subgrids. Therefore the length of the bound-
ary and the number of adjacent subgrids
should be minimised for each subgrid. The
latter requirements are very often conflict-
ing, and their relative importance depends
on the problem and on the characteristics of
the parallel computer (especially the start-
up to transfer time ratio).

2. The time for the local calculations is a func-
tion of the number of points in the subgrid.
If the amount of work is the same for all
the grid points, each subgrid should have the
same number of points to balance the work
load.

If the local and/or the interface calculations are
implicit, i.e. involve the solution of a system of
equations, a number of additional considerations
come into play:

3. If the local calculations are implicit, the con-
dition of this problem is (strongly) influ-
enced by the aspect ratio of the subgrid.
It can be shown that subgrids with bad as-
pect ratios (i.e. subgrids that are very elong-
ated) generate local problems that are poorly

2-3

conditioned and are difficult to solve iterat-
ively [7, 81. Moreover, ill-conditioned local
problems have a negative impact on the iter-
ative solution of the interface problem [9] as
well. Elongated subgrids tend to have long
perimeters, therefore trying to obtain inter-
faces with minimal length will typically yield
grids with good aspect ratios.

4. If the local calculations are implicit, and if
a direct method is used to solve the local
system, the calculation time for each sub-
grid is influenced by the bandwidth of the
local matrix. This bandwidth depends on
the shape of the subgrid.

5 . If a frontal method is used to solve the lin-
ear systems arising from a finite element
approach, the frontwidth associated with
each subgrid should not be greater than
the frontwidth of the global grid. Ideally,
the partitioning should generate subgrids in
which the number of unknowns at the in-
terface of any subgrid is smaller than the
frontwidth associated with the undecom-
posed grid and the frontwidth of each sub-
grid is at most comparable to the frontwidth
of the global grid [8].

2.4 Requirements for mapping

The mapping algorithm must assign the subgrids
to the processors of a parallel machine. Prefer-
ably, subgrids that are mutually dependent are
mapped onto processors that can communicate
rapidly with each other. For a fully connected
machine, the mapping task is trivial: any map-
ping is as good as the other. For the existing
machines with a limited communication topology
(hypercube, 2D-, or 3D-mesh, . . .) this is not the
case. Although communication between arbit-
rary processors can be done efficiently, nearest-
neighbour communication is preferable because
it decreases the risk for communication link con-
tention.

As mentioned earlier, the mapping task is not
completely independent from the partitioning
task. The mapping task can be seriously facil-
itated by already taking the machine topology
into account during the partitioning step to en-
sure that the dependency topology of the subgrids
matches the communication topology of the ma-
chine.

3 A CLASSIFICATION OF PARTI-
TIONING ALGORITHMS FOR UN-
STRUCTURED GRIDS

3.1 General optimisation techniques
based on a cost function

The most general approach to finding an optimal
distribution of the grid points among the pro-
cessors of a parallel machine is to model the total
calculation time as a function of the mapping. In
this way one obtains a function that associates
a cost with each feasible distribution. Thus it is
possible to solve the partitioning and the mapping
problem together. In fact, the cost function can
be quite sophisticated, taking into account hard-
ware characteristics and communication topology
of the parallel computer, contention of the com-
munication links etc. Normally, the cost func-
tion contains a term that takes the communica-
tion cost into account and another that is related
to the load imbalance. The relative importance of
those two terms depends on the characteristics of
the problem and of the parallel computer. Indeed
it is sometimes beneficial to tolerate a (slight)
load imbalance if this decreases the communica-
tion.
The cost function can be minimised by a gen-
eral optimisation technique that is appropriate
for global combinatorial optimisation. For a grid
with N points that must be mapped onto P pro-
cessors, the search space has cardinality N P . Be-
cause the search space grows exponentially in the
grid size, total enumeration is infeasible for real-
istic problems, even when one takes advantage
of possible symmetry properties or uses branch-
and-bound techniques to exclude whole parts of
the search space.
However, some techniques that yield good sub-
optimal solutions for combinatorial optimisation
problems do exist. Two of them, viz. simulated
annealing and genetic algorithms are frequently
used.

Simulated annealing. Simulated annealing
[lo, 111 is a very general optimisation method
which stochastically simulates the slow cooling
of a physical system. A parameter T , analog-
ous to the temperature, is slowly lowered in the
course of the calculations. For each temperat-
ure a number of transitions of the current solu-
tion are consecutively proposed and either ac-
cepted or rejected -according to the Metropolis
criterion: If the cost function decreases (cost in-
crease AC < 0), the change is accepted uncon-
ditionally, otherwise it is accepted with probab-
ility exp(-ACIT). It can be proved that un-
der certain conditions the probability to find the

2-4

global optimum tends to 1. In practice, for suf-
ficiently slow cooling rates this method produces
good solutions, but then the method is very ex-
pensive. Results of simulated annealing for grid
partitioning can be found in [12, 31.

Genetic algorithms. Genetic algorithms [13,
141 resemble simulated annealing in that they
are also general and robust optimisation methods
that simulate an optimisation process found in
nature. More specifically, genetic algorithms sim-
ulate the processes of reproduction, crossover and
selection that make living beings optimally adap-
ted to their environment. Genetic algorithms are
potentially able to yield optimal or near-optimal
solutions but take a large amount of time. Res-
ults of genetic algorithms for partitioning prob-
lems are reported in [15, 16, 171.

Modelling the execution time as a function of the
distribution of the grid points has the advant-
age that the partitioning and mapping problem
can be solved together; and that sophisticated
cost models can be used. However, stochastic o p
timisation algorithms are extremely slow, can be
trapped in local minima, and their behaviour de-
pends on a lot of parameters, that must be care-
fully tuned to optimise performance.

3.2 Specific grid partitioning heuristics

3.2.1 Introduction

To make the distribution problem more tractable,
one normally makes the following simplifications:

1.

2.

The partitioning and the mapping problem
are handled separately. Subsequently, we
will restrict ourselves to the partitioning
problem.

Rather than trying to minimise both compu-
tational workload imbalance and communic-
ation simultaneously, only one of both terms
is explicitly modelled while the other is used
implicitly in guiding the search. In this
way the search space can be substantially
reduced. Most often, one explicitly tries to
minimise communication while the heuristic
implicitly provides equally-sized subgrids.

3.2.2 Clustering techniques

Some authors have proposed partitioning and
mapping strategies based on clustering tech-
niques. In these approaches clusters of grid
points are formed with high intra-cluster depend-
encies and low inter-cluster communication. The

clustering is based on a sorting of the grid points
and subsequent partitioning.

Mapping algorithm of Sadayappan. Sa-
dayappan et al. [18, 191 proposed a nearest-
neighbour mapping algorithm, that proceeds in
two steps:

1.

2.

An initial mapping is generated by grouping
grid points in clusters and assigning clusters
to processors so that the nearest-neighbour
property is satisfied, i.e. neighbouring points
are assigned either to the same processor or
to neighbouring processors.

The initial mapping is successively modified
using a boundary refinement procedure in
which points are reassigned among the pro-
cessors in a manner that improves calcula-
tion load balance but always maintains the
nearest-neighbour property.

Thus the nearest-neighbour mapping scheme ex-
plicitly attempts to minimise calculation load
imbalance, while low communication costs are
achieved implicitly by the search strategy.

Bandwidth reduction algorithms. Algo-
rithms that reduce the bandwidth and the profile
of a (sparse) matrix by re-ordering the equations
and the unknowns of the linear system can also
be used for partitioning meshes [8, 201.
For a given numbering of the n elements of a
mesh,.we can associate an adjacency matrix A ,
which is a symmetric n x n matrix with elements
a;j that are equal to either 1 or 0 according to
whether the elements i and j are or are not ad-
jacent in the mesh. Let m; (i = 1,. . . , n) be the
smallest number for which a;j = 0 if I i - j I > mi.
The bandwidth of A is then defined as maqm;,
and the profile as Cy='=l m;.
If the elements of the mesh have been numbered
in such a way that the adjacency matrix has a
small profile and bandwidth, a lezicographic par-
titioning of the mesh will often place adjacent
elements in the same subgrid, and each subgrid
will only have a limited number of neighbouring
subgrids. Figure 1 illustrates this. Notice that
two adjacent 'elements are assigned to different
subgrids if the corresponding element in the ad-
jacency matrix is not in one of the blocks on the
main block diagonal and that two subgrids are
adjacent if the corresponding off-diagonal block
is non-zero.
The Reverse Cuthill-McKee (RCM) ordering
scheme [21] is one of the most popular techniques
for reducing the bandwidth and the profile of

2-5

Fig. 1:
Mesh partitioned into 4 submeshes
and the corresponding adjacency
matrix

sparse matrices. The Cuthill-McKee scheme, a p
plied to the adjacency matrix of a mesh, essen-
tially clusters the elements in level sets:

choose an initial element ;
S1 := {initial element} ;
while not all elements have been ad-
ded to a level set do

Si+1 := 0 ;
forall elements e k E Si in the order
that they have been added to S; do

add to S;+1 the adjacent elements
of ek that have not yet been ad-
ded to a level set ;

endfor ;
endwhile ;

Next, the elements are numbered in the order that
they have been added to the level sets.
For the mesh in Fig. 1, the Cuthill-McKee al-
gorithm, initiated with the upper left element cre-
ates the level sets S1 = {l}, S2 = {3}, S3 =

and S7 = (12). The resulting numbering, par-
titioning, and adjacency matrix are shown in
Fig. 2.
Usually, the order obtained with the Cuthill-
McKee algorithm is reversed. This does not af-
fect the bandwidth of the matrix but it often de-
creases its profile.
Bandwidth minimiser algorithms have the ad-
vantage that for each subdomain, the number of
adjacent subdomains is small. Therefore, each
processor must only send messages to a small

{2,5}, s4 = (4, 61 7}, s5 = (8 ~ 9)) s6 = (10, 11}i

Fig. 2:
Mesh in Fig. 1, numbered with the
Cuthill-McKee heuristic and the cor-
responding adjacency matrix

number of neighbours. This can be important if
the start-up cost of sending a message is high.
However, bandwidth minimiser algorithms have
a tendency to generate very elongated subgrids
with rather large interface sizes. Usually these
subdomains enjoy a very small local bandwidth,
but suffer from a very bad aspect ratio. These
problems are alleviated if the RCM algorithm is
used recursively [SI.

Greedy heuristic of Farhat. For the parti-
tioning of finite element meshes, Farhat [22] pro- ,

posed a greedy algorithm that uses only con-
nectivity information. A variation of the al-
gorithm that also uses geometrical information
was proposed by Al-Nasra and Nguyen [23]. We
will discuss Farhat’s heuristic into more detail in
Section 4.

3.2.3 Geometry-based techniques

In the geometry-bused techniques the partition-
ing is based on geometrical information about
the grid points (i.e. their coordinates). This
is sensible becausej in most problems, interde-
pendent grid points are geometrically adjacent.
Geometry-based techniques are typically cheap
methods that are nevertheless able to produce ac-
ceptable partitionings. They are dealt with in
Section 5.

2-6

3.2.4 Heuristics for graph partitioning

The graph partitioning problem can be formu-
lated as follows. .An undirected graph G = (V, E)
with vertex set V and edge set E is given. Often,
weights w,(e;j) are attributed to the edges eij E
E. Also given are P positive integers n1,. . . , np,
satisfying ni = n =_ IV(. The problem is
then to partition the vertex set V into P disjoint
subsets V I) . . .) Vp of sizes n l , . . ., np, respect-
ively, in such a way that the sum of the weights of
edges connecting different subsets is minimal. In

- = nP
An edge which connects two distinct subsets is
said to be cut by the partition. The graph par-
titioning problem can also be generalised to the
case that the vertices Vi too have a weight w,(Vi).

In this case, the weights of the subsets are im-
posed instead of their sizes.
Now, for grid-oriented problems, a dependency
gruph can be defined as follows:

most cases we require that n1 = n2 =

1. Each grid point has a corresponding vertex
in the graph. The weight of the vertex is
proportional to the amount of computational
work that is involved with the grid point.
Very often the weights of all vertices are
equal, e.g. when iterative solution schemes
are used.

2. For each pair of mutually dependent grid
points, the corresponding vertices are con-
nected by an edge in the graph. The
weight of the edge is proportional to the
strength of the interdependency (‘communic-
ation volume’).

For a finite element mesh, two elements are usu-
ally dependent on each other if they share an edge
in two dimensions or a face in three,dimensions.
Therefore, the interdependency graph is simply
the dual graph of the mesh. An example is given
in Fig. 3.
Obviously, the grid partitioning problem is equi-
valent to the graph partitioning problem for the
dependency graph. The graph partitioning prob-
lem is an NP-complete problem but a num-
ber of specific heuristics that yield good near-
optimal solutions do exist. We will discuss the
Kernighan-Lin heuristic, the Recursive Graph
Bisection algorithm, and the Recursive Spectral
Bisection algorithm.

Kernighan-Lin heuristic. Already in 1970,
Kernighan and Lin introduced a heuristic to par-
tition a graph into two or more subgraphs [24].
Their heuristic only .partitions graphs without
vertex weights, but generalisation to graphs with

Fig. 3:
Finite element mesh and correspond-
ing dual graph

unequal vertex weights is straightforward. Fi-
duccia and Mattheyses [25] demonstrated that, if
the vertex weights are small integer numbers, the
algorithm can be organised in such a way that
the complexity of the algorithm is only linear in
the number of edges.

Recursive Graph Bisect ion algorithm.
The Recursive Graph Bisection algorithm (RGB)
recursively determines two vertices of maximal
or near maximal distance in the (sub)graph, and
subsequently assigns the vertices to one or to
the other subset, according to whether they are
closer to one or to the other extrema1 vertex.
To determine the distance between two vertices,
the gruph distance is used, i.e. the length of the
shortest path between the vertices. A more thor-
ough discussion of this algorithm and a compar-
ison with other partitioning algorithms can be
found in [26, 271.

Recursive Spectral Bisection algorithm.
The Recursive Spectral Bisection algorithm
(RSB) is based upon results from spectral graph
theory, in which eigenvectors of a matrix are used
to bisect a graph. This algorithm is discussed in
detail in Section 6.

4 THE GREEDY HEURISTIC OF FAR-
HAT

4.1 Description

The greedy algorithm of Farhat [22] is a heuristic
that despite its simplicity often yields subgrids

2-1

4.2 Some examples

Figure 5 shows a two-dimensional finite element
mesh with 9000 triangular elements and with
13278 internal boundary edges round an airfoil.
Only the part of the mesh that lies in the vicin-
ity of the airfoil, and which is strongly refined,
is shown. Partitioning this mesh into eight sub-
grids with the greedy algorithm of Farhat yields
the partitioning in Fig. 6. This partition cuts 355
edges. Notice that the subgrids have a good as
pect ratio. However, the subgrid that was created
last (darkly shaded in Fig. 6) is disconnected into
three parts.
Figure 7 shows the partition into eight subgrids of
the two-dimensional RYMAMO model [28]. This
model is a finite difference grid with 18675 points
that covers the mouth of the Rhine and the Meuse
and the coastal zone near the harbour of Rotter-
dam. The greedy algorithm was actually applied
on a finite element mesh with quadrilateral e k
ments, so that each element of this mesh corres-
ponds to a point in the finite difference grid and
in such a way that the connectivities were pre-
served. It is very difficult to partition this mesh
into connected subgrids and in the partition that
one obtains with the greedy algorithm, effectively
four subgrids out of eight are disconnected. The
partition yields 22 connected parts and cuts 365
edges.

with short boundaries and good aspect ratios.
The algorithm first assigns to each node n, of
the mesh a weight wt that is equal to the number
of elements that are connected to it. Let RS, I"
and C" respectively denote the body, the inter-
face boundary, and the computational cost of a
subdomain s and let C denote the computational
cost of the whole domain. The algorithm consec-
utively finds the domains R', . . . , RP. Once the
first s- 1 domains Cl,, . . . , S2-1 have been found,
it constructs the next domain R' as follows:

locate a node n, E YS-l that has a rnin-
imal current weight w, ;
initialise R' with all un-masked ele-
ments that are connected to node n, ;
for each element eh E R" do recurs-
ively

mask ek ;
for each node n; attached to e k do

reduce the weight w, by one ;
endfor ;
add to all un-masked elements
that are adjacent to ek ;
update C" ;
break when C" = C / P .

endfor ;
Figure 4 illustrates how the algorithm expands a

Fig. 4:
Expansion of a subdomain using the
greedy algorithm (after Farhat [22]).

subdomain starting from the lower left element.
The greedy heuristic of Farhat is probably the
fastest partitioning algorithm. Since it can im-
mediately partition a grid into the desired num-
ber of subgrids, it is not necessary to use it ce-
cursively. This has the advantage that the cal-
culation time is essentially independent of the
desired number of subgrids. In general this al-
gorithm generates subgrids with good aspect ra-
tios, but it often yields disconnected subgrids.

5 GEOMETRY BASED BISECTION
ALGORITHMS

5.1 Introduction

In the geometry-based bisection algorithms, one
tries to exploit the geometric properties of the
mesh, since data dependent grid points are geo-
metrically adjacent. Clearly, this limits the a p
plicability of this type of methods to problems
where such geometric information is both mean-
ingful and available.
Based on the geometrical information, a scalar
quantity U; is associated with each grid point.
Following Williams [3], we call U, a separator
field. By evaluating the median S of the set { U,} ,

we can bisect the grid, according to whether U,

is greater or less than S. In this way two sub-
grids with an equal number of grid points are
created. By recursively applying this strategy
to the subgrids, the grid can be partitioned into
2d, d = 1 , 2 , . . . subgrids.
Notice that, based on the ordering of the separ-
ator field, a grid could easily be partitioned into
more than two parts at once. However, the as-
pect ratio of the subgrids is usually better if a
grid is only partitioned into two parts.

Fig. 5:
Part of a finite element mesh with 9000 elements round
an airfoil.

Fig. 6:
Partitioning into 8 subgrids of the finite element grid in
Fig. 5 with the greedy heuristic of Farhat.

Fig. 7:
Partitioning into 8 subgrids of the RYMAMO grid with
the greedy heuristic of Farhat.

2-9

5.2 Repeated x-bisection

The simplest choice for ui is ai = zt with zi the
z-coordinate of the grid point. Recursive applic-
ation of this technique on the subgrids gives rise
to a stripwise partitioning, with strips parallel
to the y-axis. Such a partitioning causes long
inter-subgrid interfaces and thus a large commu-
nication volume.

5.3 Recursive Coordinate Bisection

Recursive Coordinate Bisection (RCB) [27], also
called Orthogonal Recursive Bisection (ORB) [3],
consists of alternately bisecting the grid accord-
ing to the I-, and y-coordinate and, for three-
dimensional grids, the z-coordinate. This tech-
nique leads to grids with a better aspect ratio
than the ones that are obtained with repeated z-
bisection. This has a positive effect on the com-
munication volume.

5.4 Recursive Inertial Bisection

Using the z-, y- or z-coordinate of the grid points
h a s the disadvantage that the partitioning de-
pends on the coordinate system used, which is
not an intrinsic problem characteristic.

Fig. 8:
Angular momentum of a discrete
point set.

The basic idea behind the inertial bisection
strategy is the following. The principal inertia
direction of an object (or a discrete point set) is
the direction for which the rotational inertial mc-
mentum I = xi zuie is minimal when this dir-
ection is taken as the rotation axis (see Fig. 8).
If the domain is more or less convex-shaped, the
minimal momentum axis will be aligned with the
overall shape of the grid. We can therefore expect
that the grid will have its smallest spatial extent
in the direction orthogonal to this axis of rota-
tion. This direction is then heuristically chosen

to be the bisection direction.
The inertia directions of the mesh are the eigen-
vectors I1, 12 and I3 corresponding to the eigen-
values A1 5 A2 5 A3 of the 3 x 3 inertia matrix:

with

2 2 = (Yi - Yc) + (Zi - zc) ,

I Y Y = C (Z i - 2,) + (Zi - zc) ,

(Si - Zc)' + (yi - yC)',

Z=v = I,, = -Chi - zc) (yi - yc),

I Y Z = I Z Y = - c (Yi - yc) (Zi - zc) ,

i
2 a

i
=

i

i

i

where the summations must be taken over all the
grid points and where (zi, yi, zi) and (zc, y,, zc)
respectively denote the coordinates of the grid
points and the coordinates of the center of gravity
of the mesh. The eigenvector I1 which is associ-
ated with the smallest eigenvalue corresponds to
the axis of minimal angular momentum. Once I1
is determined, the grid points are projected (or-
thogonal projection) onto it and this projection
is used as the separator field U, for the bisection
of the grid.
The Recursive Inertial Bisection (RIB) algorith-
m, also called the Inertial Recursive Bisection
(IRB) [29] or the Recursive Principal Inertia
(RPI) [26] algorithm, is more expensive than re-
peated z-bisection or Recursive Coordinate Bi-
section but generally gives much better results.
Because the minimal rotational momentum axis
is an inherent property of the grid, this parti-
tioning does not depend on the orientation of the
coordinate system. It still depends however, on
the relative scaling of the z-, y- and z-axes.
Recursive Inertial Bisection is now a widely used
partitioning technique [8, 301, especially in com-
bination with the Kernighan-Lin heuristic (see
Section 3.2.4).

5.5 Some examples

We will first make a comparison between the res-
ults obtained with repeated z-bisection, Recurs-
ive Orthogonal Bisection, and Recursive Inertial
Bisection. These methods have been thoroughly

2-10

Mesh Repeated z-bisection

Recursive coordinate Bisection Recursive Inertial Bisection

Fig. 9:
Narrowing curved channel (structured grid) and parti-
tions with geometry-based methods.

studied and compared with each other in [29].
The following examples have been taken from it.
Figure 9 shows a structured finite volume mesh
for a narrowing curved channel. It consists of
768 cells and 1472 edges. It is partitioned into
16 parts, using the repeated 2-bisection, Recurs-
ive Coordinate Bisection and Recursive Inertial
Bisection heuristics. The load balance is in all
cases (nearly) perfect, but the number of edges
cut by the partition interfaces is respectively 324,
236 and 191. Notice that for this structured grid
of 48 x 16 cells, an optimal partitioning can easily
be found by splitting it into 8 x 2 nearly square
subgrids of each 6 x 8 cells. In this case only 160
edges are cut by the partition interfaces.
However for unstructured meshes like the one in
Fig. 10, such an optimal partitioning cannot be
found so easily. This mesh is used to calculate the
supersonic flow through a channel with a forward
step. It consists of 1186 cells and 1652 edges. It
is again partitioned into 16 parts. The number
of edges cut by the partition interfaces for the re-
peated z-bisection, Recursive Coordinate Bisec-
tion, and Recursive Inertial Bisection heuristics
is respectively 430, 297 and 281. Examination
of the figures reveals how in the Recursive Iner-
tial Bisection method the axis direction adapts it-
self to the non-convexity of the narrowing curved
channel and to the increased mesh density in the
channel. The above experiments illustrate that

the Recursive Inertial Bisection heuristic should
be prefered over the other two geometry-based
techniques.
Let us now compare the Recursive Inertial Bi-
section algorithm with Farhat’s greedy heuristic.
Figure 11 shows the partitioning into eight sub
grids that one obtains with the Recursive Inertial
Bisection algorithm of the grid in Fig. 5. This
partition cuts 515 edges, which is more than with
Farhat’s greedy heuristic. Also notice that some
subgrids are quite elongated, which might be a
problem with some iterative methods [7].
Inertial bisection implicitly assumes that the
mesh is convex. For the RYMAMO model, this
is obviously not the case. We can therefore ex-
pect the Recursive Inertial Bisection algorithm to
perform poorly. Figure 12 shows the partitioning
into eight subgrids. This partition yields 20 con-
nected parts, less than Farhat’s greedy heuristic,
but it cuts 485 edges which is more than the 365
edges that are cut by the greedy heuristic.

6 THE RECURSIVE SPECTRAL BI-
SECTION ALGORITHM

6.1 Introduction

The use of spectral methods to bisect graphs was
first considered by Donath and Hoffman [31], and

2-11

Mesh Repeated =-bisection

Recursive Coordinate Bisection Recurrive Inertial Bisection

Fig. 10:
Channel with forward step (unstructured grid) and par-
titions with geometry-based methods.

Fig. 11:
Partitioning into 8 subgrids of the finite element grid in
Fig. 5 with the Recursive Inertial Bisection algorithm.

2-12

Fig. 12:
Partitioning into 8 subgrids of the RYMAMO grid with
the Recursive Inertial Bisection algorithm.

since then, spectral methods for computing vari-
ous graph parameters have been used by several
others.
Barnes [32] introduced a bisection technique that
uses the eigenvectors corresponding to the largest
two eigenvalues of the adjacency matrix of the
graph.
The most frequently used spectral bisection tech-
nique was introduced by Pothen et al. [33]. In
this method, the graph is bisected according to
the eigenvector that corresponds to the second
smallest eigenvalue of the Laplacian matrix of
the graph.
By recursively applying the spectral bisection al-
gorithm to the subgraphs, it is possible to par-
tition a graph into 2,4,. . . , 2d subgraphs. This
heuristic was first used to partition finite element
meshes by Simon [27], who used the name Re-
cursive Spectral Bisection, and by Williams [3]
who named the method Eigenvalue Recursive Bi-
section.

6.2 The algorithm

Intuitively, it is not immediately obvious that the
second eigenvector of the Laplacian matrix of a
graph is a good separator for the graph. The
following deduction of the algorithm helps to un-
derstand why this is nevertheless the case.
We denote the graph by G = (V, E) where V =
{v l ,v2 , . . ., U ,) is the vertex set, and E is the
edge set. A weight w.(e,j) is associated with
each edge eij E E. This graph is completely
determined by its adjacency matriz A. This is a
symmetric n x n matrix with elements,

aii = 0, a = 1 , . . ., n,
wjj if eij E E,
0 otherwise, i , j = 1,. . ., n; i # j . aij =

We search a mapping rn : {1,2 ,..., N} --t {1,2}
that minimises:

C WJeij) (1 - Jm(i),m(j)).
eijEE

This mapping partitions the vertex set V into two
subsets VI and V,:

Vl = {vi € V I rn(i)= l},
v2 = {vi € v I m(i) =2}.

The vertex sets VI and V, should have the same
number of elements.
Let z be a vector of length n whose components
are defined as follows:

-1 if m(i) = 1,
1 if m(i) = 2. zj =

This is convenient because 1 - &,(i),m(j) - -
(1 - zizj). Moreover, the requirement that

VI and V2 have the same number of elements is
equivalent to zi = 0.
We must therefore minimise

subject to zi E {-1,1} and z; = 0. It will
prove advantageous to add to this expression the
term

Since zi = fl, this term is zero and does not
change the value of the object function, but later
on, we will relax the constraint zi = f l and then
this term will become important.

2-13

Using the notation 7- = CE1ti, we =
C e ; ; E ~ ~ e (e ; j) , D = Diag(t;) and B = D - A ,
we 'ban write our object function as

- (W e - $ 7- + - s l T Bs. 1
2 4

This function must be minimised subject to the
constraints s; E {-1,1} and Cy.l s; = 0.
We choose the diagonal values ti so that each row
sum of B is zero. This choice is convenient for
several reasons:

1. Since t; = CeijEEwe(e;j) implies that T =
2We, the first term in the object function is
identically zero.

2. The matrix B is positive semidefinite. If the
graph is connected, then B only has a single
null vector consisting entirely of 1's.

3. If the edge weights are all 1, then the diag-
onal elements b;; of B are equal to the degree
of the corresponding vertex wi, and the off-
diagonal elements b;j are equal to -1 if the
corresponding vertices vi and w j are connec-
ted by an edge and are equal to 0 other-
wise. This matrix is the so-called Laplacian
matrix of the graph, and we can say that in
general the matrix B is a weighted Lapla-
cian. This is advantageous because a num-
ber of interesting properties about the Lapla-
cian matrix that can give us some guarantees
about the quality of the solution, are already
known [34, 351. We will say more about the
Laplacian matrix later.

Using the notation e = [l 1 .. .l] , our discrete
minimisation problem becomes:

Minimise f sTBs, subject to
2; E {-1, l}, and e T s = 0.

T

This minimisation problem is still a discrete NP-
complete problem. We now relax the constraint
that each of the components of the vector s must
be f l . Instead, we impose the norm constraint
s s = n. In this way we replace our discrete
problem by the following continuous one:

sTBs, subject to sTz = n,

T

Minimise
e T s = 0, and xi E IR (i = 1,2, . . ., n).

I t must be noticed that all the feasible solutions of
the discrete problem are also feasible solutions of
the continuous problem. Therefore, the solution
of the continuous problem provides a lower bound
for the solution of the discrete one. Contrary to
the discrete problem however, the continuous o p
timisation problem can be solved easily thanks
to the special properties of the matrix B :

1. B is symmetric positive semidefinite ;

2. The eigenvectors of B can always be chosen
to be pairwise orthogonal ;

3. The vector e is an eigenvector of B with ei-
genvalue zero ;

4. If the graph is connected, e is the only ei-
genvector of B with eigenvalue zero.

Let 0 = X1 < A2 5 A3 5 5 An be the ei-
genvalues of B with corresponding orthonormal
eigenvectors e = ul, u2, u3, . . . , un. We can write
s as s = cle + c2u2 + - - + Cnun. Hence, sTs =
Cy==,c?, and the requirement that eTs = 0 is
satisfied if and only if c1 = 0. Therefore, our
minimisation problem can be formulated as:

Minimise $ EE2 Xicl, subject to
Cy=2 c? = n, and c; E IR (i = 2, . . ., n).

If A2 < X3, the object function is minimised for
c2 = ,/E, and c3 = - - - = c, = 0.
As the solution of the original discrete optimisa-
tion problem, we take the vector s with compon-
ents si E {-1,1} that lies closest to the solution
of the continuous problem. We obtain this vec-
tor by finding the median value among all the 2;'s
and mapping s; values above the median to +1,
and values below to -1. This gives a balanced
decomposition with hopefully, a low cut-weight.

6.3 Example

We illustrate the spectral bisection algorithm
by applying it to the mesh on the left in
Fig. 13 [36]. The corresponding interdependency
graph is shown on the right side of the figure.
The Laplacian matrix L of this graph is

Fig. 13:
Example mesh and corresponding in-
terdependency graph [36].

2-14

L =

1 - 1 0 0 0 0
-1 3 -1 0 0 -1

0 - 1 2 - 1 0 0
0 0 - 1 2 - 1 0
0 0 0 - 1 2 - 1
0 - 1 0 0 - 1 2

The second smallest eigenvalue of L is A2 =
0.6972, and the corresponding eigenvector is

u2 = [-0.78 -0.24 0.12 0.39 0.39 0.121T.

Therefore the vector z is

2 = [-1.91 -0.58 0.29 0.96 0.96 0.29IT.

On the basis of this we can partition the mesh
as PI = {1,2,3} and P2 = {4,5,6}, or PI =
{ 1,2,6} and P2 = {3,4,5}.

6.4

In general, dropping the discreteness constraint
in a n optimisation problem and taking the dis-
crete solution that lies closest to the solution of
the relaxed continuous optimisation problem as
the solution of the discrete optimisation problem
is a dangerous technique that does not guarantee
good solutions.
Confidence can be gained about the fact that us-
ing the spectrum of the Laplacian matrix of a
graph does yield good partitionings, by study-
ing this spectrum for regular grid graphs. The
following results for the path graph and for the
five-point grid have been taken from [33].

Laplacian spectrum of regular grids

6.4.1 The path graph

Fig. 14:
Path graph with 5 vertices.

Let P, denote the path graph on n vertices (see
Fig. 14). In the following discussion, we assume
that n 2 2 is even. We number the vertices of
the path from 1 to n in the natural order from
left to right.
The Laplacian matrix of P,, is tridiagonal. Its
eigenvalues are A k = 4sin2[(k - 1)7r/(%)] (k =
1 , . . ., n), thus 0 = A1 < A2 < < A,. An
eigenvector zk that corresponds to the eigenvalue
A k has components

(2i - l)(k - 1) 77- . , a = 1 ,... ,n . k 2; =cos 2n

Therefore, A2 = 4sin2[7r/(2n)], and 2: =
cos[(2i - 1) 7r/(2n)]. The components of z2, plot-
ted against the vertices of P, decrease monoton-
ically from left to right. The first n/2 compon-
ents are positive and the last n/2 are negative.
T h u s bisection based on the separator 0; = zf
splits the path graph in the middle. Intuitively,
it is clear that this is the optimal partitioning.

6.4.2 The five-point grid

We consider the m x n five-point grid, and
without loss of generality take m 5 n. We as-
sume that n 2 2 is even.
The spectrum of the five-point grid can be de-
rived from the spectrum of the path graph. The
eigenvalues are

k = 1 , . . . , n; 1 = 1, . . ., m.
An eigenvector yk*" that corresponds to the ei-
genvalue pk,l has components

(2i - l) (k - 1) 7r (2 j - 1)(1- 1) 7r
cos k l y . ' . = cos

'*3 2n 2m 1

i = 1 ,... , n ; j = 1, ... ,m.
The smallest eigenvalue p1,1 is zero. If m <
n, the second smallest eigenvalue is p2,1 =
4 sin2 [7r/(2n)] and the corresponding eigenvector
y(2,1) has components y,",;! = cos[(2i - 1) 7r/(2n)].
The components of y2i1 are constant along each
column of m vertices, and the components de-
crease from left to right across a row. Columns
numbered from 1 to n/2 have positive compon-
ents, and the rest of the columns have negative
components. The components of this eigenvector
of the m x n five-point grid are shown in Fig. 15.

If m = n, p 1 , ~ = p2,1 and the second smallest
eigenvalue of the Laplacian matrix has multipli-
city two. The linearly independent eigenvectors
~ ' 9 ~ and y2t1 span the two-dimensional eigenspace
that correspond to this eigenvalue. These vectors
correspond respectively to bisecting the graph
horizontally and vertically in the middle, which
are indeed optimal solutions. Notice that in prac-
tice, a n eigensolver will in general yield vectors
that are linear combinations of these two optimal
solutions.

6.5 Connectivity of the subgraphs

If the original graph is connected, it can be guar-
anteed that at least one of the resulting subgraphs
will be connected too. This follows from the fol-
lowing theorem by Fiedler [35].

2-15

6.6 Examples and experiments

In Table 1, some results obtained by Ven-
katakrishnan et al. [37] are presented. A mesh-
vertex upwind finite volume scheme was used on
a 64-processor iPSC/860 machine to solve the
Euler equations around a multi-flap airfoil on
Barth5, a two-dimensional triangular unstruc-
tured fluid dynamics mesh from NASA Ames
with 15606 vertices, 45878 edges, 30269 faces
and 949 boundary edges. The finite volume mesh
was partitioned using the Spectral Bisection and
the Coordinate Bisection technique on the ori-
ginal mesh-graph and using the Spectral Bisec-
tion method on the dependency graph of the
mesh. For this example, the use of the Spectral
Bisection technique leads to a performance that
is 30% higher than if the Coordinate Bisection
method is used.
Figure 17 shows the partitioning into eight sub-
grids of the mesh in Fig. 5 that one obtains with
the Recursive Spectral Bisection algorithm. This
method cuts only 258 edges (97 less than the
greedy heuristic of Farhat), and yields eight con-
nected subgrids. Notice also that the subgrids
have good aspect ratios.
For the RYMAMO grid as well, the Recursive
Spectral Bisection algorithm gives very good res-
ults. Figure 18 shows the partitioning. It cuts
280 edges (greedy heuristic: 365) and yields
10 connected parts (greedy heuristic: 22).

Fig. 15:
The second Laplacian eigenvector of
the fivepoint grid.

Theorem. Let G be a connected graph and let
z be an eigenvector, corresponding to the second
smallest eigenvalue of the Laplacian matrix of the
graph. For a real number r 1 0, define Vl(r) =
{U E V I z, 2 -r). Then the subgraph induced
by Vl(r) is connected. Similarly, the subgraph,
induced by the set VZ(r) = {U E V I z, 5 r), is
also connected. If r = 0, it is necessary to include
the vertices with zero components in both sets VI
and Vz for the theorem to hold.

In practice, most often both subgraphs will be
connected. It must be noticed that in general it
is not possible to bisect aconnected graph in two
connected and equally sized subgraphs anyway.
A simple example of such a graph is shown in
Fig. 16.

i'
e 1 - 0

1 2 3

Fig. 16:
A connected graph that cannot be bi-
sected in connected and equally sized
subgraphs.

6.7 Generalisations of the spectral bisec-
tion algorithm

Hendrickson and Leland extended the spectral
bisection method to quadri- and octasection of
graphs [38]. Moreover, they also generalised it
to the case that not only the edges but also the
vertices are weighted [39]. Hendrickson and Le-
land show that the partitions that are obtained in
th is way are better than the ones obtained by r e
cursively applying the bisection algorithm if the
hypercube hop (or Manhattan) metric is used as
the cost measure. Empirical study [40] has shown
that this is an appropriate measure for modelling
the performance of hypercube architecture miL-
chines since minimising this metric corresponds
to minimising congestion within the communica-
tion network. The hop metric is also appropriate
for and three dimensional mesh architectures.
Van Driessche and Rome [5, 411 developed a
spectral bisection algorithm for the constrained
graph bisectioning problem, a generalisation of
the graph bisectioning problem in which the as-
signment of part of the vertices is imposed a pri-
ori. Although this spectral algorithm was origin-
ally developed for dynamic load balancing, it is

2-16

Table 1:
Comparison between Spectral Bisection and Coordinate
Bisection.

Performanc'e (Mflops)
Communication time (sec)
Average number of neighbours
Number of intern. bound. vertices
Maximum number of neighbours
Maximum number of vertices

Method Spectral Coordinate Spectral
Bisection Bisection (Depend. Graph)

Total time (sec) 0.31 0.41 0.31
143 188

0.173 0.082
6.7 4.5

2631 1791
14 14

120 109

187.5
0.084

4.7
1819

12
101

Fig. 17:
Partitioning into 8 subgrids of the finite element grid in
Fig. 5 with the Recursive Spectral Bisection algorithm.

Fig. 18:
Partitioning into 8 subgrids of the RYMAMO grid with
the Recursive Spectral Bisection algorithm.

2-17

cian matrix can be exploited, and because it t y p
ically converges to the extreme eigenvalues and
eigenvectors of a matrix in O(& step, each of
which has a complexity of order n.
For large graphs, the calculation time and espe-
cially the memory requirements of the Lanczos
algorithm are often unacceptable. Barnard and
Simon [44, 451 introduced a multilevel algorithm
that calculates the Fiedler vector considerably
faster and with less memory than the Lanczos
algorithm. This algorithm first constructs a s e
quence of graphs, in such a way that the initial
graph is the first graph in the sequence, and that
the other graphs are the contractions of the pre-
vious graph in the sequence.
A graph is contracted as follows. First, a max-
imal number of non-adjacent vertices are selec-
ted that will form the vertex set of the contrac-
ted graph. Next, the edge set is constructed by
growing domains in the original graph round the
vertices of the contracted graph, and by adding
an edge to the contracted graph whenever two
domains intersect.
Once the sequence of graph contractions has been
constructed, the Fiedler vector of the smallest
graph is calculated and is prolongated to the pre-
vious graph in the sequence. This prolongation
is already a good approximation for the Fiedler
vector of this graph and can therefore be rapidly
improved with Rayleigh quotient iteration. This
procedure is recursively applied until the Fiedler
vector of the first graph in the sequence, i.e. the
Fiedler vector of the original graph, h a s been cal-
culated.
Using this technique, Barnard and Simon claim
to obtain partitions with comparable quality in
up to 20 times less time than with the Lanczos
algorithm.
Van Driessche and Rome [46] have presented an
alternative graph contraction algorithm that uses
the same procedure to select the vertex set but
that assigrls weights to the edges of the contrac-
ted graph. This algorithm yields very good ei-
genvector approximations. They are also able to
give a formal analysis that helps to explain why
and when the algorithm gives such good results.
Hendrickson and Leland [47] use a completely
different graph contraction algorithm, in which
they contract some edges of the graph. They
first search for a mazimal matching in the graph.
This is a maximal set of edges, no two of which
are incident on the same vertex. The edges in this
set are then contracted as follows. The vertices
joined by an edge that must be contracted, are
merged into one 'super vertex', and the new super
vertex is given edges to the union of the neigh-
bours of the merged vertices. The weight of the
super vertex is set equal to the sum of the weights

also useful for static load balancing. By solving a
sequence of constrained graph bisectioning prob
lems, it is possible to take the mapping problem
already into account during the mesh partition-
ing [42]. In this way, it is possible to ensure that
the subgrids are assigned to processors that are
close to each other in the communication top-
logy. Moreover, the number of neighbouring sub
grids per subgrid is smaller than if the standard
Recursive Spectral Bisection is used.
Figure 19 shows the partitioning of the mesh in
Fig. 5, that is yielded by this Recursive Con-
strained Spectral Bisection algorithm for a hy-
percube topology. This partition cuts slightly
more edges than the partition one obtains with
the standard Recursive Spectral Bisection al-
gorithm (viz. 282 versus 258) but the maximal
number of adjacent subgrids per subgrid is smal-
ler (viz. 4 versus 5). Moreover, a small readjusb
ment of the boundaries is sufficient to ensure that
each subgrid has no more than 3 neighbouring
subgrids. Fig. 20 illustrates that the interdepend-

6 7 6 7

0 1

(b)

Fig. 20:
(a) Interdependency topology of the
subgrids in Fig. 17 (standard Bisec-
tion Algorithm). (b) Interdepend-
ency topology of the subgrids in
Fig. 19 (Constrained Bisection Al-
gorithm).

ency topology between the subgrids more closely
matches the hypercube communication topology
of the parallel computer, than if the standard Re-
cursive Spectral Bisection algorithm is used.

6.8 Calculation of the eigenvectors

For the spectral bisection technique, one has to
calculate the eigenvector that corresponds to the
second smallest eigenvalue of a large, sparse (and
symmetric) matrix. The Lanczos algorithm [43]
is particularly well-suited for this problem be-
cause it only uses the matrix through matrix-
vector products, so that the sparsity of the Lapla-

.-

Fig. 19:
Partitioning into 8 subgrids of the finite element grid in
Fig. 5 with the Recursive Constrained Spectral Bisec-
tion algorithm.

of its constituent vertices. Edge weights are left
unchanged unless both merged vertices are ad-
jacent to the same neighbour. In this case the
new edge that represents the two original edges
is given a weight equal to the sum of the weights
of the two edges it replaces.

7 COMBINATIONS OF PARTITION-
ING ALGORITHMS

The most powerful partitioning heuristics use a
combination of the techniques discussed in the
previous sections. We will discuss three ex-
amples, viz. the combination of recursive spec-
tral and inertial bisection with the Kernighan-
Lin heuristic, the two-step approach of Vander-
straeten and Keunings to optimise complicated
cost functions, and the multilevel partitioning al-
gorithm of Bui and Jones and Hendrickson and
Leland.

7.1 Improving a partition with the
Kernighan-Lin heuristic

The Kernighan-Lin heuristic is an iterative al-
gorithm that improves an initial partition by
repeatedly swapping elements among the parti-
tions. Starting with a random assignment of grid
points to processors usually gives disappointing
results because of the inherently greedy and local
nature of the algorithm. On the other hand,
the Recursive Spectral Bisection algorithm often
yields partitions that are globally good but that
perform poorly in the fine details. It is therefore
advantageous to calculate an initial partitioning

with the Recursive Spectral Bisection algorithm,
and improve this with the Kernighan-Lin heur-
istic. As an example, in Fig. 17, the boundar-
ies between the subdomains are not very smooth
but this is considerably improved, and the num-
ber of cut edges reduced from 258 to 226, with
the Kernighan-Lin heuristic. Figure 21 shows the
partitioning into eight subgrids of the mesh in
Fig. 5, that results from applying the Kernighan-
Lin heuristic to the partitioning in Fig. 17. Notice
that the boundaries between the subgrids have
become much smoother.
The Recursive Inertial Bisection algorithm also
benefits greatly from a Kernighan-Lin post-
processing step. The quality of the resulting par-
titions is often comparable to what one obtains
with Recursive Spectral Bisection (but worse
than what the combination of spectral bisection
with Kernighan-Lin gives), while the calculation
time is considerably lower.
Figure 22 shows the partitioning of the
RYMAMO mesh after applying the Kernighan-
Lin heuristic to the result of the inertial bisec-
tion algorithm. This partition has 13 connected
parts (20 without the Kernighan-Lin heuristic)
and cuts 281 edges (485 without the Kernighan-
Lin heuristic), thus only 1 edge more than the
partition, obtained with the Recursive Spectral
Bisection algorithm.

7.2 The multilevel-Kernighan-Lin algo-

7.2.1 Description

The good performance of the Kernighan-Lin
heuristic at locally improving a partition that is

rithm of Hendrickson and Leland

2-19

Fig. 21:
Partitioning into 8 subgrids of the finite element grid in
Fig. 5 with the Recursive Spectral Bisection algorithm
and the Kernighan-Lin heuristic.

Fig. 22:
Partitioning into 8 subgrids of the RYMAMO grid
with the Recursive Inertial Bisection algorithm and the
Kernighan-Lin heuristic.

L

2-20

already globally good, is also put to use in the
multilevel algorithms of Bui and Jones [48] and
Hendrickson and Leland [47].
The idea is to create a sequence of increasingly
smaller graphs that in some sense approximate
the original graph. The smallest graph is parti-
tioned (with, say, Recursive Spectral Bisection)
and this partition is projected back through the
intermediate levels. Every few levels of projec-
tion, the Kernighan-Lin heuristic is used to refine
the partition.
For the construction of the smaller graphs,
Hendrickson and Leland use the same contraction
algorithm, described in Section 6.8, that they use
in the multilevel algorithm for the calculation of
the Fiedler vector of a graph. Bui and Jones have
proposed a similar algorithm, but in contrast to
the algorithm of Hendrickson and Leland, it does
not use vertex and edge weights. In practice, the
difference between the two methods is small with
neither method being consistently superior [49].

Inertial

7.2.2 Examples

Figure 23 shows the partitioning into eight sub-
grids of the mesh in Fig. 5, which one obtains
with the multilevel algorithm of Hendrickson and
Leland. This partition cuts 202 edges, fewer than
the partition that we obtained with the Recurs-
ive Spectral Bisection algorithm even if it is im-
proved with the Kernighan-Lin heuristic. Notice
that the subgrids have very good aspect ratios.
For the RYMAMO grid as well, the multilevel al-
gorithm finds a partition that only cuts a small
number of edges. Figure 24 shows the parti-
tion into eight subgrids It cuts 246 edges (greedy
heuristic: 365, Recursive Spectral Bisection al-
gorithm: 280).
Table 2, which is taken from [30], gives res-
ults about the partitioning of Barth5, a two-
dimensional fluid dynamics mesh, for which we
presented results in Section 6.6 that demonstrate
the influence of the partitioning on the calcula-
tion time of an Euler solver. The dual graph,
which has 15606 vertices and 45878 edges, was
partitioned into 2 , 4 , 8, 16,32 and 64 parts, both
with the inertial and the spectral algorithm, alone
and in combination with the Kernighan-Lin heur-
istic. The graph was also partitioned with the
multilevel algorithm.
A comparison of the number of cut edges on
one hand and the calculation times on the other,
demonstrates that the combination of Recursive
Inertial Bisection with the Kernighan-Lin heur-
istic yields partitions of comparable quality with
the Recursive Spectral Bisection algorithm at a
fraction of the cost. However, the most cost-
effective method turns out to be the multilevel

Spectral Multilevel

2: Partitioning of Barth5 with the mul-
tilevel algorithm of Hendrickson and
Leland, and with the Recursive In-
ertial and Spectral Bisection al-
gorithms, both with and without
Kernighan-Lin refinement [30].

Nu
2
4
8

16
32
64

-

-

ber of cut edge
245 200
897 520

1441 917
2266 1383
3141 2057
4253 3128

200 139
521 367
888 693

1382 1148
2075 1824
3170 2927

175
379
662

1106
1824
2943

Calculation time in seconds
2.0 13.8 I 136.7 146.0 I 28.4

algorithm: it finds partitions that are comparable
to or even better than what one obtains with a
combination of the Recursive Spectral Bisection
algorithm and the Kernighan-Lin heuristic while
the calculation time (and the memory usage) is
considerably smaller.

7.3 Improving a partition with a stochas-
tic optimisation algorithm

Vanderstraeten and Keunings have tried to im-
prove an initial partition with stochastic o p
timisation algorithms [50]. They have tested
three algorithms, viz. simulated annealing (see
Section 3.1 and the references therein), tabu
search [51, 521, and stochastic evolution [53].
These algorithms are expensive, but they can
start from a good initial solution. Moreover, only
a relatively small search space must be explored
because only subdomain interfaces are readjus-
ted.
This twc-step approach, first generating an ini-
tial mesh decomposition with a suboptimal but
fast partitioning algorithm, and next optim-
ising this partition with a stochastic optimiza-
tion algorithm, is able to generate partitions with
smooth boundaries and a small number of cut
edges. Moreover, thanks to the general applicab
ility of the stochastic algorithms, it is also pos-
sible to optimise much more complicated cost
functions that do not just take the number of cut
edges into account [54].

2-21

I'

Fig. 23:
Partitioning into 8 subgrids of the finite element grid in
Fig. 5 with the multilevel algorithm of Hendrickson and
Leland.

Fig. 24:
Partitioning into 8 subgrids of the RYMAMO grid with
the multilevel algorithm of Hendridtson and. Leland.

2-22

8 SOFTWARE TOOLS FOR PARTI-
TIONING

8.1 Introduction

Graph partitioning, and hence mesh partitioning
for parallel computing, is by now a fairly well-
understood problem, and several efficient soft-
ware tools exist for this purpose. We will discuss
two tools that contain state-of-the-art partition-
ing algorithms and that are well-supported and
-documented, viz. Chaco and TOP/DOMDEC.
For most CFD applications these tools will be
sufficient to obtain good mesh partitions, so that
it is not necessary for users to develop their own
code.
Some open issues remain however. Firstly, these
tools are meant to be used as a pre-processing
tool on a sequential computer. They are there-
fore not suitable for parallel applications that also
want to calculate the partitions in parallel, like
e.g. applications that need quasi-static load bal-
ancing. Secondly, it has been argued that the
standard optimisation criterion (minimal number
of cut edges) is not suitable for many applica-
tions [8, 30, 541. Although the tools that will be
discussed here, provide a limited number of o p
timisation criteria besides this standard criterion,
it is still not clear whether any of these can ac-
curately model the execution of an application on
a parallel computer, where factors like commu-
nication link contention and cache usage, which
are difficult to model, often greatly influence per-
formance.

8.2 Chaco

8.2.1 Introduction

Chaco is a software package designed to partition
graphs. It was written by Bruce Hendrickson and
Robert Leland of Sandia National Laboratories
(Albuquerque, New Mexico, USA). Version 1.0
was released in 1993. The much improved Ver-
sion 2.0 will be released in May 1995. It is this
version that will be discussed here.

8.2.2 Description

Chaco implements four classes of global parti-
tioning algorithms:

Simple: three very simple partitioning schemes,
in which vertices are assigned to processes ran-
domly or according to their numbering in the ori-
ginal graph.

Inertial: recursive inertial bi-, quadri- or octas-
ection (see Section 5).

Spectral: recursive spectral bi-, quadri- or
octasection (see Section 6). The user can specify
whether the eigenvectors of the Laplacian matrix
must be calculated with a Lanczos algorithm or
with a multilevel algorithm.

Multilevel: the multilevel algorithm described
in Section 7.2.

The output of any of these global methods can be
fed into a Kernighan-Lin algorithm which locally
refines the partition.
Chaco only offers graph partitioning and uses a
non-graphics interface, so there are no visualisa-
tion tools, or tools to create meshes. However,
several people have written MATLAB interfaces
for Chaco. In particular, John Gilbert at Xerox
Park has written and agreed to maintain visual-
isation software that is freely available.
Chaco is normally used interactively with the
program prompting for the name of input and
output files, for the number of sets the graph
should be partitioned into, and also for data
about the requested partitioning heuristic. The
behaviour of Chaco is determined by a large
number of parameters and tolerances, for which
the program chooses suitable default values.
However, the user can create a file with alternat-
ive values, and is thus able to experiment with
Chaco. Although normally used interactively,
Chaco also provides an interface routine that al-
lows it to be called from user code.

8.2.3 Availability

Chaco is available under license from Sandia Na-
tional Laboratories. It is distributed along with
technical documentation and some sample input
files via e-mail. To obtain a copy, contact the
authors

Bruce Hendrickson
Dept. 1422, Mail Stop 1110
Sandia National Laboratories
Albuquerque, NM 87185, U.S.A.
Email: bahQcs. sandia.gov

and

Robert Leland
Dept. 1424, Mail Stop 1110
Sandia National Laboratories
Albuquerque, NM 87185, U.S.A.
Email: lelandQcs.sandia.gov

At the time of writing this text, licensing condi-
tions for academics were not completely fixed.
For corporations, Chaco will be licensed on a
case-by-case basis.

Chace is written in Kernighan and Ritchie style,
but ANSI-compliant C, and, except for the math-
ematics library, uses no external libraries. It
should therefore compile and run correctly un-
der any UNIX system with any ANSI-C standard
compiler, and can usually be compiled without
too many problems with non-standard compilers
as well.

8.3 T O P / D O M D E C

8.3.1 Introduction

TOP/DOMDEC is, in the words of the manual
[55], a Totally Object oriented Package for visu-
alisation, DOMain DEComposition, and parallel
processing on finite element meshes. It was de-
veloped by PGSoft and by the research group
of C. Farhat at the University of Colorado at
Boulder.
As a partitioning tool, TOP/DOMDEC of-
fers several state-of-the-art mesh partitioning
algorithms, whose partitions can subsequently
be smoothed and optimised using one of
several non-deterministic optimisation schemes.
TOP/DOMDEC also provides real-time means
for assessing a priori the quality of a mesh par-
tition and discriminating between different par-
titioning algorithms. The user interface includes
high speed three-dimensional graphics, a n inter-
processor communication simulator with a built-
in cost model for some real-world parallel com-
puters and for a generic message-passing parallel
computer, and an output function that automat-
ically generates parallel 1/0 data structures.

8.3.2 Description

Here, we will only concisely describe TOP/
DOMDEC as a mesh partitioning tool. A more
thorough discussion, which also discusses the
other capabilities of TOP/DOMDEC can be
found in the manual [55], or in Chapter 9 of [26].
Just like in Chaco, the idea in TOP/DOMDEC
is that you first partition the mesh with a global
partitioning algorithm, and that this initial par-
tition is subsequently refined with a local optim-
isation algorithm. TOP/DOMDEC provides the
following global partitioning algorithms:

Greedy: the greedy heuristic of Farhat (see Sec-
tion 4).

RCM and Recursive RCM: the Reverse
Cuthill-McKee ordering scheme (RCM), and the
Recursive RCM algorithm (see Section 3.2.2).

Principal Inertia (PI) and Recursive PI:
the Principal Inertia algorithm projects all the

2-23

mesh points onto the principal inertia direction of
the mesh and sorts the mesh points according to
this projection into the requested number of sub-
domains. The Recursive PI algorithm uses the
above procedure recursively to bisect the mesh
and submeshes and is therefore identical to the
Recursive Inertial Bisection heuristic, described
in Section 5.4.

Recursive Spectral Bisection: the standard
Recursive Spectral Bisection algorithm (see Sec-
tion 6). The Fiedler vector is calculated with the
multilevel algorithm of Barnard and Simon [44]
(see Section 6.8).

Recursive Graph Bisection: the Recursive
Graph Bisection heuristic described in Section'
3.2.4.

1D. Topology Frontal Algorithm: this algo-
rithm tries to ensure that every subdomain has
two neighbours at most. It was developed to par-
tition meshes on which subdomain-based multi-
frontal solution schemes are used [56].
Three non-deterministic optimisation algorithms
are provided to further optimise the parti-
tions, viz. tabu search, simulated annealing, and
stochastic evolution. Since these algorithms are
very general, it is possible in principle to op-
timise the partitions for very complicated cost
functions. The following functions are provided
in TOP/DOMDEC: interface size, subdomain
frontwidth, the product of interface size and
subdomain frontwidth, node-wise load balance,
element-wise load balance, edge-wise load bal-
ance, subdomains aspect ratio, or a weighted sum
of the above items.

8.3.3 Availability

To obtain TOP/DOMDEC, contact
Charbel Farhat
College of Engineering
University of Colorado
Campus Box 429
Boulder, CO 80309, U.S.A.
Email: charbelQboulder . colorado. edu

Users must pay a one-time fee, the amount of
which depends on whether the requestor is a re-
search partner, a research institution, a US gov-
ernment sponsored institution, or a n industrial
corporation.
TOP/DOMDEC is written in C++. It cur-
rently runs on the SGI Iris and the IBM RISC
System/6000 with GL graphics workstations.
However, if the graphics capabilities are not re-
quired, TOP/DOMDEC can run on other sys-
tems as well.

2-24

9 ACKNOWLEDGMENTS

This paper presents research results of the Bel-
gian Incentive Program “Information Technolo-
gy”-Computer Science of the Future (IT/IF/5),
and of the Belgian Programme on Interuni-
versity Poles of Attraction (IUAP 17), initiated
by the Belgian State, Prime Minister’s Office
for Science, Technology and Culture. The sci-
entific responsibility rests with its authors. The
RYMAMO grid was kindly made available by
the RIKZ (Rijksinstituut voor Kust en Zee), The
Netherlands. The partitions in Fig. 21, 22, 23,
and 24 have been calculated with Chaco. We
thank Bruce Hendrickson for carefully reading
the first version of this text and for making nu-
merous suggestions that allowed us to. improve
the text in many places.

REFERENCES

[l] J. De Keyser and D. Roose. A software tool
for load balanced adaptive multiple grids on
distributed memory computers. In Proceed-
ings of the 6th Distributed Memory Comput-
ing Conference, pages 122-128. IEEE Com-
puter Society Press, 1991.

[2] D. Roose, J. De Keyser, and R. Van
Driessche. Load balancing grid-oriented ap-
plications on distributed memory parallel
computers. In P. Dewilde and J. Vandewalle,
editors, Computer Systems and Sojlware
Engineering, pages 191-216. Kluwer Aca-
demic Publishers, 1992.

[3] R. D. Williams. Performance of dynamic
load balancing algorithms for unstructured
mesh calculations. Concurrency: Practice
and Ezperience, 3(5):457-481, Oct. 1991.

[4] E. Pramono, H. D. Simon, and A. Sohn. Dy-
namic load balancing for finite element cal-
culations on parallel computers. In David H.
Bailey et al., editors, Proceedings of the
Seventh SIAM Conference on Parallel Pro-
cessing for Scientific Computing, pages 599-
604. SIAM, 1995.

[5] R. Van Driessche and D. Roose. A spec-
tral algorithm for constrained graph parti-
tioning I: The bisection case. Report TW
216, K.U.Leuven, Dept. of Computer Sci-
ence, Belgium, Oct. 1994.

[6] R. Van Driessche and D. Roose. An im-
proved spectral bisection algorithm and its
application to dynamic load balancing. Par-
allel Computing, 21:29-48, 1995.

[7] L. Beernaert, D. Roose, R. Struijs, and
H. Deconinck. A multigrid solver for the
Euler equations on distributed memory par-
allel computers. M A C S J. Appl. Num.
Math., 7:379-393, 1991.

[8] C. Farhat and M. Lesoinne. Automatic
partitioning of unstructured meshes for the
parallel solution of problems in computa-
tional mechanics. International Journal for
Numerical Methods in Engineering, 36:745-
764, 1993.

[9] F. X. Roux. Acceleration of the outer con-
jugate gradient by reorthogonalization for
a domain decomposition method for struc-
tural analysis problems. In Proceedings of
the Third International Conference on Su-
percomputing, pages 471-477, 1989.

[lo] S. Kirkpatrick, C. D. Gelatt Jr., and M. P.
Vecchi. Optimization by simulated anneal-
ing. Science, 220:671-680, 1983.

[ll] P. J. M. van Laarhoven and E. H. L. Aarts.
Simulated Annealing : Theory and Applic-
ations. D. Reidel Publishing Company,
Dordrecht, 1987.

[12] D. S. Johnson, C. R. Aragon, L. A.
McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental eval-
uation; part I: Graph partitioning. Opns.
Res., 37:865-892, 1989.

[13] J. H. Holland. Adaptation in Natural and
Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

[14] D. E. Goldberg. Genetic Algorithms in
Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

[15] R. Van Driessche and R. Piessens. Load
balancing with genetic algorithms. In
R. Manner and B. Manderick, editors, Par-
allel Problem Solving f rom Nature, 2, pages
34 1-350. North-Holland, Amsterdam, 1992.

Intelligent structural
operators for the k-way graph partitioning
problem. In R. K. Belew and L. Booker,
editors, Proceedings of the Fourth Interna-
tional Conference on Genetic Algorithms,
pages 45-52. Morgan-Kaufman, 1991.

[17] G. von Laszewski and H. Muhlenbein.
Partitioning a graph with a parallel ge-
netic algorithm. In H.-P. Schwefel and
R. Manner, editors, Parallel Problem Solv-
ing from Nature, number 496 in Lecture

[16] G. von Laszewski.

2-25

Notes in Computer Science, pages 165-169.
Springer-Verlag, 1990.

[18] P. Sadayappan and F. Ercal. Nearest-
neighbor mapping of finite-element graphs
onto processor meshes. IEEE Trans. Com-
puters, C-36(12):1408-1424, 1987.

[19] P. Sadayappan, F. Ercal, and J. Ramanu-
jam. Cluster partitioning approaches to
mapping parallel programs onto a hyper-
cube. Parallel Computing, 13(1):1-16, 1990.

[20] J. G. Malone. Automated mesh decomposi-
tion and concurrent finite element analysis
for hypercube multiprocessors computers.
Comp. Meth. Appl. Mech. Eng., 70(1):277-
289, 1988.

[all W. Chan and A. George. A linear time im-
plementation of the Reverse Cuthill McKee
algorithm. BIT , 2023-14, 1980.

[22] C. Farhat. A simple and efficient automatic
FEM domain decomposer. Computers and
Structures, 28(5) :579-602, 1988.

An al-
gorithm for domain decomposition in finite
element analysis. Computers and Struc-
tures, 39(3/4):277-289, 1991.

[23] M. Al-Nasra and D. T. Nguyen.

[24] B. W. Kernighan and S. Lin. An efficient
heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49:291-
308, 1970.

[25] C. M. Fiduccia and R. M. Mattheyses. A
linear-time heuristic for improving network
partitions. In Proceedings of the 19th IEEE
Design Automation Conference, pages 175-
181. IEEE, 1982.

[26] C. Farhat and F. X. Roux. Implicit Parallel
Processing in Structural Mechanics. Com-
putational Mechanics Advances. 1993.

[27] H. D. Simon. Partitioning of unstructured
problems for parallel processing. Comput-
ing Systems in Engineering, 2(2/3):135-148,
1991.

[28] E. D. de Goede and G. S. Stelling. A multi
block method for the three-dimensional shal-
low water equations. In L. Dekker, W. Smit,
and J. C. Zuidervaart, editors, Massively
Parallel Processing Applications and Devel-
opment, pages 71-78. Elsevier, 1994.

[29] J. De Keyser and D. Roose. Grid partition-
ing by inertial recursive bisection. Report

T W 174, K.U.Leuven, Dept. of Computer
Science, Belgium, July 1992.

[30] R. Leland and B. Hendrickson. An em-
pirical study of static load balancing al-
gorithms. In Proceedings of the Scalable
High- Pe rfo rman ce Co mp ut ing Conference,
pages 682-685, 1994.

[31] W. E. Donath and A. J. Hoffman. Lower
bounds for the partitioning of graphs. IBM
J. Res. Develop., 17:420-425, 1973.

[32] E. R. Barnes. An algorithm for partitioning
the nodes of a graph. SIAM J . Algebraic
Discrete Methods, 3(4):541-550, 1982.

[33] A. Pothen, H. D. Simon, and K.-P. Liou.
Partitioning sparse matrices with eigen-
vectors of graphs. SIAM J . Matrix Anal.
Appl., 11 (3):430-452, 1990.

[34] M. Fiedler. Algebraic connectivity of
graphs. Czechoslovak Mathematical Jour-
nal, 23(98):298-305, 1973.

[35] M. Fiedler. A property of eigenvectors
of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak
Mathematical Journal, 25(100):619-633,
1975.

[36] M. Berzins and C. Walshaw. Tutorial
on domain decomposition for unstructured
meshes. ERCOFTAC Workshop on Do-
main Decomposition for CFD, University of

' Leeds, Sept. 1992.

[37] V. Venkatakrishnan, H. D. Simon, and T. J.
Barth. A MIMD implementation of a par-
allel Euler solver for unstructured grids. In
J. Dongarra et al., editors, Proceedings of
the Fifth SIAM Conference on Parallel Pro-
cessing f o r Scientific Computing, pages 253-
256. SIAM, 1992.

[38] B. Hendrickson and R. Leland. An im-
proved spectral load balancing method. In
Richard F. Sincovec et al., editors, Pro-
ceedings of the Sixth SIAM Conference on
Parallel Processing for Scientific Comput-
ing, pages 953-961. SIAM, 1993.

[39] B. Hendrickson and R. Leland. An
improved spectral graph partitioning al-
gorithm for mapping parallel computations.
Technical Report SAND92-1460, Sandia
National Laboratories, Albuquerque, NM,
Sept. 1992.

2-26

[40] S: Hammond. Mapping unstructured grid
computations to massively parallel com-
puters. PhD thesis, Rensselaer Polytechnic
Institute, Dept. of Computer Science, Rens-
selaer, NY, 1992.

[41] R. Van Driessche and D. Roose. Dynamic
load balancing with a spectral bisection al-
gorithm for the constrained graph partition-
ing problem. In High-Performance Comput-
ing and Networking, number 919 in Lecture
Notes in Computer Science, pages 392-397.
Springer, 1995.

[42] B. Hendrickson, R. Leland, and R. Van
Driessche. Enhancing data locality by ter-
minal propagation. Submitted to the mini-
track on Partitioning and Scheduling at the
HICSS-29 Conference, Maui, Hawaii, Janu-
ary 3-6, 1996.

[43] G. H. Golub and C. F. Van Loan. Matrix
Computations. Johns Hopkins University
Press, Baltimore, MD, second edition, 1989.

[44] S. T. Barnard and H. D. Simon. Fast mul-
tilevel implementation of recursive spectral
bisection for partitioning unstructured prob-
lems. Concurrency: Practice and Experi-
ence, 6(2):101-117, Apr. 1994.

[45] S. T. Barnard and H. D. Simon. A parallel
implementation of multilevel recursive spec-
tral bisection for application to adaptive un-
structured meshes. In David H. Bailey et al.,
editors, Proceedings of the Seventh SIAM
Conference on Parallel Processing for Sci-
entific Computing, pages 627-632. SIAM,
1995.

[46] R. Van Driessche and D. Roose. A graph
contraction algorithm for the fast calcula-
tion of the Fiedler vector of a graph. In
David H. Bailey et al., editors, Proceedings
of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pages
621-626. SIAM, 1995.

[47] B. Hendrickson and R. Leland. A multilevel
algorithm for partitioning graphs. Tech-
nical Report SAND93-1301, Sandia Na-
tional Laboratories, Albuquerque, NM, Oct.
1993.

[48] T. N. Bui and C. Jones. A heuristic for re-
ducing fill-in in sparse matrix factorization.
In Richard F. Sincovec et al., editors, Pro-
ceedings of the Sixth SIAM Conference on
Parallel Processing for Scientific Comput-
ing, pages 445-452. SIAM, 1993.

c

[49] B. Hendrickson and R. Leland. The Chaco
user’s guide. Version 2.0. Technical Report
SAND94-2692, Sandia National Laborator-
ies, Albuquerque, NM, Oct. 1994.

[50] D. Vanderstraeten and R. Keunings. Op-
timized partitioning of unstructured finite
element meshes. International Journal for
Numerical Methods in Engineering, 38:433-
450, 1995.

[51] F. Glover, C. McMillan, and B. Novick.
Interactive decision software and computer
graphics for architectural and space plan-
ning. Ann. Opns. Res., 5:557-573, 1985.

[52] A. Hertz and D. de Werra. Using tabu
search techniques for graph coloring. Com-
puting, 39:345-351, 1987.

[53] Y. G. Saab and V. B. Rao. Combinatorial
optimization by stochastic evolution. IEEE
Trans. Computer-Aided Design, 10(4):525-
535, Apr. 1991.

[54] D. Vanderstraeten, R. Keunings, and C. Far-
hat. Beyond conventional mesh partitioning
algorithms and the minimum edge cut cri-
terion: Impact on realistic applications. In
David H. Bailey et al., editors, Proceedings
of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pages

[55] M. Sharp and C. Farhat. TOP/DOMDEC, a
Totally Object Oriented Program for Visual-
isation, Domain Decomposition and Parallel
Processing. User’s Manual. PGSoft and The
University of Colorado, Boulder, Feb. 1994.

[56] D. Vanderstraeten, 0. Zone, R. Keunings,
and L. Wolsey. Non-deterministic heuristics
for automatic domain decomposition in dir-
ect parallel finite element calculations. In
Richard F. Sincovec et al., editors, Pro-
ceedings of the Sixth SIAM Conference on
Parallel Processing for Scientific Comput-
ing, pages 929-932. SIAM, 1993.

611-614. SIAM, 1995.

3- 1

Parallel Iterative Solution Methods for Linear
Systems arising from Discretized PDE’s

Henk A. Van der Vorst
Mat hemat ical Inst i t Ute, University of Utrecht

PO Box 80.010
NL-3508 TA Utrecht, the Netherlands

e-mail: vorstClmath.ruu.nl

1 Introduction

In these notes we will present an overview of a num-
ber of related iterative methods for the solution of
linear systems of equations. These methods are
so-called Krylov projection type methods and they
include popular methods as Conjugate Gradients,
Bi-Conjugate Gradients, CGS, Bi-CGSTAB, QMR,
LSQR and GMRES. We will show how these methods
can be derived from simple basic iteration formulas.
We will not give convergence proofs, but we will refer
for these, as far as available, to litterature.
Iterative methods are often used in combination with
so-called preconditioning operators (approximations
for the inverses of the operator of the system to be
solved). Since these preconditioners are not essential
in the derivation of the iterative methods, we will not
give much attention to them in these notes. However,
in most of the actual iteration schemes, we have in-
cluded them in order to facilitate the use of these
schetnes in actual computations.
For the application of the iterative schemes one usu-
ally thinks of linear sparse systems, e.g., like those
arising in the finite element or finite difference ap-
proximations of (systems of) partial differential equa-
tions. However, the structure of the operators plays
no explicit role in any of these schemes, and these
schemes might also successfully be used to solve cer-
tain large dense linear systems. Depending on the
situation that might be attractive in terms of num-
bers of floating point operations.

It will turn out that all of the iterative are paral-
lelizable in a straight forward manner. However, es-
pecially for computers with a memory hierarchy (i.e.,
like cache or vector registers), and for distributed
memory computers, the performance can often be im-
proved significantly through rescheduling of the oper-
ations. We will discuss parallel implementations, and
occasionally we will report on experimental findings.

2 Direct versus Iterative

1. Standard Gaussian elimination leads to fill-in,

and this makes the method often expensive.
Usually large sparse matrices are related to some
grid or network. In a 3D situation this leads typ-
ically to a bandwidth - n* (= m2 and m3 = n,
l / m the gridsize).
The number of flops is then typically C?(nm4) -
n2* [36, 251. For 2D problems the bandwidth is - n i , so that the number of flops for a direct
method then varies like n 2 .
If one has to solve many systems with different
right-hand sides, then one has to decompose the
matrix only once after which the costs for solving
each system will vary like n8 for 3D problems,
and like n4 for 2D problems.

2. For symmetric positive definite systems the er-
ror reduction per iteration step of CG is - @

G+l’
with K = I(A1121(A-1/12 [14, 2, 351.
For discretized second order pde’s, over grids
with gridsize f we typically see K - m2. Hence,
for 3D problems we have that K - n s , and for
2D problems: IC - n. For an error reduction of E

we must have that

For 3D problems we have that

whereas for 2D problems:

log€ 1
j M --n2.

2

If we assume the number of flops per iteration to
be - fn (f stands for the number of nonzeros per
row of the matrix and the overhead per unknown
introduced by the iterative scheme)
+ flops per reduction with E: - -fn* log E for 3D problems,
and - -fn$ loge for 2D problems.

Paper presented in an AGARD-FDP-VKI Special Course on “Parallel Computing in CFD”, held at the VKI, Rhode-Saint-Genese, Belgium,
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807.

3-2

Conclusion: If we have to solve one system at a
time, then for large n, or small f, or modest E :

Iterative methods may be preferable.

If we have to. solve many similar systems with differ-
ent right-hand side, and if we assume their number
to be so large that the costs for constructing the de-
composition of A is relatively small per system, then
it seems likely that for 2D problems direct methods
may be more efficient, whereas for 3D problems this
is still doubtful, since the flops count for a direct so-
lution method varies like n % , and the number of flops
for the iterative solver (for the model situation) varies
like n4.

Example
The above given arguments are quite nicely illus-
trated by observations made by Horst Simon [74]. He
expects that by the end of this century we will have to
solve repeatedly linear problems with some 5 x lo9 un-
knowns. For what he believes to be a model problem
at that time, he has estimated the CPU time required
by the most economic direct method, available a t
present, as 520,040 years, provided that the compu-
tation can be carried out at a speed of 1 TFLOP. On
the other hand, he estimates the CPU time for pre-
conditioned conjugate gradients, assuming still a pro-
cessing speed of 1 TFLOPS, as 575 seconds. Though
we should not take it for granted that in particular
the preconditioning part can be carried out at that
high processing speed (for the direct solver this is
more likely), we see that the differences in CPU time
requirements are gigantic, indeed (we will come to
this point in more detail).
Also the requirements for memory space for the iter-
ative methods are typically smaller by orders of mag-
nitude. This is often the argument for the usage of
iterative methods in 2D situations, when flop counts
for both classes of methods are more or less compa-
rable.

Remarks:

0 With suitable preconditioning we may have
fi - n i and the flops count then becomes

- -fni log€,

see, e.g., [37]..

0 For classes of problems some methods may even
be faster: multigrid, fast Poisson solvers.

0 Storage considerations are also in favour of iter-
ative methods.

0 For matrices that are not positive definite sym-
metric the situation can be more problematic:

it is often difficult to find the proper iterative
method or a suitable preconditioner. However,
for projection type methods, like GMRES, Bi-
CG, CGS, and Bi-CGSTAB we often see that
the flops counts vary as for CG.

0 Iterative methods can be attractive even when
the matrix is dense. Again, in the positive def-
inite symmetric case, if the condition number is
n2-2E then, since the amount of work per iter-
ation step is - 7 t 2 , and the number of iteration
steps N nl-' , the total work estimate is roughly
proportional to n3-', and this is asymptoti-
cally less than the amount of work for Choleski's
method, which varies like - n3.

The question remains at the moment how well itera-
tive methods can take advantage of modern computer
architectures. From Dongarra's linpack benchmark
[22] it may be concluded that the solution of a dense
linear system can (in principle) be computed with
computational speeds close to peak speeds on most
computers. This is already the case for systems of,
say, order 50000 on parallel machines with as many
as 1024 processors.
In sharp contrast with the dense case are computa-
tional speeds reported in [24] for the preconditioned
as well as the unpreconditioned conjugate gradient
method (ICCG and CG, respectively).

In [24] a test problem was taken, generated by dis-
cretizing a three-dimensional elliptic partial differ-
ential equation by the standard 7-point central dif-
ference scheme. over a three-dimensional rectangular
grid, with 100 unknowns in each direction (m = 100,
n = 1,000,000). The observed computational speeds
for several machines (1 processor in each case) are
given in Table 1.

3 Basic iteration method
A very basic idea, that leads to many effective itera-
tive solvers, is to to split the matrix of a given linear
system in the sum of two matrices, one of which a
matrix that would have led to a system that can eas-
ily be solved. The most simple splitting we can think
of is A = I - (I - A) . Given the linear system Ax = b,
this splitting leads to the well-known Richardson it-
eration:

x i + l = b + (I - A)xi = xi + ri .

Multiplication by - A and adding b gives

b - Axi+l = b - Axi - Ari

or

or, in terms of the error

3-3

Table 1: Speed in Megaflops for 50 Iterations of the Iterative Techniques.

Machine

NEC SX-3/22 (2.9 ns)
CRAY Y-MP C90 (4.2 ns)
CRAY 2 (4.1 ns)
IBM 9000 Model 820
IBM 9121 (15 ns)
DEC Vax/9000 (16 ns)
IBM RS/6000-550 (24 ns)
CONVEX C3210
Alliant FX2800

optimized Scaled Peak
ICCG CG Performance
Mflops Mflops Mflops

607 1124 2750
444 737 952
96.0 149 500
39.6 74.6 444
10.6 25.4 133
9.48 17.1 125
18.3 21.1 81
15.8 19.1 50
2.18 2.98 40

+ z - ~ i + l = Pi+l (A)(z - 20). to other elements of the same Krylov subspaces. . . , .
Let us write such an element still as x i + l .

xi+l E Ki+' (A; T O) , we have that
Since

In these expressions Pi+1 is a (special) polynomial of
degree i + 1. Note that Pi+l(O) = 1. . . .

Results obtained for the standard splitting can be
easily generalized to other splittings, since the more with Q i + l an arbitrary polynomial of degree + 1.
general splitting A = M - N = M - (M - A) can be
rewritten as the standard splitting B = 1 - (I - B)

ory of matrix splittings, and the analysis of the con- (3.0a) = @ i + l (A) ~ o ,

xi+i = Qi+i(A)ro,

It follows that

for the preconditioned matrix B = M - I A . The the- ri+l = b - A ~ i + l = (I - AQi+l(A))To

vergence of the corresponding iterative methods, is
treated in depth in [go]. We will not discuss this
aspect here, since it is not relevant a t this stage.
Instead of studying the basic iterative methods we
will show how other more powerful iteration meth-

with, just as in the standard Richardson iteration,

The Richardson iteration can be characterized by the
polynomial Pi+l(A) = (I - A)"+'.

P i + , (O) = 1.

basic iteration methods. In the context of these ac-
celarated methods, the matrix splittings become im-
portant in another way, since the matrix M of the
splitting is often used to precondition the given sys-
tem. That is, the iterative method is applied to, e.g.,
M - I A x = M-lb . We will return to this later.

From now on we will assume that xo = 0. This too
does not mean a loss of generality, for the situation
zo # 0 can through a simple linear transformation
z = x - xo be transformed to the system

-
AZ = b - AZO = b

for which obviously zo = 0.

For the simple Richardson iteration it follows that

i

xi+l = To + T1 + r2 + . . . + ri = C(I - A) ~ T ~

j = O

E { T O , A T O , ..., A'To} = ~ ? + ' (A ; T o) .

Apparently, the Richardson iteration delivers ele-
ments of increasing Krylov subspaces. Including lo-
cal iteration parameters in the iteration would lead

matrices, like I<'-1, explicitly. Instead, vectors like

puted by solving Fi from I<fi = b - Ax; . The matrix
A' is often sparse, whereas 1C-l usually is not, so that
this procedure is much more efficient both in CPU-
time and in computer memory space.

4 Towards optimal iteration methods
The natural question arises whether we can pick up
a better zi+l from the Krylov subspace that is gen-
erated by the basic iterative method. One would like
to see the xj+l for which IIzi+l - 2112 is minimal.

f . I - - K - ' b - 2 x i = 1<-1(b - A Z ~) are usually com-

E.g., 11 E { T O } xi = (Y O T O .

llx - 2111; = (x - QOTO, 2 - (YOTO) =
= (x, 2) - 2(Yo(x, T o) + (Y2(To, Y o) .

Minimizing with respect to (YO gives

and this is not practical, since x is unknown.

The above expression for (YO suggests that with a
different innerproduct the problem might, be solvable:
(2, Y)A (2, AY).

3-4

5 Syiiiiiietric matrices

proper innerproduct:
*If A is symmetric positive definite then this defines a

(2, ! /) A = (!/I x) A ,

(2, x) A = 0 e 2 = 0.

Now we have that

i - I

This looks promising and therefore we will follow that
line.
In general we want 112; - xl lA minimal for xi E
P(A; ro)

a Z j - 2 L A K' (A; TO)

j ri I K i (A ; r o) .

In particular r1 E {ro ,Aro} . Assuming that r1 #
yro (it is easy to check that in that case ro is an
eigenvector of A and the process could be stopped
since the exact solution has then be obtained after
only one iteration step), we see that { T O , T I } form an
orthogonal basis for K 2 (A ; YO).
By an induction argument we conclude that when the
process does not find the exact solution at or before
step i then

is an orthogonal basis for Ir'atl(A; YO).
This leads to the idea to construct an orthogonal ba-
sis for the Krylov subspace, a basis of which is gen-
erated implicitly by the standard iteration anyway,
and then to project zi - x, with respect to the A-
innerproduct, onto the Krylov subspace and to de-
termine zi from that.

{ T o , r1, . . . ,Ti}

We have seen that the rj form an orthogonal basis
for K i (A ; T O) , but the next remarkable property is
that they satisfy a 3-term recurrence relation:

(5.Oa)

The proof is as follows.
r1 E I i 2 (A ; 1.0) alrl = Aro - Pore
7'2 E I i3(A; ro) 3 r2 E { T O , r1, A2ro}
* r2 E { T O , T I , A r i }

aj+lr j+l = Arj - Pjrj - 7 . r ' 3 3 - 1 .

j a2r2 = Arl - Plr l - ylr0

Now we use an induction argument.

Because we want the new vector rj to be orthogonal
with respect to all previous ones, the constants Si are
determined by

(Arj-1, rk) - 6 k (r k , r ~) = 0

(5.0b)

(note that we have used the symmetry of A)
(Arj-1, rk) = (r j -1 , Ark)

= (r j -1 , f f k + l r k + l + P k r k + ykrk-1)

Here we have used the induction argument for k. Be-
cause of the orthogonality it follows that 6 k = 0 for
k = 0 , . . . , j - 3 and hence rj also satisfies a 3-term
recurrence relation.
The values for Pj and yj follow from the orthogonality
of the residual vectors:

Pj = (rj , Arj) / (r j 9 rj),

and
yj = (r j -1 , A r j) / (r j - l , r j -1) .

The value of aj+l determines the proper length of the
new residual vector. From the consistency relation
(3.0a) we have that each residual can be written as ro
plus powers of A times T O . Comparing the coefficient
for TO in the recurrence relation (5.0a) shows that

aj+l + Pj + yj = 0.

At the end of this section we will consider the situa-
tion where the recurrence relation terminates.

We can view this 3-term recurrence relation slightly
different as

Arj = yjr j -1 + Pjrj + aj+lrj+l

If we consider the rj as being the j- th column of the
matrix

R; = (T O , . . . , ri-1)

then the recurrence relation says that A applied to
a column of Ri results in the combination of three
successive columns, or

3-5

or
(5 . 0 ~) ARi = RiX + cuirie:,

in which Ti is an i by i tridiagonal matrix and ei is
the ith canonical vector in 72'.

Since we are looking for a solution xi in Ir"(A; T O) ,

that vector can be written as a combination of the
h a i s vectors of the Krylov subspace, and hence

(Note that y has i components)
Further we have for the xi, for which the error in
A-norm is minimal, that

T Ri (Ax* - b) = 0

j RTARiy - RTb = 0.

Using equation (5 . 0 ~) and the fact that ri is orthog-
onal with respect to the columns of Ri we obtain

R T R ~ Z Y = llroII$a

Since RTRi is a diagonal matrix with diagonal ele-
ments 11ro11; up to Ilri-1II; we find the desired solu-
tion from

Note that so far we have only used the fact that A
is symmetric and we have assumed that the matrix
T, is not singular. We will see later that this opens
the possibility for several suitable iterative methods,
among which the conjugate gradients method. The
Krylov subspace method that has been derived here is
known as the Lanczos method for symmetric systems
[47]. We will exploit the relation between the Lanczos
method and the conjugate gradients method for the
analysis of the convergence behaviour of the latter
method.

Note that for some j 5 n - 1 the construction of
the orthogonal basis must terminate. In that case we
have that ARj+1 = Rj+lTj+l. Let y be the solution
ofthe reduced system T j + l y = e l , and xj+l = Rj+ly.
Then it follows that xj+l = t, i.e., we have arrived at
the exact solution, since Axj+l - b = ARj+ly - b =
Rj+lTj+ly - b = Rj+lel - b = ' 0 (we have assumed
that 20 = 0).

5.1 THE CG-METHOD:

The Conjugate Gradients CG method [41] is merely
a variant on the above approach, which saves stor-
age and computational effort. For, when solving the
projected equations in the above way, we see that we
have to save all columns of Ri throughout the pro-
cess in order to recover the current iteration vectors
xi. This can be done cheaper. If we assume that the

matrix A is in addition positive definite then, because
of the relation

R T A R ~ = R T R ~ Z ,
we conclude that can be transformed by a rowscal-
ing matrix RT Ri into a positive definite symmetric
tridiagonal matrix (note that RTARi is positive def-
inite for y E ai+'). This implies that can be LU
decomposed without any pivoting:

Ti = LiUi,

with Li lower unit bidiagonal and U, upper bidiago-
nal. Hence

We concentrate on the factors, placed between paren-
thesis, separately.

1.

Li =

1
f l 1

f 2 ...

f i - 1 1

With q E L i l e l we have that q can be solved
from Liq = e l 3 f i - 1 q i - 2 + qi-1 = 0 * qi-1, in
recursive manner.

2. Write Bi E RiUF1, then we have that

X l

T i - i = gi-~(Bi)i-z + di-l(Bi)i-l

* (Bi)i-l.

Glueing these two recurrences together we obtain

3-6

= xi-1 + qi-I(Bi)i-l

and this is in fact the well-known conjugate gradients
method. The name stems from the property that the
update vectors (Bi)i-1, usually notated as pi-1, are
A-orthogonal.
Note that the positive definiteness of A is only ex-
ploited as to guarantee the flawless decomposition of
the implictly generated tridiagonal matrix Ti. This
suggests that the conjugate gradients method may
also work for certain non positive definite systems,
but then at our own risk [59]. We will later see how
other ways of solving the projected system will lead
to other well-known methods.

5.1.1 Computational notes
The standard (unpreconditioned) Conjugate Gradi-
ent dgorithm for the solution of Az = b can be rep-
resented by the following scheme:

zo= initial guess; TO = b - Azo;
p-1 = 0;p-l = 0;
Po = (r0,ro)
f o r i = 0 , 1 , 2 ,....

pi = Ti + Pi-lpi-1;
q; = Ap;;
a . - PI
- (P i t q i)

Z i + l = zi + %pi;
ri+l = r, - a iq i ;

if zi+l accurate enough then quit;
~ i + l = (ri+l, ri+l); pi = %.

P i '
end;

CG is most often used in combination with a suit-
able splitting A = K - R, and then K-' is called
the preconditioner. We will assume that K is also
positive definite.
Note first that the CG method can be derived for any
choice of the innerproduct. In our derivation we have
used the standard innerproduct (z, y) = ziyi, but-
we have not used any specific property of that inner-
product. Now we make a different choice:

[zl YI =- (2 1 Ji'Y).

It is easy to verify that K-'A is symmetric positive
definite wi th respect to [, 3:

[K- lAz , y] = (K-lAz, K y) = (A x , y)
(5.la) = (z, Ay) = [z, K-'Ay].

Hence, we can follow our CG procedure for solving
the preconditioned system I<-'Az = K-'b, using
the new [, l-innerproduct.
Apparently, we now are minimizing

[xi - 2, K-lA(zi - z)] = (x i - Z, A(zi - z)),

which leads to the remarkable (and known) result
that for this preconditioned system we still minimize
the error in A-norm, bu t now over a Krylov subspace
generated by li'-'ro and K-lA.

In the following computational scheme for precon-
ditioned CG, for the solution of Az = b with precon-
ditioner I<-1, we have replaced the [, l-innerproduct
again by the familiar standard innerproduct. E.g.,
note that with Fi+l = K-lAzi+l - K - ' b we have
that

pi+] = [Fi+l, Fi+l]

= [1<-1ri+1, 1<-1?y+1] = [r1+1, li'-%i+1]

= (T i + l , I<-lri+1),

and K-'ri+l is the residual corresponding to the pre-
conditioned system K-'Az = K-lb.

zo= initial guess; ro = b - Azo;
p-1 = o;p-, = 0;
Solve WO from KWO = T O ;

Po = (r0 ,wo)
for i = 0, 1 ,2 ,

pi = Wi + Pi-lpi-1;
qi = Api;

(P E A
zi+l = X i + aipi;
ri+l = ri - a i q i ;

if xi+' accurate enough then quit;
Solve wi+l from Ir'~i+l = ri+1;

p i t 1 = (r i+l 2 wi+l); pi = %.

ai = 4j

f s '
end;

Note that this formulation, which is quite popular,
has the advantage that the preconditioner needs not
to be splitt into two factors, and it is also avoided to
backtransform solutions and residuals, as is necessary
when one applies CG to L-'AL-' y = L-'b. T

The coefficients aj and pj , generated by the above
scheme, can be used to build the matrix Ti in the
following way:

(5.lb) Ti =

Since aj > 0 and pj > 0 we see that t.., above ma-
trix is similar to the following symmetric tridiagonal

3-1

(5 . 1 ~) ma.tris:

-
Ti=

The eigenvalues of the leading ith order minor of this
matrix are the Ritz values of the preconditioned ma-
trix IC-lA with respect to the i-dimensional Krylov
subspace spanned by the first i residual vectors. The
Ritz values approximate the (extremal) eigenvalues
of the preconditioned matrix increasingly well. These
approximations can be used to get an impression of
the relevant eigenvalues. They can also be used to
construct upperbounds for the error in the delivered
approsirnation with respect to the solution [45, 401.
According to the results in [80] the eigenvalue infor-
mation can also be used in order to understand or
explain delays in the convergence behaviour.
5.1.2 The convergence of Conjugate Gradi-

ents
The conjugate gradient method (here with K = I)
constructs in the ith iteration step an x i , which can
be written as

- 2 2’ - 3: = Pi(A)(xo - X) (cf. (3 . 0 ~)) ,

such that [/xi - x11A is minimal over all polynomials
Pi of degree i, with Pi(0) = 1.
Let us denote the eigenvalues and the orthonormal-
ized eigenvectors of A by X j , z j . We write ro =
Cj yj zj . It follows that

ri = Pi(A)ro = C y j P i (X j) z j
j

and hence

Note that only those X j play a role in this process
for which yj = 0. In particular, if A happens to
be semidefinite, i.e., there is a X = 0, then this is
no problem for the minimization process as long as
the corresponding coefficient y is zero as well. The
situa.tion where y is small, due to rounding errors, is
discussed in [45].
Upperbounds on the error (in A-norm) are obtained
by observing that

for any arbitrary polynomial Qi of degree i with
Qi(0) = 1, where the maximum is taken, of course,
only over those X for which the corresponding 7 # 0.
When Pi has zeros a t all the different X j then ri = 0.
The conjugate gradients method tries to spread the
zeros in such a way that Pi(Xj) is small in a weighted
sense, i.e., 11xj - ~ 1 1 ~ is as small as possible.

We get suitable upperbounds by selecting appro-
priate polynomials for Qi. A very well-known up-
perbound arises by taking for Qi the ith degree
Chebychev polynomial transformed to the interval
[Amira, A,,,] and scaled such that its value in 0 is
equal to 1.

and

The purpose of preconditioning is to reduce the con-
dition number IC .

As we have seen the conjugate gradients algorithm
is just an efficient implementation of the Lanczos
algorithm. The eigenvalues of the implicitly gener-
ated tridiagonal matrix Ti are the Ritz values of A
with respect to the current Krylov subspace. It is
known from Lanczos theory that these Ritz values
converge towards the eigenvalues of A and that in
general the extremal eigenvalues of A are first well
approximated [46, 58, 631. Furthermore, the speed of
convergence depends on how well these eigenvalues
are separated from the others (gap ratio) [63]. This
helps us to understand the so-called superlinear con-
vergence behaviour of the conjugate gradient method
(as well as other Krylov subspace methods). It can
be shown that as soon as one of the extremal eigen-
values is modestly well approximated by a Ritz value,
the pocedure converges from then on as a process in
which this eigenvalue is absent, i.e., a process with
a reduced condition number. Note that superlinear
convergence behaviour in this connection is used to
indicate linear convergence with a factor that is grad-
ually decreased during the process as more and more
of the extremal eigenvalues are sufficiently well ap-
proximated (for details on this see [80]).

5.1.3 Further references
A more formal presentation of CG, as well as many
theoretical properties, can be found in the textbook
by Hackbusch [39]. A shorter presentation is given

3-8

in [35]. An overview of papers, published in the first
25 years of existence of the method, is given in [34].
Vector processing and parallel computing aspects are
discussed in [23] and [57].

5.2 MINRES and SYMMLQ:

When A is not positive definite, but still symmetric,
then we can construct an orthogonal basis for the
Krylov subspace, as we have seen before. We write
the recurrence relations slightly different as

ARi = Ri+lT; ,

with

t i -)

In this case we have the problem that (,) A does not
define an innerproduct. However we can still try to
minimize the residual. We look for an

Now we exploit the fact that R ~ + I D , % ' ~ , with Di+l =
diag(llroll2, Ilrlll2, ..., Ilrill2), is an orthonormal trans-
formation with respect to the current Krylov sub-
space:

and this final expression can simply be seen as a min-
imum norm least squares problem.
The element in the (i + 1 , i) position of 2 can be
transformed to zero by a simple Givens rotation and
the resulting upper bidiagonal system (the other sub-
diagonal elements being removed in previous iteration
steps) can simply be solved, which leads to the so-
called MINRES method [60].
Another possibility is to solve the system T i y =
llr0112e1, as in the CG method (E is the upper i by
i pa.rt of E . Other than in CG we cannot rely on
the existence of a Choleski decomposition (since A
is not positive definite). An alternative is then to
decompose E by an LQ-decomposition. This again
leads to simple recurrences and the resulting method
is known as SYMMLQ [60].

5.3 Parallelism and data locality in precondi-

For successful application of CG one needs that the
matrix A is symmetric positive definite. In other
short recurrence methods, other properties of A may
be desirable, but we will not exploit these properties
explicitly in the discussion on parallel aspects.
Most often, the conjugate gradients method is used
in combination with some kind of preconditioning.
This means that the matrix A can be thought of to
be multiplied with some suitable approximation K - '
for A - l . Usually, A' is constructed as an approxima-
tion of A , such that systems like Ky = z are much
more easy to solve as Aa: = b . Unfortunately, a pop-
ular class of preconditioners, based upon incomplete
factorization of A , do not lend themselves very much
for parallel implementation., We will discuss some
approaches to obtain more parallelism in the precon-
ditioner in section 9.1. At the moment we will assume
that the preconditioner is chosen such that the par-
allelism in solving K y = z is comparable with the
parallelism in computing Ap, for given p .
For CG it is also required that the preconditioner Zi'
is symmetric positive definite. This aspect will play a
role in our discussions since it shows how some prop-
erties of the preconditioner can be used sometimes to
our advantage for an efficient implementation.

tioned CG:

The scheme for preconditioned CG is given in Sec-
tion 5.1.1. Note that in that scheme the updating of 2
and r can only start after the completion of the inner-
product required for ai. Therefore, this innerproduct
is a so-called synchronization point: all computation
has to wait for completion of this operation. One can
try to avoid such synchronization points as much as
possible, or to formulate CG in such a way that syn-
chronization points can be taken together. We will
see such approaches further on.
Since on a distributed memory machine communi-
cation is required to assemble the innerproduct, it
would be nice if we could proceed with other useful
computation while the communication takes place.
However, as we see from our CG scheme, there is no
possibility to overlap this communication time with
useful computation. The same observation can be
made for the updating of p , which can only take place
after the completion of the innerproduct for pi . Apart
from the computation of Ap and the computations
with I<, we need to load 7 vectors for 10 vector float-
ing point operations. This means that for this part
of the computation only 10/7 floating point operation
can be carried out per memory reference in average.

Several authors ([l l , 52, 531) have attempted to im-
prove this ratio, and to reduce the number of syn-
chronization points. In our formulation of CG there
are two such synchronization points, namely the com-

3-9

putation of both innerproducts.
Meurant [52] (see also [68]) has proposed a variant
in which there is only one synchronization point,
however a t the cost of a possibly reduced numerical
stability, and one additional innerproduct. In this
scheme the ratio between computations and memory
references is about 2.
We show here another variant, proposed by Chrono-
poulos and Gear [ll].

end i;

In this scheme all vectors need only be loaded once
per pass of the loop, which leads to a better exploita-
tion of the data (improved data locality). However,
the price is that we need 272 flops more per itera-
tion step. Chronopoulos and Gear [ll] claim stabil-
ity, based upon their numerical experiments.
Instead of 2 synchronization points, as in the stan-
dard version of CG, we have now only one synchro-
nization point, as the next loop can only be started
when the innerproducts at the end of the previous
loop have been assembled. Another slight advantage
is that these innerproducts can be computed in par-
allel.
Chronopoulos and Gear [ll] propose to further im-
prove the data locality and parallelism in CG by com-
bining s successive steps. Their algorithm is based
upon the following property of CG. The residual vec-
tors ro, ..., ri form an orthogonal basis (assuming ex-
act arithmetic) for the Krylov subspace spanned by
ro, Aro, ..., Ai-- 'ro. When arrived at r j , the vectors

rj also form a basis for ro, r1, ..., r j , A r j , ...,
this subspace. Hence, we may combine s successive
steps by generating r j , A r j , ..., AS-'rj first, and then
do the orthogonalization and the updating of the cur-
rent solution with this blockwise extended subspace.
This approach leads to a slight increase in flops in
comparison with s successive steps of the standard

Ai- j -1

CG, and also one additional matrix vector product is
required per s steps.
The main drawback in this approach seems to be the
potential numerical instability. Depending on the
spectral properties of A , the set r j , ..., A'-'rj may
tend to converge to a vector in the direction of a
dominating eigenvector, or, in other words, may tend
to dependence for increasing values of s. The authors
claim to have seen successful completion of this ap-
proach, with no serious stability problems, for small
values of s. Nevertheless, it seems that s-step CG,
because of these problems, has a bad reputation (see
also [SS]). However, a similar approach, suggested by
Chronopoulos and Kim [12] for other processes such
as GMRES, seems to be more promising. Several au-
thors have pursued this research direction, and we
will come back to this in section 7.3.

We consider still another variant of CG, in which
there is possibility to overlap all of the communica-
tion time with useful computations. This variant is
just a reorganized version of the original CG scheme,
and is therefore precisely as stable. The key trick in
this approach is to delay the updating of the solution
vector by one iteration step.
Another advantage over the previous scheme is that
no additional operations are required.
It is assumed that the preconditioner K can be writ-
ten as I< = (L L T) - ' . Furthermore, it is assumed
that the preconditioner has a block structure, corre-
sponding to the gridblocks assigned to the processors,
so that communication (if necessary) can be over-
lapped with computation.

Now we discuss how this scheme may lead to an ef-
ficient parallel scheme, and how local memory (vector
registers, cache, ...) can be exploited.

3-10

1. All computing intensive operations can be car-
ried out in parallel. Only for the operations (2),
(3), (7), (8), (9), and (0), communication be-
tween processors is required. We have assumed
that the communication in (2), (7), and (0) can
be largely overlapped with computation.

2. The communication required for the assembly of
the innerproduct in (3) can be overlapped with
the update for x (which could have been done in
the previous iteration step).

exploit parallelism in combination with suitable so-
lution techniques, like for instance iterative solution
methods.
From a parallel point of view CG mimics very well
parallel performance properties of a variety of it-
erative methods such as Bi-CG, CGS, BiCGSTAB,
QMR, and others.
In this section we study the performance of CG on
parallel distributed memory systems and we report
on some supporting experiments on actual existing
machines. Guided by our experiments we will discuss
the suitability of CG for Massively Parallel Process-

All computational intensive elements in precondi-

tor operations) are trivially parallelizable for shared
memory machines [23], except possibly for the pre-

4. Steps (I), (2)) and (3) can be combined: the conditioning step: Solve wi+l from I<wi+l = ri+l.

computation of a segment of pi can be followed For the latter operation parallelism depends very
immediately by the Computation of a segment of much on the choice for I<. In this section we restrict
qi (2), and this can be followed by the compu- ourselves to block Jacobi preconditioning, where the
tation of a part of the innerproduct in (3). This blocks have been chosen so that each processor can
saves on load operations for segments of pi and handle one block independently of the others. For
Q i . other preconditioners that allow some degree of par-

3. The assembly of the innerproduct in (8) can be
overlapped with the computation in (0). Also ing
step (9) usually requires information such as the

with (0).
110rn1 of the residual, which Can be overlapped tioned CG (updates, innerproducts, and matrix 'e'-

5. Depending on the structure of L , the computa-
tion of segments of r;+l in (6) can be followed
by operations in (7), which can be followed by
the computation of parts of the innerproduct in
(8), and the computation of the norm of ri+l,
required for (9).

6. The computation of pi can be done as soon as the
computation in (8) has been completed. At that
moment, the computation for (1) can be started
if the requested parts of wi have been completed
in (0).

7. If no preconditioner is used, then wi = ri , and
steps (7) and (0) have to be skipped. Step (8) has
to be replaced by pi = (ri+l, ri+l). Now we need
useful computation in order to overlap the com-
munication for this innerproduct. To this end,
one might split the computation in (4) per pro-
cessor in two parts. The first of these parts are
computed in paralell in overlap with (3), while
the parallel computation of the other parts is
used in order to overlap the communication for
the computation of p i .

5.4 Parallel performance of CG:

Some realistic 3D computational fluid dynamics sim-
ulation problems, as well as other problems, lead to
the necessity to solve linear systems Ax = b with a
matrix of very large order, billions of unknowns, say.
If not of very special structure, such systems are not
likely t80 be solved by direct elimination methods.
For such very large (sparse) systems we will have to

allelism see [23].
For a distributed memory machine at least some of
the steps require communication between processors:
the accumulation of innerproducts and the computa-
tion of Api (depending on the non-zero structure of
A and the distribution of the non-zero elements over
the processors). We consider in some more detail the
situation where A is a block-tridiagonal matrix of or-
der N , and we assume that all blocks are of order a:

A1 D1 (D1 A2 DZ

in which the Di are diagonal matrices, and the Ai are
tridiagonal matrices. Such systems occur quite fre-
quently in finite difference approximations in 2 space
dimensions. Our discussion can easily be adapted to
3 space dimensions.

5.4.1 Processor configuration and data dis-
t ribut ion

For simplicity we will assume that the processors are
connected as a 2D grid with p x p = P processors.
The data have been distributed in a straight forward
manner over the processor memories and we have not
attempted to fully exploit the underlying grid struc-
ture for the given type of matrix in order to reduce
communication as much as possible. In fact it will
turn out that in our case the communication for the

3-1 I

processor 1

processor 2

processor 3

etc.

Fig.1: Distribution of A over the processors.

ma.trix vector product plays only a minor role for ma-
trix systems of large size .
Because of symmetry only the 3 non-zero diagonals
in the upper triangular part of A need to be stored,
and we have chosen to store successive parts of length
N I P of each diagonal in consecutive neighbouring
processors. In Figure 1 we see which part of A is
represented by the data in the memory of a given
processor.

The blocks for block Jacobi are chosen to be the
diagonal blocks that are available on each processor,
and the various vectors (T ; , p ; , etc.) have been dis-
tributed likewise, i.e. each processor holds a section
of length N I P of these vectors in its local memory.

5.4.2 Required Communication

matrix vector product It is easily seen for a 2 0 proces-
sor grid (as well as for many other configurations, in-
cluding hypercube and pipeline), that the matrix vec-
tor product can be completed with only neighbour-
neighbour communication. This means that the com-
munication costs do not increase for increasing val-
ues of p . If one follows a domain decomposition way
of approach, in which the finite difference discretiza-
tion grid.is subdivided into p by p subgrids (p in 2-
direction and p in y-direction), then the communica-
tion costs are smaller than the computational costs

In [17] much attention is given to this sparse ma-
trix vector product and it is shown that the time for
communication can almost completely be overlapped
with computational work. Therefore, with adequate
coding the matrix vector products do not necessarily
lead to serious communication problems, even not for

by a factor of U (p). fi

relatively small-sized problems.
On a MEIKO SP1 (located at Utrecht University, this
machine has only 4 processors) we have observed, for
N = 90000, a speed-up by a factor of 1.85 for two
processors, and of 1.96 when overlap possibilities are
exploited. In both cases we expect, by extrapolat-
ing our timing results, a factor of 2 for very large N .
According to a naive interpretation of Amdahl’s law
we might expect a severe degradation in performance
for more than two processors. However, if we in-
crease the size of the problem for increasing numbers
of processors then the local communication time for
the matrix product does not increase so that it does
not pose limits on the performance when we increase
the value of p .

vector update In our case these operations do not re-
quire any communication and we should expect linear
speed up when increasing the number of processors
P .

inner product For the innerproduct we need global
communication for assembly and we need global com-
munication for the distribution of the assembled in-
nerproduct over the processors. For a p x p processor
grid these communication costs are proportional with
p . This means that for a constant length of the vec-
torparts per processor, these communicationcosts will
dominate for values of p large enough. This is quite
unlike the situation for the matrix vector product and
as we will see it may be a severely limiting factor in
achieving high speed-ups in a massively parallel en-
vironment.

For the MEIKO SP1 we have done some experi-
ments in order to determine the costs of inter proces-

3-12

0 . 4 5 I 1

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 200 400 600 800 1000 1200

number of processors

Fig.2: Modelled timings for 1 iteration with CG.

sor communication and for communication. Assum-
ing that the costs for communication (for the inner-

of communication we have modelled the wall-clock
time for 1 iteration with CG, for matrices of order
9OOOOP, as in Figure 2. Note that we have increased
the size of the linear system linearly with the num-

larger computers one aims to solve larger systems.
The value 90000 has been chosen since this is more
or less the size of the part of the system that can
be kept in the local memory of one processor of our
MEIKO machine.

From this Figure we learn that for P slightly larger
than 400 the communication costs may be expected
to dominate, and eventually they will lead to very
low speed-ups (even for systems for which the size is
as large as the total memory permits). We also see,
that if overlap of communication and computation
is possible, then potentially the communication can
be hidden for values of P less than 400, but this de-
mands for a reformulation of the CG algorithm. Of
course, these expectations are based on a model, but
we have also carried out similar experiments on the
512 processor Parsytec GCel-3/512 of the University
of Amsterdam [15]. In particular we have observed
on that machine that the communication time for the
innerproduct increases like f i , which just explains
the behaviour of our model for the MEIKO-type of
architecture.

Our experiments and our modelling approach
clearly show that even a method like CG, which
might be anticipated to be highly parallel, may suf-
fer severely from the communication overhead due
to the required innerproducts. Our study indicates
that if we want reasonable speed-up in a massively
parallel environment then the local memories should

I

I

I

products) grow linearly with the length of the path

~

I ber of processors, which seems realistically since with

also be much larger when the number of processors
is increased in order to accomodate for systems large
enough to compensate for the increased global com-
munication costs.

Another approach would be to modify the CG
method such that the innerproducts take relatively
less time. Many of such approaches have been stud-
ied recently. A quite popular approach is to refor-
mulate CG such that the required innerproducts can
be computed simultaneously, so that the communi-
cation overhead is reduced (the communication re-
quired for 2 simultaneous innerproducts is almost the
same as for 1 innerproduct). An extreme form of this
approach is to reformulate CG so that a number of
basis vectors for the search space are computed with-
out making them orthogonal. The orthogonalization
is then carried out afterwards, and in this approach
most of the communication can be combined. The
numerical stability of these approaches is still a point
of concern. For an overview and further references
see [6] . For some other iterative methods, such as
GMRES, this approach can be quite effective as is
shown in [17].

Still another approach is to try to more useful com-
putational work per iteration step, so that the com-
munication for the two innerproducts takes relatively
less time. One way to do this is to use polynomial
preconditioning, i.e., the preconditioner consists of
a number of matrix vector products with the matrix
A . This may work well in situations where the matrix
vector product requires only little (local) communica-
tion. Another way is to apply domain decomposition:
the given domain is split into P , say, subdomains with
estimated values for the solutions on the interfaces.
Then all the subproblems are solved independently
and in parallel. This way of approximating the solu-
tion may be viewed as a preconditioning step in an

iterative method. In this way we do more computa-
tional work per communication step. Unfortunately,
depending on the problem and on the way of decou-
pling the subdomains one may need a larger number
of iteration steps for larger values of P , which may
then, of course, detoriate the overall efficiency of the
domain decomposition approach. For more informa-
tion on this approach we also refer to references given
in [6] .

If a given architecture permits the overlap of com-
munication with computation, then we may try to re-
formulate CG in order to create possibilities for over-
lap. For the (extrapolated) MEIKO this may help for
values of P up to about 400. For larger P we will see
communication dominating anyhow, but the adverse
effects can be lessened. A stable reformulation of CG
which has this effect has been described in [20].

6 Unsymmetric problems
There are essentially three different ways to solve
unsymmetric linear systems, while maintaining some
kind of orthogonality between the residuals:

1 . Solve the normal equations ATAx = ATb with
conjugate gradients

2 . Make all the residuals explicitly orthogonal in
order to have an orthogonal basis for the Krylov
subspace

3. Construct a basis for the Krylov subspace by a
3-term biorthogonality relation

6.1 Normal Equations:
The first solution seems rather obvious. However, it
has severe disadvantages because of the squaring of
the condition number. This has as effects that the so-
lution is more susceptible to errors in the right-hand
side and that the rate of’convergence of the CG pro-
cedure is much slower as for a comparable symmetric
system with a matrix with the same condition num-
ber as A . Moreover, the amount of work per iteration
step, necessary for the matrix vector product, is dou-
bled.
There have been made several proposals to improve
the numerical stability of this rather robust approach.
The most well-known is by Paige and Saunders [61]
and is based upon applying the Lanczos method to
the auxiliary system

I A
(A T O) (i) = (i)

Clever execution of this delivers in fact the factors
L and U of the LU-decomposition of the tridiagonal
matrix that would have been delivered when carrying
out the Lanczos procedure with ATA.
Another approach to improve the numerical stabil-
ity of this normal equations approach is suggested by

3-13

Bjorck and Elfving [8] . They observed that the ma-
trix ATA is used in the construction of the iteration
coefficients through an innerproduct like (p , ATAp).
They simply suggest to replace such an innerproduct

The use of conjugate gradients in a least squares con-
text, as well as a theoretical comparison with SIRT
type methods, is discussed in [81] and [82].

by (AP, AP).

An interesting variant of LSQR is the so-called
Craig’s method [6 1] , The easiest way to think of this
method is to apply Conjugate Gradients to the sys-
tem ATAx = ATb, with the following choice for the
innerproduct

which defines a proper innerproduct if A is of full
rank (see section 5.1.1).
First note that the two innnerproducts in CG (as
in section 5.1.1 can be computed without inverting
A ~ A :

[p i , ~ ~ ~ p i] = (p i , p i) ,

and, assuming that b E R (A) so that Ax = b has a
unique solution x (since A has full rank):

[ri , ri] = [AT(Azi - b) , AT(Azj - b]
= [ATA(xi - x), AT(Azi - b)]
= (xi - Z, AT(Axi - 6))

(6.la) = (Axi - b,Axi - b)

Apparantly, we are with CG minimizing

that is, in this approach the Euclidean norm of the
error is minimized. Note, however, that the rate of
convergence of Craig’s method is determined by the
condition number of ATA, so that this method is only
attractive if one has a good preconditioner for ATA.

6.2 FOM and GMRES:

The second approach is to form explicitly an or-
thonormal basis for the Krylov subspace. Since A is
not symmetric we no longer have a 3-term recurrence
relation for that purpose and the new basis vector
has to be made explicitly orthonormal with respect
to all the previous vectors:

1

3-14

As in the symmetric case this can be exploited in two
different ways. The orthogonality relation can either
be written as

T (6.2a) AV, = V,Hi + hi+l,ivi+lei ,
after which the projected system, with a Hessen-
berg matrix instead of a tridiagonal matrix as in the
symmetric case, can be solved (nonsymmetric CG,
GENCG, FOM, Arnoldi's method), or it can be writ-
ten a.s
(6.2b) A% = K+lHi ,

after which the projected system, with an i + 1 by
i upper Hessenberg matrix can be solved as a least
squares system. In GMRES [72] this is done by the
QR method using Givens rotations in order to anni-
hilate the subdiagonal elements in the upper Hessen-
berg matrix H i .

The first approach (based upon (6.2a)) is similar to
the conjugate gradient approach (or SYMMLQ), the
second approach (based upon (6.2b)) is similar the
conjugate directions method (or MINRES).

In order to avoid excessive storage requirements
and computational costs for the orthogonalization,
GMRES is usually restarted after each m iteration
steps. This algorithm is referred to as GMRES(m).
Below we give a scheme for GMRES(m) which may
be suitable to develop a computer code. It solves
Ax = b , with a given preconditioner I<.

10 is an initial guess;
for j = 1,2 ,

Solve r from K r = b - Azo;
01 = r / l l r l l 2 ;
s := Ilrll2e1;
for i = 1,2 , ..., m

orthogonalization of w
against v's, by modified
Gram-Schmidt process

Solve w from K w = Avi;

for k = 1, ..., i
h k , i = (w , vk) ;
W = W - h k , i V k ;

end k;
hi+l , i = IIw112;
vi+l = w/hi+l , i ;
apply J 1 , '.', J i - 1 on (h l , i , ..', hi+l, i);

construct J i , acting on i-th
and (i + 1)-st component
of h , , i , such that (i + 1)-st
component of Jih,, i is 0;

s := J ~ s ;
if s (i + 1) is small enough then:
(UPDATE(2, i); quit);

end i;
UPDATE(2, m);

end j;

In this scheme UPDATE(2, i) replaces the follow-
ing computations:

Compute y as the solution of H y = S,
in which the upper i by i triangular
part of H has h i j as its elements
(in least squares sense if H is singular),
S represents the first i components of s;

si+l equals ((b - A2112;
if this component is not small enough
then x o = 2 ;
else quit;

5 = 20 + y1 * V I + ~ 2 ~ 2 + ... f y i v i ;

Another scheme for GMRES, based upon House-
holder orthogonalization instead of modified Grani-
Schmidt has been proposed in [92]. For certain ap-
plications it seems attractive to invest in additional
computational work in turn for improved numerical
properties: the better orthogonality might save iter-
ation steps.

The eigenvalues of H , are the Ritz values of K - l A
with respect to the Krylov subspace spanned by 211,

..., vi. They approximate eigenvalues of K - ' A in-
creasingly well for increasing dimension i.

There is an interesting and simple relation be-
tween the two different Krylov subspace projection
approaches (6.2a), the "FOM" approach, and (6.2b),
the "GMRES" approach. The projected system ma-
trix f i i is transformed by a Givens rotations to an
upper triangular matrix (with last row equal to zero).
So, in fact, the major difference between FOM and
GMRES is that in FOM the last ((i+l)-th row is sim-
ply discarded, while in GMRES this row is rotated to
a zero vector. Let us characterize the Givens rotation,
acting on rows i and d + l , in brder to zero the element
in position (i + 1, i) , by the sine si and the cosine c i .
Let us furt,her denote the residuals for FOM with an
superscript F and those for GMRES with superscript
G. Then the above observations lead to the following
results for FOM and GMRES (for details see [72] and
[91).

1. The reduction for successive GMRES residuals
is given by -

(6 . 2 ~)

([72]: p. 862, Proposition 1)

2. If C k # 0 then the FOM and the GMRES resid-
uals are related by

([9]: theorem 5.1)

From these relations we see that when GMRES has a
local significant reduction in the norm of the residual
(i.e., s k is small), then FOM gives about the same
result. as GMRES (since c i = 1 - s i) . On the other
hand when FOM has a break-down (c k = 0), then
the GMRES does not lead to an improvement in the
same iteration step.
Because of these relations we can link the conver-
gence behaviour of GMRES with the convergence of
Ritz values (the eigenvalues of the "FOM" part of the
upper Hessenberg matrix). This has been exploited
in [88], for the analysis and explanation of local ef-
fects in the convergence behaviour of GMRES.

In order to limit the required amount of memory
storage and the amount of flops per iteration step,
one often restarts the GMRES method after each m
steps. This restarted version is commonly referred to
as GMRES(m), while the not-restarted method often
is called Full GMRES.

There are various different implementations of
FOM and GMRES. Among those equivalent with
GMRES are: Orthomin [9l], Orthodir [44], Axels-
son's method [3] and GENCR [27]. These methods
are often more expensive than GMRES per itera-
tion step. Orthomin seems to be still popular, since
this variant can be easily truncated (Orthomin(s)),
in contrast to GMRES. The truncated or restarted
versions of these algorithms are not necessarily math-
ematically equivalent.
Methods that are mathematically equivalent with
FOM are: Orthores [44] and GENCG [13, 931. In
these methods the approximate solutions are con-
structed such that they lead to orthogonal residuals
(which form a basis for the Krylov subspace; analo-
gously to the CG method). A good overview of all
these methods and their relations is given in [7l].

6.3 Rank-one updates for the Matrix Split-
ting:

Iterative methods can be derived from a splitting of
the matrix, and we have used the very simple split-
ting A = I - R , with R = I - A , in order to derive the
projection type methods. In [26] it is suggested to up-
date the matrix splitting with information obtained
in the iteration process. We will give the flavour of
this method here since it turns out that it has an in-
teresting relation with GMRES. This relation is ex-
ploited in [89] for the construction of new classes of
GMRES-like methods, that can be used as cheap al-
ternatives for the increasingly expensive full GMRES
method.

Assume that the matrix splitting in the L-th itera-
tion step is given by A = H k l - R k , then we obtain

3-15

the iteration formula

The idea is now to construct H k by a suitable rank-
one update to H k - 1 :

which leads to

or

or
1 p k - l U k - 1 = A- (I - A H k - 1) T k - l .

However, A-' is unknown and the best approxima-
tion we have for it is H k - 1 . This leads to the choice

The constant p k - 1 is chosen such that I l rk l l2 is min-
imal as a function of p k - 1 . This leads to

Since V k - 1 has to be chosen such that p k - 1 =
~ T - ~ r k - l , we have the following obvious choice for
it

(note that from the minimization property we have
that T k 1 A U k - 1) .

In principle the implementation of the method is
quite straight forward, but note that the computation
of T k - 1 , E k - 1 and f i k - 1 costs 4 matrix vector multi-
plications with A (and also some with H k - 1) . This
would make the method too expensive for being of
practical interest. Also the updated splitting is most
likely a dense matrix if we carry out the updates ex-
plici tl y.
We will now show, still following the lines set forth in
[26], that there are orthogonality properties, follow-
ing from the minimization step, by which the method
can be implemented much more efficiently.
We.define

3-16

or

(6.3e)

Furthermore (on behalf of (6 .3~)) :

(6.3f) = n (I - c;cT)Eo.
i=O

We see that the operator E k has the following effect
on a vector. The vector is multiplied by Eo and then
orthogonalized with respect to C O , ..., C k - 1 . Now we
have from (6.3e) that

and hence
(6.3g) c k 1 CO, ..., c k - 1

A consequence from (6.3g) is that

k - 1 k - 1

j =O j =O

and therefore
k

j = O

The actual implementation is based on the above
properties. Given r k we compute r k + l as follows (and
we update X k in the corresponding way):

r k + i = E k + i r k .

With
previous steps):

= E O r k we first compute (with the c j from

k - 1 k - 1

j =O j =O

The expression with leads to a Gram-Schmidt for-
mulation, the expression with n leads to the Modi-
fied Gram-Schmidt variant.
The computed updates -c?€(O)c j for r k + l correspond
to updates

CT,$o)A-l~. 3 - - cT j € (O) u j l l l A u i l l 2

for x j + l .

below, represented by q.
These updates are in the scheme, given

From (6 . 3 ~) we know that

G k = H k E k r k = H k t (k) .

Now we have to make A u k - c k orthogonal w.r.t.
C O , ..., c k - 1 , and to update i i k accordingly. Once
we have done that we can do the final update
step to make H k + l , and we can update both x k

and r k by the corrections following from includ-
ing c k . The orthogonalization step can be car-
ried out easily as follows. Define c r) = (YkCk =
A H k E k r k = (I - E k) E k r k (See (6.3e)) = (I -
Eo+f$-lEo)((k) (See (6.3f)) = A N o < (k) + P k - l (I -

= c p) + P k - l $ k ' - P k - l C p) . Note that the
second term vanishes since $ k) 1 C O , ..., C k - 1 .

The resulting scheme for the k-th iteration step
becomes:

1. = (I - A H o) r k ; q(O) = HOQ;
for i = 0, ..., k- 1 do

ai = c y) ;
p+l) = - f f i c i ; q("+l) = ,(i) + (Yiui;

2. = H o [(k) ; = Au(O).
k k l

for i = 0, ..., IC - 1 do
p. - - T (i). c (i + l) = (i) + P . ~ . .

u k

I - c i c k ~ k ' k t 1 1

(i + l) = tp + piui;
(k) (k) .

c k = ck /lick 1121 'ilk = ~ ~) / ~ ~ c ~) ~ ~ 2 ~

x k + l = x k + q(k) + u k C r ((k) ;

r k + l = (I - C k C r) < (k) ;

3.

Remarks

1. The above scheme is a Modified Gram Schmidt
variant, given in'[89], of the original scheme in
[261.

2. I f we keep Ho fixed, i.e., No = I , then the
method is not scaling invariant (the results for
pAa = p b depend on p). In [89] a scaling invari-
ant method is suggested.

3. Note that in the above implementation we have
'only' two matrix vector products per iteration
step. In [89] it is shown that in many cases we
may also expect comparable converge as for GM-
RES in half the number of iteration steps.

3-17

4. A different choice for i i k - 1 does not change the
formulas for E k - 1 and Ek-1. For each different
choice we can derive similar schemes as the one
above.

I 5. From (6.3b) we have

In view of the previous remark we might also
make the different choice G k - 1 = HE-Irk-1.

With this choice, we obtain a variant which is
algebraically identical to GMRES (for a proof of
this see [89]). This GMRES variant is obtained
by the following changes in the previous scheme:
Take Ho = 0 (note that in this case we have that
Ek-lrk-1 = rk-1, and hence we we may skip
part 1 of the above algorithm), and set < (k) = rk,

$ k) = 0. In step 2 start with u r) = < (k) .
The result is a different formulation of GMRES
in which we can obtain explicit formulas for the
updated preconditioner (i.e., the inverse of A is
approximated increasingly well): The update for
Hk is U.kcrEk and the sum of these updates gives
an approximation for A-' .

G. Also in this GMRES-variant we are still free
to select uk a little bit different. Remember
that the leading factor H k - 1 in (6 .3~) was in-
troduced as an approximation for the actually
desired A-' . With f i t - 1 = A-lrk-1, we would
have that r k = E k - l r k - 1 - p k - l r k - l = 0 for the
minimizing p k - 1 . We could take other approxi-
mations for the inverse (with respect to the given
residual r k - l) , e.g., the result vector y obtained
by a few steps GMRES applied to Ay = r k - 1 .

This leads to the so-called GMRESR family of
nested methods (for details see [89]). See also
section 6.4. A similar algorithm, named FGM-
RES, has been derived independently by Saad
[70]. In FGMRES the search directions are pre-
conditioned, whereas in GMRESR the residuals
are preconditioned. This gives GMRESR direct
control over the reduction in norm of the resid-
ual. As a result GMRESR can be made robust
while FGMRES may suffer from break-down. A
further disadvantage of the FGMRES formula-
tion is that this method cannot be truncated, or
selectively orthogonalized, as GMRESR can.
In [4] a generalized conjugate gradient method is
proposed, a variant of which produces in exact
arithmetic identical results as the proper variant
of GMRESR, though at higher computational
costs and with a classical Gram-Schmidt orthog-
onalization process instead of the modified pro-
cess as in GMRESR.

6.4 GMRESR and GMRESk:
By Van der Vorst and Vuik [89] it has been shown
how the GMRES-method can be combined (or rather
preconditioned) with other iterative schemes. The it-
eration steps of GMRES (or GCR) are called outer
iteration steps, while the iteration steps of the pre-
conditioning iterative method are referred to as inner
iterations. The combined method is called GMRESk,
where * stands for any given iterative scheme; in the
case of GMRES as the inner iteration method, the
combined scheme is called GMRESR[89].
Similar schemes have been proposed recently. In
FGMRES[70] the update directions for the ap-
proximate solution are preconditioned, whereas in
GMRES* the residuals are preconditioned. The lat-
ter approach offers more control over the reduction in
the residual, in particular break-down situations can
be easily detected and remedied.
In exact arithmetic GMRES* is very close to the Gen-
eralized Conjugate Gradient method[4]; GMRES*,
however, leads to a more efficient computational
scheme.

The GMRES* algorithm can be described by the
following computational scheme:

20 is an initial guess; ro = b - Azo;
for i = 0 , 1 , 2 , 3 ,...

Let drn) be the approximate solution
of Az = rj , obtained after m steps of
an iterative method.
c = A Z (~) (often available from the

iteration method)
for IC = 0, ..., i- 1

a = (c k , c)
C = C - - c k
*(m) = J m) - &Uk

z i + l = X i + (c i , ri)ui
ri+l = rj - (ci, ri)ci
if zi+l is accurate enough then quit

ci = c/llcll2; ui = z(m)/llcl12

end

A sufficient condition to avoid break-down in this
method (llc112 = 0) is that the norm of the residual
at the end of an inner iteration is smaller than the
right-hand residual: IIAz(") - rill2 < Ilrill2. This can
easily be controlled during the inner iteration process.
If stagnation occurs, i.e. no progress a t all is made
in the inner iteration, then it is suggested by Van der
Vorst and Vuik[89] to do one (or more) steps of the
LSQR method, which guarantees a reduction (but
this reduction is often only small).

The idea behind this combined iteration scheme
is that we explore parts of high-dimensional Krylov
subspaces, hopefully localizing the same approximate
solution that full GMRES would find over the en-
tire subspace, but now at much lower computational

3-18

costs. The alternatives for the inner iteration could
be either one cycle of GMRES(m), since then we have
also locally an optimal method, or some other iter-
ation scheme, like for instance Bi-CGSTAB. As has
been shown by Van der Vorst[87] there are a number
of different situations where we may expect stagna-
tion or slow convergence for GMRES(m). In such
cases it does not seem wise to use this method.

On the other hand it may also seem questionable
whether a method like Bi-CGSTAB should lead to
success in the inner iteration. This method does
not satisfy a useful global minimization property
and large part of its effectiveness comes from the
underlying Bi-CG algorithm, which is based on bi-
orthogonality relations. This means that for each
outer iteration the inner iteration process has to build
a hi-orthogonality relation again. It has been shown
for the related Conjugate Gradients method that the
orthogonality relations are determined largely by the
distribution of the weights a t the lower end of the
spectrum and on the isolated eigenvalues a t the up-
per end of the spectrum[82]. By the nature of these
kind of Krylov processes the largest eigenvalues and
their corresponding eigenvector components quickly
do enter the process after each restart, and hence
it may be expected that much of the work is lost
i n rediscovering the same eigenvector components in
the error over and over again, whereas these compo-
neiits may already be so small that further reduction
in those directions in the outer iteration is waste of
time, since it hardly contributes to a smaller norm of
the residual.
This heuristic way of reasoning may explain in
part our rather disappointing experiences with Bi-
CGSTAB as the inner iteration process for GMRES*.

De Sturler and Fokkema[lS] propose to prevent the
outer search directions explicitly from being reinves-
t,iga.ted again in the inner process. This is done by
keeping the Krylov subspace that is build in the in-
ner iteration orthogonal with respect to the Krylov
basis vectors generated in the outer iteration. The
procedure works as follows.
In the outer iteration process the vectors CO, ..., c;-1
build an orthogonal basis for the Krylov subspace.
Let Ci be the n by i matrix with columns CO, ...,
ci-1. Then the inner iteration process a t outer iter-
ation i is carried out with the operator Ai instead of
A, and Ai is defined as

(6.4.3) Ai = (I - CiCT)A.

It is easily verified that Aiz I CO, ..., ci-1 for all 2,
so that the inner iteration process takes place in a
subspace orthogonal to these vectors. The additional
costs, per iteration of the inner iteration process, are
i inner products and i vector updates. In order to
save on these costs, one should realize that it is not

necessary to orthogonalize with respect to all previ-
ous c-vectors, and that “less effective” directions may
be dropped, or combined with others. De Sturler and
Fokkema[lS] suggestions are made for such strategies.
Of course, these strategies in cases where we see too
little residual reducing effect in the inner iteration
process in comparison with the outer iterations of
GMRES*.
6.5 Bi -conjugate Gradients:

The third class of methods arises from the attempt
to construct a suitable set of basis vectors for the
Krylov subspace by a three-term recurrence relation
as in (5.0a):

(6.5a) crj+lrj+l = Arj - Pjrj - yjrj-1.

As we have seen in the proof for the orthogonality of
such a set of vectors (see section 4), we needed the
symmetry of the matrix A . In the nonsymmetric case
we need instead of (5.0b) that

T (Arj-1,rk) = (rj-1,A r k) = 0 for IC < j - 2.

By similar arguments as in the proof for (5.0a) we
conclude that (6.5a) can be used to generate a basis
r0, ... ,ri-l for Ki(A; ro), such that rj I Kj-’(AT; ro),
or even more general,

rj I Kj-l(AT; SO),

since there is no explicit need to generate the Krylov
subspace for AT with ro as the starting vector.
If we let the basis vectors sj for Ki(AT; SO) satisfy the
same recurrence relation as the vectors rj, i.e., with
identical recurrence coefficients, then we see that

(rk,sj)=O for l c f j

(by a simple symmetry argument).
Hence, the sets { r j } and { s j } satisfy a biorthogonality
relation. Now we can proceed in a similar way as in
the symmetric case:

(6.5b) A R ~ = R ~ E + cririe?,

but now we use the matrix Sj = [SO, S I , ..., si-11 for
the projection of the system

T Si (Ax* - b) = 0,

or
SFARiy - S,Tb = 0.

Using (6.5b) we find that yi satisfies

SFRiT,y = (r0,so)el.

Since FRi is a diagonal matrix with diagonal ele-
ments (r j , s j) , we find, if all these diagonal elements
are nonzero, that

3-19

This method is known as the Bi-Lanczos method [47].
We see that we are in problems when a diagonal el-
ement of 5’: Ri becomes (near) zero, this is referred
to in litterature as a serious (near) breakdown. The
wa,y to get around this difficulty is the so-called Look-
a1iea.d strategy, which comes down to taking a num-
ber of successive basis vectors for the Krylov subspace
together and to make them blockwise bi-orthogonal.
This has been worked out in detail in [62] and [30],

Another way to avoid break-down is to restart as
soon as a diagonal element gets small. Of course, this
strategy looks surprisingly simple, but one should re-
alise that a t a restart the Krylov subspace, that has
been built up so far, is thrown away, which destroys
possibilities for faster (i.e., superlinear) convergence.

[311, [321.

As has been shown for Conjugate Gradients, the
LU decomposition of the tridiagonal system can be
updated from iteration to iteration and this leads to
a. recursive update of the solution vector. This avoids
to save all intermediate r and s vectors. This variant
of Bi-Lanczos is usually called Bi-Conjugate Gradi-
ents, or shortly Bi-CG [28].
Of course one can in general not be certain that an
LU decomposition (without pivoting) of the tridiago-
nal matrix Ti exists, and this may lead also to break-
down of the Bi-CG algorithm. Note that this break-
down can be avoided in the Bi-Lanczos formulation
of this iterative solution scheme. It is also avoided in
the QMR approach (see Section 5.4.2).
Note that for symmetric matrices Bi-Lanczos gen-
erates the same solution as Lanczos, provided that
SO = T O , and under the same condition Bi-CG de-
livers the same iterands as CG for positive definite
matrices. However, the Bi-orthogonal variants do so
a.t t,he cost of two matrix vector operations per iter-
ation step.

It is difficult to make a fair comparison between
GMRES and Bi-CG. GMRES really minimizes a
residual, but a t the cost of increasing work for keep-
ing all residuals orthogonal and increasing demands
for memory space. Bi-CG does not minimize a resid-
ual, but often it has a comparable fast convergence
as GMRES, at the cost of twice the amount of matrix
vector products per iteration step. However, the gen-
eration of the basis vectors is relatively cheap and the
memory requirements are limited and modest. Sev-
eral variants of Bi-CG have been proposed which in-
crease the effectiveness of this class of methods in cer-
tain circumstances. These variants will be discussed
in coming subsections.

The following scheme may be used for a computer
implementation of the Bi-CG method. In the scheme
the equation Ax = b is solved with a suitable precon-

ditioner K .

20 is an initial guess; T O = b - Azo;
solve WO from Kwo = T O ;

FO is an arbitrary vector such that (W O , F o) # 0,
usually one chooses ?O = ro or FO = W O ;

solve GO from K * G ~ = ~ 0 ;

p-1 = 13-1 = 0 ; P - l = 0;po = (w0,Po);
for i = 0 , 1 , 2 ,

pi = W i + Pi-1pi-1;

Fi = Gi + P i - l F i - 1 ;
~i = Api;
a i=&;

ri+l = Fi - aiATpi;
ri+l = ri - CY(%(;

solve wi+l from I-i”wj+l = ri+l;

solve ~ i + 1 from K * I z ~ + ~ = ~ i + 1 ;

-

pi+l = (F i + l , W + I) ;
zit1 = x i + a i p i ;

p. -
if zi+l is accurate enough then quit;

P i 1 -

end

As with conjugate gradients, the coefficients aj and
pj , j = 0 , . . . , i - 1 build the matrix x, as given in
formula (5 . lb) . This matrix is, for BiCG, in general
not similar to a symmetric matrix. Its eigenvalues can
be viewed as Petrov-Galerkin approximations, with
respect to the spaces { F j } and { r j } , of eigenvalues of
A . For increasing values of i they tend to converge to
eigenvalues of A . The convergence patterns, however,
may be much more complicated and irregular as in
the symmetric case.

6.5.1 Another derivation of Bi-CG
An alternative way to derive Bi-CG comes from con-
sidering the following symmetric linear system:

for some suitable vector b .
If we select b = 0 and apply the CG-scheme to this
system, then we obtain LSQR again. However, if
we select b # 0 and apply the CG scheme with the
preconditioner

(OI ;),
in the way as is shown in section 4.4.1, then we obtain
right away the unpreconditioned Bi-CG scheme for
the system A z = b . Note that the CG-scheme can be
applied since K - l B is symmetric (but not positive
definite) with respect to the bilinear form

[P l Q1 = (P, JCQ),

which is not a proper innerproduct. Hence, this for-
mulation clearly reveals the two principal weaknesses

3-20

of Bi-CG (i.e., the causes for break-down situations).
Note that if we restrict ourselves to vectors

.=(;:),
then [13, q] defines a proper innerproduct. This situ-
ation arises for the Krylov subspace that is created
for B and 6 if A = AT and 6 = b. If, in addition,
A is positive definite then K-'B is positive definite
symmetric with respect to the generated Krylov sub-
space, and we obtain the CG-scheme (as expected).
More generally, the choice

where l i l is a suitable preconditioner for A, leads to
the preconditioned version of the Bi-CG scheme, as
given in section 5.4.

The above presentation of Bi-CG was inspired by a
closely related presentation of BI-CG in [42]. The lat-
ter paper gives a rather untractable reference for the
choice of the system Bf = 8 and the preconditioner

I to [43].

6.5.2 QMR

The QMR method [32] relates to Bi-CG in a simi-
lar way as MINRES relates to CG. For stability rea-
sons the basis vectors rj and f j are normalized (as
is usual in the underlying Bi-Lanczos algorithm, see
[94]), which leads to other coefficients in the 3-term
recursion formulas.
If we group the residual vectors rj, for j = 0, ..., i- 1
in a matrix R;, then we can write the recurrence re-
1a.tions as

ARi = Ri+lTi,

with

Similar as for MINRES we would like to construct
the x i , with

xi E { ro ,A~o , . . . , Ai-lro}, xi = Rig

for which

IIAxci - bll2 = llARiy - b112

= [lRi+iZY - b11z

= I I Ri+ 1 &!I { Di+ I T, Y - I I I I2 e I } I I2

is minimal. However, in this case that would be quite
an amount of work since the columns of Ri+l are
not necessarily orthogonal. Freund and Nachtigal[32]
suggest to solve the miniminum norm least squares
problem

(6 . 5 ~) yER' min (I ~ i + l T ; y - IIToIIze1IIz.

This leads to the simplest form of the QMR method.
A more general form arises if the least squares prob-
lem (6 . 5 ~) is replaced by a weighted least squares
problem. No strategies are yet known for optimal
weights, however.
In [32] the QMR method is carried out on top of
a look-ahead variant of the bi-orthogonal Lanczos
method, which makes the method more robust. Ex-
periments suggest that QMR has a much smoother
convergence behaviour than Bi-CG, but it is not es-
sentially faster than Bi-CG.

6.5.3 CGS

For the bi-conjugate gradient residual vectors it
is well-known that they can be written as rj =
Pj(A)ro and +j = Pj(AT)+O, and because of the bi-
orthogonality relation we have that

(r j , +i) = (~ j (~) r o , ~ i (~ ~) + o)

= (Pi(A)Pj(A)ro, f o) = 0 ,

for i < j.
The iteration parameters for hi-conjugate gradients
are computed from innerproducts like the above.
Sonneveld observed that we can also construct the
vectors ;;j = Pf(A)ro, using only the latter form of
the innerproduct for recovering the bi-conjugate gra-
dients parameters (which implicitly define the poly-
nomial Pj). By doing so, it can be avoided that the
vectors f j have to he formed, nor is there any multi-
plication with the matrix A T .
The resulting CGS [79] method works in general very
well for many unsymmetric linear problems. It con-
verges often much faster than BI-CG (about twice as
fast in some cases) and does not have the disadvan-
tage of having to store extra vectors like in GMRES.
These three methods have been compared in many
studies (see, e.g., [67, 10, 65, 551).
However, CGS usually shows a very irregular con-
vergence behaviour. This behaviour can even lead
to cancellation and a spoiled solution [86]. See also
section 6.5.4.

The following scheme carries out the CGS process
for the solution of Az = b, with a given precondi-
tiouer K:

LO is an initial g u m ; ro = b - Azo;
?o is an arbitrary vector, such that
(7 0 , a) f 0,
e.g., ?O = ro;po = (r0,FO);
P-1=Po;P-1=qo=0;
for i = 0,1 ,2 , __.

ui = ri +Pi-Iqi;
p i = u i + P i - l (~ i + p i - l p i - l) ;
solve 8 from Kp = pi ;
6 = Ap;
ai = *;

V0,U

Qj+l = ui -ai*;
solve fi from Kir = ui + qi+l
zit1 = zi +a&
if zi+l is accurate enough then quit;
ri+l = ri - cuiAir;
Pi+l = (Fo, ri+A
ifpi+l = 0 then method fails to converge !;
Oi = y ;

end

In exact arithmetic, the aj and pj are the same con-
stants as those generated by BiCG. Therefore, they
can be used to compute the Petrov-Galerkin approx-
imations for eigenvalues of A.
6.5.4 Effects of irregulnr convergence
By very irregular convergence we refer to the situa-
tion where successive residual vectors in the iterative
process differ in orders of magnitude in norm, and
some of these residuals may be even much bigger in
norm than the starting residual. We will try to give
an impression why this is a point of concern, even
if eventually the (updated) residual satisfies a given
tolerance. For more details we refer to Sleijpen et
al[75, 771.

We will say that an algorithm is accurate for a cer-
tain problem if the updated residual rj and the true
residual b - Azj are of comparable size for the j ’ s of
interest.

The best we can hope for is that for each j the error
in the residual is only the result of applying A to the
update wj+l for zj in finite precision arithmetic:

(6.5d)

if

rj+l = rj - Awj+l- A ~ w j + i

Z i + l = zj + W j + l , (6.5e)

3-21

the update Awj for the residual rj from the update
wj for the approximation zj by matrix multiplication:
for this part, (6.5d) describes well the local deviations
caused by evaluation errors.
In the “ideal” case (i.e. situation (6.5d) whenever

we update the approximation) we have that

k

(6.5f)
j = 1

where the perturbation matrix AA may depend on j
and ej is the approximation error in the j t h approx-
imation: ej E L - zl. Hence,

j = O

Except for the factor r, the last upper-bound a p
pears to be rather sharp. We see that approximations
with large approximation errors may ultimately lead
to an inaccurate result. Such large local approxima-
tion errors are typical for CGS, and Van der Vorst[86]
describes an example of the resulting numerical in-
accuracy is given. If there are a number of approxi-
mations with comparable large approximation errors,
then their multiplicity may replace the factor L, oth-
erwise it will be only the largest approximation error
that makes up virtually the bound for the deviation.

Example. Figure 3 illustrates nicely the loss of accu-
racy as described above; for other examples, cf. [86].
The convergence history of the updated residuals (the
‘circles’: 00) and the true residuals (the solid curve: -
-) of CGS is given for the matrix SEERMAN4 from
the Harwell-Boeing set of test matrices. Here, as in
other figures, the norm of the residuals, on log-scale,
is plotted (along the vertical axis) against the num-
ber of matrix-vector multiplications (along the hori-
zontal axis). The dotted curve (. . . .) represents the
estimated inaccuracy: 2fcJS, Ilrj 11 (here with r= 1;
cf. (6.5g)).

for each j, where AA is an n x n matrix for which
[AA I 5 n~ IAl: n~ is the maximum number of non-
zero matrix entries per row of A, IB(= (IbilI) if
B = (bi,), is the relative machine precision, the
inequality j refers to element-wise 5. In the Bi-CG
type methods that we consider, we compute explicitly proaches leads to optimal accurate approximations

We will discuss two approaches that lead to a
smoother convergence.
- Approaches to obtain the smoothing effect by
adding a few lines to existing codes leave the speed of
convergence essentially unchanged. One of these a p

3-22

ShMM"4 if llsll small enough then
zi+l = zi + aip; quit;

Solve z from K z = s; - I N ~ C O S D S ~ I I ~ S

o m ~ ~ t d C G S n r t = Az;
...(sa. 1naecunoy wi = (i , s) / (t > t) ;

2;+1 = zi + aip + wiz;
if zi+l is accurate enough then quit;

= s - wit;
end

The matrix I< in this scheme represents the precon-
ditioning matrix and the way of preconditioning [86].
The above scheme in fact carries out the Bi-CGSTAB
procedure for the explicitly postconditioned linear

A I C ' y = b ,
0 50 100 150 m 250 3M 350 400 system

number of matrix-vsmr munipllcmions

Fig.3: Convergence plot CGS for the true resid-
uals and the updated residuals.

[76] and will be discussed in Section 7. For other
ones, we refer to the literature (e.g., [95]).
- In the next section, we concentrate on techniques
that really change the convergence: they smooth
down and speed up the convergence, and lead to more
accurate approximations, all a t the same time.

6.5.5 Bi-CGSTAB

Bi-CGSTAB [86] is based on the following observa-
tion. Instead of squaring the Bi-CG polynomial, we
can construct other iteration methods, hy which z,
are generated so that r,-= P,(A)P,(A)ro with other
i th degree polynomials P. An obvious possibility is
to take for F, a polynomial of the form

but the vectors y, and the residual have been back-
transformed to the vectors x, and r, corresponding to
the original system Az = b . Compared to CGS two
extra innerproducts need to be calculated.
In exact arithmetic, the a, and P, have the same val-
ues as those generated by Bi-CG and CGS. Hence,
they can be used to extract eigenvalue approxima-
tions for the eigenvalues of A (see Bi-CG).
Bi-CGSTAB can be viewed as the product of Bi-CG
and GMRES(1). Of course, other product methods
can be formulated as well. Gutknecht [38] has pro-
posed BiCGSTAB2, which is constructed as the prod-
uct of Bi-CG and GMRES(2).

6.5.6 Derivation of Bi-CGSTAB

The polynomial P, and related polynomials are im-
plicitly defined by the Bi-CG scheme.

and to select suitable constants w j . This expression
leads to an almost trivial recurrence relation for the

In Bi-CGSTAB wj in the j t h iteration step is chosen
as to minimize r j , with respect to w j , for residuals
that can he written as rj = Qj(A)Pj(A)ro.
The preconditioned Bi-CGSTAB algorithm for solv-
ing the linear system Ax = b, with preconditioning

Qi .

I< reads as follows:

z0 is an initial guess; ro = 6 -Azo;
Fo is an arbitrary vector, such that

(PO, Po) # 0, e.g., i;o = ro;
p - 1 = a-1 = w-1 = 1;
v-1 = p-1 = 0;
for i = 0,1 ,2 , ...

pi = (To, ri);Pi-l = (P i / p i - l) (a i -

pi = ri + P ~ - I (P $ - I - W i - l v i - l) ;
Solve p from K p = p i ;
vi = Ap;
ai = pi / (Foy v i) ;
s = ri - aivi;

10 is an initial guess; PO = b -Azo;
i o is an arbitrary vector, such that

PO = 1;
$0 = PO = 0 ;
for i = 1,2 ,3 , ...

(Fo, To) # 0, e.g., i o = ro;

pi = (f i - 1 , V i - 1) ; & = (P i / p i - l) ;
pi = T i - 1 + Pipi-1;
p. - " z - ri-1+ P i A - 1 ;
vi = Ap,;
ai = p i / @ i , v i) ;
zi = zi-1+ a i p i ;
if zi is accurate enough then quit;
ri = ri-1 - aiv; ;
f. , - - ~ i - 1 - aiATP<;

end

From this scheme it is straight forward to show that
r, = Pi(A)ro and pi+l = E(A)ro, in which Pi(A)
and T,(A) are f t h degree polynomials in A. The Bi-
CG scheme then defines the relations between these

3-23

polynomials:

T,(A)ro = (Pi(A) + Pi+lTi-l(A))ro,

and

Pi(A)ro = (P i - l (A) - aiAT,_l(A))ro.

In the Bi-CGSTAB scheme we wish to have recur-
rence relations for

~i = Qi(A)Pi(A)ro.

With Qi as in (6.5h) and the Bi-CG relation for the
factor Pi and E , it then follows that

Qi (A)Pi (A)ro =

(1 - wiA)Qi- 1 (A) (pi- 1 (A) - aiAT,- 1 (A))ro

= { Qi- 1 (A)Pi- 1 (A) - ai AQi- 1 (A)Z- 1 (A) } ~ o

-wi A{ (Qi - 1 (A)Pi- 1 (A) - ai AQi- 1 (A)Ti- 1 (A))}ro.
Clearly, we also need a relation for the product
Qd(A)T,(A)ro. This can also be obtained from the
Bi-CG relations:

Qi (A) Z (A) ~ o = Qi (A) (Pi (A) + Pi+l Z- 1 (A)) ~ o

= Qi(A)Pi(A)ro + P i + l (l - wiA)Qi-l(A)Z-1(A)~o

= Qi (A) Pi (A) ~ o + Pi+ 1 Qi - 1 (A) Z - 1 (A) TO

-Pi+l wi AQi- 1 (A)T,- 1 (A)ro.
Finally we have to recover the Bi-CG constants

p i , P i , and a, by innerproducts in terms of the new
vectors that we now have generated.
E.g., Pi can be computed as follows. First we com-
pute

Pi+i = (+o, Qi(A)pi(A)ro) = (Qi(AT)+0, Pi(A)ro).

By construction Pi(A)ro is orthogonal with respect
to all vectors Ui-l(AT)+O, where Ui-1 is an arbitrary
polynomial of degree i - 1 at most. This means that
we have to consider only the highest order term of
Qi(AT) when computing $i+1. This term is given by
(- 1) ' w l w Z . . . w ~ (A ~) ~ . We actually wish to compute

Pi+l = (Pi(AT)+o, p i (A) r ~) ,

and since the highest order term of Pj(AT) is given
by (-l)ialcrz.. .ai(AT)', it follows that

Pi = (Pi /Pi- 1) (ai - 1 /wi - 1) .

The other constants can be derived similarly.

Note that in our discussion we have focussed on the
recurrence relations for the vectors ri and p i , while in
fact our main goa1,is to determine zi. As in all CG-
type methods, z i itself is not required for continuing

the iteration, but it can easily be determined as a
"sideproduct" by realizing that an update of the form
ri = ri-1 -yAy corresponds to an update xi = xi-1 +
yy for the current approximated solution.

By writing r, for Qi(A)Pi(A)ro and pi for
Qi-l(A)Z-l(A)rO, we obtain the following scheme
for Bi-CGSTAB (we trust that, with the foregoing
observations, the reader will now be able to verify
the relations in Bi-CGSTAB). In this scheme we have
computed the w, so that ri = Qi(A)Pi(A>ro is mini-
mized in 2-norm as a function of wi.

6.5.7 Bi-CGSTAB2 and variants

The residual rk = b - Aa:k in the Bi-Conjugate Gra-
dient method, when applied to Aa: = b with start 20
can be written formally as Pk(A)ro, where Pk is a k-
degree polynomial. These residuals are constructed
with one operation with A and one with AT per iter-
ation step. It was pointed out in [79] that with about
the same amount of computational effort one can con-
struct residuals of the form ?k = Pi(A)ro, which is
the basis for the CGS method. This can be achieved
without any operation with A T . The idea behind the
improved efficiency of CGS is that if Pk(A) is viewed
as a reduction operator in BiCG, then one may hope
that the square of this operator will be a twice as
powerful reduction operator. Although this is not al-
ways observed in practice, one typically has that CGS
converges faster than BiCG. This, together with the
absence of operations with AT, explains the success
of the CGS method. A drawback of CGS is that its
convergence behavior can look quite erratic, that is
the norms of the resdiduals converge quite irregularly,
and it may easily happen that Ilrk+lllz is much larger
than I l rk l l2 for certain k (for an explanation of this
see [84]).
In [86] it was shown that by a similar approach as
for CGS, one can construct methods for which rk can
be interpreted as r k = Pk(A)Qk(A)ro, in which Pk is
the polynomial associated with BiCG and Q k can be
selected free under the condition that Q k (0) = 1. In
[86] it was suggested to construct Qk as the product
of k linear factors 1 - wjA, where wj was taken to
minimize locally a residual. This approach leads to
the BiCGSTAB method. Because of the local mini-
mization, BiCGSTAB displays a much smoother con-
vergence behavior than CGS, and more surprisingly
it often also converges (slightly) faster. One weak
point in BiCGSTAB is that we get break-down if an
wj is equal to zero. One may equally expect negative
effects when w j is small. In fact, BiCGSTAB can be
viewed as the combined effect of BiCG and GCR(l),
or GMRES(l) , steps. As soon as the GCR(1) part of
the algorithm (nearly) stagnates, then the BiCG part
in the next iteration step cannot (or only poorly) be
constructed.

3-24

Another dubious aspect of BiCGSTAB is that the fac-
tor Qk has only real roots by construction. I t is well-
known that optimal reduction polynomials for matri-
ces with complex eigenvalues may have complex roots
a.s well. If, for instance, the matrix A is real skew-
symmetric, then GCR(1) stagnates forever, whereas
a. method like GCR(2) (or GMRES(2)), in which we
.minimize over two combined successive search direc-
tions, may lead to convergence, and this is mainly
due to the fact that then complex eigenvalue compo-
nents in the error can be effectively reduced.
This point of view was taken in [38] for the con-
struction of the BiCGSTAB2 method. In the odd-
numbered iteration steps the Q-polynomial is ex-
panded by a linear factor, as in BiCGSTAB, but
i n the even-numbered steps this linear factor is dis-
carded, and the Q-polynomial from the previous
even-numbered step is expanded by a quadratic 1 -
Q ~ A - pkA2. For this construction the information
from the odd-numbered step is required. It was antic-
ipated that the introduction of quadratic factors in Q
might help to improve convergence for systems with
complex eigenvalues, and, indeed, some improvement
was observed in practical situations (see also [64]).
However, our presentation suggests a possible weak-
ness i n the construction of BiCGSTAB2, namely
in trhe odd-numbered steps the same problems may
occur as in BiCGSTAB. Since the even-numbered
steps rely on the results of the odd-numbered steps,
this may equally lead to unnecessary break-downs or
poor convergence. In [78] another, and even simpler
approach was taken to arrive at the desired even-
numbered steps, without the necessity of the con-
struction of the intermediate BiCGSTAB-type step
in the odd-numbered steps. Hence, in this approach
the polynomial Q is constructed straight-away as a
product of quadratic factors, without ever construct-
ing a linear factor. As a result the new method
BiCGSTAB(2) leads only to significant residuals in
the even-numbered steps and the odd-numbered steps
do not lead necessarily to useful approximations.
In fact, it is shown in [78] that the polynomial Q
can also be constructed as the product of !-degree
factors, without the construction of the intermedi-
ate lower degree factors. The main idea is that !
successive BiCG steps are carried out, where for the
sake of an AT-free construction the already available
part of Q is expanded by simple powers of A. This
means that after the BICG part of the algorithm
vectors from the Krylov subspace s , As, A’S, ..., A‘s,
with s = Pk(A)Qk-e(A)ro are available, and it is then
relatively easy to minimize the residual over that par-
ticular Krylov subspace. There are variants of this
approach in which more stable bases for the Krylov
subspaces are generated [77], but for low values of
a. standard basis satisfies, together with a minimum
norm solution obtained through solving the associ-

ated normal equations (which requires the solution
of an C by system. In most cases BiCGSTAB(2)
will already give nice results for problems where Bi-
CGSTAB or BiCGSTAB2 may fail. Note, however,
that, in exact arithmetic, if no break-down situation
occurs, BiCGSTAB2 would produce exactly the same
results as BiCGSTAB(2) at the even-numbered steps.

Bi-CGSTAB(2) can be represented by the following
algorithm :

xo is an initial guess; ro = b - Azo;
i o is an arbitrary vector,

such that (r , i o) # 0,
e.g., ro = r ;

for i = 0,2 ,4 ,6 , ...
Po = -W2P0

Po = 1 ; u = 0;cr = 0;wz = 1 ;

even B i C G s tep:
PI = (i o , T i) ; P = ~ P I / P O ; PO = P I
U = ri - pu;
v = A u
Y = (21, i o) ; = P o / %
r = ri - crv;
s = Ar
2 = xi + cru;

odd B i C G step:
P1 = (i o , .);P = Q p l / P o ; P o = p1
v = s - p v ;
w = AV
Y = (t u , i o) ; Q = P o / %
u = r - p u
r = r - c r v

t = As
s = s - c r w

GCR(2)-part:
w1 = (r,s);c1 = (s , s) ;
v = (s , t) ; T = (t , t) ;
w2 = (r , t) ; T = T - v ’ / p ;
w2 = (U 2 - v U l / P) / T ;

U1 = (U1 - W) / P
~ i + 2 = x + w1r + W ~ S + CYU

, r,+2 = r - w1s - w2t
if xi+2 accurate enough then quit
U = U - W l V - w2w

end

For more general BiCGSTAB(C) schemes see [78,
771.
Another advantage of BiCGSTAB(2) over BiCG-
STAB2 is in its efficiency. The BiCGSTAB(2) al-
gorithm requires 14 vector updates, 9 innerproducts
and 4 matrix vector products per full cycle. This
has to be compared with a combined odd-numbered
and even-numbered step in BiCGSTAB2, which re-
quires 22 vector updates, 11 innerproducts, and 4
matrix vector products, and with two steps of Bi-
CGSTAB which require 4 matrix vector products, 8

innerproducts and 12 vector updates. The numbers A-domhrad@ba

for BiCGSTAB2 are based on an implementation de- ... B1.M
0 .- ow(Bs(zI)

-2

-BIc(IWIAB scribed in [64].
Also with respect to memory requirements, BiCG-
STAB(2) takes an intermediate position: it requires
2 n-vectors more than BiCGSTAB and 2 n-vectors 1
less than BiCGSTAB2.

For distributed memory machines the innerprod-
ucts may cause communication overhead problems 3 .6

very similar to conjugate gradient iteration steps, so
(see, e.g., [16]). We note that the BiCG steps are

that we may consider all kind of tricks that have been
suggested to reduce the number of synchronization
points caused by the 4 innerproducts in the BiCG am uy) MO 8m

If on a specific computer it is possible to overlap
communication with communication, then the BiCG

parts. For an overview of these approaches see [6]. ~ o t l m u h - m a m ~ ~

Fig.4: Convergence plot.

a

parts can be rescheduled as to create overlap possi-
bil]ities: 1, the comDutation of D, in the even B~CG this type of matrices this behavior of Bi-CGSTAB is . -
step may be done just before the update of U a t the
end of the GCR part.
2. The update of zi+a may be delayed until after the
computation of 7 in the even BiCG step.
3. The computation of p1 for the odd BiCG step can
be done just before the update for I at the end of the
even BiCG step.
4. The computation of y in the odd BiCG step has
already overlap possibillities with the update for U.

For the GCR(2) part we note that the 5 innerprod-
ucts can be taken together, in order to reduce start-
up times for their global assembling. This gives the
method BiCGSTAB(2) a (slight) advantage over Bi-
CGSTAB. Furthermore we note that the updates in
the GCR(2) may lead to more efficient code than for
BiCGSTAB, since some of them can be combined.

Our next numerical example illustrates quite nicely
the difference in convergence behavior of some of the
methods that we have discussed.

Example. We consider an advection dominated 2nd
order PDE, with Dirichlet boundary conditions, on
the unit cube (this equation was taken from [50]):

(6.5i)

The function f is defined by the solution

This equation was discretized using 22 x 22 x 22 vol-
umes, resulting in a seven-diagonal linear system of
order 10648. In order to make differences between it-
erative methods more visible, we have here and in our
other examples not use any form of preconditioning.

In Figure 4 we see a plot of the convergence history.
Bi-CGSTAB almost stagnates, as might be antici-
pated from the fact that this linear system has eigen-
values with relatively large imaginary parts. Surpris-
ingly, Bi-CGSTAB does even worse than Bi-CG. For

- U=& - uyy - uzl + 1000~ . = f.

u (r , y , z) = r y z (l - z) (l - v) (l - z) .

not uncommon and, as we will see in the next sub-
section, this can be explained by the poor recovery
of the Bi-CG iteration coefficients ak and Ob. Bi-
CGstab(2) converges quite nicely and almost twice
as fast as Bi-CG. GMRES(25) is about as fast as Bi-
-CG. Since the GMRES steps are much more expen-
sive, BiCGstab(2) is the most efficient method here.
6.6 Maintaining Convergence:
The BiCGstab methods are designed for smooth con-
vergence, with the purpose to avoid loss of local bi-
orthogonality in the underlying Bi-CG process. This
is important, since then the convergence of the Bi-
-CG part is exploited as much as possible. However,
local bi-orthogonality may also he disturbed by, for
instance, inaccuracies in the Bi-CG coefficients a and
p. They are the quotients of scalars p 3 (T,, Fo) and
7 E (Ap,Fo) (see the algorithms for BiCGSTAB and
BiCGSTAB(2)) and they will be inaccurate if p or 7
is relatively small (see (6.6b)). The question is, when
does this occur and how can it be avoided? Here,
we will concentrate on p only, but similar arguments
apply to 7 as well.

As in the_inroduction of this se_etion, r, is the resid-
ual r, = P,(A)P,(A)ro where P, is an appropriate
polynomial of degree i with Pi(0) = 1. Now, p is
given by

-

-
(6.6a) p pi (P,(A)Pi(A)ro,?o).

The scalar p, can be small if the underly-
ing Bi-Lanczos process nearly breaks down (i.e.
(F , (A)P~(A)~~ ,F~) sz. o relatively, for any polynomial
p, of degree i). Also an ‘unlucky’ choice of p, may
lead to a small p , (which occurs in Bi-CGSTAB if the
GCR(1) part stagnates). Here, we will concentrate
on typical Bi-CGSTAB situations. Therefore, we a%
sume that the Bi-Lanczos process itself (and the LU
decomposition) does not (nearly) break down.

3-26

The relative rounding error ei in pi can relatively The GMRES polynomial q: of degree e solves (6.6d),
the FOM polynomial 4,' solves (6.6e). For small
residuals, the FOM polynomial is not optimal:

and sharply be bounded by

(6.6b) lei1 5 n € I(ri,Fo)l

For a small relative error we want to have the expres-
sion at the right-hand side as small as poeaible.

Since the Bi-CG residual Pi(A)ro, here to be de-
noted by si, is orthogonal to &(AT;%,) it follows

-(lril> IiW ,?II~4 IlFoll
I(ri,Fo)l ' IIqP(A)sII = IciI IIqF(A)sII

with ci as in (6.2d). Similarly, for accurate coeffi-
cients, the GMRES polynomial is not optimal [75]:

IqF(A)sl= lcil Iq?(A)sl
that

(r i ,?~) = &(Aisi,?,,)
if

with the same scalar ci. For degree 1 factors, as in
Bi-CGSTAB, (assuming no preconditioning) - 1.

Pi(A) = &A' + B!L),A'-' +
Therefore, since ~ ~ F ~ ~ ~ / ~ (A ' s i , F ~) ~ does not depend on

(6.6g)

F,, minimizing the right-hand side of (6.6b) is equiv- and c, is the cosine of the angle between and As (in
alent to minimizing the BiCGSTAB algorithm, 1 represents As).

Clearly, for extremely small lcil, say I C , ~ 5 & (in
the e = 1 case, this means that s and As are almost Pi l orthogonal), taking GMRES polynomials for the de-

with respect to all polynomials F, of exact degree i gree e factors will lead to inaccurate coefficients pi, (I
with j5(0) = 1, This minimization problem is solved and p, while FOM polynomialson the other hand will

initial residual s,: p,F is the irh degree polynomial of convergence will seriously be deteriorated. The
for which r~ = ~ , F (A) ~ ~ (cf. same phenomena can be observed when in a consec-
polynomial is characterized by: utive number of sweeps IC,[is small, but not nets

sarily extremely small (say, it takes k sweeps before
lc,-bci-~+1.. . ci l 5 &). In other words, the inaccu-
racies seem to accumulate. This seems to occur quite

For optimally accurate coefficients, we sh_odd often in E.g,, for linear stemming
lect FOM p o b o m i a l s for OW polynomials Pi. How- from P D E ~ with large advection term, B~CGSTAB
ever, since the hybrid Bi-CG methods are designed to often stagnates, although all e, may be larger than,
avoid all the work for the construction of an orthogo-

say to he rela-
nal basis, the selection of complete FOM polynomials tively small (w - II
is out of the ouestion.

(6 .6~) II k ('+I II

by the FOM polynomial~,F, here aesociated with the lead to large residuals. In both Situations, the speed

section 6.2).

P,F(A)s, I Ki(A;s,) and P,F(O) = 1.

and of the w, can
I - Cl ~11/11ASll).

For efficiency reasons, we have used products of
first degree polynomials in Bi-CGSTAB and products
of degree e polynomials in BiCGstah(e). Of course,
our arguments can also be applied to such low degree
factors. Therefore, suppose that s = Q,-t(A)P,(A)ro
(as BiCGstab(e)) has been computed and that the
vectors s, As, . . . , A's are available. The suggestion
for BiCGstab(1) to minimize the residual over this
particular Krylov subspace is equivalent to selecting
a polynomial factor q, (Q, = q,Q,-t) of exact degree
e with Q,(O) = 1 such that

(6.Gd) Ilqi(A)SII

is minimal, while in this situation, for optimal accu-
rate coefficients, we rather would like to minimize

(6.6e)

where, with Bi such that pi(A) = BiA' + . . .,

Both Bi-CGSTAB and BiCGstab(e) are built on
top of the same Bi-CG process. At roughly the same
computational costs, one sweep of BiCGstab(e) cov-
ers the same Bi-CG track as e sweeps of Bi-CGSTAB.
In one sweep of BiCGstab(l), GMRES(L) is applied
once, in L sweeps of BiCGSTAB, GMRES(1) is ap-
plied e times. For two reasons it pays off to use GM-
RES(L) instead of exGMRES(1):
1. Due the super-linear convergence, one sweep of
GMRES(L) may be expected to give a better residual
reduction than e times GMRES(1).
2. In e steps of GMRES(l), e small c,'s may con-
tribute to inaccuracies in the coefficients a and p,
where GMRES(e) contributes at0 this only once.
BiCGstah(e) profits from GMRES(e) by a better
residual reduction in the GMRES part and by the
faster convergence of a better recovered Bi-CG due
to the more stable computations. However, we do
not recommend to take e large; e = 2 or e = 4 will
usually lead already to almost optimal speed of con-
vergence. The computational costs increase slightly

Exarrple 1
I

3-27

Eranple 1

-8 - !.
!:

-10- !i
8 ;

I
1W 150 200 250 300 50

number d matrix-venor mUI1IpIIcatIms

Fig.5: Convergence Bi-CGSTAB.

I
50 100 150 200 250 XI0 -20:

number 01 maldx-vBcnr mullplicatlons

Fig.6: Convergence stabilized Bi-CGSTAB.

by increasing t (i.e. 2t+10 vector updates and t+7 in-
ner products per 4 matrix multiplications), and more
vectors have to be stored (2 + 5 vectors). Moreover,
the method is less accurate for larger t due to the fact
that intermediate residuals (as r and r - W ~ S in the
Bi-CGSTAB(2) algorithm) can be large, with similar
negative effects as in Section 6.5.4.

For Bi-CGSTAB there is a simple strategy that re-
laxes the danger of error amplification in consecutive
sweeps with small Icil: replace in the Bi-CGSTAB
algorithm the line

by the piece of code in Algorithm 1. In this way we
limit the size of I C / . The constant .7 is rather arbitrar-
ily and may be replaced by any other fixed non-small
constant less than 1. Since GMRES(1) reduces well
only if l e i] x 1 (see (S.Zc)), this strategy still prof-
its from a possible good reduction by GMRES(1). A
similar strategy that is equally cheap and easy to im-
plement can be applied to BiCGstab(t); see [75] for

cw = (s , t) / (t , t) '

- 2H1 a0
50 1W 150 2M -160

number ol matrix-vena munipliwlons

Fig.7: Convergence BiCGstab(2).

Example 1

-14

50 100 150 2M 250 3 -160

number d 1~1rIx-veno1 rnulliplications

Fig.8: Convergence stab. BiCGstab(2).

details
We give a few numerical examples that demon-

strate the cumulative effects of small [cl 's and that
illustrate the effects of limiting its sizes.

Examples. The figures for the examples display, all
on log-scale, the values for each iteration step of
- the residual-norms llrll, by solid curves (-);
- the scaled p , Fs ~ (r , ~ o) l / (~ l ~ ~ l Il?oll) (cf. (6.6b)), by
dashed-dotted curves (-.- .).
- the scaled y: E [(A p , ?~)l / (l lApl(ll?oll), by dotted
curves (.....).
- lei, resp. max(lcl,O.7), by bullets (...) .

Before describing the examples, we will discuss part
of the results.
In the figures 5-16, we see that the scaled p and the
scaled y behave similarly (the dashed-dotted - and
dotted curves coincide more or less). Further, none
of the IC[is extremely small even not in cases where
the p^ and are. The decrease of p^ for values of p^
not in the range of the machine precision (2 lo-'')

3-28

-1% L-----l 1m 150 2 M 253 Po 50

n m b r d maitlx-vecmr muniplmions

Fig.10: Convergence stabilized Bi-CGSTAB.

Ex-le 2
2

.’

I
0 60 1w 150 2m 250 300

number el malOx-y&~or muhlplimions

Fig.9: Convergence Bi-CGSTAB.

seems to be proportional to the product of previou,
lel’s. In all the examples, the method stagnates if p̂ ’
or 7’s become extremely small, say less than lo-’’
In these cases, almost all significance of the Bi-CC
coefficients a and p will be lost. Limiting the size o1
IcI (Algorithm 1) slows down the decrease of p^ and
7. In the caption of the figures, we used the adjec-
tive ‘stabilized’ to indicate that we used the limiting
strategy. Often ‘stabilizing’ is enough to overcome
the stagnation phase, and to lead to a converging
process.

Erample 1 (Figures 5-8). BiCGstab(2) converges.
Although stabilizing Bi-CGSTAB leads to more ac-
curate Bi-CG Coefficients in the initial phase of the
process, this is apparently not enough to restore full
convergence
Ezample 8 (Figures 9-12). Increasing l to e = 2
leads to a slowly converging BiCGstab(2) process
(many more than 300 matrix vector multiplications
are needed; not shown in the graph). Our simple
stabilizing strategy works well here.
Example 3 (Figures 13-16). The combined improve
ments, stabilizing and increasing l to e = 2, are nec-
essary for convergence.

For the first example, we have taken the PDE of
(6.5i). The righ-hand side f is defined by the solution

I
50 im 150 200 m m

nm&r d mlrlx-wnaot multlpllcdons

Fig.11: Convergence BiCGstab(2).

u(z,y, z) = exp(tyz)sin(az)sin(ny)sin(az).
The discretization is with 10 x 10 x 10 finite volumes
(no preconditioner has been used).

In the second and third example [33, 701, we have
discretized

-us= - u y y + a (~ u c + ~ y) + bu = f
on the unit-square with Dirichlet boundary condi-
tions, with 63 x 63 finite volumes, taking n = 100
and b = -200, respectively 66 x 66, 0 = 1000 and
b = 10 (no preconditioner has been used). The func-
tion f is such that the discrete solution is constant 1
(on the grid).

6.7 Generalized CGS:

We have now discussed in some detail the family of
BiCGstab(l) methods, but one should not deduce
from this that these methods are to be preferred over
CGS in all circumstances. We have had very good
experiences with CGS in the context of solving non-
linear problems with Newton’s method. I t turns out

3-29
Exarrple 3

\ i
-too U 50 tw 150 2M 250 3w

number d matrir-venor muhiplicationb

Fig.12: Convergence stab. BiCGstab(2).

Exanple 3

”-

I I ’
0 2 M 400 6m am t I

number d matrix-vector muiiipiicaiom

Fig. 13: Convergence Bi-CGSTAB.

I
200 400 6M 800 low

number d mtrlx-vBc1or munipllsatlona

Fig.14: Convergence stabilized Bi-CGSTAB.

Exanpie 3
4 I

I
203 400 Em am two

number 01 matrix-venor multiplications

Fig.15: Convergence BiCGstah(2).

ro in the direction of the eiEenvectors associated with that we can exdoit some of the nresented ideas also -
extremal eigenvalues A: with reduction factor Pi(X)’. to improve on CGS itself.

In the Newton method one has to solve a Jacobian Of course, the value Pi(A) can also be large, specif-
system for the correction. This can be done by any ically for interior eigenvalues and in an initial stage
method of choice, e.g., CGS or BiCGstaUt). Often of the process. CGS amplifies the associated coin-
fewer Newton steps are required to solve a non-linear ponents, (which also explains the typical irregular
problem accurately when using CGS. Although the convergence behavior of CGS). The BiCGstab poly-
BiCGstab methods tend to solve each of the linear nomial Qi does not have this tendency of favoring
systems (defined by the Jacob matrices) faster, the the extremal eigenvalues. Therefore, the BiCGstab
computational gain in these inner looPS does not al- methods tend to reduce all eigenvector components
ways compensate for the 108s in the outer loop be- equally well: on average, the “interior components”
cause of more Newton steps. of a BiCGstab residual ~i are smaller than the cor-

This phenomenon can he understood as follows. responding components of a CGS residual <! while,
For eigenvalues X that are extremal in the convex hull with respect to the exterior components the situation
of the set of all eigenvalues of A (the Jacobian ma- is the other way around. However, the non-linearity
trix), the values Pi(.\) of t,he Bi-CG polynomials Pi of a non-linear problem seems often to be represented
tend to converge more rapidly towards zero than for rather well by the space spanned by the “extremal
eigenvalues A in the interior. Since CGS squares the eigenvectors”. With respect to this space, and hence
Bi-CG polynomials, CGS may be expected to reduce with respect to the complete space, Newtons scheme
extremely well the components of the initial residual with CGS behaves like an exact Newton scheme.

3-30

Erarrple 3
4 I
2

0

-2

-4

-a

-10 L1
-1% Im 2 m om r;a S;a sm mo am OM

number OI n!mIIx-v.c1Or rn"RlplkallonS

Fig.16: Convergence stab. BiCGstab(2).

lution then the residual, computed in rounded arith-
metic as b - Az,, may not be expected to be zero:
using the notation of Section 6.5.4,

Ilb - AzmlI 5 T (llbll + n~ JIIAIIl llzmll)
(7.la) - < 2rfllbll.

Therefore, the best we can strive for is an approxima-
tion I, for which the true residual and the updated
one differ in order of magnitude by the initial resid-
ual times the relative machine precision (U($l[roll);
recall that we assumed 10 = 0, and hence ro = b).

Now it becomes also obvious why it is a bad idea to
replace the updated residual in each step by the true
one. Except from the fact that this would cost an ad-
ditional matrix vector multiplication in each step, it
also introduces errors in the recursions for the resid-
uals. Although these errors may be expected to be -
small relatively to ro, they will be large relatively

w e would like to Preserve this Property when Con- to r, if llr,ll Ilroll. This perturbs the local bi-
structing iterative schemes for Newton- iterations. orthogonality of the underlying B~-CG process and
Fokkema et al [291 suggest PolYnomials l': that lead it may significantly slow down the speed of conver-
to efficient algorithms (small modifications of the gence. This observation suggests to replace the up-
CGS algorithm) with a convergence that is slightly dated residual by the true one only if the updated
smoother, faster, and more accurate, than for CGS, residual has the same order of magnitude as the ini-
but that still has the property of reducing extrema1 tial residual. However, meanwhile z, and r, may
components quadratic&'. As a linear Solver for have drifted apart, and replacing r, by b-Ax, brings
isolated linear problems these "generalised CGS" in the c ' ~ ~ ~ ~ of in the recursion (bounded a4 in
schemes do not seem to have much advantage over (6.5g)), and again the speed of convergence may be
BiCGstab(e), but as a linear in a Newton affected. Although it is a good idea to use true resid-
scheme for non-linear problem, they often do rather U& at strategic places, the approximation +, should
well. first be 'tied' more closely to the updated residual r,.

7 RELIABLE UPDATING
We can achieve this by updating I, cumulatively: if
I, = I o + tu1 + . . . + wi (cf. (6.5d)) then we actually

In all the Bi-CG related methods we see that the
approximation for z and the residual vector r are
updated by different vectors, and that the value for

compute zi in groups as

(7.lb) E, = l o + z; + z;+ . . .
2 does not influence the further iteration Proce% where. for decreasinn Seauence of indices *(I) = - . \ ,
whereas the value for T does. In exact arithmetic 1 , r (2) , . . . , z: represents the sum of a group;
the updated r is equal to the true residual b - A i ,
but in rounded arithmetic it is unavoidable that dif-
ferences between r and b- Az arise. This means that
we may be misled for our stopping criteria, which are
usually based upon knowledge of the updated r (and
that we may have iterated too far in vain).

In this section we will discuss some techniques that
have been proposed recently for the improvement of
the updating steps. I t turns out that this can be
settled by relatively easy means.

Although the techniques in the previous section led
to smoother and faster convergence and more accu-
rate approximations the approximation may still not
as accurate as possible. Here, we strive for optimal
accuracy, i.e the updated r, should be very close to
the values of b - Ax,, while leaving the convergence
of the updated T intact.

First, we observe that even if I, is the exact s e

Simultaneously, we compute r, as

(7 .1~)

In this way we eau control the size of the updates for
z, and r,, and we avoid large errors (cf. (6.5g)): for
a proper choice of the ~ (j) , the z; will be small even
if some of the w, are large.

In the modification of the algorithms that we will
propose in Algorithm 2, we kept in mind that we only
may allow errors which
(a) are small with respect to the initial residual ro
(otherwise accuracy will be disturbed) and
(b) are small with respect to the present updated
residual r, (otherwise local hi-orthogonality may be
jeopardised).

I r, = rg -Ax, - Ax; -

33 1

intermediate shifts do not change the iteration pa-
rameters and vectors (except for the vectors x). Ob-
serve that the updated residual ri+l is replaced by
the true residual b‘ - Ax’ of the shifted problem if
‘compute-res’is true.

Update x and b‘ only if the residual is significantly
smaller than the initial residual, while an interme-
diate residual was larger (cf. (7.lb), (7.1~) and re-
minder (a)):

For this we propose the following strategy.

‘update-app’= true

(7.ld) if Ibi+111 5 Ilbll/lOO k llbll 5 P
else ‘update-app’= false,

where p maxllr.ll and the maximumis taken over
all residuals since the previous update of I and b‘
(since the previous ‘update-app’ is true).
The bound in (7.la) suggests that the norm llbll ofthe
initial residual should be used as criterion for shifting
the problem (‘update-app’is true if 11r,+111 5 llbll &
llrill > 11611). However, if the process converges irreg-
ularly this would lead to many shifts. The relaxed
version in (7.ld) turns out to work equally well a t
less costs.
Compute a true residual whenever ‘compute-res’ is
true and if a previous residual is larger than the ini-
tial residual and significantly larger than the present
updated residual:

‘compute_res’= true
if Ilrrtlll 5 M/100 & llbll 5 M

or ‘update-app’ is true (7.le)

else ‘compute-res’= false,

where M maxllr,ll and the maximumis taken over
all residuals since the last computation of the true
residual.
Replacing the updated residual by the true one
perturbs the recursion for the residuals. If the
residual decreases too much since the previous re-
placement, the perturbation may become large rela-
tively to the present residual (reminder (h)). There-
fore, ‘compute-res’ may he true more often than
‘update-app ’.

Wesuggest to add the above strategy to an existing
code. That means that an additional matrix-vector
multiplication has to be performed whenever a true
residual has to be computed. The conditions (7.ld)
and (7.le) are chosen as to minimize the number of
these additional computations. One also may trv to

In Section 3, we have explained that it is no re-
striction to take x~ = 0, arguing that this situation
can be forced simply by a shift: shift x by XO, and b
by Axo. This shift can be made explicit in the hybrid
Bi-CG algorithms by making three changes:
(i) adding as a last line to the initialization phase

x = xu; X I = 0; b ‘ = ro;

(ii) adding as a last line in the algorithms (just after
‘end’)

x = x + XI;

(iii) replacing all zi (and x) by XI (skipping the index

Even in rounded arithmetic, this modification willnot
change the value of any of the vectors and scalars in
the computational scheme, except for the 2’s. Since
x+x‘ IS the approximation that we are interested in,
one also may want to change the termination crite-
rion. We propose to replace the line

if x is accurate enough then qui t ;

if IIr,+111 is small enough then quit;
To allow for a more accurate way of updating of the
residual and the approximation, we suggest to add
another few lines just before ‘end’ in the algorithm,
as is shown in Algorithm 2. We suggest to replace the

i) .

by

Z = I O ; x ’ x O ; b’=ro;
for i = 0,1,2, ...

t Replace d l zi and x by X I .

if r,+l is small enough then quit:
set ‘compute-res’ and ‘update-app’;
if ‘compute-res’is t rue

ri+l = b’ - Ax’;
if ‘update-app’ is true

endif
x = I +x‘; x‘= 0; b’= r,+l;

endif
endfor
I = I + XI;

Alg.2: For accurate approximations.
- -

updated residual by the true one on strategically cho- skip a matrix-vector multiplication in one of the p r e
sen steps (we have to explain when the value of the ceding lines of the algorithm, which requires some ad-
boolean functions ‘compute-res’ is true). However, ditional care for BiCGstab(t?), but which easily can
we also suggest t o shift the problem once in a while be accomplished for CGS.
(when the boolean function ‘updale-app’ is true) in If CGS is modified as suggested, then the new lines
order to let the right-hand decrease (cr. (7.1a)). Here do not require additional matrix vector multiplica-
we use the fact that, in exact arithmetic, also t h e e tions, and there is no need to restrict the number of

3-32

computations of true local residuals. For this CGI
variant, Neumaier [56] suggested places where the :
and b’ can he updated for accurate approximationr
update x and b‘ whenever the residual decreases wit1
respect to the previous ‘hest residual’,

‘updote-app’ = true

else ‘compute_res’= false.

The modifications according to Neumaier’s approacl
are given in Algorithm 3. Observe that the norm o

(7 I f) if ll~~tlll 5 Ilb’ll

z = 20; x‘ = 0; b‘ = Po; p’ = llb’ll;
for i = 0,1,2, ...

I Replace all zi and x by x‘.

Skip the CGS update for r
together with the M V involved
an this update. Compute instead

if p is small enough then quit;
if p 5 p‘

ri+i = b‘ - AX’; /.I = l / ~ i + i / / ;

x = x + 2‘; 2’ = 0;
b’ = q+I ; p’ = p;

endif
endfor
x = x + x’;

Alg.3: Neumaier’s strategy for CGS.

the b’ (the residuals with respect to the x) stric ~

decrease. the Neumaier trick also smoothes conver-
gence (without improving its speed!).

Below, we discuss the effects of our strategies in
practise. We illustrate our observations by a simple
numerical example.

Example. Figure 17 shows the convergence history of
the h e residuals as produced by standard CGS, and
by the modified versions of CGS as suggested above,
applied to the SHERMAN4 matrix of the Harwell-
Boeing collection (as in the example of Section ??).
The dotted curve (..-)represents the resuIts for stan-
dard CGS. We also applied modified CGS as in Algo
rithm 2, using the update criterions (7.ld) and (7.le).
The solid curve (-) represents the results for this
simple strategy, while the dashed-dotted curve (- .- .)
represents the results for Neumaier’s strategy in Algo
rithm 3 On log-scale, the norm of the true residuals
Ilb - Az,II, Ilb - A (x + z’)11, respectively, is plotted
against the number of matrix-vector multiplications.
Neumaier’s strategy as well our’s lead to approxima-
tions that are accurate (cf. (7.1a)): comparing llrOll

...... mmdpd CQS

- addnionsl MV
5 modUk.lbrm

-’-. N ~ ~ m a i e r

0

-5

-10

0 50 100 150 ax 250 300 350

numb., ol malwvsmr munlpllcatlons

Fig.17: Reliable updates.

IO

with the norm of the smallest true residual, we see
that a reduction is obtained by a factor M l O W i 4
(2 = 2.210-i6). Standard CGS does not produce
true residuals smaller than % 1 0 - g ~ ~ r ~ ~ ~ , which is ap-
proximately r . max))r ,)) M 2.210-l~ 10’JlroJ); cf.
(6.5g). Observe that, though the convergence h ie
tories do not coincide for residuals less than M lo’,
the speed of convergence is not affected: the modi-
fied versions exhibit a rate of convergence that is very
similar t o the one of the updated residuals in stan-
dard CGS as shown in Figure 3.

Experiments for other examples and with other it-
erative schemes, as Bi-CGSTAB and BiCGstah(!),
led to similar conclusions. Although, two ohserva
tions should he made.
-Quite often the improvements are much more spec-
tacular than for this SHERMAN4 example: CGS
may produce intermediate residuals as large as ~ ~ r ~ ~ ~ / ~
and none of the digits in the finial approximation of
standard CGS will be correct.
- There are some differences between CGS and
the BiCGstab methods: (i) 88 observed above, Neu-
maier’s strategy only works well for CGS, while the
simple strategy of Algorithm 2 can always he applied.
(ii) Especially for the BiCGstab methods, the sim-
ple strategy of Algorithm 2 with update criterions
(7.ld) and (7.le) does not lead to much additional
work. The additional computation of a true resid-
ual takes place after the process encounters residuals
that are (much) larger than the initial residual. Since
BiCGstah(t) tends to show much smoother conver-
gence behavior than CGS, for small 1, the additional
work in these methods is usually much less than for
CGS. In the SHERMAN4 example, our strategy for
CGS requires 7 additional matrix-vector multiplica-
tions (‘compute-res’ is true 7 times) and one spe-
cial update of the approximation (‘update-app’is true
only once). For BiCGstah(l), P. 5 6, only 1 additional

,

matrix-vector mu1 tiplication was needed, Neumaier’s
strategy for CGS does not require additional matrix-
vector multiplications (but 364 additional updates for
the approximation were needed).

8 Termination Criteria
An important point, when using iterative processes,
is to decide when to terminate the process. Popular
stopping criteria are based on the norm of the current
residual, or on the norm of the update to the current
approximation to the solution (or a combination of
these norms). More sophisticated criteria have been
discussed in litterature.
In [45] a practical termination criterion for the conju-
gate gradient method is considered. Suppose we want
an approximation x i for the solution x for which

l l X i - X112/11~112 5 E,

where E is a tolerance set by the user.
It is shown in [45] that such an approximation is ob-
tained by CG as soon as

where p1 stands for the smallest eigenvalue of the
positive definite symmetric (preconditioned) matrix
A. Of course, in most applications the value for p1
will be unknown, but with the iteration coefficients
of CG we can build the tridiagonal matrix z, and
compute the smallest eigenvalue (Ritz value) pp) of
E , which is an approximation for p1. In [45] a simple
algorithm for the computation of p r) , along with the
CG algorithm] is described] and it is shown that a
rather robust stopping criterion is formed by

A similar criterion has also been suggested earlier in
~401.

A quite different, but much more generally appli-
cable approach has been suggested in [l]. In this ap-
proach the approximate solution of an iterative pro-
cess is regarded as the exact solution of some (nearby)
linear system, and computable bounds for the pertur-
bations with respect to the given system are given.
A nice overview of termination criteria has been pre-
sented in [6]: Section 4.2.

9 Implementation Aspects
For effective use of the given iteration schemes, it is
necessa,ry that they can be implemented such that
high computing speeds are achievable. It is most
likely that high computing speeds will be realized
only by parallel architectures and therefore we must
see how well iterative methods fit to such computers.

The iterative methods only need a handful of basic
operations per iteration step

3-33

0 Vector updates: in each iteration step the cur-
rent approximation to the solution is updated
by a correction vector. Often the corresponding
residual vector is also obtained by a simple up-
date, and we have update formulas as well for
the correction vector (or search direction).

0 Innerproducts: In many methods the speed
of convergence is influenced by carefully con-
structed iteration coefficients. These coefficients
are sometimes known analytically, but more of-
ten they are computed by innerproducts, involv-
ing residual vectors and search directions, as in
the methods discussed in the previous sections.

0 Matrix vector products: In each step at least one
matrix vector product has to be computed with
the matrixof the given linear system. Sometimes
also matrix vector products with the transpose
of the given- matrix are required (e.g., BiCG).
Note that it is not necessary to have the matrix
explicitly, it suffices to be able to generate the
result of the matrix vector product.

0 Preconditioning: It is common practice to pre-
condition the given linear system by some pre-
conditioning operator. Again it is not neces-
sary to have this operator in explicit form, it
is enough to generate the ‘result of the operator
aplied to some given vector. The preconditioner
is applied as often as the matrix vector multiply
in each iteration step.

For problem sizes large enough the innerproducts,
vectorupdates and matrix vector product are easily
parallelized and vectorized. The more successful pre-
conditionings, i.e, based upon incomplete LU decom-
position, are not easily parallelizable. For that rea-
son one is often satisfied with the use of only diagonal
scaling as a preconditioner on highly parallel comput-
ers] such as the CM2 [7].

On distributed memory computers we need large
grained parallelism in order to reduce synchroniza-
tion overhead. This can be achieved by combining
the work required for a successive number of itera-
tion steps. The idea is to construct first in parallel
a straight forward Krylov basis for the search sub-
space in which an update for the current solution will
be determined. Once this basis has been computed,
the vectors are orthogonalized, as is done in Krylov
subspace methods. The construction as well as the
orthogonalization can be done with large grained par-
allelism, and has sufficient degree of parallelism in it.
This approach has been suggested for CG in [ll] and
for GMRES in [12], [5] and [18]. One of the disad-
vantages in this approach is that a straight forward
basis, of the form y , A y , A’y, ..., A i y is usually very

3-34

ill-conditioned. This is in sharp contrast to the opti-
mal condition of the orthogonal basis set constructed
by most of the projection type methods and it puts
severe limits on the number of steps that can be com-
bined. However, in [5] and [IS] ways to improve the
condition of a parallel generated basis are suggested
and it seems possible to take larger numbers of steps,
say 25, together. In [18] the effects of this approach
on the communication overhead are studied and com-
pared with experiments done on moderately massive
parallel transputer systems.

9.1 Parallelism in the preconditioner:
In this section we consider a number of possibili-
ties to obtain parallelism in the standard Incomplete
Choleski preconditioner [51]. The linear systems are
supposed to arise from standard finite difference dis-
cretisations of second order pde’s over rectangular
grids in two or three dimensional space.

9.1.1 Overlapping Local Preconditioners
Radicati di Brozolo and Robert [66] suggest to par-
tition the given matrix A in (slightly) overlapping
blocks along the main diagonal. Note that a given
non-zero entry of A is not necessarily contained in
one of these blocks. But experience suggests that
this approach is more successful if these blocks cover
all the non-zero entries of A. The idea is to compute
in parallel local preconditioners for all of the blocks,
e.g.,
(9.la) A, = L,D,-?J, - R,.

Then, when solving K W = r in the preconditioning
step, we partition r in (overlapping) parts r, , accord-
ing to A, , and we solve the systems L,D;lU,w, =
T, in parallel. Finally we define the elements of w to
be equal to corresponding elements of the w,’s in the
nonoverlapping parts and to the average of them in
the overlapped parts.

Radicati di Brozolo and Robert [66] report on tim-
ing results obtained on an IBM3090-600E/VF for
GMRES preconditioned by overlapped incomplete
LU decomposition for a 2D system of order 32400
with a bandwidth of 360. For p processors (1 5
p 5 6) they subdivide A in p overlapping parts, the
overlap being so large that thses blocks cover all the
nonzero entries of A . They found experimentally an
overlap of about 360 elements to be optimal for their
problem. This approach led to a speedup of roughly
p . In some cases a speedup even slightly larger than p
was observed, apparantly due to the fact that the par-
allel preconditioner was slightly more effective than
the standard one in those cases.

9.1.2 Repeated Twisted Factorization
Meurant [54] reports on timing results obtained with
a CRAY Y-MP/832, using an incomplete repeated

twisted block factorization for 2D problems. In his
experiments the L of the incomplete factorization has
a block structure, i.e., L has alternatingly a block be-
low the diagonal, one above, one below, and it ends
with one above the diagonal. For this approach Meu-
rant reports a speedup, for preconditioned CG, close
to 6 on the 8-processor CRAY Y-MP. This speedup
has been measured relative to the same repeated
twisted factorization process executed on one single
processor. Meurant also reports an increase in the
number of iteration steps, due to this repeated twist-
ing. This implies that the effective speedup with re-
spect to the nonparallel code is only about 4.

9.1.3 Twisted and Nested Twisted Factoriza-
tion

For 3D problems we have used the blockwise twisted
approach [23] in the 2- direction, i.e. the (2, y)-planes
in the grid were treated in parallel from bottom and
top inwards. Over each plane we used the diagonal-
wise ordering, in order to achieve high vector speeds
on each processor.
On a dedicated CRAY X-MP/2 this led, for precondi-
tioned CG, to a reduction by a factor of close to 2 in
wall clock time with respect to the CPU time for the
nonparallel code on one single processor. For the mi-
crotasked code the wall clock time on the 2-processor
system was measured for a dedicated system, whereas
for the nonparallel code the CPU time was measured
on a moderately loaded system. In some situations
the speedup was even slightly larger than 2, due to
better convergence properties of the twisted incom-
plete preconditioner.
The effects of these and other orderings on the conver-
gence of preconditioned methods and on the amount
of parallelism have been studied in [2l].

We can also apply the twisted incomplete factor-
ization in a nested way [83]. For 3D problems this
can be exploited by twisting also the blocks corre-
sponding to (2, y) planes in the y-direction. Over the
resulting blocks, corresponding to half (2, y) planes,
we may apply diagonal ordering in order to fully vec-
torize the four parallel parts.
By this approach we have been able to reduce the
wall clock time by a factor of 3.3, for preconditioned
CG, on the 4-processor CONVEX C-240. In this case
the total CPU time, used by all of the processors, is
roughly equal to the CPU time required for single
processor execution [85]. Other then for the exper-
iments on the CRAY X-MP/2, as reported before,
we have relied on the autotasking capabilities of the
Fortran compiler for the C-240, for all of the code, ex-
cept for the preconditioning part. Since some state-
ments in the code lead to rather short vector lengths,
this may explain partially why the factor 3.3 for the
CONVEX C-240 stays well behind the theoretically

3-35

expected factor of about 3.9. Another reason might
be that we were not completely sure whether our test-
ing machine was executing constantly in stand alone
mode during the time of our timing experiments.
Even t8he system itself needs some CPU-time from
time to time.

9.1.4 Hyperp lane Ordering

For a CYBER 205 it has been reported how to ob-
tain long vectorlengths for certain 3D situations ([23],
[73]), and, of course, this approach can also be fol-
lowed in order to obtain parallelism. This has been
done by Berryman et.al. [7] for parallelizing stan-
dard ICCG on a Connection Machine CM-2. For a
4K processor machine they report a computational
speed of 52.6 Mflops for the (sparse) matrix vector
product, while 13.1 Mflops has been realized for the
preconditioner, using the hyperplane approach.
This reduction in speed by a factor of 4 makes it
attractive to use only diagonal scaling as a precondi-
tioner in some situations, for massively parallel ma-
chines like the CM-2. The latter approach has been
followed by Mathur and Johnsson [48] for finite ele-
ment problems.

We have used the hyperplane ordering for precon-
ditioned CG on an ALLIANT FX/4, for 3D systems
with dimensions n2 = 40,n, = 39 and nz = 30. For
4 processors this led to a speedup of 2.61, to be com-
pared with a speedup of 2.54 for the CG-process with
only diagonally scaling as a preconditioner. The fact
that both speedups are quite far below the optimal
value of 4, must be attributed to cache effects [85].
These cache effects can be largely removed, when us-
ing the reduced system approach suggested by Meier
and Sameh [49]. However, for the 3D systems that we
have tested sofar, the reduced system approach led,
in average, to about the same CPU times as for the
hyperplane approach, on Alliant FX/8 and FX/80
computers.

10 *
References

[l] M. Arioli, I. S. Duff, and D. Ruiz. Stopping
criteria for iterative solvers. SIAM J. Matrix
Anal. Appl., 13:138-144, 1992.

[2] 0. Axelsson. Solution of linear systems of equa-
tions: iterative methods. In V. A. Barker, editor,
Sparse Matrix Techniques, Berlin, 1977. Copen-
hagen 1976, Springer Verlag.

[3] 0. Axelsson. Conjugate gradient type meth-
ods for unsymmetric and inconsistent systems
of equations. Lin. Alg. and its Appl., 29:l-16,

[4] 0. Axelsson and P. S. Vassilevski. A black
box generalized conjugate gradient solver with
inner iterations and variable-step precondition-
ing. SIAM J. Matrix Anal. Appl., 12(4):625-644,
1991.

[5] Zhaojun Bai, Dan Hu, and Lothar Reichel. A
Newton basis GMRES implementation. Techni-
cal Report 91-03, University of Kentucky, 1991.

[6] R. Barrett, M. Berry, T. Chan, J . Demmel,
J . Donato, J . Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for
the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia, PA,
1994.

[7] H. Berryman, J . Saltz, W. Gropp, and R. Mir-
chandaney. Krylov methods preconditioned with
incompletely factored matrices on the CM-2.
Technical Report 89-54, NASA Langley Re-
search Center, ICASE, Hampton, VA, 1989.

[8] A. Bjorck and T . Elfving. Accelerated projection
methods for computing pseudo-inverse solutions
of systems of linear equations. BIT, 19:145-163,
1979.

[9] P. N . Brown. A theoretical comparison of the
Arnoldi and GMRES algorithms. SIAM J. Sci.
Statist. Comput., 12:58-78, 1991.

[lo] G. Brussino and V. Sonnad. A comparison of di-
rect and preconditioned iterative techniques for
sparse unsymmetric systems of linear equations.
Int. J. for Num. Methods in Eng., 28:801-815,
1989.

[ll] A. T . Chronopoulos and C. W. Gear. s-Step
iterative methods for symmetric linear systems.
J. on Comp. and Appl. Math., 25:153-168,1989.

s-Step
Orthomin and GMRES implemented on paral-
lel computers. Technical Report 90/43R, UMSI,
Minneapolis, 1990.

[la] A. T . Chronopoulos and S. K. Kim.

[13] P. Concus and G. H. Golub. A general-
ized Conjugate Gradient method for nonsym-
metric systems of linear equations. Technical
Report STAN-CS-76-535, Stanford University,
Stanford, CA, 1976.

[14] P. Concus, G. H. Golub, and D. P. O’Leary. A
generalized conjugate gradient method for the
numerical solution of elliptic partial differential
equations. In J . R. Bunch and D. J . Rose, ed-
itors, Sparse M a h i x Computations. Academic

1980. Press, New York, 1976.

3-36

[15] G. C. (Lianne) Crone. The conjugate gradient
method on the Parsytec GCel-3/512. t o appear
in, FGCS.

[16] L. Crone and H. van der Vorst. Communica-
tion aspects of the conjugate gradient method on
distributed-memory machines. Supercomputer,
X(6):4-9, 1993.

[17] E. de Sturler. A parallel restructured version
of GMRES(m). Technical Report 91-85, Delft
University of Technology, Delft, 1991.

[l8] E. de Sturler. A parallel variant of GMRES(m).
In R. Miller, editor, Proc. of the fifth Int.Symp.
on Num.er. Methods in Eng., 1991.

[19] E. De Sturler and D. R. Fokkema. Nested Krylov
methods and preserving the orthogonality. In
N . Duane Melson, T.A. Manteuffel, and S.F. Mc-
Cormick, editors, Sixth Copper Mountain Con-
ference on Multigrid Methods, volume Part 1 of
NASA Conference Publication 33.24, pages 111-
126. NASA, 1993.

[20] J . Demmel, M. Heath, and H. van der Vorst.
Parallel linear algebra. In Acta Numerica 1993.
Cambridge University Press, Cambridge, 1993.

I

[all Shun Doi. On parallelism and convergence of in-
complete LU factorizations. Appl. Num. Math.,
7~417-436, 1991.

[22] J . J . Dongarra. Performance of various comput-
ers using standard linear equations software in
a fortran environment. Technical Report CS-89-
85, University of Tennessee, Knoxville, 1990.

[23] J . J . Dongarra, I. S. Duff, D. C. Sorensen, and
H. A. van der Vorst. Solving Linear Systems on
Vector and Shared Memory Computers. SIAM,
Philadelphia, PA, 1991.

[24] Jack J . Dongarra and Henk A. van der Vorst.
Performance of various computers using stan-
dard sparse linear equations solving techniques.
Supercomputer, 9(5): 17-29, 1992.

[25] I. S. Duff, A. M. Erisman, and J.K.Reid. Direct
methods for sparse matrices. Oxford University
Press, London, 1986.

[26] T. Eirola and 0. Nevanlinna. Accelerating with
rank-one updates. Lin. Alg. and its Appl.,
121~511-520, 1989.

[27] H. C. Elman. Iterative methods for large sparse
nonsymmetric systems of linear equations. PhD
t,hesis, Yale University, New Haven, CT, 1982.

[28] R. Fletcher. Conjugate gradient methods for in-
definite systems, volume 506 of Lecture Notes
Math., pages 73-89. Springer-Verlag, Berlin-
Heidelberg-New York, 1976.

[29] D. R. Fokkema, G.L.G. Sleijpen and H.A.
Van der Vorst. Generalized Conjugate Gradient
Squared. Preprint 851, Dept. Math., University
Utrecht, 1994.

[30] R. W. Freund, M. H. Gutknecht, and N. M.
Nachtigal. An implementation of the look-ahead
Lanczos algorithm for non-Hermitian matrices.
SIAM J. Sci. Comput., 14:137-158, 1993.

[31] R. W. Freund and N. M. Nachtigal. An imple-
mentation of the look-ahead Lanczos algorithm
for non-Hermitian matrices, part 2. Technical
Report 90.46, RIACS, NASA Ames Research
Center, 1990.

[32] R. W. Freund and N. M. Nachtigal. QMR:
a quasi-minimal residual method for non-
Hermitian linear systems. Num. Math., 60:315-
339, 1991.

[33] R. W. Freund. A transpose-free quasi-minimal
residual algorithm for non-Hermitian linear sys-
tems. SIAM J. Sci. Comput., 14:470-482, 1993.

[34] G. H. Golub and D.P. O’Leary. Some history of
the conjugate gradient and lanczos algorithms:
1948-1976. SIAM Review, 31:50-102, 1989.

[35] G. H. Golub and C. F. van Loan. Matrix Compu-
tations. North Oxford Academic, Oxford, 1983.

[36] G. H. Golub and C. F. van Loan. Matrix Com-
putations. The Johns Hopkins University Press,
Baltimore, 1989.

[37] I. Gustafsson. A class of first order factorization
methods. BIT, 18:142-156, 1978.

[38] M. H. Gutknecht. Variants of BICGSTAB for
matrices with complex spectrum. SIAM J. Sci.
Comput., 14:1020-1033, 1993.

[39] W. Hackbusch. Iterative Liisung groj?er
schwachbesetzter Gleichungssysteme. Teubner,
Stuttgart, 1991.

[40] L. A. Hageman and D. M. Young. Applied Itera-
tive Methods. Academic Press, New York, 1981.

[41] M. R. Hestenes and E. Stiefel. Methods of con-
jugate gradients for solving linear systems. J .
Res. Natl. Bur. Stand., 49:409-436, 1954.

[42] C. P. Jackson and P. C. Robinson. A numerical
study of various algorithms related to the pre-
conditioned Conjugate Gradient method. Int. J .
for Num. Meth. in Eng., 21:1315-1338, 1985.

3-31

[43] D. A . H. Jacobs. Preconditioned Conjugate Gra-
dient methods for solving systems of algebraic
equations. Technical Report RD/L/N 193/80,
Central Electricity Research Laboratories, 1981.

[55] N. M. Nachtigal, S. C. Reddy, and L. N. Tre-
fethen. How fast are nonsymmetric matrix itera-
tions? SIAM J. Matrix Anal. Appl., 13:778-795,
1992.

[44] K. C. Jea and D. M. Young. General-
ized conj ugate-gradient acceleration of nonsym-
metrizable iterative methods. Lin. Algebra
Appl., 34:159-194, 1980.

[45] E. F. Kaasschieter. A practical termination cri-
terion for the Conjugate Gradient method. BIT,
28:308-322, 1988.

[46] C. Lanczos. An iteration method for the solu-
tion of the egenvalue problem of linear differen-
tial and integral operators. J. Res. Natl. Bur.
Stand, 45:225-280, 1950.

[47] C. Lanczos. Solution of systems of linear equa-
tions by minimized iterations. J. Res. Natl. Bur.
Stand, 49:33-53, 1952.

[48] K. K. Mathur and S. L. Johnsson. The finite
element method on a data parallel computing
system. Technical Report CS 89-2, Thinking
Machines Corporation, 1989. to appear in In-
ternational Journal of High-speed Computing.

[49] U. Meier and A. Sameh. The behavior of con-
jugate gradient algorithms on a multivector pro-
cessor with a hierarchical memory. Technical Re-
port CSRD 758, University of Illinois, Urbana,
IL, 1988.

[50] U. Meier Yang. Preconditioned Conjugate
Gradient-Like Methods for Nonsymmetric Lin-
ear Systems. Preprint, Center for Research and
Development, University of Illinois a t Urbana-
Champaign, 1992.

[51] J . A. Meijerink and H. A. van der Vorst. An
iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-
matrix. Math. Comp., 31:148-162, 1977.

[52] G. Meurant. The block preconditioned conju-
gate gradient method on vector computers. BIT,
24:623-633, 1984.

[53] G . Meurant. Numerical experiments for the pre-
conditioned conjugate gradient method on the
GRAY X-MP/2. Technical Report LBL-18023,
University of California, Berkeley, CA, 1984.

[54] G . Meurant. The conjugate gradient method on.
vector and parallel supercomputers. Technical
Report CTAC-89, University of Brisbane, July
1989.

[56] A. Neumaier. Oral presentation at the Oberwol-
fach meeting: Numerical Linear Algebra, Ober-
wolfach, 1994.

[57] J . M. Ortega. Inrkoduction t o Parallel an,d Vector
Solution of Linear Systems. Plenum Press, New
York and London, 1988.

[58] C. C. Paige. Computational variants of the Lanc-
zos method for the eigenproblem. J. Inst. Math.
Appl., 10:373-381, 1972.

[59] C. C. Paige, B. N. Parlett, and H. A. van der
Vorst. Approximate solutions and eigenvalue
bounds from Krylov subspaces. Num. Lin. Alg.
with Appl., 2:115-134, 1995.

[60] C. C. Paige and M. A. Saunders. Solution
of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12:617-629, 1975.

[61] C. C. Paige and M. A. Saunders. LSQR: An
algorithm for sparse linear equations and sparse
least squares. ACM Trans. Math. Soft., 8:43-71,
1982.

[62] B. N. Parlett, D. R. Taylor, and Z. A. Liu. A
look-ahead Lanczos algorithm for unsymmetric
matrices. Math. Comp., 44:105-124, 1985.

[63] Beresford N . Parlett. The Symmetric Eigenvalue
Problem. Prentice-Hall, Englewood Cliffs, N.J.,
1980.

[64] Claude Pommerell. Solution of large unsym-
metric systems of linear equations. PhD thesis,
Swiss Federal Institute of Technology, Zurich,
1992.

[65] Claude Pommerell and Wolfgang Fichtner.
PILS: An iterative linear solver package for ill-
conditioned systems. Technical Report 91/5,
ETH Zurich, 1991.

[66] G. Radicati di Brozolo and Y. Robert. Vector
and parallel CG-like algorithms for sparse non-
symmetric systems. Technical Report 681-M,
IMAG/TIM3, Grenoble, 1987.

[67] G. Radicati di Brozolo and Y. Robert. Paral-
lel conjugate gradient-like algorithms for solv-
ing sparse non-symmetric systems on a vector
multiprocessor. Parallel Computing, 11:223-239,
1989.

3-38

[68] Y. Saad. Practical use of polynomial precon-
ditionings for the conjugate gradient method.
SIAM J. Sci. Stat. Comput., 6:865-881, 1985.

[69] Y. Saad. Krylov subspace methods on supercom-
puters. Technical report, RIACS, Moffett Field,
CA, September 1988.

[70] Y. Saad. A flexible inner-outer preconditioned
GMRES algorithm. SIAM J. Sci. Comput.,
14:461-469, 1993.

[71] Y. Saad and M. H. Schultz. Conjugate Gradient-
like algorithms for solving nonsymmetric linear
systems. Math. of Comp., 44:417-424, 1985.

[72] Y. Saad and M. H. Schultz. GMRES: a general-
ized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J . Sci. Statist.
Comput., 7:856-869, 1986.

[73] J. J. F. M. Schlichting and H. A. van der Vorst.
Solving 3D block bidiagonal linear systems on
vector computers. Journal of Comp. and Appl.
Math., 27:323-330, 1989.

[74] Horst D. Simon. Direct sparse matrix meth-
ods. In James C. Almond and David M. Young,
editors, Modern Numerical Algorithms for Su-
percomputers, pages 325-444, Austin, 1989. The
University of Texas at Austin, Center for High
Performance Computing.

[75] G. L. G. Sleijpen and H.A. Van der Vorst. Main-
taining convergence properties of BICGSTAB
methods in finite precision arithmetic. Tech-
nical report, University Utrecht, Department of
Mathematics, 1994.

[76] G. L. G. Sleijpen and H.A. Van der Vorst. Re-
liable updated residuals in hybrid Bi-CG meth-
ods. Preprint Nr. 886, Dept. Math., University
Utrecht, 1994.

[77] G. L. G. Sleijpen, H.A. Van der Vorst, and D. R.
Fokkema. Bi-CGSTAB(C) and other hybrid bi-cg
methods. Numerical Algorithms, 7:75-109,1994.

[78] G. L. G. Sleijpen and D. R. Fokkema.
BICGSTAB(C) for linear equations involving
unsymmetric matrices with complex spectrum.
ETNA, 1:ll-32, 1993.

[79] P. Sonneveld. CGS: a fast Lanczos-type solver
for nonsymmetric linear systems. SIAM J. Sci.
Statist. Comput., 10:36-52, 1989.

[80] A. van der Sluis and H. A. van der Vorst. The
ra.te of convergence of conjugate gradients. Nu-
mer. Math., 48:543-560, 1986.

[81] A. van der Sluis and H. A. van der Vorst. Nu-
merical solution of large sparse linear algebraic
systems arising from tomographic problems. In
G. Nolet, editor, Seismic Tomography, chap-
ter 3, pages 49-83. Reidel Pub. Comp., Dor-
drecht, 1987.

[82] A. van der Sluis and H. A. van der Vorst. SIRT-
and CG-type methods for the iterative solution
of sparse linear least-squares problems. Lin. Alg.
and its Appl., 130:257-302, 1990.

[83] H. A. van der Vorst. The convergence behavior of
some iterative solution methods. In R. Gruber,
J . Periaux, and R. P. Shaw, editors, Proc. of
the fijlh Int.Symp. on Numer. Methods in Eng.,
1989. vol 1.

[84] H. A. van der Vorst. The convergence behaviour
of preconditioned CG and CG-S in the pres-
ence of rounding errors. In 0. Axelsson and
L. Yu. Kolotilina, editors, Preconditioned Conju-
g a t e Gradient Methods, Berlin, 1990. Nijmegen
1989, Springer Verlag. Lecture Notes in Mathe-
matics 1457.

[85] H. A. van der Vorst. Experiences with parallel
vector computers for sparse linear systems. Su-
percomput er, 37 : 28-35, 1990.

[86] H. A. van der Vorst. Bi-CGSTAB: A fast and
smoothly converging variant of Bi-CG for the
solution of non-symmetric linear systems. SIAM
J . Sci. Statist. Comput., 13:631-644, 1992.

[87] H. A. van der Vorst. Conjugate gradient type
methods for nonsymmetric linear systems. In
R. Beauwens and P. de Groen, editors, Iterative
Methods in Linear Algebra, Amsterdam, 1992.
IMACS Int. Symp., Brussels, Belgium, 2-4 April,
1991, North-Holland.

[88] H. A. van der Vorst and C. Vuik. The superlin-
ear convergence behaviour of GMRES. JCAM,
48:327-341, 1993.

[89] H. A. van der Vorst and C. Vuik. GMRESR: A
family of nested GMRES methods. Num. Lin.
Alg. with Appl., 1:369-386, 1994.

[go] R. S. Varga. Matriz Iterative Analysis. Prentice-
Hall, Englewood Cliffs N.J., 1962.

[91] P. K. W. Vinsome. ORTOMIN: an iterative
method for solving sparse sets of simultaneous
linear equations. In Proc. Fourth Symposium on
Reservoir Simulation, pages 149-159. Society of
Petroleum Engineers of AIME, 1976.

[92] H. F. Walker. Implementation of the GMRES
method using Householder transforma- tions.
SIAM J. Sci. Stat. Comp., 9:152-163, 1988.

3-39

[93] 0. Widlund. A Lanczos method for a class
of nonsymmetric systems of linear equations.
SIAM J. Numer. Anal., 152301-812, 1978.

[94] J . H. Wilkinson. The Algebraic Eigenvalue Prob-
lem.. Clarendon Press, Oxford, 1965.

[95] L. Zhou and H. F. Walker. Residual smoothing
techniques for iterative methods. SIAM J. Sci.
Compui., 15:297-312, 1994.

4- 1

Structured Grid Solvers I

Accurate and Efficient Flow Solvers for 3D Applications on Structured Meshes

Norbert Kroll, Rolf Radespiel, Cord-C. Rossow

Institute for Design Aerodynamics
DLR, Lilienthalplatz 7, 38 108 Braunschweig, Germany

SUMMARY
This lecture is devoted to the parallelization of blockstruc-
tured grid solvers for industrial applications. It is divided
into two parts. Part I describes well established numerical
algorithms with emphasis on spatial discretization and time
stepping schemes. Attention is focused on the multigrid
technique which is one of the most promising approach to
improve the efficiency of numerical methods. Finally, sev-
eral large-scale computations are shown which demon-
strate the ability of current blockstructured flow solvers.
Part I1 of the lecture addresses various aspects of the paral-
lelization of such flow solvers.
LIST OF SYMBOLS

speed of sound
dissipative operator
internalknergy per unit mass
specific total energy
inviscid and viscous part of flux tensor
specific total enthalpy
heat conductivity
Mach number
outward pointing normal
pressure
Prandtl number
vector of Cartesian velocities
discrete flux balance
Reynolds number
surface vector
time
Cartesian velocity components
control volume
vector of conserved variables
angle of attack
ratio of specific heats
spectral radius of flux Jacobian

-

P nondimensional viscosity
cp density

Indices
I lamin’ar
t turbulent
00 free stream
i j ,k indices of grid node

1. NIXODUCTION
Numerical flow simulations have found their way into the
aerodynamic design cycles of aerospace vehicles. Not only
do these simulations reduce turn-around time and cost, but
they also offer flow parameter variations which are not
possible with wind tunnel testing. On the other hand, nu-
merical simulations in aerodynamics are still an engineer-
ing challenge. The governing partial differential equations
do not always represent a well-posed problem, that is,
uniqueness and existence of a solution is usually not
proven and it is difficult to formulate suitable initial and
boundary conditions. Moreover, the existence of turbu-
lence in the majority of relevant flow problems makes the
direct solution of the governing unsteady Navier-Stokes
equations impossible because the relevant scales vary too
much. The problem may be circumvented by averaging the
turbulent motion. This yields the Reynolds-averaged Na-
vier-Stokes equations which can be solved if a turbulence
model is provided for closure. Suitable turbulence models
have been under investigation over the last 70 years, and
the matter is still not solved to satisfaction. However, in the
present lecture we will assume that the effect of turbulence
can be described by adding a turbulent viscosity and heat
conductivity to their laminar counterparts. Even then, flows
over aerodynamic configurations display flow phenomena
with very different scales and with highly nonlinear behav-
ior. We mention here the laminar and turbulent boundary
layers at very high Reynolds numbers and their interaction
with shocks as an example. Numerical simulation of such
flow problems often converge slowly because the discreti-
zed mathematical model is stiff.

Paper presented in an ACARD-FDP-VKI Special Course on “Parallel Computing in CFD”, held at the VKI, Rhode-Saint-Genese, Belgium,
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807.

4-2

The present lecture describes well established techniques
used for numerical simulations of complex aerodynamic
flows based on blockstructured meshes. We restrict our-
selves to problems with steady mean flow, that is, we want
to obtain steady-state solutions of the Euler equations gov-
erning inviscid flows and of the Reynolds-averaged Na-
vier-Stokes equations for viscous flows. In this paper atten-
tion is focused on the general description of the two major
parts of the numerical method. These are the spatial discre-
tization and time stepping algorithms. The parallelization
issues of blockstructured flow solvers for industrial appli-
cations are treated in the second lecture [11.

With the spatial discretization of the governing equations
we seek to obtain accurate solutions with as few as possible
discrete points in the flow domain. Care must be taken to
resolve all relevant flow phenomena, i.e. smoothly varying
regions of inviscid flows, flow discontinuities as shocks
and slip lines, and viscous layers which are governed by
diffusion. Moreover. numerical analysis and well-known
experience show that the choice of the spatial discretization
also influences the convergence of the overall method to
the desired steady-state.
Possibilities to improve convergence to steady-state solu-
tions by improving or adding numerical techniques has at-
tracted the work force of many researchers over the last 20
years. We will concentrate on one of the most promising
approaches. which is called multigrid. The present state of
the art in the use of multigrid for the solution of the hyper-
bolic flow equations with time-stepping schemes is de-
scribed in detail, analyzed, and demonstrated with a variety
of sample calculations.
Finally, we present several large-scale computations which
demonstrate the usefulness of the efforts to improve accu-
racy and convergence of current flow solvers.

2. GOVERNING EOUATIONS
The most general description of the fluid flow is obtained
from the time dependent compressible Navier-Stokes equa-
tions which express the conservation laws for mass, mo-
mentum and energy for viscous fluids. For turbulent flows
the so-called Reynolds-averaged Navier-Stokes equations
are exploited. They are derived from the Navier-Stokes
equations by introducing a time-averaging procedure. The
laws of motion are then expressed for the mean, time-aver-
aged, turbulent quantities. By this means the equations for
turbulent flows look the same as the equations for laminar
flow.
The integral form of the three-dimensional Reynolds-aver-
aged Navier-Stokes equations using nondimensional vari-
ables in a Cartesian coordinate system can be written as

‘

where

is the vector of conserved quantities with p ,u,v,w and E
denoting the density, Cartesian velocity components and
specific total energy, respectively. V denotes an arbitrary
control volume fixed in time and space with boundary a V
and the outer normal h . The total enthalpy is given by

H = E + p / p (2.2)
-

The flux tensor F may be divided-into its inviscid (convec-
tive) part FC and its viscous part FV as

_ _ _
F = FC-FV (2.3)

with

and

with

3 3 3
where k,, k,, k, denote the Cartesian coordinate direc-
tions. Assuming that air behaves as calorically perfect gas,
the pressure is calculated by the equation of state

4-3

p = (Y - U P (E - u 2 + v 2 2 + w2)

where y denotes the ratio of specific heats. The temperature
T is given by

T = p / p . (2.5)

The elements of the shear-stress tensor and the heat-flux
vector are given by the equations for Newtonian fluid

For laminar flow the nondimensional viscosity p is as-
sumed to follow the Sutherland law

(2.7)

with M,, Re, and 7 denoting the free stream Mach num-
ber, Reynolds number and the dimensional temperature. re-
spectively. The heat conductivity K is given by

K =
y - 1Pr

with Pr being the Prandtl number.
For turbulent flows, the laminar viscosity p in eq. (2.7) is
replaced by p + p, and p/Pr in eq. (2.8) is replaced by
p/Pr + pt /Pr,, where the eddy viscosity p, and the turbu-
lent Prandtl Pr, number are provided by a turbulence
model. For the transonic airfoil calculations presented in
this paper the algebraic turbulence model of BaldwinLo-
max [2] is used.
For hypersonic flow calculations it is assumed that air be-
haves as reacting air in thermochemical equilibrium. In this
case a modified ratio of specific heats is used. Furthermore,
the speed of sound is given by

c2 = JP $ 1 e = +!+I p = const
(2.9)

where e is the internal energy per unit mass. For the calcu-
lation of the effective ratio of specific heats and for the par-
tial derivatives of pressure in eq. (2.9), piecewise analyti-

cally defined functions [3] arc used. These functions relate
the pressure to both, the density and specific internal en-
ergy and take into account exitation of vibration and disso-
ciation of 0 2 and N2 molecules. The temperature, viscosity
and heat conductivity are similarly computed.

3. SPATIAL DISCRETIZATION SCHEME
The derivation of the conservation laws in integral form
only requires the assumption that the density is twice con-
tinuously differentiable with respect to time. Therefore, in
contrast to the differential form, the integral form of the
governing equations does not impose any assumptions on
the regularity of the solution. This is extremely important
since discontinuities such as shock waves and slip lines oc-
cur in most of the relevant flow fields.
The discretization of the integral form of the conservation
laws leads to finite element or finite volume methods. This
paper focuses on the discussion of the finite volume ap-
proximation based on structured computational meshes.

3. I Finite Volume ADDroximation
In finite volume methods the flow field is subdivided into a
set of non-overlapping cells which cover the whole domain
without gaps. On each cell the conservation laws in inte-
gral form are applied which also in the discrete formulation
ensure the conservation of mass, momentum and energy. In
general, the control volumes can have arbitrary shapes.
With respect to computational efficiency, however, very of-
ten structured hexahedral cells are used for 3D calcula-
tions. For practical applications the control volumes are
provided by a body-fitted mesh generated by grid genera-
tion packages using curvilinear coordinates (see Fig. l) .
The only required data concerning the grid are the Cartesian
coordinates of the vertices. Hence, no global transforma-
tion of the governing equations into the curvilinear coordi-
nate system is necessary.
Through the application of the integral form of the Navier-
Stokes equations a discrete flux balance is obtained for
each control volume which can be used to approximately
determine the change of flow quantities with respect to
time in particular points. Various finite volume formula-
tions are known in the literature. They differ in the arrange-
ment of control volumes and update points for the flow
variables. The most frequently used schemcs are the cell-
centered, the cell-vertex and the node-centered approach.
They are sketched in Fig. 2. For the node-centered and
cell-vertex scheme the flow variables are associated with
the cell vertices, whereas for the cell-centered scheme they
are located at the center of the cell. Each of these schemes
has advantages and disadvantages. For example, using a
central discretization i t can be shown that for stretched or
screwed meshes the discretization errors from the cell-cen-
tered formulation is larger that those of the node-based

4-4

schemes [4]. However, for smooth meshes the spatial accu-
racy is the same for all schemes. On the other hand, numer-
ical experience has shown that for high speed flows the
cell-centered and the node-centered arrangement seem to
be more suited, especially in combination with an upwind-
biased discretization operator [5].
This paper focuses on the cell-vertex and node-centered
formulation. In both cases the spatial discretization leads to
an ordinary differential equation for the rate of change of
the conservative flow variables in each grid point

J C + v where R,,, , k and Ri.,, k represent the approximation of
the inviscid and viscous net flux of mass, momentum and
energy for a particular control volume arrangement with
volume Vi,j,k surrounding the grid node (i,j,k). The fluxes
can be approximated using either central or upwind discre-
tization operators. While classical central difference
schemes perform admirably for inviscid sub-, trans- and
even low supersonic flows, problems arise near strong dis-
continuities in high Mach number flows. Moreover, in re-
cent papers (e.g. [6,7]) it has been pointed out that central
schemes show deficiencies in the resolution of viscous
flows due to the unsuited scaling of the scalar artificial dis-
sipation implemented in most of the standard methods.
This lack of a suitable high-resolution capability has been
considered as a major problem of central schemes and has
led to the development of a variety of upwind-biased algo-
rithms. These schemes rely on local wave propagation the-
ory for the differencing of the convective terms of the gov-
erning equations. This is not only important for capturing
flow discontinuities but also it can lead to a high-resolution
scheme for viscous flows, provided the linear waves are
properly taken into account. In the following, various dis-
cretization schemes for the convective terms are discussed.
The special merits and shortcomings of each scheme are
highlighted. In discretizing the Navier-Stokes equations,
virtually all schemes rely on a centered approximation of
the viscous fluxes. A brief description is given at the end of
this chapter.

3.2 Central Differencing with Scalar Dissiuation
The central differencing of the convective terms of the
governing equations discussed here is based on the cell-
vertex scheme [4,8]. In this formulation the update of the
flow variables in grid node (ij,k) is a function of the dis-
crete flux balances of the surrounding eight cells (see
Fig. 3). The term Re, , k in eq.(3.1) can be expressed as

+

+
with Gi,,. k representing the convective flux for the mesh
cell with vertices ((i+nj,k), (i+nj,k+l), (i+nj+l,k),
i+nj+l,k+l), n=0,1) . Accordingly, the volume Vi,,,k in
eq.(3.1) represents the sum of the volumes of the corre-
sponding cells surrounding the node (i,j,k).
The net flux Gi,j,k is given by the sum of the inviscid
fluxes through all cell faces of the particular mesh cell (see
Fig. 3.b)

+

where the flux through the cell face S i + I , j , is evaluated
using an arithmetric average of the flux quantities at the
vertices. That is

where $+ 1 , ,, k denotes the surface vector of cell face
S i + I , J, calculated by projecting the cell face on the corre-
sponding coordinate surface.
A close inspection of eqs. (3.2) and (3.3) shows, that due
to the fact that the fluxes across inner faces cancel, R,, J, k

represents the flux balance over a super cell formed by the
eight neighboring cells of node (i,j,k). According to [4,8],
the scheme is at least first order accurate, if the normal vec-
tor on each cell face is a smooth function with respect to
grid refinement and if the cell faces do not degenerate to
triangles. On smooth meshes the discretization is second-
order accurate.
The finite volume discretization based on central averaging
is not dissipative, which means that high frequency oscilla-
tions in the solution are not damped. In order to avoid these
spurious oscillations, dissipative terms have to be explic-
itly introduced. In most central schemes the well known
scalar dissipation model of Jameson et al [9] is imple-
mented. It uses a blend of second and fourth differences of
the flow variables. In order to preserve the conservation
form of the numerical scheme, the artificial dissipative
terms are introduced by adding dissipative fluxes to the
semi-discrete system (3.1)

+ I

+
The dissipative operator Di,,, k is defined as

+ + + + 8'.
-9 + + -f (3.2)
I , J , k = Gi,j,k + Gi- I , j . k + Gi,j- I , k + Gi- 1 . j - 1 .k .

-k Gi,j. k - I + Gi- 1.j. k - I + Gi,j- I , k - I + Gi- 1 . j - I , k - I

4-5

, where the dissipative flux & + I / ? , j, k is given as

Here, ~i(:)~/~. j , and ~i(+4)~/~,,, are adaptive coefficients
designed to switch on enough dissipation where it is
needed. The coefficient ai + , ,2 , , , is chosen such that the
dissipative terms have a proper weightage. According to
[9], the value is given as an average of the spectral radii of
the flux Jacobians associated with the three curvilinear co-
ordinates.
The coefficients E(') and E(4) are adapted to the local flow
gradients by

,
Ei(+2)1/2,j, k = (>' m a x (v i + 2,;. k'vi + 1,;. k. v i . l , k? - 1, j, k) (3'8)

= max (0, k (4) - Ei (') i I /L ; , k) (3.9)

where v,,,,k is defined as

and k(*), k(4) are small constants. Typical values for k(')
and k(4) are 1/2 and 1/64, respectively. The dissipation op-
erators in j-, and k-direction are defined in a similar man-
ner.
The coefficient E(') is proportional to the second difference
of pressure and therefore proportional to the square of the
mesh size in smooth regions of the flow, while E(4) is of or-
der one. Since the operator in eq. (3.7) contains differences
of the flow variables whigh are not divided by the mesh
size, the dissipative flux di+lR,j ,k is of third order. How-
ever, in regions where the pressure changes rapidly, as in
the case of shock waves, the term vij,k is of order one and
with eq. (3.9) the third order difference operator in eq. (3.7)
is switched off. The dissipation is then of first order and the
central finite volume scheme behaves like a first-order ac-
curate scheme. The sensitivity of the numerical solution
with respect to the dissipation parameter has been studied
in detail in [10,l I]. Since the dissipative fluxes are formed
by blended second and fourth differences, the evalutation
of these terms near boundaries requires special care. The
treatment at boundaries is described in [121 in more detail.

As mentioned above, the dissipation in each coordinate di-
rection is scaled the same by the average of the spectral ra-
dii of all flux Jacobians. This leads to excessively large dis-
sipation levels for cells with high-aspect ratios which are
often required for accurate and efficient calculations of vis-
cous flows. Therefore, according to Martinelli [131 the
scaling factor of the dissipative term is adjusted for each
coordinate direction taking into account a varying cell as-
pect ratio (see also [141). The scaling function is

- .
a =I' I . $ (3.1 1)

I + ? . J . k i + ! j , k
2'

i + !;j, I;
2

with

where

are the spectral radii of the flux Jacobians in i-, j-, k-direc-
tion, respectively. 4 =[u,v,wIT is the vector of Cartesian ve-
locities and c is the speed of sound. S , S I S are the cell
face vectors associated with i-, j-, and k-direction of the
body-fitted coordinate system. The use of the maximum
function _ . _ . in the definition of $ is important for grids where
k J / k ' and h k / i ' are very large and of same order of mag-
nitude. In this case, if these ratios are summed rather than
taking the maximum, too large dissipative terms are ob-
tained, which will degrade the solution. It has been found
that for the exponent p the choice p = O S yields a robust
scheme.
The transonic turbulent flow over the RAE 2822 airfoil is
used to demonstrate the capabilities of the method for high
Reynolds number turbulent flows. The well-known test
case Mw=0.73, e 2 . 7 9 ' and ReW=6.5x1O6 has been con-
sidered. The accuracy of the central scheme with scalar
dissipation is examined using a variation of the grid den-
sity. For this purpose a sequence of a coarse (193x33
points), medium (385x65 points) and fine grid (577x97
points) has been created. A C-grid topology has been se-
lected with a first spacing of I O 5 chord lengths away from
the wall. The calculations have been carried out with the
BaldwinLomax turbulence model. The variation of the CO-

J i JJ J k

I

4-6

efficients for lift, pressure drag and friction drag with num-
ber of mesh points N is presented in Fig. 4. The influence
of the dissipation parameter of the second and fourth dif-
ference dissipation operator is also indicated. On coarse
meshes, the discretization error is obviously dominated by
the artificial dissipation. The integral values show a large
variation. The fine meshes allow the extrapolation of the
coefficients to their values for an infinitely fine mesh. For
the mesh with 385x65 points, the predicted lift is within 1.5
percent, the pressure drag is within 3 counts and the fric-
tion drag is within 0.3 count of the extrapolated values. For
the fine mesh with 577x97 points, the predicted lift is
within 0.5 percent, the pressure drag within 1 count and the
skin friction drag within 0.1 count. Fig. 5 shows pressure
and skin friction distributions for different grid densities.
The experimental values [IS] are also included. The main
features of the flow are essentially captured on the medium
mesh. The differences between medium and fine mesh are
small.
In Fig. 6 the transonic flow around the ONERA-M6 wing
is considered. The computational domain is discretized us-
ing a C-type topology in the streamwise direction and an
0-type topology in the spanwise direction with 289x65~45
points. A somewhat coarser mesh has also been used in or-
der to indicate the influence of the grid density for three-di-
mensional viscous flows. The commonly used test case
M_ =0.84, a=3.06' and Re_ = I 1 x IO6 has been considered.
Here, again the BaldwinLomax turbulence model has been
used. The pressure distributions along several spanwise
stations of the wing are displayed in Fig. 3.6. The results of
the fine mesh agree well with those from the coarser mesh
and with experimental data [161.
A comprehensive validation of the central cell-vertex
scheme with scalar dissipation can be found i n [4, 14, 17,
181.

3.3 Central Differencing with Matrix DissiDation
As shown in the literature and indicated by the results
above, it is possible to obtain grid-converged solutions for
transonic viscous flows with central schemes, provided
sufficiently fine meshes are used for the computations.
However, for efficiency reasons, especially for 3-D appli-
cations, the accuracy of the solution needs to be improved
on a given grid, in order to reduce the number of grid
points required for obtaining a specified level of accuracy.
The major drawback of standard central schemes, as the
one presented above, is the scalar form of the artificial vis-
cosity. In this approach the. dissipation of each conserva-
tion equation is scaled the same. The spectral radius of the
flux Jacobian associated with the corresponding coordinate
direction is employed as the scaling factor. As suggested
by Turkel [I91 and Swanson and Turkel [20] the central
discretization can be improved by replacing the scalar dis-

sipation by a matrix-valued dissipation using ideas from
the concept of upwind schemes. In this case, the dissipation
in a particular coordinate direction for each equation is
scaled by the specific eigenvalue associated with the corre-
sponding flux Jacobian matrix.
In the case of matrix-valued dissipation the dissipative flux
2, + 1/2,j, k of eq. (3.6) through interface i+1/2 is defined as

In contrast to eq. (3.7), the differences of the flow quanti-
ties are now scaled by a matrix which is given by

(3.15)

with T and (T)-' being the right and left eigenvector matri-
ces of the flux Jacobian A associated with the i-direction of
the curvilinear coordinate system. IAAI denotes a diagonal
matrix, where the elements are the absolute values of the
eigenvalues of A. The eigenvalues of A are given by

(3.16)

The matrices in eq. (3.15) are evaluated at the interface
i+1/2 using simple averages of the flow quantities W at
grid nodes (ij,k) and (i+l,j,k). According to [19,201, by
taking advantage of the special form of the elements of
[A l . the matrix vector products occurring in eq. (3.14) can
be replaced by the products of row and column vectors.
This leads to a simpler and more efficient procedure for the
evaluation of the dissipative flux. For details see also [21].
The parameter E (*) and E (~) are essentially the same as in
the case of the scalar dissipation. Also here, typical values
of the coefficients k(*) and k(4) are 1/2 and 1/64, respec-
tively. Note that, if IAl is replaced by its spectral radius,
then the usual scalar dissipation outlined above is obtained.
As can be seen in eqs. (3.14) and (3.15), for each flow
equation the dissipation is scaled by the corresponding
eigenvalue. In practice, however, the eigenvalues as given
in eq. (3.16) can not be used. At stagnation points the
eigenvalues h,, and h, vanish, whereas near sonic lines
(M=l) the eigenvalue h4 or h~ approaches zero. It is well

-)

4-7

known, that for a central difference scheme zero artificial
viscosity can create numerical difficulties. Therefore, the
eigenvalues are limited in the following manner according
to [19,201

where VI and V, are small coefficients which limit the
eigenvalues associated with the linear and nonlinear char-
acteristic fields to a minimum value that is a fraction of the
spectral radius p(A) (largest eigenvalue) of A. The parame-
ters VI and V, are determined through numerical experi-
ments such that shocks are captured without spurious oscil-
lations and good convergence behavior is still maintained.
Typical values are 0.31V110.6 and Vn=0.4 (see [21]). It
should be noted. that i n the case of Vl=Vn=I the scalar
form of the artificial dissipation is recovered.
The improvement of the accuracy of the central scheme for
a given grid by using a matrix-valued dissipation instead of
a scalar dissipation is demonstrated for the turbulent flow
around the RAE 2822 airfoil [21]. Fig. 7 shows the com-
parison of the surface pressure distribution for scalar and
matrix dissipation. The calculations have been carried out
on C-grids with 160x32. 320x64 and 640x128 cells. It is
obvious that the quality of the solution obtained with the
scalar artificial viscosity model on the 320x64 and
640x 128 cells can already be achieved with the matrix dis-
sipation on the next coarser grid, that is on the 160x32 and
320x64 grid. respectively. This is underlined in Fig. 8
wherc the skin friction distributions are compared. Fig. 9
shows the variation of the global force coefficients with
number of mesh points N=NX*NY. In contrast to the scalar
dissipation model, the matrix dissipation provides a sec-
ond-order scheme which is indicated by the linear depen-
dency of the integral values with respect to the total num-
ber of grid points. Also this figure shows that the results
calculated with the scalar dissipation model on the
640x128 grid is already obtained on the 320x64 grid by us-
ing the matrix dissipation approach. On the other hand, on
a given grid the matrix dissipation model requires addi-
tional computational costs due to the increased complexity.
Furthermore, it shows a degeneration of the convergence
behavior to steady state [20,21]. However, for a specified
level of accuracy the central scheme with matrix dissipa-
tion is more cost-effective than with the scalar dissipation,
since coarser grids can be used. Thus, e. g. for the two-di-
mensional turbulent flow past an airfoil the computational
effort could be reduced by a factor of 2-3.

3.4 Flux Difference SDlitting
Numerical analysis of high speed flow often involves the
resolution of strong shocks producing pressure jumps of
considerable strength, complex shock-shock 'interactions,
expansion fans and contact discontinuities as well as re-
gions of highly expanded flow as e. g. on the leeside of re-
entry vehicles at high angle of attack. For such Rows, cer-
tain aspects of the numerical methods which perform well
for sub- and transonic applications have to be modified, i n
order to facilitate robust, efficient and accurate calcula-
tions. Classical central difference schemes are not well
suited to such flows, since they require excessive artificial
damping in order to suppress high frequency oscillations
which may grow unbounded in the vicinity of strong
shocks. This has led to the development of a variety of
upwind schemes. These schemes rely on local wave propa-
gation theory for the differencing of the convective terms
of the governing equations throughout the domain. Promi-
nent representatives of this class of algorithms are schemes
based on the 'Flux Difference Splitting' (e. g. [22,23] and
the' Flux Vector Splitting' (e. g. [24,25] concept.
Out of the class of flux difference split methods we have
focused on the upwind TVD discretization according to
[23,26]. This scheme is based on the approximate Riemann
solver of Roe [22] and uses the modified flux approach of
Harten [23] for second-order accuracy. Upwinding in
multi-dimensions is performed by applying the one-dimen-
sional operator successively in each coordinate direction.
In order to implement an approximate Riemann solver in
the framework of a node-based finite volume scheme
[5,27], control volumes are used which are defined by con-
necting the cell centers of the original cell (see Fig. IO).
The convective flux Rt;, I; for the control volume Vi,j,k in
eq. (3.1) is then approximated by

-)

The flux 8' I through cell face i+1/2 is given as
I + ? . I . I;

L
(3.19)

with T denoting the right eigenvector matrix of the flux Ja-
cobian in the i-direction of the curvilinear coordinate sys-
tem. Eq. (3.19) separates the inviscid numerical flux into
the sum of an averaged term corresponding to central diffe-
rencing and a dissipative term, which adapts the discretiza-
tion stencil in accordance with local wave propagation. Ac-

4-8

cording to Yee and Harten [23], the n'th component q" of
the flux function Q , IS given as - f .

where All represents the n'th eigenvalue of the transformed
flux Jacobian in i-direction, an denotes the differ-
ence of characteristic variables + i.;.

I
l and

i f an = 0.

The function w . often called entropy function, prevents the
scheme from violating the entropy condition when the
wave speeds. A,, vanish. According to Harten, this function
is given by

~

l

where 0<6<0.5 is a suitable chosen parameter. The term h"
in eqs. (3.20) and (3.21) represents a limiter function which
brings the scheme to second order. Many limiter functions
have been proposed in the literature (see e. g. [26,28]). In
most of our calculations the function

Y , , k = (3.24)

(ij,k) and (i+l,j,k). The fluxes through the other cell faces
are evaluated in a similar manner.
Setting the limiter h" identically to zero reduces this
method to Roe's first-order flux difference method. It has
been shown that the scheme is TVD (Total Variation Di-
minishing) for one-dimensional nonlinear hyperbolic sca-
lar equations and for linear constant coefficient systems. It
is formally second-order accurate except at shocks where
due to the limiter the accuracy is reduced to first-order.
For viscous flows the entropy correction, eq. (3.23), has to
be carefully designed. The shear layers along solid walls
are numerically smeared, if an entropy correction is ap-
plied to the eigenvalues associated with the convective
waves. On the other hand, if cells with high-aspect ratios
are present. additional support for damping in the direction
of the long side of a cell is needed in regions of low veloci-
ties, such as stagnation points. Therefore, as proposed by
Radespiel and Swanson [29], the correction is constructed
as a function of the cell aspect ratio. In i-direction the cor-
rection for the linear waves, n=1,2,3 (see eq. (3.16)) is de-
fined as

and for the acoustic waves, n=4,5 i t is given by

The parameter 6 is given according to Muller [30]

- . - . -
where h', AI, 1'; are the spectral radii of the flux Jacobians
in i - , j-, k-direction, respectively and 0<w<l. The blending
coefficient, p, accounts for the cell aspect ratio. It is given
as

(3.28)

is used where E > 0 is a small constant to prevent division
by zero. The quantities at face i+1/2 are evaluated using the
Roe averaged state [22] involving the values at grid nodes

It has been shown in [29] that a wide range of flow prob-
lems can be solved accurately with a single set of parame-
ters, that is 6=0.25 and 0=0.3.

In the following some results obtained with the TVD
scheme are shown in order to demonstrate the capability of
the method. Firstly, in Figs. 11- 12 the accuracy is displayed

4-9

for the turbulent transonic flow around the RAE 2822 air-
foil. Calculations have been carried out on a coarse (80x16
cells), medium (160x32 cells) and fine grid (320x64) with
C-grid topology. Fig. 11 shows the pressure distributions
and skin friction distributions along the surface for the
three different grids. It is seen that with the TVD scheme a
grid-converged solution is obtained. The difference be-
tween the medium and fine grid solution is very small. The
improved force coefficients obtained with the upwind TVD
scheme compared to the classical central scheme of chapter
(3.2) is shown in Fig. 12 where lift and drag values are
plotted as a function of the inverse of the total number of
cells.
Next the laminar flow over the NACA 0012 airfoil at
M_ =25 and a=25" is chosen as a test case to demonstrate
that the method is able to handle very strong shock waves
and highly expanded flow. Fig. 13 shows the 250x80 mesh.
The numerical solution is represented in Figs. 14-17. The
streamlines in Fig. 15 feature a large separated flow region
with two distinct vortices. The difficulties in resolving this
highly separated flow are illustrated by a comparison of the
distribution of skin friction and Stanton number along the
airfoil obtained from meshes with different fine grids. It is
obvious, that the grid with 129x41 mesh points is still too
coarse to resolve the separated flow region.
The third viscous test case presented here is the hypersonic
laminar flow past a 15" compression ramp. With onflow
conditions M_=l1.68, ReC=2.47x10', T_=65K and
T,/T_ =4.604 i t corresponds to case 111.4 of the Workshop
on Hypersonic Flows for Reentry Problems, Part 11, held in
Antibes, France. 1991 [31]. Results have been obtained for
three successive grids [32]. The Mach contours of the fine
grid with 288x224 cells are shown in Fig. 18. The pressure
coefficient, skin friction and Stanton number are displayed
in Figs. 19-21. It is seen that almost identical solutions are
obtained on the medium and fine meshes. Experimental
data of Holden [33] are also plotted. The comparison of ex-
perimental and theoretical results shows that the calculated
separation extent is somewhat larger than the experimental
result. The discrepancies may be attributed to the fact that
the experimental data contain 3D effects which are not
modeled in the computation.
As a last test case, Edney's Type IV shock-interference
flow [34] is investigated. This flow problem demands the
solver to resolve many rigorous flow features (see Fig. 22)
and i t points out significant differences in the accuracy and
convergence behavior of the numerical methods [35].
Fig. 23 shows the Mach contours for the TVD scheme and
the classical central scheme with scalar dissipation. In-
viscid results have been obtained for a coarse grid with
60x40 cells and a fine grid with 120x80 cells as shown in
Fig. 23. The results demonstrate the superior resolution of
the upwind TVD scheme. As anticipated, the additional

dissipation required for the central scheme to suppress os-
cillations near shocks, considerably smears both the im-
pinging shock and the distorted bow shock. The upwind
method sharply resolves these features. Moreover, even on
the coarse mesh the internal structure of the field is cap-
tured including the imbedded shock and terminating nor-
mal shock. In contrast to that, the fine grid solution ob-
tained with the central difference scheme still shows a lack
of structure.
Many two- and three-dimensional applications [27,29,37]
have shown, that the upwind TVD scheme provides an ac-
curate discretization for inviscid and viscous flows. Based
on our experience, however, flux difference Split methods
are of difficult use with respect to robustness and parameter
sensitivities for hypersonic flow fields with strong expan-
sions into regions of low pressure and low density as e.g.
on the leeside of re-entry vehicles at high angle of attack.
Moreover, the extension of flux difference.split methods to
non-equilibrium flows is rather complex.

3.5 Flux Vector Splitting
Upwind methods based on the flux vector splitting concept
have shown to be efficient and robust schemes for inviscid
flows. However, often they exaggerate diffusive effects
which take place in shear and boundary layers. Conse-
quently, substantial effort has been put on the improvement
of flux vector split methods for viscous flows [38,39,40].
A remarkably simple upwind flux vector splitting scheme
has been introduced by Liou and Steffen [38,40]. It treats
the convective and pressure terms of the flux function sepa-
rately. The convective quantities are extrapolated to the
cell interface in an upwind-biased manner using a properly
defined cell face advection Mach number. Accordingly, the
scheme is called Adwctiort Upstream Splitting Method
(AUSM). Results for simple llow problems given by Liou
[39,41] have shown that AUSM retains the robustness and
efficiency of the flux vector splitting schemes but it
achieves the high accuracy attributed to schemes based on
the flux difference splitting concept. The computational ef-
fort for the flux evaluation is only linearly proportional to
the number of unknowns, as in the case of central differen-
cing. Furthermore, the scheme can be easily extended to
real gas calculations.The application to various relevant
flow problems, however, has shown [36,42,43,44] that the
original flux vector splitting method of Liou and Steffen
has several deficiencies. It locally produces pressure oscil-
lations in the vicinity of shocks. Furthermore, the scheme
has a poor damping behavior for small Mach numbers
which leads to spurious oscillations in the solution and af-
fects the ability of the scheme to capture flows aligned with
the grid coordinates.
In the present paper several modifications to the original
advection upstream splitting method of Liou and Steffen

4-10

are proposed which substantially improve the scheme's
ability to predict viscous flows accurately. In particular, a
hybrid method is introduced which switches from AUSM
to van Leer scheme at shock waves. This ensures the well-
known sharp and clean shock capturing capability of the
van Leer scheme and the high resolution of slip lines and
contact discontinuities through AUSM. An adaptive dissi-
pation is introduced in order to achieve sufficient numeri-
cal damping in cases of adverse grid situations and flow
alignment. Furthermore, the MUSCL implementation for
higher-order accuracy is modified to allow a more accurate
scaling of the numerical dissipation in boundary layers
where the contravariant Mach number is usually small in
the wall-normal direction. The improved accuracy of the
modified scheme is demonstrated by the calculation of
two- and three-dimensional inviscid and viscous flows.
As shown.in [39,36], the discrete inviscid flux 8:+ 1 / 2 , , , I;
through cell face i+1/2 (see eq.(3.18)) can be interpreted as
a sum of a Mach number weighted average of the left (L)
and right (R) state at the cell face i+1/2 (see Fig. 3.10) and
a scalar dissipative term. It reads

where

denotes the surface vector normal to the cell face i + 1/2.
The quantity c represents the speed of sound. M i + ,,2,j, I;

denotes the advection Mach number at the cell face i + I /2
which is calculated according to [39] as

M = M:+M;
i + ! , j , k 2

(3.31)

where the split Mach numbers Mplm are defined as [25]

i f M 2 1
i f [M I < 1 (3.32)
i f M I - l

r o i f M 2 1
i f I M I < I
i f M I - l

(3.32)

M, and M, denote the Mach number associated with the
left and right state, respectively. The advection Mach num-
ber is given by

1 ((s i p + s i p + sizw))
(3.33) M = -

C

The pressure p at cell face i + 1/2 is calculated in a similar
way as

= P[+P?
i + ! , j , k

2
P (3.34)

where pp'm denote the split pressure defined according to
~251

i f M 2 1
pp = j ~ (M + 1) ~ (2 - M) i f IMI< 1

P :a i f M S - I

(3.35)

i f M 2 1
i f IMIc 1

i f M S - l

The definition of the dissipative term @ determines the
particular flux vector splitting formulation. A hybrid
scheme is proposed here [45], which combines the van
Leer scheme and the scheme of Liou and Steffen (AUSM).
It reads

with

4-1 1

and

where 6 is a small parameter 0 < 6 20.5 and o is a con-
stant 0 I o 5 1.

The above equations clearly show that for a supersonic cell
face Mach number the hybrid scheme represents a pure
upwind discretization, using either the left or right state for
the convective and pressure terms. depending on the sign
of the Mach number. For 0=0 the method reduces to the
classical van Leer flux vector splitting scheme. In the case
of o=l and i = O the original AUSM developed by Liou
and Steffen is recovered. Comparing both fluxes it is obvi-
ous that the van Leer scheme is more dissipative than
AUSM ($ = O) . It has an additional Mach number scaled
dissipative term which does not vanish even for M=O. Con-
sequently, the van Leer scheme is more robust but less ac-
curate than the original scheme of Liou and Steffen, espe-
cially for viscous Row calculations.
The hybrid flux has been introduced in order to ensure
both, the clean and sharp shock resolution of the van Leer
scheme and the low diffusive solution of AUSM in smooth
regions. This is realized by relating the parameter o to the
second difference of the pressure,

a = O (5) .

The value of o is I in smooth regions and switches to 0 in
the vicinity of shocks. Moreover, in order to improve the
damping behavior of the original AUSM (6 =0) in regions

with adverse grid situations and flow alignment, its dissipa-
tive term has been modified. As i t can be seen in eq.(3.38),
controlled dissipation is locally introduced for small advec-
tion Mach numbers, preventing the dissipative term from
approaching zero as the Mach number tends to zero. In
Fig. 24 the dissipative term 4 is plotted as a function of
Mach number. Note, that for simplicity ML - MR is as-
sumed, which is valid at least in the vicinity of M=O on a
sufficiently fine computational grid.
Accurate and efficient calculations of viscous flows require
computational grids with high-aspect ratio cells. Therefore,
the dissipation term of the improved AUSM for small ad-
vection Mach numbers (eq. (3.38)) has to be properly
scaled in order to avoid smearing of the shear layers in
wall-normal direction. As mentioned in [42], this is real-
ized by defining the parameter 6 in eq. (3.38) not as a con-
stant but as a function of the cell metric

= 6 . 0 (3.40)
i + ! j . k i + !,j. k

6
2' 2

where 6 is a small constant, 0 < 6 10.5, and p is a scaling
function. It may be given by

(3.41)
I + - J k 2' .

In the above. /8'/,/8'l,18k/ represent the surface areas asso-
ciated with the i-j-,k-direction of the body-fitted coordi-
nate system, respectively. The scaling function p in j- and
k-direction is defined in a similar way. With this scaling,
controlled adaptive dissipation can be introduced, which
on the one hand improves the damping behavior of AUSM
in adverse grid situations but on the other hand does not
spoil the accuracy of the method for boundary layer calcu-
lations. It is obvious from eqs. (3.38)-(3.41) that additional
dissipation as a function of the grid aspect ratio is fed in
only along the long sides of the cell, that is if the cell face
area (Z i l is smaller than the+greas 18'1 and . In the con-
trary, if the cell face area IS I IS larger than areas and

as typical in wall-normal direction, the original non
smearing dissipation of AUSM is recovered.
An alternate scaling function is given by

This function leads to a constant s = 6 along the long side
of the cell, whereas in the wall-normal direction the dissi-
pative coefficient is weighted by the cell aspect ratio. It is
obvious that along the short cell face the dissipation is re-
duced as the cell aspect ratio increases.

4-12

Another possibility for the scaling of the adaptive dissipa-
tion is to use the local flow quantities instead of the metric
terms. I n this case the function p is defined as

where hl,iJ,hk are the spectral radii of the inviscid flux Ja-
cobians i n the i-, j-, k-coordinate direction, respectively.
The scaling function eq. (3.43) also introduces additional
damping in the direction of the long side of the cell. In the
wall-normal direction again only a small amount of dissi-
pation is allowed.
The spatial accuracy of the improved nux vector split
scheme depends on the determination of the left and right
state at cell interfaces. For a first-order scheme the flow
quantities at the left and right state are given by their values
at the neighboring mesh points, i.e. i j ,k and i+i,j,k, respec-
tively, (see Fig. IO). Higher-order accuracy is obtained
with the MUSCL approach in the present work. MUSCL
uses extrapolation of flow quantities for the calculation of
the left and right states. With this approach several deci-
sions must be taken which affect the ability of the scheme
to capture strong shocks and viscous shear layers aligned
with the coordinate grids. These are the choice of the flow
variables to be extrapolated to the cell face and the choice
of the extrapolation function which gives higher-order
fluxes in smooth regions of the flow. At discontinuities the
function switches to first-order accuracy in order to guaran-
tee shock capturing without spurious oscillation. Here. the
van Albada limiter function is chosen according to [46]

1 (Al+E)A- + (A i + €) A +
UL = 111, j. k + - (3.44)

2 A:+A._? + 2 e

with

A- = u . . 1.1. t - "i - I . ; . I;

where UL denotes the flow quantity U of the left state to be
extrapolated to the face i+1/2. The right state, U R , is evalu-
ated similarly by using the data of points (i,j,k), (i+l,j,k),
(i+2j,k). This limiter function is equivalent to Fromm's
scheme in smooth regions of the flow where the gradients
squared, A: ,A: , are small compared to E. In [46] the
quantity E is used in order to suppress limiting of the solu-
tion in regions where the flow is nearly constant. This is ac-
complished by taking

E = K,Ax" (3.45)

where Ax denotes the distance between the grid points i j ,k
and i+l j ,k . K, is an empirical constant of O(10) and
2<n<3. Note, that one can only expect eq. (3.45) to work
well when solving the flow equations in their nondimensio-
nal form. Eq. (3.45) can be extended to suppress limiting
the fluxes within boundary layers. Not only does limiting
in the wall-normal direction degrade accuray on coarse
meshes but it may also introduce spurious oscillations in
the solution as seen in Fig. 2%). Here, we encounter the
situation that the Cartesian velocity components, U and v,
are nonzero but the contravariant velocity component in
wall-normal direction is close to zero. Limiting the extrap-
olation of U and v individually, as i t is standard practise in
most MUSCL implementations [47], may result in false
values for ML and MR which define the inherent dissipa-
tion of the split flux (eq. (3.29)). This problem is resolved
by defining

where r2=0(100). OmodAUSM is evaluated according to
eq. (3.38) with s =0(0.1), and is the average of the
contravariant Mach numbers at points i j ,k and i+l,j,k.
Fig. 3.2% demonstrates that oscillations in wall-normal di-
rection are completely removed by using eq. (3.46) instead
of (3.45). Note, that this type of oscillations does not occur
in the higher-order results published in [39]. This may be
explained by the fact that the viscous test cases selected in
[39] used Cartesian meshes where the Cartesian velocity v is
equal to the corresponding contravariant velocity compo-
nent. For this special case eq.(3.45)is sufficient in order to
obtain proper dissipative terms.
It should also be mentioned that the second-order interpo-
lant in eq. (3.44) may be replaced by the third-order for-
mula of [48]. This alternative yields somewhat more accu-
rate results for transonic and supersonic flows but i t is less
robust for hypersonic flows with strong shocks.
The selection of flow variables for the extrapolation pro-
cess is described next. Initially, wc tried some standard
choices, these are the use of primitive or conserved flow
variables for extrapolation. It turned out that the latter
choice is not robust at transient shock waves, whereas the
former tends to support oscillations in stagnation point re-
gions behind strong shocks. Furthermore, either choice
does not allow inviscid steady state solutions with constant
total enthalpy. Constant total enthalpy in the steady state
can be obtained if the energy flux in eq. (3.29) is formed
with total enthalpy H being an extrapolated quantity. How-
ever, recalculation of the pressure p in eq. (3.29) from a
single set of flow variables including H does not yield
nonoscillatory fluxes for the momentum equation. Further
numerical experiments showed, that extrapolation of the

4-13

primitives for mass and momentum fluxes combined with
extrapolation of H in order to compute the energy flux re-
sults in nonoscillatory flow solutions and superior conver-
gence behavior. This numerical treatment corresponds
closely to the underlying design principle of AUSM, which
splits the flux vector into an advective and a pressure part.
In the computations of 3D hypersonic flow problems, very
strong shocks may occur in regions of strong variations of
the grid metrics. For these cases shock resolution is further
improved by modifying the limiter function, eq. (3.44), as

(A , ~ + E) A - + (A! + €) A +
(3.47) 'L = 'I,,. k + ~ ' ~ . ~ , k A:+A? + 2 ~

with the pressure switch v , given by eq.(3.39). Addition-
ally, the contravariant Mach numbers, M, and MR, are ob-
tained by extrapolation of the contravariant velocity com-
ponent. More specifically, ML at cell face i+1/2 is
computed by taking

(3.48)

where cL denotes the speed of sound associated with the
left state and (4,) is the contravariant velocity which is
evaluated with the help of eq.(3.47) and

(3.49)

(3.50)

3 '

A. = (6 i . j . k - 6 i - l . j . k) + Si-I /I . , .k (3.5
lsili - i / l , j , '

Here, 4 = [U, v, W] is the vector of Cartesian velocities

In the following, numerical results for inviscid and viscous
flows obtained with the improved advection upstream split-
ting method are presented. Emphasis is put on the method's
capability to resolve wall-noma1 gradients of flow quanti-
ties which for instance occur in entropy and boundary lay-
ers. As test cases the inviscid flow around a blunt slender
cone and viscous 2D flows are selected.
Inviscid calculations around a blunt slender cone [49] at
freestream Mach number M_ =8 and angle of attack a=O"
have been carried out. The curved bow shock detached
from the blunt nose produces a thick entropy layer in the
front part of the configuration which, however, develops to
a very thin layer in the rear part. Since the quality of the

numerical results strongly depends on the resolution of the
entropy layer, computational methods have to be used
which accurately predict this flow feature.
The grid used for the calculations is shown in Fig. 26. The
C - 0 topology has been chosen with 161x41~31 grid points
in i-j-,k-direction, respectively [50]. 21 grid points were
used to discretize the spherical nose shape in streamwise
direction. In i- and j-direction a linear stretching of the grid
spacing was introduced. This allows a suitable grid distri-
bution with respect to computational efficiency. The
stretching in j-direction provides enough grid points in the
near-wall region necessary to resolve the thin entropy layer
in the rear part of the configuration. Fig. 27 shows Mach
number and pressure contours in the nose region obtained
with the improved flux splitting method. The flow field is
axi-symmetric since the angle of attack has been set to
zero. In order to check the accuracy of the scheme, in Fig.
3.28 the entropy value at the wall is plotted along the body
in streamwise direction. Since for inviscid flows the body
surface is part of the stagnation streamline, the entropy is
constant along the body. Its value is determined through
the entropy raise across the normal shock. In Fig. 28 nu-
merical results obtained with the improved AUSM and
with the classical van Leer scheme are depicted. In addi-
tion, the analytical entropy value at the wall is given. In the
front part of the configuration (almost up to 100 nose radii)
the error of AUSM is less than 1%. In the rear part, how-
ever, the accuracy is decreasing. This may be attributed to
the computational grid, which in this part of the configura-
tion is not sufficiently fine to resolve the thin entropy layer
as accurately as in the front part. It should be noted that for
this calculation the scaling function eq. (3.42) with 6 = 0.1
has been used to control the dissipative term. Computa-
tions with the other scaling functions or with different pa-
rameters 6 did not improve the results. As it can be seen in
Fig. 28, the classical van Leer scheme produces less accu-
rate results along the whole configuration. This demon-
strates that on a given grid the improved flux splitting
method is less diffusive compared to the van Leer scheme
and therefore more qualified for the accurate resolution of
entropy layers.
Several two-dimensional viscous flow problems serve to
demonstrate the ability of the new flux vector split scheme
to resolve viscous shear layers. We have chosen transonic
and hypersonic test cases which are well known from liter-
ature.
The first test case is the transonic turbulent flow over the
RAE 2822 airfoil at M_=0.73, a=2.79', R,=65x106. The
computational grid consists of 320x64 cells. Flow compu-
tations were carried out with explicit multi-stage time step-
ping and multigrid with full coarsening. A typical conver-
gence history is displayed in Fig. 29. Computing time was
reduced by full multigrid, that is, coarse-mesh solutions on

4-14

grids with 80x16 cells and 160x32 cells were obtained with
each 100 multigrid iterations in order to produce the initial
solution on the next finer grid. An impression of the overall
flow field is provided by Fig. 25b. The improved AUSM
yields a clean resolution of the shock and the boundary lay-
ers. Fig. 30 compares the distributions of skin friction
yielded by AUSM and van Leer scheme under grid refine-
ment. There is a dramatic improvement of resolution visi-
ble for the improved AUSM. Not only does the improved
resolution of shear layers affect friction drag of the airfoil
but also the pressure forces due to viscous/inviscid interac-
tion. This is demonstrated in Fig. 31 where l i f t and drag
values are plotted as a function of the inverse of the total
number of cells, N. The results of the high-resolution
upwind TVD scheme are included for comparison. The
smeared boundary layers of van Leer 's scheme affect the
interaction with the shock in that the shock location moves
upstream (not shown here). Consequently, l i f t is underpre-
dicted by van Leer's scheme as compared to AUSM and
Upwind TVD. The improved AUSM is best for the predic-
tion of pressure drag whereas AUSM and Upwind TVD do
similarly well for skin friction drag. The relatively large
values of pressure drag for the upwind schemes on coarse
meshes as compared to those for the central differencing
plus matrix-valued dissipation given in Fig. 12 are caused
by the effect of the flux limiter in the nose region of the air-
foil. This effect disappears for subsonic cases when the
flux limiting is switched off. The construction of a limiter
function which is only active at shocks and does not adver-
sly affect smooth flow regions is still unresolved.
The next viscous 2D test case presented here is the hyper-
sonic laminar flow past a 15" compression ramp. The on-
flow conditions correspond to case 111.4 of the Workshop
on Hypersonic Flows for Reentry Problems held in An-
tibes, 1991 1311. The grid consists of 288x224 cells. In
Fig. 32 the Mach contours are plotted. Results obtained
with the second-order TVD scheme and the second-order
improved AUSM with scaling eq. (3.42) and 6=0.05 are
presented. There are no major differences between the re-
sults of the different schemes visible. This statement is
supported by the plots of the pressure coefficient the skin
friction coefficient and Stanton number along the wall in
Fig. 33. Only slight differences occur in the skin friction
coefficient and the Stanton number. As in the previous test
case, the scaling of the dissipative term in the modified
AUSM has no influence on the result on this very fine grid.
These calculations demonstrate that the improved flux vec-
tor split method predicts viscous flows as accurate as the
TVD flux difference splitting scheme. For the viscous test
cases presented here almost no differences in the results
have been observed for the different scaling functions
which have been proposed for a proper scaling of the dissi-
pative term. Compared to the TVD scheme the conver-

gence behavior of the modified AUSM scheme is slightly
worse. However, due to the reduced computational effort
per time step, the overall efficiency of both methods is
comparable. Since in contrast to the TVD scheme the nu-
merical effort of AUSM is proportional to the number of
unknowns, substantial reduction of the computational cost
can be expected for 3D calculations and also for solutions
of flow problems with additional conservation equations.
Computations of complex 3D viscous flows over a winged
reentry vehicle including deflected control surfaces and
multiblock computations of the flow through the slot be-
tween different control surfaces (see chapter 5) demon-
strated the usefulness of the present discretization for gen-
eral 3-D applications. AUSM enables us to compute flows
with very strong shocks and strong expansions into leeside
flow regions, which were impossible with flux difference
split methods.

3.6 Viscous Terms
For the approximation of the Navier-Stokes equations all
schemes presented in the previous sections rely on the
same central discretization of the viscous terms. The vis-
cous fluxes required to determine the solution at point
(i.j.k) are approximated using the auxiliary cell shown in
Fig. 3.10. They contain first derivatives of the flow vari-
ables, which are computed using a local transformation
from Cartesian coordinates to the curvilinear, coordinates
5. q, ([141. For an arbitrary flow quantity one obtains

(3.52)

The derivatives &,.I$,, and c$< are evaluated employing
central finite differences, whereas the cell face vectors and
the volume are used to compute the metric derivatives.
In high Reynolds number flows with thin viscous shear
layer the flow gradients in the direction normal to the wall
are much larger than those along the wall. This fact allows
a simplified approximation of the viscous terms, called thin
layer approximation. Using a body fitted mesh, there is one
family of grid lines almost parallel to the wall and another
one approximately normal to it. I f the thin layer is to be re-
solved accurately and if the number of points is to be kept
within a limit which is tolerable to todays supercomputers,
highly stretched grids in wall-normal direction are used.
On such grids one cannot expect the viscous terms in stre-
amwise direction to be resolved accurately. Therefore, with
the thin layer approximation all the viscous contributions
arising form gradients in the direction of the quasi-stream-
wise coordinates are neglected. In all viscous applications
shown in this paper the thin layer approximation has been
used.

4-15

4. EFFICIENT ALGORITHMS FOR THE
COMPUTATION OF STEADY-STATE SOLUTIONS
As numerical flow simulations pave their way into the
practical aerodynamic design process, the need for efficient
methods to solve the equations governing inviscid and vis-
cous flows has become very obvious. Many solvers still
used in current aerospace development programs exhibit
slow convergence, towards the desired steady-state solu-
tions, which leads to high computer costs and long turn-
around times. Consequently, there is a substantial amount
of research work focused on methods for convergence ac-
celeration. One of the promising approaches is the multi-
grid method. Multigrid which uses a sequence of succes-
sively coarser meshes in order to propagate and damp
disturbances throughout the flow field, was initallly in-
vented and analyzed for the solution of elliptic partial dif-
ferential equations by A. Brandt [51]. Later, the idea was
successfully applied to purely hyperbolic or mixed systems
of equations in fluid mechanics, even though the mathe-
matical backing of these extensions is still incomplete.

4.1 Multigrid Aoproach
To set the stage for the discussions of multigrid in subse-
quent parts of the chapter we first describe the multigrid
method and some means to analyze its performance.

4.1.1 Definition of Multigrid Comuonents
The multigrid method deals with a sequence of meshes
which differ by their density of grid points. They may be
created by successively deleting every second grid line in
all coordinate directions. By this, 4-7 coarse meshes are
generated for practical flow problems. Here, we will de-
scribe an arrangement of a fine mesh with index f and a
coarse mesh with index c. The semi discretization of chap-
ter 3 on the fine mesh can be written as

+
d + -R1 -Wr = -
dt "f

+ . +
where Wf IS the solution vector, Rf represents the discrete
flux balance, and V, is the discrete volume around the grid
point. The fine-mesh solution, Wr, may be improved by
numerically advancing eq. (4.1) in time, which is called
smoothing in multigrid terminology. Practical smoothing
schemes based on explicit and implicit time stepping are
discussed in chapter 4.2. In order to improve the solution
on the fine grid with the aid of a coarse grid, a series of
steps are carried out as follows.
Both the solution vector and the residual vector are trans-
ferred to the coarse mesh. Simple injection

-9

at the coincident grid point is used for transfer of the solu-
tion. In order to ensure conservation property for the resid-
ual transfer, full weighting according to [51] is applied as

(4.3)

and px, py, pz are the standard averaging operators in
curvilinea: coordinate directions. Note, that the transferred
re+sidual, Rf , should be based on the most recent solution,
W f , in order to obtain best efficiency of the overall
method. The restricted residual is used to define a forcing
function for the coarse mesh

(4.4)

as the difference between the restricted residual and the
coarse-grid residual calculated with the injected solution.
The use of the forcing function eq. (4.4) is necessary if we
want to solve eq. (4. I) on the coarse mesh in order to ob-
tain corrections for the solution on the fine mesh. The
smoothing scheme is then used to solve

-pc = -(rt, + B,),",. (4.5)

Note, that during the first numerical upd5te of eq. (4.5) on
the coarse mesh the coarse-grid residual R, drops out. This
ensures zero corrections from the coarse mesh if the re-
stricted residual from the fine mesh, I f R f , vanishes in the
steady state.
Execution of one or several time steps on the coarse mesh
yields corrections of the form

+

+ -9k + o
AW, = W, -w,

where the superscripts denote the discrete time level. The
correction is then transferred to the fine grid which is called
prolongation. The prolongation operator is denoted by I,'
and it contains linear interpolation for most of the results
presented in the present lecture (see also chapter 4.3). The
total correction on the fine mesh after n time steps on the
fine mesh and k time steps on the coarse mesh is

4.1.2 Analvsis of Model Problem
Von Neumann analysis of a model problem is carried out in
order to study the numerical behavior of the multigrid com-
ponents defined above. Until now, we have used a 2D sca-
lar model of the type

+ + w, = Wf (4.2)

4-16

aw aw aw azw
at ax ay a y 2
- + a - + b - = c - . (4.8)

With appropriate choices of a, b, and c, the model allows to
investigate the properties of multidimensional convection
dominated problems and also cases, where diffusion takes
over.
If one uses uniform spacings, Ax and A y , for discretiza-
tion, one can also study the effect of high aspect ratio cells,

Ax >> Ay (4.9)

and convection aligned with the grid,

aAy >> bAx . (4.10)

The scalar model does not allow analysis i n situations
where the eigenvalues of the inviscid flux Jacobians of the
system of flow equations differ due to large differences i n
the acoustic and convective wave speeds. These differ-
ences are typical features of low-speed flow regions and
also near sonic lines. The interested reader is referred to
Refs. [52-541 for more details about these problems.
We apply semidiscretization for the spatial derivatives on a
domain, R , which is covered with the fine mesh containing
cells with spacings AX, and Ay, and the volume, Vf =
Ax,Ayf. Defining a time step on the fine mesh, for exam-
ple,

CFL V,

aAyf + bAxf
Atf = (4.1 1)

the discrete approximation of eq. (4.8) at point (i j) reads

A X f R . . = a A y f D x + bAx D -c-D
1. J Y Ayf Y Y

(4.12)

D,, D, and D,, denote the difference operators used to ap-
proximate the first and second derivatives of eq. (4.8), re-
spectively. Suppose we want to investigate first-order
upwind differencing for the convective terms. Then, we
obtain

for a > 0 and b > 0. Difference operators for higher-order
discretization may be found in Refs. [55-561.
Assuming a periodic boundary condition, the scalar func-
tion, w(x,y,t), can be expressed by a Fourier series

i J

where the Fourier angles, 0, , O y , vary between -n and n.
In the Von Neumann analysis the behavior of a single mode

is studied and the complete result is obtained by linear su-
perposition.
Inserting eq. (4.15) and (4.13) into eq. (4.12) one obtains
the growth of the amplitude of the Fourier mode,

At
V 2 = - [a A y (I s i n O , + (I -cos$,))

+ b A x (I s i n Q y + (I -cosQy) (4.16)

Ax + 2c- (1 - cos$)]
AY

If the Fourier symbols of a time stepping operator used to
solve eq. (4.16) is denoted by P , one can write eq. (4.16) as

or

i n + ' = go" '

g = I - P i
(4.18)

The Fourier symbols of some selected time stepping
schemes used as a smoother for multigrid algorithms are
discussed in section 4.2. Any time-stepping scheme to
solve the semidiscrete equation (4.12) is linearly stable, if
the Fourier mode does not grow in time, that is

lgl 2 I . (4.19)

4. I .3 Multigrid Analysis
If a multigrid algorithm is used to solve semidiscrete equa-
tion (4.12), the resulting iteration operator becomes a ma-
trix according to Hackbusch [57]. Accordingly, the Fourier
transform for analysis of an iteration with multigrid is a
matrix with the dimension 2I-l x 2I-l where 1 denotes the
number of grid levels involved. Analysis of this type for
fluid mechanics has been published by Mulder [58],
Leclercq [591, and Eliasson [60].
As an alternative, Jameson [61] has presented a so-called
uniform analysis which simplifies the Fourier transform of

4-17

the matrix to a scalar. With the multilevel uniform analysis,
fine-grid and coarse-grid corrections are formally com-
puted at all points of the fine grid. Then a nonlinear filter is
applied to remove the coarse-grid corrections at fine-grid
points not contained in the coarse-grid. The filtering intro-
duces errors in the analysis for the grid points not con-
tained on the coarse grid, that is, it does not allow for the
coupling effects due to the interpolation operator in the
multigrid method. However, it does offer the advantages of
simplicity and easy application to more than two-level
schemes. Thus, i t allows the rapid comparison of different
multigrid algorithms. If a multigrid method is unstable or
inefficient according to this analysis, then it is certainly not
a reasonable scheme.
In order to apply the uniform scheme analysis one needs
the Fourier symbols of the multigrid components. The Fou-
rier symbol of the injection operator from eq. (4.2) is sim-
ply 1 . The weighted residual transfer operator in 2D,

has a Fourier transform,

(4.20)

As for prolongation, we consider only the mesh points
which are contained in the coarse mesh and the fine mesh.
Hence, Fourier transform of prolongation is simply 1.

4.2 Smoothin? Schemes
This section discusses two selected schemes to iterate the
semidiscrete equation

a~
at v - w + - = 0

towards its desired steady state solution. The chosen ex-
plicit and implicit schemes are characterized by their low
operation count and storage requirements. The analysis for
1 D and 2D scalar model problems indicates good damping
properties of these schemes for high-frequency compo-
nents of transient errors whereas the long waves which oc-
cur on fine coordinate meshes are slowly damped. There-
fore, these schemes may be taken as smoother for a
multigrid method.

4.2.1 Explicit Multistage Schemes
Explicit multistage schemes are considered here for several
reasons. They are simple to program, in particular at
boundaries, and for multiblock partitioned computational
domains. Moreover, the number of stages and their coeffi-
cients can be varied in order to optimize both damping and
convection of transient disturbances [61-621. Finally, the

explicit schemes usually do not require start-up proce-
dures. The most simple multistage scheme with p stages
reads

w n + I = (P)

One can always represent the change of the Fourier mode,
6 , according to eq. (4.16) by substitution of eq. (4.14) into
(4.21). This yields the amplification rate, g, as function of
the Fourier angles ax, ay Fig. 34 presents results of a 3-
stage scheme and first-order upwind spatial discretization
for a ID convection problem taken from Ref. [62]. High-
frequency error modes for x/2 c 0, < TI are well damped
whereas the damping for lower frequencies is poor. The
Courant number of this scheme is limited to about I .5. This
indicates that transient errors in the solution are convected
out of the computational domain at a relatively low rate per
time step.
In eq. (4.21) we have assumed that both the central (con-
vective) and dissipative parts of the spatial discretization
operator, Z , are evaluated on each stage of the time step-
ping scheme. Somewhat more freedom in the design of
multistage schemes is gained by evaluating the dissipative
parts only at q out of p total stages. Moreover, the dissipa-
tion evaluations may be weighted. If one defines C and D
as the centrally discretized and dissipative part of the flux
approximation, the residual function of weighted multi-
stage schemes is defined as

(4.22) *

One can extend the stability range of the explicit multistage
schemes by a simple scalar implicit operator acting on thc
residuals. For two dimensions, this residual smoothing can
be applied in the factored form

(1 - p,VxAx) (I - pyvyAy) % (I) = (4.23)

where the residual %:I) is defined as

(4.24)

0 and A are the normal forward and backward difference
operators. The smoothing coefficients, p, and py depend
on the Courant numbers in the individual coordinate direc-

4-18

tions according to Refs. [63,64]. This implicit procedure
allows the explicit stability limit to be increased by a factor
of 2 to 3. The performance of a particular 5-stage scheme
which was optimized by Tai [65] using weighted residual
evaluation and implicit residual smoothing is displayed in
Fig. 35. The scheme damps disturbances much better for
the long-wave range, as compared to the 3-stage scheme of
Fig. 4.1. Note, that this scheme requires only 3 evaluations
of dissipative flux terms which usually take the majority of
floating point operations. Contours of constant amplifica-
tion factor over the Fourier angles in 4 and 5 directions for
the 2D convection problem with a=b=l are shown in
Fig. 36. Results of the uniform multigrid analysis briefly
described in section 4.1 are also included. It is seen that the
multigrid scheme acts as to improve damping at lower fre-
quencies. There is enough stability margin of the scheme
for Fourier, angles 101 > ;/4 which indicates that the errors
contained in the uniform analysis can be tolerated.

4.2.2 ImDlicit LU-SSOR Scheme
Multigrid methods based on explicit multi-stage schemes
have been shown to yield good convergence rates for both
inviscid and viscous flows. As seen in chapter 4.2.1 the
principal reason for this is, that the number of stages and
the stage coefficients can be tuned such that good high fre-
quency damping is obtained which is necessary for an effi-
cient multigrid process. However, for flow problems which
are governed by equations with strong source terms. as for
example viscous flows for which turbulence viscosity is
determined by multi-equations turbulence models and hy-
personic non-equilibrium flows, a severe time-step restric-
tion is imposed on explicit schemes. This leads to slow
convergence, even if a multigrid method is used. In order
to overcome the time-step restriction, some kind of implicit
operator has to be used. Various approaches are known i n

the literature. Preferable techniques are the point-implicit
treatment of source terms or the full implicit treatment of
all equations. Thus there is an urgent need to develop im-
plicit multigrid methods.
I n the past efficient multigrid methods have been devel-
oped in conjunction with implicit schemes (e.g. [66-701).
Various implicit operators have been used as a multigrid
driver including factored and unfactored schemes. This re-
port focuses on the investigation of the damping properties,
convergence behavior and stability of the implicit LU-
SSOR scheme in the framework of a standard multigrid
method.
The LU-SSOR scheme (Lower-Upper Symmetric Succes-
sive Overrelaxation) became quite popular because of its
low numerical effort, efficient implementation on vector
computers and reasonable convergence speed. The algo-
rithm belongs to the class of factored schemes and is based
on the decomposition of the full implicit operator into

lower and upper triangular matrices. The LU-SSOR
scheme originally introduced by Yoon and Jameson
[69,71] and further developed by Rieger and Jameson [72]
and Yoon and Kwak [73] combines the advantages of the
LU-factonization and the symmetric Gauss-Seidel relax-
ation. Recently, Yoon et al [74] and Blazek [70,75] have
used the LU-SSOR scheme as an effective smoother for an
efficient multigrid scheme. They have shown fast conver-
gence for many inviscid and viscous flow problems includ-
ing high speed flows.
In the following the LU-SSOR scheme is briefly presented.
Details are given in 17.51. In general an implicit scheme for
the system of ordinary differential equations (4.1) can be
formulated as

with the solution correction

and the discrete flux balance

(4.25)

(4.26)

(4.27)

+
where RC and 8' denote the convective and viscous part,
respectively. The parameter p (1/21p11) determines the ac-
curacy of the implicit scheme in time. For p=1/2 the
scheme is second-order accurate, while for all other values
the time accuracy drops to first order.
Linearizing eq. (4.25) by

(4.28) +n d i t -+
= R +>AW+O(At2)

aw

and dropping all terms of second- and higher-order, one
obtains the general unfactored implicit scheme

(4.29)

+ - + . For a grid point (ij,k) the term a R / a W I S expressed as

+ +
aR?+ I /2, j, k aR?- l /2 , j ,k

ai3 ai3
-3

aRg j + 1/2, k

a i 3
aR;j ,k+1/2

ai3
+ (4.30) ai3

aRg j, k - 1/2
+

ai3

Here it is assumed, that the thin layer approximation of the
Navier-Stokes equations is used in which the viscous flux
only in the wall-normal direction (j-direction) are taken
into account.
The evaluation of the quantities on the right hand side of
eq. (4.30) in terms of the flux Jacobians yields

where A', B', e denote the split matrices of the flux Jaco-
bians A,B,C in i-j-k-direction, respectively. The matrices
with superscript '+' contain only positive and those with
superscript '- ' only negative eigenvalues. As proposed in
[72] they are given by

(4.32) 1
2 A' = - (A + o r , I)

with

rA = max { /hl:A eigenvalue of matrix A} . (4.33)

The factor cq 0 2 1 , determines the amount of implicit dissi-
pation and hence influences the damping and convergence
properties of the scheme.
The terms B' and cf: are defined in the same manner. The
matrix H in eq. (4.31) corresponds to a viscous flux Jaco-
bian without the spatial operators. It has been found that in
the framework of a finite volume formulation the use of
correct metric terms is a critical point. For details the
reader is referred to references [75].

Inserting expression (4.3 1) into equation (4.29) one obtains

The LU factorization of the implicit operator of eq. (4.34)
then yields

+ +
(L D - ' U) A W = -At R n . 1. J , k (4.35)

with the factors

D = (4.36)

The use of splitting according to eq. (4.32) allows a simpli-
fied evaluation of the diagonal operator D

At
D = I + p- V [(T A + rB + rc. I , J , . k) + 2Hi , j, k] . (4.37)

The diagonal dominance of the factors L and U is provided
by eq. (4.32). Hence, each factor of the decomposition is
diagonally dominant and thus the numerical stability of the
inversion process is ensured.
As demonstrated in [75] one iteration of the LU-SSOR
scheme is carried out in two steps, a forward and a back-
ward sweep

The sweeps are accomplished along diagonal lines. As a
consequence, in comparison to the most other implicit
schemes, only a block diagonal matrix for viscous flows -
or even a scalar diagonal for inviscid flows - instead of
block tri- or pentadiagonal matrices has to be inverted.

4-20

block tri- or pentadiagonal matrices has to be inverted.
This reduces the numerical effort significantly and i t also
allows a straight forward vectorization. Furthermore, as
shown in [72] the Jacobian matrices can be substituted by
fluxes which considerably reduces the number of opera-
tions. All in all, the computational expense of the
LU-SSOR scheme is comparable to that of an explicit two-
stage scheme (see chapter 4.2. I) .
In combination with multigrid the LU-SSOR scheme de-
scribed above is used as smoother on all grid levels. Its
damping properties have been investigated in detail by Bla-
zek [75] using single- and a two-grid von Neumann Fourier
analysis as described in section 4.1. Central as well as
upwind spatial discretizations of the explicit operator (right
hand side of eq. (4.29)) have been considered. Figs. 37 and
Fig. 38 present contours of the single-grid amplification
factor for the central discretization and the second-order
upwind discretization for a fully convection dominated
model problem. In both cases the influence of the relax-
ation parameter w (eq. (4.32)) is shown. For the central dis-
cretization (Fig. 37) the best damping is obtained with e l
(no overrelaxation). However, it is evident, that compared
to the very good damping properties of explicit multi-stage
schemes the high frequency modes are only poorly damped
with the implicit LU-SSOR scheme. Fig. 38 shows that i n
the case of upwind discretization the high frequency damp-
ing behavior of the LU-SSOR scheme can be significantly
improved by a moderately increased relaxation parameter.
Further improvement can be achieved by spendin, 0 two
time steps on the fine grid.
Despite the fact that compared to the explicit multi-stage
schemes the damping behavior of the implicit LU-SSOR
scheme is rather poor, an efficient and robust multigrid
method driven by the LU-SSOR scheme can be con-
structed as demonstrated in [75]. Fig. 39 displays the con-
vergence behavior for the transonic inviscid flow past the
NACA 0012 airfoil for M_=0.8, a=1.25". An 0-type grid
with 160x48 cells has been used and the right hand side has
been discretized by central differences. The convergence
histories of a single-grid and two different 5-level multi-
grid schemes are compared. The number in the parentheses
denote the number of time steps on each grid, ordered from
the finest to the coarsest one. As one can observe, a signifi-
cant improvement of the convergence is obtained by using
the LU-SSOR scheme in combination with multigrid.
Note, that the usual multigrid scheme with one time step on
each grid was not running stable. This may be due to the
poor high frequency damping of the LU-SSOR scheme.
Fig. 40 presents the convergence behavior of the implicit
multigrid scheme for a hypersonic laminar flow past a 15"
compression ramp at a medium Reynolds number (test case
111.4 of Antibes workshop see Figs. 32-33). The flow pa-
rameters are M_ =11.68, Re,=2.47x105, T_=65k and

TWIT_ =4.604. A computational grid with 288x224 cells
has been used. Fig. 40 displays the convergence histories
of different multigrid strategies. As one can observe, the
multigrid schcmk with two time steps on all grids shows
the fastest convergence and requires by far the shortest
CPU-time for the same residual level. It is also evident
from Fig. 40 that the LU-SSOR scheme is only in combi-
nation with multigrid adequate to solve this flow problem.

4.3 Multigrid Strategies
The numerical simulation of high Reynolds number flows
requires coordinate meshes with high-aspect ratio cells in
order to resolve thin shear layers with a reasonable number
of grid points. This renders the discretized flow equations
stiff because the spectral radii of the flux Jacobian in wall-
normal and tangential coordinate directions are very differ-
ent. Consequently, convergence to the steady state slows
down considerably for such flows if no action is taken to
circumvent the problem. Similarly, stiffness occurs in situ-
ations where the flow is aligned with the grid lines and
hence, the numerical dissipation inherent in modern
upwind schemes vanishes. One possibility to cope with
stiffness resulting from high-aspect ratios is to use specific
multigrid strategies in order to improve damping rates. The
semicoarsening method introduced by Mulder [58] is one
possible approach. Fig. 41 gives a sketch of the idea for
two grid levels. With conventional full coarsening the fine
mesh with m x n cells is coarsened to yield a mesh with
m/2 x n/2 cells. Figs. 41b-d show schemes with semicoars-
ening in the different coordinate directions, which use two
coarse meshes, m/2 x n, and m x n/2. The various semi-
coarsening schemes differ in how the corrections on the
coarse meshes are assembled and prolongated according to
Ref. [76]. The coarse-mesh corrections of the scheme,
Fig. 4 I b. are averaged before adding them to the fine mesh.
This is indicated by the numbers at the "up" arrows. Due to
this averaging, half of the individual corrections on the
coarse meshes is lost.
In order to overcome this deficiency of the semicoarsening
scheme, two more variants are considered. For the scheme
of Fig. 41c. the solutions on the coarse meshes are com-
puted sequentially. Hence, the corrections obtained on the
m/2 x n mesh can be used to update the m x n/2 mesh be-
fore time stepping (as indicated by the horizontal arrow).
The sequential update of the second coarse mesh allows the
full amount of corrections to be passed up to the fine mesh.
An interesting compromise between the schemes of
Figs. 41 b and 41c is displayed in Fig. 41d. Here, only the
corrections common to both of the coarse meshes, m/2 x n,
and m x n/2, are averaged, whereas the corrections to the
modes living either on m/2 x n or on m x n/2 are passed to
the fine mesh in full.
For the numerical solution of the Navier-Stokes equations,

4-2 I

the two-level strategies presented in Fig. 41 are extended to
multilevel schemes as displayed i n Fig. 42 following ideas
of Mulder [58]. Suitable coordinate meshes for thin bound-
ary layers exhibit mostly cells with high aspect ratios in the
surface-aligned direction. Fig. 43 displays further variants
of semicoarsening for these situations which are computa-
tionally cheaper than the schemes shown in Fig. 42.
Detailed numerical investigations for various viscous flow
problems have been reported in Ref. [76]. A sample result
is presented in Figs. 44-45. The flow over a slender fore-
body is chosen to represent a generic configuration corre-
sponding to an air-breathing high-speed transport. The high
Reynolds number requires a mesh with aspect ratios up to
25000. The flow computations where done with boundary
layer transition fixed at 2 percent chord. The flow solution
shown in Fig. 44 was extensively investigated with respect
to both grid convergence and residual convergence. The
convergence histories presented in Fig. 45 indicate sub-
stantial convergence acceleration by multigrid. The se-
quential semicoarsening scheme takes 194 cycles and 570s
on CRAY-YMP to reduce the averaged residuals by 6 or-
ders of magnitude. The scheme with full coarsening takes
1024 and 1230s whereas the single-mesh code requires
7762 steps and 6190s to achieve the same level. We con-
clude that suitable multigrid strategies can improve compu-
tational efficiency by an order of magnitude for tough flow
problems.

5 . APPLICATIONS
Applications to complex, three-dimensional configura-
tions are siven in this section. To demonstrate the range of
applicability. sub-. trans-, and hypersonic flow fields are
considered. Since the solution method uses structured.
body-fitted meshes. the multiblock approach is employed.
Hence, this section begins with an outline of the multiblock
concept. The first problem to be presented is concerned
with the interaction of a jet with a multi-element wing at
subsonic speed. The next application deals with engine-air-
frame integration for transonic transport aircraft. At last the
flow field around a reentry vehicle at hypersonic speeds
will be analyzed.

5. I Multiblock ApDroach
Using structured, body-fitted meshes the physical domain
is decomposed into a set of computational cells by the cur-
vilinear coordinates \ , q , and < , as sketched in Fig. 46 for
a three-dimensional wing. The curvilinear coordinates al-
low the mapping of the physical domain into a computa-
tional domain as shown in Fig. 47, where the computa-
tional coordinates i , j , k are defined along the curvilinear
directions 5 , q , and < . With the indices i , j , k each point in
the computational domain and his neighbors may directly
be identified, and the underlying structure allows an easy

implementation of the solution algorithm on vector com-
puters.
For complex configurations in general it is not possible to
map the physical domain into one coherent computational
domain. Therefore, the physical domain of interest is de-
composed into different appropriate regions which are
called blocks. Each block is mapped into a separate com-
putational domain, and the How solver is then repeatedly
applied to the different blocks. In order to establish a com-
munication between the blocks, data has to be transferred
between adjacent block faces. In the DLR CEVCATS code
considered here, the exchange of data is established by us-
ing the concept of fictitious points, as sketched for a two-
dimensional example in Fig. 48. For a 2D problem the real
computational domain ranges from i = 2 to i = imax and j =
2 to j = jmax. This real computational domain is sur-
rounded by a sheet of fictitious cells, as indicated by the
dashed lines i n Fig. 48. Considering a simple 0-mesh
around an airfoil. the physical domain may be mapped into
the computational domain by introducing' a computational
cut at i = 2 and i = imax, see Fig. 49. Since in the physical
domain the block faces at i = 2 and i = imax are adjacent to
each other, the exchange of data can be performed by load-
ing the data of line i = 3 into the line of fictitious points at i
= imax+l. and by loading data of i = imax-l into the line
with i = 1. as kketched in Fig. 50. It should be noted that
when using a vertex based method, it is not sufficient to
transfer only the dependent variables. In order to evaluate
the flux balances for the points lying directly on the line of
the computational cut, the Cartesian coordinates of the ad-
jacent block face have also to be provided for the fictitious
points. However, for time-invariant grids this needs only to
be done once at the beginning of the computation.
I t is well known that there does not exist one optimal grid
topology for arbitrary configurations. Each aerodynamic
component of an aircraft may have its own natural grid
structure. and different configurations call for different
block arrangements. Therefore, the part of a computer code
which depends on the specific configuration has to be kept
to a minimum to allow an easy change of grid topologies.
In the CEVCATS code this flexibility is provided by an ex-
ternal logic-file which contains all information about the
arrangement of blocks, adjacent block faces, and boundary
conditions on these block faces. With the information
stored in the logic-file, data in the fictitious cells is updated
depending on the boundary conditions specified on the par-
ticular block face. In order to allow a high flexibility for
complex problems, block faces may be subdivided into ar-
bitrary segments. The logic-file then identifies the size and
the type of boundary condition on the segments. The use of
the logic-file allows to apply one source code to various
kinds of problems without the need to change and recom-
pile the program.

4-22

As long as the data of all blocks is stored in the main mem-
ory of the computer, the fictitious cells at computational
cuts may be updated after each operation inside a block,
and sweeping successively through all blocks by consis-
tently updating the block boundaries at coordinate cuts, the
block structure can be made invisible for the solution algo-
rithm for explicit time stepping methods. However, in or-
der to enable the computation of problems which exceed
the storage capacity of the main memory, the DLR CEV-
CATS code allows the storage of block data on external
high-speed storage devices. In this case only one block at a
time is loaded into the main memory, and data of all other
blocks is stored on the external devices. Having performed
a certain number of operations inside the block, data is un-
loaded onto the external devices and data of the next block
is transferred into the main memory. This strategy theoreti-
cally enables the computation of problems with an almost
unrestricted number of grid points. The problem with this
strategy is the high amount of I/0 operations which arise
when the cut boundaries should be consistently updated.
This becomes especially important when multigrid acceler-
ation is used. since performing more operations inside a
block before switching to the next one introduces a time-
lag in the evolution of the solution in different blocks. This
time-lag may severely deteriorate the damping properties
of the scheme. which are mandatory for good multigrid
performance. In the CEVCATS code different strategies for
multiblock multigrid have-been implemented to allow the
best compromise between convergence and U0 operations,
depending on the problem. Without going into the details
of the different strategies i t may be noted that even in the
strategy with the,lowest amount of I/0 operations, a sweep
through all blocks is completed on one grid level before
starting on the next coarser grid. It was found that perform-
ing a complete multigrid cycle inside a block before
switching to the next block degrades the multigrid perfor-
mance to that of a code without multigrid acceleration or
even inhibits convergence. The application of Full Multi-
grid may alleviate the problems associated with the time-
lag, since the solution which evolved on coarser meshes
provides a well conditioned starting solution on the finest
mesh, and time-differences between blocks are then al-
ready rather small.
Details of the implementation of the multiblock multigrid
technique into the CEVCATS code may be found in [77]
and [78].

5.2 Interaction of a Jet with a Multi-Element Wing
The influence of a jet on a High-Lift device was investi-
gated. It was assumed that the flow field will be dominated
by the momentum of the jet flow, and the solution of the
Euler equations was regarded as being sufficient to de-
scribe the main flow phenomena. The greatest challenge

was to decide on an appropriate grid topology. On the one
hand the components of the High-Lift device had to be suf-
ficiently resolved, and on the other hand the jet generator
had to be incorporated into the mesh. Therefore, a prelimi-
nary two-dimensional study was performed to investigate
different grid topologies for multi-element airfoils. In the
finally chosen topology all single components were re-
solved by local 0-meshes around each component, and the
0-meshes were then embedded into a global H-mesh. The
grid was generated with the mesh generation tool MEGA-
CADS [79]. Fig. 51 gives a view of the 2D mesh around
the complete multi-element airfoil, and Fig. 52 and Fig. 53
show the mesh topology in the region of the slat and in the
region of flap and tab.
Since the CEVCATS code has an option for the computa-
tion of two-dimensional flows on block structured grids,
the same source code as for the following three-dimen-
sional computations could be used for this preliminary test
problem. Fig. 54 shows the pressure distribution computed
for M, = 0.182 and a = IO". The corresponding distribu-
tion of total pressure losses is displayed in Fig. 55. On all
components total pressure losses are well below 2%. The
convergence history for this case is given in Fig. 56, where
a W-cycle with four grid levels had been used.
The described grid topology had proved to be adequate for
this problem, and the incorporation of the jet-generator was
achieved as sketched in Fig. 57. Fig. 58 shows a view of
the symmetry plane of the final grid, where the components
of the multi-element wing and the jet-generator are dis-
played as solid objects. The jet-generator had been re-
solved by a local polar mesh, and this polar mesh was em-
bedded into the global mesh, as shown in Fig. 59.
First computations were performed at M, = 0.182 and OL =
IO", and the ratio of the total pressure of the jet to the ambi-
ent static pressure was chosen to P, je,/P, = 2.0. At these
conditions the Mach number of the jet is close to M, = 0.9
at the exit of the jet generator. Fig. 60 shows the Mach
number distribution in the symmetry plane. The jet can be
identified by the concentration of isolines at the jet bound-
aries. Due to the numerical viscosity, the boundaries are
spread into regions of large gradients instead of being dis-
continuities. Since for these calculations the basic cell ver-
tex central differencing scheme had been used, the srnear-
ing effect of the scalar dissipation is clearly visible. The jet
passes very closely beneath the slat, and due to the pres-
ence of flap and tab the jet is deflected by nearly 25'. In
Fig. 61 the corresponding streamline pattern is displayed.
When the jet hits flap and tab, streamlines are running
against the main flow direction around the leading edges of
flap and tab. Fig. 62 gives an enlargement of the region
around the tab. Since the streamlines are following the sur-
faces of flap and tab, the momentum of this deflected part
of the flow leads to a deflection of the total jet. The interac-

4-23

tion between jet and flapltab influences a large region of
the flow around the wing. Fig. 63 shows the streamline pat-
tern on the lower wing surface. Hitting flap and tab, fluid
divcrts i n all directions. It takes about five engine diame-
ters apart from the symmetry plane until the main flow di-
rection prevails again. It should be noted that the boundary
at the wing tip was modelled by solid wall conditions to
simulate the wind tunnel walls.
For the onflow conditions of M, = 0.147, a = IO", and a
pressure ratio of P, ,,,/P, = 1.252, experimental data were
available. Sectionwise pressure distributions were mea-
sured in the symmetry plane, half an engine diameter apart
from the symmetry plane, and one engine diameter apart
from the symmetry plane. Figs. 64-66 show a comparison
of experimental and computational data. The qualitative
agreement between calculation and experiment is quite
good, despite the neglection of viscous effects. The influ-
ence of the jet on the pressure distribution in different sp-
anwise direction is accurately predicted by the calculation.

5.3 Engine Intecration for Transoort Aircraft
Engindairframe integration is a key feature i n the design
and development of advanced technology aircraft, since
the interaction between propulsion system and airframe
can have a significant impact on the performance of the air-
craft. It is evident that an optimal integration of the propul-
sion system into the airframe will result in an enhanced
performance of the whole aircraft. In order to get a better
understanding of the aerodynamic phenomena playing the
major roles in the interference process, substantial efforts
have been made to simulate interference effects. Besides
wind tunnel testing numerical methods are increasingly
gaining attention. and the solution of the Euler equations
has successfully been used to predict interference effects
[80, 81, 821. However. the flow around modern transonic
wings is very sensitive .to viscous effects, and neglecting
viscosity leads to systematic deviations from experimental
results [83]. Therefore, the Navier-Stokes equations have
LO be solved for an adequate simulation. For complex con-
figurations grid generation becomes a substantial chal-
lenge, especially for viscous flows, since the boundary lay-
ers on all components have to be resolved. To alleviate the
necessary effort and to approach the task of generating a
viscous grid for the complete configuration step by step, i t
therefore seems appropriate to first resolve only the bound-
ary layer on the wing and to treat all other components as
in inviscid flow.
In the study to be presented here, the DLR-F6 configura-
tion has been selected as a generic twin-engine transport
aircraft configuration. The propulsion system is simulated
by axisymmetric throughflow nacelles, and the nacelle po-
sition was chosen to give rise to quite strong interference
effects. Fig. 67 presents a view of the model in tail-off con-

figuration including the main geometrical dimensions.
Using block-structured methods, an appropriate grid topol-
ogy has to be chosen. On the one hand different engine sys-
tems may have to be realized, and on the other hand the
boundary layer around the wing has to be resolved ade-
quately. Here a global H-topology in streamwise direction
and an 0-topology in spanwise direction have been chosen.
Nacelle and pylon have been embedded into this grid by
using a local polar subgrid with an H-type topology in stre-
amwise direction. Fig. 68 shows selected grid planes to vi-
sualize the spanwise topology of the wing and the nacelle.
To resolve the wing boundary layer, an C-grid wrapped
around the wing has been integrated into the global H - 0 to-
pology. Fig. 69 presents the resulting H-C-0 topology. The
C-block is generated using the surface normal vectors of
the wing, and the first distance off the wall is about 1.0 x

Fig. 70 shows a grid plane at the pylon location
through the nacelle to display the embedded C-grid. It
should be noted that in the figures not all grid lines have
been displayed to allow a clear presentation. The complete
field grid consisted of about 1,200,000 cells, and 14 com-
putational blocks had been used. The number of blocks
was not only dictated by topological requirements, but the
maximum block size had to be adapted to the limited main
memory of the computer.
Experiments for the DLR-F6 model have been carried out
in the S2MA wind tunnel of ONERA [83]. Pressure distri-
butions have been measured at eight different wing sec-
tions with two of them located closely inboard and out-
board of the pylon. Transition was fixed and the Reynolds
number was kept constant to Re = 3.0 x IO6. The results to
be presented here are restricted to typical cruise conditions
of a transonic transport aircraft at M, = 0.75 and a = 0.98".
For the computations the flow was assumed to be fully tur-
bulent and the algebraic turbulence model of Baldwin and
Lomax [84] was used in the solution of the Reynolds-aver-
aged Navier-Stokes equations.
Fig. 71 shows a comparison of measured and computed
pressure distributions at two sections inboard of the pylon,
and Fig. 72 gives the comparison for two sections located
outboard. The exact location of the sections is given in the
sketch in the figures. The shock location predicted by the
computation agrees favorably with the experimental data.
The interference effects caused by the nacelle are clearly
visible by the difference in the pressure distributions just
inboard (yls = 0.331) and outboard (yls = 0.377) of the py-
lon. At y/s = 0.331 on the lower wing surface a strong flow
acceleration occurs. The computation accurately predicts
the corresponding pressure peak. Outboard at y/s = 0.377
however, the flow is only accelerated around the pylon
leading edge, but then no further acceleration occurs. This
difference between inboard and outboard side of the pylon
is simulated in agreement with the experiment, indicating

4-24

that in this case interference is mainly caused by the dis-
placement effect of pylon and nacelle. Besides this overall
agreement, there are still discrepancies in the simulation.
Downstream of the shock an overexpansion occurs in the
computation, which is not observed i n the experiment. Fur-
thermore, the effect of the rear loading is overpredicted by
the computation. The reason for these effects is still not
clear. On the one hand the wing had a blunt trailing edge
which was artificially closed for the computation. On the
other hand the grid distortion in the vicinity of the pylon
may be too large and lead to a reduction of solution accu-
racy. Computations of the configuration without nacelle
gave better agreement with experimental data [84]. The
overexpansion downstream of the shock and the overpre-
diction of the rear loading lead eventually to an overpredic-
tion of the spanwise lift distribution. Fig. 73 shows a com-
parison of measured and calculated spanwise lift
distributions. Besides the overprediction of lift, the charac-
teristic discontinuity at the pylon location is accurately pre-
dicted by the computation. The computations have been
carried out on the CRAY Y-MP computer of DLR, and
Fig. 74 presents the convergence history for this case. Full
Multigrid has been used with 4 grid levels on the first
mesh. The residual could be reduced by 3 orders of magni-
tude within 150 iterations. The computation required about
6000 seconds of CPU-time on the CRAY Y-MP.

5.4 Aerothermodvnamics of Winged Reentry Vehicles
At hypersonic flow conditions the thermal stability of the
materials used for the fabrication of the flight vehicle limits
the maximum allowed heating of the surfaces. The heating
becomes critical during reentry maneuvers at high Mach
numbers where peak heating rates occur at the nose of the
vehicle, along. the leading edges of wing and winglet, and
on deflected control surfaces which are necessary to
achieve equilibrium in pitching moment.
Fig. 75 shows the European space plane HERMES which
is a typical design for personnel transport to orbit and re-
turn missions. The critical heat loads on HERMES config-
uration during reentry have been analyzed using a series of
global and local flow solutions which were computed with
the DLR multiblock code CEVCATS. The hypersonic flow
computations require high resolution of very strong shocks
and thin temperature layers near the surfaces. Therefore,
the hybrid AUSM scheme described in section 3 was eni-
ployed for spatial discretization instead of the central-dif-
ference scheme used for the transonic flow cases.
Elevon heating and pitching moment coefficients of HER-
MES were computed with global flow solutions on a grid
with 800,000 points shown in Fig. 76 and an additional se-
ries of local flow solutions, Fig. 77 with deflected elevons
[85]. As the inviscid part of the flow is supersonic in axial
direction, the flow variables in the inflow plane of the local

computational domain for the rear of HERMES could be
obtained from the global flow solutions. Steady-state solu-
tions where obtained with about 300 multigrid cycles.
Fig. 78 displays streamlines and Stanton numbers for the
rear of the windward side of HERMES (1.0) configuration
and IO' deflection of elevon and body flap. The flow condi-
tions correspond to windtunnel tests in ONERA S4MA. A
large separation occurs at the hinge line of the deflected
controls. The computed Stanton numbers are in good
agreement with the wind tunnel data. Some discrepancies
occur along the symmetry line which were traced to bound-
ary layer transition in the experiment. Note, that the exper-
imental M _ = 1 0 data represents the highest Mach number,
for which reliable experimental data for the complete con-
figuration can be obtained in Western Europe. However,
flight peak heating rates occur at M_ =25 and an trajectory
point of 75 km altitude. At these flow conditions, the Rey-
nolds number is lower than at M _ = 1 0 and significant
chemical reactions take place in the flow due to high tem-
peratures. These reactions were taken into account by as-
suming air in thermochemical equilibrium in our computa-
tions. Fig. 79 displays significant differences in the flow
behavior between both flow conditions. The flow separa-
tion almost disappears at M- =25. However, the heat flux is
more sensitive to local flow divergence than at M _ = I O ,
that is, heating increases largely towards the lateral edges
of the deflected elevon. Ref. [85] presents a detailed analy-
sis of the flap heating versus flap efficiency and also the ef-
fect of changing flap geometries.
The need for aerodynamic control makes the integration of
control surfaces for pitch, roll, and yaw control necessary.
This is accomplished by defining the body flap, the elevon
and the rudder. according to Fig. 75 . The controls are sized
by the requirement of sufficient control surface efficiency
at hypersonic speed and the maximum deflection angle al-
lowed to limit aerodynamic heating. A large slot between
the rudder and the elevon is thus unavoidable due to the di-
hedral of the winglet. The winglet of a winged reentry ve-
hicle with aerodynamic control has therefore two edges
which are exposed to the incoming flow. These are:
- the leading edge of the winglet with a local maximum

of the heat flux which depends on the angle of attack,
the geometric angle w according to Fig. 75 , and the
leading edge radius

the lower edge of the rudder where an attachment line
with a local maximum of the heat flux expected.

Computations of peak heating rates along the attachment
lines at the winglet leading edge and the lower edge of the
rudder are reported in Ref. [86]. Here, we will only present
some surprising results which could not have obtained
without extensive use of 3D flow computations. As for the
computations of flap heating we have used a series of glo-

-

4-25

bal and local flow solutions to compute attachment line
heating. The local flow solutions where necessary to repre-
sent the complex geometry of the slot in between elevon
and rudder with a two-block computational domain, ac-
cording to Fig. 80.
Peak heating rates along the heading edges of the wing and
winglet of HERMES are presented in Fig. 81. It is seen that
there exist a large sensitivity of winglet heating due to an-
gle of attack. At higher angles of attack, the effective
sweep of the leading edge increases thereby reducing heat
load. Even though peak heat fluxes may be measured in
wind tunnel tests at M _ = 1 0 , numerical flow simulations
are necessary for trajectory points at higher Mach numbers.
Fig. 8 1 demonstrates that semiempirical correlations in or-
der to collapse peak heating at different flow conditions for
simple shapes, i.e. the use of Stanton-Miller numbers of
Ref. [87], do not neccessarily work well at the winglet. The
differences in Stanton-Miller numbers between wind tun-
nel and flight condition may be due to increased viscous in-
teraction at the lower Reynolds number, and also, the high
temperature chemical effects on local flow angles ahead of
the winglet.
A completely different trend is observed for heating along
the lower edge of the rudder. Fig. 82 shows that nondimen-
sional heat fluxes reduce by 35% for flight conditions as
compared to wind tunnel conditions. Inspection of the
computed flow fields shows two flow phenomena which
may be responsible for this behavior. Firstly, we observe
large flow separations at the lateral edges of the elevon for
the wind tunnel conditions which seem to form a modified
effective slot shape with more rapid flow expansion, see
Fig. 83. Secondly, the thicker boundary layers present in
the flow solution for flight conditions, Fig. 84, tend to
block the slot and hence, they reduce flow expansion and
peak heating rates.
In conclusion we have successfully used 3D flow computa-
tions in the aerothermal analysis of winged reentry vehi-
cles. These computations allow detailed understanding of
critical flow phenomena and much more accurate transpo-
sition from wind tunnel to flight as compared to strategies
used for the US-Orbiter twenty years ago. Consequently,
uncertainties of data to be used to design the thermal pro-
tection system is considerably reduced which improves the
weight of space planes.

6. CONCLUSION
Well established algorithms used in current blockstructured
EulerNavier-Stokes solvers for industrial applications
have been reviewed. Attention has been focused on various
spatial discretization and time stepping schemes. The ap-
proach of blockstructured meshes has been discussed in de-
tail. It allows the treatment of complex configurations and
forms the basis of parallelization of structured solvers.

Special emphasis has been put on the implementation of
multigrid within a blockstructured solver. Several large-
scale computations have been shown which demonstrate
the ability of current blockstructured flow solvers for 3D
complex applications.

Acknowledgement
The authors want to thank Jiri Blazek, Olaf Brodersen,
Ulrich Herrmann, Dr. Jose Longo and Arno Ronzheimer
for their contributions to this report.

7. REFERENCES

Eisfeld, B., Bleecke, H.-M., Kroll, N., Ritzdorf, H.,
“Parallelization of Block Structured Flow Solvers“,
AGARD FDPNKI Special Coarse on Parallel
Computing in CFD, VKI, Rhode-Saint-GenCse,
Belgium 15- 19 May, 1995.

Baldwin, B.S., Lomax, H., “Thin Layer Approxi-
mation and Algebraic Model for Separated Turbu-
lent Flows“, AIAA Paper 78-257, 1978.

Mundt, Ch.. Keraus, R., Fischer, J., “New Accurate
Vectorized Approximations of State Surfaces for the
Thermodynamik and Transport Properties of Equi-
librium Air“, ZFW, No. 15, 1991, pp. 179-184.

Rossow. C.-C., “Berechnung von Stromungsfeldern
durch Losung der Euler-Gleichungen mit einer
erweiterten Finite-Volumen Diskretisierungsme-
thode“, DLR-FB 89-38, 1989.

Kroll, N., Rossow, C.-C., “A High Resolution Cell
Vertex TVD Scheme for the Solution of the Two-‘
and Three-Dimensional Euler Equations“, Lecture
Notes in Physics, Vol. 371, Springer 1990, pp. 442-
446.

Allmaras, S.R., “Contamination of Laminar Bound-
ary Layers by Artifical Dissipation in Navier-Stokes
Solutions“. Conference on Numerical Methods in
Fluid Dynamics, Reading, UK, April 7-10, 1992.

Swanson, R.C., Turkel, E., “Aspects of a High-Res-
olution Scheme for the Navier-Stokes Equations“,
AIAA Paper 93-3372-CP, 1993.

Rossow, C.-C., Kroll, N., Radespiel, R., Scherr, S.,
“Investigation of the Accuracy of Finite Volume
Methods for 2- and 3-Dimensional Flows.“,
AGARD-CPP-437, 1988, pp. 17.1-1 1.

Jameson, A., Schmidt, W., Turkel, E., “Numerical
Solutions of the Euler Equations by Finite Volume

Methods Using Runge-Kutta Time-Stepping
Schemes“, AIAA Paper 8 1 - 1259, 198 1.

Kroll, N., Jain, R.K., “Solution of Two-Dimen-
sional Euler Equations - Experience with a Finite
Volume Code“, DFVLR-FB 87-41, 1987.

Radespiel, R., “Computation of Two- and Three-
Dimensional Sub- and Transonic Flow Fields“,
CCG-Course F6.03, 29-5- 1.6.1989, Braunschweig,
Germany.

Kroll, N., Rossow, C.-C., “Foundatons of Numeri-
cal Methods for the Solution of Euler Equations“,
CCG-Course F6.03, 29.5- 1.6.1989, Braunschweig,
Germany.

Martinelli, L., Jameson, A., “Validation of a Multi-
grid Method for the Reynolds-Averaged Navier-
Stokes Equations“, AIAA Paper 88-0414, 1988.

Radespiel, R., Rossow, C.-C., Swanson, R.C., “Effi-
cient Cell-Vertex Multigrid Scheme for the Three-
Dimensional Navier-Stokes Equations“, AIAA
Journal, Vol. 28. No. 8, 1990.

Cook, P.H., Mc Donald, M.A., Firmin, M.C.P.,
“Aerofoil RAE 2822-Pressure Distributions and
Boundary Layer and Wake Meassurements“,
AGARD-AR-138, 1979.

Schmitt, V., Charpin, F., “Pressure Distributions on
the ONERA-M6-Wing at Transonic Mach Num-
bers“, AGARD-AR- 138, 1979.

Longo, J.M.A.. “Viscous Transonic Flow Simula-
tion around a Transport Aircraft Configuration“,
DGLR-Jahrestagung, Bremen. 1992.

Longo, J.M.A., “Simulation of Complex Inviscid
and Viscous Vortex Flows“, IUTAM Symposium on
Fluid Dynamics of High Angle of Attack, 1992,
Japan.

Turkel, E., “Improving the Accuracy of Central Dif-
ference Schemes“, 11 th International Conference on
Numerical Methods in Fluid Dynamics, Springer-
Verlag, Lecture Notes in Physics, Vol. 323, 1988,
pp. 586-59 1.

Swanson, R.C., Turkel, E., “On Central-Difference
and Upwind Schemes.“, Journal of Comput. Phys.,
Vol. 101, NO. 2, 1992, pp. 292-306.

Brodersen, 0.. “Untersuchung einer Matrix-Dissi-
pation in einem Zelleneckpunkt-Finite-Volumen-

Schema zur Losung der Navier-Stokes-Gleichun-
gen“,DLR-FB 92-33, 1992.

Roe, P.L., “Approximate Riemann Solvers, Parame-
ter Vectors and Difference Schemes“, Journal of
Computational Physics, Volume 43, 198 I , pp. 357-
372.

Yee, H.C., Harten, A., “Implicit TVD Schemes for
Hyperbolic Conservation Laws in Curvilinear Coor-
dinates“, AIAA Journal, Vol. 25, 1987, pp. 266-247.

Steger, J.L., Warming, R.F., “Flux Vector Splitting
of the Inviscid Gasdynamic Equations with Appli-
cation to Finite Difference Methods“, Journal of
Computational Physics, Volume 40, 198 I , pp. 263-
293, 1981.

Van Leer, B., “Flux-Vector Splitting for the Euler
Equations“? Lecture Notes in Physics, Vol. 170,
1982, pp. 507-5 12, Springer-Verlag.

Yee, H.C., “Upwind and Symmetric Shock Captur-
ing Schemes“, NASA-TM 89464, 1987.

Schone, J., Kroll, N., Streit, Th., “Steps Towards an
Efficient and Accurate Method Solving the Euler
Equations around a Re-Entry Configuration at
Supersonic and Hypersonic Speeds“, Proceedings
of the European Symposium on Hypersonics.
ESTEC, ESA SP-3 18, 199 I , pp 1 15- 120.

Yee, H.C., “A Class of High-Resolution Explicit
and Implicit Shock Capturing Methods“, VKI, Lec-
ture Series LS-04, 1989.

Radespiel. R., Swanson, R.C., “Progress with Mul-
tigrid Schemes for Hypersonic Flow Problems“,
ICASE Report, No. 91-89, 1991.

Muller, B., “Simple Improvements of an Upwind
TVD Scheme for Hypersonic Flow“, AIAA Paper
89-1977-CP, 1989.

Workshop on Hypersonic Flows for Reentry Prob-
lems, Part 11, Antibes, France, 1991.

Radespiel. R., “Computation of Hypersonic Flows
over 2-D Ramps with a Multigrid Method.“, Pro-
ceedings of Workshop on Hypersonic Flows for
Reentry Problems, Part II., Antibes, April 15-19,
1991.

Holden, M.S., “A Study of Flow Separation in
Regions of Shock Wave-Boundary Layer Interac-
tion in Hypersonic Flow“, AIAA Paper 78- 1169,

4-27

1978.

Edney, B., "Anomalous Heat Transfer and Pressure
Distributions on Blunt Bodies at Hypersonic Speeds
in the Presence of an Impinging Shock", Technical
Report 115, The Aeronautical Research Institute of
Sweden, Stockholm, February 1968.

Kroll, N., Gaitonde, D., Aftosmis, M., "A System-
atic Comperative Study of Several High-Resolution
Schemes for Complex Problems in High Speed
Flows", AIAA Paper 93-0636, 1963.

Radespiel, R., Poirier, D., Streit, Th., "Computation
of Viscous Flows Around HERMES (1.0) at
M=IO", DLR-IB 129-92/3, 1992.

Hanel, D., Schwane, R., "An Implicit Flux Vector
Splitting Scheme for the Computation of Various
Hypersonic Flows", AIAA Paper 89-0274, 1989.

Liou, M.-S., Steffen, Ch., "A New Flux Splitting
Scheme", Journal of Computational Physics, Vol.
107, NO. I , 1993, pp. 23-29.

Coquel, F., Liou, M.-S., "Stable and Low Diffusive
Hybrid Upwind Splitting Methods", Proceedings of
the 1st European CFD Conference. Brussels. 1992.

Liou, M.-S., "On a New Class1 of Flux Splittinps",
Lecture Notes in Physics, Vol. 414. 1992, pp. 115-
119, Springer Verlag.

Kroll, N., Hemnann, U., Radespiel, R., "Discretiza-
tion Properties in Hypersonic Flows", DLR-IB 129-
92/28, 1993.

Radespiel, R., Kroll, N., "Extension of the Navier-
Stokes Code CEVCATS to Hypersonic Euilibrium
Flows", DLR-IB 129-92/21, 1992.

Bergamini, L., Cinnella, P., "A Comparison of
"New" and "Old" Flux-Splitting Schemes for the
Euler Equations", AIAA Paper 93-0876, 1993.

Wada, Y., Liou, M.-S., "A Flux Splitting Scheme
wiht High-Resolution and Robustness for Disconti-
nuities", AIAA Paper 94-0083, 1994.

Kroll, N., Radespiel, R., "An Improved Flux Vector
Split Discretization Scheme for Viscous Flows",
DLR-FB 129-93/53, 1993.

Ventkatakristinan, V., "On the Accuracy of Limiters
and Convergence to Steady State Solutions", AIAA
Paper 93-0880, 1993.

Van Leer, B., "Upwind Difference Methods for
Aerodynamics Governed by the Euler Equations",
In Lectures in Applied Mathematics, (B. Engmist,
S. Osher, R. Sommerville eds.), Vol. 22, Part 11,
1985, pp. 327-336.

Krist, S.L., Thomas, J.L., Sellers, W.L,
Kjelgaard, S.O., "An Embedded Grid Formulation
Applied to a Delta Wing", AIAA Paper 90-0429,
1990.

Stetson, K.F., Thompson, E.R, Donaldson, J.C.,
Siler, L.G., "Laminar Boundary-Layer Experiments
on a Cone at Mach 8, Part 2: Blunt Cone", AIAA
Paper , "Engineering Transition Prediction for a
Hypersonic Axisymmetric Boundary Layer" AIAA
Paper 93-5114, 1993.

Stilla, J., "Engineering Transition Prediction for a
Hypersonic Axisymmetric Boundary Layer", AIAA
Paper 93-51 14, 1993.

Brandt, A., "Guide to Multigrid Development",
Multigrid Methods I, Lecture Notes in Mathemat-
ics, No. 960, I98 1.

Lee, D.-Y., Van Leer, B., "Progress in Local Precon-
dioning of the Euler and Navier-Stokes Equations",
ANA-93-3328, 1993.

Turkel, E., "Review on Preconditioning Methods
for Fluid Dynamics", ICASE Report No. 92-47,
(unpublished).

Godfrey, A.G., "Steps Toward a Robust Precondi-
tioning", AIAA-94-0520, 1994.

Blazek, J., Kroll, N., Radespiel, R., Rossow, C.-C.,
"Upwind Implicit Residual Smoothing Method for
Multistage Schemes", AIAA-91-1533, 1991.

Blazek, J., "Verfahren zur Beschleunigung der
Losung der Euler- und Navier-Stokes-Gleichungen
bei stationaren Uber- und Hypserschallstromun-
gen", Dissertation Braunschweit, Technical Univer-
sity, to appear 1994.

Hackbush, W., "Multi-Grid Methods and Applica-
tions'', Springer Verlag, 1985.

Mulder, W.A., "A New Multigrid Approach to Con-
vection Problems", Journal of Computational Phys-
ics, Vol. 83, 1989, pp. 303-323.

Leclerq, M.-P., "Resolution Des Equations D'Euler
par Des Methods Multigrilles Conditions Aux Lim-

ites En Regime Hypersonique", Doctoral Thesis,
Speciality: Applied Mathematics, L'Universite De
Saint-Etienne, France, April 1990.

Eliasson, P., "Dissipation Mechanisms and Multi-
grid Solutions in a Multiblock Solver for Compress-
iblc Flow", Dissertation at the KTH, Stockholm,
1993.

Jameson, A., "Multigrid Algorithms for Compress-
ible Flow Calculations", MAE Report 1743, Prince-
ton University, Text of Lecture given at 2nd
European Conference on Multigrid Methods,
Cologne, October 1985.

Van Leer, B., Tai, C.-H., Powell, K.G., "Design of
Optimally Smoothing Multi-Stage Schemes for the
Euler Equations, AIAA Paper 89- 1933-CP, 1989.

Radespiel, R, Rossow, C.-C., Swanson, R.-C., "An
Efficient Cell-Vertex Multigrid Scheme for the
Three Dimensional Navier-Stokes Equations",
AIAA Journal, Vol. 28, No. 8, 1990, pp. 1464-1472.

Swanson, R.C., Turkel, E.. White. J.A., "An Effec-
tive Multigrid Method for High-speed Flows",
Fifth Copper Mountain Conference on Multigrid
Methods, Colorado, March 3 1 - April 5, 199 1 .

Tai, C.-H., private communication. 1990.

Thomas, J.L., "An Implicit Multigrid Scheme for
Hypersonic Strong-Interaction Flowfields", 5th
Copper Mountain Conference on Multigrid Meth-
ods, Denver, USA, I99 1.

Schroder, W., Hanel, D., "An Unfactored Implicit
Scheme with Multigrid Acceleration for the Solu-
tion of the Navier-Stokes Equations", Journal of
Computers and Fluids, No. 15, 1987, p. 315.

Caughey, D., "Diagonal Implicit Multigrid Algo-
rithm for the Euler Equations", AIAA Journal, Vol.
26, 1988, pp. 84 1-85 1.

Yoon, S., Jameson, A., "Lower-Upper Implicit
Schemes with Multiple Grids for the Euler Equa-
tions'', AIAA Journal, Vol. 7, 1987, pp. 929-935.

Blazek, J., "A Multigrid LU-SSOR Scheme for the
Solution'of Hypersonic Flow Problems", AIAA 94-
0062. 1994.

Yoon, S., Jameson, A, "An LU-SSOR Scheme for
the Euler and Navier-Stokes Equations", AIAA
Journal, Vol. 26, 1988, pp. 1025-1026.

Rieger, H., Jameson, A., "Solution of Steady Three-
Dimensional Compressible Euler and Navier-Sto-
kes Equations by an Implicit LU-Scheme", AIAA
Paper 88-0619, 1988.

Yoon, S., Kwak, D., "An Implicit Three Dimen-
sional Navier-Stokes Solver for Compressible
Flow", AIAA Paper 91-1555, 1991.

Yoon, S., Chang, L., Kwak, D., "Multigrid Conver-
gence of an Implicit Symmetric Relaxation
Scheme", AIAA Paper 93-3357-CP, 1993.

Blazek, J., "Investigations of the Implicit LU-SSOR
Scheme", DLR-FB 129-93/5 I , 1993.

Radespiel, R., Swanson, R.-C., "Progress with Mul-
tigrid Schemes for Hypersonic Flow Problems",
ICASE Report No. 91-89, 1991.

Atkins, H.L., "A Multi-Block Multigrid Method for
the Euler- and Navier-Stokes Equations for Three-
Dimensional Flows", AIAA Paper 91-0101, 1991.

Rossow, C.-C., "Efficient Computation of Inviscid
Flow Fields Around Complex Configurations Using
a Multiblock Multigrid Method", Communications
in Applied Numerical Methods, Vol. 8, 1992, pp.
735-747.

Ronzheimer, A, Brodersen, O., Rudnik, R.,
Findling, A., Rossow, C.-C., "A New Interactive
Tool for the Management of Grid Generation Pro-
cesses Around Arbitrary Configurations", To be
published at: 4th International Conference on
Numerical Grid Generation in Computational Fluid
Dynamics and Related Fields, Swansea, GB, 6 4 t h
April, 1994.

Hoheisel, H., Kiock, R.; Rossow, C.-C., Ronzhe-
imer, A., Baumert, W., Capdevila, H., "Aspects of
Theoretical and Experimental Investigations on Air-
framlEngine Integration Problems", ICAS-Con-
gress, Paper 90-2.7.3, 1990.

Rill, S., Becker, K., "Simulation of Transonic Flow
over Twin-Jet Transport Aircraft", Journal of Air-
craft, Vol. 29, 1992, pp. 640-653.

Rivoire, V., Vigneron, V., "CFD Environment for
Aerodynamic Design at Aerospatiale Avions", Cray
Channels, Vol. 15, No. 2, 1993, pp. 5-7.

Rossow, C.-C., Godard, J.-L., Hoheisel, H.,
Schmidt, V., "Investigation of Propulsion Airfram
Integration Interference Effects on a Transport Air-

\

4-29

cra nfiguration,". J ,A Paper 92-3097, 1992.

(841 Brodenen, O., Rossow. C.-C., "Calculation of
lnterference Phenomena for a Transport Aircraft
Configuration Considering Viscous Effects". Euro-
pean Forum Conference on Recent Developments
on Applications in Aeronautical CFD, Bristol, GB,
September 1993.

[85] Longo, J.M.A., Radespiel. R., "Analysis of Aerody-
namic Flap Efficiency and Flap Heating of a
Winged Reentry Vehicle", DGLR Jahrestagung
1993, Sept. 28-Ocl.1, Gotlingen. to appear in
DGLR Jahrbuch 1993.

Hemnann. U., Radespiel, R., Longo, J.M.A., "Criti-
cal Flow Phenomena on the Winglet of Winged
Reenuy Vehicles", AIAA 94-0629. 1994.

Miller, C.G.,Micol. J.R.. Gnoffo. P.A., Wilder, S.E.,
"Heat Transfer Distributions on Biconics at Inci-
dence in Hypersonic-Hypervelocjty He, N,, N,, Air,
and CO2 Flows", NASA TM 84667,1983.

[861

(871

4-30

8. FIGURES

Fig. I Body-fitted grid

cekentered scheme

, control volume

cell-vertex scheme

convol vdume

node-centered scheme

1-1, j -1, k - l i.1, j-1.k-1

a) uxltrol volume

1.k-1

,,*I, k-1

face s l,,+r.t

b) metric definition of a mputational Cell

Fig. 3 Cell-vertex scheme

Fig. 2 Control volume arrangements for finite volume
schemes

4-3 I

fourtfh difference
dissipation

.78 t L 1 2 104
0

1 IN

a) Lift

.0140

.0135

I .0130
I

cd .0125
P

.0120

.0115

a
.0065

0

.0060

A Cd .0055
P f

0
I

0 1 2 x ;a4
1 IN

b) Pressure drag

.0050

.0045

second diff.
dissipation

A

3

I

1 2 A 104
1 IN

c) Friction drag

Fig. 4 Influence of grid density and artificial viscosity
on global force coefficients for Row around
RAE 2822 airfoil (M- 3.73. a=2.790'.
Re_ =6.5x106), central scheme with scalar

dissipation

4-32

-1.5

-1.0-

cp -.SI

0-

.5 -

I .0 -

- 2 L 111((1
0 2 4 6 8 1 0

X /c

a) 193x33 grid

-2.5

-2.01

-1.5

-2.5

-1.5

-I 0 - I 0

- 5 - 5

0 0

5 5

1 0

I I I I 1
0 2 L 6 B I D 0 2 L 6 8 1 0

computation 1 experiment 1
17 x In.’ ’2X

I O -

8 -

6 -

4 - 4 -

2 - 2 -

n -

0-1

-2L-l -2Ll I I I I J
0 2 4 6 8 1 0 0 2 L 6 8 1 0

b) 385x65 grid c) 5 1 1 x 9 1 grid

Fig. 5 Influence of grid density on distributions of
pressure and skin friction along RAE 2822
airfoil (M_=0.73. a=2.79’, Re- =6.5x106).
tend scheme with scalar dissipation

4-33

-1.1

-.a

-.L

CP
.4

.8

1.2

-
-

-

0-

-

-

I I 1 I 1 I
0 1 6 II 1.0

wall streamlines

6 8 1 0

isobars on

Fig. 6 Surface pressure distributions and wall
streamline for ONERA-M6 wing (M_ =0.84.
e3.06'. Re_ =11x106), cenlral scheme with
scalar dissipation

4-34

,008
-Grid . 160 x 32, Matrix Dissipation

Grid. 160 x 32. Scalar Dissipation
__-_.__ Grid : 320 x 64, Scalar Dissipation

Grid ' 640 x 128, Scalar Dissipation

-__-

0 CO50

---_- .OK

,004

.002

.000 O m 5

- .002
o m 0

Grid : 160 x 32, Matrix Dissipation - - - - - - - Grid : 320 x 64. Scalar Dissipation __--- Grid : 640 x 128. Scalar Dissipation

1.2
.0 .2 . 4 . 6 x / [I . B I .2

:
320x64

640x128

0w55m7----_______:
160x32

-

W o n drag

' ' ' ' * ' ' ' . ' ' ' ' I ' ' ' ' .I
OWOW 0 moO5 ow010

Fig. 7 Pressure disuibutions along RAE 2822 airfoil
(M_=0.73, ~ 2 . 7 9 ' . Re_ =6.5x106),
comparison of central schemes with scalar and
matrix-valued dissipation

,010,

CF I

00130 ""'~ 160x32

320x64
0 0125

presssuc? drag
00115

Fig. 8 Skin friction distributions along RAE 2822
airfoil (M- =0.73, ~ 2 . 7 9 ' . Re_ =6.Sx106).
comparison of central schemes with scalar and
matrix-valued dissipation

Fig. 9 Influence of grid density on global force
coefficients for flow around RAE 2822 airfoil
(M - S . 7 3 . a=2.79', Re_ =6.5x106),
comparison of scalar and mamix-valued
dissipation

4-35

O M %

Fig. IO Control volume for node-centered schemes

Mor128 y
CP

L

4.5 -

- line n d i v n

CF

0.0050

0.0025

4.0000

-0.0025

i L . . , I . . , , I

con,,*

I
4.00 0.25 OM 0 75 1 00

n/C

.

.

................ - m
~ diuni
coarrc ._.._

. ,
-0.00 0.25 0.50 0.75 ~~ 1 .oo

Fig. 11 Influence of grid density on distributions of
pressure and skin frictions along RAE 2822
airfoil (M_ 9 . 7 3 . a=2.79', Re_ =6.5x106),
upwind TVD scheme

0.m
000015 lINflElyo'OOOM 0.- O.mOo5 0.00010

l W d 2

friction drag

O M 4 0
IIN$E(yo- O m O W o m 1 0 O m 1 5 - central+scalar dissip. - upwind TVD -++ cenbal+matrix dssip.

00125

00115
pressure drag

00110

0 00015 1INfl;- O m OmroS o m 1 0

Fig. 12 Influence of grid density on global force
coefficients for flow around RAE 2822 airfoil
(M_ S . 7 3 , ~ A . 7 9 ' . Re- =6.5x106). upwind
TVD scheme

Fig. 13 Coordinate mesh with 256x80
cells for NACA 0012 airfoil at
M _ =25. m 3 0 '

Fig. 14 Mach contours for viscous Row
around NACA 0912 airfoil
(M, =25, a=30')

0 30

0 20

$
0 IO

0 00

1 W x/c 0 75

Fig. 15 Streamlines in separated Row region, NACA
0012 airfoil (M_ =25, -30'). upwind TVD
scheme

0.010- i

. . . .I 65x21 mesh
129x41 mesh

- 257x81 mesh
0.006

cF 0.004 -

0.002 -

0.000 - .

...

-0.002 a
0 0 0 4 0.8

x / c
Fig. 16 Skin fnction distribution along NACA 0012

airfoil (M-25, a=30'), upwind TVD scheme

lo - '

10-2

- +
ul -
m 10-3
0 -

1 O F

...-. 65x21 mesh
- - - 129x41 mesh
- 257x81 mesh

--.

10-5
0.0 0.4 0.8

x/c

Fig. 17 Distribution of Stanton number along NACA
0912 airfoil (M- =25, a=30'), upwind TVD
scheme

~

4-37

00
0 00 0 25 0 50

Fig. 18 Mach contours (AM=O.S) for 15'compression
ramp (Me = I 1.68, Re,=2.47x105). upwind TVD
scheme

''[.----. 73x57 mesh
.2 --- 145x1 13 mesh

- 289x225 mesh

0 Holden exp.

-

1 - k , , ,
:.... .oo

0.0 0.2 0.4 Y 0.6 ..
Fig. 19 Influence of grid density on pressure coefficrent

for 15' compresslon ramp (M_ =11.68.
Re,=2.47x105). upwind TVD scheme

73x57 mesh

_ _ _ 145x113 mesh

-289x225 mesh

0 Holden exp.

.o -

I
0 0 0 2 0 4 X 0 6

Fig. 20 Influence of grid density on skin friction
coefficient for 15' compression m p
(M_ =11.68, Re,=2.47x1O5), upwind TVD
scheme

73x57 mesh
- - _ 145x113 mesh

289x225 mesh

Fig. 21 influence of grid density on Stanton number for
15'compression ramp (M_=11.68,
Rec=2.47x10"), upwind TVD scheme

Fig. 22 Schematic of Type IV shock-shock interaction
of Edney

4-38

grid: 60x40

central scheme with grid:
scalar dissipation

\ I

12@t80 upwind TVD scheme

Fig. 23 Mach contour plots for Type N interaction,
comparison of cennal scheme with scalar
dissipation and upwind TVD scheme, coarse
and fine mesh

1.04 - nnw
m.AUSH

0.75 - mod. AUSM. bs.5

i 'a
e 0.50
8

2
025

0.W
-t.o 4 . 5 0.0 0.5 1.0

wll hce baEh numbs,

Fig. 24 Dissipation coefficient for flux vector split
methods for Mach number close to zero Fig. 25 b) Mach contours for RAE 2822 airfoll

(M_ 3 . 7 3 , ~ 2 . 7 9 ' , Re_ =6.5x106),
improved AUSM

"068

A
e, - 7.
(I - 0.
M. - 8

T. - 54.548K
p. - 413,BP.

us. - 31250

adlabatlc wail

grid: tB0x40x30

Fig. 25 a) Pressure contours for RAE 2822 airfoil
(M-3.73, ~ 2 . 7 9 ' . Re- =6.5x106), original
and improved AUSM

Fig. 26 Grid around blunt slender cone with spherical
nose shape

Mach contours, AM=O.

Fig. 27 Mach contours and pressure contoun for blunt
cone (M_ =8. a=o'), improved AUSM

5 c

2c

I C

o c - 4.0

0 200 400 600
- 6.0

multigrid cycles

Fig. 29 Convergence history for improved AUSM for
flow around RAE 2822 airfoil (M_ d.73,
a=2.79'. Re_ =6.5x106)

Fig. 28 Entropy value along the body, blunt cone
(M_ =8. a=), comparison of van Leer scheme
and improved AUSM

0.85

C L

0.80

0.75

-0.005’ I

0 0.25 0.50 x/c 1.00

a) van Leer flux vector splitting

1- --.....--

- 0.005 -
0 0.25 0.50 x/c 1.00

b) impmved AUSM

Fig. 30 Distributions of skin friction along RAE 2822
airfoil (M_ =0.73, u=2.79’, Re_ =6.5x106),
comparison of van Leer scheme and improved
AUSM

0 0.0005 1 / ~ 0.0010
a) lift coefficient

0.0250 + hywAusM

0.0200 ‘dp i,pmm,6 ,

0.0115

0.01 50

0.0125 160.32

320.64

0 0.0005 I/N 0.0010
b) pressure drag

320.64 0.0060

80.16

0.0040

0.0030 - *-U
*TM
-c- -leer - 0.0020

0 0.0005 1 / ~ 0.0010
c) friction drag

Fig. 31 Grid convergence of force coefficients for RAE
2822 airfoil (M_ s.73, e2.79’. Re,=6.5x1O6),
comparison of different upwind schemes

442

0250,

grid: 228x224 cells

C

Grid lor 15’ umpnssolon ramp

TVD scheme
AM=0.8

mod. AUSM scheme

AM10.8

Fig, 32 Grid and Mach contours for 15’ compression
ramp (M_=11.68, Re,=2.47x105), comparison
of upwind TVD and improved AUSM

0.63
X

OW 0.25

0 DID!

OWI!

Cf
0 wx

O.W2?

o m

I:

I
0,oo 0.25 x 0.50 0.15

Fig. 33 Pressure coefficient, skin friction and Stanton
number for 15’ compression ramp (M_ =11.68,
ReC=’2.47x1O5). comparison of upwind TVD and
improved AUSM

Fig. 34 Amplification factor for 1D convection problem,
3-stage scheme, C n = 1.5, coefficients: 0.1481,
0.4, 1.0, according to 1591

7w = 1.
710 = 1. 1 1 1 =Q.

no = r,. nt = 0. -2 = 4,.
l,o=r,, 1 , , = 0 . la,=%. m = O .
l,o=rrrs. l , ,=o. m=i,r,. W = O . i4.=is.

I?, = (I - 4,). r. = (1 -is), 7, = 0.56, aod 7, = 0 44
1 .o

0.8

0.6

CD

0.4

0 2

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

e

~ i ~ . 35 Amplification factor for 1D convection problem,
s-stage scheme with 3 evaluations of weighted
dissipation and residual smwthing, CFL 5.0,
p = 1.0, coefficients: 0.2742,0.2067.0.5020.
0.5142. 1.0

-2.5 0.0 2.5
ec

(a) One level, c n = 5.0

2.5

a=
0.0

-2.5

-2.5 0.0 2.5
er

0) l h levels, full coarsening, CFL = 5.0
Fig. 36 Contour plots of amplification factor for 2D

convection problem and all aspect ration = 1.
Five stage scheme with 3 evaluations of
weighted dissipation and implicit residual
smoothing

4-44

1 4 IY
D 099
c 0 %
B 088

9 0 7 0
8 065
7 059
6 011
5 036
I 0 3 0
3 0 2 4
2 012
1 006

A on

(a) implicit dissipation cocfficicnt w = I .O

2.5 -

Y .
@ .

0.0 -

-2.5 -

-

L-l IGI

0 0 9 9
. c 0 %

B 088
A 077

- 9 0 7 0
8 065

7 0 5 9 . 6 0 4 7

5 0 %
4 030

. 3 024

2 0 1 2
1 006

-

(b) implicit dissipation cocfficicnt w = I .?

Fig. 31 Contour plots of the amplification factor for LU-
SSOR single-grid scheme with central
discretization of the explicit operator

L-1 IY
D 099
c 0 %
B 088

9 070
8 065
7 059
6 047
5 036
4 030
3 024
2 012
I 006

A on

-2.5 0.0 2.5

@X

(a) implicit dissipation coefficient w = 1.0

'- IY
0 099
c ow
B 088
A 077
9 070
8 085
7 0 5 9
6 047
5 016
4 010
3 0 2 4
2 0 1 2

1 O D s

(b) implicit dissipation coefficient 0 1 = 1.3

Fig. 38 Contour plats of the amplification factor for LU-
SSOR single-grid scheme with second-order
upwind spatial discretization of the explicit
operator

4-45

- - - - - -. single gnd. CPU-I= 87s
- - - - - - - - mullignd (Zi/l/i/l), CPU-t= 38s

multrgnd (lR12RR). CPU-* 25s
-1

1

500 1000 1500 2000

No of Iterations

Fig. 39 Convergence histones for LU-SSOR scheme for
inviscid flow around NACA 0012 airfoil
(M_ =0.8, a=1.25'), numbers in parentheses
indicate the number of time steps on each grid
starting from the fines one

O t

unpla gtid. C W h 1470s(zC€mbr.)
._____ mumglid (111111111). C F V h 1292s

muPiprid (1"L). CPU* 1301s
- -. - mulugtid (2/(111111). C W h 1386s

500 1000 1500 2000
-4

1 m . d

lmlZ.nI21 1:
a) Full coarsening

b) Semicoarsening with simple averaging

lnl2.n) lrn."121

c) Sequential semicoarsening
h n l

lm12.n) lm.nI2l

d) Semicoarsening with aelective averaging

No. of Iterations
Fig. 41 Two-level multigrid schemes

Fig. 40 Convergence histories for LU-SSOR scheme for
viscous flow over 15' compression ramp,
numbers in pharantheses indicate the number of

4-46

a) Full

b) Semicoarsening with simple averaging

c) Sequential semicoarsening V
d! Semicoarsening with selective averaging

Fig. 42 Multilevel schemes

'.

'~\

. ..

0 25 0 50 0.75
UC 0 PO

Coordinsre mcsli lor lorcbody wilh 256x96 cells

Fig. 44 Tu(r-dimensi~mal iurhuleni llnw over lnrehody.
hlx = 7 . a = 5 ' . Re = 200 x IO6. adiahatic wall

f

0 2000 4000
multigrid c y c l e s

FiS. 43 Semicoarsening with selectinn of coarse meshes Fig. 45 Convergence historics fnor single grid and
multigrid flow compulaiions of turbulent
fnrebody

4-31

Fig. 46 Structured. three-dimensional, body-fitted mesh

Fig. 49 Computational cut

1"
Fig. 41 Three-dimensional computational domain

~ - ~ - - ~ - ~ - - ~ - ~ - - ~ - - , , . , " , . ,

Fig. 48 Concept of fictitious points

j t

Fig. 50 Data exchange at a computational cut

4-40

'cp t 1

Fig, 51 Computational mesh around multi-element
airfoil

Fig. 52 Enlarged view of Ihe slat-region

Fig. 53 Enlarged view of region at flap and tab

L 000 025 050 075 1w fl lliLz2L 000 025 050 075 1w fl

Fig. 54 Pressure distribution on multi-element airfoil at
M_=0.182. mlo'

Plot

loss I
0.025 1

4 0 5 0 l ' ~

0.W 0.25 050 0.7s 1.00 fl

Fig. 55 Total pressure losses on multi-element airfoil at
M_=0.182, mI0'

Fig. 56 Convergence history for multi-element airfoil
computation at M_=O.182, a=lo'

4-49

Fig. 57 Grid topology and block houndaries for
incorporation of jet-generator

Fig 60 Mdch number di.;trihution in the \ymmeuy-
plnneal M_=0.182.a=lO', P,,,,/ P_ =20

Fig SX View of grid symmetry-plane. let-?enerator and
multi-element wing

Fig. 59 Embedding of the local, polar mesh aroundJet-
generator into the glohal mesh around multi-
element wing

Fi:. h l Stresmline pattern in the Fyninietry plane at
M_=O.l82,a=lO'. P,le,/ P_ =2.0

Fig. 62 Enlargement of thc streamline pattern in the
symmetry-plane for the region around the tah
at M =O.IX2.a=llr. P .._. I P =2.0

4-50

Sbearnlines
ptovp=2.0

Fig. 64 Comparison of measured and calculated
pressure distributions in the symmetry-plane at
M_ d.147, e lv , Ptk,/ P_ =1.252

Fig. 63 Streamline pattern on the lower wing surface
at M,=0.182, a=lV, Ptl,,/ P, =2.0

Fig. 65 Comparison of measured and calculated
pressure distributions in a plane half an engine
diameter apm from the symmetry-plane at
M_ d.147, a=Io', Pr,,,/ P, =1.252

8.0 8.2 o., 0.6 0.8 1.0
x,c -

Fig. 66 Comparison of measured and calculated
pressure distributions in a plane one engine
diameter apart from the symmetry-plane at
M-S.147. a=IO*, Ptje,/ P_ =I252

4-51

m

Fig. 67 DLR-F6 configuration R g 68 Three-dimensional gnd with selected grid
plane5

Flg. 69 H-C-0 grid topology for consideration of
viscous effects

Fig. 70 Embedded C-grid at pylon location

4-52

-cP

1.00 -

0.50 -

0.00 -

-0.50 -

-1 .oo -
-0.00 0.25 0.50 0.75 WL 1.00

LXPERIYENT O W E R M Y I
~ NIYIERSTOXES W W P

-1.00 -0.00 0.25 0.50 0.75 WL 1.00

Fig. 71 Comparison of measured and calculated
pressure distributions in two inboard sections at
M-d.75, iY.=0.98'.Re3.Ox1O6

1.00 -

0.50 -

0.00 -

" " O / , (, , , , , n . , EXPEAlYEWI , , , , , OWERMYI , , , . , - WA",El.sTOnSWmNP

-1.00 -0.00 0.25 0.50 0.75 1.00

-CP

1.00

0.50

0.00

-0.50
0 EXCERIYL"T0WERMLn - ",ER-ETOliES WMlP

-1.00
-0.00 0.25 0.50 0.75 1.00

Fig. 12 Comparison of measured and calculated
pressure distributions in two outboard sections
at M_ d.75, a=O.98'. Re=3.Ox1O6

4-53

Contipurallan : DLR-F6 WBNP
Ma.075
(I : 0.98.

0.80

- W."ILR*TOXEL YB"P
EXPERlYEHlONERMLR

0.25 0.50 0.75 yls

Fig. 73 Comparison of measured and calculated
spanwise lift distribution at M _ =0.75, a=0.98',
Re=3.0x IO6

ConIi~uraUm : OLR$6 WBNP

CI
- 1.00

Fig. 74 Convergence history

Fig. 75 Configuration HERMES (1.0) with elevon,
winglet and rudder

A

Fig. 76 Discretized HERMES reentry vehicle with
144x96-64 cells, surface grid. plane of
symmetry and outflow grid plane

4-54

Fig. 77 Definition of local grid around windward side of
deflected control surfaces

Stream lines

Fig. 78 Wall streamlines and heat flux distributions on
deflected body flap and elevon of HERMES
(1.0) configuration

M_ =

stream lines heat flux

Level ST
K 0020
J 0.019
I 0.018
U 0.017
G 0.016
F 0.015
E 0.014
0 0.013
c 0012
8 O.Ql1
A 0.009

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0.000

, = 10'

Level ST

L 0.040

K 0.038
J 0.036
I 0.034
6 0.032
G 0.030
F 0.028
E 0.026
D 0.024
c 0.022
B 0.020
A 0.018
9 0.016
8 0.014
7 0.012
6 0.010
5 0.W8
4 0.m
3 0.004
2 0.002
1 0.wo

M= = 25, a = 30', T,., =1300K, Re = 0.358 lo", H = 75Km, laminar equilibrium flow, 8 = I O '

Fig. 79 Effect of inflow conditions on wall streamlines
and heat fluxes for deflected controls of
HE.- (1.0) configuration

computational domain

Windward block (#1)

geometty

Fig. 80 Discretization of domain around slot inbetween
elevon and rudder of H E W

4-57

Streamlines
perfect gas - Re = 2.1 1 o6
Me= 10, a = 30'

Stanton No.
perfect gas - Re? 2.1 1
M-= 10, a= 30

(A = O O O l)

Streamlines at the winglet leading edge Stanton contours for Ma=lO. e30" on the winglet

M = l O , alpha=30, Re=2.1€6. Tinf=52, Tw=293
HERMES 1 .O, ~1=30". grid 144x64~96

Influence of angle of attack on heat transfer along
leading edges of wing and winglet

Heat flux along the leading edge at free flight and
windtunnel conditions

Fig. 81 Flow solution around [he winglet of HERMES
;md distribution of peak hearing rates along the
leading edges of wins and winglet

h

b.

2.5 E r?\
1.0

1.5

a = 30'
Bodylenglh. Xlml

0 0 . ' '

13 0 135 14 0 145 150

-____ M- = 25, Re = 0.35 1 Os, H = 75 Km.
Tw =1300'K. equilibrium air

M- = 10, Re=2.10 10'. T.= 52'K.
T, = 293'K. perfect gas

-

Fig. 82 Peak heating along lower edge of rudder of
H E M E S (1.0) configuration

0.8

-0 9

-1 0

3.6 3.8 4.0 Y[ml

M- = 10, Re=2.10 lo6. T-= 52'K. - T, = 29xK. perfect gas
3 5 3 6 3 7 38 39 4 0 Ylm] 4 1

Fig. 83 Two-dimensional streamlines and pressure
conlours in two intersections x = const through
the slot

4-59

-1.c

-1.1

3.6 3.8 4.0 Y[m]

-0.7 -
4 m l .

-0.8 -

-0.9 -

-1.0

-1.1

3.8 3.9 4.0 Y[ml 4.1

Fig. 84 Two-dimensional streamlines and Mach number
contours

Km ,

52.K.

5- 1

Structured Grid Solvers I1
Parallelization of Block Structured Flow Solvers

B. Eisfeld, H.-M. Bleecke, N. Kroll, H. Ritzdorfk

Institute for Design Aerodynamics
DLR, Braunschweig, Germany

*Institute SCAI
GMD, St. Augustin, Germany

SUMMARY
This paper reviews some general considerations on the par-
allelization of large block structured flow solvers for pro-
duction use. Parallelization is therefore not treated as an
isolated subject of research, but as a tool to increase the
computational power for the user and as integral part of the
developmental environment of a CFD code. As an example
the parallelization of the FLOWer code using the portable
communications library CLIC-3D is given. Results of
benchmark tests obtained on various computer hardware
architectures demonstrate today ‘ s possibilities of parallel
processing in CFD applications.

LIST OF SYMBOLS

f

start-up time for communication
bandwidth for communication
specific heat at constant pressure
vector of artificial dissipative fluxes
total energy
speed-up
flux tensor
ratio of operations which cannot perform
concurrently
total enthalpy
heat transfer coefficient
number of blocks
number of processors
outward pointing unit normal vector
message length
relative performance
Prandtl number
pressure
residual vector
speed-up

T
t
3
U

U

V

V

i$
W

Y
P
P
0

T

0

temperature
wall clock time
velocity vector
velocity in x-direction
volume
velocity in y-direction
vector of conservative variables
velocity in z-direction
ratio of specific heats
viscosity
density
normal stress components
shear stress components
components of the energy dissipation function

Indices
alg algorithmic
comm communication
I inviscid
ijk discrete point
I laminar
R reference
t turbulent
V viscous
X in x-direction
y in y-direction
2 in z-direction

at infinity

Paper presented in an AGARD-FDP-VKI Special Course on “Parallel Computing in CFD“, held at the VKI. Rhode-Saint-Genese, Belgium,
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807.

5-2

I . INTRODUCTION
Reviewing the topics of computer applications of the last
few years an increasing interest in parallel processing is
observed , i n CFD as well as in other engineering disci-
plines, since experts predict the TFLOP/s computer until
the end of the century being a parallel architecture [I , 21.
Therefore, parallel computing has become subject of basic
research, carried out by mathematicians, computer scien-
tists, engineers and other scientists dealing with a large va-
riety of aspects. In literature one can find benchmark re-
sults for studying different hardware architectures [3],
discussions on fast communication protocols [4] or consid-
erations on computer languages supporting parallel pro-
cessing, e. g. [5, 6, 71. Others demonstrate that they have
parallelized their special application program and that it is
working reasonably well on different platforms, e. g. [8, 9,
IO].
The paper presented here will touch all these areas, but not
in detail, because it shall be devoted to the major goal of all
parallelization effort made in CFD: The increase of com-
pute power, in order to either reduce the response time for a
given problem or to extend the problem size to be solved.
It should be kept in mind that an engineer applying a large
CFD-code in general is not interested in details of the com-
puter his program is running on, but in details of the solu-
tion he can obtain, i. e. in the aerodynamics of the problem
he is investigating on. Therefore, i n this paper paralleliza-
tion is considered as a tool improving the capabilities of
numerical research in aerodynamics, not as a field of re-
search for its own sake.
From this point of view the question must be asked,
whether parallelization is always useful and when should i t
be applied'? The answer is, that the usefulness of parallel-
ization depends on the program to be dealt with. The im-
provement in run time to be obtained by any acceleration
technique can never exceed the run time currently needed
to solve a typical problem, and an automatic parallelization
is only possible on those few machines where auto-paral-
lelizing compilers are available. Therefore, a certain
amount of parallelization effort has to be considered, if one
does not want to restrict oneself to a special hardware envi-
ronment, such that the gain is highest when parallelizing
programs for large applications.
Secondly it is questionable to parallelize algorithms which
guarantee a high parallel efficiency but converge slowly.
Such programs clearly show an excellent acceleration by
exploiting many CPUs, but probably reveal longer re-
sponse times than sequentially running algorithms which
converge much faster.
Therefore, only for large CFD-codes that employ the most
efficient numerical techniques, the improvement due to
parallelization will be the greatest, and this paper will deal

especially with this class of programs. Furthermore it is re-
stricted to block structured codes, i. e. to solvers which
work on structured grids which are split into smaller, inter-
connected subdomains which can be treated separately of
each other. As described previously [I I] , this is a standard
technique, in order to allow computations of flow fields
around complex geometries for which no structured grid
can be generated as one logically rectangular block for
mathematical reasons.
Such software usually is the historic product of many sci-
entists throuthout a long period and is applied by a number
of different users, so that parallelization cannot be treated
as an isolated problem, but has to meet general require-
ments.
After identifying some of them in the next section discuss-
ing their influence, i t is dealt with strategies for the paral-
lelization of CFD-codes which depend as well as on hard-
and software aspects of the computer as on the type of pro-
gram. As an example for the parallelization of a large
structured flow solver, the parallelization of the FLOWer
code is described in the following section. This program
has evolved from the previously described DLR standard
flow solver CEVCATS [I I] and is developed in coopera-
tion with the German national research center for computer
science GMD and the German aeronautical industry as a
multi purpose flow solver. Benchmark results obtained on a
variety of different parallel computers are demonstrating
the success of the approach chosen and the potential of par-
allel processing in realistic applications.

2. REOUIREMENTS FOR THE PARALLELIZATION
OF LARGE CFD-CODES

2.1 Portability
As already mentioned in the introduction, large CFD-codes
are applied by a variety of users, since otherwise the costs
for their development could not be accepted. Of course it
cannot be guaranteed that all these users are working on the
same platform, neither parallel nor sequential. Moreover
the life time of such programs exceeds that of today's com-
puters by far, so that portability is an essential demand for
any application program in industrial use.
For sequentially running codes this problem can be circum-
vented by restricting the implementation to standardized
languages for which compilers exist on any machine, e. g.
ANSI-C or Fortran 77 (Fortran 90 is still problematic,
since compilers do not exist for as many computers as for
Fortran 77). Furthermore it is possible to exclude danger-
ous programming techniques which are allowed by the lan-
guage standard, but which might not work correctly on ev-
ery target platform, by rigid application of programming
standards.
For parallel programs things are much more difficult. Of

5-3

course, all techniques for guaranteeing portability in se-
quential mode still apply, but this is not sufficient, since the
communication between different processes has to be por-
table, too. Up to now, each manufacturer of parallel com-
puters employs his own proprietary communication system
being generally incompatible with that of others. The MPI-
standard for message passing systems [121 has been estab-
lished about one year ago, but still implementations are
hardly available, so that it is not yet guaranteeing portabil-
ity.
In the contrary the PVM communication system [I31 is
widely spread, but since i t is public domain software it
might be dangerous to base large application programs on
it. In case of severe problems nobody would be responsible
for trouble shooting, and applications are urgent most of-
ten.
A third possibility to obtain portability as far as message
passing systems are concerned is the PARMACS library
[I41 which is a commercial product that has been imple-
mented on a large variety of parallel computers. A defined
path to MPI is guaranteed, when this system has become a
real standard, but the popularity of PARMACS is clearly
restricted to European users.
Even i f a decision has been made for one system or an-
other, still the problem remains that parallel computers
might not be available to any user, i. e. one should seek for
the possibility to run the same program on sequential as
well as on parallel computers.

2.2 Consideration of DeveloDment Effort
The development of large CFD-codes which are able to
treat large problems and complex flow situations takes a
long time and necessitates the experience of many scien-
tists in order to establish an efficient, accurate and robust
solver. Furthermore the users usually have been working
with those programs for a long time, too, so that they are
familiar with its behavior and experienced in the interpreta-
tion of its numerical results.
Therefore, parallelization must not result in the complete
re-implementation of the Row solver, but is restricted to
modifications of the given code, as far as large application
programs are considered.

2.3 Parallelization Effort
As already pointed out, parallelization is only a means of
high performance computing, i. e. as any other acceleration
technique its efficiency decides about its worthiness for the
user. Unfortunately any larger gain in efficiency is only
possible by increasing the developmental effort, in order to
gain it. The latter is clearly restricted for economical rea-
sons, since the parallelization costs must not exceed the re-
duction of computational costs for an institution or an in-
dustrial business as a whole.

Therefore a parallelization strategy has to be applied guar-
anteeing sufficient acceleration with as little effort as possi-
ble.

3. PARALLELIZATION STRATEGIES

3.1 Parallel Architectures and Parallelism in Structured
Grid Solvers
Since expectations head towards some TFLOPk peak per-
formance by parallel processing, a variety of different ar-
chitectures has been developed attempting to step further
into this direction, but it is not yet clear which design is go-
ing to succeed. Generally one distinguishes two classes of
parallel computers: shared memory machines where all
CPUs are coupled by a common memory (Cray C90) and
distributed memory machines where each processor has its
own memory unit. In this case the nodes are coupled by an
interconnecting network either between the CPUs (IBM
SP2) or between the memory units (KSR I) . Latest devel-
opments attempt to combine both types by clustering to-
gether several processors around one shared memory and
connecting these clusters via network (NEC SX-4).
Looking on the design of large structured grid solvers, they
reveal different levels of inherent parallelism to be ex-
ploited. First of all on statement level, operations could be
performed concurrently, e. g. one addition and one multi-
plication at a time on super scalar processors. Secondly the
grid structure implies a parallelism of data, such that opera-
tions on different grid points could be carried out indepen-
dently which is already known from vector processors.
Last but not least large structured grid solvers are multi
block codes for grid generation reasons. These blocks char-
acterize the coarse grain parallelism of programs consid-
ered here, since the different blocks could be treated con-
currently.
Comparing machine architecture and code structure with
each other one finds out, that different platforms fit to a dif-
ferent level of inherent parallelism. Fine grain parallelism
on statement level is already exploited by single processor
machines, data parallelism seems to be best suited for
shared memory computers, whereas coarse grain parallel-
ism based on the block structure corresponds best with a
distributed memory architecture. Therefore, computers
combining all three features might be best suited for struc-
tured grid solvers, but until they are available one has to in-
vestigate the possibilities of exploiting data parallelism and
multi block parallelism separately. This leads to the ques-
tion of how to perform communication between proces-
sors.

3.2 Communication Models
According to the different machine architectures there exist
different types of communication models which support ei-

5-4

ther data or multi block parallelism. Nevertheless these
models are not restricted to the corresponding computer ar-

' chitecture and moreover their implementations are gener-
ally incompatible with each other.

3.2.1 Parallelizing Languages
There exist attempts to describe data parallelism already by
the programming language such as high Performance For-
tran or Vienna Fortran. However, these systems have not
yet reached a widely accepted standardization level, such
that portability is hardly guaranteed for the moment. This
could be overcome by current developments incorporating
parallel communication within objects of existing object
oriented programming languages like C++ [S , 6, 71, but
one major drawback remains: Any large solver not yet im-
plemented i n such a language would have to be completely
rewritten which will clearly not be acceptable for the rea-
sons mentioned in the last section.

3.2.2 ComDiler Directives and Autotasking
Another data parallel approach which makes paralleliza-
tion more feasible for the programmer is to use directives
telling the compiler which sections of the code can be
treated concurrently. e.g. where loops incorporate data par-
allel structures. This method has got the great advantage
that an existing code basically remains unchanged and that
there exist analyzing tools at least on some machines, mak-
ing suggestions about where to place such directives.
The problem is. that this procedure has to be repeated on
each platform again, since compiler directives are naturally
machine dependent. Furthermore, experiments employing
autoparallelizing compilers have revealed that best effi-
ciencies were always achieved by putting in these direc-
tives manually increasing the parallelization effort [IS].
The autotasking approach only assumes that only data in-
corporate parallelism, i. e. only array data can be treated in-
dependently of each other, so that good efficiencies can
only be expected from highly vectorizable programs. This
assumption will generally hold for structured grid solvers,
but depends on the block size which might be low for grid
generation reasons and which becomes definitely low on
coarse grids of multigrid algorithms. The advantage of this
method is, that it is definitely portable, since parallelization
is carried out automatically.
On virtual shared memory machines, i.e. distributed mem-
ory computers which are programmed as if they had a glo-
bal shared memory, efficiency decreases, because data
have to be transferred by global communication.
Last but not least compiler directives are spread all over the
code such that any algorithmic development cannot be sep-
arated from the parallel machine where the code is running
on.

3.2.3 Message Passing
The typical communication model corresponding to coarse
grain parallelism is message passing where the program-
mer is responsible himself for all types of communication
between the different processes. This means the program-
mer explicitly must tell the program when and where to
send or receive data respectively which of course is in-
creasing the parallelization effort. The advantage of this
type of communication model is its efficiency, since data
transfer takes place only, when needed. Moreover all oper-
ations can be performed in parallel, independent of vector-
ization features.
Of course portability is still a problem, because of the ven-
dors implementing proprietary systems, but as pointed out
in the last section, there already exist widely spread sys-
tems and the MPI-standard allowing an acceptable degree
of portability today.
On the contrary to data parallel communication models, the
message passing technique can be treated independently
from all algorithmical considerations as far as single blocks
are concerned. Each block is treated the same way in the
parallel mode as in the sequential mode, and all communi-
cation takes place outside the block algorithm.

3.3 Guidelines for the Parallelization of Block Structured
Flow Solvers
In the following four rules will be given and explained
which have proven to lead to an efficient parallelization
while meeting the objectives on large block structured flow
solvers for industrial use. Of course they should not be un-
derstood as the eternal laws of parallelization, but they
have successfully be applied for parallelizing at least two
solvers of this category, i.e. the FLOWer code and the NS-
FLEX-code [161.

3.3.1 Grid Partitioning as Parallelization Strategy
This method is based on the idea of splitting a given grid
into smaller subdomains which can be treated indepen-
dently of each other. The arising intersections between the
different blocks are treated as boundaries with a special cut
condition. In general there exists an overlap region at those
cuts where data are copied to from the corresponding
neighboring block. As an example figure 1 shows schemat-
ically the partitioning of a two-dimensional domain around
an airfoil into four subdomains.
This technique is chosen, since it is an approach of relative
simplicity. Furthermore, this strategy is agreed to be the
most efficient one [17, 181, when solving partial differen-
tial equations as it is done by flow solvers. From a more
practical point of view, this method has got the great ad-
vantage of being already well established in sequential
structured grid solvers, since the multi block technique is
nothing else but grid partitioning.

5-5

The main difference between a parallel and a sequential
code then is, that the exchange of boundary data between
neighboring blocks has to be replaced by sending and re-
ceiving procedures. Another slight difference concerns glo-
bal operations involving all blocks, e.g. the computation of
the overall residual which has to be realized by global com-
munication techniques. Therefore, applying grid partition-
ing as basic strategy is an aeproach that leads straight for-
ward to parallelization while keeping a sequentially proven
algorithm widely unchanged.

/

far field

Fig. 1 Schematic multi block decomposition of the flow
field around a generic transport aircraft.

3.3.2 SeDaration of ComDutation and Communication
Only keeping to this rule strictly will allow the develop-
ment of algorithms independently from hardware aspects.
This feature is necessary with respect to the conditions un-
der which large block structured codes are usually devel-
oped. There are several scientists, engineers or program-
mers working on the same software, and one cannot
assume that all of them are sharing the same parallel super
computer for development purpose, i.e. for testing, and de-
bugging instead of high performance computing. Separat-
ing all communication operations from the algorithmical
parts therefore allows the integration of developments car-
ried out on simple workstations without problems.
Furthermore from software engineering reasons it must be

aimed at a high degree of modularity of the program design
which enables a coordinated development by a group of re-
searchers. Any intermixing of communication and compu-
tation would therefore contradict to this basic principle of
software realization.
Last but not least the portability problem becomes much
more feasible to handle, when all communication proce-
dures are concentrated within separate units of the pro-
gram. Even if communication systems are not compatible
with each other, the effort for porting a program to another
parallel platform is reduced, since only defined modules
have to be modified or exchanged respectively.

3.3.3 Communication bv Message Passing
The decision for the message passing programming mqdel
evolves quite naturally from the things said above. As has
been shown, this type of communication corresponds to
coarse grain parallelism, and that is exactly what is repre-
sented by the grid partitioning strategy or multi block tech-
nique.
Additionally, one gets the highest efficiency, since parallel-
ism is not restricted to the vectorizable parts of the code.
One should never forget that it is high performance com-
puting what is aimed at by parallelization. Another advan-
tage is what programmers might fear for the increase of im-
plementation effort: communication has to be realized by
explicit calls of system routines for sending and receiving
data and so on. Therefore, the message passing routines al-
ready form some type of library which exists indepen-
dently of any application program, such that separating
communication from computation becomes a simple task.
One only has to concentrate all these routine calls within
distinct modules of the program.
Finally, the application of message passing does not ex-
clude the possibilities of data parallel communication mod-
els as far as compiler directives are concerned. Since mes-
sage passing is only touching the block structure of a flow
solver, there still remains the inherent data parallelism
within each block. Therefore a combination of techniques
involving message passing for the inter block communica-
tion and data parallel directives within each block might be
thought of, especially with respect to future multi level ar-
chitectures. Nevertheless drawbacks and advantages of
such an approach would have to be assessed after practical
experiences have been made.

3.3.4 Use of a Communication Librarv
Returning back to pure message passing and what has been
said about its features, i t is only one step further to demand
for a library realizing all necessary communication in a
parallel code. Remembering the last subsections this would
only be a more detailed guideline concluding what has
been already said, but it is more than that.

5-6

What is thought about, is a high level library incorporating
the whole functionality involving communication in block
structured programs, e.g. an exchange of boundary data at
block interfaces. Since all these functionalities must have
been realized already in sequential mode, ideally within
separate modules, portability between sequential and paral-
lel computers is no problem any more. One only has to ei-
ther link different libraries or call different subroutines de-
pending on the architecture.
Additionally, such a library can be developed in almost
complete independence of the calling CFD-solver, such
that specialists on parallel computing could be employed
for its, implementation guaranteeing a high degree of reli-
ability. The application programmer on the other hand is
relieved from any basic considerations on parallelism. He
only must be familiar with the interfaces to the library rou-
tines, the functionality of which he already knows from his
sequential experience.
Therefore, although the effort of realizing such a library is
high, the parallelization costs for the application program
are low, and, since a library can be re-used again and again
by different codes. its implementation is worthwhile. This
approach is not a vision for the future fairly to be reached,
but has already become reality, and will be described
within the next section.

4. THE COMMUNICATIONS LIBRARY CLIC-3D
At GMD this approach has been followed with the creation
of the GMD communications library CLIC (,,Communica-
tions Library for Industrial Codes", former versions are
known as the GMD Comlib). The target applications are
PDE solvers on regular and block-structured grids, as they
result from finite difference or finite volume discretiza-
tions. In particular, the library supports parallel multigrid
applications. For this class of applications it turned out
that, while the numerics differ widely, the communication
sections are quite similar in many programs, depending
only on the underlying problem geometry. As a conse-
quence of the high level abstraction, the CLIC library is
useful only for the application class for which it was de-
signed.
The development of the CLIC library started at GMD in
1986 with the definition and implementation of routines for
2- and 3-dimensional logically rectangular grids. It fol-
lowed the implementation of routines for 2-dimensional
block-structured grids. The routines for 3-dimensional
block-structured grids are currently developed in the
project POPINDA. The routines support vertex-oriented as
well as cell-centered discretization schemes.
POPINDA is a German national project, funded by the
German Federal Ministry for Education, Science, Research
and Technology (BMBF). Its central goal is to provide the
utilization of highly parallel systems for aerodynamic pro-

duction codes. The parallel codes being developed in the
project are based on highly efficient numerical algorithms
(multigrid). They will allow more accurate simulations,
which are indispensable due to increased economic, eco-
logical and technical requirements.
The aim in the development of CLIC is to make program-
ming for complex geometries as easy as for a single cube
and to provide high level library routines for all communi-
cation tasks. The CLIC user interface provides the applica-
tion program with all required information about the prob-
lem geometry.
The CLIC library is based on the PARMACS message
passing system [141 and, thus, is designed for a host-node
(master-slave) model. A host process starts the distributed
application, performs the input and output and data trans-
fers with the node processes. The host process does not
participate in the grid computations; this is performed by
the node processes. As a consequence the user application
is separated in a host program and a node program, as illus-
trated by figure 2.

HOST

data distribution AY
and collection

Q
NODE

data exchange

Fig. 2 Host-node-structure of the parallel FLOWer code.

In the host program of a 3-dimensional block-structured
application, the same input parameters are read as in the'se-
quential user program. Then, CLIC-routines read in the de-
scription of the block-structured grid, create the node pro-
cesses, distribute the blocks in a load-balanced way to the
allocated node processors and distribute the input parame-
ters to the node processes. Another routine reads the grid
coordinates and sends them to the corresponding node pro-
cesses. After the data is distributed to the node processes,
the host program usually calls a CLIC-routine which waits
for output generated by the node processes and writes that
output to the corresponding output units.
Each node process executes the node program which is

5-7

parallel efficiency, because the corresponding CLIC-rou-
tine is generally called most of all and is the most crucial
routine especially on coarse grids of multigrid algorithms.
An example for such an optimization of the update proce-
dure is regular corners of 8 blpcks; a straightforward tech-
nique to update the overlap regions is to send and receive
messages over all faces edges and comers of a block; thus,
26 messages (6 faces. 12 edges, 8 corners) have to be sent
and received for each block in such a regular case. How-
ever, in such regular cases. the number of messages to up-
date the overlap regions can be decreased to 6 by the tech-
nique as follows: in the first step, all blocks exchange their
data with neighbor blocks in I-direction (1 message per
block face); in the second and third step. all blocks ex-
change their data with neighbor blocks in 1- and K-direc-
tion. respectively. but now including the already updated
overlap regions. This technique is illustrated by figure 4 for
a two-dimensional example.

very similar to the sequential user program without reading
the input data. The input data is transferred by CLIC-rou-
tines, which receive data containing the essential block in-
formation of blocks, together with global information
passed by the host program. The grid coordinates art also
received by a library routine. It should be noted that a node
process receives the information and grid coordinates only
for the blocks for which the node process performs grid
computations. A schematic flow chart of the host and node
process cooperation is given in figure 3.

Nom 1 mm 1

EOlltro1 e t r e m - data scram

Fig. 3 Schematic flow chart of host and node process
execution supported by the CLIC communications
library.

Library routines also analyze the block-structure; i. e. for
each segment edge and segment point. the adjoining blocks
and the number of coinciding grid cells are determined and
the edge or point is topologically classified. If the segment
edge or point is part of the physical boundary, the physical
boundary conditions of all adjoining blocks are also deler-
mined. In addition. the grid coordinates can be examined,
and geometrical singularities such as block faces which
collapse to a single point can be detected. All that data can
be inquired and may be used in the user program, for ex-
ample in the discretization of irregular grid points or physi-
cal boundary points.
This data may be important for the user program, however,
it is essential for the CLIC library to correctly update the
overlap regions (to exchange the boundary data) of neigh-
boring blocks and to optimize this update procedure. An
optimization of this update procedure is significant for the

2nd 6t-D
j-direction 1

00000 't30000
o m m m o o m m m o
o m m m o - o m m m o
o m m m o o m m m o

00000 00000

Fig. 4 CLIC exchange stragegy.

So, the data resulting from the analysis of the block-struc-
lure is used to optimize the update of the overlap regions.
Since it is too expensive to optimize this update sequence
and to determine the areas which have to be sent to neigh-
bor blocks within each update, these tasks are performed
only once by CLIC-routines in an initialization routine of
the user program. Within the solution process of the user
program. the update of the overlap regions of all blocks is
then performed by the call of a single CLIC-routine. In that
call, the user specifies the number of the multigrid levels
and can choose the number of grid functions to be simulta-
neously exchanged.
Among other tasks, the CLIC library performs also the
computation of global values (for example global residu-

5-8

als) and the output to files and standard output which is
generated by the node processes. In the next year, the li-
brary will be extended to adaptive block-structures (i. e. hi-
erarchies of block-structures). This will include routines
which create and manage adaptively refined new grid lev-
els, which perform a load-balanced dynamic mapping and
which perform all data re-distribution required during
adaptive multigrid algorithms.
An important fact for the development and management of
user programs is that there is also a sequential version of
the 3-dimensional block-structured CLIC library. Thus, a
user program can be sequentially executed with the same
interfaces as in the parallel case.

5. PARALLELIZATION OF THE FLOWer CODE
The development of the FLOWer code was initiated within
the parallelization project POPINDA. The program has di-
rectly evolved from the DLR-CEVCATS code [I l l and is
further developed in close cooperation of the DLR and the
German aerospace industry, i.e. DASA.
As the DLR-CEVCATS code, the FLOWer code is written
in standard Fortran 77 for portability reasons and operates
on block structured grids. Therefore, it allows computa-
tions of flows around complex aircraft geometries as illus-
trated by figure 5. Furthermore effort is made, in order to
push all FLOWer development towards the design of a
multi purpose standard code for a wide area of complex ap-
plications. Since many different depamnenu of various in-
stitutions of research and industry are involved, the future
FLOWer code must cover all of their aerodynamical prob-
lems reaching from incompressible flows to hypersonics.

- -
Fi =

Fig. 5 Generic aircraft configuration consisting of wing,
body, engine and pylon

p u * + p puv puw

puw pvw pw*+p
puv pv*+p pvw

5.1 Numerical Method
The FLOWer code is solving the Euler- or Navier-Stokes
equations in conservative form written as

- -
Fv =

+ where W denotes the vector of conservative variables

a x Tay TXZ

I,, 0, ?,I

T X Z Tyz

-
and F is the flux tensor which can be split into an inviscid
and a viscid part:

with the inviscid flux tensor being defined hy

The components of the energy dissipation function are:

For the non-dimensional pressure and temperature the fol-
lowing relations hold

5-9

The elements of the viscous stress tensor are given by
Newton's law of skin friction, i. e.

au 2 3 a =-2p-+-p . a ax 3
av 2 3 a = -2P-+-p . a

Y a y 3
aw 2 3 az = -2p-+-p .: ax 3
au av

Ixy = -p(a y - + ax -)
aV aw

Ty* = -P(< a + -) ay

This formulation is further simplified by applying a thin
shear layer approximation such that gradients in stream-
wise direction. i. e. along quasi sueamwise grid lines, are
neglected [191.
The system is closed by the relations for the transport coef-
ficients

P = Kl+P,

k=C(.I+!! !) P Pr, Pr,

where the laminar viscosity pI is given by Sutherlands's
formula

and the turbulent viscosity p, being computed from the al-
gebraic Baldwin-Lomax model [ZO].
These equations are discretized in space by the method of
lines resulting in a system of ordinary differential equa-
tions involving each hexaeder of the structured grid

The discretization is central. but it can be switched be-
tween a cell vertex and a node centered scheme (figure 6).

c e l l vertex node centered
Fig. 6

Therefore, an artificial dissipation term due to Jameson et
al. [211 is added damping high frequency oscillations and
allowing a sufficiently sharp resolution of shock waves in

the flow field.
The resulting system of equations then reads

Discretization stars of the FLOWer code

f with R,jk being the veclnr of the residuals of convective
and viscous fluxes and Dijk the vector of the artificial dissi-
pative fluxes respectively.
The time integration is carried out by an explicit. hybrid
Runge-Kutta scheme involving multiple stages 1221. The
convergence to steady state is further accelerated by the
techniques of local time stepping and an implicit smooth-
ing of the residuals obtained within a Runge-Kutta stage.
For Euler computations there exists a possibility of driving
the solution to steady state faster by exploiting the demand
for constant enthalpy [U].
Alternatively, a two stage implicit LU-scheme has been
implemented only recently and is currently tested for the fi-
nal integration.
Both iteration techniques are embedded into a powerful
multigrid algorithm 1241. Depending on the user input data
standard single grid computations are as well possible as a
successive grid refinement, simple multigrid or full multi-
grid algorithms. As is illustrated in [ll], high convergence
rates can be obtained, using this technique.
A more detailed description of the algorithms used can be
foundonceagain hy Krolletal. [ll].

3

5.2 Block Structure
Since grids around complex geometnes cannot be gener-
ated as one logically rectangular block, the m o w e r code
is block structured. That means that the domain is split into
regions for each of which the generation of a structured
grid is possible. Figure 7 is showing schematically such a
grid around a transport aircraft. The program then treats the
blocks more or less independently from each other which

5-10

can only be done properly by exchanging data of the cur-
rent solution at block interfaces before each time step.

Fig, 7 Schematic multiblock decomposition of the flow
field around a generic transport aircraft.

Therefore. each block is surrounded by one or two layers
of dummy cells respectively which are used for the formu-
lation of boundary conditions. At block intersections these
cells correspond with those of their neighboring block and
carry the solution of the points there. This technique has al-
ready been illustrated by figure l where a 2D example of
the block structure around an airfoil is given involving one
dummy layer.
The overlap width at such intersections decides about the
order of accuracy that could be obtained at boundaries.
such that the FLOWer code allows two dummy layers on
demand by the user, in order to keep the accuracy at block
intersections unchanged at second order in space.
This number of dummy layers is necessary for computing
the artificial dissipation terms at cuts correctly. Since these
involve cenual fourth differences in space, each grid point
needs a support of two further vertices to either side.
Therefore, grid points located on the intersection of two
blocks need information on data of two layers of points
from their neighbor, i. e. two dummy layers, in order to
compute the artificial dissipation there exactly as if there
were no cut.
That inaccuracies at block interfaces may influence the so-
lution is demonstrated by figures 8 and 9, where the pitch-
ingmoment of an oscillating NACA 0012 airfoil is plotted
versus the angle of attack [29]. When involving only one
layer of dummy cells, the multiblock solution deviates
from that obtained hy a single block computation. Re-es-
tablishing second order accuracy at the cuts by adding the
second dummy layer, these differences vanish.

a

Fig, 8 Pitching moment of an oscillating airfoil versus
angle of attack. Comparison of single block and
multiblock solution with one dummy layer at cuts
~ 9 1 .

Fig. 9 Pitching moment of an oscillating airfoil versus
angle of attack. Comparison of single block and
multiblock solution with two dummy layers at cuts
Wl.

Since exchange of data between blocks creates an addi-
tional overhead with respect to single block computations,
the FLOWer code inhabits different strategies for this pro-
cedure varying by the frequency of exchange during one it-
eration [25]. They are sketched in figure IO.
The first approach contains a complete exchange at block
boundaries before each Runge-Kutta stage and before the
computations of the residuals for the forcing functions of
the multigrid algorithm.

5-11

The second possibility is, to update the block interface be-
fore each complete Runge-Kutta iteration step and again
before computing the residuals for the forcing functions on
the coarse grid.
Finally, a third strategy is carrying out the data exchange
only once per grid level before the Runge-Kutta iteration
step. All three techniques differ as far as the convergence
behavior is concerned and in the memory needed, because
the less exchange is Derformed the less data have to be
stored intermediately.

Fig. IO Strategies for exchange of d at block interfaces.

The complete procedure is realized as an in-core solver as
well as an offcore solver locating all block data on an ex-
ternal storing device. Therefore, large problems usually ex-
ceeding the main memory capacity as a whole can be
solved.

5.3 Paralletization of the FLOWer CO&

As already pointed out, the paralleiization of the FLOWer
code followed the guidelines which were explained above.
Therefore, parallelization meant integration of calls of the
CLIC-library at distinct locations within the code. This
leads to the structure of software layers sketched in figure 8
which illustrates how parallelization and portability are
achieved at once.
Since the CLIC-library is based on the PARMACS mes-
sage passing interface, there are two different programs
necessary for a parallel run, called host and node program
(figure 2). This feature was used, in order to establish a
possibility for applying the FLOWer code as well as on
parallel as on sequential computers:

vendor's systemn

Fig. I 1 Software layers of the parallelized FLOWer code.

The host program is only needed in parallel mode and per-
forms the YO-operations. It creates and starts the node pro-
cesses and distributes the initial data correspondingly. i. e.
grid coordinates and global control data. During the pro-
gram run the host process receives the convergence infor-
mation from all nodes and prints it to the standard output.
At the end it collects the solution data from the nodes and
writes them to the specified output files.
All parallel output operations performed by the host pro-
cess are completely bidden from the user, since they are
driven from the node process. There is only one call of the
CLIC-library necessary, in order to initiate the communica-
tion between the host and the nodes, the rest is carried out
automatically.
The node program contains the complete sequential flow
solver. There is only one parameter to be specified by the
user which switches between routines of the CLIC-library
and standard sequential procedures. Therefore. the parallel
mode differs essentially only in four points from the se-
quential mode
* Input read operations are replaced by reception of input

data from the host process.
Global operations involving all blocks of the given
block strumre are performed by the CLIC instead of
within do loops over all blocks.
The exchange of data at block interfaces is carried out
fully automatically within distinct CLIC-routines.
There is no intermediate storing or reordering of data
necessary any more.
Write statements for putting out data are replaced by
parallel write operations of the CLIC consisting of an
initialization, an output format, output data and a termi-
nation procedure.

*

-

*

5-12

These differences are all only slight additions to the se-
quential program, such that the advantages of the applied
guidelines described above become quite clear. - The program is fully portable, since the FLOWer code

and the CLIC-library are portable for themselves.

All modifications do not touch the numerical algorithm.
so that users and developers can keep theis well known
environment.

The parallelization effort is exuemely low, when
assuming an existing communications library CLIC.

6. RESULTS
After integrating the CLIC calls into the FLOWer program
structure. several test computations and benchmarks have
been carried out. in order to demonstrate the success of the
approach chosen and for investigating the potential of par-
allelization of a real application code. These will be re-
ported on in the following.

5.1 Testcases
Two different test cases were defined for comprehensive
studies of the performance of computers and networks rep-
resenting typical problems in aerodynamics while still re-
maining simple.
The first problem to be solved was the inviscid flow around
a non-swept wing consisting of NACAWl2 airfoils at a
free stream Mach number of M = 0.6 and an incidence of
a = 0'. For this case two different grids were generated. a
coarse one consisting of 160 x 32 x 8 cells and a fine one
consisting of 320 x 64 x 16 cells. Both gridsmainly were
subdivided into I , 4 and 8 blocks of equal size as shown in
figure 12. This subdivision was driven further for the fine
grid. gi\aing a 16 block and a 32 block case. Each computa-
tion consisted of IM) multigrid W-cyles involving three
mesh le\,els. where the wall clock time was measured be-
tween the start of the initialization of the solution and the
end of the iterations.
The second test case was the DLR-F4 wing-body combina-
tion. a generic. Airbus like aircraft given in figures 13 and
14. Here, the inviscid flow was computed at a free stream
Mach number of M = 0.75 at a = Oo incidence. The C-grid
consists of 256 x 40 x 40 cells and is blocked along the C-
lines into I , 4 and 8 blocks of equal size respectively. Each
computation consisted of 35 multigrid W-cycles involving
four mesh levels. The time measurement was carried out as
described above.
In both cases each block was mapped to one processor.

Fig. 12 Block structure for the NACA 0012 wing test
cases

Fig. 13 Block structure of the DLR-F4 wing-body
combination.

Fig. 14 Iso-Mach-contours on the DLR-F4 wing-body
combination. M = 0.75, a = 0 '.

5-13

cds of Performance Ass e m
Different quantities have been evaluated, especially for the
NACA 0012 test case, in order to assess various parallel
and sequential computers. This procedure is necessary, if
one wants to get information on the real performance of a
computer, since a restriction to only one criterion could
possibly give a wrong impression of a computer's abilities.
Therefore, some characteristic values are defined in the fol-
lowing.

6.2.1 Soeed-uo

The speed-up gives the value of aceeleration obtained by
employing several CPUs for a problem of a given size. It is
defined as

which is the ratio of wall clock times needed by one pro-
cessor and by Np processors. This is usually compared with
the number of processors used which is called linear speed-
up. The true speed-up is always deviating from the linear
one. because employing several CPUs is always creating
an overhead for communication.
Since the blocking creates an additional overhead for com-
puting block interfaces multiply (once per block) by the
FLOWer code, an algorithmic speed-up is defined as

which is the ratio of computing times for the one block
case and the NB block case on a single processor multiplied
with the number of processors which could be employed, i.
e. the number of blocks. This value gives the algorithmi-
cally possible speed-up for a given problem.

6.2.2 Efficiency
The efficiency of a parallelization denotes the degree up IO
which the theoretically linear speed-up is reached, i. e.

Because of the algorithmic overhead lo be expected by the
blocking, an algorithmic efficiency can be defined by

showing the degree up to which the parallel code reaches
the algorithmically possible speed-up. Thefore, the stan-
dard efficiency is a global indicator for the degree a parallel

code is exploiting a given machine, whereas the algorith-
mic efficiency characterizes the quality of the paralleliza-
tlon itself.

6.2.3 Relauve Performance
Since speed-up and efficiency are both related to measure-
ments on the same computer, a comparison between differ-
ent machines IS mandatory for a true assessment of a paral-
lel program. Therefore, one can define a relative
performance

tR P = - rei t

which is the ratio of the computing time on a reference pro-
cessor (usually a Cray C90) and the time needed on the
benchmark machine. Ihis value allows comparisons even
between parallel and sequential computers, given that the
program will perform on all platforms.

6.2.4 Concludine Rem a r k
Assessing computers using the above defirutions is still
problemaucal and bas to be done with great cautlon.
Speed-up and efficiency as isolated values do not say any-
thing about the quality of a computer or the program. since
they lack any informauon about the absolute time needed.
For example figure I5 shows the speed-up obtained for a
two-dimensional eomputation of the flow around a NACA
0012 airfotl. On I60 blocks aspeed-up of 125 was reached
on a Parsytec GCel. A great value, but the time still ex-
ceeded that one obtained on only four pmesson of an
IBM SP1 [28]

Fig. 15 Speed-up versus processor number on Parsytec
GCel for a two-dimensional NACA 0012 airfoil
Wl.

5-14

Furthermore both quantities, as defined here, are related to
the solution of a problem of a given size employing an in-
creasing number of processors. Therefore, it is necessary
that the problem can be solved completely on a single CPU
of a machine for computing these values. But paralleliza-
tion is done for solving future problems exceeding today's
single processor capabilities.
Therefore. all results given here can only be taken as a gen-
eral information on today's abilities of parallel computers
with respect to sequential machines. In addition, it is the
potential of parallel processing in CFD which can he indi-
cated.

6.3 Comoarison of Cornouter Performance
The NACA 0012 wing test case has been used for compar-
ative performance measurements on a number of comput-
ers of different architecture. The results are given as histo-
grams in figures 16 and 17 showing the relative time
needed with respect to that one measured on a C90 single
processor.As one can see in figure 16, the workstations
tested cannot compete even with older vector computers as
the Cray Y-MP, as far as performance is concerned. Their
application is therefore restricted to research and develop
ment duties.
Within the class of vector computers, the NEC SX-3.
which is the DLR working horse is clearly the strongest
machine outperforming the reference Cray C90 processor.
On this machine a sustained performance above I
GFLOP/s was achieved.
Switching to figure 17, one sees that older parallel comput-
ers. i. e. the CM5 and the Intel Paragon, need many proces-
sors, i. e. blocks, in order to reach a high performance. For
the case tested here consisting of eight blocks, they can
only compete with single processor workstations, since
their node CPUs are too weak. Another problem showed to
be their little main memory, such that the large test case
could not be computed on them using less than 32 proces-
sors. Since the results for the coarse grid were already dis-
appointing. this calculation was not carried out.
Somewhai more promising are the results obtained on an
IBM SP1. On eight nodes using the fastest communication
system available one can almost reach the performance of
older generation vector processors as the Cray Y-MP.
More recent distributed memory parallel computers which
have been tested then, revealed that they are able to com-
pete even with today's vector machines. If the problem is
sufficiently large, the C90 single processor performance
can almost be reached employing 32 nodes of a NEC
Cenju-3. Using the same number of CPUs on an IBM SP2
the CY0 single processor is already outperformed.
A special case is the result of the J916, since it is a shared
memory vector computer. As one can see in this case, eight

r uu 0012 "ira f..t -.
I CIru mid 1110 x 64 x 16 c.1l.l
0 _I.. *Id I160 I 3 1 x I C.11.) %

9
m

I

X I II Dm2 Urnb. C I I Y m
1160001170 U T O O O I S 9 0 30001800 r-m 111 U - 3 I l L X

Fig. 16 Relative performance of sequential computers
obtained for the NACA 0012 wing test case
(16Ox32x8cells) with respect to a Cray C90 single
processor.

I e-. I -_ 8,. -_ ,111 .-. .,I, -, 1,. -.
Fig. 17 Relative performance of parallel computers

obtained forthe NACA 0012 wing test case
(16Ox32x8cells) with respect to a Cray C90 single
processor.

computing nodes are already sufficient for reaching the
C90 single processor performance.
In figure 18 the development of the relative performance is
plotted versus the respective processor number involved
for the most powerful parallel computers tested. As one
can see, the highest performance is achieved on the com-
puters with the most powerful single processors. On the
other hand, the more powerful the computers are the worse
their scalability becomes. i. e. the less steep is the slope of
the corresponding curve.
This clearly indicates that on all these computers the per-
formance is mainly gained by an increase in the single pro-
cessor performance. whereas the network cannot keep
track. The bener scalability of the less powerful parallel

5-15

computers is therefore not gained by an improved network
speed, but by weaker processors leading to a better balance
of both components.

10.0 r

p-l 7.5 \

0 0 1 I

Fig. 18 Development of the relative pe~ormance versus
0 4 II 12 I6 20 24 28 Np 32

processor number with respect to a C90 single
processor.
Test case: NACA 0012 wing, 320x64~16 cells.

e of the Communication Svstem
It is clear that the performance of parallel computers is
mainly influenced by the communication system including
hardware and software aspects. This effect was studied
computing both test cases, the NACA 0012 wing and the
DLR-F4 wing-body combination, on an IBM SP1 using
different communication systems available there. The re-
sults of the measurements are given as speed-up versus
number of processors in figures 19 to 21.

0.0 4.0 *.o 0.0 4.0 5.0 II.0 ,.a 1 0 N p

Fig. 19 Speed-up versus processor number on IBM SPl.
Test case: NACA 0012 wing, coarse grid
(160x32~8 cells).

S
8.0

7.0

B.0

5.0

1.0

2.0

t (I

0.0 U,...', ' -
0.0 LO 2.0 3.0 I O 5.0 8.0 7.0 s r N p

Fig. 20 Speed-up versus processor number on IBM SPI.
Test case: NACA 0012 wing, fine grid
(320x64~16 cells).

There have been tested five different communication sys-
tems:

PVM using Ethernet

PVM using the IBM High Performance Switch *

- MPL(P0E)
*

*

Figures 19 to 21 clearly indicate that PVM using an Ether-
net connection is not suited for the CFD problems treated
here, i. e. workstation clusters with an Ethernet connection
are definitely not suitable for replacing a true parallel com-
puter at least for the FLOWer code.

MPUp (euih) in default configuration
MPUp (euih) with interrupt control.

Fig. 21 Speed-up versus processor number on IBM SPl.
Test case: DLR-F4 wing-body combination
(256x40~40 cells).

5-16

The main reason for the speed down on eight nodes is the
low performance of the Ethernet as can be seen from the
improvement using PVM with the high performance
switch. Nevertheless there is still too much software over-
head within the communication which is drastically re-
duced by applying the IBM proprietary systems.
With the fastest systems the algorithmically ideal speed-up
is reached up to an acceptable degree depending on the
problem size. One can clearly perceive an increase of the
speed-up when increasing the work load per processor, i. e.
the block size.
For the larger NACA 0012 wing test case even a super lin-
ear speed-up was obtained (figure 20) which is due to a
paging effect. Indeed, the one block case exceeded the
main memory capacity of a single CPU, such that this is a
typical case where parallel processing becomes advanta-
geous while speed-up measurements are questionable.
Another observation is. that the algorithmically ideal
speed-up considerably deviates from the linear one due to
the algorithmic overhead because of multiple computations
on block interfaces. This overhead is reduced of course,
when increasing the block size per processor, as can be
seen from a comparison of both NACA 0012 wing test
cases.
On the other hand this overhead is remarkably increasing,
when involving a fourth multigrid level, as is done for the
DLR-F4 wing-body combination. Since it is W-cycles
which are performed. much more time is spent on coarse
grids where the ratio of boundary points to field points is
getting worse. As it seems, the EXOWer code behavior
there is dominated by the corresponding algorithmic over-
head at the inter block boundaries and not by the increasing
communication activity. because the algorithmic ideal is
reached to a high degree indicating an excellent paralleliza-
tion efficiency.

p
Finally it is possible to compare the efficiencies ofdifferent
communication models using the FLOWer code on shared
memory computers. Therefore, measurements carried out
on a Cray C916 and a Cray J9 16 computer using on the one
hand the CLIC-library, i. e. exploiting coarse grain paral-
lelism by message passing, and on the other hand using the
auto-parallelizing compiler distributing parallel data to dif-
ferent processors. In the latter case the CLIC library was
replaced by a dummy library, and no additional compiler
directives were used. The message passing solutions were
obtained for the multi block cases, whereas the auto-paral-
lelizer worked on the single block problems.
The results of the measurements are given in figures 22 to
25 as speed-up versus number of processors for the two
NACA 0012 wing test cases. What can be seen, is that only

for the coarse grid problem the message passing approach
is working slightly worse than the auto-parallelization ap-
proach, although it is creating a considerable algorithmical
overhead at block interfaces as pointed out above. For the
fine grid problem the parallelizarion via CLIC not only is
competitive on the Cray C916. but even outperforms the
auto-parallelization on the Cray 1916.
Furthermore the scalability of the loop based data parallel
approach is rather poor which is indicated by the strong
non-linear deviation of the speed-up from the linear one.
Using message passing this deviation is higher for small
processor numbers, but remains almost linear, at least until
eight CPUs, such that it is lo be expected that this approach
is performing better for large processor numbers.

Fig. 22 Speed-up versus processor number on Cray C916.
Test case: NACA 0012 wing, coarse grid
(I 60x32~8 cells).

Fig. 23 Speed-up versus processor number on Cray 0 1 6 .
Test case: NACA 0012 wing, fine grid
(320x64~16 cells).

5-17

ferent processors. Of course there remains a body of opera-
tions outside of loops, i. e. scalar operations. These are
excluded from the parallelization using an auto-paralleliz-
ing compiler, but of course take part in the coarse grain
parallelization based on the block structure. Therefore, the
number of operations which cannot be performed in paral-
le1 is higher for the data parallel approach than for the mes-
sage passing approach. Due to Amdahl's law [U]

NP S = I + f . (N p - l)

0 0
0 0 I O 2 0 1 0 4 0 I D 6 0 7 0 l a Y

Fig. 24 Speed-up versus processor number on Cray J916.
Test case: NACA 0012 wing, coarse grid
(160x32~8 cells).

0 0
D O 1 8 1 0 2 0 4 0 s o 6 0 T* B O I 4

Fig 25 Speed-up versus processor number on Cray J916.
Test case: NACA 0012 wing. fine grid
(320x64~16 cells).

The reasons for that interesting behavior might be the fol-
lowing [26]:
First of all, employing the CLIC-library creates some soft-
ware overhead necessary for the operations involved in the
communication. In additlon. the algorithmic overhead due
to multiple computatlons at block boundaries further de-
creases the parallel efficiency to be obtained by the
FLOWer code. This explains the somewhat expected be-
havior for small processor numbers, that a vendor's spe-
cific strategy outperforms a portable one.
On the other hand the auto-parallelizmg approach is re-
sulcted to the distribution of array data within loops to dif-

where f is the portion of operations which cannot perform
concurrently. this must lead to a higher speed-up theoreti-
cally to be obtained by the parallelization via CLIC, since
the value off is smaller there reducing the denominator of
the above expression.
Another reduction of the speed-up gained by auto-parallel-
ization is caused by small load imbalances which are indi-
cated by the small wiggles of the speed-up curves for that
approach. Depending on the strategy chosen for the distri-
bution of concurrently processed data and depending on
the number of array data to be treated, it can hardly be
avoided that there will be processom computing slightly
more data than others reducing further the efficiency. On
the contrary the blocks of the test cases for the message
passing parallelization were of equal size guaranteeing an
ideal load balancing for that strategy.
What can be observed further, is that both techniques per-
form better with an increase of the problem size which is
due to an increase of the vector length in either approach.
But in the message passing solution additionally the com-
munication and the algorithmic overhead becomes less im-
portant, since the local ratio of boundary data to field data
is getting better. Therefore, the message passing efficiency
becomes less dependent on the processor number, when in-
creasing the problem size while keeping the work load con-
stant per CPU.
The figures 22 to 25 clearly indicate that message passing
is superior to auto-parallelizing compilers for sufficiently
large blocks and for a sufficiently balanced ratio of com-
munication to computational power. The latter is demon-
strated hy the Cray J916 results where the single CPU is
much weaker than that one of a Cray C916, but where the
message passing speed-ups are always above the corre-
sponding ones on the Cray C916. Therefore, the crossover
point for the message passing approach is reached earlier
than on the C916 machine.
Of course these conclusions are only valid, when no addi-
tional compiler directive are put into the code for tuning,
but this was excluded, for the reasons given with the guide-
lines for parallelization.

5-18

5.6 Massive Parallelism
It is clear that the benefits of parallelism will be greatest,
when applying a higher number of processors assuming a
sufficiently powerful network. There exist attempts to em-
ploy hundreds or thousands of CPUs working on the same
problem at an overall performance of about 1 TFLOP/s.
Therefore investigations with a two-dimensional code were
carried out, in order to study the effects occuring in a mas-
sively parallel environment (281.
There were standard computations carried out on a Par-
sytec GCel for the flow field around a NACA 0012 airfoil
at M = 0.8 and a = I .25O on an 0-grid of 320 x 64 cells.
The mesh was split according to different strategies in up
to 160 blocks of equal size. The block structures varied
with respect to the direction the grid was split, i. e. the
mesh was subdivided in the normal direction j into I. 2.4
and 8 blocks keeping the number of blocks constant in the
circumferential direction i at I , 5. 10 or 20 blocks respec-
tively. The results of these computations are shown in fig-
ure 26 where the obtained efficiencies are plotted versus
the respective number of processors.

- 1 block ln i~dlrenion,1 .2 .4 .8bl~doln] -~~dlon
& 5 blocks In 8dirsnion. 1.2.4.8 blacks In j-diredion + 10 bl&ln l.dll~cllon. 1.2.4. 8bl&lnjdireM + 20 blodoln l&dlrsnion. 1 , 2 . 4 , 8 ~ l n l d l ~

OW
0 25 50 75 100 125 Np 150

Fig. 26 Efficiency versus processor number for different
block structures for the Zd NACA 0012 airfoil on
Parsytec GCel.

As one can see, the efficiency varies remarkably between
the different strategies applied. Moreover, it is essentially
determined by the number of blocks in the normal direction
j. The efficiency values for 8 blocks in j direction differ
only between 85% and 81%. although the total number of
blocks, i. e. processors, covers a range from 8 to no less
than 160.
The reason for that behavior is found, when thinking about
the communication pattern in the different cases. The time
needed for communicating a set of data is usually given by

the following linear relation

t,,,,,,,, = a + hn

where a is the start-up time needed for initialization, b the
bandwidth and n the number of data to be transferred. The
latter usually is proportional to the number of points at a
block interface.
In the case here the number of messages sent per block de-
pends only on the number of neighbors. This value varies
slightly from 2 (1 block in any direction) to 4 (4 or 8 blocks
in any direction) in the worst case, but this does not differ
between a blocking in i- and in j-direction. What counts. is
that the blocks resulting from a splitting in the normal di-
rection j always have longer edges along j than along i in
the range considered. such that the length of at least part of
the messages is always longer in j- than in i-direction (fig-
ure 27). Therefore, for this test case it is always profitable
to achieve a given number of blocks by slicing the grid in
the circumferential direction instead of a blocking in nor-
mal direction.
Therefore. when blocking a problem for parallelization
purpose one should not only think of the load balancing
problem, i. e. to produce equally sized subdomains. but
also of an optimum grid partitioning with respect to the
communication pattern.

Fig. 27 Schematic block structure around the 2d NACA
0012 urfoil.

3. CONCLUSIONS
It has been shown that parallelizatlon is an interesting
method for accelerating large CF'D solvers for production
use, but for this class of programs parallelization cannot be
treated in isolation. Moreover the requirements for porta-
bility. conservation of the effort spent for the numerical de-
velopment in sequential mode and reduction of the paral-

5-19

lelization effort have to be met.Therefore, guidelines, how
to proceed, are given which have been proven to lead to a
parallel code fulfilling these industrial objectives on soft-
ware.
The strategy suggested is based on grid partitioning using
message passing for communication, since this technique
corresponds to the well known multiblock approach in se-
quential programs. All functionalities involving communi-
cation between parallel nodes should be concentrated
within a high level library guaranteeing portability and
simplifying the parallelization task.
The communications library CLIC which is currently de-
veloped at the GMD within the POPINDA-project is such a
library. Based on the portable message passing interface
PARMACS i t is supporting any block structured program.
As an example the parallelization of the FLOWer code is
described which is developed for production use in aerody-
namics. It is demonstrated that the chosen approach using
the CLIC library allows this program to run on computers
of any architecture ranging form single processor worksta-
tions up to shared and distributed memory parallel ma-
chines.
Comparisons of performance data obtained with the
FLOWer code show that modern parallel computers are al-
ready able to reach the single processor performance of a
Cray C90 processor employing a moderate number of
nodes.
Studies on different communication systems demonstrate
that the communication performance clearly determines
the potential of parallel processing. As it comes out, work-
station clusters connected by Ethernet are definitely not
suitable for replacing true parallel computers, at least for
CFD applications of the FLOWer code.
A comparison of different parallelization techniques on
shared memory computers reveals that the portable mes-
sage passing approach suggested is not necessarily inferior
to vendor‘s auto-parallelking compilers. It was demon-
strated that only for small processor numbers the FLOWer
code performs worse using the CLIC-library, but the scal-
ability features of the message passing communication
model appeared to be generally better than that of the data
parallel model involving an auto-parallelizer.
Finally, studies on the behaviour of different block struc-
tures reveal a strong influence of the grid partitioning on
the resulting communication amount yielding remarkable
differences of the efficiency to be obtained in a parallel run.

8. OUTLOOK
Further development is to be carried out for the future, in
order to improve the parallel behavior of the FLOWer
code. Major effort will have to spent on the reduction of
the algorithmical overhead at block intersections for in-

creasing the absolute speed-up rates.
Furthermore investigations on the parallelization features
of the program have to be devoted to Navier-Stokes com-
putations, since up to now only Euler results have been
studied.
Finally the integration of a local grid refinement has to be
done within the research project POPINDA involving as
well the FLOWer code as the communications library
CLIC. Additional features of this library will be realized in
the near future, i. e. an automatic load balancing and a spe-
cial detection and treatment of mesh singularities.

9. ACKNOWLEDGEMENTS
The work reported on here has been funded by the Geman
Ministry of Research within the parallelization project
POPINDA involving the following organizations:
Daimler Benz Aerospace Airbus Bremen, Daimler Benz
Aerospace DASA-LM Manching/Ottobrunn, Deutsche
Forschungsanstalt fur Luft- und Raumfahrt Braunschweig,
Gesellschaft fur Mathematik und Datenverarbeitung St.
Augustin, IBM Wissenschaftliches Zentrum Heidelberg.
The authors want to thank all contributors of these institu-
tions.
In addition they authors have to thank the CRAY and NEC
corporations for carrying out several benchmarks with the
FLOWer code on their machines.

10. LITERATURE

I .

2.

3.

4.

5 .

6 .

Holst, T. L., Salas, M., D., Claus, R. W., “The NASA
Computational Aerosciences Program - Toward Tera-
flops Computing“, AIAA-92-0558, 1992

Agarwal, R. K., “Parallel Computers and Large Prob-
lems in Industry“ in “Computational Methods in
Applied Sciences“, Elsevier Science Publishers, 1992

Bailey, D. H., Barszcz, E., Dagum, L., Simon, H., “The
NAS Parallel Benchmarks: Review and Current
Results in “Supercomputer 1994“, K. G. Saur Verlag,
1994

Haverkort, B. R., “High-speed Networks for the Inter-
connection of Clusters of Workstations” in “Praxisori-
entierte Parallelverarbeitung”, Carl Hanser Verlag,
I994

Lupke, S., “Accelerated Access to Shared Distributed
Arrays on Distributed Memory Systems by Access
Objects” in “Lecture Notes in Computer Science”,
Springer-Verlag, 1994

Devloo, Ph. R. B., Fezoui, L., Lacire, St., “Object Ori-
ented Programming Applied to Massively Parallel

5-20

Computing: A C++ Interface to the Connenction
Machine” in “Numerical Methods in Engineering”,
Elsevier Science Publishers, 1992

Devloo, Ph., R., B., Filho, J. S. R. A., “On the Devel-
opment of Finite Element Program Based on the
Object Oriented Programming Filosophy” in “Numeri-
cal Methods in Engineering”, Elsevier Science Pub-
lishers, 1992

Quintana, G. Vidal, A. M., “Parallel Householder Fac-
torization on the Supernode Multicomputer” in
“Numerical Methods in Engineering”, Elsevier Sci-
ence Publishers, 1992

Deshpande, M. Jinzhang, F., Merkle, Ch. L, Desh-
pande, A., “Implementation of a Parallel Algorithm on
a Distributed Network”, AIAA-93-0058, 1993

7.

8.

9.

IO. DrikakisS, D., Schreck, E., “Development of Parallel
Implicit Navier-Stokes Solvers on MIMD Multi-Pro-
cessor Systems”, AIAA-93-0062, 1993

11. Kroll, N.. Radespiel, R., Rossow, C.-C., “Accurate and
Efficient Flow Solvers for 3D Applications on Struc-
tured Meshes”, AGARD FDPNKI Special Course on
Parallel Computing in CFD, 1995

12. Message Passing Interface Forum, “MPI: A Message-
Passing Interface Standard”, University of Tennessee,
I994

13. Sunderam. V. S., “PVM, a framework for parallel dis-
tributed computing” in “Concurrency, Practice and
Experience”, Vol. 2(4), pp. 315 - 339, 1990

14. Hempel, R.. Hoppe, H.-C., Supalov, A., “PARMACS
6.0 Library Interface Specification”, GMD St. Augus-
tin, 1992

15. Gerndt, M., “Automatic Parallelization of a Crystal
Growth Simulation Program for Distributed-Memory
Systems” in “Proceedings of HPCN ‘94 Europe”,
Springer-Verlag, 1994

16. Schmatz, M. A., “Hypersonic Three-Dimensional
Navier-Stokes Calculations for Equilibrium Gas”,
AIAA-89-2183, 1989

17. Keyes, D. E, “Domain Decomposition: A Bridge
Between Nature and Parallel Computers”, ICASE
Report No. 92-44, 1992

18. Lonsdale, G., Schiiller, A., “Multigrid efficiency for
complex flow simulations on distributed memory
machines”, Parallel Computing 19, pp 23-32, 1993

19. Radespiel, R., Rossow, C., “A Cell Vertex Finite Vol-
ume Scheme for the Two-Dimensional Navier-Stokes
Equations”, DFVLR-IB 129-87/40, 1987

20. Baldwin, B. S., Lomax, H., “Thin Layer Approxima-
tion and Algebraic Model for Separated Turbulent
Flows”, AIAA-78-257, 1978

21. Jameson, A., Schmidt, W., Turkel, E., “Numerical sim-
ulation of the Euler equations by finite volume meth-
ods using Runge-Kutta time stepping schemes”,
AIAA-81-1259. 1981

22. Rossow, C.-C., “Berechnung von Stromungsfeldern
durch Losung der Euler-Gleichungen mit einer erwei-
terten Finite-Volumen Diskretisierungsmethode”,
DLR-FB 89-38. 1989

23. Kroll, N., Jain, R. K., “Solution of the Two-Dimen-
sional Euler Equations - Experience with a Finite Vol-
ume Code”, DFVLR-FB 87-4 I , 1987

24. Atkins, H., “A Multiple-B7ock Multigrid Method for
the Solution of the Three-Dimensional Euler and
Navier-Stokes Equations”, DLR-FB 90-45, 1990

25. Rossow, C.-C., “Efficient Computation of Inviscid
Flow Fields Around Complex Configurations Using a
Multiblock Multigrid Method”, Communications in
Applied Numerical Methods 8, pp 737-747, 1992

26. Vogelsang, R., private communication

27. Amdahl, G., “Validity of the Single Processor
Approach to Achieving Large Scale Computing Capa-

, bilities”, in AFIPS Conference proceedings, vol. 30
Atlantic City NJ, 1967, pp 483-485, cited in Braunl, T.,
“Parallel Programmierung”, Vieweg Verlag I993

28. Roll, B., Eisfeld, B., “Parallelisiserung des 2D-Euler-
codes CEVCATS auf Parsytec GCel und IBM SPI”, to
be published as DLR-IB.

29. Pahlke, K., private communication

6- 1

Parallel Automated Adaptive Procedures for Unstructured Meshes

M.S. Shephard, J.E. Flaherty, H.L. de Cougny, C. Ozturan, C.L. Bottasso and M.W. Beall
Scientific Computation Research Center

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

USA

Summary
Consideration is given to the techniques required to sup-
port adaptive analysis of automatically generated unstruc-
tured meshes on distributed memory MIMD parallel com-
puters. The key areas of new development are focused
on the support of effective parallel computations when
the structure of the numerical discretization, the mesh,
is evolving, and in fact constructed, during the compu-
tation. All the procedures presented operate in parallel
on already distributed mesh information. Starting from a
mesh definition in terms of a topological hierarchy, tech-
niques to support the distribution, redistribution and com-
munication among the mesh entities over the processors
is given, and algorithms to dynamically balance proces-
sor workload based on the migration of mesh entities are
given. A procedure to automatically generate meshes in
parallel, starting from CAD geometric models, is given.
Parallel procedures to enrich the mesh through local mesh
modifications are also given. Finally, the combination of
these techniques to produce a parallel automated finite
element analysis procedure for rotorcraft aerodynamics
calculations is discussed and demonstrated.

Contents
1. Introduction
2. Parallel Control of Evolving Meshes

2.1 Mesh Data Structure to Support Geometry-Based
Automated Adaptive Analysis

2.2 Partition Communication and Mesh Migration
2.2.1 Requirements of PMDB and Related Efforts
2.2.2 Distributed Mesh Model and Notation Used
2.2.3 Data Structures
2.2.4 Mesh Migration
2.2.5 Scalability of Mesh Migration and Extensions

2.3 Dynamic Load Balancing of Adaptively Evolving
Meshes

2.3.1 Geometry-Based Dynamic Balancing

2.3.2 Topologically-Based Dynamic Balancing
Procedures

Procedures
3. Parallel Automatic Mesh Generation

3.1 Introduction
3.2 Background and Meshing Approach
3.3 Sequential Region Meshing

3.3.1 Underlying Octree
3.3.2 Template Meshing of Interior Octants
3.3.3 Face Removal

3.4 Parallel Constructs Required
3.4.1 Octree and Mesh Data Structures
3.4.2 Multiple Octant Migration
3.4.3 Dynamic Repartitioning

3.5 Parallel Region Meshing
3.5.1 Underlying Octree
3.5.2 Template Meshing of Interior Octants
3.5.3 Face Removal

4. Parallel Mesh Enrichment
4.1 Local Retriangulation Tools

4.1.1 Edge Swapping
4.1.2 Edge Removal
4.1.3 Multi-Face Removal
4.1.4 Triangulation Optimization Using Local

Retriangulation Tools
4.2 Refinement

4.2.1 Subdivision Patterns
4.2.2 Generalized Bisection
4.2.3 Alternate Bisection
4.2.4 Delaunay Insertion
4.2.5 Splitting
4.2.6 Refinement Using Full Set of Subdivision

Patterns
4.3 Derefinement
4.4 Complete Mesh Adaptation Procedure
4.5 Parallelization of Mesh Adaptation

4.5.1 Derefinement
4.5.2 Triangulation Optimization
4.5.3 Refinement

5 . Parallel Adaptive Analysis Procedures
5.1 Structure of a Parallel Adaptive Analysis Procedure
5.2 Finite Element Code for Rotorcraft Aerodynamics

5.2.1 Finite Element Formulation
5.2.2 Boundary Conditions for Hovering Rotors
5.2.3 Subsonic and Transonic Hovering Rotors

5.3 Effectiveness of Parallel Adaptive Analysis
Procedures

6. Closing Remarks
7. Acknowledgment
8. References

Paper presented in an AGARD-FDP-VKI Special Course on "Parallel Computing in CFD", held at the VKI, Rhode-Saint-Gentse. Belgium,
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807.

6-2

Nomenclature

Notation used to describe models and topological entities
within the models

Domain associated with model U , ZI = g , p or m
where g signifies the geometric model, p
signifies the partition model, and m signifies the
mesh model.
Closure of domain associated with the model
v , v = g , p o r m
Topological entity i from model v of dimension
d, d = 0 is a vertex, d = 1 is an edge, d = 2 is
a face, d = 3 is a region.
Indicates the kth use of the topological entity
,T;. Use entities uniquely identify how entities
are used in non-manifold models. The simplest
case of uses arises from the fact that a face can
be bounding two regions. One face use is
associated with each region.
The f indicates a directional use of the
topological entity ,T,# as defined by its ordered
definition in terms of lower order entities. A +
indicates use in the same direction, a -
indicates use in the opposite diection.

a (u ~ :) Boundary of topological entity
v = g , p or m

U'' (,,T;Ua(,,T:)), v = g , p o r m
c

- Closure of topological entity defined as

Classification symbol used to indicate the
association of one or more entities from one
model, typically m or p , with a higher model,
typically p or g

Groups of topological entities used in the definition of
topological adjacencies

d (n) Unordered group of n topological entities of
dimension d

dimension d

entities of dimension d

d without order specified
d (n) The ith entity in a group of n topological

LuTdJ (4 Ordered group of n topological entities of

[uTd] (n) Cyclicly ordered group of n topological

(u T d) (n) Group of n topological entities of dimension

) i entities of dimension d

Notation used to describe adjacency relationships for
topological entities

d (n) Set of n topological entities of dimension d
adjacent to, or contained in cp. cp may be an
entity, ,,T>, or a group of entities, (,Td)

)

Examples of adjacency groups

v{,Td} All model entities of dimension d in model w

U { ~ T ~ } , The ith entity of dimension d in model w in
the group. Note that v (, , T ~) ~ = ,,Tf

d j (n) The n entities of dimension dj-adjacent
to entity uqd%JT 1

Adjacency relationships are evaluated left to right. For
example uT~{ , ,To}{uT3} is found by first finding the
group defined by cp = { ,,To} and then by defining
the group cp{ ,,T3}

1. Introduction

Adaptive techniques provide the promise of reliably solv-
ing many complex flow problems to the desired level of
accuracy. The computational requirements of these solu-
tion processes can only be met by scalable parallel com-
puters. The development of effective parallel algorithms
for adaptive techniques is challenging due to the irregular
nature of adaptive discretizations and the constant mod-
ification of the discretization. These notes discuss the
techniques required to support automated adaptive analy-
sis on distributed memory MIMD parallel computers.
Three assumptions underlying the techniques presented
are (i) the parallel computation algorithms assume a par-
titioning of the mesh onto the processors, (ii) the meshes
are unstructured, and (iii) the mesh generation and enrich-
ment processes interact directly with a geometric defini-
tion of the domain being analyzed as it exists in a CAD
system. These assumptions have a defining influence on
the procedures developed. The most critical of the as-
sumptions is the direct link to the CAD definition of the
domain which allows the adaptive procedures to solve the
problem over the intended domain, not some approxima-
tion based on an initial mesh. The results of our adaptive
CFD calculations clearly demonstrate that adaptive results
in which the mesh enrichments do not improve the geo-
metric approximation often yield no improvement in the
solution accuracy. This is because the adaptive procedure
is obtaining a better solution to the wrong problem.
A key aspect to supporting calculations on adaptively
evolving mesh is the data structure used to describe the
mesh and support its evolution during the adaptive analy-
sis process. When the analyses are performed on parallel
computers, capabilities must be available to support the
communications between the partitions of the mesh as-
signed to various processors. As the mesh is adapted,
partition work load becomes unbalanced, therefore pro-
cedures must be available to effectively modify the mesh
partitions to regain load balance for the next computa-
tional step. Chapter 2 of these notes presents a set of
data structures and algorithms for the effective parallel
control of evolving meshes.
The demand for continuously larger meshes indicates the
need for the development of efficient parallel automatic
mesh generators which can operate directly from the geo-
metric representations housed in CAD systems. Chapter
3 of these notes discusses the issues of automatic mesh
generation from solid models and presents an algorithm

6-3

for parallel mesh generation. Although the mesh enrich-
ments dictated by an adaptive analysis can be satisfied
through remeshing by the automatic mesh generator, the
computational cost and need to project parameters be-
tween meshes indicates the desire to employ alternative
mesh enrichment techniques when possible. Chapter 4
presents a set of local mesh modification procedures for
the effective refinement and coarsening of meshes.
Given a set 'of parallel procedures for controlling mesh
partitions, for the generation and enrichment of the mesh,
the remaining ingredient of the automated adaptive analy-
sis is the adaptive solver. Consistent with the other com-
ponent procedures presented in these notes, it is assumed
that the solver operates on an unstructured mesh which
has been partitioned to the various processors of the par-
allel computer. Under this assumption, adaptive finite
volume and finite element solvers are most appropriate.
Chapter 5 presents the structure of such a solver. The
specific solver discussed is a finite element based proce-
dure which builds directly on the parallel mesh control
tools of the earlier sections.

2. Parallel Control of Evolving Meshes

Central to the parallel automated adaptive analysis proce-
dures considered here are tools to control the mesh and its
distribution among the processors as the meshes are gen-
erated and analyzed. These tools must be able to maintain
load balance as the mesh evolves during the computations
in such a manner that the interprocessor communications
are kept as small as possible. Its is also critical that these
procedures operate in parallel and scale as the problem
size grows so they do not become the bottleneck in the
parallel computation process.
The tools required to support parallel automated adaptive
analysis include:

1.

2. interprocessor communication control mechanisms
3.

data structures and operators to support the model
representations employed

mechanisms to effectively move portions of the dis-
crete models generated to various processors so load
balance can be maintained
techniques to partition the mesh among the proces-
sors so the load is balanced and communications are
minimumized
techniques to up-date the mesh partitions to regain
load balance which was lost due to mesh modifica-
tions

4.

5 .

The minimum data structures needed for an automated
adaptive analysis are (i) a problem definition, in terms of
a geometric model and analysis attributes, and (ii) a mesh,
which the discrete representation used by the analysis pro-
cedures. The next section describes a general structure,
based on boundary representations, for the problem def-
inition and the mesh. This same form of structure is
used to support the partition model used by the partition
operators, mesh migration procedures and dynamic load

balancing procedures. In additional to these data struc-
tures, several procedures described employ tree structures
to support searching and spatial enumeration. The mesh
partition procedures described in section 2.2 are designed
to effectively collect groups of mesh entities for migra-
tion and, using the interprocessor communication oper-
ators, transfer the information and update all local data
structures as needed.
A number of algorithms have been developed to partition
a given mesh to a set of processors. The interested reader
is referred to references [4, 20, 21, 56, 801 for more
information. The current document focuses on procedures
to update an existing set of mesh partitions after the
mesh has been modified by a mesh adaptation procedure.
Section 2.3 presents two classes of procedures for this
purpose.

2.1. Mesh Data Structure to Support
Geometry-Based Automated Adaptive Analysis
The classic unstructured mesh data structure of a set
of node point coordinates and element connectivities is
not sufficient for supporting automated adaptive analysis.
Richer structures are required to support adaptive mesh
enrichment procedures and to provide the links to the
original domain definition needed by critical functions,
including ensuring that the automatic mesh generator has
produced a valid discretization of the given domain. A
number of alternative mesh data structures have been
proposed for various forms of mesh adaptation. Instead
of describing and comparing these structures, a general
data structure based on a hierarchy of topological entities
is given.
The goal of an analysis process is to solve a set of par-
tial differential equations over the geometric domain of
interest, ,R. Generalized numerical analysis procedures
employ a discretized version of this domain in terms of
a mesh. Since the mesh domain, ,R may not be identi-
tal to the original geometric domain, ,R, and/or various
procedures, such as automatic mesh generation, adaptive
mesh refinement and element stiffness integration need
to understand the relationship of the mesh to the geo-
metric model, it is critical to employ a representational
scheme which maintains the relationships between these
two models. Although a number of schemes are possi-
ble for defining a geometric domain [%I, the most ad-
vantageous for the current purposes are boundary-based
schemes in which the geometric domain to be analyzed
is represented as

-
-

where g{,S} represents the information defining the
shape of the entities which define the domain and g{ ,T}
represents the topological types and adjacencies' of the

I In the context of a domain representation, adjacencies
are the relationships among topological entities which
bound each other. For example, the edges that bound a
face, is a commonly used topological adjacency.

6-4

entities which define the domain. In addition to being
unique, the use of topological entities and their adja-
cencies provides a convenient abstraction for defining
the relationship of different models of the same domain.
Boundary representations also allow the convenient spec-
ification, with respect to the geometric domain, of the
analysis attributes of material properties, loads, boundary
conditions and initial conditions [72, 751. An additional
advantage of boundary representations is the fact that cur-
rent computer aided design systems support a boundary
representation of the domains defined within them. This
allows the effective combination of these packages with
automatic mesh generation. A final advantage of recent
boundary representations are their ability to properly rep-
resent the non-manifold geometric domains commonly
used for analysis processes [89, 321.
Since individual volume finite elements will be limited
to simple regions, bounded by simply connected faces,
consideration of the topological entities for a model can
focus on the basic 0 to d dimensional topological entities,
which for the three-dimensional case (d=3) are: I

where v{,Td} , d = 0 , 1 , 2 , 3 are respectively the set of
vertices, edges, faces and regions defining the primary
topological elements of the domain2.
Critical to the understanding of the relationship of the
mesh with the geometric domain is the concept of classi-
fication of a derived model to its parent model [66, 671.
Definition: Mesh Classifcation Against the Geometric
Domain - The unique association of a topological mesh
entity of dimension d; , Tp’, to a topological geometric
domain entity of dimension d j , gTj”’, where d, 5 d j , is
termed classijication and is denoted

,Tft c ST? (3)

where the classijication symbol, E, indicates that the left
hand entity, or set, is Classified on the right hand entity.
Multiple Tp’ can be classified on a Tp’. A mesh
region, ,T:, is classified in the domain region, ST;, in
which it lies. A mesh face, ,Tf, is classified in the
domain region, ST;, in which it lies, or on the domain
face, ST:, on which it lies. A mesh edge, ,T:, is
classified in the domain region, ST;, in which it lies, on
the domain face, ST:, on which it lies, or on the domain
edge, ST;, on which it lies. Finally, a mesh vertex, ,TP,
is classified in the domain region, ST;, in which it lies,
on the domain face, ST:, on which it lies, on the domain
edge, ST;, on which it lies, or on the domain vertex, ST:,

Proper consideration of general geometric domains re-
quires consideration of the loop and shell topological
entities, and, in the case of non-manifold models, use
entities for the vertex, edge, loop, and face entities [89].
We will introduce any of these additional entities only
as needed.

on which it lies. Mesh entities are always classified with
respect to the lowest order object entity possible.
Any automated adaptive analysis must consider both the
geometric domain representation, - g n (g { g S } , g { , T }) ,
and the mesh representations, ,~(m{,S},m{,T})
where m{,S} is limited to pointwise information at
specific locations obtained by interrogation of the geo-
metric model representation. Since the mesh representa-
tion lacks the complete geometric shape information of
the geometric domain representation, that shape infor-
mation must be accessed during various operations such
as integrating elements to the true geometry, or placing
new nodes defined by adaptive refinement on the true
boundary of the domain.
Classification of the mesh against the geometric domain is
central to (i) ensuring that the automatic mesh generator
has created a valid mesh [66,67], (ii) transferring analysis
attribute information to the mesh [75], (iii) supporting h-
type mesh enrichments, and (iv) integrating to the exact
geometry as needed by high order elements.
In addition to the mesh representation, it is often desirable
to consider other derived representations of the domain.
The one of central importance to the parallel adaptive
analysis is the processor representation, pn . This repre-
sentation is an intermediate representation between that of
the mesh and the geometric domain. Therefore, its topo-
logical entities can be classified against the geometric do-
main. Since the mesh is the lowest order representation,
its entities can be classified against both the geometric
domain and the processor representation.
An additional representation employed in the parallel
mesh generation procedure, and one set of parallel adap-
tive procedures, is an octree representation. Since tree
representations are derived to support specific searching
operations, or spatial enumerations, they vary dramati-
cally from the topological hierarchies used to define the
geometric domain and mesh. Structures of these types
will be described as they are used in specific algorithms.
The adjacencies of various order mesh topological en-
tities and their classification with respect to the higher
order models are used to support a great number of the
operations required by a parallel automated adaptive anal-
ysis. Therefore, it is important that they can be quickly
determined. Clearly, if the adjacencies of each order
entity against all other entities were stored, all possible
adjacency information would be readily available. This
approach would be highly wasteful with respect to the
amount of data storage required. On the other hand, stor-
ing only a minimal number of adjacencies could require
extensive searches and sorts to determine other specific
adjacencies. An examination of the specific adjacencies
used by the various algorithmic operations provides guid-
ance as to the minimum number of adjacencies needed.
For example references [6, 13, 30, 381 define adjacencies
used in specific finite volume and finite element proce-
dures. Since the procedures considered here must support
the highly demanding, from the view point of topologi-
cal adjacencies, automatic mesh generation procedures,

-

-

6-5

For mesh faces

(5)
which defines the loop of edges that bound the face, where
n = 3 for a triangular face and , n = 4 for a quadrilateral
face.
For mesh edges

a & 1 (4
mTi [mT 1

,T: (6)
which indicates the two vertices that hound the edge.
The specific upward adjacencies stored are:
For mesh vertices

(7) I (4
mTP{mT I

which indicates the edges the vertex is on the boundary
of.
For mesh edges

(8) a (4
mT: { mT I

which indicates the faces the edge partly bounds.
For mesh faces

(9)
3 (2)

mT?lmT I

MESH
9DJACENCIES

mesh region

1

and any form of adaptive analysis on conforming un-
structured meshes3, all adjacencies are either stored, or
can be quickly determined through a set of local travers-
als and sorts which are not a function of the mesh size.
One set of relationships that can effechvely meet these
requirements is to maintain adjacencies between entities
one order apart. Figure 1 graphically depicts this set of
relationships as well as the classification with respect to
the geometric domain represenmon.

GEOMETRIC DOMAIN
ENTITIES - region

region, face or
edge

t
mesh edge

t I
mesh t vertex l. region, face, I edge, or vertex

Figure 1. Mesh topological adjacencies
and classification information

Since there are natural orderings for several of the a d p
cencies which prove useful to the operations performed,
the forms of adjacencies employed are: an unordered list
of n entities adjacent to entity 9 signified by 9{,,Td}("',
a linear list of n entities adjacent to entity 8 signified
by 9 LuTd] (*), and a cyclic list of n entities adjacent to
entity 9 signified by I J [~ T ~] (~) . Specific entities also
store directional knowledge of how that entity is used in
the specific adjacency. In these cases the left superscript,
f, on the entity, ;qd, indicates a directional use of the
topological entity "TP as defined by its ordered defini-
tion in t e r n of lower order entities. A + indicates use
in the same direction, while a - indicates a use in the
opposite direction.
The specific downward adjacencies stored are:
For mesh regions

,T: {:TZ (4)

which indicates the faces bounding the mesh region,
where n = 4 for a tetrahedron, n = 6 for a hexahe-
dron, etc.

A conforming mesh is one where all mesh entihes ex-
actly match. For example, a situation where the mesh
edge bounding one mesh face has two mesh edges from
another mesh face lying exactly on top of it is not al-
lowed. Although possible to extend the procedures pre-
sented here to support those situations, they will not be
considered in the present document.

which indicates the zero, one, or two regions the face
partly bounds.
An alternative set of adjacencies which can directly meet
the needs of many applications is to maintain the same
downward adjacencies and store only the single upward
adjacency from the vertices to the highest order entities
using them. In the case of a manifold mesh in 3-D this
upward adjacency would be

*TP{T31 (10)
which are the regions that the vertex bounds. In the
case of general non-manifold models, it is the upward
adjacencies form the vertices to any mesh entity it bounds
which itself is not bounded by a higher order entity. In
this case the adjacency relationship is a bit more complex
being

This set includes the regions the vertex bounds, the faces
the vertex bounds which do not bound any regions, and
the edges the vertex bonds which do not bound any faces.
2.2. Partition Communication
and Mesh Migration
Adaptive unstructured meshes on dishibuted memory
computers require data structum which provide efficient
queries for various entity and processor adjacency infor-
mation as well as fast updates for changes in the mesh.
The requirements for sequential implementations of h p
adaptive finite element methods can be satisfied by the
SCOREC mesh database just given. For parallel appli-
cations, we first enumerate the major requirements of a
distributed memory mesh environment. These require-
ments are met by the distributed mesh environment Par-
allel Mesh Database (PMDB) that is then described.

6-6

2.2.1 Requirements nf PMDB and Related Efforts

A parallel mesh database must: - Provide a common interface and a single library
for all the mesh related applications, namely, mesh
generation, mesh refinementkoarsening and finite
element analysis.
Provide a full spectrum of adjacency relations among
shared entities on different processors.
Provide a general purpose mesh migration algorithm
which will facilitate arbitrary mobility of mesh en-
tities on processors. Additionally, the update pro-
cedures for data structures should be scalable after
migration.
Support meshes generated on non-manifold models.
In a non-manifold representation the surface area
around a given point on a surface might not be
flat in the sense that the neighborhood of the point
need not be a simple two-dimensional disk [89].
Figure 2 shows examples of meshes on non-manifold
geometric models. Just as the mesh data sbuctures,
the PMDB can handle the situations in which mesh
entities attach to vextex contacts. This specifically
requires the ability for such entities to he migrated
with no loss of information, and that the vertex at
the contact can be a shared partition boundary entity.

*

-

la) ibl IC)

Figure 2. Example meshes handled by PMDB library

The early parallel and distributed memory implementa-
tions of finite element methods such as [SI] involved
static meshes and used the data parallel SIMD computing
systems such as CM2. The ease of programming static
and regular problems using the data parallel model led the
compiler writers to incorporate this model in high perfor-
mance Fortran compilers. The analysis for generating
communication primitives for irregular references found
in unstructured meshes could not be done at compile time.
Therefore, runtime systems such as the PART1 primitives
[63] were designed which would compute these refer-
ences prior to entering a loop where the actual computa-
tions are done. If the distribution of the mesh changes,
then all the references have to be recomputed. Since
limited analysis can be done at the level of references
only, the data parallel Foman compilers soon proved to
be weak for handling the dynamically changing mesh data
StruCNIeS of adaptive applications. This weakness has di-
rected other researchers to design distributed mesh envi-

ronments providing functionalities for refinement, coars-
ening, migration and load balancing.
A heuristic which has been the by product of high perfor-
mance Fortran compilers is the owner computes paradigm
[11][95]. This heuristic was used as a rule for letting the
processor which owns a data item to perform the com-
putations which define it. This paradigm is also used in
other contexts such as parallel linear solvers provided by
PetSc [31] which requires the designation of owners of
the rows. A variation of this paradigm is used in imple-
menting the current mesh migration algorithm.
Williams' Distributed Irregular Mesh Environment
(DIME) project 1901 can be considered as one of the ear-
liest distributed unstructured mesh environments. This
initial version was restricted to two dimensional meshes
and could not handle non-manifold models and surface
meshes such as a torus. The newer version DIME++
[93] implemented in C++ provides support for three
dimensional elements.
DIME uses a hash table to implement voxel datubuses
[92] which store a global key associated with an entity.
This key is the geometric centroid of the entity. The co-
ordinates of the centroid are converted to integer hash
table index by dividing it with a user supplied tolerance.
We show in sections 2.2.2 and 2.2.3 that explicit genera-
tion of global key by computing and storing the centroid
is not necessary. When elements are migrated in DIME,
new voxel entries are packaged into a message and the
message is passed from processor to processor in a ring
until each has seen the message. Each processor takes
the voxel entry and checks if a match is found in the
hash table. If found, then this implies that the entity is
shared and the off-processor address is stored. Note that
Williams uses the notion of secretary points which cor-
respond to the owner of shared entities in PMDB. Even
though the secretary points are used in computing the
scalar products, they are not utilized in the implemen-
tation of an eflicient update procedure after migration.
Since the new voxels are passed in a ring of all proces-
sors, the update procedure has a fixed cost dependent on
the number of processors.
Vidwans et al. [85] present a procedure to migrate
tetrahedral elements between face adjacent and sender-
receiver-disjoint processors. The sender-receiver-disjoint
requirement necessitates processors involved in migration
to be paired as either a sender or a receiver. This pairing
process is carried out as part of their divide and conquer
dynamic load balancing algorithm. Since a face can be
shared by no more than two processors and a processor
migrates to its face-adjacent processor, the shared face
identification is readily available. Hence Vidwans et
al. does not need use global identification numbers. A
disadvantage of sender-receiver disjoint migration is that
elements cannot be piped by a receiver processor to other
processors in the same cycle of migration. This can
lead to memory problems whereby a receiving processor
obtains a large number of elements and has to store them
before it can pass them onto other processors.

The Tiling system developed by Devine [I81 is the first
distributed environment to support hp-adaptive analysis
and provides migration routines for regularly structured
two dimensional meshes which can be hierarchically re-
fined. b h tiling element stores pointers to neighboring
four elements with partition boundary elements pointing
to a ghost-element data which acts as a buffer during
communication. The elements are assigned a unique id
at the beginning and after refinements. The elements with
unique ids are maintained in a balanced AVL tree [68] to
allow efficient insertion and deletion during migration.
The Tiling system supports only rectangular elements
as the basic entity and the notion of shared entities like
edges is implicit.
2.22 Distributed Mesh Model and Notation Used
?he distributed mesh is viewed analogous to the model-
ing of non-manifold geometric objects. Figure 3 shows
the hierarchical classification of the global mesh enti-
ties ,,,T,~, the processor model entities p ~ d r and geomet-
ric model entities gTP". Given the set of mesh entities
{,,,T}, a partitioning at the d,,, dimension level divides
the mesh into n, parts. pTpd;', each of which is assigned
to a processor with id p k = 0,. . . , n, - 1. As a re-
sult of partitioning, some of the entities with dimension
d < d , will be shared by more than one processor. The
d,-dimensional entity will be held by only one pmees-
sor. Hence in general, partitioning with d , > 0 defines a
one-to-many relation from a mesh entity ,TP to its uses
kTP where k 5 ~nin(A(~T,~) ,n~) . Here A defines the
degree of an entity, i.e. given the dimension d of an en-
tity, A is the number of d+ 1 dimensional entities which
use it.
Since the procedures in a distributed memory environ-
ment operate on private local processor address space,
we refer to each entity use &TP in the global model as
(pt3at)Kd m or in shorthand notation (pk, a&). The tuple
@k, ak) stands for the use of an entity by processor pk at
local address a&. In the algorithm descriptions presented
later this tuple is also called a link particularly if it is
stored on a different processor than pk.

For the implementation of owner computes paradigm.
one of the processors holding a given entity is
designated as the owner of that entity. In the distributed
processor address space, wedistinguish the owned entities
as bo, a.). Therefore, a partitioning in this case defines
a one-to-one and onto mapping of global mesh entities
onto the owned distributed mesh entities: Note that the
inverse of this mapping exists and hence the pair bo, a,)
can serve as a global key of a distributed entity.
The uses of the shared entities are mapped onto the owner
entity by a many-to-one relation :

Figure 3 shows the relationship between the geometric
model entities ,TP". the global mesh entities ,,,TP and
the processor model. Given the uses (p k , a k) of an
entity distributed over processors pb, an agreement can

6-1

be reached among these processors on whether they hold
the identical entity by computing the ownership using the
function Q,.

Figure 3. The relationship between the mesh
model, processor model and the geometric model

2.2.3 Data Sboctures

PMDB data struchue.~ were designed to provide full variety
of adjacency information. At the mim level of a partition
boundary entity, one should be able to get all the uses
or links of an entity on other processors. Each partition
boundary entity stores all the uses on other processors as a
linked list. This is shown in Figure 4. Note that one ofthe
processors holding a shared entity is marked as an owner
of that entity. The bold edges and vertices indicate the
owners of the shared entities. This ownership information
can be used in the implementation of the owner computes
rule, for example, during link updates in mesh migration
or scalar product computation in an iterative linear solver.

PROCESSOR 0

Figure 4. PMDB inter processor
links and entity ownership

Since each processor stores the uses (pk, a&) on all the
processors that hold a shared entity, the ownership can
be computed as a function of these uses. An example
of an ownership function Q, given in equation 12 is
to choose the processor which has the tuple (pb,ak)

6-8

as the minimum. The other alternative is to let the
owner regenerate the ownership. Whereas the former
method can be done locally, the latter method needs
communication of ownership information from the owner
to the holders.
Note that the ownership information provides a global
key for identifying an entity uniquely over all processors.
Since the pair (p,,, a,,) is the global key, there is no need
to generate and store a separate key as Wtlliams [92] does
by computing the centroid of the entity. On a processor,
at the level of entities, the sets of entities that are on the
partition boundary or adjacent to a specific processor are
organized in doubly linked lists which provide constant
insertion and deletion. Figure 5(a) shows the organiza-
tion of the partition boundary entities. The lists can be
traversed to get partition boundary entities shared among
processors. For example, the set of all partition boundary
vertices given by;

can be enumerated by the data structure. The set of
all partition boundary edges E which can be similarly
defined, is also readily available.

PROCESSOR 0

m)
Figure 5. Doubly linked structures of

partition boundary entities : global view
(a) and partition boundary entity view (b)

In addition, adjacent processors based on various entity
connectivity as well as the number of entities adjacent to

the processor are maintained by storing this information in
a linked list. Figure 5(b) shows the structure of the vertex
adjacent processors and the doubly linked lists attached
to it.
The list of partition boundary vertices vpk adjacent to a
particular processor pk can be given by:

which is directly accessible from the data structures.
2.2.4 Mesh Migration
Analogous to the owner computes rule, the mesh migra-
tion pmcedure of PMDB uses an owner updates rule to
collect and update any changes to the links on partition
boundaries after moving entities among processors. The
migration of a set of mesh entities from a given processor
to destination processors proceeds in three stages. Firstly,
sender processors migrate the mesh entities to receiver
processors. Secondly, the senders and receiver proces-
sors report the deletions or new addresses of migrated
mesh entities to owner processors. In the last stage, the
owner processors inform the affected processors about the
updates in links. The processing which is done in the first
stage is proportional to the number of mesh entities be-
ing migrated, whereas in the second and third stages, it is
proportional to union of boundary of the migrated mesh
entities. The migration procedure is given in Figure 6 and
the detailed steps of the algorithm are explained below:
Senders to Receivers: These steps are responsible for
sending the raw mesh data from the sender to the receiver
processors. The mesh entities in { ,T,d: } to be sent are
packed into messages together with the data attached to
the entities. The entities on the union of the boundary
of the migrated mesh entities are also found. since any
possible link updates will be limited to these.
In the case of all tetrahedral mesh in 3D space, the mi-
grated boundary is given by faces which have exactly
one migrated region targeted to the same processor at-
tached to it. This applies to two dimensional meshes also
with the migrated boundary enclosed by edges having
exactly one face on its side which is being migrated to
the same processor. Finding the migrated boundary for
three dimensional meshes which contain both tetrahedral
and dangling faces as shown in Figure 2(b) requires ad-
ditional work. In this case if dangling faces are being
migrated then migrated boundary cannot be derived by
just checking the edges in the manner that is done for 2D
meshes. Additionally, the vertices must be checked to see
if they are used by any edge which is not being migrated.
The migrated internal entities can be deleted immediately
since they cannot be referred to again by any processor.
The migrated boundary entities cannot be deleted imme-
diately, since if they happen to be owned by the processor,
they will act as a fixed point where all the shared entity
uses will be collected later.

6-9

ales global numbers after mesh is refined. The global
numbers can be used for debugging and also provides
a readily available equation number for linear equation
solvers which assemble the global matrix. A future ver-
sion of PMDB will make the global number generation
optional in order to save memory for applications which
do not need it.
Senders and Receivers to Owners: These steps operate
only on the sent and received migrated boundary entities.
These entities are tested to see if they are used by pT
on processor p . Determining the use on processor p of a
d-dimensional entity requires determining if that entity
is part of the boundary of a d + 1 dimensional entity
on processor p . The entity hierarchy data structures of
SCOREC mesh database readily provide this d to d + 1
dimensional entity adjacency relationship. If the entity is
used, its use (p , a) is packed and identified by the (p o , a,)
use to be sent to owner processor. If the entity is not used
(p , null) is packed. Once packed, this information is sent
to the owner processors. The overall complexity of these
steps is proportional to the size of the sent and received
migrated boundaries.
Owners to Affected Processors: Owners receive updates
targeting a particular entity (p o , a ,) it owns. If a use
(p , a) is received, it is inserted in the list of uses of
the shared entity at address a.. If (p , null) is received,
the use (p , a) is deleted from the list of uses at address
a.. Once all the updates are completed, the ownership
of these entities are regenerated. The updated links are
then packed and sent to the affected processors. The
affected processors receive these uses and update the
corresponding local shared entities' list of uses. At this
point, the migrated boundary entities can be deleted and
mesh migration completes.
Computing Number of Receives: The steps 5 - 6,lO -
11 and 14 - 15 implement non-blocking sends and re-
ceives. Each processor needs to know how many mes-
sages are being sent to it by other processors so that it
can post a corresponding number of receive statements.
A simple way to compute the number of receives is by
first having each processor initialize a vector T of length
np and to set T~ to 1 if a message will be sent to proces-
sor p and 0 otherwise. A follow-up sum scan operation
can then be executed by all the processors resulting in
each location T~ containing the number of receives. This
procedure has O(nplognp) run time complexity and re-
quires a message of length np to be communicated dur-
ing the combine operation. Whereas this scheme will
be efficient for small np , it is nevertheless non-scalable.
The DIME environment, for example, makes use of the
crystal-router 1241 which provides a scheme for
this problem by utilizing log(np) message exchanges
across the dimensions of the hypercube multiprocessors,
Considering the fact that each processor p usually sends
to a small number s p of processors, a scalable strategy
is desirable for large n p . We can make this scheme
scalable by making use of the radix sort routine [7].
Since the processor ids are in the range 0,. . . , np - 1,

procedure m e s h-mi gra t e (PSI { ,T$ } , P, , { ,,,T' })
input: P.: destination processors.

output: P,: source processors

begin

1
2 Find the migrated boundary.
3 Delete migrated internal entities
4

5
6
7

{ ,,,T$ } : sets of regions to be migrated

{ ,,,T$ }: sets of regions received

I* I . senders and receivers to owners *I
Pack the mesh {mT$} to be sent.

Pack the owners' uses corresponding to migrated
boundary
Send packed submeshes and uses to P8,
Receive packed submeshes and uses from Pr,
Unpack the submeshes to get { J" }

I* 2. senders and receivers to owners *I
8 Establish usage of both sent and received migrated

boundary entities.
9 Pack local uses of migrated boundary and owners

uses to be sent to owner processors Po
10 Send packed local and owner uses to owner proces-

sors.
1 I Receive packed uses from senders and receivers.

I* 3 owners to affected *I
Owners update use lists by insertingldeleting re-
ceived local uses intdfrom use lists pointed to by
owner uses and generate new ownerships.

13 Pack updated uses list of entities to be sent to af-
fected processors Pa.

14 Send updated use lists and ownership to owner pro-
cessors.

15 Receive updated uses list and ownership from owner
processors.

16 Pa update use lists and ownership.
17 Delete unused sent migrated boundary entities.

end

12

Figure 6. Mesh Migration Algorithm

Once the packed submesh has been received, the proces-
sors unpack it and insert it into the mesh p h { , T } held
by the processor p k . It is also possible that when more
than one submesh anives from different processors, they
all might share some common entities. Figure 7 shows
an example of such a case. As shown processors 0 and
2 both migrate to processor 1. Among the migrated enti-
ties are those which are shared by both 0 and 2. In such
a case, these commonly shared entities, once unpacked,
should not be unpacked for the subsequent received sub-
meshes which also contain them and comes from a differ-
ent processor. This process is achieved by inserting the
unpacked migrated boundary entities into a red-black tree
I681 which has guaranteed logarithmic access for each in-
serted entity. A key is needed to represent the entity in
the red-black tree. This key can be either a global key or
the readily available (p o , ao) tuple which was discussed
earlier. Currently, PMDB version 3.1 by default gener-

6-10

send to processor

sort

mark end

segment sum

number of recvs

ranges of no-recvs

0 1 2 3 4 5 6 7

x x 7 4 x x o 4

0 4 4 7 x x x x

1 0 1 1

1 1 2 1

1 2 1

11.31 15.61

this problem can be solved by sorting T. = sp
keys each of length bits. Before applying the
radix sort, the keys are balanced by moving them such
that each processor has ~#/~,4, ne balancing be

the sorting scheme. A more elaborate scheme in the
reference [41l provides radix sorting in b (n p) . We a h
remark that currently pMDB uses the simp1e O(ndOg%)
procedure since the largest number of processors used
is 64, a number too small to make the scalable version
worthwhile to use. assuming wlog that T. is divisible by np

2.2.5 Sealability of Mesh Migration and Extensinns
In the mesh migration procedure presented above, the
amount of communication involved is proportional to the
volume of submeshes in the fist stage of the algorithm
and to the surface of submeshes during link updates
in the second and third stages. As a result, if each
processor migrates to a small number of processors, such
as its neighbors, then we expect that the migration will
scale as the number of processors is increased. Various
tests have been performed to demonstrate scalability of
migration. The data involving the maximum number
of regions migrated by a processor, the total number of
regions migrated by all processors, the time taken, and the
throughput, that is, the number of regions sent hy a single
processor per second are plotted against the number of
processors used.
Test 1: In the first test, we let each processor exchange a
slice on its partition boundary with its neighbors. This test
is a realistic representative of the migration patterns that
occur in iterative dynamic load balancers since regions
near partition boundaries are migrated in clusters to the
neighborhood of a heavily loaded processor. Another
application that performs this kind of migration is mesh
coarsening [lo]. Figure 8 shows the exampie mesh that
was used before (a) and after migration (b). Figure 9(a)
plots the maximum number of regions sent by a processor
and (b) shows the wall time taken. From these plots, we
see that execution time is proportional to the number of
regions sent irrespective of the number of processors.
Figure IO on the other hand plots the total number of
regions sent by all processors. As the number of pro-
cessors are increased the total number of regions at par-
tition boundaries increases. Hence even though overall
more regions have been moved, the time is proportional
to the maximum sent by a single processor. This behav-
ior demonstrates that when processors migrate to a small
number of neighbors, the migration procedure scales well.
Figure 1Wb) plots the throughput attained.

lb)

Figure 8. Neighborhood migration test; before
boundary exchange (a), after boundary exchange (b)

Test 2: In the second test, we let each processor hold
2500 regions corresponding to a partition of the box
mesh and migrate all its regions randomly targeted to
a processors with a = 1, . . . , 2', . . . , np - 1. The plots of
time taken for migration and the throughput per processor
is shown in Figure 11. The plot in (a) shows that as the
number of processors is increased, the time taken grows

6-1 1

1

2wo -U 2 1 8 16 32 64

number of processors
(a)

2 4 8 16 32 E4

number of processors
(b)

Figure 9. Neighborhood migration test
for box ; maximum number of regions

migrated hy a processor (a), wall time (b)

slowly. In particular, if we look at the a = 1 case, we see
a flat curve between 32 and 64 processors. The number
of processors has been doubled, yet the execution time
remains the same. As a is increased the execution time
growth is larger as expected, since the number of total
migrations is increased. In particular, if s = np - 1. we
have all-to-aU migration. Note that, there is a pronounced
drop in the throughput as shown in Figure lI(b) between
the cases a = 1 and 2. For example, with n, = 48,
the throughput is 519 regions for s = 1 and drops to
309 regions at s = 2. The major cause of this drop
is not the mere increase in a, but rather the fact that
when regions are assigned random destination, the union
of the migrated boundary of the mesh entities being sent
becomes proportional to the number of regions sent. In
the case of s = 1, the migrated boundary is proportional
to the surface of the mesh entities sent. As a result,
since the cost of stages 2 and 3 of the mesh migration
algorithm is dependent on the size of migrated boundary,
these stages conmhute greatly to the drop in cases a > 1.
The sets of regions which are migrated in practice are
clustered locally and hence the migrated boundary size is
rarely proportional to the volume being sent. Therefore,
higher throughput rates can be attained for larger s as is
evident from Test 1 above.
This section discussed the data structures and the migra-
tion routines used in the PMDB library. PMDB library cur-

6-12

1-1 I -1 I

number of processors
(a)

number of processors
(b)

Figure 10. Neighborhood migration test for box
mesh ; total number of regions migrated by all

processors (a), throughput per processor @)

rently supports triangular and tetrahedral meshes. How-
ever, the data structures and the mesh migration proce-
dures easily extend to other types of elements such as
quads, bricks or mixed meshes. Further fine tunings are
also possible which can reduce memory requirements and
improve the throughput of the migration procedure by,
for example, generating ownership corresponding to the
target processor for entities on migrated model boundruy.

23. Dynamic Load Balancing of
Adaptively Evolving Meshes

The evolving nature of an adaptive discretization intro-
duces load imbalancx into the solution process. There-
fore, it is critical that the load be dynamically rebalanced
as the adaptive calculation proceeds. The current reper-
toire of partitioning and dynamic redistribution heuristics
for unstructured meshes can be classified into three main
categories given as follows:
The most popular category involves Recursive Bisection
(RE) techniques which repeatedly split the mesh into two-
submeshes. Coordinate RE methods bisect the elements
by their spatial coordinates. If the axis of bisection is
Cartesian, then it is called Orthogonal RB [4]. If the axes
are chosen to be along the principal axis of the moment
of inertia matrix, then it is called Inertial RB. Spectral
RB is another method which utilizes the properties of the
Loplacian matrix [22] of the mesh connectivity graph and

21 I
2 4 8 16 Y €4

number of processors

(a)

-

2 c-- --_. *
2 40

0 .+__---
L 4 -__ - 350

--- -. . -. ___.__. _ _ _ m ,
I- - _ _ _ _ _ _ _ _ ~

8 *---___
16 -_---_ .CL;:. 150

4 8 16 32 64
number of processors

(b)
Figure 11. Migrating to s processor ; wall time

in seconds (a), throughput per processor (b)

bisects it according to the eigenvector corresponding to
the second smallest eigenvalue of this matrix [561.
The least popular choice for partitioning meshes is the
probabilistic methods which include simulated annealing
and genetic algorithms. These methods require many
iterations and are expensive to use as mesh partitioning
methods [91].
Iterative Local Migration techniques have been the tar-
get of recent attention due to their potential for dynami-
cally balancing adaptive meshes which change incremen-
tally. These techniques exchange load between neigh-
boring processors to improve the load balance andor de-
crease the communication volume. The definition of pro-
cessor neighborhood can either be the hardware link or
the connectivity of the split domains. The cyclic pairwise
exchange [33] pairs processors connected by a hardware
link and exchanges the nodes of the mesh to improve
the communication. LeissIReddy [43] on the other hand
uses the hardware link as the neighborhood to transfer
work from heavily loaded to less loaded processors. The
Tiling system [I81 uses and extends the LeisdReddy
algorithm to the case where the neighborhood is defined
by the connectivity of the split domains. The algorithm ,
of Lohner et al. [50] exchanges elements between sub-
domains according to a deficit difference function which
reflects the imbalance between an element and its neigh-
bors. The procedure by Vidwans et al. [85] uses a divide

6-13

and conquer approach to pair processors and uses connec-
tivity as well as coordinate information to decide which
elements to migrate.
A disadvantage of the common implementations RB
methods is they start with the entire mesh on a single
processor and partition from there. Two problems with
this approach in a parallel adaptive calculation are (i) the
time required to gather the distributed mesh together on
a single processor, and (ii) the fact that after the mesh
has been adapted, it may have grown to the point that it
can not fit on a single processor. These problems can be
alleviated it the mesh remains distributed during the repar-
titioning process. The next subsection discusses a parallel
implementation of Inertial Recursive Bisection that oper-
ates on a distributed mesh.
RB methods operate on the whole mesh and compute the
direct destination for each element. Because of this, it is
possible that RB methods may require complete remap-
ping of the elements at the end. On the other hand, it-
erative local migration techniques propagate the excess
load by local transfers to other processors. A disadvan-
tage of iterative local migration techniques is that many
iterations may be required to regain global balance and
hence elements reach their final destination after many
local transfers rather than directly. In particular, when
elements are migrated, the full element data involving
connectivity and local attached data are communicated.
For parallel repartitioners based on coordinate bisection,
only the centroids and region pointers need to be com-
municated during a parallel sorting phase. As a result
this class of repartitioners may have better performance
on machines in which the communication between any
pair of processors is distance-independent.
Subsection 2.3.2 presents an iterative load balancing pro-
cedure based on the LeissReddy heuristic of requesting
load from the most heavily loaded neighbor. The perfor-
mance of this procedure is compared with repartitioning
by the parallel distributed inertia recursive bisection al-
gorithm.

2.3.1 Geometry-Based Dynamic
Balancing Procedures

Geometry-based dynamic balancing (or repartitioning) re-
lies here on the Inertial Recursive Bisection (IRB) method
[50] which is a variation of the more classic Orthogo-
nal Recursive Bisection (ORB) [4]. ORB is a recursive
process that bisects a set of entities by considering the me-
dian of the set of corresponding centroids with respect to
a given coordinate axis. As ORB is recursively called, the
choice of coordinate axis is circularly permuted (x,y,z,x,
etc). Unlike ORB, IRB considers the inertial coordinate
system (origin is at the center of gravity and the three axes
are the principal axes of inertia) for the set of entities to
be bisected. In three dimensions, the determination of the
three principal axes of inertia is an eigenvalue problem of
order 3. Once the inertial coordinate system is defined,
the coordinates of the centroids are transformed and the
cut is made at the median with respect to the first coor-

dinate. This first coordinate is the “key” that the sorting
algorithm described later in this section works on.
The main assumption for performing repartitioning in
parallel is that the entities are distributed. It is also
assumed that there is no reason for the number of entities
stored on processor to be uniform across processors. The
result of this repartitioning will be an equal number of
entities per processor. It should be noted that, in this
context, the goal of repartitioning is equivalent to the
goal of dynamic load balancing [15, 55, 73, 54, 43, 851.
The key algorithm in IRB (and ORB) is the determination
of the median for a given set of doubles (referred to as
“keys”) [68]. With respect to this paper, the “keys” are
the first coordinates, in the inertial frame, of the entities
to be bisected. The method used here is to sort the “keys”
and then pick the entry at the middle of the sorted list.
In this case, efficiently performing IRB in parallel can be
reduced to efficiently sorting in parallel [34]. From the
conclusions of the paper by Blelloch et al. [8] which
compares different parallel sorting algorithms (Batcher’s
bitonic sort, radix sort, and sample sort), it appears that
the sample sort algorithm is the fastest of the three for
large data sets. Therefore, a parallel sample sort algorithm
has been implemented in order to efficiently support IRB.
Given a set of n “keys” distributed on p processors (n >>
p), a sample sort algorithm consists of three main steps:

1. p - f splitters (or pivots) are chosen among the n
“keys”

2. Each key is routed to the processor corresponding to
the bucket the “key” is in

3. Keys are sorted within each bucket (no communi-
cation)

The goal of step 1 is to split the set of “keys” into p
parts (buckets) as evenly as possible and as efficiently
as possible. The p - f splitters which are implicitly sorted
(say with respect to increasing value) are labeled from
f to p - I . All distributed “keys” below splitter f belong
to bucket 0, all distributed “keys” between splitter i (0
c i c p - 1) and splitter i + f belong to bucket i, and all
distributed “keys” above splitter p - f belong to bucket p-
I. Processor i (0 5 i c p) is responsible for the bucket
labeled i . In step 2, assuming the p-f splitters have been
found and broadcasted to all processors, any distributed
“key” can tell in which bucket it belongs and is rerouted
to the processor that is responsible for that bucket. At
this point, any processor has knowledge of all “keys”
that belong to the bucket it has been assigned to. Step
3 can be performed using any efficient sequential sorting
algorithm, like quicksort [68]. It is clear that the parallel
efficiency of the sample sort algorithm depends on the
sizes of the buckets. Parallel efficiency is maximal when
the sizes of the buckets are near equal. A sampling
method is used to obtain “good” splitters. Given the n
input “keys”, ps “keys” (s is an integer 2 f called the over
sampling ratio) are selected at random and sorted typically
sequentially. The entries in the sorted list of ranks s, 2s,
... , (p - f) s are the p - f splitters. The bound for bucket
expansion (ratio of maximum bucket size to average) is

6-14

given in the paper by Blelloch et al [8]. In practice, the
over sampling ratio should be such that the sorting to find
the splitters (which is done serially) does not become a
bottleneck for the global parallel sample sort algorithm.
For the purpose of the presented repartitioning technique,
the over sampling ratio is chosen such that ps is of the
order of nlp (nlp being of the order of the number of
“keys” to sort in step 3).
The following pseudo-code shows the process of reparti-
tioning using IRB in parallel. It is assumed that the enti-
ties are already distributed on processors. A statement of
the form for (i = 0 ; i < n ; i++) { ... } indicates a loop
that is executed as long as the loop variable i, initially
set to 0 (i = 0) and incremented by 1 upon completion of
each pass (i++), has a value less than n (i < n) [40]. Each
processor executes the following pseudo-code (MIMD):

1. Associate each entity with a “key” structure consist-
ing of:

3 doubles for the coordinates of the entity’s cen-
troid with respect to the current inertial coordi-
nate system (initially with respect to original
coordinate system)
1 integer that indicates on which processor the
actual entity is stored
1 pointer to the entity
1 integer that indicates the destination processor
for the entity

2. for (step = 0 ; step < logg ; step ++) {
a. Split the p processors into 2sfeP processor sets

(each set is of cardinality p ’ = ~/2”~p))
b. Balance the load such that each processor

has approximately the same number of keys
(reroute the keys accordingly)
Get center of gravity, find the three principal
axes of inertia, and apply transformation to the
keys
Get p ’ - 1 splitters among the keys
Depending on the position with respect to the
splitters, determine in which bucket (processor)
each key goes (reroute the keys accordingly)
Sort the keys (no communication)
Depending on the position with respect to the
median, determine in which bucket (processor)
each key goes (reroute the keys accordingly)

c.

d.
e.

f.
g.

h. Free the processor sets

The destination processor is set to the processor the
key is currently in
Reroute all keys to the originating processors
Migrate entities according to the destination proces-
sor stored at the key level

Steps 2.b through 2.g are done independently on each
processor set. Once all keys have been sorted in the
processor set (at the end of step 2.0, the median (key that
splits the set of keys into two subsets of same cardinality)
is easily obtained. Any key that is before the median is

1
3.

4.
5.

placed (if not already there) on a processor with a low
rank (0 to p’l2 - 1) and any key that is after the median
is placed (if not already there) on a processor with a high
rank @’I2 top’ - 1). This guarantees that any key stored
on a processor set is smaller that any key in the next
processor set. Figure 12 is a graphical depiction of steps
2.b through 2.g in the case when p ’ equals two. At each
step, the array of keys (distributed across the processors
in the set) is represented by a horizontal line which is cut
to show how it is currently distributed. The symbol <
indicates that the keys in the array are not sorted if above
the processor cutter, it also indicates that any key in the
left processor’s array is smaller than any key in the right
processor’s array. If there is no such symbol, the keys
are not sorted yet.

Initial state

Balance - Transform - Get splitters

Put in buckets (splitters)

<
sort

< < <
Put in buckets (median)

Median-)< <

Figure 12. Graphical description of the
repartitioning algorithm (2-processor set)

Figure 13 shows a randomly distributed mesh (approx-
imately 35,000 elements) and the resulting dynamically
repartitioned mesh for eight processors. Figure 14 shows
timings (wall-clock seconds on IBM sp-2) for that partic-
ular mesh on 2, 4, 8, and 16 processors. The processor
assignment timing corresponds to steps 1 to 4 (decision
making). The migration timing corresponds to step 5. It
should be noted that a randomized mesh as the initial state
is a worst-case scenario for the migration part of the repar-
titioning procedure. Past four processors, the time spent
decreases as the number of processors increases, which is
a good indication of scalability. It is conjectured that the
“abnormal” speed with two processors is due to the fact
that (i) the only processor set ever used is the full set of
processors and (ii) there is some performance degradation
when more than one processor set is defined.
2.3.2 Topologically-Based Dynamic
Balancing Procedures

’bee Based Load Balancing Algorithm The Tiling
system which uses the LeissIReddy approach calculates
the load averages utilizing the immediate neighborhood.

6-15

Figure 15(a) shows an example of requests that can be
formed. Given this hierarchical arrangement of proces-
sors as the nodes of m s , we balance the trees as shown
in Figure 15(b) and iteratively repeat the process until the
load distribution converges to optimal load balance within
a user supplied tolerance. The full algorithm is given in
Figure 16. The procedure details are given as follows.

Randomly parlltloned mesh
6 processors

L .

I
-

Dynamically repartltloned mesh
8 processon

Figure 13. Dynamic repartitioning
on a randomly distributed mesh

50, I

m r aulgnnmnt low 1
O 2 4 8 16

Number of pmcouon

Figure 14. Timings for dynamic repartitioning

To incorporate more global information and to direct load
transfers, we view the processor requests for load from
heavily loaded processors as forming a forest of trees.

load4

h d = 3

Figure 15. Load balancing example; load
request (a) load migration on the tree (b)

procedure tree_load_balance(toli,,d, maz,t.,)
in toll,.dimbalance load tolerance
in
begin
1 iter = 0
2

3
4 Compute neighboring load differences.
5

6 Linearize processor trees.
7
8 Select and migrate load.
9 endwhile
end

: maximum number of iterations

while (max. load difference > tollood) and
(iter < mazit.,) do

iter = iter + 1

Request load from neighbor pmessor having
largest load difference (creates processor trees).

Compute amounts of load migration.

Figure. 16. Tree based dynamic load balancing procedure

Steps of the procedure The steps of balancing the for-
est of trees are repeated until convergence is achieved.
Assuming that load transfer occurs when there is a load
difference of at least two units, LeissdReddy’s algorithm

6-16

has worst case. imbalance of d/2 where d is the diameter
of the network. In such a converged state, all the pm-
cessors have a load difference of one with its neighbors.
This configuration forms a smcase load distribution. For
OUT tree-load-balance, a smcase will not be the
worst case distnbuhon. but rather a forest of trees each of
which has a maximum height of two and load difference
of one. In such a state, the worst case imbalance will
be d/4. This lund of imbalance can be tolerated on a
coarse grain machine. For example, a lOOK mesh on 64
processors will imply a worst case of 1.02% imbalance.
In step 4, load differences are computed by having each
processor send its load value to its neighbors and corre-
spondingly receive load values from its neighbors.
Step 5 invokes the Leiss/Reddy load request process.
Since each processor can receive requests from mulbple
processors, but can only request from a single processor,
a forest of trees is formed.
In step 6, the trees are linearized for efficient scan op
erations. One possible lineahtion is given by Euler
Tour [U]. This however requires 2(IT1 - 1) links where
IT1 denotes the number of vertices on a tree. We use
the depth-first-links [41][83] which use between IT1 and
2(ITI - 1) number of links.
Step 7 computes the amounts of load migrations on the
tree using logarithmic scan operations on the l inear id
tree. Let loadmig, denote amount of load that will be
migrated into or out of a tree node i which represents a
processor. Let also T, denote the subtree with node i as
the root of the subtree and Iwd(T,) be the sum of loads
of nodes in this subtree. The amount of load migrabon
is then calculated as

'pai t 6-mnG.dat' - 2800

2 m - ., 'pat1 6-wnv dat' - .
2400. .*

\.. 3 2200-

f -.
E 1800.

\...
-

1m. \. ...,
14w. " ...
1200. ".\ '. ..
IW,. c

load-mig, = load(Ti) - avgJoad(T) * IT,I

m1

with avgJoad(T) = load(T)/ITI representing the aver-
age load on the tree when balanced. Given Ioadmig,,
the direchon of load nugrabons can be found as

load-mig, = 0, do nothing with parent,
< 0, get load from parent,
> 0, send load to parent.

Having calculated the directions of load migration, step
8 migrates the elements on the partition boundary in
a slice by slice manner until load-mig, of them has
been transferred. Each slice of elements forms a peeling
of the partltion boundary and are selected by choosing
elements which touch the boundary by any one of their
vertices. Figure. 17 shows the element selection criteria
for migrabon.

Examples In t h ~ s section we plot various statistics that
show the performance of the load balancing on refined
meshes and compare them with coordinate based repar-
titioning.
Teat 1: In this test a patella mesh is refined manually
in the center of the model. At the beginning, the mesh

1.5 2 2.5 3 3.5 4

processsor 0 processor 1

high frequency of load imbalances, the load balancer will
have better performance. The repartitioner bypasses the
effects of distance by directly sending load from heavily
loaded to lightly loaded processors. On an architecture
such as the IBM-SE, in which communication cost
is independent of the distance between the processors
and hence the same between any pair of processors, the
repartitioner will be advantageous since it directly sends
the load to its final destination. The load balancer will
he disadvantageous since it will incur expensive latency
cost during many local transfers it performs.

.- - _ _ _ - . - . . . = _ _ - ---- .._..__ _ - - ___-- - - ___-- - - parallel repartition
____-.-- - -

2 4 a 16
number of p~occssors

5

0

Figure 19. Time taken for load balance,
parallel repartitioning and bisection

Finally, Figure 20 shows the quality of the partitions
produced in terms of maximum and total percentage of
faces cut. The load balancer’s element selection criteria
for migration dictates the quality of the partitions. The
criteria currently used can be improved by incorporating
coordinate information to selection decision.

25 I I

I
16 4 8

number of processors
2

Figure 20. The total and maximum
number of cut faces for each method

lkst 2: In this mt , various statistics are r e p o d for the
adaptively refined onera-m6 wing mesh during an ac-
tual CFD analysis on 32 processors. At the beginning
the mesh has 85567 tetrahedrons. Three stages of adap
tive refinements are performed during which the number

6-17

of tetrahedrons increase to 131000, 223501 and finally
to 388837. Figure 21 shows the convergence history of
the iterative load balancer. In all cases of load balanc-
ing after refinement, the imbalance reduces to less than
4% during the first 8 iterations and takes far more num-
ber of iterations to reduce this imbalance further to 0%
imbalance. One need not run the tree-balance to
full convergence. It can be stopped when a reasonable
imbalance is achieved.

’ ‘on&a-mnv.dit’+
‘onemwnv.dat’-

2ooo0 10 20 30 40 50 60 70 BO 90
number of iterations

Figure 21. The convergence history for load
balance during three stages of refinement

IO

Table 2 shows the execution time comparisons between
the tree-load-balance and the parallel moment of
inertia partitioner. In all cases, moment of inertia out-
performs tree-load-balance for the same reasons
which was explained in Test 1. I refinement I li:l I 2[48 I 31il21

percent imbalance 1.7 0 3.8 0 1.9 0

tree-balance(sec) 73 85 127 210 189 28

inertia partition (sec)

Table 2 Execution times (in seconds) for
tree-load- balance and inertia partitioner

Finally, Table 3 shows partition quality comparisons be-
tween the tree-load-balance and the moment of
inertia partitioner. The percentage of maximum num-
ber and the total number of cut faces are given for both
tree-load-balance and the inertia partitioner.

refinement I 1st I 2nd I 3rd I
I percent cuts I max I tota~ I max I total I max I total I
1 - I I I I

tree-balance 24 10 26 11 25 10

inertia partition 26 7 25 7 19 6

Table 3 Maximum and total percentage of cut faces for
tree-load-balance and inertia partitioner

6-18

3. Parallel Automatic Mesh Generation

3.1. Introduction

The development of automatic mesh generation tech-
niques for complex three-dimensional configurations has
been an active area of research for over a decade [26,78].
The introduction of these mesh generation procedures has
removed a major bottleneck in the application of finite
element and finite volume analysis techniques. The in-
troduction of scalable parallel computers is allowing the
solution of ever larger models. It is now common to see
meshes of several million elements solved on these com-
puters, with the ability to solve on meshes of hundreds of
millions of elements coming in the near future. As mesh
sizes become this large, the process of mesh generating
on a serial computer becomes problematic both in terms
of time and storage. Therefore, parallel mesh generation
procedks that operate on the same computer, and us-
ing similar structures, as the parallel analysis procedures
must be developed
With recent advances in the efficiency of automatic mesh
generators which create well over two million elements
per hour on a workstation [881, one may question the
need for the parallel generation of meshes. The obvious
answer is that as the problem size grows, the solution
process on parallel computers will continue to scale by the
addition of more processors. However, mesh generation
on a single processor will not scale, therefore becoming
the computational bottleneck. A second critical reason for
parallel mesh generation is the shortage of memory on a
sequential machine when dealing with very large meshes.
On a parallel machine, the memory problem is addressed
by distributing the mesh over a number of processors,
each of which stores its own portion of the mesh.
Efficient parallel algorithms require a balance of work
load among the processors while maintaining interproces-
sor communication at a minimum. Key to determining
and distributing the work load and controlling commu-
nications is knowledge of the structure of the calcula-
tions and communications. In the finite element analysis
process. the mesh and its connectivity naturally provide
the required structure. The ability to maintain efficiency
is compromised when the structure and, therefore, work
load and communications is altered as is the case in par-
allel adaptive finite element analysis [15, 55, 73, 541.
Parallel mesh generation is even more complex to effec-
tively control since the only structure known at the start
of the process is that of the geometric model which has
no discernible relationship to the work load needed to
generate the mesh. On the other hand, the more useful
structure to discem work load and control communica-
tions is the mesh which is only fully known at the end
of the process. The lack of initial structure and ability to
accurately predict work load during the meshing process
underlies the selection of algorithmic procedures in the
parallel mesh generation procedure presented here. In
particular, the procedure employs an octree decomposi-
tion of the domain to control the meshing process. The

octree structure supports the distribution or redistribution
of computational effort to processors.

3.2. Background and Meshing Approach

To date, there has been limited attention given to parallel
automatic mesh generation algorithms. Liihner et al [49]
have parallelized a two-dimensional advancing front pro-
cedure which starts from a pre-triangulated model bound-
ary. The approach taken is to subdivide (partition) the
domain (with the help of a background grid) and distrib
Ute the subdomains to different processors for triangu-
lation. The interior of subdomains are meshed indepen-
dently. Then, the inter-subdomain regions are meshed
using a coloring technique to avoid conflicts. Finally, the
“comers” between more than two processors are meshed
following the same basic strategy. A “one master-many
slaves” paradigm has been chosen to drive the parallel
procedures. This approach has been extended to three
dimensions with some modifications [79]. A load bal-
ancing phase follows the initial domain splitting (at the
background grid level). The interface gridding incorpo-
rates mechanisms (i) to avoid degradation of performance
by using fine grain parallelism and (ii) to reduce the num-
ber of processors when there is too much communication
overhead. Results show scalability of the method.
Saxena and Permchio [64] describe a parallel Recursive
Spatial Decomposition (RSD) scheme which discretizes
the model into a set of octree cells. Interior and bound-
ary cells are meshed by either using templates or element
extraction (removal) schemes in parallel. The algorith-
mic procedure they employ to create these octant level
meshes requires no communication between octants. The
main difficulty for this meshing approach is to guarantee
that a boundary octant can always be meshed regardless
of the complexity of the model. Robust loop building al-
gorithms which include possible tree refinement to resolve
invalid configurations are in general difficult to parallelize
[76]. Parallel results have been simulated on a sequential
machine.
The parallel mesh generator presented here builds upon
previous work on sequential octxec-based mesh generators
[66, 76, 771, parallel adaptive finite element analysis
procedures [15, 55, 731, and parallel mesh generation
[16]. It meshes three-dimensional non-manifold objects
following the hierarchy of topological entities. That is,
the model edges are meshed first, the model faces are
meshed second, and the model regions are meshed last.
The current discussion focuses on the octree-based region
meshing procedure.
Figure 22 graphically depicts the basics of the present
mesh generator. The first step in meshing a model re-
gion is to develop a variable level octree which reflects
the mesh control information and is consistent with the
triangulation on the boundary of the model region. Oc-
tants containing mesh entities classified on the boundary
of the model region to be meshed are constructed to be
approximately of the same size as the mesh entities they
contain. A one level difference on octants sharing one

6-19

Mesh faces to which tetrahedral elements will eventually
be connected are referred to as partially connected faces.
They are basically nussing one connected tetrahedron
in the manifold case, and one or two in non-manifold
situations. Initially. the mesh faces classified on the
model boundary are the partially connected mesh faces.
Once templates have been applied, that is, at the start of
face removal, the interior mesh faces connected to exactly
one tetrahedron are also partially connected mesh faces.
In the remainder of this discussion, the current set of
partially connected mesh faces will be referred to as the
front. During face removal, tetrahedra are connected to
these faces, therefore eliminating them. Any nonexisting
face of a newly created tetrahedra, referred to as a new
face, is a partially connected face untll if is eliminated.
The face removal process is complete when there are no
partially connected mesh faces remaining.

33.1 Underlying Octree

The octree IS built over the given surface mesh to (i) help
in localizing the mesh entines of interest, and (ii) pro-
vide support for the use of fast octant meshing templates.
Proper localization is aclueved by having each tenrunal
octant reference any partially connected mesh face which
is either totally or partially inside its volume. This infor-
mation is used to efficiently guarantee the correctness of
the face removal technique. The octree building process
can be decomposed into: (i) root octant building. (ii) oc-
tree building, (iii) level adjustment, (iv) assignment of
partially connected mesh faces to terminal octants, and

or more edges is enforced during this process to con-
trol smoothness of the mesh gradations. Once the octree
is generated, the octants are classified as interior, ouf-
side, or boundary. Those classified as outside receive
no further consideration. Some interior octants are re-
classified boundary d they are too close to mesh entities
classified on the boundary of the model region (boundary-
interior). The purpose of this reclassification is to avoid
the complexities caused when inrerior octant mesh enti-
ties (coming from the application of templates) are too
close to the boundary and may lead to the creation of
poorly shaped elements in that neighborhood. Interior
octants are meshed using templates. Face removal proce-
dures are then used to connect the boundary hiangulation
to the interior octants. Figure 23 graphically describes a
face removal in a two-dimensional setting.

(v) terminal octant classification.
The root octant is such that the given surface mesh is
contained within it. It is cubic in order to avoid the

Figure 22. Graphical depiction of the
basics of the presented mesh generator

creation of unnecessary stretched tetrahedra coming from I

the application of meshmg templates on stretched octants
(assuming isotropy is desirable in the resulting mesh).
me terminal octants are constructed to be approximately

I

I
I

I
the same size as any partially connected mesh face asso-
ciated with them in order to ensure appropriate element
sizes and gradations. This is done by visiting each mesh
vertex in the initial surface mesh, computing the average
size of the conne.cted mesh edges, and refining the oc-

P.~W* Fully
connected m n M d octant is given by: I.E. faM

Figure 23. Face removal (2-D setting)

level comsponding to that average size. The level of the

rootlength odlev = logz

where rootlength is the length of the root octant and
size iS the size of the mesh entity (defined here as the
average length of the bounding edges). It should he noted
that this procedure does not theoretically ensure a match
in Size between every terminal octant and the partially
mmcted mesh faces it h w s about.
To ensure a smooth gradation between octant levels, no
more than one level of difference is allowed between
terminal octants that share an octant edge. Application
of this rule can possibly lead to refinement of some

3.3. Sequential Region Meshing

As indicated above, the starting point for the region
meshing process is a completely triangulated surface.
The surfiace hangdation must sahsfy the conditions of
topological compatibility geometric similarity 1671
with respect to the model faces. The region meshing
process consists of the three steps of (i) generation of
the underlying octree, (ii) template meshing of interior
octants, and (ii) face removal to connect the given surface
triangulation to the interior octants. I

620

terminal octants past the level that was set by the partially
connected mesh faces in their volumes.
Once the tree is completed, partially connected mesh
faces are assigned to terminal octants. Given a mesh
face, terminal octants that should h o w about it can be
separated into two groups: (i) those that are in the path of
each bounding mesh edge (obtained by intersecting line
segments with axis aligned solid boxes) and (ii) those
whose octant edges are in the path of the mesh face
(obtained by intersecting line segments with triangles).
Any terminal octant which knows at least one partially
connected mesh face is classified boundary. Terminal
octants classified boundary separate interior terminal oc-
tants from ourside terminal octants. At this point, it
should be noted that the interior of the model can be
made of several model regions. One octant comer of a
boundary terminal octant is then classified either interior
or outside by firing a ray toward a corner of the root oc-
tant. Considering the partially connected mesh face closer
to the octant corner among the ones that intersect the ray,
the classification corresponding to the model region on the
side of the mesh face facing the octant comer is given to
the octant corner [76]. If there is no intersection, the oc-
tant corner is classified outside. In case the intersection
is on the boundary of the partially connected mesh face,
no decision can be taken and a ray to another corner of
the root is fired. The classification of the octant comer
is then propagated to any neighboring terminal octant (in
a recursive way) which has not been classified yet. The
process of classifying an octant corner and propagating
its classification continues until all terminal octants have
been classified.
After the basic octant classification process, interior ter-
minal octants can exist which have boundary entities ar-
bitrarily close to surface triangles in boundary octants.
Since poorly shaped elements can result when these en-
tities are too close, some inzerior terminal octants are
reclassified as boundary. If an interior terminal octant is
too close to a partially connected mesh face, it is reclassi-
fied boundary. In this discussion, distances between two
entities are always considered relative, that is, the actual
distance should be divided by the average size of the enti-
ties involved. In this particular case, the relative distance
between a partially connected mesh face and an octant
is equal to the absolute distance divided by the average
size of the octant (its length) and mesh face. The thresh-
old for closeness is set to 1.0, which basically guarantees
that there is at least a one-element buffer between interior
terminal octants and surface triangles.
33.2 Template Meshing of Interlor Oetants
Terminal octants classified interior are meshed using (i)
meshing templates or (ii) fast meshing procedures when
a template is not available. Examination of the number
of templates required for all cases and the distribution
of template usage indicates that octants with eight, nine,
t h i n , and seventeen vertices cover over 90% of the
interior octants. All the eight, nine, thirteen, and seven-
teen vertex Octant configurations can be meshed by six

templates (Fig. 24) with the correct rotations applied.
The remaining interior octants are then quickly meshed
using a fast procedure which accounts for the fact that
the octant is a rectangular prism. One very fast option
is to create an interior vertex and to create the correct
connections to it [94].

a vertkea 9 vertices (1) 9 vsrtlcw (2)

Figure 24. Terminal octant meshing templates available:
one eight vertex case, two nine vertex cases, one

thirteen vertex case, and two seventeen vertex cases

3.3.3 Face Removal

Given a part~ally connected mesh face, a face removal
consists of connecting it to a mesh vertex. Since the
volume to be meshed consists of the space between the
given surface triangulation and the interior octree, the
vertex used is usually an existing one. However, in some
situations, it is desirable to create a new vertex. The
choice of the target vertex (existing or new) must be such
that the created element is of good quality and its creation
does not lead to poor (in terms of shape) subsequent face
removals in that neighborhood.
The following pseudo-code indicates how the target ver-
tex is selected for a given partially connected mesh face
to be removed. Detailed explanation for the key steps
is given in the next paragraphs of the section. In this
pseudo-code and any other thereafter, break forces an
exit from a loop, return forces an exit from the function
or routine (in other words, the function terminates), and
text between I* and *I denotes a comment [40].

1.

2.

3. Initialize:

Collect set of potential target vertices from tree
neighborhood
Reorder target vertices with respect to decreasing
shape measure (for the element to be created)

a dist-lim = a
b. target-vert = 0
c. ma-min-dist = 0.0

6-2 1

4. for each potential target vertex vert {

a.

b.

c.

d.

Perform preliminary check on acceptability. If
not acceptable, continue
If the new element contains any mesh vertex
belonging to the front, continue
If the new element intersects any existing mesh
entity, continue
Evaluate how close the new element is to exist-
ing mesh entities (compute relative minimum
distance min-dist)
if (min-dist 2 dist-lim) {

* target-vert = vert
m-min-dist= min-dist

* break

1
else if (min-dist > max-min-dist) {

target-vert = vert
mu-min-dist = min-dist

1

e.

f.

I
if (mu-min-dist Z dist-Iim) return
if target-vert == 0 {

a.

b. target-vert = vert

else { I* Consider creating a new vertex ' I

a.

b.

c.

5.
6.

Create a new vertex v e n at the best position for
the partially connected mesh face to be removed

I
7.

Create a new vertex vert at the best position for
the partially connected mesh face to be removed
Evaluate closeness of new element to existing
mesh entities (min-dist)
if (min-dist > mu-min-dist) target-vert =
vert I* Better to create a new vertex ' I

I
The neighborhood of an entity is defined as a tree neigh-
borhood of a given order. Given a mesh entity, a tree
neighborhood of order 0 consists of all terminal octants
that know about the entity (have the entity or part of
it within their volumes). A tree neighborhood of order
n (n > 0) consists of a tree neighborhood of order n-I
to which is added all terminal octants that neighbor any
octant comer of any terminal octant in the tree 'neigh-
borhood of level n-I. The set of potential target vertices
is obtained via the partially connected mesh faces in the
tree neighborhood of the appropriate order for the face in
consideration. The set of potential target vertices should
be as small as possible (for efficiency reasons) but should
not be missing the best target (with respect to both shape
of new element and closeness to nearby existing mesh en-
tities) assuming all mesh vertices of the front were con-
sidered. A tree neighborhood of order 0 is clearly not
enough while a tree neighborhood of order 1 is adequate
when the terminal octants have approximately the same

sizes as the partially connected mesh faces they know
about.
It is of interest to be able to discard potential target
vertices as early as possible for purpose of efficiency.
A potential target is kept only if it satisfies one of the
three following conditions (types):

1.

2.

3.

connects to a bounding vertex of the face to be
removed through a mesh edge of the front. This
allows for the removal of partially connected mesh
faces other than the face in consideration (not in all
cases) and therefore leads to a reduction of the size of
the front (guaranteeing convergence of the method)
is positioned inside the sphere centered at the best
position (with respect to shape) for the fourth vertex
of the face to be removed with a radius the size of
the face to be removed. This avoids the creation
of a stretched element with respect to the face in
consideration.
any of the three bounding vertices of the face to
be removed are positioned inside the sphere of any
of the partially connected mesh faces connected to
the target vertex. This allows for the creation of a
stretched element with respect to the face in consid-
eration which is not stretched with respect to par-
tially connected mesh faces connected to the target.

Figure 25 shows potential target vertices of type 1, 2,
and 3 for the face to remove.

I'

Figure 25. The three types of
potential target vertices (2 4 setting)

Given a potential target vertex, one has to make sure that
any new mesh entity (resulting from the creation of the
new mesh region) does not intersect an existing mesh
entity. The creation of a new mesh region may result
in the creation of a new mesh vertex, up to three new
mesh edges, and up to three new mesh faces. New mesh
edges are checked for intersection against nearby partially
connected mesh faces. Given a virtual new mesh edge,
the nearby partially connected mesh faces are obtained
through the tree neighborhood of order 0 (of the new
edge). If no intersection is detected, new mesh faces are
checked for intersection against nearby front mesh edges.
Given a virtual new mesh face, nearby front mesh edges

6-22

are obtained through the partially connected mesh faces
in the tree neighborhwd of order 0 (of the new face).
Because any terminal octant knows about the partially
connected mesh faces in its volume, considering a tree
neighborhood of order 0 guarantees that no intersection
can be missed.
The closeness of the new mesh region to existing mesh
entities is evaluated by considering the minimum relative
distance between any new mesh entity and nearby exist-
ing mesh entities. The relative distance is defined as the
absolute distance divided by the average size of the mesh
entities involved. The nearby mesh entities are obtained
through a tree neighborhood of order 1 of the new entity
being tested. It is important to note that nearby existing
mesh entities in a tree neighborhood of order 1 may not
be in a tree neighborhood of order 0. On the other hand,
nearby existing mesh entities cannot be missed with a
tree neighborhood of order 1 . If there is a new vertex,
distances between the new vertex and nearby existing par-
tially connected mesh faces are considered. For any new
mesh edge, distances between the new edge and nearby
existing front mesh edges are considered. If the point on
the new edge corresponding to the distance (that is, clos-
est to the nearby existing front mesh edge) corresponds
to an existing hounding mesh vertex, the distance is dis-
carded. In that case, it means that the nearby existing
front mesh edge is close to another existing mesh entity
and not to a new mesh entity. Also, for any new face,
distances between the new face and nearby existing front
mesh vertices are considered, Again, distances are dis-
carded if the point on the new mesh face corresponding to
the distance (that is, closest to the nearby existing front
mesh vertex) is actually on an existing bounding mesh
vertex or edge. The three different cases are shown in
Figure 26. The threshold a corresponds to what is con-
sidered acceptable in terms of closeness when creating a
new element. Experimentation led to the use of a value
of 0.2 for a.

New vertex vs
nearby tams

New edge vs New face YS
nearby edgea nearby Mrt1IC.S

Figure 26. Evaluation of relative minimum distance
between new entities and nearby existing mesh entities

If a new vertex needs to be created, its location must
be such that the new element is well-shaped, and neither
causes intersection nor is too close to nearby existing
mesh entities. The initial location for the new vertex is at
the position which creates the best shaped element for the
face to be removed. This location is on the perpendicular
to the face passing through the centroid. If the current

location causes the new element to intersect nearby ex-
isting mesh entities, a new location is considered on the
normal half-way from the current location. and so on, un-
til a valid location is found. In order not to be too close
to existing mesh entities, the final location is considered
conservatively half-way from the current location.
Figure 27 graphically depicts a face removal in a two-
dimensional setting. There are four target vertices ordered
(1. 2, 3, and 4) with respect to increasing shape measure
of the element to be created. Target vertex 1 is rejected
since the new element is too close to an existing mesh
entity (vertex 3). Target vertex 2 is rejected since the new
element intersects existing mesh entities. Target vertex 3
is therefore accepted.

2 intersection

Face to remove

Figure 27. Potential target vertices
and best face removal (2 4 setting)

3.4. Parallel Constructs Required
3.4.1 Octree and Mesh Data Structures
The two main data structures are the mesh and octree data
smctures. The mesh data structure (sequential) and par-
allel mesh data base (PMDB) both described above are
used here to support the presented mesh generator. The
octree data structure is on top of the mesh data structure.
To gather a tree neighborhwd or all terminal octants in
the path of a mesh entity (new vertex, edge, or face),
any processor must be able to effectively determine to
which processor any given terminal octant is assigned.
This information is easily available when each proces-
sor has full knowledge of the basic octree in terms of
structure and processor assignment. This is the approach
currently implemented. Although the size of the tree is
small compared to that of the mesh and this tree informa-
tion can easily be copied to each processor, this approach
does not scale indefinitely. Any terminal octant stores
links to on-processor partially connected mesh faces and
off-processor partially connected mesh faces totally or
partially within its volume. Octree neighboring informa-
tion (like finding terminal octants neighboring an octant
face, edge, or corner) is obtained through tree traversals
(logarithmic complexity).
Techniques that maintain only portions of the tree on indi-
vidual processors while providing tree neighboring infor-
mation efficiently are currently under investigation. It is
of interest to be able to retrieve tree neighboring informa-
tion without having to communicate. If communication is
allowed during a neighboring information request, some
processors will have to interrupt and be involved in the

request, which certainly can degrade the overall perfor-
mance if not done carefully. An easy solution is to make
sure that all processors participate in the request (soft
synchronization). On a sequential machine, performing
tree traversals to obtain neighboring information, typi-
cally, getting all terminal octants that neighbor an octant
entity (face, edge, or comer) can he avoided if octant
face neighboring terminal octants are stored. The lim-
ited increase in data storage is well worth the constant
time complexity for getting neighboring information. In
a parallel setting, it is difficult to conceive such a scheme
without having to communicate between processors.

3.4.2 Multiple Octant Migration

When the mesh generation process comes to a point when
no face removal can be applied (face removals are not
applied when needed tree neighborhoods are not fully
on processor), the tree and associated mesh is reparti-
tioned. The migration of octants is key to repartitioning
once decisions concerning new destinations of terminal
octants (classified boundnry) have been made. Multiple
octant migration itself relies on the multiple migration of
partially connected mesh faces and/or mesh regions (de-
scribed above). Note that multiple mesh region migration
is also used in the final repartitioning at the region level
once the mesh has been fully generated.
Any processor can send any number of terminal octants
to another processor. When a terminal octant is migrated
from one processor to another, the partially connected
mesh faces not connected to any mesh region (these are
the mesh faces remaining from the given surface triangu-
lation) owned hy the octant and/or the mesh regions that
are bounded by at least one partially connected mesh face
owned by the octant are migrated as well. An octant owns
a mesh entity when it knows about it (has it within its
volume) and has its centroid within its volume. Note that
a partially connected mesh face not known by the octant
may be migrated as part of a mesh region if that region is
bounded by another partially connected mesh face whose
owner is the octant. Also, if a mesh region is bounded
by more than one partially connected mesh face known
to the octant to be migrated (up to four), the ownership is
arbitrarily dictated by the first partially connected mesh
face to be processed (from the list of partially connected
mesh faces known to the octant). Figure 28 shows a two-
dimensional example of the mesh regions to be migrated
within an octant. When the multiple octant migration
completes, the processor is informed of the octants it has
received. For each received octant, a list of associated
mesh entities is also given, basically the partially con-
nected mesh faces and/or mesh regions that were sent.
The primary complexity that arises when migrating oc-
tants and associated mesh information is the absence of
a global labeling system for the mesh entities. Each pro-
cessor employs a local labeling for the hierarchy of mesh
entities that it is assigned. The interprocessor mesh adja-
cency links maintain the required knowledge of the adja-
cent mesh entities on neighboring processors. Although
the mesh data for a partially connected face is on one

6-23

R NU to bo migrated wkh Dctant *
i I

i

Regioru to bo migrated wHh octant

Figure 28. Octant migration

processor, the octants which refer to that face may be on
multiple processors. Since the face removal procedure
must perform geometric checks on all partially connected
faces known to that octant, the time required to perform
these operations would be greatly increased if the required
information had to be fetched from neighboring proces-
sors. To eliminate this requirement, each partially con-
nected face known to an octant will either be a pointer to
face, when the face is actually on-processor, or a set of
three coordinates when the face is stored off-processor.
Although this approach avoids interprocessor communi-
cations, it complicates the process of updating references
to partially connected mesh faces on and off-processor
when octants are migrated. Concerning the update of
processor assignment at the octant level, since the tree
smcture is currently stored on all processors, a broad-
cast is performed to all processors indicating the fact that
octants have been relocated.

3.4.3 Dynamic Repartitinning
Dynamic repartitioning enables redishibution of the load
among processors as evenly as possible at key stages of
the mesh generation process. These key stages are:

1. at the beginning of template meshing,
2. at the beginning of each face removal step, and
3. at completion of the mesh generation process.

Repartitioning for stages 1 and 2 is done at the terminal
octant level (1 with respect to terminal octants classified
interior and 2 with respect to terminal octants classified
boundary). Repartitioning for stage 3 is performed at
the mesh region level. The strategy is identical for
both cases, only the process of migrating differs. The
methods used here are geometry-based dynamic balancing
(repartitioning) procedures which are described in section
2.3.1.

3.5. Parallel Region Meshing
35.1 Underlying Octree
At this point in time, the octree is built sequentially on
a single processor (processor 0). Since a sequential oc-
tree building can become a bottleneck when dealing with

6-24

very large meshes, techniques to build the tree in par-
allel are currently considered. A distributed tree can be
constructed in parallel as long as operators to subdivide
and migrate octants are available. Octant migration guar-
antees that the tree can be well distributed at any stage
during the building process, which is important memory
wise. Those operators are key to the problem since they
update possible inter-processor links in a distributed tree.

35.2 Template Meshing of Interior Octants

Once all terminal octants have been properly classified,
the terminal octants classified interior are partitioned.
The parallel application of templates is a straight for-
ward process in which there is no communication required
during the process of creating the octant level meshes.
It should be noted that the application of templates to
octants sharing the same octant face implicitly lead to
the same octant face triangulation. The finite elements
generated in these octants are loaded into the processor
mesh data structure. The interprocessor communication
required at the end of this step is for the updating of inter-
processor mesh entity links for mesh entities created on
the boundaries of interior octants whioh are on processor
boundaries. The cost for the application of templates is
small compared to the cost of performing face removals.
Therefore, the parallel efficiency of parallel region mesh-
ing is dictated primarily by the face removal part only.

35.3 Face Removal
Parallel face removal is an iterative process where each
iteration consists of three steps:

1.

2. Face removal step, and
3.

Tree repartitioning at the terminal octant (classified
boundary) level,

Reclassification of terminal octants from boundary
to meaningless

The goal of step 1 is to make sure that all processors will
have an equal amount of work to perform during step 2. It
is difficult to predict how much work or, more precisely,
how many face removals (step 2) any processor will per-
form and the total amount of effort for a particular face
removal. However, a terminal octant classified boundary
is a good unit of work load since the set of all terminal
octants classified boundary approximately corresponds to
the domain still to be meshed. The difficulty of perform
ing face removals in parallel resides in the fact that any
face removal requires the knowledge of tree neighbor-
hoods. Tree neighborhoods of order 0 or 1 are needed at
different steps of the removal of a given mesh face. If, at
any point during the face removal, a tree neighborhood
is not fully on-processor, the face removal is aborted and
the next mesh face is considered for removal. Once all
possible face removals have been performed on proces-
sor, some terminal octants classified boundary which used
to know about partially connected mesh faces (on or off-
processor) are reclassified meaningless. Because those
octants no longer cover any portion of the domain still
to be meshed, they are now useless (for the purpose of

face removals) and will therefore not influence the next
repartitioning.
Figure 29 depicts the first iteration on a simplistic exam-
ple. In the left-side picture, terminal octants classified
boundary have been partitioned and each of them is as-
signed to a processor (0 to 3). The right-hand side picture
shows the current mesh after all possible face removals
have been performed on processors. Shaded areas repre-
sent the domain still to be meshed.

3 : ! i.."...."? ": i " i i ...___.____,

Figure 29. Parallel face removal (2 4 setting)

The process of performing face removals and repartition-
ing the tree continues until there are no more partially
connected mesh faces in the mesh. Define the efficiency
of the face removal stage as beiig the ratio of the number
of performed face removals to the number of attempted
face removals. After a few iterations, the efficiency of
the face removal stage can be very low because informa-
tion required to perform face removals is almost always
off-processor. When more than half of the processors
have an efficiency below some given threshold (25%),
the processor set is reduced (by half).
Since migration of terminal octants only deals with those
classified boundary and only womes about mesh regions
bounded by partially connected mesh faces, it is very
likely that the final mesh will be scattered across proces-
sors with no real stmchue. It is therefore necessary to
repartition in parallel the distributed mesh using IRB at
the mesh region level with the original full set of proces-
sors. Figure 30 shows the whole process of parallel face
removal on four processors. The first 8 pictures display
the currently partially connected mesh faces after the ter-
minal octants classified boundary have been repartitioned.
Note that iterations I, 2.3, and 4 use all four processors,
iterations 5 , 6, and 7 use two processors, and iteration 8
uses one processor. The final picture displays the final
three-dimensional repartitioned mesh on four processors.
Tables 4 and 5 show speed-ups for up to four processors
for the connecting md and blade models, respectively (fi-
nal repartitioned meshes on four processors are shown in
Fig. 31 and Fig. 32. respectively). Tables 6, 7 and 8
show speed-ups for up to eight processors for the onera
wing. mechanical part, and mechanical part 2 models,
respectively (final repartitioned meshes on eight proces-
sors are shown in Fig. 33, 34, and Fig. 35, respectively).
The number of mesh regions created indicated in the cap-
tions corresponds to parallel face removal only and does

ProCS

Iterations

Face
removal
speedup

speedup
Total

1 2 4

1 5 7

1 .o 1.9 3.3

1 .o 1.8 2.9

ROCS

Iterations

Face
removal
speedup

speedup
Total

1 2 4

1 5 8

1.0 2.0 3.2

1.0 1.9 2.8

6-25

;yr.--
,. .

I

I \

L

Iteration 2
4 I 4 procs

Iteration 1
4 I 4 procs Table 4 Face removal statistics for

connecting md (35.000 mesh regions
created by face removals - 70,000 total)

c
I

Iteration 3
4 I 4 procs

Iteration 4
4 I 4 procs

I

Figure 31. Final repartitioned mesh
for connecting rnd (4 processors) Iteration 5

2 I 4 procs
Iteration 6
2 I 4 procs

Iteration 7
2 I 4 procs

Iteration 8
1 I 4 procs

Final mesh

Figure 30. Successive face removal iterations
and final repartitioned mesh for chicklet

Figure 32. Final repartitioned
mesh for blade (4 processors)

Rocs 2 4 8 I
Iterations (4 7 I I 1 I I Face I 1.0 I 1.9 12.8 I
removal
d U 0

I I I

Total I 1.0 1 1.8 12.6 I
ISP..d.P I I I I
Table 6 Face removal statistics for onem wing (W,OOO
mesh regions created by face removals - 220.000 total)

Figurc 33. Final repartitioned mesh
for onera wing (8 processors)

4. Parallel Mesh Enrichment

4.1. Local Retriangulation Tools
Local retriangulation techniques have been used IO mns-
form locally non-Delaunay triangulations of a set of

Ilterations 14 I 12 I
L I

Table 7 Face removal statistics for
mechanical pan (120,000 mesh regions

created by face removals - 230,000 total)

Figure 34. Final repartitioned mesh
for mechanical part (8 proussors)

lpmcs 12 1 4 I 8

I Iterations I 4 17 I 1 1

I Face I 11

I I
Total I 1.0 I 1.9 13.2

Table 8 Face removal statistics for
mechanfcdlpar~ 2 (lzS,OOO mesh ngions

c ~ t e d by face r~novals - 240.000 10tal)

points into Delsunay triangulations [35], generate. Gee
metric triangulatim of models with faceted boundaries
[28] (boundary recovery), optimize existing triangulations
[U, 171. etc. The local retriangulation took presented in
this section do not deIete or creatc v e r b s . The mesh
entity splitting presented in the refinement section creates
a vertex. The edge collapsing pmented in the derefim
ment section deletes a vertex. Local retriangulation tools
SIC used here to optimize triangulations (locally 01 glob-
a y) ancl to help in '*snapping" refinement mesh vertices
to the modcl boundary (if required).

f = = ,... ...

.l >,:.
L

A

Figure 35. Final repartitioned mesh
for mechanical parr 2 (8 processors)

A few definitions related to triangulation quality relevant
to local retriangulation tools are now given:
Triangulation quality: lfeach mesh entify ,TP(of a tri-
angulation ,R is associated with a qualify measure p,.
the qualify of :he triangulation is def ied as Q = min (s i)

Triangulation acceptability: Given 4 qualify threshold 91.
a triangulation ,,,a is acceptable with respect to ninngu-
lation qualify ifQ > qi.
Triangulation comparison: A triangulation ,ni of a set
of points is considered better with respect to triangulation
qualify than another triangulation ,Rj of the same set of
points if Qi > Qj.

4.1.1 Edge Swapping

In two and three dimensions, a swapping step is per-
formed after inserting a new node into the triangulation
to transform a locally non-Delaunay triangulation into a
Delaunay one. Aside from the refinement issue, it is a
method to incrementally build a Delaunay triangulation
of a set of points.
Swapping relies on the general result given by Lawson
which states that a set of n+Z points in R" may be
triangulated in at most two ways [42]. In two dimen-
sions, there are two ways to triangulate a strictly con-
vex quadrilateral. Edge swapping consists of switching
diagonals for the quadrilateral resulting from the union
of the two connected triangles (if convex). In three di-
mensions, there are two ways to triangulate a strictly
convex triangular hexahedron containing five and only
five points (the five apices of the triangular hexahedron).
Joe provided a set of workable swappable configura-
tions for the three-dimensional case [35]. If a mesh face
,T: is not locally optimal (does not satisfy the Delau-
nay criterion) and corresponds to one of the two situ-
ations on the left side of figure 36, it is swapped. If
[,,,q, ,,,GI n,T: # 0 ([,T:, ,T:] being the line seg-

6-27

ment spanning from ,,,G to ,T;), the triangular hexahe-
dron initially containing two tetrahedra is retriangulated
withthree. If [, ~ , , , , T ~] n (S l u S z u S 3) # 0 (w h e r e
the S,'s are plane sectors appearing shaded in figure 36)
and 3 ,T: I { , ' G ? , , , , ~ , , T . , , ~ } E a(,,,T?), the
triangular hexahedron initially containing three teeahe
dra is retriangulated with two.

Figure 36. 240-3 and 340-2 swaps in three dimensions

These swaps, commonly referred to as 240-3 and
340-2, are suited for Delaunay triangulations and by
extension for regular triangulations [191. Refemng
to Fig. 36, if& ,T:,,,,q TO \ n (S i U S z U S 3) # 0
and VmT? 27, 3 i m T 4 , , TO} 5 B B(,Tf) or
[m T i , m G] n (,,,T: U S1 U Sz U 5 3) = 0, there is
no possible swap. When dealing with Delaunay tri-
angulations (or regular triangulations), theoretical re-
sults indicate that non swappable faces (in Joe's
sense) are not critical. However, when dealing with
any other criterion, non swappable faces (in Joe's
sense) may be critical. The other non swappable
configuration from figure 36 which corresponds to [,,,e, ,,,Ti] n (,,,T: U SI U S, U S3) = 0 consists of
four tetrahedra bounded by { , T ~ , , , , T ~ , , , , T ~ , , , , ~ } . t , ~ , , ~ ' , , T ~ , , T ; 1 , respectively [35]. It is clear
that there is no other way of triangulating this convex
hull. The ideas presented by Bri&re de I'Isle and George
[17] about edge removal enable the extension of the
classic 3 4 d swap [35. 191.

4.1.2 Edge Removal

Bribre de I'Isle and George [17] have proposed an edge
removal technique as part of an algorithm to optimize the
quality of a given mesh. It can also be used as part of a
scheme to recover the faceted boundary of a model [28].
A mesh edge ,,,Ti C T3 which is bounded by vertices

g 1. ,TP and ,,,Ti can be eliminated by retriangulating the
polyhedron of all connected tetrahedrons. The polyhe-
dron is retriangulated by: (i) triangulating the polygon

,,,'G?,,G',,T.o,,T~ . {,Tf,,,,Ta",,T3",,T!}. and

6-28

of all mesh vertices of the polyhedron which are neither
,Tp nor ,T$, and (ii) connecting the new mesh faces
to ,Tp and ,T; (Fig. 37).

Figure 37. Edge removal

If the polyhedron originally consisted of m tetrahedra, the
associated polygon has m sides and m apices. The number
of possible retriangulations is N , = N,-1Nm+2-i
with N2 = 2 [U , 171. Clearly, if the polyhedron is not
convex, some possible retriangulations have to be dis-
carded. The number of different triangles when consider-
ing all retriangulations is NT, = m(m - l)(m - 2)/6
[171. Table 9 shows computed values of N , and NT,
for m = 3 to 9 1171.

m

i=3

I I I
N, 1 2 5 14 42 132 429

NT- 1 1 1 4 I IO I 2 0 I 3 5 I 5 6 I84

Table 9 Number of possible retriangulations and different
triangles as m (number of connected tetrahedra) increases

Since N , grows rapidly, Brikre de I'Isle and George have
chosen m = 9 as an upper limit for their edge removal
scheme. It should be noted that those retriangulations
represent all possible triangulations of the polyhedron that
do not have ,Ti but are only a subset of all possible
retriangulations of the polyhedron.
Given a mesh edge ,T: connected to more than one
mesh region, edge removal consists of retriangulating the
polyhedron pol(,T:) of all mesh regions connected to
,,,T: in such a way that ,,,Ti is not present in the retrian-
gulation (Fig. 37). When edge removal is topologically
possible, the mesh edge is said to be topologically re-
movable. An edge removal is positive (negative) if the
retriangulation of the polyhedron is better (worse, respec-
tively) than the original triangulation, in other words, the
variation of the local triangulation quality is positive (neg-
ative, respectively). A brief description of the algorithm
to remove an edge in the context of Geometric triangu-
lation optimization follows [17]:

I . Determine quality Qorg of triangulation of
pol(mT:)

2. Get the associated polygon as an ordered list of
vertices

3. Consider among all possible retriangulations of
pol(,T:) those that are better than the original
one and keep track of highest (maz(Qnew))

4. If maz(Q,,,) exists:

a. Delete all mesh regions connected to ,,,Ti to
form a polyhedral cavity

b. Retriangulate such that new quality is
m4Qney)

The initial triangulation of the polyhedron for a mesh
edge classified in model region is such that there are:

I . m mesh regions,
2.

3.

The resulting triangulation is such that there are:

1. 2m-4 mesh regions,
2.
3.

m interior (with respect to the polyhedron) mesh
faces, and
I interior mesh edge connected to m mesh regions.

m-2 interior mesh faces, and
m-3 interior mesh edges each connected to 4 mesh
regions.

A local retriangulation tool like edge removal is typically
used to remove an undesirable mesh region from a hi-
angulation. Since a mesh region has six edges, there are
six possibilities to remove the mesh region using edge
removals. It is sometimes of interest to have more ways
to remove that mesh region. Beside edge collapsing and
mesh entity splitting, the procedure that reverses the edge
removal process can he used to attempt to remove the
mesh region. This new procedure is described in the next
section and is called multi-face removal.

4.1.3 Multi-Face Removal

Multi-face removal is a procedure that reverses edge
removal, in other words, it considers a configuration that
could have resulted from edge removal and obtain the
starting configuration. When applied to a single mesh
face, it is the classic 2-to-3 swap [35, 191.
Given a simply connected set of mesh faces {,T:}
such that any mesh face in the set connects (through
a mesh region) to ,TF on one side and MTZD on the
other side, the polyhedron pol ({ mT:}) is defined by the
union of all mesh regions that connect to a mesh face
in {,T)}. Multi-face removal retriangulates the polyhe-
dron pol((,Tf}) such that all mesh faces in { ,T)} are
removed. As for the edge removal, a multi-face removal
is positive (negative) if the new triangulation is better
(worse, respectively) than the original one. Multi-face
removal is topologically possible if (i) the deletion of all
mesh regions in pol({ ,,,'T2}) does not lead to the deletion
of a mesh vertex, and (ii) the set of mesh edges peripheral
to {,T:} constitutes a single loop that does not touch
itself. Figure 38 illustrates cases of multi-face removals
that are not topologically possible. When a multi-face
removal is topologically possible, the set of mesh faces

veriex One loop
disconnection Two Imp iouchm bel l

Figure 38. Cases when the topological state of the set
of mesh faces {,,,T,?} prevents multi-face removal

{ ,,,T:} (as well as any mesh face in the set) is said to
be topologically removable.
Since the goal of the presented optimization algorithm is
to get rid of undesirable mesh regions, the input to the
multi-face removal procedure is a mesh region ,T: and
a hounding mesh face ,T: from which the simply con-
nected set of mesh faces is constructed. The description
of the algorithm follows:

I .
2.
3.
4.

Get vertex ,,,q opposite ,,,T: in ,T: (Fig 39.a)
Get region ,,,T; on other side of ,T:
Get the vertex ,,,e opposite ,,,T: in ,T; (Fig 39.h)
Gather all pairs of face-connected mesh regions such
that one mesh region connects to ,TP and the other
connects to ,,,e. Keep track of the mesh faces in-
between pairs of mesh regions ({,,,T,?}). The set
of gathered mesh regions defines poI({, , ,T,?}) (Fig
39.c)
If retriangulation would create invalid elements, do
not perform removal
Compute quality of initial triangulation QOvg

Compute quality Q,,, of triangulation that would
result from connecting all boundary faces of

8. If Qnew < QOTg, do not perform removal
9. Delete the mesh regions in pol({ ,,,T,?}) to form a

polyhedral cavity
10. Connect all faces of polyhedral cavity to ,,,q (Fig

39.d)

5 .

6.
7.

pol({, , ,T,?}) to 2:

The initial triangulation of the polyhedron (Fig 39.c) is
such that there are:

1.
2.

3.

m mesh regions (note that m is an even number),
3mR-2 interior (with respect to the polyhedron)
mesh faces, and
mR-1 interior mesh edges each connected to 4 mesh
regions.

The resulting triangulation (Fig 39.d) is such that there
are:

1. m R + Z mesh regions,
2.
3.

m R + Z interior mesh faces, and
1 interior mesh edge connected to M i 2 mesh re-
gions.

6-29

m tst. mR+zmta
3mR - 2 int face.
M-l int.eddgM 1 Int. edge

Figure 39. Multi-face removal in three dimensions

mR + 2 inL face.

4.1.4 Triangulation Optimization Using
Local Retriangulation Tools

The goal of the optimization algorithm is to improve
the quality of Geometric triangulations with respect to
a given criterion (e.g., element shape). The optimization
procedure described here makes use of the local retri-
angulation tools described above, namely edge removal
and multi-face removal. Other local retriangulation tools
which change the number of mesh vertices like mesh en-
tity splitting, edge collapsing, and even local remeshing
are not incorporated into this specific optimization proce-
dure. Also, smoothing techniques (vertex repositioning)
[23, 141 are not addressed. In this discussion, triangula-
tion optimization can be used over the whole triangulation
or locally over a subtriangulation resulting from adaptive
enrichments such as refinement and derefinement.
The optimization procedure is region based, that is, it
looks for mesh regions that are not acceptable (quality
helow ql) and attempts to remove them from the trian-
gulation with local retriangulation tools. Given a non
acceptable mesh region ,T:, one can potentially remove
that mesh region from the triangulation by considering
edge removal with respect to any of its four hounding
edges or multi-face removal with respect to any of its
four bounding faces. The optimization algorithm is de-
scribed as follows:

I .

2.

Initialize queue Qu of non acceptable mesh regions
(quality below q1)
If (Qu empty) or (there is no edge removal or multi-
face removal that can successfully be applied to any
mesh region in Qu), end
Pop a region from Qu
Consider which edge removal (with respect to any
hounding edge) or multi-face removal (with respect
to any bounding face) gives the best quality improve-
ment of the corresponding polyhedron

3.
4.

6-30

5. If either an edge removal or a multi-face removal
has been performed

a.
b.

Else (re)enqueue mesh region

Remove from QU any deleted region
Enqueue any new non acceptable mesh region

6. Goto step 2

The process terminates when either the queue is empty
or no local retriangulation can be applied to any mesh
region in the queue. It terminates in a finite number of
steps. This is easily proven by examining the criterion for
locally retriangulating. A domain is locally retriangulated
only if the quality of the new triangulation of the domain
is strictly greater than the original one. Assume the
above process does not terminate, the quality of the global
triangulation would improve indefinitely which cannot be.
If the queue is empty when the program terminates, the
resulting geometric triangulation is acceptable and the
goal of the optimization procedure has been met. If
the queue is not empty when the procedure terminates,
neither local transformation procedure (edge removal or
multi-face removal) could be applied to any of the mesh
regions in the queue.
The optimization of a triangulation using local retriangu-
lation techniques leads to a local optimum. Depending in
which order the local transformation procedures are a p
plied, different local optima can be reached. Also, local
retriangulation procedurw may have to be applied even
if they are negative. It is impossible to say whether those
local optima are far or close to the global optimum. It
is conjectured that a global optimum cannot be reached
with local retriangulation techniques. However, in prac-
tice, these local retriangulation techniques often improve
the quality of a triangulation.
4.2. Relinement
Refinement algorithms have been decomposed into three
groups, depending on which technique they are based:
i) subdivision patterns [2, 6, 57, 48, 9, 381, ii) bisection
(generalized [59, 60, 45, 441 and alternate [3]), and iii)
insertion in a Delaunay context [E71 or by mesh entity
splitting [53, 30, 461. The following sections describe
these known schemes and introduce a new procedure
which considers a full set of subdivision patterns, there-
fore allowing the possibility of no over-refinement. A
set of definitions is given prior to the description of the
refinement algorithms:
Conformity: An n-dimensional triangulation ,,,O is con-
forming if the intersection of any two non disjoint ele-
ments is a common ddimensional geometric entity with
0 5 d < n. It is assumed here that conformity is a
requirement. Figure 40 illustrates the definition with a
two-dimensional example.
Triangulation refinement sequence: The ordered set
{,,,Ol,,Oz, ..,,ON} is a triangulation refinement se-
quence i f V i E [1,N - 11 ,,,O,+l is obtained by selec-
tively refvling ,Oi.
Nesting: A triangularion ,,,O, is nested into a triangu-
lation ,Oj if any element of ,,,Oi is fully inside one

element of ,Rj.
Refinement stability: A refinement scheme is stable if
all interior angles of all triangulations in the sequence
{,RI, ,Oz, .., ,ON} are boundedfrom below andabove
as N goes to infinity.

Non-conforming Conforming

Figure 40. Non-conforming and conforming
triangulations in two dimensions

4.2.1 Subdivision Patterns
In the two-dimensional case, two subdivision patterns are
commonly used: i) regular 1:4 (each child triangle is sim-
ilar to the parent) and ii) “green” 1:2 (Fig. 41). Bank and
Sherman [2] use a 1:4 subdivision scheme to refine ele-
ments. Any element with two or three non-conforming
vertices is 1:4 subdivided (iteratively). At this stage, all
elements can not have more than one non-conforming ver-
tex. A clean-up phase which “green” subdivides any re-
maining non-conforming element completes the process.
For the next refinement iteration, if an element resulting
from a “green” subdivision is marked for refinement, the
parent element is reinstated and 1:4 subdivided (Fig. 42).
This ensures an angle is not divided more than once.

Regular 1:4 Green 1 :2

Figure 41. Classic element
subdivision patterns in two dimensions

In three dimensions, given a mesh region, subdivision
patterns are applied depending on the number of marked
edges. The set of available subdivision patterns varies.
Biswas and Strawn [6]. Rausch et AI. [571, and Lohner
and Baum [48] have the 1 2 , 1:4, and 1:8 subdivision
schemes (Fig. 43). Bornemann et Al. [9] have the 1:2
(“green I”), “green II”, 1:4 (“green III”), and 1:8 subdi-
vision schemes. The “green II” scheme corresponds to
the case where there are 2 non-conforming edges for the
element. Kallinderis and Vijayan [38] use the 1:2, 1:4,
1:8, and a centroidal node subdivision schemes. In the
centroidal node subdivision scheme, a vertex is created

6-31

Nonconforming
vertex on fece’s A A ~~ dge Longest edge

Reinstatement

Regular
subdlvlslon

Figure 42. Reinstatement of parent element
followed by regular subdivision in two dimensions

Figure 43. Classic element subdivision
patterns in three dimensions

at the centroid of the element and the element is split
accordingly. If a marking pattern does not correspond to
a predefined configuration, it is upgraded to the closest
one. The process terminates in a finite number of steps.
It has been shown that the regular 1:8 subdivision scheme
is stable as long as the proper (shortest) inner diagonal
is chosen [29, 51. Algorithms based on subdivision pat-
terns are stable if irregular child elements (not resulting
from regular subdivision) are never further subdivided,
in other words, parents of those are reinstated and subdi-
vided with the 1:8 subdivision scheme prior to any further
subdivision [57, 48, 91. Note that ,,,Ri is always nested
into ,,,RI but ,,,R;+I may not be nested into ,Ri due
to the possible reinstatement of parents (i 2 2). Any
refinement scheme based on subdivision patterns which
does not have all possible subdivision patterns and/or re-
instates some parent elements prior to further subdivision
will in general over-refine, that is, produce more refine-
ment than requested by the adaptive procedure. Also,
using subdivision patterns which add a centroid vertex
when not actually needed will over-refine as well.

4.2.2 Generalized Bisection

In two dimensions, an element is refined by bisecting
its longest edge (twc-triangle algorithm) [59]. Elements
with non-conforming edges are subdivided following the
patterns of Figure 44. The process terminates in a finite
number of steps. Following the results of Rosenberg and
Stenger I611 and Stynes [82] about longest edge bisection,
the scheme is stable, furthermore, interior angles are
always greater than one half of the lowest angle in the
initial triangulation ,,,RI [59].

1 non-conf. vert. 2 nonconf. vert. 3 nonconf. veh

Figure 44. Non-conforming elements and
their triangulations in two dimensions

This method of subdivision along the longest edge has
been extended to three dimensions [60]. Elements
to be refined are bisected along their longest edges.
Non-conforming elements are subdivided along their
longest edges in a recursive fashion. Unlike the two-
dimensional case, an element that needs refinement or is
non-confoming must be bisected at its longest edge.
This scheme guarantees nesting. In two dimensions,
following the longest edge bisection results of Rosenberg
and Stenger I611 and Stynes [U], the scheme is stable,
furthermore, interior angles are always greater than one
half of the lowest angle in the initial triangulation ,,,RI
[59]. In three dimensions, to this point in time, no
one has yet presented a proof of the stability of the
scheme probably because (i) the longest edge in a mesh
region is not necessarily opposite the largest dihedral
angle and (U) the sum of all dihedral angles of a mesh
region is not constant. However, the scheme seems to be
“experimentally” stable. Because the non-conformity can
propagate, this scheme will in general over-refine.
Joe [45] has proven that the infinite bisection of a tetra-
hedron is stable using generalized bisection on a mapped
special tetrahedron. Note that this result does not prove
that generalized bisection in the real space is stable. Liu
and Joe [44] have presented a stable refinement algorithm
that makes use of this result. In ,,,RI. for each element,
a bisected edge is uniquely chosen (this does not mean
that all elements will be subdivided). Elements that need
to be subdivided are bisected along their bisected edges.
When an element is subdivided into two elements, the
bisected edges for the two new elements are imposed ac-
cording to rules given in [44]. Once all elements that need
refinement have been subdivided, there may be some non-
conforming elements in the triangulation. The process of
subdividing elements continues until there are no more
non-conforming elements in the mesh. At this point, the
scheme guarantees nesting, is stable, and will in general
over-refine. After all levels of refinement have been ap-
plied, local transformations [35] are applied to further im-
prove the quality of the final mesh. It should be noted that
if local transformations are applied after each refinement
iteration, a priori control of stability is lost. From ex-
perimental results given in [44], this scheme over-refines
less than the scheme by Rivara and Levin [60] especially
as the number of refinement levels becomes high. As a

6-32

remark, this scheme appears very similar to the alternate
bisection scheme [3] presented in the next section.

42.3 Alternate Bisection
This approach has been presented by B h c h [3]. In
,,,fll, refinement edges are chosen for each element (a
good choice is the longest edge). Note that choosing
a refinement edge for each element does not mean that
all elements will be subdivided. Elements that need to
be subdivided are bisected along their refinement edges.
When an element is subdivided into two elements, the
refinement edges are topologically imposed on the two
new elements according to Fig. 45. A conforming step
subdivides elements with non-conforming edges.

Figure 46. Watson’s algorithm in two dimensions

Region spllt Face split Edge split

Figure 45. Alternate bisection in two dimensions

This scheme extends to three dimensions. In ,!?I, each
face is given a refinement edge (e.g., longest edge). For
each element in it is then assumed there is at least
one common refinement edge for two adjacent faces,
called a global refinement edge. In particular, this as-
sumption holds if the longest edge of each face in ,RI
is chosen as the refinement edge. Each element to be
refined is bisected along its global refinement edge. The
refinement edges on the four new faces resulting from
bisection of the two parent faces are imposed as in the
two-dimensional case and the refinement edge on the in-
terior face is chosen according to rules given in [3]. The
two new elements are then guaranteed to have a global
refinement edge. Elements with nonconforming edges
are bisected until no non-conforming elements remain.
This scheme guarantees nesting and is stable [69, 31.
Because the non-conformity can propagate, this scheme
will in general over-refine.

4.2.4 Delaunay Insertion
Inserting a new node into a Delaunay triangulation can
be done using, for example, Watson’s algorithm 1871.
AU elements which contain the new node (in terms of
circumcircle in two dimensions or circumsphere in three)
are deleted to form a pointconvex polyhedral cavity.
New elements are created by connecting the boundary
of the cavity to the new node (Fig. 46). The new
triangulation is guaranteed to be Delaunay.

4.2.5 Splitting
The insertion of a point into a triangulation can be done
by splitting the mesh entities the new point falls on.
In three dimensions. a mesh region can be split into
four new regions, a mesh face into three new faces,
and a mesh edge into two new edges. Mesh entity

m:3m (m = 1 or 2)

(face)cncted tets (edgebncted tets

m:2m
1 :4 m = nbr of m = nbrof

Figure 47. Mesh entity splitting in three dimensions

splitting retriangulates a polyhedron by adding a vertex
and connecting the boundary faces of the polyhedron
to the new vertex. In the case of a mesh region, the
polyhedron is the mesh region itself. In the case of a
mesh face or a mesh edge, the polyhedron is built from
the union of all mesh regions connected to the face or
edge, respectively. Figure 47 displays the three types of
split in three dimensions and indicates for each one of
them the change in number of mesh regions.
This technique can be used to add vertices into a given
triangulation. For instance, if the error indicator is edge-
based, any marked mesh edge is split. Mesh entity split-
ting guarantees nesting, is not stable, and will not over-
refine if the mesh entities that are marked for refinement
are the only ones to be split.
For a given mesh region to refine, Golias and Tsiboukis
[30] split its longest edge, which leads to the refinement
of all tetrahedra connected to the edge. At this point,
the scheme guarantees nesting, is not stable, and does not
artificially refine. Then, Delaunay transformations and
node relaxation (repositioning) techniques are applied to
improve the quality of the resulting triangulation (nesting
is lost). The Delaunay transformations used are:

1. exchange of interface faces (in Fig. 36 upper-left,
when the faces bounded by { ,q, ,,,Ti, ,T:} and
{ ,,,q, ,,,Ti, ,,,TS} are classified on the same model
face, a 240-2 swap which is a degenerate case of
the 2-to-3 swap can be applied),

local transformation of tetrahedron (the above three
transformations are applied recursively to the tetra-
hedron under consideration, then the tetrahedron’s
neighbors, etc).

2. 2-to-3 and 340-2, and
3.

6-33

Muthukrishnan et al. [53] sort mesh regions that are
to be refined with respect to increasing length of their
longest edges. The first region to be refined is the one
at the end of the list. Before splitting the longest edge,
the regons connected to the edge are examined. If a
connected region has a longest edge different from the
edge to be split, it is put in the list of regions to be
refined at the appropriate rank. After the split, the list
is updated. This refinement scheme is actually identical
to the scheme described by Rivara and Levin [60] and
therefore has the same properties. It is followed by a
node repositioning procedure (nesting is lost).
Lo [46] sorts (in an approximate way) the mesh edges
marked for refinement with respect to increasing length.
The mesh edge at the end of the list is split and the list
is updated. This scheme is different from the one by Ri-
vara and Levin [60] and Muthukrishnan et al. [53] since
only edges marked for refinement will be split. At this
point, the scheme guarantees nesting, is not stable, and
does not artificially refine. It is followed by a triangu-
lation optimization procedure which makes use of node
repositioning and local transformations (nesting is lost).
These local transformations are:

I. 24m3,
2. 3 4 ~ 2 . and
3. 4-04 which is an edge removal when there are four

mesh regions connected to an edge.

4.2.6 Refinement Using FuIl Set
of Subdivision Patterns
Refinement is performed by marking appropriate mesh
edges for refinement and applying subdivision patterns to
each mesh region. Each mesh region has from zero to
six marked edges. Subdivision patterns for each possible
configuration of marked edges have been developed in
order to annihilate any over-refinement. There are ten
possible patterns which are as follows (Fig. 48):

I. I-edge: this is the classic 1:2 subdivision pattern

2.
(one template)
2-edge (this is also the Green Il in [9]):

a.
b.

3. W g e :

a.

b.

c.

One face has two marked edges (two templates)
All faces have one marked edge (one template)

One face has three marked edges: this is the
classic 1:4 subdivision pattern (one template)
' b o faces have two marked edges (four tem-
plates)
Three faces have two marked edges (eight tem-
plates)

4. W g e :

a.

b.

One face has three marked edges (four tem-
plates)
All faces have two marked edges (sixteen tem-
plates)

5. 5 4 g e (four templates)
6. W g e : this is the classic 1:8 subdivision pattern

(one template)

Itulae

Figure 48. Subdivision patterns in three dimensions

When only the 1 2 , 1:4, and 1% subdivision patterns are
used, there is no possible triangulation incompatibility at
the face level, in other words, the subdivision patterns
on both sides of a face with either one or three marked
edges will always match (at the face level). Inclusion of
all the refinement types requires explicit consideration of
triangulation compatibility at the face level. If a face with
two and only two marked edges has been triangulated
due to the subdivision of one region usmg that face, the
template used to subdivide the other region must match
the face triangulation. Since there are a priori two ways
to triangulate a face with two marked edges (Fig. 49).
any pattern which has N faces with two and only two
marked edges needs ZN templates.

Figure 49. The two ways to triangulate
a mesh face with two marked edges

As is, this refinement scheme is not stable since it is pos-
sible, and likely, that an angle (solid) will be bisected
more than once when multiple refinements are applied in
the same areas. However, it can be made stable at the
price of some over-refinement. Assuming the quality of
the initial triangulation ,ill is Q1. stability requires that
for any subsequent triangulation ,n, (i > 1) its quality
Q, is such that Q% 2 q1 with qt = aQ1 where a is some
constant. Given a mesh region with at least one marked
edge but fewer than six, the template corresponding to the
number of marked edges is applied and the optimization
procedure (with qj as the threshold) is applied locally to
the subdivided mesh region. If the optimization procedure
is successful, nothing else has to be done for that mesh

6-34

region. However, if the optimization procedure is unsuc-
cessful, the situation that existed prior to the application
of the template is recovered and the subdivision pattern
is upgraded by marking an additional edge. ‘Ibis process
is repeated until the optimization procedure is successful
or the number of marked mesh edges reaches six. Re-
call that the application of the 1:8 template (with shortest
inner diagonal) does not affect the stability of the refine-
ment scheme (neutral) [29, 51. Another approach is to
duectly upgrade to six marked mesh edges and apply the
1:8 template. It should be noted that as soon as a subdivi-
sion pattern is upgraded, neighboring mesh regions have
to be reprocessed for subdivision.
In the context of curved model boundary, vertices re-
sulting from refinement that are classified on the model
boundary need to be “snapped” to the appropriate model
entity. For example, when studying the flow around an
airfoil, it is critical to be able to snap refinement vertices
to the airfoil (especially at the leading edge) in order to
make sure the resulting flow corresponds to the actual
airfoil geomew. Difficulties may arise as moving a ver-
tex to its destination target can generate invalid elements
especially when the triangulation is rather coarse. Fig-
ure 50 illustrates this problem in two dimensions when
the triangulation around a circular hole is selectively re-
fined. If the snapping of a refinement vertex causes a
mesh region to be invalid or of poor quality, the local re-
triangulation tools described above can be used to attempt
to remove that mesh region. This process is repeated un-
til the refinement vertex can be snapped. Note that other
local retriangulation techniques. such as edge collapsing,
mesh entity splitting, and local remeshing can be applied
to these situations. It is possible that local retriangula-
tion tools may not succeed in snapping all refinement
vertices, however, it is believed that local remeshing will
permit all snappings. Efforts are under way to complete
the appropriate algorithms. A mesh adaptation proce-
dure should in theory not only be stable (with respect to
triangulation quality) but also capable of snapping all re-
finement vertices classified on the model boundary to the
proper model entities. This new requirement lessens the
importance of stability and justifies the presented mesh
adaptation pmcedure which makes use of local retriangu-
lation tools to optimize the current triangulation and snap
refinement vertices.

Ref. Snap

Figure 50. Snapping refinement vertex to
the model boundary in two dimensions

4.3. Derehement
Schemes that use subdivision patterns or bisection for re-
finement can derefine by simply reversing the refinement
process [6,59,48,38,57]. To illustrate this concept, con-
sider the methodology employed by Biswas and Strawn
[6] which is representative of such derefinement schemes.
If two sibling edges (same parent edge) are marked for
derefinement, they are replaced by the parent edge and
all parent elements sharing the parent edge are reinstated.
The procedure described for refinement and/or conformity
can then be applied to the set of elements that have been
reinstated. Figure 51 shows a simple example of der-
finement. In Figure 51.a. edges marked with a “d” are to
be derefined. Once the parent edges have been reinstated,
any parent edge with at least one child edge not marked
“d” is marked ‘T’ (Fig. 51.b). The refinement proce-
dure described earlier is then applied to produce the final
derefined triangulation (Fig. 51.c). It should be noted that
Biswas and Strawn [6] perform refinement and dereiine-
ment simultaneously. Derefinement has been separated
only in the wope of the present paper. In order to effi-
ciently reinstate parent entities, parent elements and edges
are stored resulting in an overhead estimated at 15% of
total memory requirements in Biswas and Strawn’s case.
It should be noted that any triangulation in the sequence
cannot be coarser than the first one.

a) b) C)

Figure 51. Derefinement example

Derefinement is performed here by using a local retrian-
gulation technique that deletes a vertex: edge collapsing.
A mesh edge is derefined by collapsing it to one of its
end vertices. A description of the algorithm follows (see
also Fig. 52 for a graphical description):

1. Check if edge collapsing is topologically possible. If
it is possible, one end vertex is the collapsed vertex
(,T;) while the other is the target vertex (,Ti)
Check if edge collapsing is geometrically possible
Delete all mesh regions connected to ,q, which
produces a polyhedral cavity
Connect the faces of the polyhedral cavity to ,,,Ti
to form new mesh regions

Since edge collapsing locally modifies a Geometric
(valid) triangulation [67, 771, one bas to make sure the
validity of the triangulation is not violated by the mod-
ification (this check refers to step 1 of the algorithm).
Since any mesh entity is classified agamst the model, it
is always possible to predict such violations. Figure 53
contains the nseud-code to check if a mesh edee can

2.
3.

4.

can generate geometric invalidity be collapsed to one of its end vertices. It returns TRUE

Figure 52. Edge collapsing in three dimensions

if the mesh edge can be collapsed (FALSE otherwise).
Figure 54 illustrates graphcally some of the case.s where
edge collapsing is not possible which are pointed out in
the pseudo-code.
Before physically collapsing the edge, the geometry of the
mesh regions to be created can be predicted exactly (this
check refers to step 2 of the algorithm). The volumes of
the new mesh regions can be computed by considering
all mesh regions which are connected to ,,,q but not
connected to ,T,' and virtually moving ,,,q to ,TiO.
Since the computation of the volume of a mesh region
always consider the bounding vertices in a certain order,
the (virtual) movement of one of its bounding vertices
is valid only if the new volume is positive. Therefore,
one can always tell beforehand if the to-be created mesh
regions are invalid. The quality of the to-be created mesh
regions can be predicted as well. If the quality of the to
be created elements is not good enough with respect to
some predetermined threshold, the derefinement of the
edge need not be performed. This is important in order
to guarantee the stability of the refinemedderefinement
scheme. Also, assuming both end vertices are candidates
to be the target vertex, the target vertex that would create
the "bener" triangulation of the two is chosen.

4.4 Complete Mesh Adaptation Procedure
The actual implementation of the mesh adaptation scheme
uses the following steps:

1. Derefinement using edge collapsing as described
above

2. Global optimization with ql = QI
3. Refinement using full set of subdivision patterns

without consideration for stability
4. Refinement vertex snapping (to the model boundary)
5. Global optimization with q, = Q1

So far, problems due to the non-stability of the imple-
mented refinement scheme have not appeared. If they
happen, the refinement can be made stable as described
above at the price of some over-refinement

45. Parallelization of Mesh Adaptation
Today's CFD computations are costly both in CPU time
and memory. For big enough problems, the flow solver
cannot be run on a classic scalar workstation for which
performance and memory are limited. For large-scale
analysis of fluid flows, it is necessary to use a parallel
flow solver. Since the mesh adaptation is an integral part

6-35

Get bounding vertices lmq C

of edge ,TI C ,!If':

,,q C nT$'l
i f 4 = 4

if #?+ = gT$i
if 4 = 3 rot- TRUE (ok to collapse)

elm return FALSE (cannot collapsel (Fig.
54.a)

.I..

if 8 = 3 or 4 = 3 rotttrn TRUE (target
vertex is the one classified on lower
order model entity)
At this point, the two mesh vertices are
classified on model boundary
if d: = 3 return FALSE
Switch (if necessary) ,q and ,,,e SO that
8 > 8 (from now on, target vertex will
be ,$ if collapsing is possible1
i f ge # ,e' nturn FALSE (Fig. 54.b)

At this point, the two vertices are classified
on model boundary and the edge is classified
on the model entity of hgher order
for each pair of mesh edges (,,,Ti C #T$,,,,T; C

Td:I that Connect to ,q and ,e respec-
"t:ely and connect to each other

if d' - or d: = 3 continue
i f d] 1 i;

if ,I$' # &'$ return FALSE
alae if d$ = 1 roturn FALSE

At this point, the two edges are classi-
fied on same model face or one is clas-
sified on model face and the other is
classified on the model face's boundary
Switch (if necessary) ,,,T: and ,,,Ti so
that dk > d$

Find face ,q C ,e' bounded by
L,,T~,,,,'C,,T~)
if ,T2 does not exist, roturn FALSE
i f ,T,dt # ,T$' rot- FALSE (Fig. 5 4 . ~ 1

for each pair of mesh faces l,T; c ,7;"',,,,T~ c
Td;) that connect to ,q and ,,,T; respec-
Lgely and connect to each other by a mesh
edge

if d: = 2 md 4 = 2 ret- FALSE (Fig.
54.d)
i f (,,,T:, ,TI I do not bound a mesh region,
roturn FALSE

nturn TRUE

Figure 53. Pseudo-code for checking
topological validity for edge collapsing

of the flow solver, it must be running in parallel as well
in order not to become a bottleneck.

4.5.1 Derefinement
If a mesh edge ,T,' is marked for derefinement, it is at-
tempted to be collapsed. If the polyhedron po[(,TP) is
on processor p,, the edge collapsing is performed on p,.
If p o l (, q) is not fully on p,, the missing mesh regions
are requested from the appropriate processors. When all
processors are done traversing their lists of mesh edges,
the processors that have received requests send (migrate)

6-36

6)

Figure 54. Some cases when edge collapsing in
three dimensions is not possible due to topology

pld I 3' 'pld I 2 pld = 3 pld I 2

Figure 55 . Mesh migration to support
parallel distributed derefinement

the requested mesh regions. In Figure 55, processor po
requests mesh regions from processors @I. pz, p3) and
the requested mesh regions are migrated. If there is con-
flict, the processor with lowest pi has priority. On the
next iteration, it is the processor with highest p; that will
have priority. This switching is done to prevent too much
load imbalance at completion. The process of traversing
the list of mesh edges and sendinglreceiving requests con-
tinues until all marked mesh edges have been collapsed
(more exactly, have been attempted to be collapsed). Be-
cause mesh regions are migrated, it is possible that the
processors are not well balanced after the derefinement
step. The triangulation is therefore submitted to a load
balancing step (at the region level) before going further.
Figure 5 6 shows the speed-ups for a triangulation of ap-
proximately 85,000 elements where 50% of the mesh
edges are derefined (the resulting triangulation has ap-
proximately 46,000 elements).
4.5.2 %angulation Optimization
Assuming the current triangulation is partitioned, each
processor pi (0 5 i < np) optimizes its own partition
(pTp,) considering a global quality threshold q1. As
processor pi pops a mesh region from its queue Qui.
two situations may occur:

1. All polyhedra to be considered for edge removal and
multi-face removal are fully on pi (that is, all mesh

Figure 56. Speed-ups for derefinement
(85,000 elements - 50% edges derefined)

regions of all polyhedra belong to p J , in that case,
the proper local retriangulation tool can be applied (if
needed) and any new mesh region of quality below
p1 is pushed in Qui
At least one polyhedron is not fully on pi, in that
case, pi requests for each polyhedron (concerning
edge removal and multi-face removal) any mesh
region that is not on pi and push back the mesh
region in Qui

The mesh region popping process continues until Qui
is empty or stuck (does not change). Clearly, requests
concerning mesh regions that have been deleted since
are cancelled. After a synchronization step, all proces-
sors examine the requests they have received and send
(migrate) the appropriate mesh regions to the appropri-
ate processors. If a mesh region is requested by several
processors, the processor with lowest pi has priority and
will be granted the mesh region. On the next iteration,
it is the processor with highest p ; that will have prior-
ity. This switching is done to prevent too much load
imbalance at completion. Each processor pi adds to its
queue Qui any new mesh region of quality below q, that
it has received and restarts popping mesh regions. The
combined process of emptying the queue and migrating
requested mesh regions terminates when all queues Qui
(0 5 i < np) are empty or stuck and there is no mesh
region to migrate. Because mesh regions are migrated,
it is possible that the processors are not well balanced
after the optimization step. The triangulation is therefore
submitted to a load balancing step (at the region level)
before going further. Figure 51 shows the speed-ups for
a triangulation of approximately 85,000 elements.
4.5.3 Refinement
Any mesh face on some partition boundary with at
least one marked mesh edge is triangulated using two-
dimensional subdivision patterns (Fig. 58). Since two
sibling mesh faces (physically identical mesh faces on two
neighboring procs) have same orientation. it is guaranteed
that the application of these templates will produce phys-
ically identical triangulations (in terms of child faces).

2.

6-37

Numbar d processon

Figure 57. Speed-ups for the
optimization procedure (85,000 elements)

Figure 58. Subdivision patterns at the mesh face level

Once all mesh faces on the partition boundary are subdi-
vided, links for all new mesh entities are updated. Then,
each processor can apply the three-dimensional templates
on any mesh region with at least one marked edge (as
described above) without any communication.
Once all appropriate mesh regions have been subdivided,
the refinement vertices which are classified on the model
boundary need to be snapped to the corresponding model
entity. Since snapping makes use of the local retrian-
gulation tools, the technique to parallelie that process
is similar to the one used to parallelize the derefinement
and optimization steps. All processors iterate on a two
step process: (i) (sequential) vertex snapping along with
requests for missing mesh regions, and (ii) sending of re-
quests and migration of requested mesh regions until all
refinement vertices have been attempted to be snapped.
At the end of the refinement step, the processors may
not be well balanced for two reasons: (i) refinement is
selective, and (ii) mesh regions have been migrated (due
to snapping). Therefore, a load balancing step is applied
before going further. Figure 59 shows speed-ups for the
refinement procedure on 36,000 elements when 20% of
the mesh edges are refined (resulting triangulation has
88,000 elements).

5. Parallel Adaptive Analysis Procedures

5.1. Structure of a Parallel Adaptive
Analysis Procedure
Although the most computationally intensive operations
in an adaptive analysis are of the same type as those
of a fixed mesh analysis, an adaptive analysis must use

Number ol pmcuwn

Figure 59. Speed-ups for parallel refinement

Mesh Generation

Mesh Migration
Load Balance

Element Formation I
I I I

I +
Equation Solution U

I . I I Error Estimation I
I I I

Figure 60. Components of a
parallel adaptive analysis procedure

more general smctures which effectively account for
the evolution of the discretization. The structure of a
parallel adaptive analysis procedure follows directly from
the procedures used for the parallel control of evolving
meshes presented in the previous sections. Figure 60
presents an overall flow chart of a parallel automated
adaptive analysis procedure.

6-38

Two main processing phases naturally emerge in the finite
element method, the “form phase”, where the local finite
element arrays at the sub-domain level are generated, and
the “solve phase”, where the global problem is solved.
Parallel implementation of the form phase is straightfor-
ward, in the sense that it can be performed in parallel
with no communication among the processing nodes.
On the other hand, the efficient scalable realization of the
solve phase is a non trivial task. Current Multiple In-
structionhlultiple Data (MIMD) computers tie together
independent processors using a high speed switch under a
message passing paradigm. The resulting system incorpo-
rates relatively powerful individual processors with large
local memories. The communication handwidth between
processors remains well below that of the individual pro-
cessor to memory bandwidth resulting in significant cost
for interprocessor communication compared to local com-
putation. This type of architecture has significant impact
on the design of parallel algorithms for the solution of
large linear systems. Such algorithms must amortize any
communication costs over large amounts of simultaneous
parallel computation. Additionally, the large local data
space is still only a fraction of the global memory space
and data cannot be highly duplicated over multiple pro-
cessors if full advantage is to be taken of the available
memory. Under these constraints, two different algorithm
classes become attractive for the solution of linear sys-
tems, Krylov space based iterative solvers and domain
decomposition techniques.
In the remainder of this subsection a brief review of the
Krylov space based GMRES procedure used in the rotor-
craft aerodynamics discussed in subsequent subsections
is given. Readers interest in more information on Krylov
space based domain decomposition methods are referred
to the chapters of this report by van der Vorst and Farhat,
respectively.
Given the non-symmetric linear system A , x = b,
the Generalized Minimal Residual (GMRES) algorithm
of Saad and Schultz [62] attempts to find the approx-
imate solution po + z, z being in the Krylov space
K = (ro,A.ro, ..., Ak-’ . ro) and ro = b - A . PO.
z is the solution of the minimization problem rninSEK 11
b-A.(po+z) 11. whichissolvedbymeansoftheQRal-
gorithm. The GMRES algorithm obtains an orthonormal
basis of K by means of a GramSchmidt procedure which
involves matrix-vector multiplications and dot products.
These operations represent the computer intensive part of
the algorithm. In general, all Krylov methods can be writ-
ten in terms of these two basic kernels. It is therefore im-
portant to devise efficient ways of performing distributed
matrix-vector and dot product operations in parallel.
The matrix-vector multiplications necessitate the ex-
change of data through the inter-processor boundaries.
In order to overlap communication and computation for
efficiency reasons, these operations can be realized fol-
lowing a four step procedure on each processing node:
(i) send data relative to the inter-processor boundaries
to each neighboring processor, (ii) perform computations

involving only data relative to nodes that lie within the
internal volume of the partition, (iii) receive data relative
to the inter-processor boundaries from all the neighbors,
(iv) perform computations involving only data relative to
nodes lying on the inter-processor boundaries.
For the implementation of the dot product operations,
nodes that lie on the inter-processor boundaries are ran-
domly split, so that two partitions that share an internal
boundary are assigned only a subset of the nodes of that
internal boundary. Each processing node then performs
the dot product involving nodes contained in its internal
volume and its subset of nodes on the partition bound-
aries. Global sum of the local results at the processor
level yields the global dot product result.
The minimization problem in the GMRES algorithm can
be written in terms of an upper Hessenberg matrix, whose
entries are essentially the results of the dot products per-
formed during the orthogonalization procedure. At the
end of the GramSchmidt procedure, each processing
node has then complete knowledge of the upper Hes-
senberg matrix and it is therefore able to perform the
solution of the minimkition problem independently with
no communication. It should be remarked that the size
of the Hessenberg matrix is the size of the Krylov space
employed, typical values for the applications here consid-
ered being around 5-30. The computer intensive SAXPY
operations needed in order to update the solution of the
linear system are consequently performed in parallel with
no communication. Once convergence is achieved in the
iterative linear solver, each processing node has complete
knowledge of the incremental solution at the current New-
ton or time step, and it is therefore able to update the
current state completely independently, without any in-
ter-processor communication.
It should be noted that the GMRES algorithm, like all
other Krylov methods, does not need to operate on the
system matrix by itself, but just needs to compute prod-
ucts of this jacobian matrix with a given vector. One
can take advantage of this feature, and develop a ma-
trix-free version of the algorithm [37, 361 in which the
matrix-vector products are approximated with a finite dif-
ference stencil. This has the advantage of avoiding the
storage of the tangent matrix, thus realizing a substan-
tial saving of computer memory at the cost of additional
on-processor computations. In the matrix-free version of
the algorithm, matrix-vector multiplications of the form
A(f). U are approximated by means of a finite difference
of residuals b as

b(f) - b(f + EU) A(f) . U =
E

where f is the vector of the field variable nodal values and
E is a perturbation parameter which is computed minimiz-
ing the truncation enor, which results from truncating the
Taylor expansion, and the cancellation error, which is a
consequence of operating in finite precision arithmetic.
The addition of preconditionem to the solution strategy
is a necessary ingredient for the successful application of

6-39

Krylov space solvers. However, they can complicate their
parallelization, leading to increased data communications
or the need for a global ordering. However, depend-
ing upon the underlying problem, local preconditioners
may prove adequate to assure convergence in a reason-
able number of iterations, or the preconditioner may be
calculated one time, stored, and used repeatedly.

5.2. Finite Element Code for
Rotorcraft Aerodynamics

This section presents an parallel adaptive procedure for
the automated aerodynamic analysis of helicopter rotors
based on the procedures discussed in this paper. Adaptive
analyses on unstructured discretizations represent an ef-
fective and accurate method to address the complex phys-
ical phenomena that characterize rotorcraft systems. The
problem of the accurate numerical simulation of these
phenomena has recently stimulated a vigorous research
effort in the scientific community, certainly prompted by
the fact that rotor-body interactions, transonic effects,
wake effects and blade stall, all have a major impact on
the performance, stability and noise characteristics of he-
licopter rotors.
One of the most important characteristics and distinguish-
ing features of the software presented here is that all the
different phases of the analysis, namely the mesh parti-
tioning, the finite element solution, the error indication,
the mesh adaptation and the subsequent load balancing,
are realized without leaving the parallel environment. In
contrast with other procedures that perform only part of
the analysis in parallel, as for example just the finite el-
ement solution phase, our approach has the advantage of
making better use of the power of a distributed memory
architecture, leading to an integrated software environ-
ment, reducing the i/o and avoiding the bottlenecks that
are always present when one tries to solve certain phases
of the analysis in serial, especially when very large prob-
lems are addressed.
This integrated approach to the parallel adaptive solu-
tion of PDE's has lead us to select the message passing
paradigm as our method of choice for the parallel pro-
gramming. This is in contrast with the trend shown by
some recent publications [36,39,52], where parallel finite
element methodologies on fixed meshes have been devel-
oped based on data parallel techniques. In fact, we be-
lieve that the software development is more easily accom-
plished in a message passing programming model when
one has to deal with adaptive strategies and mesh mod-
ification techniques. With the idea of developing a uni-
form software environment, we have used portable mes-
sage passing protocols in each stage of the analysis. The
implementation has been carried out using the message
passing library standard MPI [l] and it has been tested
on IBM SP-1 and SP-2 systems.
The procedure developed employs a stabilized finite ele-
ment formulation which is valid for forward flight and for
hovering rotor problems, as well as for general unsteady
and steady compressible flow problems. The linear alge-

bra is solved by means of a scalable implementation of
the standard and matrix-free GMRES algorithms. Simple
techniques are used for estimating regions of high error
with the purpose of driving the adaptive procedures.
Techniques to effectively handle the far-field and symme-
try boundary conditions for a hovering rotor are consid-
ered. Results are presented to demonstrate the ability of
the parallel adaptive procedures to solve rotorcraft aero-
dynamics problems.
Consideration is also given to measures of efficiency and
scalability of the parallel adaptive procedures that have
been developed. The importance of these measures are
demonstrated.
5.2.1 Finite Element Formulation
The initialhoundary value problem can be expressed by
means of the Euler equations in quasi-linear form as

plus well posed initial and boundary conditions. In
equation (17), n,d is the number of space dimen-
sions, while U = p (1 , ~ 1 , ~ 2 , ~ 3 , e) are the con-
servative variables, A, . U,i = Fi,i where Fi =

ler flux, and E = p (0 , b l , b 2 , b 3 , biu; + T) is the source
vector. In the previous expressions, p is the density,
U = (u I , u ~ , u ~) is the velocity vector, e is the total
energy, p is the pressure, 6 i j is the Kronecker delta,
b = (b l , b 2 , b 3) is the body force vector per unit mass
and T is the heat supply per unit mass.
The Time-Discontinuous Galerkin Least-Squares finite
element method is used in this effort [70, 711. The
TDGLS is developed starting from the symmetric form
of the Euler equations expressed in terms of the entropy
variables V and it is based upon the simultaneous dis-
cretization of the space-time computational domain. A
least-squdes operator and a discontinuity capturing term
are added to the formulation for improving stability with-
out sacrificing accuracy. The TDGLS finite element
method takes the form

P U i (l , U l , W , U 3 , e) + P (o , & i , 6 2 i , & i , %) is the Eu-

+ 1 Wh- .U(Vh-) dD - J W h + . U(Vh-) dD
W f n + l) 'Wtn)

+ ln W h F;(Vh) dP

(nei)n

+ (L W ") . s(LVh) dQ
e=l Q n +(z Le vhVcWh * diag [&]$,Vh dQ = 0. (18)

Integration is performed over the space-time slab Q,,
the evolving spatial domain D (t) of boundary r(t) and
the surface P, described by r(t) as it traverses the time
interval I, =Itn, tn+l [. Wh and V h are suitable spaces

n

6-40

for test and trial functions, while r and vh are appropriate
stabilization parameters. A 0 = aU/aV is the metric
tensor of the transformation from conservation to entropy
variables. Refer to [70, 711 for additional details on the
TDGLS finite element formulation.
Two different three dimensional space-time finite ele-
ments have been implemented. The first is based on
a constant in time interpolation, and, having low order
of time accuracy but good stability properties, it is well
suited for solving steady problems using a local time step-
ping strategy. The second makes use of linear-in-time
basis functions and, exhibiting a higher order temporal ac-
curacy, is well suited for addressing unsteady problems,
such as, for example, forward flight. In these cases, mov-
ing boundaries are handled by means of the space-time
deformed element technique [84].
For efficiently solving hover problems a formulation start-
ing from the Euler equations written in a rotating frame
is included in the program. This allows treatment of a
hovering rotor as a steady problem when the unsteadi-
ness in the wake can be neglected, thus allowing the use
of the less computationally expensive constant-in-time
formulation.
Assuming that the axis of rotation is coincident with the
z axis and that the angular velocity is R, the compressible
Euler equations in a rotating frame can be expressed in
terms of the absolute flow variables U as

U,* + (Ai - v ~ I) . U,, = E + EG, (19)

where v1 = -Ry, 212 = Rx, 213 = 0 and EG can be
defined as

0 0 0 0 0
0 n o 0

or, in terms of entropy variables, EG = CV, C =
-pT C. Clearly, by the nature of the gyroscopic terms,
we have that CT = -C.
We remark that the rotating frame formulation of the
compressible Euler equations in terms of absolute flow
variables is formally equivalent to a change of variables
(modification of the jacobians A, into Ai - viI) plus the
introduction of a source term EG.
From the formulation expressed in equation (19), a
TDG/LS finite element formulation can be easily con-
structed along the lines of equation (18). In an inertial
frame, a definition of T that results in full upwinding on
each mode of the system [70] is given by

-1
T = A,' (ATdiag(A;')AtAi') ,

where

and [; are the local element coordinates, xo and re-
ferring to the time dimension. In a rotating frame, we
redefine At as

Solution to (21) can be obtained based upon the eigen-
problem

(ATdiag(A,')At - X2Ai') . Ti = 0. (22)

The eigenproblem is simplified by means of a similarity
transformation S that diagonalizes AI and A2 and sym-
metrizes A3 [86]. However, the term arising from EG
remains non-symmetric. We have implemented both the
non-symmetric and a symmetric form obtained by drop-
ping the contribution of EG from (22) and have found
that for the hovering rotors that we have studied in our
numerical simulations, the symmetric form gives results
indistinguishable from those of the non-symmetric form
at a lower computational cost.
Discretization of the weak form implied by the TDG/LS
method leads to a non-linear discrete problem, which is
solved iteratively using a quasi-Newton approach. At
each Newton iteration, a non-symmetric linear system
of equations is solved using the GMRES algorithm. We
have developed scalable parallel implementations of the
preconditioned GMRES algorithm and of its matrix-free
version [37, 361. This latter -algorithm approximates the
matrix-vector products with a finite difference stencil
with the advantage of avoiding the storage of the tangent
matrix, thus realizing a substantial savings of computer
memory at the cost of additional on-processor computa-
tions. Preconditioning is achieved by means of a nodal
block-diagonal scaling transformation.
In this work we have implemented a simple error indicator
based on the norm of the gradient of the flow variables
and a slightly more sophisticated one [47] for linear
elements which takes the basic form

hZ I Second Derivative of 9 I
h I First Derivative of 9 I + E 1 Mean Value of 9 1 ' e; =

where e, is the error indicated at node i, h is a mesh size
parameter, !D is the solution variable being monitored,
E is a tuning parameter. The second derivative of il? is
computed using a variational recovery technique.
The edge values of the error indicator are computed by
averaging the corresponding two nodal values. These
edgewise error indicator values are then used for driving
the mesh adaptation procedure. Appropriate thresholds
are supplied for the error values, so that the edge is refined
if the error is higher than the maximum threshold, while
the edge is collapsed if the error is less than the minimum
threshold.

6-41

5.2.2 Boundary Conditions for Hovering Rotors
The imposition of the correct far-field boundary condi-
tions is a critical issue in the analysis of hovering rotors,
when one wants to give an accurate representation of the
hovering conditions within a finite computational domain.
For determining the inflowloutflow far-field conditions
we have adopted the methodology suggested by Srini-
vasan er al. [Sl], where the 1-D helicopter momentum
theory is used for determining the outflow velocity due
to the rotor wake system. The inflow velocities at the
remaining portion of the far-field are determined con-
sidering the rotor as a point sink of mass, for achieving
conservation of mass and momentum within the compu-
tational domain.
Another important condition that must be considered for
the efficient simulation of hovering rotors is the period-
icity of the flow field. This allows consideration of a
reduced computational domain given by the angle of peri-
odicity rl, = 2 r/nb. ns beiig the number of rotor blades.
The introduction of the periodicity conditions in the ro-
tating wing flow solver has been implemented treating
them as linear Z-point constraints applied via transforma-
tion as part of the assembly process. This approach has
the double advantage of being easily parallelizable and of
avoiding the introduction of Lagrange multipliers. On the
other hand, it requires the mesh discretizations on the two
symmetric faces of the computational domain to match on
a vertex by vertex basis. Since this is not directly obtain-
able with the currently used unstructured mesh generator,
a mesh matching technique has been developed for a p
propriately modifying an existing discretization.
In order to simplify the discussion, define one of the
symmetric model faces as "master" and the other as
"slave". The face discretization of the slave model face
is deleted from the mesh, together with all the mesh
entities connected to it. The mesh discretization of the
master model face is then rotated of the symmetry angle rl,
about the axis of rotation and copied onto the slave model
face, yielding the required matching face discretizations.
The matching procedure is then completed filling the gap
between the new discretized slave face and the rest of
the mesh using a face removal technique followed by
smoothing and mesh optimization.
The imposition of the constraints can be formalized in
the following manner. Consider the partition of the un-
knowns V in internal (Vi), master (V,) and slave (Va),
as

v = (Vi,V,,V.).

The slave unknowns V, can be expressed symholically
as functions of the master unknown V, as

where

or, for the j-th master-slave pair of nodes as

R being the rotation tensor associated with the rotation
of the symmetry angle I,/I about the axis of rotation.
The minimal set of unknowns P = (Vi, V,) is related
to the redundant set V by

The unconstrained linearized discrete equations of motion
read

J . AV = r,

where J is the tangent matrix and r is the residual vec-
tor. Applying the transformation I? to the unconstrained
system yields the constrained reduced system

Refer to [74] for implementation details of thii technique.

5.23 Subsonic and l h n m n i c Hovering Rotors
Caradonna and Tung [U] have experimentally investi-
gated a model helicopter rotor in several subsonic and
transonic hovering conditions. These experimental tests
have been extensively used for validating CFD codes for
rotating wing analysis. The experimental setup was com-
posed of a twAladed rotor mounted on a tall column
containing the drive shaft. The blades had rectangular
planform, square tips and no twist or taper, made use of
NACA0012 airfoil sections and had an aspect ratio equal
to six.
Figure 61 shows the experimental and numerical values
of the pressure coefficients at different span locations for
three subsonic test cases investigated by Caradonna and
Tung, namely 8, = OD and Mt = 0.520, 8, = So and
Mt = 0.434, 8, = 8' and Mt = 0.439. The agreement
with the experimental data is good at all locations, in-
cluding the section close to the tip. Only two pressure
distributions are presented for each case for space limita-
tions, however similar correlation with the experimental
data was observed at all the available locations. Rela-
tively crude meshes have been employed for all the three
test cases, with the coarsest mesh of only 101,OOO tetra-
hedra being used for the 8, = 0' case, and the finest of
152,867 tetrahedra for the 8, = 8" test problem.
The analysis was performed on 32 processing nodes of an
IBM SP-2. Reduced integration was used for the interior
elements for lowering the computational cost, while full
integration was used at the boundary elements for better
resolution of the airloads, especially at the trailing edge
of the blade. The GMRES algorithm with blcck-diagonal
preconditioning was employed, yielding an average num-
ber of GMRES iterations to convergence of about 10. The
analysis was advanced in time using one single Newton

6-42

a

9
a

a5 ! -I. a 0.5
./.A

Figure 61, Computed and experimental pressure
coefficients on the blade at different span locations, for

the three. subsonic cases 8, = 0'. Mt = 0.520:
e, = 50, M, = 0.434; e, = 80, Mi = 0.439.

iteration per time step and a local time stepping strat-
egy denoted by CFL numbers ranging from 10 at thf
beginning of the simulation to 20 towards convergence
yielding a reduction in the energy norm of the residual 01
almost four orders of magnitude in 50 to 60 time steps
The symmetric form of the least-squares stabilization w a
employed, and the discontinuity capturing operator w a
not activated.
Figure 62 shows the experimental and numerical values
of the pressure coefficients for a transonic case denoted by
0, = 8O and Mt = 0.877. The first two plots of Figure 62
present the pressure distributions obtained using an initial
crude grid consisting of 142,193 tetrahedra. Three levels
of adaptivity were applied to this grid in order to obtain
a sharper resolution of the tip shock, yielding a final
mesh characterized by 262,556 tetmhedra. The pressure
distributions obtained with the adapted grid are shown in
the third and fourth plots of the same picture. Note that
the smearing present in the first two plots and due to the
numerical viscosity introduced in the formulation with the
purpose of stabilizing it, has disappeared. Consistently
with the nature of the Euler equations, the shocks appear
as jumps and are resolved in only one or two elements.
Note also the appearance of the analytically predicted
overshoot just aft of the shock which is typical of the
transonic Euler solutions.
The effect of the adaptation of the mesh on the resolution
of the shock is clearly demonstrated in Figure 63, where

a

B B
a

- I

I
I

I -rd a 0.5 I D 05 -1,s'

Figure 62. Computed and experimental pressure
coefficients on the blade, at two different span locations
close to the tip, 8, = 8', Mi = 0.877. Top two plots:

initial coarse 142,193 tetrahedron grid. Bottom two plots:
adapted (three levels) final 262,556 tetrahedron grid.

Figure 63. Density isocontour plots on the upper
surface of the blade tip, 8, = 8". Mr = 0.877. At left:

initial coarse grid. At right: final adapted grid.

the density isocontour plots at the upper tip surface are
presented for the initial and adapted meshes. The effect
noted in Figure 62 can be more fully appreciated here.
The parallel adaptive analysis was conducted on 32 pro-
cessing nodes with the GMRES algorithm, using once
again reduced integration for the interior elements and
full integration at the boundary elements. The symmetric
form of the least-squares stabilization was employed, to-
gether with the discontinuity capturing term for improved
shock confinement. After partitioning of the initial coarse
mesh using the IRB algorithm, the simulation was per-
formed for 60 implicit time steps with CFL condition
equal to 10 in the initial 20 steps and equal to 15 for
the remaining steps. The results gathered at convergence
were used for computing an error indicator based on den-

6-43

sity and Mach number, which was employed f a driving
the parallel adaptation of the mesh. For the new ver-
tices created by the adaptation process, the solution was
projected from the coarser mesh using simple edge in-
terpolation. The solution obtained in this way was used
for restarting the analysis, which was advanced for 60
time steps with a Cn number of 15. Similarly, a sec-
ond adaptation was performed, yielding the final mesh for
which another 40 time steps were performed at a CFL of
20, until convergence in the energy norm of the resid-
ual, The average number of GMRES cycles per time
step throughout the analysis was 8.
Figure 64 shows the mesh at the upper face of the blade
tip, before and after refinement. The different grey levels
indicate the different subdomains, i.e. elements assigned
to the same processing node are denoted by the same level
of grey. Note the change in the shape of the partitions
from the initial to the final mesh, change generated by the
mesh migration pmedure for rebalancing the load after
the refinement procedure has modified the discretization.
Note also how the mesh nicely follows the shock.

Figure 64. Meshes with partitions on the upper surface
of the blade tip, 0, = 8". Mt = 0.877. At left: initial

coarse grid with IRB partitions. At right: final
adapted grid with partitions obtained by migration.

53. Effectiveness of Parallel Adaptive
Analysis Procedures
The evaluation of the efficiency and performance of a
parallel adaptive analysis is a task complicated by the
numerous aspects that must be considered. In the follow-
ing we will try to address at least some of them with the
help of a classical problem in CFD, namely that of the
Onera M6 wing in transonic flight, that we have used in
the early stages of development of our code for validation
purposes. This wing has been studied experimentally by
Schmitt and Charpin [65] and it has been employed by
numerous researchers for validating both structured and
unstructured flow solvers. ?he wing is characterized by
an aspect ratio of 3.8, a leading edge sweep angle of

30". and a taper ratio of 0.56. The airfoil section is an
Onera D symmetric section with 10% maximum thick-
ness-to-cord ratio.
We consider a steady flow problem characterized by an
angle of attack a = 3.06' and a value of M = 0.8395 for
the freestream Mach number. In such conditions, the flow
pattern around the wing is characterized by a complicated
doublc4mhia shock on the upper surface of the wing
with two triple points.
We first address the scalability of the parallel solver on
a fixed mesh, i.e. we analyze the spee&ups attained by
the code using one single mesh and varying the num-
ber of processing nodes. This is a classical measure of
efficiency, and it is important to show that the imple-
mented procedure performs well with respect to it before
measuring other properties that are more pertinent to an
adaptive analysis.
?he simulation was performed using a mesh consisting of
128,172 tetrahedra, using the matrix-free GMRES algo-
rithm with reduced integration of the interior elements and
full integration of the boundary elements. A local time
stepping strategy was employed with one single Newton
iteration per time step, using a CFL condition of 5 in the
first 20 time steps and a CFL equal to 10 for another EO
time steps, attaining a drop in the residual of three orders
of magnitude. The mesh was partitioned using a paral-
le1 implementation of the IRE algorithm. The time for
partitioning, even if small when compared with the time
needed for achieving convergence in the finite element
analysis, is not considered in the following. The analysis
was run on 4, 8, 16, 32, 64. 128 processors of an IBM
SP-2 and the results are presented in Figure 65 in terms
of the inverse of the wall clock time versus the number
of processing nodes. The highly linear behavior of the
parallel algorithm shows the excellent characteristics of
scalability of the code.

I
lOe+O 1oe+l 1oe+2 1-

procs

Figure 65. Parallel efficiency evaluated at
fixed mesh for the Onera M6 wing in transonic

flight. 128,172 tetrahedra, IRB partitions.

The same problem was then adaptively solved in order to
more accurately resolve the complicated features of the
flow. An initial coarse mesh of 85,567 tetrahedra was par-
titioned with the IRB algorithm on 32 processing nodes

644

and the analysis was carried on to convergence as previ-
ously explained. The results obtained were then used for
computing an error indicator based on density and Mach
number, which was employed for performing a first level
of refinement, bringing the mesh to 131,OOO tetrahedra.
The solution was projected on the new vertices using a
simple edge interpolation technique, and the analysis was
then performed on the refined mesh for 80 time steps at a
CFL number of 10. Similarly, other two levels of refine-
ment followed by subsequent analysis were performed,
obtaining an intermediate 223,499 tetrahedron mesh and
a final 388,837 tetrahedron mesh.
Figure 66 shows the density isocontour plots on the upper
surface of the wing corresponding to the initial and the
final mesh discretizations. Note that the forward shock
is barely visible in the results obtained with the initial
coarse mesh, the aft shock presents significant smearing
and the lambda shock located at the tip of the wing is
not resolved. As expected, considerable improvement in
the resolution of the shocks can be observed when mesh
adaptation is employed.
Figure 67 shows the initial and final meshes. Once again,
elements assigned to the same subdomains are denoted
by the same grey level. For the final mesh, the partitions
shown are those obtained with the iterative load balancing
algorithm.
The fact that the analysis is conducted in parallel doesn’t
modify the convergence characteristics of a classical ti
refinement technique, such as the one considered here.
However, while in a serial environment essentially only
the accuracy of the solution versus the size of the prob-
lem and its computational cost enter into the picture,
in a parallel environment other factors must be consid-
ered. In particular, we consider here the evolution dur-
ing the analysis of two fundamental parameters: (i) the
surface-to-volume ratio for the subdomains, and (ii) the
number of neighbors of each subdomain. The first of
these two parameters essentially dominates the volume
of communication in terms of the size of the messages
to exchange, while the second parameter dominates the
number of messages that each processor must send and
receive.
In a parallel adaptive environment, the issue is then:
given certain repartitioning algorithms, which is the qual-
ity of the partitions that they produce compared to their
relative cost? It is well known that certain classes of
partitioning algorithms, such as the Spectral Bisection
method, produce very high quality partitions. However,
the cost associated with spectrally bisecting increasingly
larger meshes during an adaptive analysis would be pro-
hibitive. Therefore in this work we consider two rela-
tively low cost approaches to the problem, the previously
mentioned parallel IRE3 repartitioning and the iterative
load migration scheme.
Two distinct runs were made, the only difference between
them being the repartitioning strategy adopted. In both
cases, all the stages of the analysis -initial IRB parti-
tioning, flow solution, error sensing, adaptation and load

Figure 66. Onera M6 wing in transonic
flight, (I = 3.06O. M = 0.8395. Density

isocontour plots for the initial and final meshes

balancing- were performed automatically in parallel on
32 processing nodes, i.e. without ever leaving the parallel
environment. The load balancing algorithm was activated
three times during the adaptation of each of the meshes,
after the refinement, after the snapping of the newly gen-
erated vertices to the curved boundaries of the model and
after the local retriangulationS. At every call, the algo-
rithm was requested to perform only approximately eight
migration iterations, yielding a maximum out of balance
number of elements per processing node equal to one at
the end of each refinement level. This strategy allows
better efficiency of the various stages of the adaptive al-

We remark that in the current implementation. snapping
can also cause load imbalance since it makes use of
local triangulation.

645

&lob = Boundary Faces/Faces.

fi i) Neighbor measures:

N,, = m=(Neighbors,/(Procs - l)),

Navrg = (E Neighbors,/(Procs - l))/Proca.
i

All these quantities are reported in Figure 68 versus the
number of tetrahedra in the mesh at a certain adaptive
level normalized by the number of tetrahedra in the initial
mesh. The solid line represents the values of the parame-
ters obtained for the parallel adaptive analysis where the
iterative mesh migration procedures were employed. The
dashed line corresponds to the parallel adaptive analysis
where the refined meshes were repartitioned after each
adaptive step using the parallel IRB algorithm.

arl /IIBw* ... i 3 ; r 7 1
* a $ " flgF1 zla

1"
-10

...............
a a

1 2 3 4 5 1 2 3 4 5
B . 0 -0

o,

1 2 3 4 5 1 9 3 4 5
*MR&O m . 0

Figure 68. Boundary faces and neighbor statistics for
the parallel-adaptive analysis of the Onera
M6 wing in transonic flight using the mesh

migration and IRB rebalancing schemes.

From the analysis of the first two plots at the top of
Figure 68, it is clear that the migration procedures im-
plemented in this work control very effectively the sur-
face-tevolume ratios, which in fact remain constant and
fairly similar to the ones obtained with the IRB parti-
tioning for the whole simulation. On the other hand, the
second two plots of the same figure show that the num-
ber of neighbors of each subdomain tends to increase with
the number of adaptive steps performed. A more detailed
analysis shows that in general each subdomain is con-
nected by a significant amount of mesh entities (vertices,
faces, edges) only with a reduced number of neighbors,
while it shares a very limited number of mesh entities
with the other neighbors. We are currently investigating
ways of removing such small contact area interconnec-
tions, in order to achieve a better control on the number
of neighbors.

A

A

A

1

Figure 67. Onera M6 wing in transonic flight,
a = 3.06'. M = 0.8395. Initial and final meshes.

Grey levels indicate processor assignment.

gorithm that can then operate on balanced or nearly bal-
anced meshes. This "incremental" rebalancing capability
represents a nice advantage of the iterative load balancing
scheme over other algorithms. The parallel repartitioning
algorithm was instead activated just once at the end of
each adaptive step.
The meshes obtained during the two previously men-
tioned parallel adaptive simulations of the Onera M6 wing
were analyzed for gathering data on the overall perfor-
mance of the analysis. Figure 68 reprts plots of the
boundary faces and neighbor statistics. The quantities
plotted are defined as:
(i j Surface-tevolume measures: -

The different partition statistics provided by the two re-
balancing algorithms and shown in the previous figure

s,, = ms(Boundary Facesi/Facesi), .

6.46

clearly have an impact on the performance of the flow
solver. For example, the ratio of the wall clock tim-
ings for the flow solutions performed on the final adapted
mesh was found to be 0.83, in favor of the repartitioning
algorithm. It should be pointed out that this is not an o b
jective measure of efficiency of the rebalancing strategy,
in the sense that it depends on the algorithm used for the
flow solution. On the contrary, S,,, Sglob, N,, and
Navrg are objective measures.
The two approaches were also compared in terms of rela-
tive wall clock timing cost. The repartitioning algorithm
outperformed the migration scheme at each adaptive step.
The ratio of the iterative migration wall clock time to the
rebalancing wall clock time was found to be 4.07 at the
first level (131,000 tetrahedron mesh), 4.41 at the sec-
ond (223,1499 tetrahedron mesh) and 2.21 at the thud
(388,837 tetrahedron mesh).
These preliminary test results seem to indicate that the
iterative load migration scheme tends to be more compu-
tationally expensive than the parallel IRB algorithm, and
at the same time does not yield the same quality of the
partitions, at least with the currently implemented heuris-
tics. However, it must not be forgotten that these tests are
certainly not as exhaustive as one might desire for d i n g
in favor of one approach over the other. Moreover, it is
clear that this result is partially due to the low cost of the
IRB partitioning, and comparing the migration scheme
with other more expensive partitioning algorithms might
lead to opposite conclusions. For example, if an algo-
rithm with better control over the number of neighbors
could be devised, then the migration scheme used in con-
junction with a high quality initial partition (such as the
one provided by a spectral partitioning) could yield an
overall better performance than a repartitioning scheme.
A more complete analysis of the relative merits of the
two approaches will be the subject of future work.

I'

6. Closing Remarks

This paper has presented progress made to date on the
development of parallel automated adaptive analysis pro-
cedures for unstructured meshes which operate on dis-
tributed memory MIMD computers. m e procedures pre-
sented allow for the reliable analysis, through the use
of automated adaptive analysis, of large problems which
can only be supported by the computational power of
parallel computers. Specific emphasis was placed on the
techniques needed to effectively support evolving meshes
such that computational load balance was maintained
throughout the simulation process.

7. Acknowledgment

The authors would like to acknowledge the support of
NASA Ames Research Center under grants NAG 2-832
and NCC 2-9000, the Army Research Office under grant
DAAHO4-93-G-OOO3, and the National Science Founda-
tion under grant DMS-93-18184.

We would also like to acknowledge the input of sev-
eral others that contributed to the material presented in
this document. They are Saikat Dey, Pascal Frey, Rao
Garimella, Marcel Georges. Ramamoanhy Ravichandran -

Wes Turner.

References

Message passing interface forum, document for a
standard message-passing interface. Technical Re-
port CS-93-214, University of Tennessee, Novem-
ber 1993.
R. E. Bank and A. H. Sherman. An adaptive multi-
level method for elliptic boundary value problems.
Computing, 2691-105, 1981.
E. Biinsch. Local mesh refinement in 2 and 3
dimensions. Impact of Comp. in Sc. and Engng.,
3:181-191, 1991.
M. J. Berger and S. H. Bokhari. A partitionmg strat-
egy for nonuniform problems on multiprocessors.
IEEE Transactions on Computers, C-36(5):57&580,
May 1987.
J. Bey. AMIyse und Simulation e m s Kon-
jugierte Gradienten Verfahrens rnit einem Multilevel
Prdkonditionierer zur Liisung Dreidimensionaler El-
liptischer Randwertprobleme fur Massiv Parallel
Rechner. PhD thesis, RWTH, Aachen. 1991.
R. Biswas and R. Strawn. A new procedure for dy-
namic adaptation of three-dimensional unstructured
grids. In 31st Aero. Sci. Meet., 1993.
G. Blelloch. Scans as primitive parallel operations.
IEEE Transnctions on Computers, 38:152&1538,
1989.
G. Blelloch, C. Leiserson, B. Maggs, C. Plaxton,
S. Smith, and M. Zagha. A comparison of sorting
algorithms for the connection machine cm-2. ACM,
pages 3-16, 1991.
F. Bornemann, B. Erdmann, and R. Kornhuber.
Adaptive mulhlevel methods in three space dimen-
sions. Int. J. Numer. Meth. Engng., 363187-3203.
1993.

[lo] C. L. Bottasso, H. L. de Cougny, M. Dindar, J. E.
Flahexty, C. Ozturan. Z. Rusak, and M. S . Shephard.
Compressible aerodynamics using a parallel adap-
tive timediscontinuous Galerkin least-squares finite
element method. In 12th AIAA Applied Aerodynam-
ics Conference. number 94-1888, Colorado Springs,
CO, June 20-22, 1994. American Institute for Aem-
nautics and Astronautics.

[ll] D. Callahan and K. Kennedy. Compiling programs
for distributed-memory multiprocessors. Journal of
Supercomputing, 2:151-169, Octoher 1988.

[12] F. Caradonna and C. Tung. Experimental and ana-
lytical studies of a model helicopter rotor in hover.
Technical Report USAAVRADCOM TR-81-A-23,
1981.

6-47

[13] S . D. Connell and D. G. Holmes. 3-dimensional
unstructured adaptive multigrid scheme for the euler
equations. AIM J., 32: 1626-1 632, 1994.

[141 H. L. de Cougny. Automatic generation of geometric
triangulations based on octreeDelaunay techniques.
Master’s thesis, Civil and Environmental Engineer-
ing, Scientific Computation Research Center; Rens-
selaer Polytechnic Institute,Troy, NY 12 180-3590,
May 1992. SCOREC Report # 6-1992.

[151 H. L. de Cougny, K. D. Devine, J. E. Flaherty, R. M.
Loy, C. Ozturan, and M. S. Shephard. Load bal-
ancing for the parallel solution of partial differential
equations. Applied Numerical Mathematics, 16: 157-
182, 1994.

[16] H. L. de Cougny, M. S. Shephard, and C. Ozturan.
Parallel three-dimensional mesh generation on dis-
tributed memory mimd computers. Engineering with
Computers, 1995. submitted.

[17] B. E. de 1’Isle and P. L. George. Optimization of
tetrahedral meshes. INRIA, Domaine de Voluceau,
Rocquencourt BP 105 Le Chesnay France, 1993.

[181 K. M. Devine. An adaptive HP-jinite element method
with dynamic load balancing for the solution of
hyperbolic conservation laws on massively parallel
computers. PhD thesis, Computer Science Dept,
Rensselaer Polytechnic Institute, Troy, New York,
1994.

[19] H. Edelsbrunner and N. R. Shah. Incremental topo-
logical flipping works for regular triangulations. In
8th Annual Comp. Geometry, pages 6 4 3 , 1992.

[20] C. Farhat. A simple and efficient automatic FEM
domain decomposer. Computers and Structures,
28579402, 1988.

[21] C. Farhat and M. Lesoinne. Automatic partitioning
of unstructured meshes for the parallel solution of
problems in computational mechanics. Int. J. Numer.
Meth. Engng., 36:745-764, 1993.

[22] M. Fiedler. Algebraic connectivity of graphs.
Czechoslovak Math. J., 23:298-305, 1973.

[23] D. A. Field. Laplacian smoothing and Delaunay
triangulations. Comm. Appl. Num. Meth., 4:709-712,
1987.

[24] G. C. Fox and W. Furmanski. Communication algo-
rithms for regular convolutions and matrix problems
on the hypercube. In M. T. Heath, editor, Confer-
ence on Hypercube Multiprocessors, pages 223-238,
Philadelphia, 1986. SIAM.

[25] W. H. Frey and D. A. Field. Mesh relaxation: A
new technique for improving triangulations. Int. J.
Numer. Meth. Engng., 31:1121-1133, 1991.

[26] P. L. George. Automatic Mesh Generation. John
Wiley and Sons, Ltd, Chichester, 1991.

[27] P. L. George. Generation de maillages par une meth-
ode de type voronoi partie 2: Le cas tridimensionnel.
Technical Report INRIA 1664, INRIA, Domaine de

Voluceau, Rocquencourt BP 105 Le Chesnay France,
1992.
P. L. George, F. Hecht, and E. Saltel. Fully automatic
mesh generator for 3d domains of any shape. Impact
of Comp. in Se. and Engng., 2:187-218, 1990.

[29] M. E. Go Ong. Hierarchical Basis Preconditioners
for Second Order Elliptic Problems in Three Dimen-
sions. PhD thesis, Univ. of California, Los Angeles
CA, 1989.

[30] N. Golias and T. Tsiboukis. An approach to refining
three-dimensional tetrahedral meshes based on de-
launay transformations. Int. J. Numer. Meth. Engng.,

[31] W. Gropp. Simplified linear equation solvers users
manual. Technical Report ANL-98/8-REV 1, Math-
ematics and Computer Science Division, Argonne
National Laboratory, 1993.

[32] E. L. Gursoz, Y. Choi, and F. B. Prinz. Vertex-
based representation of non-manifold boundaries. In
M. J. Wozny, J. U. Turner, and K. Priess, editors,
Geometric Modeling Product Engineering, pages
107-130. North Holland, 1990.

[33] S. W. Hammond. Mapping Unstructured Grid Com-
putations to Massively Parallel Computers. PhD the-
sis, Computer Science Dept., Rensselaer Polytechnic
Institue, Troy, 1991.

[34] J. JaTa. An introduction to Parallel Algorithms.
Addison Wesley, Reading Mass., 1992.

[35] B. Joe. Three-dimensional triangulations from lo-
cal transformations. SIAM J. Sei. Stat. Comp.,

[36] Z. Johan. Data Parallel Finite Element Techniques
for Large-scale Computational Fluid Dynamics. PhD
thesis, Stanford University, July 1992.

[37] Z. Johan, T. J. R. Hughes, K. K. Mathur, and
S. L. Johnsson. A data parallel finite element method
for computational fluid dynamics on the connection
machine system. Comp. Meth. Appl. Mech. Engng.,

37:793-812, 1994.

1 O(4) :7 1 8-74 1, 1 989.

99:113-134, 1992.
[38] Y. Kallinderis and P. Vijayan. Adaptive refinement-

coarsening scheme for three-dimensional unstruc-
tured meshes. AIAA J., 31(8):144&1447, August
1993.

[39] J. G. Kennedy, M. Behr, V. Kalro, and T. E.
Tezduyar. Implementation of implicit finite element
methods for incompressible flows on the cm-5.
In Army High-Performance Computing Research
Center, number 94-017, University of Minnesota,
1994.

[40] B. W. Kernigham and D. M. Ritchie. The C pro-
gramming Language. Prentice Hall, Inc., 1990.

[41] C. P. Kruskal, L. Rudolph, and M. Snir. Efficient par-
allel algorithms for graph problems. Algorithmica,
5:4344, 1990.

6-48

[42] C. L. Lawson. Properties of n-dimensional triangula-
tions. Computer Aided Geometric Design, 3(4):23 1-
246, 1986.

[43] E. Leiss and H. Reddy. Distributed load balancing:
Design and performance analysis. Technical Report
Vol. 5, W. M. Keck Research Computation Labora-
tory, 1989.

[44] A. Liu and B. Joe. Quality local refinement of
tetrahedral meshes based on bisection. in press,
February 1994.

[45] A. Liu and B. Joe. On the shape of tetrahedra from
bisection. Math. of Comp., 63(207):141-154, July
1994.

[46] S . H. Lo. 3d mesh refinement in compliance with a
specified node spacing function. Civil Engng. Dept.,
The U. of Hong Kong, submitted to IJNME - 1995.

[47] R. Lohner. An adaptive finite element scheme for
transient problems in cfd. Comp. Meth. Appl. Mech.
Engng., 61:323-338, 1987.

[48] R. Lohner and J. D. Baum. Numerical simulation
of shock interaction with complex geometry three-
dimensional structures using a new adaptive h-
refinement scheme on unstructured grids. In 28th
Aero. Sci. Meet., 1990.

[49] R. Lohner, J. Camberos, and M. Merriam. Parallel
unstructured grid generation. Comp. Meth. Appl.
Mech. Engng., 95:343-357, 1992.

[50] R. Lohner and R. Ramamurti. A parallelizable load
balancing algorithm. In Proc. of the AIAA 31st
Aerospace Sciences Meeting and Exhibit, 1993.

[51] K. Mathur and S . L. Johnsson. Data structures
and algorithms for the finite element method on a
data parallel supercomputer. International Journal
of Numerical Methods in Engineering, 2998 1-908,
1990.
K. K. Mathur and S . L. Johnson. The finite element
method on a data parallel computing system. Int. J.
High Speed Comp., 1:29-44, 1989.
S . N. Muthukrishnan, P. S . Shiakolas, R. V. Nam-
biar, and K. L. Lawrence. A simple algorithm for the
adaptive refinement of three dimensional problems
with tetrahedral meshes. Mech. Engng. Dept., The
Univ. of Texas at Arlington, Arlington, TX 76019,
1993.
C. Ozturan. Distributed Environment and Load
Balancing for Adaptive Unstructured Meshes. PhD
thesis, Rensselaer Polytechnic Institute, Troy NY,
August 1995.
C. Ozturan, H. L. de Cougny, M. S . Shephard, and
J. E. Flaherty. Parallel adaptive mesh refinement
and redistribution on distributed memory machines.
Comp. Meth. Appl. Mech. Engng., 119: 123-137,
1994.

[56] A. Pothen, H. Simon, and K. Liou. Partitioning
sparse matrices with eigenvectors of graphs. SIAM
J. Matrix Anal. Appl., 11(3):430-452, July 1990.

[57] R. D. Rausch, J. T. Batina, and H. T. Y. Yang.
Spatial adaptation procedures on tetrahedral meshes
for unsteady aerodynamic flow calculations. In 31st
Aero. Sci. Meet., 1993.

[58] A. A. G. Requicha and H. B. Voelcker. Solid
modeling: Current status and research directions.
IEEE Computer Graphics and Applications, 3(7):25-
37, 1983.

[59] M.-C. Rivara. Selective refinemenvderefinement al-
gorithms for sequences of nested triangulations. Int.
J. Numer. Meth. Engng., 28:2889-2906, 1989.

[60] M.-C. Rivara. A 3-D refinement algorithm suitable
for adaptive and multi-grid techniques. Communi-
cations in Applied Numerical Methods, 8:28 1-290,
1992.

[61] I. G. Rosenberg and F. Stenger. A lower bound on
the angles of triangles constructed by bisecting the
longest side. Math. of Computation, 29(130):39&
395, April 1975.
Y. Saad and M. Schultz. A generalized minimum
residual algorithm for solving nonsymmetric linear
systems. SIAM J. Sc. Stat. Comp., 7:856-869, 1986.
J. Saltz, R. Crowley, R. Mirchandaney, and H. Berry-
man. Run-time scheduling and execution of loops on
message passing machines. Journal of Parallel and
Distributed Computing, 8(2):303-3 12, 1990.

[64] M. Saxena and R. Perucchio. Parallel fem algorithms
based on recursive spatial decompositions - I . auto-
matic mesh generation. Computers and Structures,
45:817-831, 1992.

[65] V. Schmitt and F. Charpin. Pressure distributions
on the onera m6 wing at transonic mach numbers.
Technical Report R-702, AGARD, 1982.

[66] W. J. Schroeder and M. S . Shephard. A combined
octree/Delaunay method for fully automatic 3-D
mesh generation. Int. J. Numer. Meth. Engng.,
29:37-55, 1990.

[67] W. J. Schroeder and M. S . Shephard. On rigorous
conditions for automatically generated finite element
meshes. In J. Turner, J. Pegna, and M. Wozny, edi-
tors, Product Modeling for Computer-Aided Design
and Manufacturing, pages 267-281. North Holland,
1991.

[68] R. Sedgewick. Algorithms in C. Addison-Wesley
Publishing Company, 1990.

[69] E. G . Sewell. Automatic Generation of Triangula-
tions for Piecewise Polynomial Approximation. PhD
thesis, Purdue Univ., West Lafayette IN, 1972.

[70] F. Shakib. Finite ElementAnalysis of The Compress-
ible Euler and Navier-Stokes Equations. PhD thesis,
Stanford University, 1988.

[711 F. Shakib, T. J. R. Hughes, and Z. Johan. A new
finite element formulation for computational fluid
dynamics: X . The compressible Euler and Navier
Stokes equations. Comp. Meth. Appl. Mech. Engng.,
89: 14 1-2 19, 199 1.

6-49

[72

[73

M. S. Shephard. The specification of physical at-
tribute information for engineering analysis. Engi-
neering with Computers, 4: 145-155, 1988.
M. S. Shephard, C. L. Bottasso, H. L. de Cougny,
and C. Ozturan. Parallel adaptive finite element anal-
ysis of fluid flows on distributed memory computers.
In Recent Developments in Finite Element Analysis,
pages 205-214. Int. Center for Num. Meth. in En-
gng., Barcelona, Spain, 1994.

[74] M. S. Shephard, S. Dey, and M. K. Georges. Auto-
matic meshing of curved three-dimensional domains:
Curving finite elements and curvature-based mesh
control. In Proceedings of the IMA Summer Program
Modeling Mesh Generation and Adaptive Numerical
Methods for Partial Diflerential Equations, July 6-
23, 1993. Springer Verlag, 1994.

[75] M. S. Shephard and P. M. Finnigan. Toward auto-
matic model generation. In A. K. Noor and J. T.
Oden, editors, State-of-the-Art Surveys on Computa-
tional Mechanics, pages 335-366. ASME, 1989.

[76] M. S. Shephard and M. K. Georges. Automatic three-
dimensional mesh generation by the Finite Octree
technique. Int. J . Numer. Meth. Engng., 32(4):709-
749, 1991.

[77] M. S. Shephard and M. K. Georges. Reliability of
automatic 3-D mesh generation. Comp. Meth. Appl.
Mech. Engng., 101:443462, 1992.

[78] M. S. Shephard and N. P. Weatherill, editors.
Int. J. Numer. Meth. Engng., volume 32. Wiley-
Interscience, Chichester, England, 1991.

[79] A. Shostko and R. Lohner. Three-dimensional paral-
lel unstructured grid generation. Int. J . Numer. Meth.
Engng., 38:905-925, 1995.

[80] H. D. Simon. Partitioning of unstructured meshes
for parallel processing. Comput. Sys. Engng., 2: 135-
148, 1991.

[81] G. Srinivasan, V. Raghavan, and E. Duque. Flow-
field analysis of modern helicopter rotors in hover
by Navier-Stokes method. In International Techni-
cal Specialist Meeting on Rotorcraft Acoustics and
Rotor Fluid Dynamics, Philadelphia, PA, 1991.

[82] M. Stynes. On faster convergence of the bisection
method for all triangles. Math. of Computation,
35(152):1195-1201, October 1980.

[83] B. K. Szymanski and A. Minczuk. A representation
of a distribution power network graph. Archiwum
Elektrotechniki, 27(2):367-380, 1978.

[95

[84] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou.
A new strategy for finite element computations
involving moving boundaries and interfaces - the
deforming-spatial-domaidspace time procedure: I.
the concept and preliminary tests. Comp. Meth. Appl.
Mech. Engng., 94:339-35 1, 1992.

[85] A. Vidwans, Y. Kallinderis, and Venkatakrishnan.
Parallel dynamic load-balancing algorithm for three-
dimensional adaptive unstructured grids. AIM Jour-
nal, 32(3):497-505, March 1994.

[86] R. F. Warming, R. M. Beam, and B. J. Hyett.
Diagonalization and simultaneous symmetrization of
the gas-dynamic matrices. Math. of Comp, 29: 1037-
1045, 1975.
D. F. Watson. Computing the n-dimensional Delau-
nay tessellation with application to Voronoi poly-
topes. The Computer J., 24(2), 1981.
N. P. Weatherill and 0. Hassan. Efficient three-
dimensional delaunay triangulation with automatic
point creation and imposed boundary constraints. Int.
J. Numer. Meth. Engng., 37:2005-2039, 1994.

[89] K. J. Weiler. The radial-edge structure: A topological
representation for non-manifold geometric boundary
representations. In M. J. Wozny, H. W. McLaughlin,
and J. L. Encarnacao, editors, Geometric Modeling
for CAD Applications, pages 3-36. North Holland,
1988.

[90] R. Williams. DIME: Distributed Irregular Mesh
Environment. Supercomputing Facility, California
Institute of Technology, 1990.

[91] R. D. Williams. Performance of dynamic load bal-
ancing algorithms for unstructured grid calculations.
Technical Report C3P9 13, Pasadena, 1990.

[92] R. D. Williams. Voxel databases: A paradigm for par-
allelism with spatial structure. Concurrency, 4:6 19-
636, 1992.

[93] R. D. Williams. Dime++: A parallel language
for indirect addressing. Technical Report CCSF-
34, Caltech Concurrent Supercomputing Facilities,
Pasadena, June 1993.

[94] M. A. Yerry and M. S. Shephard. Automatic three-
dimensional mesh generation by the modified-octree
technique. Int. J . Numer. Meth. Engng., 20: 1965-
1990, 1984.
H. Zima and B. M. Chapman. Compiling for
distributed memory systems. Technical Report
ACPC/TR 92-17, Austrian Center for Parallel Com-
putation, University of Vienna, 1992.

7- I

Parallel CFD Algorithms on Unstructured Meshes

Timothy J. Barth'
Advanced Algorithms and Applications Branch

NASA Ames Research Center
Moffett Field, CA 94035

USA

Introduction and Overview

The intent of these notes is to review several
basic algorithms and procedures used in com-
putational fluid dynamics (CFD) with emphasis
on algorithms suitable to parallel computing en-
vironments. In particular, we will concentrate
on numerical methods in CFD which require the
formation and solution of large sparse linear sys-
tems of algebraic equations. These matrices will
arise from the discretization of the Navier-Stokes
equations which govern compressible fluid flow.
From this point of view, a large portion of these
notes addresses algorithms used in the forma-
tion, manipulation, and solution of sparse ma-
trices on serial and parallel computers.

Chapter 1 begins by considering the task of or-
dering (numbering) vertices of an unstructured
mesh. Good vertex orderings can greatly im-
prove the efficiency and memory storage required
in many sparse matrix algorithms. For example,
techniques for iterative matrix solution some-
time; exploit incomplete matrix factorizations.
The quality of these factorizations usually de-
pends on the ordering of matrix unknowns and
consequently mesh vertices. Next, we review the
mesh partitioning problem. Three simple proce-
dures for decomposing an arbitrary triangulated
domain into a specified number of subdomains
are discussed. Each subdomain may then be
placed on an individual processor of the paral-
lel computer. Communication between proces-
sors is accomplished using message packet ex-
changes. This computational model places de-
mands on the partitioning algorithms so that
computational work is evenly distributed (bal-
anced) while requiring minimal communication
among processors.

In Chapter 2 we turn to the compressible
Navier-Stokes equations. These equations repre-
sent conservation principles for mass, momenta,
and energy of a Newtonian fluid. In high

speed aerodynamic applications, the effects of
turbulence are very important and must either
be accurately computed or approximately mod-
eled. This increases the difficulty and complex-
ity of solving the Navier-Stokes equations. In
the present applications, a one-equation turbu-
lence model equation is added to the basic time-
averaged Navier-Stokes equations. The result-
ing system of coupled integral equations are dis-
cretized using a finite-volume technique based on
linear least squares reconstruction. This yields a
system of nonlinear coupled algebraic equations
which are solved via Newton iteration. The most
difficult task in Newton's method is the solution
of the resulting sequence of large sparse linear
matrix problems. Iterative methods based on
preconditioned bi-conjugate gradient and gener-
alized minimum residual iterations are consid-
ered. Numerical examples are then shown to
demonstrate the convergence characteristics of
the uniprocessor algorithm.

Chapter 3 focuses on domain decomposed vari-
ants of the uniprocessor CFD algorithm given in
Chapter 2. As a starting point, the Schwarz do-
main decomposition algorithm for elliptic equa-
tions is reviewed. This technique requires the
isolated solution of subdomain problems. Next
we derive the well-known relationship between
convergence rate of the Schwarz algorithm and
overlap of subdomains. This analysis reveals
that special care must be taken to insure that
the domain decomposition procedure does not
become ill-conditioned as the number of sub-
domains is increased. The Schwarz algorithm
can also be applied to the solution of nonelliptic
equations. Computations of inviscid and viscous
fluid flow are shown to demonstrate the favorable
effect of increasing subdomain overlap on conver-
gence of the Schwarz algorithm. In these compu-
tations, each subdomain is independently solved

Paper presented in an AGARD-FDP- VKI Special Course on "Parallel Computing in CFD", held at the VKI, Rhode-Saint-Genese, Belgium,
from 15-19 M a y 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807.

using the Newton algorithm given in Chapter
2. An alternative to the conventional domain
decomposition procedure is the Newton-Krylov
technique with the overlapping Schwarz method
used to precondition the underlying global ma-
trix problems. Inviscid and viscous computa-
tions are shown to demonstrate the efficiency of
this method.

Finally, Chapter 4 presents some selected com-
putations performed on the IBM SP2 parallel
computer located at NASA Ames.

7-3

Chapter 1

Graph Ordering and Partitioning
Algorithms for CFD

In this section we review a few basic graph al- gin a discussion of the Cuthil-McKee algorithm
gorithms which are frequently used in numerical by simply stating the procedure.
computations performed on parallel computers.

Algorithm: Graph ordering, Cuthill-McKee.

1.1 Graph Ordering
Step 1. Find vertex with lowest degree. This is
the root vertex.

The particular ordering of mesh (graph) ver-
tices can sometimes alter the amount of com-
putational effort and memory storage required in
solving sparse matrix problems. In sparse matrix
L - U factorization, the number of Ill elements
produced during factorization is dependent on
the ordering of equations. Good ordering algo-
rithms attempt to reduce the number of fill ele-
ments produced during factorization. Similarly,
the quality of inexact factorizations such as in-
complete Cholesky and incomplete L - U factor-
ization also depends on the ordering of matrix
unknowns. Reordering vertices can also lead to
improved processor efficiency by reducing “cache
misses”, an important consideration for compu-
tations performed on workstation class comput-
ers. In parallel computation, ordering algorithms
can be used as means for partitioning a mesh
among processors of the computer. This last
consideration will be addressed in a later section.

In this section we review the Cuthill-McKee
[CM691 ordering algorithm. This popular algo-
rithm is simple yet surprisingly effective. Other
popular ordering strategies which deserve atten-
tion but are not discussed here include the mini-
mum degree algorithm [GLSl] and &sen’s algo-
rithm [&s68] for bandwidth reduction. We be-

Step 2. Find all neighboring vertices connecting
to the root by incident edges. Order them by
increasing vertex degree. This forms level 1.

Step 3. Form level k by finding all neighbor-
ing vertices of level k - 1 which have not been
previously ordered. Order these new vertices by
increasing vertex degree.

Step 4 . If vertices remain, go to step 3.

The heuristics behind the Cuthill-McKee al-
gorithm are very simple. In the graph of a ma-
trix, neighboring vertices must have numberings
which are near by, otherwise they will produce
entries in the matrix with large band width. The
idea of sorting elements among a given level is
based on the heuristic that vertices with high de-
gree should be given indices as large as possible
so that they will be as close as possible to ver-
tices of the nect level generated. Figures 1.1 and
1.2 show the dramatic improvement in matrix
bandwidth achieved using the Cuthill-McKee al-
gorithm.

Studies of the Cuthill-McKee algorithm have
shown that the fill characteristics of a matrix
during L - U decomposition can be greatly re-
duced by reversing the ordering of the Cuthill-
McKee algorithm, see George [Geo’ll]. This

where n is the size of the matrix. While this
does not change the bandwidth of the matrix,
it can dramatically reduce the fill that occurs
in Cholesky or L - U matrix factorization when
compared to the original Cuthill-McKee order-
ing.

1.2 Graph Bisection and Mesh
Part it ioning

An efficient partitioning of a mesh for distributed
memory computation is one that ensures an even
distribution of computational workload among
the processors and minimizes the amount of time
spent in interprocessor communications. The
former requirement is termed load balancing. For
if the load were not evenly distributed, some pro-

~i~~~~ 1.1: N~~~~~~ matrix elements produced cessors will have to sit idle at synchronization
by a ~ ~ ~ l a e i ~ ~ discretization (left) on the trim- points waiting for other processors to catch up.
gulated domain shown in Figure 1.4. The second requirement comes from the fact that

communication between processors takes time
and it is not always possible to hide this latency
in data transfer. The actual cost of communi-
cation can often be accurately modeled by the
linear relationship:

cost = cl + pm

where (I is the time required to initiate a mes-
sage, p is the rate of data-transfer between two
processors and m is the message length. For n
messages, the cost would be

Cost = C((I + pm,).
n

This cost can be reduced in two ways: (1) re-
duce the number of messages n, (2) reduce the
size of each message m. Consider the partition-
ing shown in Figure 1.3. The left figure requires
3 pairwise communication messages of length 5
while the right figure requires 4 pairwise mes-
sages of length 2 and 2 pairwise messages of
length 1. The choice of partitioning depends
critically on the hardware dependent constants
(I and p.

In practice, it is difficult to partition an un-

Figure 1.2: Nonzero matrix elements after
Cuthill-McKee reordering (right).

amounts to a renumbering given by

k - n - k t l
structured mesh while simultaneously minimiz-
ing the number and length of messages. In the

(a) (a)

Figure 1.3: (a) Mesh partitioning with mini-
mized number of messages, (b) Mesh with mini-
mized message length.

Figure 1.4: Typical triangulation for a square-
shaped domain.

following paragraphs, a few of the most popu-
lar partitioning algorithms which approximately
accomplish this task will be discussed. All the al-
gorithms discussed below: coordinate bisection,
Cuthill-McKee, and spectral partitioning are dis-
cussed in the paper by Venkatakrishnan, Simon,
and Barth [VSB92]. This paper evaluates the
partitioning techniques within the confines of an
explicit, unstructured finite-volume Euler solver.
Spectral partitioning has been extensively stud-
ied by Simon [Simgl] for other applications. Al-
though we restrict our discussion to partitioning
planar triangulations, all of the algorithms dis-
cussed below extend naturally to arbitrary cell
complexes and higher space dimensions.

Figure 1.5: Geometric dual of previous triangu-
lation for a square-shaped domain. In the following sections, we consider mesh

partitioning via recursive application of graph
bisection. The mesh is first divided into two sub- 1.2.1 Recursive Coordinate Bisection
meshes of nearly equal size. Each of these sub-
meshes is subdivided into two more sub-meshes In the coordinate bisection algorithm, graph ver-
and the process in repeated until the desired tex coordinates are sorted either horizontally or
number of partitions p is obtained (p is a inte- vertically depending of the current level of the
ger power of 2). In many applications it makes recursion. A separator is chosen which balances
Sense to partition mesh cells such that parti- the number of vertices. Vertices are then 2-
tion boundaries correspond to edges of the mesh. colored depending on which side of the separator
This can be viewed as a vertex partitioning ofthe they are located.
graph dual to the cell complex, see for example Figure 1.6 shows the recursive coordinate bisec-
Figures 1.4 and 1.5. In this way, dual graph ver- tion of a multi-element airfoil geometry. In this
tices are associated with mesh cells. example, the dual graph of the triangulation has

7-6

Figure 1.6: Recursive coordinate bisection parti-
tioning of multi-element airfoil mesh.

been used for partitioning with dual graph ver-
tices assigned the centroid coordinates of cells in
the triangulation plane. The recursive coordi-
nate partitioning is very efficient to create but
gives sub-optimal performance on parallel com-
putations owing to the long message lengths than
can routinely occur.

1.2.2 Recursive Cuthill-McKee Bisec-
tion

The Cuthill-McKee algorithm described earlier
can also be used for recursive mesh partition-
ing. In this case, the Cuthill-McKee level struc-
ture is used to 2-color vertices of the graph.
A separator is chosen either at the median
of the level structure ordering or at the level
set boundary closest to the median. This lat-
ter technique has the desired d e c t of reducing
the number of disconnected sub-graphs that oc-
cur during the recursive partitioning. Figure
1.7 shows a Cuthill-McKee partitioning for the
multi-element airfoil mesh. The Cuthill-McKee
ordering tends to produce long boundaries b e
cause of the way that the ordering is propagated

tion messages required to exchange boundary in-
formation tends to be higher using the Cuthill-
McKee algorithm when compared to the coordi-
nate bisection algorithm. The results shown in
[VSB92] for multi-element airfoil grids indicate
an overall performance on parallel computations
which is slightly worse than the coordinate bi-
section technique.

Figure 1.7: Recursive Cuthill-McKee bisection
partitioning of multi-element airfoil mesh.

1.2.3 Recursive Spectral Bisection

The last partitioning algorithm considered is
the spectral bisection algorithm [PSLSO] [SimSl]
[VSB92] [BSS3] [HL95]. This algorithm deter-
mines a 2-color bisection of a graph such that
the cut-weight, W,, is approximately minimized.
The cut-weight of a graph is defined as the sum
of edge weights for all edges with vertices of dis-
joint color. For simplicity, we will consider un-
weighted (unit edge weight) graphs. The prob-
lem of minimizing the cut-weight of a graph sub-
ject to the constraint that the number of ver-
tices is balanced is related to a simpler problem
in graph bisection which is known to be nphard
[GJS76]. The spectral bisection algorithm can be

through a mesh. The number of communica- seen as an algorithm for approximately solving

7-1

compute the eigenvalue problem. Recently, this
cost has been reduced by the use of a multilevel
Lanczos algorithm as discussed in [BS93].

The spectral partitioning exploits a peculiar
property of the "second" eigenvector of the
Laplacian matrix associated with a graph. Con-
sider a the graph G = (V, E) consisting of n ver-
tices and rn edges. The Lapladan matrix of a
graph C E RnX" is given by

C = - V + A .

where A E RnXn is the standard adjacency ma-
trix

this nphard combinatorial problem by solving
a continuous (hopefully nearby) problem. The
algorithm consists of the following steps:

Algorithm: Spectral Graph Bisection.

Step 1. Calculate the matrix C associated with
the Laplacian of the graph.
Step 2. Calculate the eigenvalues and eigenvec-
tors of C.
Step 3. Order the eigenvalues by magnitude,
A1 5 A2 5 A3 ... A,.
Step 4 . Determine the smallest nonzero eigen-
value, Af and its associated eigenvector xf (the
Fiedler vector).
Step 5. Sort elements of the Fiedler vector.
Step 6. Choose a divisor at the median of the
sorted list and 2-color vertices of the graph which
correspond to elements of the Fielder vector less
than or greater than the median value.

Figure 1.8: Recursive spectral bisection parti-
tioning of multi-element airfoil mesh.

The spectral partitioning of the multi-element
airfoil is shown in Figure 1.8. In [VSB92] it was
observed that superior performance was attained
for parallel flow field computations using spectral
partitioning. The cost of the spectral partition-
ing is high even using a Lanczos algorithm to

(1.1)
Aij = [1 e(vi ,wj) E G

0 otherwise
and 'D is a n x n diagonal matrix with entries
equal to the degree of each vertex, Dj = d(vi).
Alternatively, the Laplacian of a graph can be
written in terms of the rectangular incidence ma-
trix C E %"xm

-1

0 otherwise

if vi is the origin of edge I
if vi is the destination of edge 1 . c i ~ = 1

(1.2)
{

Using the incidence matrix, the Laplacian of the
graph is given by

L = CCT (1.3)

Multiplication of CT times a vector z E %"
is equivalent to differencing vertex values of z
across each edge so that

(" j - Z i) a - -2 T C C T ~ = zTCz (1.4)
e(ui.wt)EE

This provides an easy way to verify the sym-
metry and positive semi-definiteness of C. Also
from the above definitions, it should be clear that
rows of C each sum to zero. Define the summa-
tion vector s € %", s = [l, l,l, ... IT. By con-
struction we have that Ls = 0. This means that
at least one eigenvalue is zero with s as an eigen-
vector. To understand the spectral bisection al-
gorithm, define a partitioning vector p E Rn
which 2-colors the vertices of a graph

p = [+I, -1, -1, +1,+1, ..., +l,-1IT (1.5)

7-8

depending on the sign of elements of p and the In the spectral bisection method the discrete np
one-to-one correspondence with vertices of the hard problem is replaced by a simpler continu-
graph, see for example Figure 1.9. A critical ob- ous minimization problem. The constraint that
servation is that the cut-weight can be expressed p take on integer values f l is removed and r e
in terms of the partitioning vector p and the placed with a normalization condition on a con-
Laplacian of the graph by the following easily tinuous partitioning vector.
verified formula Continuous Bisection Problem (z E 9")

w, = z p 1 , Cp.
1 T (minimize continuous
4 cut -weight

minimize -2 Cz
(1.6)

subject to
ITS = 0 (balanced partitioning)
zTz = n (normalization) (1.8)

After solving the continuous bisection problem
(exactly), the partitioning vector p is obtained
using discrete approximation:

p(') = sign(di)). (discrete approximation)

It is the replacement of the discrete partitioning
vector by a continuous counterpart followed by
discrete appmzimation which makes the spectral
bisection algorithm appmzimate.

The solution to the continuous bisection prob-
lem has a well-known (exact) solution in terms of
the eigenvector associated with the first nonzero
eigenvalue. To show this consider the spectral
decomposition of L,

(1.9)

Figure 1.9: Arbitrary graph with 2-coloring n

c = A; yiy', o 5 A; 5 ~j i < j (1.10)

where A; E 8 and y; E 9" denote the eigenvalues
The objective of the spectml bisection algorithm and orthonormal eigenvectors of C. For ease of
is to determine a balanced 2-color partitioning of exposition, assume the graph consists of a sin-
each connected component of the graph such that gle connected component and let A2 denote the
the number of edges cut by the partition boundary first nonzero eigenvalue. The cut-weight of the
(the cut-weight) is appmzimately minimized. continuous problem is given by

state the discrete bisection problem:

Discrete Bisection Problem (nphard)

showing separator and CUT edges (left)
i=l

Using the cut-weight formula, we can succinctly n

(1.11) 4wc = 2TCz = CA;(y; T 2 2) .
i=2

Since the orthonormal eigenvectors completely
span all space in 9" and yl = s, we can expand
z (suitably normalized) in terms of the remaining
eigenvectors vectors

1
4

minimize -pTCp (minimize cut -weight)
.

n n
z = n1/2 c p;y; = n1/2 ((1 - (r)1/2yz + ai c qy;

subject to (1.7)
pTs = 0 (balanced partitioning)

(discrete partitioning vector) (i 7 2)
i=2

p(i) = fl

with Cy==,@ = 1 and xy’3uj = 1. A direct
computation yields

which is minimized when (I = 0 so that the so-
lution

z = n1I2y2

satisfies the continuous bisection problem with a
lower bound cut-weight estimate of

7 4 W, = -.
4

Figure 1.10 shows contours of the second eigen-
vector for a multi-element airfoil mesh.

Figure 1.10: Contours of Fiedler Vector for Spec-
tral Partitioning. Dashed lines are less than the
median value (right).

1.3 Graph Quadrisection and
Higher Order Partition-
ings

One complaint commonly leveled against recur-
sive bisection algorithms is that they are too
greedy and lack “look ahead” properties. For

7-9

example, if the goal is to construct a partition-
ing containing 4 subdomains then a more opti-
mal partitioning might be possible by consider-
ing all four partitions simultaneously when de-
termining the cut-weight of the graph rather
than cut-weights for pairwise bisections. This
has prompted generalizations [HL95] of the spec-
tral bisection algorithm which require more than
one eigenvector. The spectral quadrisection al-
gorithm by Henrickson and Leland [HL95] uses
the first two eigenvectors, yz and y3, associated
with nonzero eigenvalues. The algorithm then
considers orthogonal combinations subject to a
rotation angle 8

1 2 = yzcos8 -+ y3sin8
5 3 = -yz sin 8 t y3 COS 8.

Again using discrete approximation, p!’ =

tors are calculated from which quadrants are as-

The angle 8 is determined by minimizing the dis-
tance between I and p

sign(zt)), pt) = sign(z3 (4), partitioning vec-

signed {(+1, +I), (-1, t I), (-1, -I), (+I, - 1)).

(1.14)
This has the effect of finding continuous solu-
tions that are nearby the desired discrete so-
lution. The results shown in [HL95] are very
promising and show a definite improvement over
the standard spectral bisection algorithm (which
is already considered to be quite good). The
technique extends naturally to higher order par-
titionings.

7-10

Chapter 2

A Uniprocessor CFD Algorithm

2.1 Basic Flow Equations

We consider the standard compressible Navier-
Stokes equations in integral form for a domain R

with bounding surface 80 (x V T - n)

An analysis of the viscous flux reveals the follow-
ing limiting form for no slip surfaces:

0
g(u,Vu;n) ,=g, .n= p V u j . n .

”/ at n
dV+Ln(f.n)dS = L n (g . n) d S (2.1) The last entry in the viscous flux vanishes for

adiabatic flow. These conditions can be enforced
where U represents the vector of conserved vari- weakly. In addition, for viscous flow the strong
ables, f and g the inviscid and viscous flux vec- condition can be applied that the velocity vector
tors respectively. In Rd the vectors are written vanish at the surface.
in Einstein summation form (j = 1,2,. . . , d):

2.1.2 Far Field Boundary Conditions

Let A(u; n) denote the flux Jacobian matrix di-
rected along the normal vector n

A(u;n) = --.n

(2.3) and define the characteristic projector matrices

p * - - 2 [- I f sign(A)] .

via Characteristic Projectors
(2.2)

PUi

(2.5)
df

ui(E t P) UkTjk - Wj du

(2.6)
1 with viscous stresses given by

(a,,>
~ (sui 8.j)

(2‘4) The far field inviscid flux is computed from r = x - - + - . azi aZi azi
-

and Fourier heat transfer given by q = -KVT.
Finally, an ideal gas is assumed P = PRT = (7 -
1) (E - $(U2 t v”) . known Friedrichs [Fri58] strong solution admis-

sibility condition for symmetric hyperbolic prob-
2.1.1 Surface Boundary Conditions lems:

At solid walls with no permeability and/or no p - p + U + P-p-U, = P-UCO. (2.8)
slip boundary conditions the inviscid flux re- For viscous flow, the inviscid flu (2.7) can be

combined with a weak Neumann condition for duces to the following form:

the viscous flux. Alternatively, strong Dirich-
let conditions can be imposed as dictated by the
physical problem.

f, = f(ii), U = P+u t P-U, (2.7)

so that the boundary condition satisfies the well-

2.2 Turbulence 2.3 The Spatial Discretization
Algorithm

In addition to the basic Navier-Stokes equations,
we model the effects of turbulence on the mean The flow equations are discretized in space us-
flow equations using an eddy viscosity turbulence ing a finite-volume method. In this technique
model. In a report with Baldwin [BBSO], we the solution domain is tessellated into a num-
proposed a single equation turbulence transport ber of smaller subdomains (0 = UR;). Each
model with the specific application to unstruc- subdomain serves as a control volume in which
tured meshes in mind. This model was subse- mass, momentum, and energy are conserved. In
quently modifled by Spalart and Allmaras [SA921 the present application, the control volumes are
to improve the predictive capability of the model formed from a median dual obtained from the
for wakes and shear-layers as well as to sim- triangulation, see Figure 2.1.
plify the model's dependence on distance to
solid walls. In the present computations, the
Spalart model is solved in a form fully coupled to
the Navier-Stokes equations. The one-equation
model for the viscosity-like parameter C is writ-
ten T m &

- MeaanDual

-
- - [v. ((U -t q v q t caz(Viqa] B6 ------* Clrichlet Dual 4 1 DP

Dt
_ -

U
2 .. ' -cwlfw (5) + c*1%'. (2.9) .. 2'

5 In the Spalart model the kinematic eddy viscos-
ity is given by Figure 2.1: Local triangulation with Dirichlet

(2.10) and median duals. ut = Ffwl

and requires the following closure functions and
constants

Fundamental to the finite-volume method is
the definition of the integral cell average. Com-
ponentwise, the integral cell average is defined in
each subdomain as:

U? s = IwI -t z f w 2

x3
x3 + 41 f"1 =

X
f"Z = 1 -

1 + XfWl
I

U

- 1
ui = -li U dV

vi
where vi = $,,, dV. The integral conservation
law can then be rewritten in the following form:

The integral cell averages are the basic un-
with w the fluid vorticity, d the distance to the knowns (degrees of freedom) in the scheme. The
closest surface, and the constants cbl = 0.1355, task at hand is to evaluate the flux integral
C& = 0.622, cwl = 7.1, c,l = 3.24, c,2 = 0.3, given these cell averages of the solution. The
cws = 2.0, K = .41, U = 2./3.. The model also basic solution process is summarized in the fol-
includes an optional term for simulating transi- lowing steps and further details are given in
tion to turbulence. (Bar911 [BJ89]:

7-12

Reconstruction
Given integral averages of the solution in each

control volume, reconstruct a piecewise polyno-
mial which approximates the behavior of the so-
lution in each control volume.

Flux Quadrature
Rom the piecewise polynomial description of

the solution, approximate the flux integral in
(2.11) by numerical quadrature. Because the
piecewise polynomials are not continuous at con-
trol volume boundaries, special flux functions are
employed which are functions of multiple solu-
tion states. Those flux functions which can be
characterized as some approximate and/or ex-
act solution of the Riemann problem of gasdy-
namics result in upwind biased approximations.
Present computations utilize Roe’s approximate
Riemann solver [Roe81].

Evolution
Given a numerical approximation to the flux

integral, evolve the system in time using any
class of implicit or explicit schemes. This results
in new integral cell averages of the solution. The
solution process can then be repeated.

It is important to realize that for steady-state
calculations, the spatial accuracy of the scheme
depends solely on the reconstruction and flux
quadrature steps. Moreover, the use of cell aver-
ages can be replaced by pointwise values of the
solution associated with each control volume. In
our application, we place the solution unknowns
at mesh vertices. As we will see, this can greatly
simplify the reconstruction step. Unfortunately,
schemes based on these reconstructed polynomi-
als are subject to the generation of spurious os-
cillations near discontinuities and regions of high
solution gradient unless additional measures are
taken which limit extremum behavior of the re-
constructed polynomial. These measures are the
basis for the class of MUSCL schemes devd-
oped by van Leer [vL79]. This framework of
reconstruction followed by monotonicity enforce-
ment extends naturally to unstructured meshes
in higher dimensions and sufficient conditions re-
quired by the reconstructed polynomial to guar-
antee monotonicity are generally known, see for
example [Bar94].

2.3.1 Linear Least-Squares Recon-
struction

Consider a vertex vo and suppose that the solu-
tion varies linearly over the support of adjacent
neighbors of the mesh. In this case, the change
in vertex values of the solution along an edge
.+vi, vo) can be calculated by

 VU)^ . (ri - ro) = ui - uo

where r denotes the spatial position vector. This
equation represents the scaled projection of the
gradient along the edge e(vi, VO). A similar equa-
tion could be written for all incident edges sub-
ject to an arbitrary weighting factor. The result
is the following matrix equation, shown here in
two dimensions:

or in symbolic form C Vu = f where

in two dimensions. Exact calculation of gradi-
ents for linearly varying U is guaranteed if any
two row vectors wi(ri - ro) span all of 2 space.

This implies linear independence of L 1 and L 2.

The system can then be solved via normal equa-
tions

+ +

The row vectors qi are given by

..
(232)

+ +
with l i j = (L i . L j).

Note that reconstruction of N independent
variables in gd implies (d:l) + d N inner prod-
uct sums. Since only d N of these sums involves
the solution variables themselves, the remain-
ing sums could be precalculated and stored in
computer memory. Using the edge data struc-
ture, the calculation of inner product sums can

7-13

be calculated for arbitmry combinations of poly- and similarly the residual vector R for all mesh
hedral cells. In all cases linear functions are re- vertices. The basic scheme is written as
constructed exactly.

Algorithm: Weighted Least-SWares Gradient where
Calculation

DUt = R(U) (2.13)

is a positive diagonal matrix. perform-
ing a backward Euler time integration, equation

For k = 1, n(e) through edges (2.13) is rewritten as
j 1 = e-'(k, 1) Edge origin
j z = e - ' (k ,~) Edge destination
A z = w (k) . (z (j2) - z(j1)) Weighted A z
Ay = w (k) . (y (j z) - y(jl)) Weighted Ay
lll(jl) = lll(jl) + Az . Az Z l 1 orig sum
Zll(jz) = lll(jz) + AZ . Az 111 d& sum

I&,) = 112(j z) + A z . Ay Z1z dest sum
h (j 1) = h (j 1) + A z . Ay 112 orig sum

Au = w (k) . (u(j2) - u(j1)) Weighted Au
fi(ji) + = A z . AU L 1f sum
f i (jz) + = A z . Au

D(U"+' - U") = At R(U"+')

where n denotes the iteration (time step) level.
Linearizing the right-hand-side of the preceding
equation in time produces the following form:

D(U"+'U") = At R(U") + -(U"+'- U")]
(2.14)

By rearrangement of terms, we arrive at the delta
form of the backward Euler scheme

dR"
dU [

+

+
L z f sum f z (i i) + = A Y . AU dR"

fz (jz) + = AY. A U At dU
[" - -1 (U"+' -U") = R(U"). (2.15)

Endfor
Note that for large time steps, the scheme be-

For j = l ,n(v) Process vertices dividing by det comes equivalent to Newton's method. In prac-
tice the diagonal entries are locally scaled as a
exponential function of the norm of the residual

det = Zll(j). ZZZ(j) - lTz(j)
U&) = (l z z (j) . fl(d - llZ(j). fz(j))/det
.Y(j) = (hl(j) ' f Z (A - l l Z W . fdj)) /det

9 cflmaz = f(llR(U)"ll)
_ - D, cfl,
At cflmm

-- Endfor

This formulation provides freedom in the choice so that when I I R (U) ~ ~ ~ o, ,-flm,, ~ oo and the

and/or solution. Classical approximations in one scheme is technically an Newton
dimension can be recovered by choosing geomet- method which becomes exact only in the final

Of coefficients, W. These weighting scheme approaches Newton's method. It should
 dents can be a function Of the geometry be emphasized that by using this strategy, the

t

2. Data dependent choices
nCal weights Of the form w: = l . / I A r ~ -
for values Of t = O,

few iterations of the computation.
The following two sections present examples

which demonstrate the convergence character-
istics of Newton's method for inviscid and vis-

are discussed in [Bar94].

cous fluid flow problems. In viewing these ex-
2.4 Exact and *pproximate amples, the reader can assume that each matrix

problem required in the Newton scheme is solved Newton Methods
"exactly." In reality, these matrix problems are

In this section we consider implicit solution solved iteratively to a user specified tolerance.
strategies for the upwind discretization scheme The topic of solving the linear algebra problem
described in the previous section. Define the so- will be discussed in detail in later sections. The
lution vector test case examples are presented at this time so

that they may be used in the remaider of these
notes for comparison purposes. U = [Ul, U21 u3, ..., .NIT

7-14

2.4.1 Test Case 1: Inviscid Flow Past
a Multi-Element Airfoil

As a first test case, inviscid Euler flow is com-

(M , = 0.2) with a 2' free stream angle of attack.
Figures 2.3 - 2.5 show Mach number contours,
surface pressure coefficient, and convergence his-
tory for the calculation. An initial time step was

uuted about a multi-element airfoil geometry as chosen for the calculation corresponds to
shown in Figure 2.2.

Figure 2.2: Multi-element airfoil mesh, 4900 ver-
tices.

Fieure 2.3: Solution isomach contours about

-
an effective local CFL number of approximately
50, but over the next 10 iterations the effective
CFL number quickly reaches lo8. This test case
will be used extensively in Chapter 3 when eval-
uating parallel solution strategies.

............... i"""""""" _. i. i.

24 I
-0.25 0.00 0.25 050 0.75 1.00 1.25

X/C

Figure 2.4:
puted from multi-element geometry.

Surface pressure coefficient com-

Newton Iteration
multi-element geometry, M , = 0.2, CY = 2.0'.

Figure 2.5: Numerical solution convergence his-
The mesh contains approximately 4900 mesh tory.

vertices. Subsonic flow conditions are imposed

7-15

bulence is computed about the multiple-element
airfoil geometry. This geometry has been trian-
gulated using the Steiner triangulation algorithm
described in [Bar95], see Figure 2.6. The mesh
contains approximately 22,000 vertices with cells
near the airfoil surface attaining aspect ratios
greater than 1OOO:l. This example provides a
demanding test case for CFD algorithms. The
experimental flow conditions are M, = .20,
Q = 16‘, and a Reynolds number of 9 million.
Experimental results are given in [VDMG92] and
computed results are shown in Figure 2.7. Even
though the wake passing over the main element
is not well resolved, the surface pressure coeffi-
cient shown in Figure 2.8 agrees quite well with
experiment. The convergence history in Figure

2.4.2 Test Case 2: Viscous Flow Past
a Multi-Element Airfoil

Figure 2.6: Multi-element airfoil triangulation,
22,000 vertices.

e

Figure 2.7: Multi-element airfoil solution iso-
ma& contours, M, = 0.2, Q = K O 0 , Re = 9.0
million.

As a second test case, viscous flow with tur-

l Z T ~ i ~ . ~ i

24 4
-0.250.00 0.25 0.50 0.75 1.00 1.25

XIC

Figure 2.8: Comparison of computational and
experimental surface pressure coefficients.

2.9 shows that roughly twice as many iteration
steps are needed for the viscous turbulent flow
calculation when compared to the inviscid flow
computation of Test Case 1. This seems to be
typical for aerodynamic high lift computations.
This is contrasted by single element airfoil com-
putations which show very little difference in the
number of iterations needed when computing in-
viscid and viscous flow. This test case will also
be used extensively in subsequent chapters for
evaluating various solution strategies.

7-16

Dim. nnz (Distancel)
2 7N
3 14N

lo 0 10 20 30 40 50 60

nnz (Distance-2)
19N
55N

Newton Iteration

Figure 2.9: Solution convergence history for Case
2 computation.

2.4.3 Storage Requirements

It is worthwhile to assess the computer mem-
ory requirements for storing sparse matrices ob-
tained from discretizations on simplicial meshes
(triangulations). In practice we will be solv-
ing systems of I coupled equations so that each
nonzero entry of the matrix is actually a small
1 x 1 block. The schemes discussed in previous
sections require data from distanceone neigh-
bors in the graph (mesh). In addition, the
higher order accurate schemes require distance-
two neighbors in building the scheme. First
consider the situation in which the scheme re-
quires only distance-one neighbors. The num-
ber of nonzero entries in each row of the ma-
trix is related to the number of edges incident to
the vertex associated with that row. Or equiva-
lently, each edge e(wi, w j) will guarantee nonzero
entries in the i-th column and j - th row and sim-
ilarly the j - th column and i-th row. In addi-
tion nonzero entries will be placed on the diagc-
nal of the matrix. From this counting argument
we see that the number of nonzero block entries,
nnz, in the matrix is exactly twice the number
of edges plus the number of vertices, 2 E + N (ap-

proximately 7N in 2-d). Using a similar count-
ing argument we obtain the following approxi-
mate requirements for storing distance-one and
distance-two neighboring information as a sparse
matrix: Note that the entries of the sparse ma-

Table 2.1: Storage Estimates for Sparse Matrices

trix associated with Newton's method are actu-
ally small 5 x 5 and 6 x 6 blocks in two and
three dimensions respectively. At first glance,
this storage requirement appears prohibitively
large. While this may be true to some extent
today, the memory capacity of computers is ex-
panding at a rapid rate. It is quite reasonable
to expect that in the foreseeable future sufficient
memory will be available for solving most prob-
lems of engineering interest. Even so, it is pos-
sible t o reduce, and in some cases eliminate, the
explicit storage of the Jacobian matrix without
compromising the favorable convergence charac-
teristics of Newton's method. These techniques
will be discuss in subsequent sections.

2.4.4 Calculating Analytic Jacobian
Derivatives

In this section we address the task of comput-
ing Jacobian derivatives for Newton's method.
In the following section we consider the related
task of multiplying an arbitrary vector by the
Jacobian matrix.

A major task in the overall calculation of the
Jacobian derivatives for the finite-volume dis-
cretization is the linearization of the numeri-
cal flux vector with respect t o the two solution
states, e.g. given the Roe flux function [Roe811

1
h(uR,uL;n) = 5 (f(uR,n)+f(uL,n))2.16)

- - I A (~ R L ,u ;n)l (U" - e 7 1
2

7-17

dh we require the Jacobian terms
Exact analytical expressions for these terms are
available [Bar87]. In constructing the Jacobian
matrix for the entire scheme it is useful to con-
ceptualize the finite-volume scheme in composi-
tion form:

and 9. Sparse Matrix-Vector Multiply

The most straightforward strategy is to analyt-
ically compute and store the Jacobian matrix
using a compressed storage scheme designed for
sparse matrices. This strategy has the added
benefit that a copy of the matrix can also be used
as a preconditioner for the iterative solver. In ad-
dition, the explicit storage also permits the’for-
mation of the transposed matrix problem which
is often encountered in optimization procedures
coupled with Newton’s method. Obviously, a de-
traction of this approach is the large storage re-
quirement .

R(U) = Ll(C2(U>) (2.18)

with C1 representing the flux quadrature and ac-
cumulation step and C2 representing the data
reconstruction step. In this form, each operator
requires distance- 1 information. The Jacobian
matrix can then be written as

(2.19) Approximate Frechet Derivatives

An alternative to the analytic calculation of
with the critical observation that the Jacobian
matrix can be calculated as the sparse product
of two matrices. This could potentially be an

FrCchet derivatives is to approximate them using
a finite-difference approximation [Joh92] [BS94]
[EW94]. The required FrCchet derivative is a lim-

expensive task, but because of the special form of iting form of the difference approximation
C1 and C2, the resulting sparse product produces
at most distance-2 fill and can be computed at
reasonable cost.

dR . R (U + EP) - R(U) -p = hm
dU € 4 0 E

2.4.5 Exact and Approximate Jaco-
bian Matrix-Vector Products

Consider the standard matrix equation Ax- b =
0. As we will see, iterative matrix solution
algorithms for this problem such as the gen-
eralized minimum residual method (GMRES)
and the stablized bi-conjugate gradient method
(Bi-CGSTAB) both require the computation of
matrix-vector products of the form Ap for some
arbitrary p vector. In the approximate Newton
algorithm

(2.20)

The primary concern with this approach is the
accuracy of derivatives and the optimal choice
for E. If derivatives are not computed accurately
then methods such as GMRES or Bi-CGSTAB
iteration may stall or fail. Using a forward dif-
ference approximation, E must be carefully cho-
sen. In general it is insufficient to choose E as a
constant such as the square root of machine pre-
cision. Johan [Joh92] also mentions this fact and
gives some analysis for choosing E but this analy-
sis assumes that R(u) is well scaled. A common
choice for E is given by

(2.22)

so that a major computation in the matrix-
vector Product AP is the computation of Jato-

with suitably chosen constants h0 and An
alternative is to use higher order accurate for-

bian derivatives in the direction of p (a FrCchet mulas such as central differencing at double the
derivative) computational cost.

(2.21) The clear attraction of this approach is the Ap = -p.
low memory requirement. On the other hand,

Several possible strategies exist for computing the numerical computation of FrCchet derivatives
the needed F’rdchet derivatives: does not produce a matrix approximation which

- d R
dU

7-18

can be used to precondition the system. Lastly,
for situations requiring the solution of the trans-
posed matrix problem, there does not appear to
be a Frdchet-like technique for constructing the
matrix-vector product

using numerical difference approximations. We
consider this a serious shortcoming of the
met hod.

Exact Product Forms

In this section we will present a technique for
constructing matrix-vector products which is an
exact calculation of the FrCchet derivative. Ex-
tension to systems and the inclusion of diffusion
terms are also handled using this technique.

Let G(E,V) denote the triangulation in 2-d
or 3-d with n vertices and m edges. Next recall
the definition of the incidence matrix given in
Equation (1.2):

-1

0 otherwise

if v; is the origin of edge 1
I C;i = 1 if v; is the destination of edge 1 .

(2.23)
Let h = h(uL, uR; n) denote the numerical flux
function as defined by Equation 2.17. For a sys-
tem of 1 coupled differential equations, the Ja-
cobian matrix entries are actually small 1 x I
blocks. For ease of exposition, we tacitly treat
these small blocks as scalar entries. Under these
simplifications, the desired matrix-vector prod-
uct is given by

{

(2.24)
where [g] E RmXm with nonzero diagonal ele-

ments, and [$$-I E $Imxn. If we do not incorpo-
rated monotonicity enforcement into the recon-
struction procedure then a considerable simplifi-
cation occurs in the calculation of matrix-vector
products. The main idea is given in the following
almost trivial lemma.

Lemma: Let v = R(U) = R(u1, u2, ..., Un) de-
note an arbitrary order reconstruction operator.
If R depends linearly on U; then

Proof: Linearity implies that

n
v = R (u ~ , ~ 2 , ..., Un) = C Q ~ U ;

i=l

so that & = a;. The desired result follows im-
mediately

n dv dv
du - p = c -p; = trip; = R (p) .

i=l du, i=l

This lemma suggests the following procedure for
calculation of matrix-vector products.

(2.25)
This amounts to a reconstruction of the vec-

tors pL and pR from p using the same recon-
struction operator used in the residual computa-
tion. Next, the linearized form of the flux func-
tion is computed:

Finally, the linearized fluxes are assembled using
the same procedure as the residual vector assem-
bly. In actual calculations, the conservative flow
variables are not reconstructed, thereby necessi-
tating that a change of variable transformation
be embedded in the formulation. This is not a
serious complication.

Equation (2.25) does not reveal how to con-
struct the transposed matrix-vector product

[%ITP.

But by introducing addition matrices, we can de-
rive the required equation. In addition, the fol-
lowing forms allow the incorporation of mono-
tonicity limiting in the reconstruction process,

7-19

although we have not done so here. Define
A,S+,S- E PXm

If e(vi , Vj) E G(E, V), then

A;, = SL = 1, Aj, = SJ& = 1

and zero otherwise. In addition, define the diag-
onal m x m matrices containing weighted edge
geometry [AS] and [Ay] as well as the n x n
diagonal matrices D,, containing pointwise de-

Using these matrices the left and right recon-
structed states obtained by least squares recon-

terminant values f h or t e least squares solution.

struction are given by

u L = [[s-1'

u R = [[S']'

+ [$1 [S-] [[Dtt] A [Az] + [DtY] A [AY]] CT

+ [+I [s-lT [[D ~ . I A [A ~ I + [D ~ I A [A Y I] C T

L

- [$1 [S'] [[D==l A [Az] + [DtY] A [Ay]] CT

U

- [$1 [s'] [[Dyt] A [Az] + [DYY] A [Ay] CT U. 1 1

Just as equations (2.26) have an implemen-
tation using an edge data structure (one would
newer store the connectivity as A or C in dense
matrix form), the transposed equation has an
implementation using an edge data structure for
the calculation of [s] p. For example, the ma-
trix operation ATV performs a gather and sum
of the two edge vertex values of v for each and
every edge. The matrix operation Aw performs
a scatter and accumulate of an edge quantity w
to the two edge vertices locations for each and
every edge. Similar edge operations exist for the
incidence matrix C. Thus we have constructed
a technique for matrix-vector products based on
elementary edge operations which also permits
constructing the transposed matrix-vector prod-
uct. The ability to write the entire algorithm in
terms of a sequence of edge operations makes the
parallel implementation straightforward.

2.4.6 Solving the Matrix Problem

The next task is to solve the large sparse linear
system of the form

A p - b = O

From these formulas the transposed matrix- Produced by Newton's method. Owing to the
nonsymmetry of A, we consider solving this
system using the generalized minimum residual
method (GMRES) of Saad and Schultz [SSSS]
and the stabilized bi-conjugate gradient method
of Van der Vorst [vdV92]. Both algorithms are
outlined in Table 2.2. The paragraphs given be-
low briefly describe the methods but for a full

[Azl AT [DYII + [AY] AT [DYY1] [s-] [$1 description we defer to the lectures of Prof. Van
der Vorst.

problem problem is easily calculated

dR
[E] P = [[s-I

AZ + c [[A21 AT [L I + [AY1 AT [D*#l] [s-] [?]

J The GMRES Algorithm

The GMRES algorithm explicitly forms an

Krylov sequence [ro, Aro, A2r0,. . . , A"-'ro] us-

- C [[Az] AT [L] + [AY] AT [Otyl] [S'] [F]
orthogonal basis [v o , v ~ , v ~ ,..., v k] from the

] [- g y T C T p .
ing a modified Gram-Schmidt orthogonalization
procedure. Using this orthogonal basis, GMRES

(2.26) iterates are computed

Pk = PO i- aivi + (~ 2 ~ 2 + . . . + akvk (2.27)

7-20

by minimizing the residual norm

(2.28)

The algorithm requires k + 1 vector inner prod-
ucts, k + 1 SAXPY operations, and k matrix-
vector multiplies for iteration k. Thus as k in-
creases, the storage increases linearly and the
computation quadratically. To avoid the stor-
age and computation demands imposed by large
matrices, Saad and Schultz devised a variant,
GMRES(k), in which the GMRES algorithm is
restarted every k steps. The proper choice of k
is problem dependent and a strong function of
the choice and quality of preconditioning.

The Bi-CGSTAB Algorithm

The stabilized bi-conjugate gradient method (Bi-
CGSTAB) is a short recurrence method designed
for nonsymmetric matrices. Roughly speaking,
Bi-CGSTAB combines the basic bi-conjugate
gradient method with GMRES(1). The inclusion
of the GMRES(1) steps is intended to smooth
the irregular convergence behavior of the basic
Bi-CG method. The Bi-CGSTAB method re-
quires 4 vector inner products, 6 SAXPY op-
erations, and 2 matrix-vector products for each
iteration.

Matrix Preconditioning

Practical experience has shown that the success
or failure of the GMRES and Bi-CGSTAB al-
gorithm hinges heavily on the choice of matrix
preconditioning. In left preconditioned form, the
matrix problem becomes

P (A p - b) = 0. (left preconditioned) (2.29)

An alternative is the right preconditioned system

APP-’p - b = 0. (right preconditioned)
(2.30)

If available, the optimal choice of P (left or
right) is clearly A-’ or its L - U factors. In
this instance the underlying matrix problem is
trivially solved in one step. More generally, we
consider finding a nearby preconditioning matrix

such that %(AI‘) < %(A) , i.e. AP is better con-
ditioned than A alone.

In the present applications, we consider a pre-
conditioning matrix based the incomplete lower-
upper (ILU) factorization of the matrix A. ILU
preconditioning is a popular and robust precon-
ditioning procedure for use in iterative matrix
solvers. ILU factorization is a modification to
the standard Gaussian elimination for which the
nonzero fill pattern is either preimposed or de-
termined. dynamically based on the size or lo-
cation of fill elements. In this way the amount
of storage required can be specified and in some
instances minimized. Technical aspects of ILU
factorization such as existence and spectral prop-
erties have been proven for M-matrices, but the
general applicability is much broader and well
documented in the literature. The triangular
solves required in the application of ILU precon-
ditioning generally give the method global sup-
port. This is usually considered a favorable char-
acteristic of the method.

The finite-volume scheme with high order data
reconstruction suggests two possible matrices
suitable for incomplete factorization.

1. Distance-1 matrix preconditioning. Con-
struct the preconditioning matrix from
the Jacobian matrix associated with the
lower (first) order accurate discretization of
the flow equations. This matrix involves
distance-1 neighbors in the triangulation.
Matrix-vector products are computed “ex-
actly” using the Jacobian matrix associated
with the full second order accurate scheme.

2. Distance-2 matrix preconditioning. Use the
Jacobian matrix of the entire second or-
der accurate scheme for both matrix-vector
products and preconditioning.

Algorithm: Premnditioned GMRES(L)

m restart iterations
Vn := b - AD" initial residual

For I = 1, m
- .-

P := llrol la

yj := P V j

VI := ro/P
For j = 1, k

w := Ayj
For i = 1. i

Table 2.2: GMRES and Bi-CGSTAB Algorithms
for Nonsymmetric Matrices

initial residual norm
define initial Krylov Performance of GMRES and Bi-CGSTAB

preconditioning
matrk-vector prod
Gram-Schmidt

inner iterations- I for Case 1 and Case 2 Test Problems

The test problems given in Sections 2.4.1 and
2.4.2 provide representative matrices for evalu- .-

hi j := (w , v ~)
w := w - hijvi

End For
hj+l,j := l lw l l~

define Krylov vector

least squares solve
approximate solution
convergence check

vj+l := w/hj+l,j
End For
s := mi%][pel- Hill2

:= Po + xEl yisi
If llpel- Hell2 5 c exit
PO := P restart

End For

ating the GMRES and Bi-CGSTAB algorithms.
In evaluating the iterative methods we construct
approximate Newton matrices corresponding to
flow CFL numbers of lo3 and lo8. In addition,
distance1 and distance-2 preconditioning matri-
ces are used to accelerate the algorithms. Figures
2.10-2.11 graph the convergence histories for the
GMRES and Bi-CGSTAB algorithms in solving
matrix problems produced from the inviscid flow
problem given in Section 2.4.1. Since the matrix-
vector products and preconditioning solves dom-

Algorithm: Preconditioned Bi-CGSTAB

ro := b - Apo
i. := ro
For i = 1, m

initial residual

m total iterations

method fails
pi-, := -T r 9 - 1 .
If pi-1 = 0 (Breakdown)
I f i = l

Else
yi := ri-1

Pi-1 := (pi-l/Pi-2)(ai-l/wi-l)
yi := ri-l+ Pi-1(yi-rwi-1vi-1)

Endif
j := Pyi preconditioning
vi := A j matrix-vector prod

s := ri-1- aivi
If llsllz < E

ai := Pi-lJiTVi

check tolerance
pi := pi-1 + ai9
Exit

Endif
i := P S

t :=Ai
wi := tTs/tTt
p' . -p. +a.-. s .- s - 1 S Y ~ + w i i
ri:=s-wit
If l lr i l la < E Exit
If wi = 0 (Breakdown) method fails

End For

preconditioning
matrix-vector prod

inate the iterative calculation, convergence his-
tories are plotted against the number of matrix-
vector products required. Each GMRES iter-
ation requires one matrix-vector product while
each Bi-CGSTAB iteration requires two prod-
ucts. The GMRES algorithm is clearly adversely
affected by the distance-1 preconditioning. For
this case the distance1 preconditioned system
requires roughly twice as many iterations as the
distance2 preconditioned system. These graphs
also show the somewhat erratic convergence be-
havior of the Bi-CGSTAB method. Even so, the
Bi-CGSTAB appears to require a similar number
of matrix-vector products when compared to the
GMRES algorithm.

The second test case given in Section 2.4.2 is
more revealing. Matrices have been taken from
this test case corresponding to CFL numbers
of lo3 and lo8. Computations show a definite
degradation in convergence for both methods us-
ing the distance-l preconditioning, see Figures
2.12-2.13. In fact for CFL = lo8, the conver-
gence is unacceptably slow. In general we find
that when using the distance-1 preconditioning
matrix, an optimal CFL number exists for con-
vergence and efficiency which is large but not
infinite.

7-22

i j j

25 50 75 100 125
5 !

I

Matrix-VW P&uc~~

Figure 2.10: Case 1 (Inviscid Flow) matrix solu-

5 i !
10 0 is 50 75 loo 125

j

Matrix-Vector products

Figure 2.12: Case 2 (Viscous Flow) matrix solu- -
tion convergence histories for the GMRES(20) tion convergence histories for the GMRES(30)
and Bi - CGSTAB algorithms at CFL = IO3 and Bi - CGSTAB algorithms at CFL = 103
using ILU(0) distance-1 and distance-:! precon- using ILU(0) distance1 and distance-2 precon-
ditioning matrices

5 I

100 2Ga 300
Matrix-Vector Products

ditioning matrices

lo 0 25 50 75 100 125
Matrix-Vector products

Figure 2.11: Case 1 (Inviscid Flow) matrix soh- Figure 2.13: Case 2 (Viscous Flow) matrix solu-
tion convergence histories for the GMRES(20) tion convergence histories for the GMRES(30)
and Bi - CGSTAB algorithms at CFL = los and Bi - CGSTAB algorithms at CFL = lo8
using ILU(0) distance-1 and distance-2 precon- using ILU(0) distance-1 and distance-2 precon-
ditioning matrices ditioning matrices

7-23

Chapter 3

Parallel Algorithms

In this section we review the Schwarz theory for
elliptic problems. Beginning with analysis of the
two point boundary value problem, we derive the
exact theory governing the alternating Schwarz
method introduced in 1869 by Schwarz [Sch69].
Next we consider the discrete Schwarz procedure
and mention some known results concerning the
method for unstructured meshes.

3.1.1

Consider two point boundary value problem on
the interval z E [0, L]

The Model Two Point BVP

-u)f(z) = f(2)
u(0) = u(L) = 0

which has the solution

(3.6)
In the following paragraphs we consider the

additive and multiplicative Schwarz algorithms
which utilize (3.3) and (3.4).

The Additive Schwarz Algorithm

The basic idea in additive Schwarz domain de-
composition is to consider the iteration

-V"(z) = f(z), 0 < z < PL
U k + l (O) = O,Uk+l(PL) = Vk(PL) (3.7)

-V"(z) = f (Z) , az < z < L
v & + ' (~ L) = V ~ (~ L) , V ~ + ' (L) = o (3.8)

From Equations (3.5) and (3.6) it follows that
(3.2)

in terms of the Green's function go(z; t) defined PL
U k + W = ? V k (P Z) + Jo g 1 (z ; t) f (t) d t

PL on that interval. Equation (3.1) implies that for
0 < (I < P < 1 the following Dirichlet problems:

u k (a L) t J" g z (z ; O f (t) d t
L - z

Irk++) =

define the error functions

dk+'(z) = ~ k + l (z) - u(z) = (L) ek(pL)

ek+'(z) = vk+'(z) - U(.) =

-U"(.) = f(Z), 2 E [O,PL] (1 - a) L aL

~ (0) = 0, u (p ~) = %(pL) (3.3) where the interval of validity is understood. Next

-U"(.) = f(z),
u(aL) = u(aZ), U(L) = 0 (3.4) PL

2 E [aL ,Z]

L - z
Let g l (z ; t) and g 2 (z ; t) denote Green's functions
on the intervals [0 , PL] and [aZ, L] respectively. (3.9)

7-24

Clearly the error behaves linearly and of the form Theorem 3.2 Consider the multiplicative
Schwarz itemtion given by (3.15), (3.16). There

k ak k bk L - z ezists a constant C = C(Uo, V") such that d (2) = -2, e (2) = - (-) (3.10) bL L 1-n

Substitution into (3.9) yields

so that

From this we obtain a fundamental r e s i t in
domain decomposition concerning the additive
Schwarz algorithm:

Theorem 3.1 Consider the additive Schwarz
itemtion given by (3.7), (3.8). There ezists a
constant C = C(Uo, V") such that

The proof follows directly from (3.12) an

(3.13)

(3.14)

(3.9).

The Multiplicative Schwarz Algorithm

Two subdomain multiplicative Schwarz algo-
rithm differs from the additive Schwarz algo-
rithm only in that the subdomains are updated
sequentially, i.e.

-U"(z) = f(z), 0 < z < PL
U"'(0) = 0, Uk+'(p&) = V k (p L) (3.15)

-V"(z) = f(Z), nL < z < z
Vk+' (aL) = Uk+'(aL),Vk+'(L) = 0 (3.16)

Following a similar analysis to the previous sec-
tion we obtain the following result concerning
the multiplicative Schwarz algorithm:

4

aL BL L A
additive Schwan

4

multiplicative Schwan

Figure 3.1: Comparison of the 2 subdomain ad-
ditive Schwarz (top) and multiplicative Schwarz
(bottom) algorithms for the two point BVP.

The theory clearly shows the favorable conse-
quences of increased overlap. Figure 3.1 graphs
the error functions d(z) and e(.) for the two do-
main additive and multiplicative Schwarz algo-
rithms. As predicted by the theory, the mul-
tiplicative algorithm converges at a rate twice
that of the additive algorithm. Next, consider
the situation in which both subdomains are of
equal size with overlap distance 6. Some simple

7-25

algebra yields t€
for the convergence parameter:

following simple relationship

which is graphed in Figure 3.2. But as Figure 3.3

Figure 3.2: Convergence parameter 3 for the
two subdomain Schwarz iteration with equal sub-
domain size and overlap 6 / L .

1 + L

4 I Increasing Iteration

L

additive Schwarz

I Increasing Iteration t

L
multiplicative Schwarz

Figure 3.3: Comparison of the 4 subdomain ad-
shows, the algorithm deteriorates as the num- ditive Schwarz (top) and multiplicative Schwarz
ber of subdomains increases. This effect will be (bottom) algorithms for the two point BVP.
quantified in the next section.

3.1.2 The Discrete Schwarz Theory

In this section we review the Schwarz theory
for discrete systems using the notation given in
Chan and Mathew [CM94]. Consider the sym-
metric positive definite linear system uk+llZ = uk + RTA;'Rl(f - Auk)

The local subdomain matrices are then given by
Ai = RiART. The discrete form of the alter-
nating Schwarz procedure produces the following
sequence of iterates

Au = f (3.19) uk+l = uk+1/2 + RzA,'R2(f - Auk+'/z)

obtained from the 2-D discretization of an el-
liptic equation on the domain 51 which consists Defining the matrices
of two overlapping subdomains R1 and Rz such
that R = RI U Rz, 0 1 fl R2 # 0. Let 11 and 12 de- pi = RTA;'R;A

(3.21)

(3.22)

note the set of interior mesh vertices contained the convergence is governed by the iteration ma-
in % and Qz respectively. The total number trix (I - &)(I - 5) . This motivates the term
of esh vertices is n and the number of interior multip[jcative SAwarz iteration. Similarly, the
vertices in 11 and I2 is nl and nz. Next define sequence of iterates
the zero extension matrices RT E W x n ~ for each
subdomain such that for zi E gZ"* uk+'I2 = uk t RFA;'R1(f - Auk)

(3.20)
otherwise

(RT2i)k =
Uk+l = uk+'tZ + RTA;'Rz(f - Auk)

(3.23)

7-26

produces the combined additive Schwarz scheme 3.1.3 Interface Substructuring

number of algorithms exist in domain decom-
= U k t (RTAT'R1 -I- RTAT'R2) (f - AUkf osition which exhibit superior conditioning to

= MG1(f-Auk) that given in Equation (3.27) while still main-
(3.24faining parallel scalability. The lectures by Pro-

fessor Farhat will describe the two-level Finite

so that the convergence is governed by the sum Element Tearing and Interconnectivity (FETI)
M,;'A = P1 t P2. The additive Schwarz algo- method which has
rithm is appealing in parallel computation since (3.28)
each subdomain solve can be done in parallel.
Unfortunately the performance of the algorithm conditioning properties for self-adjoint equations
deteriorates as the number of subdomains in- on meshes with element size h. In this method,
creases. This effect was observed in Figure 3.3. Lagrange multipliers are introduced to couple
Let H denote the characteristic size of each sub- subdomains and ensure continuity at interface
domain, 6 the overlap distance, and h the mesh boundaries.
spacing. The condition number K of M,-bA is Other interface strategies begin by ordering
given in the following theorem: matrix unknowns in each subdomain first fol-

lowed by interface unknowns as shown in Figure
Theorem 3.3 There exists a constant C inde- 3.4. This matrix ordering can be represented by
pendent of H and h such that

K(M- 'A) 5 C (1 +log2(H/h))

K(M,-,'A) 5 CH-'

Proof: Given in [DW89] [DW92].

This theorem describes the deterioration as the
number of subdomains increases (and H de-
creases). With some additional work this de-
terioration can be removed by the introduction
of a global, coarse subspace and a global restric-
tion matrix RH E gZnCx". The two level additive
Schwarz matrix for p subdomains becomes

~i~~~~ 3.4: Arbitrary domain with subdomains
1 - 4 and interfaces 5 - 9.

the following partitioned matrix equation:
P

T -1 A I A2 Mzl = R ~ A ; ; ' R H t E R ; A, Ri. (3.26)
(A 3 A41 (Et) =

Next consider the 2 x 2 inverse

c1 c2

i=l

Under the assumption of "generous overlap" we
have the following result:

Theorem 3.4 There exists a constant C inde- where
pendent of H and h such that

A - ' = (c3 c 4) y

C1 = A;' t A;'A2S-'A3A;'
K(M,;'A) 5 C (1 t (f)). (3.27) C2 = -A;'AzS-'

C, = -S-'A3A;'

Proof: See [DW89] [DW92] and Chan and Zou S = A4 - A3AT1A2
[CZ93]. c4 = s-l.

1-21

In practice, we do not require the explicit in-
verse of the matrix A but rather the ability to
apply A-' to an arbitrary vector. In this con-
text the Schur complement strategy requires the
ability to solve matrix systems for A1 and the
Schur complement matrix S. Observe that the
matrix A1 consists of decoupled subdomain milr
trices which can be solved independently (in par-
allel). The Schur complement matrix provides a
form of global coupling of interface unknowns.
In Smith [Smi92], the Schur complement form
of the equations is considered together with a
vertex, edge, and face space decomposition thus
producing a coarse-fine space algorithm with

n(M-'A) 5 C (l t log(H/6)). (3.29)

conditioning. A complete discussion of these ad-
vanced techniques is beyond the scope of these
notes. Further details and references can be
found in Chan and Mathew [CM941 and Tallec
[Tal94].

3.1.4 Boundary Condition Admissi-
bility and Hyperbolic Equations

Consider the model d-dimensional hyperbolic
differential equation

multiplicative Schwarz type algorithm

x * vu:+' = f

u:+~ = p+u:+lln, t p - U [, , r nrl
u1 P u1 Inl t p - 4 , rl noz

with boundary conditions

k+l = + k+l
(3.33)

followed by

x . vu:+' = f
with boundary conditions

uk+l = P + uz k+l In, tp-u:+l,

k+l = + k+l u2 P uZ In, tp-ut,, r n rz
rznR1.

(3.34)

An additive Schwarz-type algorithm can be sim-
ilarly posed [Quago]. In the next section, we
will show that numerical schemes based on up-
wind differencing naturally inherit the admissi-
bility condition so that Dirichlet overlap con-
ditions can be imposed even in the hyperbolic
limit.

3.1.5 Numerical Admissibility for Hy-
perbolic Equations

Consider the model advection equation

A(z) .Vu(z) = f(z), z E Sd (3.30)
ut + c(z)uz = 0, 0 5 z 5 L (3.35)

in a domain with boundary
normal n. Next subdivide l? into segments r-
and r+ associated with incoming (A . n < 0)

and boundary together with the prototypical differencing
scheme

~.
and outgoing ((A . n > 0)) characteristics. The
admissibility condition requires that Az

hj+l/z - hj-1/2 = 0, j = 0,1, ..., N
(3.36)

U = uln, X . n > O defined on the mesh z j = jAz with Az = L I N .
Next consider the following conventional upwind
flux function for the interface position located

U = U[,, X . n < O (3.31)

- midway between z j and zj+l In terms of the characteristic projectors p -

hj+l/z = ; c j + 1 / 2 (~ j + 1 +uj)--Icj+l/~l 2 (uj+l -uj).
U = P+Ul$l t P-ul,. (3.32) (3.37)

$[l+sign(A.n)] the boundary condition becomes 1 1

After some manipulation, this flux can be placed
Next consider a two subdomain overlapped prob- in the following revealing form
lem, R = R1 U Rz with R1 fl Rz # 0. The hyper-
bolic form of the equations suggests the following hj+1/2 = ~+l 'z(P~+,/zuj t Pj;l/2uj+l) (3.38)

7-28

with pj+l12 = i[l + ~ign(cj+~/z)]. If we impose
a Dirichlet condition on U at z = L for c(L) > 0
this would normally lead to an ill-posed hyper-
bolic problem. But by using (3.37) we see that
numerically the ill-posed data is ignored by the
scheme. More generally we make the following
observation:

Roe'sfluz function [RoeSl] permits the nu-
merical overspecification of boundary data.
In the stnmg solution limit, the chamcter-
istic nature of the jiuz function correctly
ignores all ill-posed boundary data.

This remarbable property greatly simplifies the
implementation of Schwarz schemes for hyper-
bolic equations. The only complication that
arises concerns higher order schemes in which the
flw formula takes a slightly more general form

where uL and uR denote states obtained from
higher order reconstruction and extrapolation.
For example the extrapolation formulas

would require having values of the solution gra-
dient &U at subdomain boundaries. A one-
sided approximation could be made but would
lead to an inconsistency in residuals at mesh
vertices distance-1 from subdomain boundaries.
The alternative is to compute numerical gradi-
ents in each subdomain followed by at exchange
at subdomain boundaries as shown in Figure 3.5.
When gradient data is exchanged in this way, the
final solution obtained in each subdomain will be
identical to a single domain computation.

3.1.6 Numerical Results for Additive
and Multiplicative Schwarz Iter-
ation

The following paragraphs present sample
Schwarz calculations for the inviscid and vis-

= 9 . 9 1

Figure 3.5: Strategy for exchanging boundary
gradients prior to flux computation.

2.4.2. In these calculations, we will consider
overlap distances of 1,2, and 3 as partially d e
picted in Figures 3.6 and 3.7. Note that we have
not included a "coarse space" correction to the
Schwarz method. Consequently, we expect to
see a degradation in the method as the number
of partitions increases.

Figure 3.6: A triangulated and partitioned do-
main exhibiting distance-l overlap

Test Case 1 (Inviscid Flow)

Using the mesh and flow conditions given in
Section 2.4.1 inviscid flow was computed about
the multi-element airfoil geometry. Figures 3.8-
3.11 graph convergence histories for multiplica-
tive and additive Schwarz iterations.

cous flow test cases given in Sections 2.4.1 and Each graph contains data for overlap distances

7-29

Figure 3.7: A triangulated and partitioned do-
main exhibiting distance2 overlap

schwan Iterations

. - 1 ._ * ** i
........................ 4

i i ! i

20 40 60 80

i AA 1
i ._ 1 -i

schwan Iteratiom

Figure 3.8: Case 1 Inviscid Flow. Variation in Figure 3.10: Case 1 Inviscid Flow. Variation
Overlap For Multiplicative Schwarz with 1st or- in Overlap For Additive Schwarz with 1st order
der discretization. discretization.

of 1,2, and 3 and domains partitioned into 2 and each subdomain problem need only be solved to
8 subdomains. Using a variant of the unipro- some reasonable level of convergence. This re-
cessor algorithm described Chapter 2, each sub- sults in a tremendous savings in computation
domain problem is solved “exactly”. In reality, time. The graphs shown on the right represent

7-30

10 U) 30 40 50
Schwarz Iterations Multiplicative Schwan Iterations

~i~~~~ 3.11: case 1 hvisdd Variation in Figure 3.12: Residual history for Case 2 viscous
overlap For Additive Schwarz with 2nd order airfoil using multiplicative Schwarz iterations on
discretization. 4 partitions.

computations using the second order accurate
finite-volume scheme with linear reconstruction.
The graphs shown on the left represent compu-
tations using a first order accurate finite-volume
scheme which only requires distance-1 data on
the triangulation. The basic trends show a no-
ticeable degradation in the convergence rate with
increased partitioning and a mild improvement
with increased overlap.

Test Case 2 (Viscous Turbulent Flow)

Using the mesh and flow conditions given previ-
ously in Section 2.4.2 viscous turbulent flow was
computed about the multi-element airfoil geome-
try. Figure 3.12 graphs convergence histories for
computations using distance 1,2, and 3 overlap
on a 4 subdomain partitioning. The improve- -
ment with increased overlap is rather slight. In
Figures 3.14-3.18 the mesh and Mach number
contours for a subdomain near the leading edge

Figure 3.13: Mesh partition for multi-element
viscous flow computation.

of the main element are shown for Schwarz iter-
ations 1,3,5,7, and 40. Note that at iteration
7 the solution visually appears quite close to its
final value. Even so, the number of iterations gence is relatively large wh L compared to the
required to reach a comfortable level of conver- uniprocessor Newton scheme.

Figure 3.14: Snapshot of solution isomach con-

7-31

Figure 3.16: Solution isomach contour snapshots
tours at iteration 1.

-
at iteration 5 .

Figure 3.15: Solution isomach contour snapshots
at iteration 3. Figure 3.17: Solution isomach contour snapshots

at iteration 7.

3.2 Newton's Method with
Schwarz Preconditioning

CGSTAB methods. When used as a precondi-
Next we consider using the additive Schwarz tioner, some flexibility and compromises can be
precedure to precondition the GMRES and Bi- made which can lead to reduced execution times:

7-32

U

preconditioning matrices by neglecting off-
processor contributions to on-processor ma-
trix elements. We refer to this as “inexact
matrix restriction.”

3.2.1 Case 1 (Inviscid flow) Numerical
Results.

Using the mesh and flow conditions given in Sec-
tion 2.4.1, inviscid flow is computed on a 4 sub-
domain mesh using the Schwarz-type precondi-
tioning of GMRES(20) iterations. All compu-
tations were performed using a Newton matrix
corresponding to a CFL number of approx lo8.
Fimres 3.19 and 3.20 demonstrate the viability -
of using inexact matrix restriction. In addition,
this figure shows the degradation in convergence
due to the use of a lower order accurate precon-

Figure 3.18: Solution isomach contour snapshots
at final iteration.

ditioning matrix and the enhancement in conver-
gence with increased overlap. Figure 3.21 shows
the mild effect of increasing the number of mesh
subdomains (4,8,16).

1. Increased Sparsity Preconditioner. This is
a common technique for higher order dis-
cretization methods. In the oresent second
order finite-volume discretization, the Jaco-
bian matrix contains distance-2 nonzero en-
tries. For purposes of preconditioning only,
the Jacobian matrix associated with a lower
(first) order discretization is used.

2. Inexact Matrix Restriction. Exact matrix
restriction performs the task of extracting
local submatrices (a gather, scatter opera-
tion)

Ai = &ART. (3.41)

In some parallel implementations not all
data for this calculation is processor resi-
dent. This implies communication overhead
if an exact computation is to be achieved. In
the next section a 3-D parallel implementa-
tion is described in which the mesh contains

.......................

..........................

I

100 m 300
Matrix-Vector products

no overlap, yet through communication the
performs Schwarz preconditioning Figure 3.19: Convergence of GMRES(20). Effect

exactly of boundary fill strategies on 4 partition mesh
is sometimes referred to as “implicit” over- with unit Overlap.
lap. Using implicit overlap, a compromise
is possible in the formation of subdomain

distance-2 overlap.

1-33

on a 4 subdomain mesh using the Schwarz-
type preconditioning and GMRES(30) itera-
tions. All computations were performed us-
ing a Newton matrix corresponding to a CFL
number of lo8. Figure 3.22 shows the result-
ing convergence histories for the GMRES calcu-
lation using single and 4 partitions as well as
distance-1 and distance2 preconditioning matri-
ces. The distance2 preconditioning works very
well for this problem. The distance-1 precondi-
tioning initially reduces the matrix residual norm
rapidly but then reverts to a much slower rate of
convergence.

1

10q0 100 200 300 400
Matrix-Vector Products

Figure 3.20: Convergence of GMRES(20). Effect
of increasing overlap.

!
1

50 100 150 200

Matrix-Vector Prcducts

Figure 3.21: Convergence of GMRES(2O). Effect

!
! ~ 5

lo! i o lb I50 h 250
Matrix-Vector Prcducts

Figure 3.22: Case 2 (viscous flow). Convergence
of GMRES(30). Effect of increasing number of
partitions, unit overlap

3.3 Some 3-D Computations
on the IBM SP2

of increasing number of partitions, unit overlap, our current platform for
distance 2 preconditioning

computation at
the NASA Ames Research Center is the IBM SP2
computer. The current configuration consists of
160 rack-mounted IBM 590 workstations with

Case 2 (Viscous flow) Numerical total memory CaPadtY exceeding 20 &abYtes.
Results. Each processor has a peak theoretical speed of

250 megaflops. For these computations a sin-
Using the mesh and flow conditions given in Sec- gle processor attains a sustained speed of about
tion 2.4.2, viscous turbulent flow is computed 55 megaflops. The processors are interconnected

3.2.2

7-34

via a fast network switch with measured band-
width of approximately 33 megabytes/second
and a measured latency of about 45 microsec-
onds. For maximum portability MPI message
passing protocol has been chosen for implemen-
tation of the parallel Newton algorithms.

The overall strategy in the parallel implemen-
tation is to reduce the entire algorithm to a se-
quence of steps requiring only distance-one in-
formation on the triangulation. The greatly
simplifies the implementation of the algorithm
while still replicating uniprocessor results. The
implementation contains several algorithmic ele-
ments. Each of these elements will be described
in the following sections and elucidated using the
realistic example of fluid flow over a multiple-
component wing geometry. The wing geometry,
symmetry plane mesh, and Mach contours at a
midspan cutting plane are shown in Figure 3.23.

More precisely, mesh volumes (tetrahedra, hex-
ahedra, prisms, etc) lie entirely on a given parti-
tion, triangulation vertices are repeated on par-
tition boundaries, and control volumes for the
finite-volume scheme span partition boundaries.
The situation is depicted in Figure 3.24. In
general we find that the spectral partitioning
method outperforms the others but at a higher
partitioning cost. Figure 3.25 shows the mesh
subdivisions (bold lines) induced by a spectral
partitioning on the midspan cutting plane.

Figure 3.24: Portion of mesh spanning partition
boundary showing control volume subdivision.

Figure 3.23: Inviscid flow M , = 2 0 , (2 = 0 over
a multiple-component wing geometry (600,000 Figure 3.25: Mach Contours and Partition
degrees of freedom). Boundary (bold lines).

Mesh Part i t ioning

In the 3-D parallel algorithm, the mesh is (I priori

Computa t ion of t h e Explicit Residual a n d
Reconstruction Gradients

partitioned into N nonoverlapping subdomains, For control volumes completely contained within
each of which resides on one of N processors. a single partition domain, the calculation of the

residual is identical to the uniprocessor compu-
tation. For the control volumes subdivided by
partition boundaries, integral conservation im-
plies that

(3.42)
In Figure 3.24, Ro and RI correspond to the
control volume portions on processors 0 and 1
respectively such that R = Ro U 01. There-
fore residuals can be computed on a processor-
by-processor basis followed by an exchange and
sum of residuals on interprocessor boundaries.
This yields results identical to that obtained on
a uniprocessor mesh. The least-squares recon-
struction technique also extends in a similar way
if a bit mask is assigned to all edges in the mesh
so that edges lying on processor boundaries con-
tribute only once to the accumulation formulas.

The GMRES Algorithm

The GMRES algorithm requires three basic op-
erations: vector inner products, matrix-vector
products, and preconditioning. The parallel im-
plementation of each of these is described below.
In our implementation of GMRES all processors
solve the same small least-squares problem. This
redundancy is of minor consequence.

Vector Inn er Products

Redundancy of boundary vertices in vector in-
ner products is eliminated with a mask bit p r e
assigned to each vertex. The actual inner prod-
uct is calculated by a local masked inner prod-
uct followed by a global summation reduction
(M P I X E D U C E) .

Matrix-Vector Products

Previously, we discussed several strategies foI
computing matrix-vector products in the unipro-
cessor case. If Frkhet approximate derivatives
are used, then the procedure is straightforward
and uses exactly the same communication steps
needed in computing the explicit residual. If ex-
act matrix-vector products are desired, we store
only the matrix associated with the distance-
one neighbors on the triangulation and compute

7-35

the remaining terms in a matrix-free way as dis-
cussed in Chapter 2.

Processor Local ILUfO’I Preco n ditioni ng

Our preconditioning matrix for the GMRES
solver is based on the Jacobian matrix of the
first-order accurate spatial discretization. This
matrix has nonzero entries placed at distance-
one locations in the connectivity graph. In a de-
parture from the uniprocessor code, we compute
and store on a processor nonzero entries in the
matrix associated with mesh vertices residing on
that processor. As a second step, the diagonal
matrix blocks corresponding to interprocessor
boundary vertices are exchanged and summed.
This yields diagonal block entries in the result-
ing processor local matrix that are identical to
the corresponding uniprocessor matrix. At the
cost of increased interprocessor boundary vertex
communication, all processor local matrix entries
could be made identical to the uniprocessor ma-
trix entries. The processor local matrix is ILU
factored and used for preconditioning GMRES
iterations. If these matrix entries are retained
then a unique value must be obtained from a
linear combination of the multiple computed val-
ues. Our experience has shown that the local
processor preconditioning does not significantly
impact the effectiveness of the ILU precondition-
ing. In Figure 3.26, we show the convergence of
GMRES(12) with local ILU(0) preconditioning
on 16, 32, and 64 processors for the multiple
component wing calculation at a CFL number
of about 20000.

Keep in mind that this departure from the
uniprocessor algorithm only affects the GMRES
convergence and not the convergence of New-
ton’s method. Figure 3.27 shows the couver-
gence history of the Newton scheme for the first
and second order accurate spatial discretization
schemes.

3.3.1 Scalability

The scalability of the current parallel algorithm
on the IBM SP2, while not excellent is certainly
acceptable. This is particularly true since the
parallel algorithm retains the favorable qualities

7-36

i [i

10 20 M
GMRES(l2) Iterations

Figure 3.26: GMRES Iterations (restarts) re-
quired.

......... .- I ..

Global Iterations

Figure 3.27: Convergence History for Inviscid
Multiple Component Wing Case (16 Processors)

of the uniprocessor algorithm, such as Newton-
like convergence. Furthermore, because the par-
allel algorithm makes very few compromises in
implementing the uniprocessor algorithm, the
primary contribution to the degradation of scala-
bility is the time taken by interprocessor commu-
nication. This implies that the scalability would
be better on parallel computers with faster in-

Table 3.1: Wallclock Time in Minutes for the
Multiple-Component Wing Calculation

I # Procs I First Order I Second Order

64 15.6 55.0

terprocessor communication. Figure 3.28 shows

..
16 24 32 40 48 56 ai

Number of F’rocessors

Figure 3.28: Relative speedup of parallel com-
putations using 16, 32, and 64 processor. Each
speedup is normalized by the 16 processor value.

the relativc speedup of computations on the IBM
SP2 for 16, 32, and 64 processors, for both the
first order and second order schemes. Once
again, the problem being solved is the inviscid
flow about a multiple component wing, as de-
scribed above. The speedups are normalized by
the 16 processor value, since the memory reqnire-
ments made 16 processors a minimum require-
ment to run the problem. The Table 3.1 shows
the total wallclock time in minutes taken by the
runs corresponding to Figure 3.28. In each case
the second order scheme takes roughly 3.5 times
as long as the first order scheme.

1-31

3.3.2 3-D Parallel Computation Re- tion, the turbulence model equation is solved us-
sults ing only first order advection. This is a common -

procedure used to increase robustness, even in

bulent viscous computation about the multiple fully coupled with the flow equations in cornput-
component wing described above. The Mach ing the Jacobians. This insures that Newton's
number of the run is 0.2, with a Reynolds num- method is approached at large timesteps even
ber of 5 Million. The angle of attack is 8'. For for turbulent computations~
this run, 64 processors are used' To minimize
storage, the Jacobian matrices are stored using on a cutting plane placed at approximately mid-
single precision (32 bits on the SP2), although
all floating point Operations are still performed
in double precision.

roughly 400,000 vertices and over 2,000,000
tetrahedra. Because of the need to resolve the
turbulent boundary layer, the mesh is highly
stretched near the wall, with cell aspect ratios
of more than 10,000. The mesh on the center-
line plane is seen in Figure 3.29.

In this section we present for a tur- structured mesh codes. The turbulence model is

Figure 3.30 shows the resulting Mach contours

span. Note the qualitative agreement between
these results and those by the corre-
sponding two-dimensional computation shown in

The tetrahedral mesh about the body has Chapter 2, albeit at a different angle of attack.

Figure 3.30: Mach Contours on the midspan cut-
ting plane.

In Figure 3.31, contours of the eddy viscosity-
like turbulence parameter 17 defined earlier are
depicted on the mid-span cutting plane. Note

~i~~~ 3.29: viscous turbulent flow (M ~ = the high levels generated downstream of the
. 2 0 , ~ = 50, R~ = 5 M a o n) over a multiple- main wing element over the aft flaps.
component wing. Mach contours axe shown on Presently, this Computation takes about 10
the midspan cutting plane. minutes per step, and about 80 steps to con-

verge to steady-state (a relatively large num-
ber for Newton's method). This is due to the

The Spalart and Allmaras turbulence model slow development of turbulence over the wing.
[SA921 is used to simulate the effect of turbulence This situation is likely to improve in the near
on the mean flow equations. Although the basic future, as we refine our technique for approaeh-
flow equations are solved using linear reconstruc- ing steady-state and compute on a sequence of

7-38

., ._. . ..

Figure 3.31: Turbulence quantity contours show-
ing the buildup of turbulence over the aft flap.

coarser meshes to accelerate the removal of the
initial transient.

7-39

Bibliography

[Bar871

[Bar911

[Bar941

[B ar951

[BB90]

[BJ89]

[BS93]

T. J. Barth. Analysis of Implicit
Local Linearization Techniques for
TVD and Upwind Algorithms. Tech-
nical Report AIAA 87-0595, Reno,
NV, 1987.

BS941

T. J. Barth. A Three-Dimensional
Upwind Euler Solver of Unstruc-
tured Meshes. Technical Report
AIAA 91-1548, Honolulu, Hawaii,
1991.

[CM691

[CM941 T. J. Barth. Aspects of Unstructured
Grids and Finite- Volume Solvers for
the Euler and Navier-Stokes Equa-
tions, March 1994. von Karman In-
stitute Lecture Series 1994-05.

T. J. Barth.
tion for Isotropic and Stretched Ele-
ments. Technical Report AIAA 95-
0213, Reno, NV, 1995.

Steiner Triangulu- [czg31

B. S. Baldwin and T. J. Barth. A
One-Equation Turbulence Tmnsport
Model for High Reynolds Number
Wall-Bounded Flows. Technical Re- [DW89]
port TM-102847, NASA Ames Re-
search Center, Moffett Field, CA,
August 1990.

T. J. Barth and D. C. Jespersen. The
Design and Application of Upwind [DW92]
Schemes on Unstructured Meshes.
Technical Report AIAA 89-0366,
Reno, NV, 1989.

S.T. Barnard and H.D. Simon. A
fast multilevel implementation of re-
cursive spectral bisection. In Proc. [EW94]
6h SIAM Conf. Parallel Proc. for

Sci. Comp., pages 711-718. SIAM,
1993. I

P. Brown and Y. Saad. Convergence
Theory of Nonlinear Newton-Krylov
Algorithms. SIAM J. Optimization.,
4 ~297-330, 1994.

E. Cuthill and J. McKee. Reducing
the Band Width of Sparse Symmet-
ric Matrices. Proc. ACM Nat. Con-
ference, pages 157-172,1969.

T. Chan and Tarek P. Mathew.
Domain Decomposition Algorithm.
Technical Report CAM 94-2, UCLA
Department of Mathematics, Jan-
uary 1994.

T. Chan and J. Zou. Addi-
tive Schwarz Domain Decomposi-
tion Methods for Elliptic Problems
on Unstructured Meshes. Techni-
cal Report CAM 93-40, UCLA De-
partment of Mathematics, Decem-
ber 1993.

M. Dryja and O.B. Widlund. Some
domain decomposition algorithms
for elliptic problems. pages 273-291.
Iterative Methods for Large Linear
Systems, 1989.

M. Dryja and O.B. Widlund. Ad-
ditive schwarz methods for elliptic
finite element problems in three di-
mensions. Fifth Conf. on Domain
Decomposition Methods for Partial
Differential Equations, 1992.

S. Eisenstat and H. Walker. Globally
Convergent Inexact Newton Meth-

7-40

[Fri58]

[Geo7 11

[GJS76]

[GL81]

[HL95]

[Joh92]

[P s L90]

ods. SIAM J. Optimization., 4:393- [Roe811
422, 1994.

K.O. Friedrichs. Symmetric positive
linear differential equations. Comm.
Pure and Appl. Math., 11:333-418, [Ros68]
1958.

J.A. George. Computer implemen-
tation of the finite element method.
Technical Report STAN-CS-71-208, [SA921
Computer Science Dept., Stanford
University, Stanford, CA, 1971.

M. Garey, D. Johnson, and L. Stock-
meyer. Some simplified np-complete
graph problems. Theoret. Comput. [Sch69]

Sci., 1~237-267, 1976.

[Simgl]
J. A. George and J. W. Liu. Com-
puter Solution of Large Sparse Posi-
tive Definite Systems. Prentice Hall,
Englewood Cliffs, New Jersey, 1981.

B. Hendrickson and R. Leland. An
Improved Spectral Graph Partition-. pmig2]
ing Algorithm for Mapping Parallel
Computations. SIAM J. Sci. Stat.
Comput., 16(2):452-469,1995.

Z. Johan. Data Parallel Fa'-
nite Element Techniques for Large- [SS861
Scale Computational Fluid Dynam-
ics. PhD thesis, Stanford Univer-
sity, Department of Mechanical En-
gineering, 1992.

A. Pothen, H. D. Simon, and K. P. [Tal941
Liou. Partitioning Sparse Matrices
with Eigenvectors of Graphs. SIAM
J. Matrix Anal. Appl., 11(3):430-
452, 1990.

P. L. Roe. Approximate Riemann
Solvers, Parameter Vectors, and Dif-
ference Schemes. J. Comput. Phys.,
43, 1981.

R. Rosen. Matrix Band Width Min-
imization. pages 585-595. Proceed-
ings of the ACM National Confer-
ence, ACM, 1968.

P. Spalart and S. Allmaras. A
One-Equation Turbulence Model for
Aerodynamic Flows. Technical Re-
port AIAA 92-0439, Reno, NV,
1992.

H.A. Schwarz. Uber einige abbil-
dungensaufgaben. J. Reine Angew.
Math., 70:105-120, 1869.

H. D. Simon. Partitioning of
Unstructured Problems for Pamllel
Processing. Technical Report RNR-
91-008, NASA Ames Research Cen-
ter, Moffett Field, CA, 1991.

B. F. Smith. An optimal domain de-
composition preconditioner for the
finite element solution of linear elas-
ticity. SIAM J. Sci. Stat. Comput.,
13 ~364-378,1992.

Y. Saad and M. H. Schultz. GM-
RES: A Generalized Minimal Resid-
ual Algorithm for Solving Nonsym-
metric Linear Systems. SIAM J. Sci.
Stat. Comp., 7(3):856-869, 1986.

P. Le Tallec. Domain decomposition
methods in computational mechan-
ics. Comp. Mech. Adv., pages 1-220,
1994.

[VDMG92] W. Valarezo, C. Dominik,
A. Quateroni. Domain Decom- R. McGhee, and W. Goodman. High
position Method for the Numeri- Reynolds Number Confguration De-
cal Solution of Partial Difleren- velopment of a High-Lift Airfoil.
tial Equations. Technical Report Technical Report AGARD Meeting
UMSI90/246, Supercomputer Insti- In High-Left Aerodynamics 10-01,
tute, University of Minnesota, 1990. 1992.

7-4 1

[vdV92] H. van der Vorst. Bi-CGSTAB:
A Fast and Smoothly Converging
Variant of Bi-CG for the Solu-
tion of Nonsymmetric Linear Sys-
tems. SIAM J. Sei. Statist. Corn-
put., 13:631-644, 1992.

[vL79] B. van Leer. Towards the Ultimate
Conservative Difference Schemes V.
A Second Order Sequel to Go-
dunov’s Method. J. Comput. Phys.,
32, 1979.

V. Venkatakrishnan, H. D. Simon,
and T. J. Barth. A MIMD Imple-
mentation of a Parallel Euler Solver
for Unstructured Grids. J. Super-
cornput., 6:117-137, 1992.

[VSB92]

8- 1

HIGH PERFORMANCE SIMULATION OF COUPLED
NONLINEAR TRANSIENT AEROELASTIC PROBLEMS

Charbel Farhat
Department of Aerospace Engineering Sciences

and Center for Aerospace Structures
University of Colorado at Boulder
Boulder, CO 80309-0429, U. S. A.

SUMMARY

Aeroelasticity studies t h e mutual interaction
between aerodynamic and elastic forces for a n
aerospace vehicle. A flexible aircraft s t ructure
immersed in a flow is subjected to surface pres-
sures induced by t h a t flow. If t h e incident
flow or boundary conditions are unsteady, these
pressures become time-dependent. Moreover,
structural dynamic motions induced by these
pressures in t u r n change t h e boundary condi-
tions of t h e flow. T h e accurate prediction of
aeroelastic phenomena such as divergence a n d
flutter is essential in t h e design of high perfor-
mance and safe aircrafts. This prediction re-
quires solving simultaneously t h e coupled fluid
and s t ructural equations of motion. Therefore,
numerical aeroelastic simulations are in general
resource intensive. They belong to the fam-
ily of Grand Challenge engineering problems,
and as such, can benefit from t h e parallel pro-
cessing technology. This paper highlights some
important aspects of nonlinear computational
aeroelasticity. These include a three-field ar-
bi t rary Lagrangian-Eulerian (ALE) finite ele-
ment/volume formulation for coupled transient
aeroelastic problems, a rigorous derivation of
geometric conservation laws (GCLs) for flow
problems with moving boundaries and unstruc-
tured deformable meshes, t h e design of a family

of staggered procedures for t h e efficient solu-
tion of t h e coupled fluid/structure partial dif-
ferential equations, and fast parallel domain
decomposition solvers. T h e derivations of the
GCLs are presented for A L E based finite vol-
ume formulations as well as A L E based stabi-
lized finite element methods. T h e impact of
these GCLs on t h e numerical algorithms used
for time-integrating t h e semi-discrete equations
governing t h e s t ructural and fluid mesh mo-
t ions is also discussed. T h e solution of the
governing three-field equations with mixed im-
plicit/implicit and explicit/implicit staggered
procedures are analyzed with particular ref-
erence t o accuracy, stability, subcycling, dis-
t r ibuted computing, 1/0 transfers, and paral-
lel processing. A general and flexible frame-
work for implementing t h e parti t ioned analysis
of coupled transient aeroelastic problems with
non-matching fluid/structure interfaces on het-
erogeneous and /o r parallel computational plat-
forms is also described. This framework and the
staggered solution procedures are demonstrated
with examples ranging from t h e numerical in-
vestigation on a n iPSC-860 massively parallel
processor of t h e instability of flat panels with
infinite aspect ratio in supersonic airstreams,
to t h e solution on t h e Paragon XP/S, Cray

I

Paper presented in an AGARD-FDP-VKI Special Course on “Parullel Computing in CFD”, held at the VKI, Rhode-Saint-GenPse. Belgium.
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807.

8-2

T3D and IBM SP2 parallel systems of three-
dimensional wing response problems in t h e
transonic regime.

1. INTRODUCTION

Aeroelasticity is t h e s tudy of t h e effect of aero-
dynamic forces on elastic bodies. Because these
effects have a great impact on performance
and safety issues, aeroelasticity has rapidly be-
come one of t h e most important considerations
in aircraft design. T h e basic mechanism of a
fluid/structure interaction phenomenon can be
simply explained as follows. T h e aerodynamic
forces acting on an aircraft depend critically on
t h e a t t i tude of i ts lifting body with respect to
t h e flow, which in t u r n depends on t h e flexibil-
ity of t h e aircraft. Therefore, t h e elastic defor-
mations of a s t ructure play a n important role
in determining i ts external loading. Since t h e
magnitude of t h e aerodynamic forces cannot be
known until t h e elastic deformations are first
determined, i t follows t h a t t h e external load
cannot be evaluated until t h e coupled aeroelas-
t ic problem is solved.

In general, aeroelastic problems are di-
vided into: (a) stability, and (b) response prob-
lems. Each of these two classes can be further
classified into steady-state or static problems
in which t h e inertia forces may be neglected,
and unsteady, or dynamic, or transient prob-
lems which are characterized by t h e interplay
of all of t h e aerodynamic, elastic, and inertia
forces. Throughout this paper, we focus exclu-
sively on dynamic aeroelasticity problems.

If one notes t h a t the external aerodynamic
forces acting on a n aircraft s t ructure increase
rapidly with t h e flight speed, while t h e in-
ternal elastic and inertial forces remain essen-
tially unchanged, one can easily imagine t h a t
there may exist a critical flight speed at which
t h e s t ructure becomes unstable. Such insta-
bility may cause excessive structural deforma-
tions a n d may lead t o t h e destruction of some

components of t h e aircraft. Panel or wing Put-
ter, which is a sustained oscillation of panels or
wings caused by t h e high-speed passage of air
along t h e panel or around t h e wing, is an ex-
ample of such instability problems. Bufleting,
which is t h e unsteady loading of a s t ructure by
velocity fluctuations in t h e oncoming flow, is
another important example. Because of the po-
tentially disastrous character of these phenom-
ena, aircraft f lutter and buffeting speeds must
be well outside t h e flight envelope. I n many
cases, this requirement is t h e determining fac-
tor in t h e design of wings and tail surfaces.

An aeroelastic response problem can as-
sociate with a stability problem. For exam-
ple, if a control surface of a n aircraft is dis-
placed, or a turbulence in t h e flow is encoun-
tered, t h e response to be found may be the
motion, t h e deformation, or t h e stress s ta te in-
duced in t h e elastic body of t h e aircraft. When
t h e response of t h e s t ructure to such a n input
is finite, t h e s t ructure is stable and flutter will
not occur. When t h e s t ructure flutters, i ts re-
sponse to a finite disturbance is unbounded.
However, a n aeroelastic response problem can
also associate with a performance rather t h a n
a stability problem. For example, i t is well-
known t h a t for transonic flows, small variations
in incidence may lead to considerable changes
in t h e pressure distribution, shock position, and
shock strength. It is also well-known t h a t there
are some margins within t h e Mach number and
incidence t h a t can be varied around t h e de-
sign condition of a supercritical airfoil without
a serious deterioration of t h e favorably low-drag
property of t h e shock-free flow condition [l].
Determining whether a n oscillating airfoil is
within or outside these margins requires deter-
mining i ts aeroelastic response.

Past l i terature on aeroelasticity is mostly
devoted to linear models where t h e motion of
a gas or a fluid past a s t ructure , t h e defor-
mation and vibration of t h a t structure, and
more importantly t h e interaction phenomenon

8-3

equations of dynamic equilibrium of t h e aircraft
elastic s t ructure can be writ ten as

Mq+Dq+Kq = -X(Aiq(t)+Azq(t))+Fo(t)
(2)

where a dot superscript denotes a time deriva-
tive, a n d M, D, and K are respectively the
symmetric positive mass, damping, and stiff-
ness matrices associated with t h e discretized
s t ructure - for example, b u t not necessarily,
via finite elements. Eq. (2) above can be rear-
ranged as follows

Mq+ (D + XAz)q+ (K + XAi)q = Fo(t) (3)

itself are described with linear mathematical
concepts [2,3]. Even experimental results are
often interpreted by assuming a linear behavior
of t h e physical model. However, just as swim-
ming in a pool is a prerequisite for swimming
in a n ocean, understanding linear aeroelastic-
i ty problems is essential for solving nonlinear
ones. Next, we summarize t h e linear theory of
aeroelastici ty.

1.1. Linear Theory of Aeroelasticity

T h e fundamental assumptions behind t h e linear
formulation a n d solution of transient aeroelastic
problems are

0 t h e s t ructure is elastic.

0 it undergoes a harmonic motion with small
displacement amplitudes.

t h e flow can be approximated by a lin-
earized theory.

0

Under t h e above conditions, given a free-
stream Mach number M,, t h e aerodynamic
forces acting on a n aircraft elastic s t ructure im-
mersed in a n unsteady flow can be written as

where X(Aiq(t) + Azq(t)) represents t h e aero-
dynamic forces generated by t h e transient mo-
t ion of t h e flexible structure, and Fo(t) rep-
resents t h e unsteady aerodynamic forces t h a t
would have been generated if t h e aircraft had
a rigid rather t h a n elastic structure. Here, t
denotes time, X is t h e dynamic pressure, A1
and A2 denote t h e linear aerodynamic opera-
tors accounting for t h e surrounding flow a n d
computed for a given M , and a unit dynamic
pressure, a n d t h e time-dependent vector q(t)
represents t h e discretized structural displace-
ments. Because these displacements are as-
sumed to have small amplitudes, t h e governing

If t h e flow is steady, Fo does not vary with
time, and t h e solution of t h e above problem can
be decomposed into a steady a n d unsteady com-
ponents

q(t) = q" + q"(t) (4)

(K+XAi)q" = Fo (5)

where q8 is solution of

and q"(t) is solution of

Mq"+(D+XAz)q"+(K+XAi)q" = 0 (6)

Eq. (5) is t h e governing equation for static
aeroelasticity, where t h e central problem is t h e
effect of elastic deformation on t h e lift distribu-
tion over lifting surfaces such as airplane wings
a n d tails. At higher speeds, t h e effect of elas-
t ic deformation can become important enough
to cause a wing to become unstable, to ren-
der a control surface ineffective, or even worse
to reverse t h e sense of control. T h e first phe-
nomenon is known as divergence, a n d t h e last
as aileron reversal. Mathematically, t h e di-
vergence speed can be obtained from t h e in-
vestigation of t h e values of X for which the
matrix (K + XA1) becomes singular. On the
other hand, Eq. (6) is t h e governing equation
of aeroelastic dynamic stability (or instability).
T h e flutter dynamic pressure corresponds to the
critical value A"' beyond which Eq. (6) has a
solution q"(t) t h a t grows continuously in time.
This value A"' of t h e dynamic pressure defines

8-4

the stability limit of t he solution of Eq. (6).
Beyond this critical value, t he elastic s t ructure
will continuously extract energy from t h e sur-
rounding flow and become dynamically unsta-
ble. For dynamic pressure values below A"', t he
s t ructure will release energy to the surrounding
flow which will act a s a damper.

If t h e flow is unsteady, Eq. (3) becomes
the governing equation for t he dynamic aeroe-
lastic response problem, and i ts homogeneous
counterpar t

M i + (D + AA2)q + (K + AAi)q = 0 (7)

becomes the governing equation for t he aeroe-
lastic dynamic stability problem. Note t h a t
each of Eq. (3) and Eq. (7) represents a system
of n coupled second-order differential equations,
where n is t he size of t he square matrices M,
D, K, A1 and A2, and is equal to t h e number
of structural degrees of freedom (d.0.f.) intro-
duced in t h e computational structural model.
For a detailed structural wing model or a com-
plete aircraft configuration, n can be as large as
a hundred thousand, and therefore solving di-
rectly Eq. (3) for t he aeroelastic response q(t)
or Eq. (7) for t h e flutter dynamic pressure A"'
becomes a formidable task. For this reason, Eq.
(3) and/or Eq. (7) are usually projected onto
a n m-dimensional subspace (m << n) repre-
sented by i ts basis \km = &, ..., $,I.
Th is basis is called a modal basis because each
column vector $j is a n eigenvector of t he gen-
eralized symmetric eigenvalue problem

and therefore each $j is a mode shape of
t he structure. T h e above generalized sym-
metric eigenvalue problem admits n eigenpairs
(U!, $j}jz; where wj is t h e circular frequency
associated with t h e mode shape +j. This prob-
lem arises when the conservative structural sys-
tem

Mq+Kq = 0 (9)

is considered, and harmonic solutions of t he
form q(t) = $e'"' are sought. Here and
throughout this section, i denotes t h e complex
number satisfying i2 = -1. If t he $j eigen-
vectors are mass normalized, from Eq. (8) and
the symmetry properties of M and K, i t follows
t h a t

where t h e superscript T designates t h e trans-
pose operation, and I, denotes t h e m x m iden-
t i ty matrix. Hence, projecting q(t) onto the
modal basis !Pm

subst i tut ing t h e above expression in Eq. (3),
premultiplying t h a t equation by !Pz, and ex-
ploiting t h e relationships given in Eqs. (10)
leads to t h e modal equations of equilibrium

and y(t) is known as t h e vector of generalized
or modal coordinates. If t he so-called Rayleigh
structural damping is used (D = aM 4- bK,
a 2 0, b 2 0), or a modal damping is assumed
for t he structure, D, also becomes a diagonal
matrix. However, Ai, and A2, are in general
m x m full matrices.

In summary, even though projecting Eq. (3)
and/or Eq. (7) onto t h e modal basis \k,

8-5

does not completely uncouple the n second-
order differential equations because of the pres-
ence of the aerodynamic operators A1 and A2,
this procedure is still attractive because it re-
duces the number of coupled ordinary differen-
tial equations to be solved from n to m << n.

If an aeroelastic response problem is in-
vestigated, Eq. (12) is usually solved for y(t)
using a numerical time integration algorithm.
Then, the structural displacement field q(t) is
recovered by making use of Eq. (11). However,
it should be noted that Eq. (11) can also be
written as

which highlights the fact that q(t) is a trun-

cated modal solution of the original Eq. (3).
Aside from time discretization errors, the accu-
racy of such a solution depends on the impor-
tance of the contributions to the exact response
of the structure of the truncated mode shapes
or eigenvectors. In other words, it depends on
the load distribution of the aircraft and the fre-
quency content of the aeroelastic response of
the structure. For wing flutter problems, the
behavior of the structure is often dominated by
low frequency dynamics, and therefore is well
represented by the first few modes. In that
case, only the first few eigenvectors t,hj are usu-
ally kept in the modal basis *m, and the trun-
cated modal superposition method delivers an
accurate solution of the dynamic aeroelastic re-
sponse problem.

On the other hand, if an aeroelastic dy-
namic stability problem is investigated, the ho-
mogeneous form of Eq. (12) is solved for the
flutter dynamic pressure A"'. One methodol-
ogy for obtaining A"' goes as follows. Let V,
denote the free-stream velocity (flight speed),
and pw the free-stream air density. We have

(15)
1
2 " "

x = - p v2

When the structure undergoes a harmonic mo-
tion characterized by a circular frequency w, the
linear aerodynamic operators A1 and A2 be-
come a function of the reduced frequency &

w & = -
V"

If structural damping is neglected, seeking a so-
lution of the homogeneous form of Eq. (12) of
the form

leads to

..

(18)
Note that the first of Eqs. (17) can be rear-
ranged as

(19)
y(t) = y e - -awt e i w t

which shows that the homogeneous form of
Eq. (12) will have a stable solution if and only
if all of the solutions (3 of Eq. (18) have a pos-
itive real part a 2 0. Therefore, cr = 0 is
the stability limit, and the sought after flut-
ter dynamic pressure A"' corresponds to the
critical value V g of the flight speed, or the
critical value E"' = G/Vz of the reduced fre-
quency, for which Eq. (18) admits a real solu-
tion 6 = w (l + i x 0) = W.

From the second of Eqs. (17), it follows

8-6

Hence, substituting Eq. (20) into Eq. (18),
making use of the third of Eqs. (16), and ex-
ploiting the assumption lcrl << 1 finally gives

which shows that (1 - i2cr)/u2 is a complex
eigenvalue of a matrix Z, that, for a fixed free-
stream air density p,, depends only on the re-
duced frequency i. Therefore, the flutter dy-
namic pressure A"' = p,V,z/2 can be found
by sweeping over the values of IC, and solving
for each i the eigenvalue problem (21). Among
all possible critical values of the reduced fre-
quency 5"' for which a real eigenvalue l/uZc' is
found - and therefore for which a vanishes -
the flutter speed is given by the smallest value
V: = wcr/kc', and the flutter dynamic pres-
sure by the corresponding 'A"' = p,Vg'/2.
This procedure is known as the "k" method,
or the "k-sweeping" method. It is implemented
in many industrial codes (see, for example, [4]).
It is accurate when the structure is less than
10% damped. When the structure has a higher
percentage of damping, other methods such as
the "p-k" method [5] can be used for finding the
flutter dynamic pressure A"'. Such methods are
in general more expensive than the "k" method
and are beyond the scope of this paper.

I

At this point, the reader should recall that
the linear aerodynamic operators AI and A2
are computed for a specified free-stream Mach
number, and therefore V g is also computed
for a specified M, (and a specified free-stream
air density p,). This implies that for each
value of M,, there exists a critical free-stream
speed of sound c z = Vg/M,, and that a
curve c z = c z (M ,) can be determined. The
intersection of this curve with the horizontal
line c z = 320m/s gives the critical free-stream
Mach number M z .

So far, the derivation of the linear aero-
dynamic operators A1 and A2 has not been
discussed. It has only been stated that a lin-
earized flow theory and a harmonic motion
of the structure with small displacement am-
plitudes are assumed. More precisely, A =
A1 + iGA2 can be computed using the doublet-
lattice method [6] in the subsonic regime, and
the potential gradient method [7], or the har-
monic gradient method [8], or the piston the-
ory [2] in the supersonic regime. In all cases,
the flow is assumed to be inviscid, irrotational,
and isentropic. In the transonic regime, the
mixed subsonic-supersonic flow patterns and
shock waves are such that there are no reliable
theoretical means for predicting the unsteady
aerodynamic forces. In that case, the linear
aeroelasticity theory simply breaks down. This
is most unfortunate because of the current re-
newed interest in transonic flight for both mili-
tary (F-16) and civil aircraft.

Besides transonic flights, there are many
other important cases where the linear aeroelas-
tic theory cannot be used for predicting the dy-
namic response or stability of an aircraft. These
include, to name only a few, problems where the
structure undergoes large displacements and/or
rotations - as an example, we note that the
maximum upward deflection of the wing of the
B52 bomber is 22 feet [2] - parachute dynam-
ics, bluff body oscillators, airfoil oscillations in
separated flow, buffeting, and high-G and high
angle of attack maneuvers such as those per-
formed by the X-31 aircraft. Some of these
and related problems are discussed in [9] where
emphasis is placed on the fundamental under-
standing of the nonlinear theory of interaction,
others are still unresolved. The pressing need
for solving and understanding all of these prob-
lems is the main motivation for designing a re-
liable nonlinear transient aeroelastic numerical
simulation capability.

1.2. Formulat ion of Coupled Nonlinear
Aeroe las t ic P r o b l e m s

Here, the structure is no longer restricted to a
harmonic motion with small displacement am-
plitudes. In principle, there is also no reason to
confine its constitutive modeling to that of an
elastic material. However, while aircraft struc-
tures can undergo large displacements and ro-
tations, they seldom experience large strains.
Therefore, the nonlinear modeling of the struc-
tural behavior can be limited to the proper ac-
counting of nonlinear geometric effects without
a serious loss of generality.

More importantly, the aerodynamic forces
acting on the structure are no longer predicted
here by the use of a linear aerodynamic oper-
ator because of the important limitations as-
sociated with such an approach and discussed
at the end of Section 1.1. Rather, these un-
steady forces are determined from the solution
of the compressible Euler equations when vis-
cous effects are neglected, and the solution of
the compressible Navier-Stokes equations oth-
erwise. Furthermore, no restriction is imposed
on the nature of the fluid/structure coupling,
at least in principle. This coupling is numeri-
cally modeled by suitable fluid/structure inter-
face boundary conditions. Clearly, this means
that the methodology described here for simu-
lating nonlinear transient aeroelastic problems
is based on the simultaneous solution of the gov-
erning nonlinear fluid and structure equations,
and as such, is computationally intensive and
can benefit from parallel processing.

One difficulty in handling numerically the
fluid/structure coupling stems from the fact
that the structural equations are usually formu-
lated with material (Lagrangian) co-ordinates,
while the fluid equations are typically written
using spatial (Eulerian) co-ordinates. There-
fore, a straightforward approach to the solution
of the coupled fluid/structure dynamic equa-
tions requires moving at each time-step at least

8-7

rhe portions of the fluid grid that are close to
the moving structure. This can be appropri-
ate for small displacements of the structure but
may lead to severe grid distorsions when the
structure undergoes large motion. Several dif-
ferent approaches have emerged as an alterna-
tive to partial regridding in transient aeroelastic
computations, among which we note the arbi-
trary Lagrangian/Eulerian (ALE) formulation
[lo-121, the co-rotational approach [13,14], dy-
namic meshes [15] which are closely related to
ALE concept, interpolation based methods [16],
and space-time formulations [17]. All of these
approaches treat a computational aeroelastic
problem as a coupled two-field problem.

However, a moving mesh (Fig. 1) can also
be viewed as a pseudo-structural system with
its own dynamics [18], and therefore, the cou-
pled transient aeroelastic problem can be for-
mulated as a three- rather than two-field prob-
lem: the fluid, the structure, and the dynamic
mesh (Fig. 2). The semi-discrete equations
governing this three-way coupled problem can
be written as follows:

M- d2 9 + f'"'(q) = f e z * (W (z , t) , z)
dt2

dt a d t
- d 2 x - d x - -
M - + D - + K x = Kcq

where x is the displacement OP position, depend-
ing on the context of the sentence of a moving
fluid grid point, W is the fluid state vector,
V results from the finite element/volume dis-
cretization of the fluid equations, F' is the vec-
tor of convective ALE fluxes that depend on the
fluid grid velocity, R is the vector of diffusive
fluxes, q is as before the structural displacement
vector, fSn' denotes the vector of internal struc-
tural forces that is equal to Kq in the linear
case, feZt the vector of external forces acting on

8-8

the structure, M is the finite element mass ma-
trix of the structure, M, D, and k are fictitious
mass, damping, and stiffness matrices associ-
ated with the fluid moving grid (Fig. 3) and con-
structed to avoid any parasitic interaction be-
tween the fluid and its grid, or the structure and
the moving fluid grid [18], and kc is a transfer
matrix that describes the action of the motion
of the structural side of the fluid/structure in-
terface on the fluid dynamic mesh [19]. For ex-
ample, M = D = 0, and K = K where K is
a rotation matrix corresponds to a rigid mesh
motion of the fluid grid around an oscillating
airfoil, and M = D = 0 includes as particu-
lar cases the spring-based mesh motion scheme
introduced in [15] and the continuum based up-
dating strategy advocated by several investiga-
tors (see, for example, [17]).

- -

- - - -R - R

- -

Fig. 3. A pseudo-structural tetrahedron
in a fluid mesh

Fig. 1. Moving and deforming fluid grid

Computational Domain

@ Fluid (far field)

Fig. 2. Three-field formulation

The first of Eqs. (22) is derived in details
in Section 2. The second of Eqs. (22) is the
standard nonlinear structural dynamics equa-
tion of equilibrium. The notation fe”‘(W(t),x)
is used to remind the reader that the external
forces acting on the structure include, among
others, the aerodynamic forces that are com-
puted from the knowledge of t h e fluid state
vector W and the motion and deformation of
the surface of the structure, which in turn con-
trols the motion x (t) of the fluid grid. Hence,
Eqs. (22) are fully coupled.

1.3. Obiectives and outline of this paper

Each of the three components of the three-way
coupled problem described by Eqs. (22) has dif-
ferent mathematical and numerical properties,
and distinct software implementation require-
ments. For Euler and Navier-Stokes flows, the
fluid equations are nonlinear. The structural
equations and the semi-discrete equations gov-
erning the pseudwstructural fluid grid system
may be linear or nonlinear. The matrices result-
ing from a linearization procedure are in general
symmetric for the structural problem, but they

8-9

are typically unsymmetric for the fluid prob-
lem. Morevoer, t he nature of t he coupling in
Eqs. (22) is implicit ra ther t han explicit, even
when the fluid mesh motion is ignored. T h e
fluid and the s t ructure interact only at their
interface, via t he pressure and viscous forces,
and the motion of t he physical interface. How-
ever, for Euler and Navier-Stokes compressible
flows, t h e pressure variable cannot be easily iso-
lated neither from the fluid equations nor from
the fluid s t a t e vector W. Consequently, the nu-
merical solution of Eqs. (22) via a fully coupled
monolithic scheme is computationally challeng-
ing and software-wise unmanageable.

Alternatively, Eqs. (22) can be solved
via a partitioned analysis or a staggered proce-
dure [20-231. This approach offers several ap-
pealing features including the ability t o use well
established discretization and solution methods
within each discipline, simplification of software
development efforts, and preservation of soft-
ware modularity.

Traditionally, nonlinear transient aeroelas-
t ic problems have been solved via the simplest
possible parti t ioned analysis whose cycle can
be described as follows: a) advance the struc-
tu ra l system under a given pressure load, b) up-
d a t e the fluid mesh accordingly, and c) advance
the fluid system and compute a new pressure
load [15,16,24-271. Occasionally, some investi-
gators have advocated the introduction of a few
predictor/corrector i terations within each cycle
of this three-step staggered integrator in order
t o improve accuracy [28], especially when the
fluid equations are nonlinear and treated im-
plicitly [as]. However, more efficient staggered
solution procedures can and should be devised.

T h e main objective of this paper is t o
present a computational framework for the mas-
sively parallel solution of t he three-way coupled
Eqs. (22) t h a t is being developed at the Uni-
versity of Colorado by the author and his co-
workers. This is certainly not t o imply t h a t

we are the only research group working on this
problem. However, we believe t h a t our com-
putational framework includes many innovative
ideas and unique capabilities t h a t a re worthy
discussing. For this purpose, t h e remainder of
this paper is organized as follows.

A t the heart of nonlinear transient aeroe-
lastic simulations is t he computation of un-
steady flow problems with moving boundary
conditions and dynamic unstructured meshes.
In this paper, we d o not discuss the state-
of-the-art of unsteady flow solvers, especially
t h a t their s ta tus seems t o be far from satis-
factory [30]. For this specific topic, we refer
t he reader t o references [30,31]. However, we
focus in Section 2 on the important issues of
geometric conservation laws (GCLs) which, in
the presence of dynamic meshes, impose im-
portant constraints on the algorithms employed
for time-integrating the semi-discrete equations
governing the fluid and dynamic mesh motions.
In particular, we address the problem of satis-
fying both displacement and velocity continu-
ity constraints between the s t ructure and fluid
mesh motions a t t he fluid/structure interface,
and the impact of this problem on the accuracy
and stability of t he time-integrator selected for
predicting the aeroelastic s t ructural response.
In Section 3, we present a broad family of stag-
gered solution procedures where the fluid flow
can be integrated using either a n implicit or a n
explicit scheme, and the s t ructural response is
advanced using a n implicit one. We address im-
portant issues pertaining t o numerical stability,
subcycling, accuracy vs. speed trade-offs, im-
plementation on heterogeneous computing plat-
forms, and inter-field as well as intra-field par-
allel processing. Next, we describe in Section 4
our particular two- and three-dimensional un-
steady flow solvers. In Section 5 , we discuss
the solution of t he s t ructural dynamics equa-
tions. Because our goal is t o handle linear as
well as nonlinear s t ructural dynamics problems,
we op t for a direct t ime integration method

8-10

rather t h a n t h e restrictive modal superposition
approach. We describe a substructure based
nonlinear t ime integration implicit algorithm
t h a t features second-order accuracy and uncon-
ditional stability. For scalability purposes, we
also adopt as a linearized solver the substruc-
tu re based preconditioned conjugate gradient
FETI method [32,33] equipped with the pro-
jection scheme presented in [34] for solving it-
eratively and efficiently systems with repeated
right hand sides. In general, the fluid and
s t ructure meshes have two independent repre-
sentations of t h e physical f luid/structure in-
terface, and d o not necessarily match a t t h a t
interface. We discuss th i s and other related
issues in Section 6 where we also describe
“Matcher” [35], a program for generating in
parallel t h e d a t a structures needed for handling
arbi t rary and non-conforming fluid/structure
interfaces in aeroelastic computations. In Sec-
tion 7, we t u r n t o t h e solution of the equations
governing the dynamic motion of t h e fluid grid.
In Section 8, we describe a unified and portable
approach for parallel fluid/structure computa-
tions t h a t is based on t h e mesh partitioning
paradigm. We also briefly discuss t h e contro-
versial topic of what constitutes a good mesh
parti t ion for parallel processing. In Section 9,
we illustrate our framework for computational
dynamic aeroelasticity with examples ranging
from t h e numerical investigation on an iPSC-
860 massively parallel processor of the instabil-
ity of flat panels with infinite aspect ratio in
supersonic airstreams, t o the solution on the
Paragon XP/S , Cray T3D and IBM SP2 paral-
lel systems of three-dimensional wing response
problems in t h e transonic regime. Finally, we
conclude this paper in Section 10.

REMARK 1: Some of t h e content of this
paper is based on recent publications by the
author a n d his co-workers. These publications
are indicated between [] at the beginning of
each section and wherever is appropriate.

2. GEOMETRIC CONSERVATION
LAWS 119,361

As stated earlier, the matrices Kc a n d K t h a t
appear in the third of Eqs. (22) are designed to
enforce continuity between t h e grid motion and
the structural displacement and /o r velocity a t
the moving fluid/structure boundary I ‘ F I S (t)

T h e first of Eqs. (22) involves both t h e po-
sition and velocity of the underlying fluid dy-
namic mesh. These entities are usually ob-
tained from the solution of t h e second and third
of Eqs. (22), and optionally from t h e use of a
predictor. When selecting a method for inte-
grating the fluid equations, it is desirable t o
choose one t h a t preserves t h e trivial solution
of a uniform flow field (in t h e absence of other
boundary conditions, a uniform flow field is a
solution of the Navier-Stokes equations). In
this section, we show t h a t this property is veri-
fied only when the numerical scheme chosen for
solving the fluid equations a n d t h e algorithm
constructed for updat ing t h e mesh position and
velocity satisfy a certain condition. We refer to
this condition as t h e Geometric Conservation
Law (GCL) because: (a) it can be identified
as integrating exactly t h e area or volume swept
by the boundary of a cell in a finite volume
formulation, and (b) i ts principle is similar t o
the GCL condition t h a t was first pointed out
in [37] for structured grids and finite difference
schemes. In t h e present work, we derive t h e
conditions imposed by the G C L in terms of an
appropriate choice of integration points in t ime,
and a consistent scheme for updat ing the grid
point velocities. This is in contrast with pre-
vious works [38,39] where t h e GCL was ad-
dressed in terms of averaged normal or velocity
coefficients for moving finite volume cells. T h e

8-1 1

approach exposed herein for deriving and satis-
fying a G C L is deemed more general t han those
previously discussed in t h e literature. For ex-
ample, it recovers t h e results of the normal av-
eraging algorithm recently proposed in [38] for
finite volume discretizations, and applies as well
t o finite element methods t h a t are not covered
by this normal averaging procedure.

Throughout this section, we consider flow
computations using unstructured moving meshes.
We focus on t h e Euler equations, because in our
formulation t h e viscous terms are not explicitly
affected by t h e mesh motion. We derive several
G C L conditions for these problems, and dis-
cuss their various algorithmic implications. We
consider first t h e case where the finite volume
method is chosen for t h e spatial approximation
of t h e flow equations, and t h e ALE formulation
is used for handling dynamic meshes. Then ,
we analyze t h e cases where t h e finite element
method is employed for spatial discretization,
and t h e moving mesh is treated with either a
space-time or an A L E formulation, respectively.
In particular, we show t h a t space-time finite el-
ement methods always satisfy t h e fundamen-
ta l geometric conservation law. We investigate
t h e consequences of t h e GCL condition on the
temporal integration of the structural equations
of motion. Most importantly, we address the
problem of satisfying both displacement and ve-
locity continuity equations between the struc-
tu re and fluid mesh at t h e fluid/structure in-
terface, without violating the GCL. Finally, we
highlight the importance of t h e GCL with an
illustration of its effect on t h e computation of
t h e transient aeroelastic response of a flat panel
in transonic flow.

2.1. The Finite Volume Method
with an ALE Formulation

Let Q(t) C R" (n = 2, 3) be the flow domain of
interest a n d r(t) be i ts moving and deforming
boundary. We introduce a mapping function
between R(t) where t ime is denoted by t and

the grid point coordinates by z, a n d a reference
configuration Q(0) where t ime is denoted by 0
and the grid point coordinates by t as follows

T h e conservative form of t h e equations describ-
ing Euler flows can be written in arbitrary
Lagrangian-Eulerian (ALE) form as

FC(W,5) = F(W)-2W
(25)

where J = d e t (d z / d t) is t h e jacobian of the
frame transformation 5 + z, W denotes the
fluid conservative variables, 3' denotes t h e con-
vective ALE fluxes, and x = Elf is t h e ALE
grid velocity t h a t may be different from t h e
fluid velocity and from zero.

T h e finite volume method for unstructured
meshes relies on t h e discretization of t h e com-
putational domain into control volumes or cells
Ci constructed around t h e vertices Si, with
boundaries denoted by dC;, a n d normals to
these boundaries denoted by vi.

Fig. 4. Control volume
(unstructured two-dimensional mesh)

Eq. (25) can then be integrated over t h e con-
trol cells. In a n ALE formulation, these cells
move and deform in time. First , integration is

8-12

performed over a reference cell in the [space as
follows

JVx.Fc(W, i) dot = 0
Ci(0)

(26)
+J

In the above equation, the partial t ime deriva-
tive is evaluated at constant [; hence, it can be
moved outside of t he integral sign t o obtain

"J W J d R t
dt C i (0)

V x . F c (W , i) J dot = 0
Ci(0)

(27)
+ J

Switching back to the time-varying cells, Eq. (27)
above can be rewritten as

L / W d R x + / V x . F c (W , i) d o , = 0
dt C i (t) C i (t)

(28)
Finally, integrating by par ts t he last term yields
the governing integral equation

"1 WdoX+\ F " (w , i) . ~ i do = 0
dt ci (1) a c i (t)

(29)
In a finite volume method, the flux through the
cell boundary aCi(t) is usually evaluated via a
flux splitting approximation [40] as follows

F ; " (W , X , X) =

(30)
where dCi,j is t he intersection between the
boundaries of cells Ci and Cj , Wi denotes the
average value of W over the cell Ci, W is the
vector formed by the collection of W;, and x
is the vector of t he time-dependent grid point
positions. T h e numerical flux functions FT and
F: are designed t o make the resulting system

stable. An example of such functions can be
found in [41]. For consistency, these numerical
fluxes must verify

F:(W,i) + Fz(W, i) = F"(W, i) (31)

Thus, the resulting discrete equation is

d I d t
-(KWi) + F:(w,x ,x) = 0

where

v,= 1 dox (33)
Ci (t)

is the area for two-dimensional flow problems,
and the volume for three-dimensional flow prob-
lems, of cell C;. Collecting all Eqs. (32) into a
single system yields

d
d t I -(VW) + F " (W , x , x) = 0 I (34)

where V is the diagonal matrix of t he cell areas,
W is t he vector containing all s ta te variables
W;, and F" is the collection of the fluxes F t .
This also completes the derivation of t he first
of Eqs. (22).

2.1 .l. The Geometric Conservation Law

Let At and t" = n A t denote respectively the
chosen time-step and the n - th time-station. In-
tegrating Eq. (32) between tn and tn+' leads
t o

K(x"+')w:+' - v,(X")W?
tn+l

+ F:(W,x,x)dt = O
J t n

(35)
T h e most important issue in the solution of
the first of Eqs. (22) via an A L E method is

the proper evaluation of Ln FF(W,x,x)dt in
Eq. (35). In particular, i t is crucial t o establish
where the fluxes must be integrated: on the
mesh configuration at t = t" (x ") , on t h a t at

tn+l

8-13

t = tn+' (x"+'), or in between these two con-
figurations. T h e same questions arise as t o the
choice of t h e mesh velocity vector x.

Clearly, a proposed numerical algorithm

for computing t h e quantity hn Ft(w, x, x)dt
involving general and arbitrary t ime depen-
dent fluid s ta te vectors and mesh configura-
t ions cannot be acceptable unless it conserves
t h e state of a uniform flow. Let W * denote a
given uniform s ta te of the flow. Substi tuting
Wp = W;+' = W * in Eq. (35) gives

tn+l

Ff(W*,x,x) dt = 0

(36)

(qn+l- V,")W* +

where W* is t h e vector of t h e s ta te variables
when W k = W* for all I C . From Eq. (30)) it
follows t h a t

Ft(W*,X,X) =

which can be rewritten as

t n + l

(K(x"+') - K(x")) = / / xu; da dt
t" aci (XI

(41)
Eq. (41) above defines a geometric conservation
law (GCL) t h a t must be verified by any pro-
posed ALE mesh updat ing scheme. This law
states t h a t t h e change in area (volume) of each
control volume between tn and tn+' must be
equal t o the area (volume) swept by the cell
boundary during At = tn+' - tn . Therefore,
the updat ing of x and x cannot be based on
mesh distorsion issues alone when using A L E
solution schemes.

T h e assumption t h a t t h e numerical method
performs exactly t h e integration of Eq. (38) is
referred t o in [39] as t h e Surface Conservation
Law (SCL). Satisfying of this condition is nec-
essary for flow computations on s ta t ic meshes
and is not specific t o dynamic ones. Therefore,
we do not discuss this condition in this section / (F i (W * , k) + FE(W*,k)).vi da

j aci,j(Z)

Given t h a t t h e integral on a closed boundary
of the flux of a constant function is identically

i t follows t h a t

XW*.vi do (39 J Fic(W*,X)X) = -
ac;(x)

Hence, subst i tut ing Eq. (39) into Eq. (36)
yields

any further and refer the reader t o [39] for ad-
ditional details.

2.1.2. Implications of the GCL

From t h e analysis presented in t h e previous sec-
tion, it follows t h a t an appropriate scheme for

evaluating hn Ff(W*,x,x)dt in Eq. (36) is
a scheme t h a t respects t h e G C L (41). Note
t h a t once a mesh updat ing scheme is given,
the left hand side of Eq. (41) is always ex-
actly computed. Hence, a proper method for

evaluating Jn F,"(W*,x,x)dt is a method
t h a t obeys t h e GCL and therefore computes ex-
actly t h e right hand side of Eq. (41)- t h a t is,

tn+l

t n + l

8-14

2.1.3. The Two-Dimensional Case

Given t h a t in two dimensions dCi is t - e union
of segments, it suffices to consider t h e integra-
tion of x.n along a segment [ab] with a normal
n

Ilab] = l:n+l lab] x.n dsdt (42)

Let xa and 2 6 denote t h e instantaneous po-
sitions of two connected vertices a and b
(Fig. 5). T h e position of any point on the edge
[ab] during t h e time-interval [tn,tn+'] can be
parametrized as follows .

where

and 6 (t) is a real function t h a t satisfies
I

6 (t ") = 0; s(t"+') = 1 (45)

n+l
a

xn+l
b

Fig. 5 Parametrization of an edge
in a two-dimensional space

Substi tuting Eqs. (43,44) into Eq. (42) yields

+ (1 - b (t)) (X c a " - 2;)) dt

where 1 is the length of edge [ab], and

H = (y i'). T h e mesh velocities x a and

xb can be obtained from t h e differentiation of
Eq. (44).

(46)

and Iia6] can be finally writ ten as

H(S(z:+' - zF+l) + (1 - S)(z," - z:)) d t
1

_ - - ; 1 ((.E+' - .E) + ($+' - x;))

H(6(zE+' - or") + (1 - S)(x; - $)) d6

Clearly, the integrand of I[ab] is linear in 6.
Therefore, I[,b] can be exactly computed using
the midpoint rule, provided t h a t Eq. (47) holds
- t h a t is

(48)

A6
At x = B(t)(."+l - 2) = -(."+I - 2) (49)

which in view of Eq. (45) can also be written
as

In summary, t h e G C L derived herein
shows t h a t for two-dimensional problems, t h e

integrand.of s,,, F[(W,x,X) dt in Eq. (35)
tn+ l

must be evaluated at the midpoint configura-
tion, and that this integral must be computed
as follows

where the superscript k depends on the time
discretization of the flow equation.

2.1 .b. The Three-Dimensional Case

In a three-dimensional space, the boundary of
each cell is polygonal and can be decomposed
into a set of non overlapping triangular facets.
Similarly to the two-dimensional case, let Irabe]
denote the flux crossing the facet [abc]

t"+l

&bcI = in iabol dcdt (52)

Let x o , X b and xe denote the instantaneous
positions of three connected vertices a , 6 and
e. The position of any point on the facet
can be parametrized as follows (see Fig. 6)

Fig. 6. Parametrization of a facet
in a three-dimensional space

8-15

~ (t) = 6(t)xz+' + (1 - 6(t))xz

X b (t) = 6(t)xr f ' t (1 - 6(t))xF (54)
X b (t) = 6(t)xr f ' + (1 - 6(t))xr

and 6 (t) is given in (45). Substituting the above
parametrization in (52) we obtain

'-a1

I [a b c] = 1;" l1 1 (al?i., + U Z i b

+ (1 - (YI - c ~ z) i c) . n 1xOc A xbel daa dal dt

= L;+l 1

= i;+' 1 .

-(ia + i b + i c) . (X m c A X b c) d t

 AX. + A X b + A ~ c) . (~ o c A X b c) d t

= + hxa + Axc) . (xac A xbc) d6

(55)
with

Noting that

X a c A xbc =
(6x2:' + (1 - 6) ~ : ~) A (6x;$' + (1 - 6) ~ ; ~)

is a quadratic function of 6, the integrand of
is clearly quadratic in 6 and therefore can

be exactly computed using a 2-point integration
rule, provided that Eq. (50) is used to com-
pute i.

(57)

8-16

Expanding q*, we obtain

Hence, the proper method for evaluat-
ing Jrtl e (W , x , x) dt that respects the
GCL (41) in the three-dimensional case is

F[(W,X,X) dt

- - -(At F[(Wk1 ,Xml , x n + +)

2 + F[(Wk2,x ma ,x

I I
m l = n + - - -

2 2&
1 1

m2 = n + -+ -
2 2&

where the superscripts k l and k2 depend on the
time discretization of the flow equation.

1 + g(& A z:? + 2::' A &))
(61)

which shows that the proposed GCL (20) recov-
ers the same results as the averaged-normals
method proposed in [38] for the finite volume
discretization of flow equations with moving
meshes.

2.2. The Stabilized Finite Element
Method with a Space-Time Formulation

2.2.1. Semi-Discretization

Time-integration in space-time finite element
methods is derived in a different manner than
what has been presented so far. Space-time
finite element methods contain the time inte-

2.1.5. Recovew of the Avaraqed-Normals Method gration formula in the chosen shape functions.
These methods are basically weighted resid-

In [381, the convected flux accross the facet b l ual formulations that perform an integration in
is computed using space and time of the product of the Euler equa-

tions and an appropriate weighting function.
Stabilization is usually required for the spatial
approximation [42]. In this section, we focus on

n + l A .rCt1 (59) the stabilized Least-Square/Galerkin method 11 = ~ (d & A zrC + % e

and time-discontinuous shape functions.

1
3
1

I[abe] = -(AZa + Azb + Azc).q

Let 0 = tD < t' < ... < tN = T be a
partition of the time-interval I =]O,T[, and In
be the ~ ~ n , ~ n + l [. A space-time slab
is defined in In x E d , where d designates the
spatial dimension, as follows

while the evaluation of Eq. (52) using the two-
point rule gives

8-17

with boundary

P, = {(t,r(t)) I t E
2.2.2. The Geometric Conservation Law

Provided that the spatial integration SI ieme
can compute exactly the following quantities

For each space-time slab, the spatial domain is
subdivided into n,l elements fl:(t), e = 1, ..., n , ~
(see Fig. 7). The following notational conven-
tion is adopted

l V h dfl

r
W(t2) = lim W(tn + e) (64)

E-&

do = 0
Given some finite element spaces S," and V,",
the space-time (discontinuous) Least-Square/Galerkin
method for solving the ~~l~~ flow equations it follows that W = W' is always a solution of
goes as follows Eq. (65) Hence, a space-time stabilized finite

element method always satisfies the GCL. This
Find W h E S," such that for all V h E V,"

is certainly an advantage. However, space-time
finite element methods are rather computation-

(v " ~ 2 - V?F:W'),) dQ ally expensive.

h n h n h n +/ (t+)(W (t+) - W (t-)) dfl 2.3. The Stabilized Finite Element
Method with an ALE Formulation nctq,

+%I (f ,Wh)p(f ,Vh) dQ =
e = l 8:

(65)
k=3

k = l
where f , = & +
lizat ion paramet er.

%&-, and p is a stabi-

Fig. 7. Space-time slabs

2.3.1. Semi-Discretization

The stabilized finite element method with an
ALE formulation can be derived by multiply-
ing Eq. (25) by a weighting function V h (t) ,
integrating over f l (O) , and adding a consistent
stabilization term S(Vh, W) to obtain

+S(Vh,W) = 0

For example, S(Vh,W) can be selected as

S(Vh,W) =

.. .

(68)

Consistency requires that S vanishes when W is
solution of the Euler equations. Integrating by

8-18

.3Vh parts Eq. (67) and exploiting
to

= 0 leads

V t E (W , &)dR,

+ S (V " W) = 0
(69)

Integrating the above equation between tn and
tn+' yields

2.3.2. The Geomet~c Conservation Law

Substituting a constant field W = W' in
Eq. (70) leads to

V h W * dR, - J V ~ W * dR, J n(t"+') W t .)

+ l:l1
- l:"" l,,, V!'E(W*,*) do, dt

S (Vh , W ') dt = 0

(71)

At this point, it is essential to assume that
the consistency of S is preserved in its dis-
crete counterpart (at least for a uniform field),
and therefore the last term in the above equa-
tion is identically zero. From Eq. (68) it can
be observed that the least-square term identi-
fies pointwise with zero, and hence the assump-
tion is satisfied independently of the integration
rule. One can also reasonably assume that the
first and second terms of the above equation can
be computed exactly, and that the evaluation of
any term of the form

(72)

where p, are constants, can also be carried out
exactly. Indeed, the latter condition is desirable
not only for ALE computations, but also for
flow computations using fixed meshes. Violat-
ing this condition will introduce artificial fluxes
throughout the mesh. Therefore, this condi-
tion is the finite element form of the Surface
Conservation Law introduced in [39]. For ex-
ample, if the weighting functions V h are linear
polynomials over each element, Vf is constant
over each element and a single point integra-
tion rule will yield an exact integration formula,
provided that the area/volume of the element
is computed exactly.

Consequently, provided the SCL is satis-
fied, and for weighting functions that are zero
on the boundary, it follows that

Hence, Eq. (71) can be rewritten as

(73)

and can be simplified to
(74)

Eq. (75) establishes the geometric conserva-
tion law for the stabilized finite element method
with an ALE formulation.

2.3.3. Implications of the GCL

In order to find the appropriate formula for inte-
grating exactly the last term of the above GCL,

8-19

we proceed as follows. First , we introduce the,
function

V r x i dRxdt (76)
G(T) = LT J,,.)

and note t h a t this function can also be written
as

G (T) =

(7 7)
- l(tn) V"(r(~l t")) d f l x

From t h e differentiation .of Eqs. (76,77) it fol-
lows t h a t

Hence, t h e appropriate formula for integrating
exactly the last term in Eq. (7 5) and satisfy-
ing t h e G C L is t h e one which computes exactly

2.3.4. The Two-Dimensional Case

Let N k be some arbi t rary mapping functions
between t h e current and reference configura-
tions. We have

where summation is assumed over repeated in-
dices, and zki are given by

Here, 6 (t) satisfies t h e conditions given in
Eq. (45) . This form shows t h a t t h e matrix in-
volved in the computation of J is a linear func-
tion 066, and therefore J is a quadratic function
of S t h a t can be written as

T h e function G can now be rewritten as

G (T) =

Therefore, t h e following conclusions can be
made

0 G(T) is quadratic in S(T), and since

&G(S(T)) is linear in S a n d hence, the GCL
condition will be satisfied if t h e midpoint rule
is used for t h e integration of t h e last term in
Eq. (75) . k = l

where t h e subscripts 1 and 2 designate the two
different coordinates, and t h e subscripts k refer
t o t h e nodal vertices of the element. T h e ja-
cobian J of t h e above transformation is given
by

8-20

2.3.5. The Three- Dimensional Case

Similarly t o t h e two-dimensional case, the map-
ping between a reference and current element
configuration can be written as

k = l

k m a z

k = l

k = l

and i ts jacobian J is given by

Following t h e same reasoning as in the two-
dimensional case, t h e following conclusions can
be made

0 G (T) is cubic in S(T), -&G(6(T)) is quadratic
in 6, and therefore t h e GCL condition will
be satisfied if t h e two-point rule is used for
t h e integration of t h e last term in Eq. (75).

2.3.6, Integration Formulae

As discussed above, t h e integrand of the last
term of t h e geometric conservation law (75) can
be linear or quadratic. For a linear integrand,
t h e midpoint rule will perform an exact integra-
tion. For a quadratic integrand, the two-point
rule must be employed. In all cases, Eq. (78)
holds only if x is computed in a manner tha t is
compatible with t h e deformation of O(6)- t h a t
is, if it is obtained by derivation of Eq. (81).
Recalling t h a t we are interested in computing

and making t h e change of variable suggested in

we obtain
Eq. (81) and t h a t implies ki = 8(x,+' - x?),

This in turn implies t h a t t h e mesh velocity x
must be computed as follows

In summary, the following formulae apply

wo-dimensional flow problems:

where the superscript k depends on t h e t ime
discretization of t h e flow equation.

8-21

0 three-dimensional flow problems:

1 1
ml = n + - - -

2 2&

where the superscripts k l and k2 depend on the
t ime discretization of t he flow equation.

2.4. Impact of the GCL on the Temporal
Solution of Aeroelastic Problems

T h e most remarquable implication of the GCL
condition is t he constraint it imposes on the
mesh velocity computat ion, independently of
t he integration formula for t he flow equations

This formula is intuit ive and has been "nat-
urally" used by several investigators indepen-
dently from any geometric conservation law
(see, for example, [15]). However, when sophis-
t icated time-integrators are used for the struc-
tu re and /o r t he mesh equations, neither the

computed mesh velocities xn+i nor the com-
puted s t ructural velocites on the fluid/structure

hc

n t l - , n

At *
interface are guaranteed t o obey xn+i =
In t h a t case, satisfying the GCL requires

0 using the mesh velocity xn+* computed by
the time-integrator, only for evaluating xn+'.

X"+1 -X"
0 using the mesh velocity xn+$ =

in t he evaluation of the fluid fluxes.

This means t h a t it is not always possible t o re-
spect t he continuity of both the displacement
and velocity fields on the fluid s t ructure bound-
ary as prescribed by Eqs. (23) without violating
the GCL. For example, if t he displacement con-
t inuity condition x (t) = q(t) is enforced at the
fluid/structure interface l?FIS, - and t h a t is
usually the case - respecting the GCL implies
computing a mesh velocity field on I'FIS t h a t
is equal to

_r

At

In t h a t case, satisfying also the velocity con-
tinuity condition i (t) = G(t) on r F I S requires
t h a t

which is not enforced by all s t ructural time-
integrators. Therefore, it is not always possible
t o satisfy the continuity between both the dis-
placement and the velocity of t he s t ructure , and
those of t he fluid mesh at the fluid/structure in-
terface, without violating the GCL.

Unfortunately, a discontinuity between the
velocity of t he s t ructure and t h a t of the fluid
mesh a t t he fluid/structure interface can per-
t u rb the energy exchange between the fluid and
the s t r u c t y e . However, i t can be shown t h a t
when the implicit midpoint rule is used for ad-
vancing the s t ructure and the displacement con-
dition ~ (t) = q(t) is enforced on r F I S using
a staggered algorithm, both continuity equa-
tions (23) can be enforced without violating
the GCL. T h e proof goes as follows.

Given some initial conditions qo and qo,
suppose t h a t t he mesh motion is initialized such

8-22

t h a t t h e following holds on the fluid/structure
interface

Also suppose t h a t at each time-station t n , the
continuity of the velocity field is enforced on the
fluid/structure boundary

If t h e midpoint rule is used for time-integrating
t h e structural equations of motion, and t h e dy-
namic fluid mesh is updated consistently with
t h e GCL as in Eq. (92), it can be proved by
induction t h a t

Indeed, t h e above relation holds at n = 0. As-
suming it holds at n, it follows t h a t

n++ = x n - L 2 +AtXn X

At
2 (98) = qn - -4" + Atq"

Since t h e midpoint rule algorithm applied to
t h e structural equations implies

At
qn+l - qn = ,(in +in+') (99)

it follows t h a t

which completes t h e proof by induction of
Eq. (97).

Now, a staggered algorithm for solving t h e

using the mesh displacement x n - i , and
t h e mesh velocity xn t h a t matches t h e

coupled Eqs. (22) can be described as follows

1)

structural velocity q" on r F / S , update the
mesh as follows

(101)
x n + l 2 = ~ " - 3 + A t x n

n- 1 using x 2 , xn+$ and xn, update the
fluid s ta te vector Wn++ in a manner t h a t
satisfies t h e GCL

using t h e pressure computed from Wn+$,
compute qnf l and qn+l using t h e mid-
point rule

Defining xn as

and substi tuting Eq. (101) into Eq. (102) leads
to

(103)
n n-i At

2
x = x 2 + - x n

which in view of Eqs. (97,96) yields

and demonstrates t ha t , when t h e midpoint rule
is used for time-integrating t h e s t ructure and a
proper staggered procedure is used for solving
the coupled fluid/structure problem, t h e con-.
tinuity of both t h e displacement and velocity
fields ca be enforced on r F / S without violating
the GCL.

2.5. Numerical Example

In order t o highlight t h e impact of t h e G C L
on coupled aeroelastic computations, we con-
sider here the simulation of t h e two-dimensional
transient aeroelastic response of a flexible panel
in a transonic regime. T h e panel is represented
by its cross section t h a t is assumed t o have a
unit length and a uniform thickness and Young
modulus, and t o be clamped at both ends.
This rectangular cross section is discretized into
plane strain 4-node elements with perfect as-
pect ratios. T h e two-dimensional flow domain
around the panel is discretized into triangles,
and the Euler equations are used for this com-
putation. T h e free stream Mach number is set

8-23

t o M , = 0.8, and a slip con1 ,ion is imposed
at t h e fluid/structure boundary. Further details
on t h e specifics of this simulation are deferred
t o Section 9.

Initially, a steady-state flow is computed
a round t h e panel at M , = 0.8. Next, this flow
is perturbed via a n initial displacement of the
panel t h a t is proportional to its second funda-
mental mode, and t h e subsequent panel motion
a n d flow evolution are computed using one of
t h e staggered explicit/implicit f luid/structure
procedures described in t h e following section.
Two computed histories of the lift using the
same time-step are reported in Fig. 8 for t h e
case where t h e GCL is violated by updat ing t h e
mesh velocity field at t h e fluid/structure inter-
face via a higher-order scheme than t h a t given
in Eq. (92), and in Fig. 9 for the case where
t h e GCL is respected. Clearly, this example
demonstrates t h e impact of the GCL on aeroe-
lastic computations as it shows t h a t violating
this law leads to undesirable spurious oscilla-
t ions in t h e lift prediction.

0 OW< 0031 O m 0- O W 0- OW7 O W O m 0 003
QW,,

T i n o

Fig. 8. Lift history when t h e GCL is violated

Fig. 9. Lift history when the GCL is obeyed

3. A FAMILY OF STAGGERED
S OLUTION PROCEDURES 12 3,44,451

In Section 1, we have shown t h a t in t h e linear
theory, the flutter speed of a n aircraft can be
obtained directly from t h e solution of an eigen-
value problem. In t h e nonlinear theory, predict-
ing whether an aircraft will f lutter or not for a
given set of flight conditions is determined by
computing t h e solution of Eqs. (22), and estab-
lishing numerically whether this solution grows
continuously in t ime or not. In other words,
a linear aeroelastic dynamic stability problem
can be solved without computing explicitly t h e
response of t h e structure, b u t a nonlinear aeroe-
lastic dynamic stability problem is typically
solved by simulating a set of corresponding non-
linear response problems. Hence, transient non-
linear aeroelastic investigations are in general
computationally intensive. For example, estab-
lishing t h e transonic flutter boundary of an air-
craft for a given set of aeroelastic parameters
requires about 30 aeroelastic response analyses,
which clearly demonstrates t h e need for a fast
capability for solving Eqs. (22). Such a capabil-
ity requires not only powerful supercomputers,
bu t also powerful computational methodologies
and algorithms.

One approach for solving t h e three-way
coupled aeroelastic problem described in Eqs. (22)
is known as t h e “monolithic augmentation”
approach where, as specific problems arise, a

8-24

large-scale single computer program - for ex-
ample, a finite element structural analysis code
- is expanded to house more interaction ef-
fects - for example, fluid/structure interac-
tion. Such a n approach poses several diffi-
culties, most of which are related to the fact
t h a t each of t h e three components of the three-
way coupled aeroelastic problem described in
Eqs. (22) has different mathematical and nu-
merical properties, and distinct software imple-
mentation requirements. Some of these diffi-
culties have been mentioned in Section 1, oth-
ers are summarized in [20]. In our opinion, the
monolithic augmentation approach is unattrac-
tive because once it is implemented, it can-
not easily accommodate neither new or im-
proved problem formulations, nor future ad-
vances within any of t h e computational fluid
and /o r structural dynamics disciplines.

Alternatively, t h e solution of Eqs. (22)
can be obtained through a staggered procedure
in which separate fluid and structural analy-
sis programs - often called field analyzers [20]
- execute and exchange da ta . Such an ap-
proach is also known as partitioned analysis.
It offers several appealing features, including
t h e ability to use well established discretization
and solution methods within each discipline,
simplification of software development efforts,
reuse of existing and validated code, accom-
modation of future single discipline improve-
ments, and preservation of software modular-
ity. Traditionally, nonlinear transient aeroelas-
t ic problems have been solved via the simplest
possible staggered procedure where the sepa-
ra te fluid and structural analysis programs ex-
ecute in a strictly sequential fashion, and ex-
change strictly interface-state data such as pres-
sures and velocities at each single time-step
(see, for example, [15,16,24-271). T h e objective

of this section is t o overview a broader fam-
ily of more powerful staggered solution proce-
dures t h a t address some important issues re-
lated to numerical stability, subcycling, accu-
racy vs. speed trade-offs, implementation on
heterogeneous computing platforms, 'and inter-
field as well as intra-field parallel processing.

3.1. Preliminaries

Of course, the global performance of a parti-
tioned analysis for solving t h e time-dependent
Eqs. (22) depends on the local performances
of t h e fluid and structural field analyzers. Bu t
more importantly, the global performance also
depends on the stability and accuracy proper-
ties of t h e staggered solution procedure itself.
For a given prescribed accuracy, t h e more stable
a staggered algorithm is, t h e larger is t h e allow-
able coupled time-integration step, and there-
fore the faster is t h e total solution time. Hence,
our primal goal is t o construct partitioned anal-
ysis procedures for Eqs. (22) with superior sta-
bility properties.

REMARK 2: T h e reader is reminded t h a t the
stability properties of a staggered solution algo-
ri thm depend, among other things, on t h e sta-
bility properties of t h e field analyzers. However,
it is also well-known t h a t using a n uncondition-
ally stable t ime integration algorithm in each
field analyzer does not guarantee t h e uncondi-
tional stability of t h e overall staggered solution
algorithm .

Because t h e aeroelastic response of a struc-
ture is often dominated by low frequency dy-
namics, we consider only implicit schemes for
time-integrating t h e structural displacement
field. However, we consider both explicit and
implicit time-integrators for advancing t h e fluid
field, as both approaches are popular in compu-
tational fluid dynamics. On t h e other hand, we
also note t h a t time-accurate implicit and un-
structured flow solvers seem t o be less avail-
able than their explicit counterparts. In t h e

8-25

sequel, we refer t o a partitioned analysis pro-
cedure as an explicit/implicit one if an explicit
time-accurate flow solver is employed, and as an
implicit/implicit one if an implicit flow solver
is used. In t h e implicit/implicit case, our goal
is t o devise a n unconditionally stable staggered
algorithm, or at least a partitioned procedure
t h a t allows a relatively large time step. In t h e
explicit/implicit case, our objective is to design
a staggered solution algorithm whose stability
limit is not worse t h a n t h a t of the underly-
ing explicit flow solver. These are not trivial
tasks because coupling effects can restrict the
stability limits of the independent field time-
in t egrators.

Next, we make the following observations

linear and nonlinear transient fluid /struc-
tu re interaction problems have one partic-
ularity: they possess a wide variety of self-
excited vibrations and instabilities. We
have already mentioned t h e flutter prob-
lem. Another example of a dynamic in-
stability is t h a t of t h e vibrations due to
Von KBrmAn vortices [43]. If the fre-
quency of t h e s t ructure loading caused by
t h e vortices is close or equal to the nat-
ural frequency of the body, then a reso-
nance effect is present and large ampli-
tudes of vibrations result. Therefore, when
it comes to analyzing t h e numerical sta-
bility of a proposed staggered algorithm
for ti me-int egrat i ng fluid /s t ruct ure inter-
action problems, it is essential t o consider
t h e case where t h e coupled system is physi-
cally stable - t h a t is, when Eqs. (22) have
a solution t h a t does not grow indefinitely
in time.

when t h e s t ructure undergoes small dis-
placements, the fluid mesh can be frozen
and “transpiration” fluxes can be intro-
duced at t h e fluid side of the fluid/structure
boundary t o account for the motion of t h e

0

0

structure. In t h a t case, the nonlinear t ran-
sient aeroelastic problem simplifies from a
three- t o a two-field coupled problem.

0 most fluid/structure instability problems
can be analyzed by investigating the re-
sponse of t h e coupled system t o a pertur-
bation around a steady s ta te . If t h e re-
sponse is an amplification of t h e initial per-
turbat ion, it is an indication t h a t the sys-
tem is unstable. If it is a dissipation of the
initial perturbation, it means t h a t the sys-
tem is stable. This suggests t h a t aeroelas-
t ic stability or instability problems can be
investigated by linearizing t h e flow around
an equilibrium position WO, and analyzing
the response of the fluid/structure system
to a perturbation.

Based on t h e above observations, t h e au-
thors of reference [23] have constructed a sim-
plified but relevant aeroelastic “test” problem
where t h e coupled fluid/structure system is al-
ways physically stable. They have also pre-
sented a mat hematical framework for analyzing
the accuracy and stability properties of stag-
gered procedures applied t o t h e solution of their
test problem. Subsequently, this test problem
was also shown t o be a good model problem
for the complex nonlinear aeroelastic systems
t h a t we are interested in solving [23,18,19]. In
the test problem, t h e s t ructure is assumed to
remain in the linear regime, and t h e flow is lin-
earized around an equilibrium position of t h e
fluid s ta te vector denoted here by WO. T h e
semi-discrete equations governing this coupled
aeroelastic model problem are given by (see [23]
for details)

(6:) = (A* C D* B) (J Y)

8-26

where 6W is t h e perturbed fluid s ta te vector,

Q = (:) is the s t ructure s ta te vector, A* re-

sults from t h e spatial discretization of the flow
equations, B is t h e matrix induced by the t ran-
spiration fluxes at the fluid/structure boundary
b / S , C is t h e matrix t h a t transforms the fluid
pressure on r F / S into prescribed structural

where as before, M, D, and K are the s t k c -
tural mass, damping, and stiffness matrices.

In [19], t h e aeroelastic model problem de-
scribed in Eqs. (105) has been extended to in-
clude t h e mesh motion of the fluid grid, and
therefore to truly represent the three-way cou-
pled aeroelastic problem governed by Eqs. (22).
More importantly, reference [19] d ' iscusses a
methodology for considering a staggered solu-
tion procedure t h a t was designed for solving
t h e three-field equivalent of the model prob-
lem (105), and extending it t o the case of non-
linear transient aeroelastic problems such as
those governed by Eqs. (22).

In this section, we overview a family of par-
titioned analysis procedures for solving t h e non-
linear transient coupled Eqs. (22). These algo-
ri thms are based on the mathematical results
established in [23,19], and have recently been
described in [44,45]. Rather t han discussing
mathematical proofs and details tha t can be
found in [23,19], we emphasize important com-
putational and implementational issues per-
taining t o accuracy, stability, distributed com-
puting, 1/0 transfers, subcycling, and parallel

In order not t o obscure t h e following discus-
sion by t h e complex notation needed for three-
dimensional viscous flows, we focus here, with-
out any loss of generality, on t h e case of two-
dimensional Euler flows discretized by the finite
volume method. For three-dimensional invis-
cid flows, Eqs. (58) should be used instead of
Eqs. (51). For finite element and /o r space-time
discretizations, Eqs. (51) should be replaced by
the appropriate equations derived in Section 2.

From the results established in Section 2, it
follows tha t t h e semi-discrete equations govern-
ing the three-way coupled aeroelastic problem
can be written in t h a t case as

x"++ - xn + xn+l -
2

processing. - 1.

(106)
where t h e superscript k depends on t h e t ime
discretization of the fluid flow equations.

In many aeroelastic investigations such as
wing flutter problems, first a steady flow is com-
puted around a s t ructure in equilibrium. Next,
the structure is perturbed via a n initial dis-
placement and/or velocity and t h e aeroelastic
response of t h e coupled fluid/structure system
is analyzed. This suggests t h a t a natural se-
quencing for t h e staggered time-integration of
Eqs. (106) is

3.2. Explicit /implicit partitioned procedure

3.2.1. ALGO: the basic explicit/implicit
staqqered solution procedure

3.

perturb t h e s t ructure via some initial con-
ditions.

update the fluid grid t o conform t o the new
s t r u c t u r a1 boundary.

advance t h e flow with t h e new boundary
conditions.

8-27

4. advance t h e s t ructure with the new pres-
sure load.

5 . repeat from step 2 until t h e objective of
t h e simulation is reached.

An important feature of partitioned solu-
tion procedures is t h a t they allow using exist-
ing single discipline software modules. In our
work, we have been particularly interested in re-
using t h e massively parallel explicit flow solver
described in [46-491 for two-dimensional prob-
lems, a n d a variant for three-dimensional appli-
cations. Therefore, we consider here the case
where t h e semi-discrete fluid equations are in-
tegrated with a 3-step variant of the explicit
Runge-Kut ta algorithm. Of course, other ex-
plicit time-integrators can be equally employed.
On t h e other hand, t h e aeroelastic response of
a s t ructure is often dominated by low frequency
dynamics. Hence, t h e structural equations are
most efficiently solved by an implicit time-
integration scheme. For example, we select t o
time-integrate t h e structural motion with t h e
implicit midpoint rule because it allows enforc-
ing both continuity Eqs. (23) while still respect-
ing t h e G C L (see Section 2). Consequently,
we propose t h e following explicit/implicit so-
lution algorithm for solving t h e three-field cou-
pled problem (106).

Given a steady flow and initial structural conditio

1. Update the dynamic fluid grid

2. Advance t h e fluid system using RK3

3. Advance t h e s t ructure using t h e midpoint rule

At
q n + l = q" I (q n + qn+l)

(107)

In t.he sequel, we refer t o t h e above ex-
plicit/implicit staggered solution procedure as
ALGO. It is graphically depicted in Fig. 10.
Extensive numerical simulations using this al-
gorithm have shown t h a t i ts stability limit is
governed by t h e critical time-step of t h e explicit
fluid solver, and therefore is not worse t h a n t h a t
of t h e underlying fluid explicit time-integrator.

S

8-28

T h e 3-step Runge-Kutta algorithm is third-
order accurate for linear problems and second-
order accurate for nonlinear ones. T h e mid-
point rule is second-order accurate. A simple
Taylor expansion shows t h a t the partitioned
analysis procedure ALGO is first-order accu-
ra te when applied t o the linearized Eqs. (105).
When applied t o Eqs. (106), its accuracy de-
pends on the solution scheme selected for solv-
ing the mesh equations. As long as the time-
integrator applied to the last of Eqs. (106) is
consistent, ALGO is guaranteed t o be at least
first-order accurate.

Q" Q n + 1

Fig. 10. ALGO: the basic staggered algorithm

3.2.2. ALG1: subcvclinq

T h e fluid and s t ructure fields have often differ-
ent t ime scales. For problems in aeroelasticity,
t he fluid flow usually requires a smaller tem-
poral resolution than the structural vibration.
Therefore, if ALGO is used to solve Eqs. (106),
t he coupling time-step At, will be typically dic-
ta ted by the stability time-step of the fluid sys-
tem A t F and not t he time-step At, > .&F t h a t
meets t h e accuracy requirements of the struc-
tural field.

Using the same time-step At in both fluid
and s t ructure computational kernels presents
only minor implementational advantages. O n
the other hand, subcycling the fluid computa-
t ions with a factor n S I F = Ats/AtF can offer
substantial com pu t at ional advantages, i nclud-
ing

savings in the overall simulation CPU
time, because in t h a t case the s t ructural
field will be advanced fewer times.

savings in 1/0 transfers and/or communi-
cation costs when computing on a hetero-
geneous platform, because in t h a t case the
fluid and s t ructure kernels will exchange
information fewer times.

However, t he computational advantages
highlighted above are effective only if subcy-
cling does not restrict t he stability region of t he
staggered algorithm t o values of the coupling
time-step At, t h a t are small enough t o offset
these advantages. In [23], it is shown t h a t for
the linearized problem (105), t he straightfor-
ward conventional subcycling procedure - t h a t
is, t he scheme where a t the end of each n S / F

fluid subcycles only the interface pressure com-
puted during the last fluid subcycle is t ransmit-
ted t o the s t ructure - lowers the stability limit
of ALGO t o a value t h a t is less t han the critical
time-step of the fluid explicit time-integrator.
O n the other hand, i t is also shown in [23] t h a t
when solving Eqs. (105), t he stability limit of
ALGO can be preserved if

the deformation of t he fluid mesh between
tn and tn+' is evenly distributed among
the n S I F subcycles.

at the end of each n S / F fluid subcycles,
the average of t he interface pressure field
h , s computed during the subcycles be-

tween tn and t"+l is t ransmit ted t o the
s t ructure ra ther t h a n the last computed
pressure.

Hence, we propose the following explicit/implicit
fluid-subcycled parti t ioned procedure for solv-

ing Eqs. (106). ~

8-29

' r F / S = o

For s = 1, ..., n s / F {

Upda te in stages t h e dynamic fluid grid

3. Adv. struc. with midpoint rule

In t h e sequel, we refer t o t h e explicit/implicit
fluid-subcycled staggered solution procedure
presented here as ALG1. It is graphically de-
picted in Fig. ll. Extensive numerical ex-
periments have shown t h a t for medium values
of n S I F , t h e stability limit of A L G l is gov-
erned by t h e critical time-step of t h e explicit
flow solver. However, experience has also shown
t h a t there exists a maximum subcycling factor
beyond which ALGl becomes numerically un-
stable.

From the theory developed in [23] for the
linearized Eqs. (105), it follows t h a t A L G l is
first-order accurate, and t h a t as one would have
expected, subcycling amplifies t h e fluid errors
by the factor n S I F .

Qn Qn+ 1

Fig. 11. ALG1: subcycling

3.2.3. A L G2-A L G3: inter- fie1 d para1 lelisrn

ALGO and A L G l are inherently sequential. In
both partitioned analysis procedures, the fluid
system must be updated before t h e structural
system can be advanced. Of course, ALGO
and A L G l allow intra-field parallelism (parallel
computations within each discipline), 'but they
inhibit inter-field parallelism. Advancing t h e
fluid and structural systems simultaneously is
appealing because i t can reduce t h e total simu-
lation time.

A simple variant ALG2 of A L G l - or
ALGO if subcycling is not desired - t h a t allows
inter-field parallel processing is given next.

8-30

'rF/S = o

For s = 1, ..., n s / F {

Update in stages t h e dynamic fluid grid

('1
- xn X n + l (a) kn+q 1 (a) -

-
At

2. Advance t h e fluid system using RK3

3. Adv. struc. with midpoint rule

i Clearly, the fluid and s t ructure kernels can run
in parallel during the time-interval [tn , tn+ns lF] .

Inter-field communication or 1/0 transfer is
needed only at t h e beginning of each time-
in t erval .

T h e basic steps of ALG2 are graphically
depicted in Fig. 12. T h e theory developed
in [23] shows t h a t for t h e linearized Eqs. (105),
ALG2 is first-order accurate, and parallelism in
ALG2 is achieved at t h e expense of amplified
errors in t h e fluid and s t ructure responses.

a Qn+ 1

Fig. 12. ALG2: subcycling
and inter-field parallelism

In order t o improve t h e accuracy of the
basic parallel time-integrator ALG2, we pro-
pose to exchange correction type information
between the fluid and s t ructure kernels at half-
step in the following specific manner (ALG3).

8-3 1

FrF/S = o
1 n S / F --

2
For s = 1, ...,

- . .n+1(*) - . n+1(") + Kxn+1(4 . - n (*)

{

Solve Mx + Dx = K c q

8-32

Algorithm ALGS is illustrated in Fig. 13.
T h e first-half of t h e computations is identical to
t h a t of ALG2, except t h a t the fluid system is

subcycled only up to t n + T , while the struc-
tu re is advanced in one shot u p t o t n + n S I F .

At t n + T , t h e fluid and structure kernels
exchange pressure, displacement and velocity
information. In the second-half of the com-
putations, t h e fluid system is subcycled from

t"++ to t n + " S I F using t h e new structural
information, and the structural behavior is re-
computed in parallel using the newly received
pressure distribution. Note t h a t the first eval-
uation of t h e structural s ta te vector can be in-
terpreted as a prediction step, and the second
as a correction step.

n S / F

" S / F

nS F

It can be shown t h a t when applied to the
linearized Eqs. (105), ALGS is first-order ac-
curate a n d reduces t h e errors of ALG2 by the
factor n s / F , at the expense of one additional
communication s tep or 1/0 transfer during each
coupled cycle (see [23] for a detailed error anal-
ysis).

Fig. 13. ALG3: subcycling, inter-field
parallelism and improved accuracy

not only an unconditionally stable implicit flow
solver must be used, bu t also an interface cou-
pling operator must be exchanged between t h e
structure and fluid field analyzers. For further
details on this topic, we refer the reader t o [23].

3.4. Implementation of subcvclinq

We have pointed out in Section 3.2.2 t h a t when
subcycling is desired, t h e deformation of the
fluid mesh between t" and tn+l should not be
entirely applied during t h e first fluid subcy-
cle, bu t evenly distributed across all subcycling
stages. There are many ways this can be ac-
complished, including t h e following one.

At t h e beginning of time-step tn+', t h e
fluid code has access t o t h e component of t h e
structural s ta te vector (q " , qn) r F / S t h a t re-
lates t o the degrees of freedom located at t h e
fluid/structure interface. T h e objective of any
mesh updating strategy is to exploit this infor-
mation and compute a fluid mesh displacement
xn+l tha t satisfies t h e continuity Eqs. (23)

We note t h a t t h e difference in t h e super-
scripts between t h e left and right hand sides
of Eqs. (111) is due to t h e staggered nature
of t h e solution scheme, a n d t h a t t h e second of
Eqs. (111) should be enforced only if i t does
not violate t h e GCL. Using Eqs. (111) as pre-

ne scribed boundary values, t h e pseudo-structural
3.3. Implicit/implicit staggered algorithn13

equations of motion of t h e dynamic fluid grid
Clearly, t h e partitioned analysis procedures can be solved to obtain an updated fluid mesh
ALGO, ALG1, ALG2 and ALGS can be equally displacement xn+'. T h e details of this partic-
employed with an implicit flow solver. However, ular computation are discussed in Section 7.
it is shown in [23] t h a t in order for these parti- Then , at every subcycling stage, a new set of
tioned procedures to be unconditionally stable, prescribed grid boundary displacements can be

8-33

generated for computing t h e subcycled mesh
position x n + l (") as follows

r F / S

(112)
where I d is an interpolation scheme of order
d = 0, 1 , 2. More specifically, I d is defined by

n F / s - s + 1

In summary, at each subcycle a new set
of prescribed boundary displacements ,are com-
puted for t h e dynamic fluid grid, and the equa-
t ions of motion of t h e corresponding pseudo-
structural system are solved in order t o update
t h e positions of t h e remaining grid points. In
practice, we have found t h a t d = 1 is t h e best
choice for t h e interpolation scheme. Among
other things, this choice does not require trans-
mitt ing any structural velocity information to
t h e fluid computational kernel. In all cases, the
fluid mesh velocity x must be computed via Eq.
(5 0) in order t o satisfy t h e GCL.

4. THE FLOW SOLVER 146-491

So far, no restriction has been imposed on the
nonlinear flow solver technology, except for the
requirement of satisfying t h e GCL. Hence, flow
solvers based. on an A L E finite volume/element
discretization or a space-time finite element for-
mulation can be equally employed within t h e
computational framework presented in this pa-
per for solving nonlinear transient aeroelastic
problems. T h e GCLs for all of these approx-
imation methods have been presented in Sec-
tion 2.

In our case, we have opted for a mixed
finite element/volume A L E formulation based
on unstructured triangular meshes in two-
dimensional problems, and unstructured tetra-
hedra in three-dimensional ones. This ap-
proach combines a Galerkin centered approxi-
mation for t h e viscous terms, and a Roe upwind
scheme [50] for t h e computation of t h e convec-
tive fluxes. Higher order accuracy is achieved
through the use of a piecewise linear interpo-
lation method t h a t follows t h e principle of t h e
MUSCL (Monotonic Upwind Scheme for Con-
servative Laws) procedure [51-531. T h e corre-
sponding ALE flow solvers are t h e result of a
collaboration with t h e Projet Sinus at INRIA
Sophia-Antipolis and are overviewed below.

4.1. Spatial discretization

T h e conservative form of t h e equations describ-
ing viscous flows can be writ ten in ALE form
as

1
It + JVz.Fc(W,~) = -VV,R(W) ai JW)

at Re
Fc(w,x) = F(W) -xw

(114)
where, R denotes t h e diffusive fluxes, Re is t h e
Reynolds number, and as for t h e case of Euler
flows and Eqs. (2 5) , J = d e t (d x / d [) is the
jacobian of t h e frame transformation [+ x, W
denotes the fluid conservative variables, Fc de-
notes t h e convective A L E fluxes, and x =

8-34

is t h e ALE grid velocity t h a t may be different
from t h e fluid velocity and from zero.

T h e boundary r(t) of the flow domain
is partitioned into a wall boundary r W (t)
corresponding to the fluid/structure interface
boundary I'F,S, and an infinity boundary I',(t)

Let U, and T, denote t h e wall velocity and
temperature. On t h e wall boundary rW(t) , a
no-slip and a temperature Dirichlet conditions
are imposed

and no boundary condition is specified for t h e
density. Hence, t h e total energy per unit of
volume and t h e pressure on t h e wall are given

by

1
p = (7 - l)&',Tw; E = &',Tw + s p 1 1 u w / I 2

For external flows around aircraft structures,
t h e viscous effects are assumed t o be negligible
at infinity, and therefore a uniform free-stream
s ta te vector W , is imposed on I',(t).

(117)

Following t h e procedure described in de-
tails in Section 2.1, Eqs. (114) can be trans-
formed into

Integrating Eq. (118) by par ts leads to

"J W d R ,
dt ci (t)

where & is t h e finite element shape function
at vertex S; in element A (a triangle in two-
dimensional problems, a tetrahedron in three-
dimensional ones), and w is t h e specified value
of W at t h e boundaries. T h e second term
of Eq. (119) corresponds exactly t o t h e term
F/(W,x,x) introduced in Section 2.1. Each
component of this term can be written as

While various upwind algorithms can be used
for computing Q i j , Roe's scheme [50] is chosen
here. Following t h e MUSCL approach intro-
duced by Van Leer [51], second-order accuracy
is achieved by computing t h e numerical fluxes
at interpolated values of t h e fluid s ta te vector
on the interface between cells C; a n d Cj as fol-
lows

For three-dimensional problems, t h e gradient of
W a t a vertex Si is computed from

voZume(A) k = 4
Wk .V+f 4 v,(VW); =

A , s i € A k = l

(122)

In practice, t h e interpolation implied by Eqs. (121)
is performed on t h e physical instead of t h e t h e
conservative variables. Optional limiters are
also implemented following t h e approaches dis-
cussed in [52,53].

8-35

T h e numerical viscous fluxes are computed
using a classical Galerkin method.

4.2. Temporal solution

T h e explicit kernel of our two-dimensional flow
solver uses the 3-step Runge-Kutta algorithm
discussed in Section 3.2. On the other hand, the
explicit module of our three-dimensional flow
solver employs the predictor-corrector scheme
suggested by Hancock and presented by Van
Leer. This scheme has a lower stability limit
t han t h e 3-step Runge-Kutta algorithm but is
significantly more economical.

T h e implicit versions of our two- and
three-dimensional flow solvers employ a first-
order accurate backward Euler time-integration
scheme. To solve the system of linearized equa-
t ions arising at each time-step, we have recently
developed a multilevel, overlapping domain de-
composition preconditioned Krylov- Schwarz it-
erative method [54]. Numerical experiments
have shown t h a t this and other members of t he
family of Krylov-Schwarz algorithms are highly
scalable and highly parallelizable. (The concept
of scalability is discussed in Section 5) . More
importantly, t he convergence of these methods
does not degenerate when the linearized system
becomes highly nonsymmetric and possibly in-
definite, which occurs, for example, in the case
of high-angle of a t tack and/or high Mach num-
ber.

4.3. Parallelization

T h e mesh parti t ioning paradigm is used for
parallelizing both two-dimensional and three-
dimensional flow solvers. This paradigm is dis-
cussed in details in Section 8.

5. THE STRUCTURAL DYNAMICS
ANALYZER [74,76,34,81,571

There is no question t h a t the finite element
method is t he most popular method for solv-
ing arbi t rary s t ructural problems such as those

governed by the second of Eqs. (22). However,
with the advent of parallel processing, many
of the computational modules of this powerful
method are being constantly revisited for im-
provement in performance.

Nonlinear transient finite element prob-
lems in s t ructural mechanics are characterized
by the semi-discrete equations of dynamic equi-
librium

M q + f i n t (q) = f ez ‘ (123)

where, as before, M is the mass matrix, q is
the vector of nodal displacements, a dot su-
perscript indicates a time derivative, fin‘ is the
vector of internal nodal forces, and f ez ‘ is the
vector of external nodal forces. In many low
and medium frequency dynamics applications
such as transient aeroelasticity, Eq. (123) is
most efficiently solved using a n implicit time-
integration scheme. In t h a t case, a nonlinear
algebraic system of equations is generated at
each time-step. T h e Newton-Raphson method
and its numerous variants collectively known as
“Newton-like” methods are the most popular
strategies for solving these nonlinear algebraic
problems. All of these algorithms require the
solution of a linear algebraic system of equa-
tions of t he form

where the subscript n refers t o the n- th t ime
s tep, the superscript k refers t o the k-th non-
linear iteration within the current t ime step, K*
is a time-dependent symmetric positive approx-
imate tangent matrix t h a t includes both mass

r*(q(k) n + l) are respectively the vector of nodal
displacement increments and the vector of ou t -
of-balance nodal forces (dynamic residuals).

and stiffness contributions, and Aqn+, (k + l) and

With the advent of parallel processing, do-
main decomposition (or substructure) based di-
rect and iterative algorithms have become in-
creasingly popular for t he solution of finite el-
ement systems of equations of the form given

8-36

in Eq. (123). Indeed, domain decomposition
provides a higher level of concurrency than par-
allel global algebraic paradigms, and is simpler
to implement on most parallel computational
platforms [57]. In general, t h e subdomain (or
substructure) equations are solved using a di-
rect skyline or sparse factorization based algo-
ri thm, while both direct and iterative schemes
have been proposed for the solution of the inter-
face problem [58-621. When the reduced system
of equations is solved directly, t h e overall do-
main decomposition algorithm becomes a direct
frontal or multifrontal method [63,64], and its
success becomes contingent on finding a good
mesh partition and /o r reordered system tha t
can achieve an optimal balance between min-
imizing fill-in and increasing the degree of par-
allelism [65-681. When t h e interface problem
is solved iteratively - usually, via a precondi-
tioned conjugate gradient (PCG) algorithm-
t h e overall domain decomposition method be-
comes a genuine iterative solver whose success
hinges on two important properties: numerical
scalability, and parallel scalability. A domain

be numerically scalable if t h e condition number

“weakly” with t h e ratio of the subdomain size
H and t h e mesh size h (Fig. 14), t h a t is

’

I
I decomposition based iterative method is said to

K after preconditioning does not grow or grows

~

,

K = 0 (l s l o g q ~ H >)

with a small constant ,f3. Numerous authors
have proved Eq. (125) with ,f3 = 2 for various
.domain decomposition methods (see, for exam-
ple, [62,69,70] and references therein).

Fig. 14. Subdmomain size N and mesh size h

It is well known t h a t in order t o achieve
(125), a domain decomposition method must

involve a coarse problem with a few d.0.f. per
subdomain, t h a t must be solved at each itera-
tion t o propagate the error globally and ,acceler-
a t e convergence. Parallel scalability character-
izes the ability of an algorithm t o deliver larger
speedups for a larger number of processors. In
particular, parallel scalability is necessary for
massively parallel processing.

T h e practical implications of a condition
number after preconditioning such as t h a t de-
scribed in Eq. (125) are

0 suppose t h a t a given mesh is fixed, one
processor is assigned to every subdomain,
and the number of subdomains (which
varies as 1/H) is increased in order t o in-
crease parallelism. In t h a t case, h is fixed
and H is decreased. From Eq. (125), it
follows t h a t t h e bound on t h e condition
number decreases a n d therefore the num-
ber of iterations fo r convergence is expected
to decrease with an increasing number of
subdomains. In particular, for a numeri-
cally scalable domain decomposition algo-
ri thm characterized by Eq. (125), increas-
ing the number of subdomains decreases
t h e amount of work per processor and per
iteration, without increasing t h e number
of iterations for convergence.

on most distributed memory parallel pro-
cessors, t h e total amount of available
memory increases with the number of pro-
cessors. When solving a certain class of
problems on such parallel hardware, it is
customary t o define in each processor a
constant subproblem size, and t o increase
the total problem size with t h e number
of processors. In t h a t case, h and H
are decreased, but t h e ratio H / h is kept
constant. From Eq. (125), it follows

0

8-37

t h a t a numerically scalable domain decom-
position algorithm can solve larger prob-
lems with the same number of iterations
as smaller ones, simply by increasing the
number of subdomains. However, the pres-
ence of t he coarse problem may limit par-
allel scalability for a large number of pro-
cessors.

When H / h increases, t h a t is, the number
of elements assigned to a subdomain in-
creases, t he condition number will increase
only slightly. Wi thout this property, the
condition number may be too large t o be
practical for subdomains of a size tha t we
wish t o work with. If there are only a few
substructures, t he conjugate gradient algo-
r i thm might still converge quickly for some
domain decomposition methods because of
t he presence of gaps in the spectrum of
the preconditioned operator; however, for
large number of subdomains, the spectrum
tends to fill in, and the number of itera-
t ions tends t o increase [32].

T h e Fini te Element Tearing and Intercon-
necting (FETI) method developed originally for
t he solution of self-adjoint elliptic partial dif-
ferential equations is a numerically scalable do-
main decomposition method [60,61,32]. This
method was shown t o outperform direct skyline
solvers and several popular iterative algorithms
on both sequential and parallel computing plat-
forms [60,73]. It has recently been extended
for dynamics problems [74,33] and biharmonic
partial differential equations such as those en-
countered in plate and shell problems [75]. For
s t ructural mechanics problems, the condition
number of t he unpreconditioned FETI interface
problem is known to grow asymptotically as [32]

0

H
h

K. = O (-)

As was observed numerically in [32,57] and
proved mathematically in [70,75], for elasticity
problems discretized using plane stress/strain

and/or brick elements, t he condition number
of t he FETI interface problem preconditioned
with a subdomain based Dirichlet operator
[32,57] varies as

For shell and plate problems, this condition
number varies as [75]

H
K. = 0 (1 + l o g 2 (h))

T h e conditioning results (126-128) highlight
the numerical scalability of t he FETI method
with respect t o both the mesh size h and the
number of subdomains. T h e parallel scalabil-
ity of this domain decomposition method -
t h a t is, its ability t o achieve larger speedups for
larger number of processors -- has also been
demonstrated on current massively parallel pro-
cessors for several realistic s t ructural problems
[57,71,72].

T h e beauty of t he FETI method resides
in the fact t h a t it is much more than an alge-
braic solver. Many complex s t ructural systems
such as airplanes are constructed by assembling
a set of substructures such as the wing, fuse-
lage, spars and ribs, tail, t h a t are designed by
different teams of engineers. T h e global be-
havior of such structures is often predicted by
“gluing” together t he individual substructure
analyses. In such cases, t he submeshes asso-
ciated with the substructures may have non-
conforming discrete interfaces, mainly because:
(a) the corresponding substructures can have
different resolution requirements, (b) the sub-
meshes are often designed by different analysts,
and (c) these submeshes may be designed using
incompatible finite element models. Whether
t he substructure interfaces are matching or not ,
the FETI method provides a powerful means
for solving such assembly problems [76-781. In
essence, the FETI method is a t the same time

8-38

a domain decomposition and a domain integra-
t ion method, and lends itself naturally t o par-
allelism. We overview it next in the context of
s t ructural dynamics.

5.1. The Transient FETI Method

Let R denote the volume of the structure t o
be analyzed, and { 0 3 } ~ ~ ~ denote a partition-
ing (tearing) of R into N3 non-overlapping sub-
s t ructures (Fig. 15). We denote by r; the inter-
face boundary of 0". We use an irreducible dis-
placement formulation inside the subdomains,
and independently defined Lagrange multipli-
ers on the substructure interfaces t o join them.

U

Fig. 15. Parti t ioning of a s t ructure

For each substructure, the finite element
nonlinear equations of dynamic equilibrium can'
be writ ten as

M s i s + fints(q) = fez'' - B3*X (128)

where B" is a boolean matrix with entries equal
to -1, 0, +1 t h a t extracts from a substruc-
tu re quant i ty those components t h a t are related
to t h e interface boundary I'i, and X (not t o
be confused with its previous use for the dy-
namic pressure in Section 1.1) is the vector of
Lagrange multipliers representing the traction
forces needed for enforcing on the substructure
interfaces the continuity of the displacement
field

3=N,

BSqs = 0 (129)
s=1

Using the notation of Eq. (124), t he lineariza-
tion of Eqs. (128,129) around can be for-
mulated as

where K" denotes here the subdomain tangent

stiffness matrix. Eqs. (130) are known as dif-
ferential/algebraic equations (DAEs). They are
more difficult t o solve t h a n the usual ordinary
differential equations [79].

5.2. Implicit Time-Integration

denote the- momentum increment at iteration
k + 1 and at the midpoint between steps n and
n + 1, and let M = [M1 ... MNa 1. We have

In [76], it was shown t h a t t he following time-
integration algorithm for solving the DAEs (13)
is second-order accurate and uncondit ional ly

stable

8-39

1. Solve:

s = 1, ..., N ,

s=1

2. Update:

(132)

T h e computational cost of the above im-
plicit time-integration algorithm is dominated
by t h e cost incurred at each t ime step for t h e
solution of a constrained system of t h e form

S T K*'qs = g" - B X s = 1, ..., N ,

B"q" = 0
s=l

(133)
where a simplified notation has been used, and
K*ll is given by

After some algebraic manipulations, Eqs. (133)
above can be rewritten as

where Fr and d are given by

- 1
s=N,

-1
s=N,

F I = B"K*' B"; d = BsK*8 g"
s=1 s = 1

(136)
Note t h a t t h e FETI domain decomposition
method transforms t h e original primal prob-
lem described in Eq. (124) into a dual inter-
face problem. T h e dual interface operator FI
is in general symmetric positive semi-definite.
I t has interesting spectral properties [32,57,74]
which induce a superconvergent behavior of a
PCG algorithm applied to t h e solution of Eq.
(135). T h e parallelization of a conjugate gra-
dient scheme applied t o t h e solution of the
dual interface problem is straight forward, be-
cause FI is a sum of independent substructure
operators. All CG related computations can
be performed in parallel on a substructure-by-
substructure basis.

5.3. The FETI PCG Parallel Alnorithm

We have developed two preconditioners for
the FETI method: (1) a numerically optimal
Dirichlet preconditioner t h a t can be written as

(137)
where t h e subscripts i and b designate here in-
ternal and interface boundary unknowns, re-
spectively, and (2) a numerically efficient "lumped"
preconditioner t h a t lumps t h e Dirichlet opera-
tor on the subdomain interface unknowns

-D- 1 -L- 1

Unlike FI , t h e preconditioner FI is not
mathematically optimal. However, it is more

economical t han FI , a n d has often proved
t o be more efficient [32,57].

-D-1

8-40

-
Let FY1 denote either t he Dirichlet or

lumped preconditioner, and let GI denote the
matr ix collecting the traces on the substructure
interfaces of t he the rigid body modes Rs of the
N j floating substructures 0” -- t h a t is, the
substructures without enough boundary condi-
tions t o prevent t he local tangent stiffness ma-
trices Ks from being singular

GI = [BIR1 ... BNfRNf] (139)

Using G I , we introduce the projection operator

p = I - G ~ (G T F ~ G ~) - ~ G T F ~ (140)

where I denotes the identity matrix. In three-
dimensional problems, each floating substruc-
tu re can have u p t o 6 rigid body modes. There-
fore, G T F ~ G ~ is a square matrix of size equal
a t most t o 6 x N j 5 6 x N , (6 unknowns per
floating substructure).

T h e transient FETI PCG algorithm [33]
for solving Eq. (135) goes as follows

1. Initialize

2. I terate k = 1, 2, ... until convergence

T k - 1 Project w k - l = P r

Precond. zk-’ = F;lw“-’
Project y“’ = P zk--l

-

k - l T W k - 1 k - Z T k - 2 ck = Y Is’ w
pk = yk-’ + c p

x = x k - - l + v p

r = r - v k ~ I p k

k k - 1

/pkTFrpk k k - l T W k - l

k k k

U = y

k k - 1

(141

T h e application of the projection operator
P defined in (140) means t h a t a coarse prob-
lem of the form (G I ~ F I G I) x = b must be
solved twice within each FETI iteration. I t was
shown in [32] t h a t this coarse problem has the
expected beneficial effect of coupling all sub-
s t ructure computations and propagating the er-
ror globally, so t h a t t he condition number of
the preconditioned interface problem can be
bounded as a function of H / h and indepen-
dently of t he number of substructures, which
ensures the numerical scalability of t he FETI
met hod.

For shell and plate problems, the definition
of Rs is slightly modified t o include not only
the substructure rigid body modes, bu t also the
substructure “corner” modes [75]. Otherwise,
the remainder of the FETI algorithm remains
essentially the same.

5.4. Optimization for Problems
with Mult iple/Repeated R.H.S.

One of the many reasons why numerical scal-
ability is desirable is t h a t increasing the num-
ber of subdomains is t he simplest means for in-
creasing the degree of parallelism of a domain
decomposition based PCG algorithm. As illus-
t ra ted in the previous paragraph, this optimal
property is usually achieved via the introduc-
tion in a domain decomposition method of a
coarse problem (or coarse grid, by analogy with
multigrid methods) t h a t relates to t h e original
problem and t h a t must be solved at each global
CG iteration. Direct methods are often chosen
for solving the coarse problem despite the fact
t h a t they are difficult t o implement on a mas-
sively parallel processor and d o not parallelize
as well as iterative schemes. Therefore in many
cases, a numerically scalable domain decompo-
sition method loses its appeal because of i ts lack
of parallel scalability. One way to restore par-
allel scalability is to solve iteratively the coarse

8-41

Step 1. weproject theproblem (GTQ)x2 = b2
onto S' and solve the trivial dia onal
system S'T(GTQ)S'y20 = S' bZ.
Then, we perform a matrix-vector

In [34], it is argued that xZo is an
optimal startup value for xz because:
(a) it minimizes xT(GTQ)x/2-xTbZ
over S', and (b) it is inexpensive
to compute. Note that the n' non-
zero entries of the diagonal matrix
SIT (GTQ)S' are readily available
from the CG solution of the previ-
ous coarse problem (GTQ)x' = b .
Therefore, these entries can be stored
and need not be recomputed.

9

multiplication toobtainxZ0 = S 1 y 20 .

1

problem, for example using a CG scheme. How-
ever, because the coarse problem is embedded
in an outer iterative loop, this approach raises
the question of how to solve iteratively and ef-
ficiently a system with a constant matrix and
repeated right-band sides. Finding an answer
to this question also extends the range of ap-
plications of domain decomposition based iter-
ative methods t o design problems, eigenvalue
problems, and several other applications where
multiple and repeated right-hand sides always
arise and challenge iterative solvers. Such ex-
amples include nonlinear transient aeroelastic
simulations where the structure is assumed to
remain in the linear regime. In that case, the
left hand side FI of Eq. (135) remains constant
in time, but its right hand side (r.h.5.) d varies
in time.

The iterative solution of systems with
multiple and/or repeated right-hand sides has
been previously addressed in [80], and recently
in [34,81]. Here, we overview the CG based
methodology for solving such problems that
uses the same data structures as those employed
in domain decomposition methods without a
coarse grid and which was first presented in
[34,81]. The basic idea is related to that an-
alyzed in [80]. However, the algorithm we have
developed is different, simpler, and easier to
parallelize than that described in [80].

Since GTFr appears twice in the expres-
sion of the projector P (140), we first con-
struct Q = FrGr. Suppose that the solu-
tion of the first encountered coarse problem
(GTQ)x1 = b1 has been obtained after n1
CG iterations. Let S' denote the space of
the (GTQ)-orthogonal search directions gen-
erated during these n' CG iterations. If ex-
plicit re-orthogonalization is implemented in
the CG algorithm [57], SIT(GTQ)S1 is guar-
anteed to be a diagonal matrix. In order to
compute the solution of the next coarse prob-
lem (GTQ)x2 = b2, we proceed as follows

Step 2. next, we apply the CG algorithm to
the solution of (GTQ)x2 = ba af-
ter it has been modified to: (a) accept
xZo as a startup solution, and (b) per-
form the explicit orthogonalization of
the new search directions and S1 with
respect to (G ~ Q) .

The solution of all subsequent coarse problems
is carried out using the same two-step procedure
outlined above. Essentially, the space of previ-
ous search directions is constantly enriched with
the most recently computed ones, and orthogo-
nalization with respect to (GTQ) is always per-
formed. The storage requirements associated
with this methodology are minimal because it
is applied to coarse and therefore small prob-
lems (see [34] for further details). Because full
precision is required for the solution of all coarse
problems, the solution of the first one typically
converges in a number of iterations equal to the
size of the matrix (GTQ) - that is, the total
number of substructure rigid body modes -
and all subsequent coarse problems are solved
in zero iteration, using only the optimal startup
value.

Clearly, the methodology outlined above
€or solving iteratively and efficiently a system

of equations with a constant matrix and re-
peated right-hand sides is equally applicable to
any (symmetric) system of the form Ax = b
where A is of a relatively small size. In partic-
ular, i t is applicable to Eq. (135) since the size
of Fr is equal to the number of interface d.o.f.,
and that number is usually less than 30% of
the total number of structural d.0.f. Therefore,
this methodology can be used for solving non-
linear transient aeroelasticity problems where
the structure remains in the linear regime. In
that case, FI is the same at all time-steps, and
d varies in time with the pressure associated
with the unsteady flow.

As an example, we apply the methodology
described above to the solution of the repeated
systems arising from the linear transient analy-
sis using an implicit timeintegration scheme of
the three-dimensional stiffened wing of a High
Speed Civil Transport (HSCT) aircraft (Fig.
16). The structure is modeled with 6,204 tri-
angular shell elements, 456 beam elements, and
includes 18,900 d.0.f. The finite element mesh
is partitioned into 32 subdomains with excel-
lent aspect ratios using TOP/DOMDEC [82].
The size of the interface problem is 3,888 -
that is, 20.57% of the size of the global prob-
lem. The transient analysis is carried out on a
32-processor iPSC-860 system. After all of the
usual finite element storage requirements are al-
located, there is enough memory left to store
a total number of 360 search directions. This
number corresponds to 9.25 % of the size of the
interface problem.

Fig. 16. HSCT stiffened wing

Using the transient FETI method, the sys-
tem of equations arising at the first time step is
solved in 30 iterations and 7.75 seconds CPU.
After 5 time steps, 89 search directions are ac-
cumulated and only 10 iterations are needed
for solving the fifth linear system of equations
(Fig. 17). After 45 time steps, the total number
of accumulated search directions is only 302 -
that is, only 7.76% of the size of the interface
problem, and superconvergence is triggered: all
subsequent time steps are solved in 2 or 3 it-
erations (Fig. 17) and in less than 0.78 second
CPU (Fig. 18).

When a parallel skyline direct solver is ap-
plied to the above problem, the factorization
phase consumes 60.5 seconds CPU, and at each
time step the pair of forward/backward sub-
stitutions requires 10.65 seconds on the same
32 processor iPSC-860. Therefore, the solution
methodology described herein is clearly an ex-
cellent alternative to repeated forward/backward
substitutions on distributed memory parallel
processors.

Implicit Transient Aeroelasticity via FETI

30 7

0 ‘
I

0 5 10 15 20 25 30 35 40 45 50
Time Step Number

Fig. 17. Convergence rate history

Implicit Transient Aeroelasticity

__.
IO lowad & backwad

0 ’
0 5 10 IS 20 25 30 35 40 45 SO

Time Step Number

Fig. 18. CPU history

6. NON-MATCHING INTERFACE
BOUNDARIES 1351

All four partitioned analysis procedures dis-
cussed in Section 3 require exchanging interface-
data only between the field analyzers. More

precisely, the structure expects to receive the
values of the flow pressure and viscous stresses
at the fluid/structure interface boundary IIF/S,
and convert them into a structural load. Simi-
larly, the fluid expects to receive from the struc-
ture the displacement and/or velocity of the in-
terface boundary r F / S , and use them to update
the position of the dynamic fluid mesh. This
exchange is performed at every time-step, or as
required by the subcycling algorithm.

In general, the fluid and structure meshes
have two independent representations of the
physical fluid/structure interface. When these
representations are identical - for example,
when every fluid grid point on r F / S is also a
structural node and vice-versa - the evalua,
tion of the pressure forces and the transfer of
the structural motion to the fluid mesh are triv-
ial operations. However, analysts usually prefer
to

I use a fluid mesh and a structural model
that have been independently designed
and validated.

refine each mesh independently from the
other.

Hence, most realistic aeroelastic simulations
will involve handling fluid and structural meshes
that are incompatible at their interface bound-
aries (Fig. 19). In [35], we have addressed this
issue and proposed a preprocessing “matching”
procedure that does not introduce any other ap-
proximation than those intrinsic to the fluid and
structure solution methods. This procedure can
be summarized as follows.

Fig. 19. Incompatible fluid and structure meshes

The nodal forces induced by the fluid pres-
sure on the “wet” surface of a structural ele-
ment e can be written as:

where ace) denotes the geometrical support of
the wet surface of the structural element e, p
is the pressure field, T is the tensor of viscous
stresses, U is the unit normal to 0ce), fi is a
tangent to the plane of ace), and N, is the shape
function associated with node i in element e.
Most if not all finite element structural analysis
codes evaluate the integral in Eq. (142) via a
quadrature rule

s=ng

f ~ ‘ = ~gNi(xg)(-p(xg)~+(~(x,)y)ii)

(143)
g=1

where w, is the weight of the Gauss point X,.
Hence, a structural analysis code needs to know
only the values of the pressure field at the Gauss
points of its wet surface. This information can
be easily made available once every Gauss point
of a wet structural element is paired with a
fluid cell (Fig. 20). It should be noted that
in Eq. (143), X , are not necessarily the same

Gauss points as those used for stiffness evalua-
tion. For example, if a high pressure gradient is
anticipated over a certain wet area of the struc-
ture, a larger number of Gauss points can be
used for the evaluation of the pressure forces
f,””‘ on that area.

On the other hand, when the structure
moves and/or deforms, the motion of the fluid
grid points on rF/S can be prescribed via the
regular finite element interpolation

(144)

where Sj, wne, X i , and q k denote respectively
a fluid grid point on rpIs, the number of wet
nodes in its “nearest” structural element e,
the natural coordinates of S, in ace), and the
structural displacement at the k-th node of el-
ement e. From Eq. (144), it follows that each
fluid grid point on I’FIS must be matched with
one wet structural element (Fig. 21).

Fig. 20. Gauss-point-fluid cell pairing

8 4 5

16 subdomains, Matcher generated the desired
fluid/structure pairing data structures in 327
seconds CPU on a 32-processor iPSC-860 sys-
tem [35].

7. THE MESH MOTION SOLVER 1441

At the beginning of each step of the chosen stag-
gered solution procedure, the dynamic fluid grid
must be updated to conform to the most re-
cently computed configuration of the structure.
In general, this is done in two steps

Step 1. first, the points lying on the inter-
face boundary r F / S are adjusted to
match (in the sense defined in Sec-
tion 6) the newly computed or pre-
dicted position of the surface of the
structure. This defines a prescribed
displacement vector x r F l s .
next, the remainder of the fluid grid
points are repositioned accordingly
to the prescribed values of x r F l s .
This completes the computation of
the new mesh displacement vector x.

Step 2.

Fig. 21. Fluid grid point-wet structural
element pairing

Given a fluid grid, a structural analy-
sis model, and a discrete description of the
fluid/structure interface, the Matcher program
described in [35] generates all the data struc-
tures needed for evaluating the quantities de-
scribed in Eqs. (143,144). If parallel data
structures - for example, data structures as-
sociated with mesh partitions of the fluid and
structure grids (see Section 8) - are fed as in-
put, Matcher outputs parallel data structures
that allow a painless implementation of the
interface-data exchange between the field an-
alyzers and are fully compatible with the in-
trinsic parallel data structures of the fluid and
structural analysis programs. In general, the
pairing of fluid and structure entities does not
change in time. Therefore, Matcher is run as a
preprocessor. The pairing data structures are
generated only once, prior to any aeroelastic
computation.

Finally, we note that Matcher is written
in a message-passing style. Therefore, this soft-
ware is portable to any parallel computing plat-
form that supports a PVM- or MPI-like com-
munication library. Of course, it also runs on
sequential computers. For a complete aircraft
configuration where the fluid mesh contained
439272 tetrahedra, 77279 vertices, and was par-
titioned into 32 subdomains, and the struc-
tural model contained 7520 triangular shell el-
ements, 3841 nodes, and was partitioned into

Several procedures have been proposed in
the literature for implementing the above two
steps. Most of them can be summarized as
viewing the fluid domain or its grid as a pseudo-
structural continuous or discrete system. For
example, in the discrete approach, either or all
of the following can be done (see Fig. 3)

lumping a fictitious mass at each vertex of
the fluid mesh.

introducing a fictitious dashpot at each
edge connecting two vertices.
attaching a fictitious spring on each edge
connecting two vertices.

Similarly, a pseudo-structural continuous sys-
tem can be generated with fictitious distributed
structural properties. In both cases, the motion
of the constructed pseudo-structural system is
governed by

8 4

where %, fi, and are the fictitious mass,
damping, and stiffness matrices associated with
the dynamic fluid mesh, and is the compo-
nent of the fictitious stiffness matrix that repre-
sents the coupling between the fluid points lying
on I'F/S and the others. Eq. (126) above is in-
tegrated in time until the steady-state equilib-
rium displacement x is reached. This solution
procedure can be speeded up by constructing
% and 1?, as follows

The grid points located on the upstream and
downstream boundaries are held fixed. At each
time-step t"+', the new position of the inte-
rior grid points is determined from the solu-
tion of Eq. (147) via a two-step iterative pro-
cedure. First, the displacements of the inte-
rior grid points are predicted by extrapolating
the previous displacements at time-steps t" and
t"-' in the following manner

and selecting the two scalars a and b so that the
governing equations Of motion (126) are
cally damped. In that case, the equilibrium so- relaxations follows
lution x is reached in a few time-steps.

where p n X = ,n+l - xn. Next, the predicted
values are corrected with a few explicit Jacobi

-
Alternatively, M and 6 can be set to zero,

and the new position of the dynamic fluid mesh
can be computed via the solution of the static
problem

i i x = k x r P l s (147)

This approach is often referred to as Batina's
network of edge-springs [15]. However, it should
be noted that attaching a lineal spring on the
edge connecting two vertices of a tetrahedron
prevents these two vertices from colliding dur-
ing the mesh deformation, but does not pre-
vent a vertex from interpenetrating the facet

Finally, the position of the fluid grid points at
tn+' is computed from

(151) X"+l = + A n + l X

8. A UNIFIED PARALLELIZATION
STRATEGY r w l

of a tetrahedron. To prevent such a detrimen-
tal interpenetration that is more likely to hap-
pen when the structure undergoes large mo-

8.1. The Mesh PartitioninP and
Message-Passinrc Paradigms

tions, torsional springs must also be added at
the mesh vertices, and their stifFnesses must be
carefully calibrated.

In addition to numerical efficiency and paral-
le1 scalability, portability should be a major
concern, especially for production codes. With

In this work, the pseudo-structural system
associated with the unstructured dynamic fluid
mesh is constructed with lineal and torsional
springs only (% = 6 = 0). Each fictitious lin-
eal spring attached to an each edge connecting
two fluid grid points S, and SI is attributed the
following stiffness

the proliferation of computer architectures, it is
essential to adopt a programming model that
does not require rewriting thousands of lines
of code - or even worse, altering the archi-
tectural foundations of a code - every time a
new parallel processor is acquired. Here, we
are neither referring to differences between pro-
gramming languages, nor to differences between
the multitude of parallel extensions to a specific (148)

1
I I Sl si I I2

k,, =

programming language. We are more concerned
abou t t h e impact of a given parallel hardware
architecture on t h e finite element software de-
sign, and sometimes, on t h e solution algorithm
itself. For example, a d a t a parallel code written
for t h e CM-2 or CM-5 machines would require
major rehauling before i t can be adapted t o an
iPSC computer. A parallel-do-loop based code
can be easily ported across different t rue shared
memory multiprocessors, bu t may require sub-
stantial modifications before it can run success-
fully on some distributed memory systems.

Based on our “hands on” experience with
a dozen of different parallel processors, we can
argue t h a t t h e mesh partitioning and message-
passing paradigms lead to t h e most portable
software design for parallel computational me-
chanics. Essentially, t h e underlying mesh is as-
sumed to be partitioned into several submeshes,
each defining a subdomain. T h e same “old”
serial code can be executed within every sub-
domain. T h e “gluing” or assembly of t h e sub-
domain results can be implemented in a sepa-
ra te software module. Clearly, this is an object-
oriented approach t h a t is best programmed in
C++, bu t which can also be programmed in
FORTRAN or any other language. This ap-
proach enforces d a t a locality and therefore is
suitable for all parallel hardware architectures.
Note t h a t in this context, “message-passing”
refers to t h e assembly phase of t h e subdomain
results. However, it does not imply t h a t mes-
sages have to be explicitly exchanged between
t h e subdomains. For example, message-passing
can be implemented on a shared memory multi-
processor as a simple access to a shared buffer,
or as a duplication of one buffer into another
one. Moreover, t h e message-passing program-
ming model produces software modules t h a t are
easy to maintain, because except for the gluing
procedures, t h e subdomain code can be made
identical to t h a t of a workstation version.

In many cases, expensive parallel proces-
sors are affordable because some simulations

8-47

can subst i tute for experimental studies t h a t
would take much longer and cost much more t o
carry out . However, there are also other cases
where current parallel processors are simply too
expensive, so t h a t a network of relatively inex-
pensive workstations is preferred. Obviously, a
message-passing based software can be quickly
adapted t o a cluster of workstations, for exam-
ple, using a PVM-like communication tool.

Therefore, all of our flow solvers, struc-
tural analyzers, and mesh motion solvers are
designed t o work with mesh partitions, and
are written. in a message-passing style. Conse-
quently, their performance is not only machine
dependent, bu t sometimes also mesh partition
dependent.

Research in mesh partitioning has focused
so far on the automatic generation of sub-
domains with minimum interface points. In
this section, we address this issue and em-
phasize other aspects of t h e partitioning prob-
lem including the fast generation of large-scale
mesh decompositions on conventional worksta-
tions, the optimization of initial decomposi-
tions for specific kernels such as parallel frontal
solvers and domain decomposition based iter-
ative methods, More specifically, we overview
a two-step partitioning paradigm for tailoring
generated mesh partitions t o specific applica-
tions, and a simple mesh contraction proce-
dure for speeding u p t h e optimization of ini-
tial mesh decompositions. We discuss what de-
fines a good mesh parti t ion for a given problem,
and show t h a t t h e methodology summarized
here can produce better mesh partitions than
the well celebrated multilevel Recursive Spec-
tral Bisection algorithm, and yet be an order of
magnitude faster. We illustrate t h e combined
two-step partitioning and contraction method-
ology with examples from structural mechanics
and fluid dynamics problems, a n d highlight its
impact on t h e total solution t ime of realistic ap-
plications on current massively parallel proces-
sors. In particular, we show t h a t t h e minimum

8-48

interface size criteria does not have a significant
impact on a reasonably well parallelized appli-
cation, and highlight other criterion which can
have a significant impact.

8.2. T h e Greedy and RSB Algorithms:
Two Ext remes

I t is often argued and demonstrated tha t if
unstructured computational mechanics prob-
lems are t o be efficiently solved on distributed-
memory parallel computers, their d a t a struc-
tures must be partitioned and distributed across
t h e processors in a way t h a t maximizes load bal-
ance and minimizes interprocessor communica-
tion [46,83]. However, research in mesh parti-
tioning algorithms has mostly focused on the
second issue - t h a t is, on minimizing interpro-
cessor communication costs only, and the num-
ber of interface points in a mesh partition, or
t h e number of edge cuts in i ts corresponding
graph, has rapidly become the main “accep-
tance test” for a proposed mesh decomposer.

While several mesh partitioning algorithms
have already been presented and/or discussed
in t h e l i terature [83-881, two radically different
schemes have particularly attracted the at ten-
tion of t h e user and developer communities: the
Greedy algorithm [57,84,85], and the Recursive
Spectral Bisection algorithm [83,88,93].

T h e Greedy (GR) mesh partitioning algo-
ri thm was first proposed in [89] and applied t o
t h e parallel solution of finite element structural
equations on t h e iPSC-1 system. This mesh de-
composition scheme is referred to as the Greedy
algorithm because it essentially “bites” into the
mesh‘ in order t o construct the subdomains. It
exploits only the mesh connectivity informa-
t ion, which makes it t h e fastest partitioning al-
gorithm we know about . In general, the GR al-
gorithm tends t o generate mesh partitions tha t
are characterized by reasonable subdomain as-
pect ratios and a relatively small number of
interface points. On a few occasions, this al-
gorithm has been misrepresented [go], perhaps,

because one statement is unfortunately missing
in the Fortran code given in [84]. This state-
ment is t h e one which forces every subdomain t o
s tar t with an element attached t o t h e previously
computed interface. T h e G R algorithm enjoys
a relatively large user community because of i ts
high performance/price ratio. For example, it
is capable of partitioning a three-dimensional
unstructured mesh containing 439272 tetrahe-
d r a and 77279 vertices into 64 subdomains with
25906 interface points, in less t h a n 15 seconds
on a Crimson Silicon Graphics workstation. Re-
cently, some interesting variants of t h e basic GR
algorithm have been proposed [91,92].

T h e Recursive Spectral Bisection (RSB)
graph partitioning algorithm was first proposed
in [88]. This scheme is at t h e same time t h e
least intuitive mesh decomposer, and t h e parti-
tioning algorithm tha t has most a t t racted t h e
attention of the parallel computing community.
Unlike the Greedy algorithm which is simple
and has no underlying theory, t h e RSB scheme
is sophisticated and relies on a relatively well
understood graph theory. More specifically, t h e
RSB algorithm is derived from a graph bisec-
tion strategy based on the computation of t h e
Fiedler vector - t h a t is, t h e second eigenvec-
tor of the Laplacian matrix of t h e graph asso-
ciated with the given problem [88]. Thanks t o
the multilevel strategy described in [93] for ex-
tracting the Fiedler vector, t h e computational
requirements of this partitioning scheme are no
longer overwhelming, even on a simple work-
station. However, t h e multilevel RSB algo-
ri thm is still more expensive t h a n most other
partitioning schemes. For example, when ap-
plied t o t h e decomposition into 64 subdomains
of t h e same three-dimensional mesh containing
439272 te t rahedra and 77279 vertices, it con-
sumes 707 seconds on a Crimson Silicon Graph-
ics workstation and generates a mesh parti t ion
with 21139 interface points. This mesh parti-
tion has 18.40% less interface points t han the
decomposition generated by t h e Greedy algo-
ri thm, but costs 48.07 times more C P U time to

349

uses a solution methodology whose perfor-
mance is insensitive to the characteristics
of a mesh partition such as, for example,
the subdomain aspect ratio or the subdo-
main interconnectivity.

It is our experience that when conditions
a), b) and c) are met, the GR and RSB al-
gorithms generate excellent mesh partitions for
parallel processing. Therefore, we have consis-
tently used both algorithms for the subset of
our parallel applications that can be described
by the above a), b) and c) points.

c) generate. Depending on the target parallel ap-
plication, such an improvement at such a price
may or may not be interesting. Recently, a par-
allel version of t h e RSB algorithm has been im-
plemented on the CM-5 [94]. This version has
certainly improved the computational feasibil-
ity of the RSB partitioner.

REMARK 3: Throughout this section, RSB
designates the multilevel Recursive Spectral Bi-
section algorithm. In particular, all perfor-
mance results reported for RSB applications
correspond to the fast multilevel scheme de-
scribed in [93], and release 2.1 of the code as
integrated in TOP/DOMDEC [82].

Minimizing interprocessor communication
costs in general, and the number of interface
points in a mesh partition in particular, is a
reasonable objective to “prioritize” when the
target parallel application:

a) involves communication essentially between
neighboring subdomains. This is typi-
cally the case for explicit timeintegration
(or pseudo timeintegration) schemes, and
some basic iterative solvers such as the
conjugate gradient or Jacobi precondi-
tioned conjugate gradient methods.

has a computational complexity that can
be simply related to mesh entities such as,
for example, nodes, and/or edges, and/or
elements, and/or cells. In that case, load
balancing can be reasonably well achieved
by requiring tha t each subdomain contain
the same number of such entities. In the
event of heterogeneous meshes, a weight-
ing factor can be attributed to each ba-
sic entity and the number of mesh entities
per subdomain can be modified accord-
ingly. Most importantly, load balancing
in that case does not significantly interfere
neither with the minimum edge cut aspect
of a graph partitioner, nor with the prac-
tical implementation of the corresponding
mesh decomposer.

b)

However, many important parallel appli-
cations do not fit the profile implied by the
a), b) and c) points. For example, frontal
sparse solvers which are popular in finite ele-
ments and structural mechanics [63-66,951 re-
quire mesh partitions that do not significantly
inflate the operation count of their sequential
counterparts. This particular issue relates more
to the subdomain local frontwidths than to the
subdomain interface sizes. Moreover, control-
ling the load balance of these direct solvers is
not in general as simple as distributing equally
some basic mesh entities across the desired sub-
domains.

Optimal domain decomposition based it-
erative solvers are another class of parallel ap-
plications whose scalability is not governed by
interprocessor communication costs only [57].
These solution algorithms are interesting on
massively parallel processors when their num-
ber of iterations for convergence does not grow
(or grows weakly) with the number of sub-
domains. Their effectiveness is determined
by their convergence rate and not by their
amount of communication. In particular, o p
timal non-overlapping domain decomposition
based iterative solvers require mesh partitions
that have as perfect subdomain aspect ratios
(close to unity) as possible. Sometimes, fulfill-
ing this requirement leads to mesh partitions
with larger interfaces than otherwise possible.

This is well demonstrated below for the struc-
tural High Speed Civil Transport wing finite el-
ement model containing 3150 nodes. For this
problem, the 32-subdomain mesh partition gen-
erated by the RSB algorithm has 707 interface
nodes and an average subdomain aspect ratio
AR = 0.39 (Fig. 22). The 32-subdomain mesh
partition generated by the methodology de-
scribed in this section and shown in Fig. 23 has
808 interface nodes, but an average subdomain
aspect ratio AR = 0.62. When the FETI do-
main decomposition based iterative solver pre-
sented in Section 5 is applied to the structural
wing problem, it converges in 47 iterations and
11.93 seconds when using the RSB mesh parti-
tion on a 32-processor iPSC-860. On the other
hand, it converges in 30 iterations and 7.75 sec-
onds when using the mesh partition with larger
interface but improved subdomain aspect ratio
[96]. Hence, one should question whether the
minimum interface size is not after all an over-
emphasized mesh partitioning criterion.

Fig. 22. 32-subdomain mesh partition for
an HSCT wing structural model (RSB)

Fig. 23. 32-subdomain mesh partition
(optimized subdomain aspect ratio)

8.3. Nomenclature

Throughout this section, the following nomen-
clature is used:
E set of edges of the dual graph of the

mesh
P partitioning vector: Pi = k means

that the mesh entity i belongs to sub-
domain k .

C cost function to be optimized
LBF load balance factor
L computational load of a given appli-

cation
NP number of processors
N , number of subdomains
Ne
N ,
Nd

N k

number of elements in the mesh
number of nodes in the mesh
number of degrees of freedom in the
model
number of some specific mesh entities
in subdomain k (including its inter-
face boundary)
number of macro elements in a con-
tracted mesh
number of interface points of a mesh
partition
number of mesh entities in subdo-
main k that yields an optimal load
balance

Nne

NI

Nbest,k

8-5 1

k = N ,
Load imbalance: C2 = [N k - N b e s t i k I 2 . d spatial dimension of the problem

x i j k i - th coordinate of t h e j - t h node in k=l

subdomain k
i - th coordinate of the center of grav-
ity of subdomain IC

When a parallel application has a computa-
tional complexity t h a t can be simply related
to mesh entities such as, for example, nodes,
and/or edges, and /o r elements, and /o r cells,

8.4. Two-step Partitioning and R e t r o f i t t i n g h e computational load L can be easily esti-

zi k

For all our computational mechanics parallel
applications, we have adopted t h e two-step
mesh. partitioning paradigm tha t was first in-
troduced in [97,98], then refined in [99], and
which consists in

Step 1) generating a n initial mesh decompo-
sition via either a suboptimal bu t fast
partitioning algorithm, o r a n algo-
ri thm t h a t is known to produce mesh
parti t ions t h a t are reasonably well
suited for the target parallel applica-
tion.

formulating t h e application specific
requirements as a cost function C ,
a n d optimizing it by readjusting t h e
initial subdomain interfaces. This
s tep can also be described as a retrofittino

Step 2)

mated and N b e s t Y k can be set prior t o t h e de-
composition t o N b e s t 7 k = L / N , . Otherwise,

is unknown a priori. It can have a dif-
ferent value in every subdomain I C , and is adap-
tively evaluated by t h e optimization algorithm.

Subdomain aspect ratio:

N b e s t , k

k=l i=l j=1

function has been shown t o play a pivotal role in
the convergence rate of optimal domain decom-
position based preconditioned conjugate gradi-
ent methods [96].

In practice, t h e performance of a parallel
application is often governed by several distinct
factors. Therefore, one should consider in gen-
eral the following weighted cost function:

procedure.

T h e Greedy algorithm is very fast because
i ts complexity grows as 0 (N e x N s) . More-
over, it produces mesh partitions t h a t are rea-
sonably well-suited for most parallel computa-
tional methods. Hence, t h e GR algorithm is
ideally suited for generating a n initial decom-
position in Step 1.

In Step 2, a cost function representing the
decomposition requirements of t h e target par-
allel application must first be formulated. A
sample list of cost functions t o optimize is given
below:

Interface size: C1 = il{(i,j) E E/Pi #
Pj}l. Here, t h e size of t h e interface is defined as
t h e number of edges in E whose vertices belong
to two different subdomains. This cost function
may not govern all parallel applications bu t is
certainly helpful in all cases.

where C; is a cost function representing one
specific issue - for example, Ci could be any-
one of the cost functions listed above - and
ai is t h e weight a t t r ibuted to t h a t issue. In
t h a t case, optimizing C corresponds t o finding
t h e best possible “compromise” mesh partition.
Unfortunately, we d o not have yet an automatic
mechanism for selecting t h e weight coefficients
ai. For this task, we rely on our understanding
of the focus parallel application, and experience
with the target parallel processor.

After a cost function is formulated, the de-
composition is optimized by readjusting only
the subdomain interfaces. More specifically,
only t h e mesh entities t h a t are attached t o t h e
interface are examined for possible exchange be-
tween t h e subdomains. Therefore, t h e compu-
tational complexity of t h e optimization process

8-52

is proportional t o the interface size and not to
t h e number of elements in the mesh. In col-
laboration with the Universitd Catholique de
Louvain, we have implemented three different
schemes for optimizing a given cost function.

Simulated Annealing (SA) [loo]. This al-
gorithm uses a monotonically decreasing “tem-
perature” as control variable for the outer it-
erations. For a fixed temperature, a number
of mesh entities are proposed for transfer t o a
neighboring subdomain - in the sequel, we re-
fer t o this s tep as a “move”. T h e acceptance
of a move is dictated by a probabilistic decision
which depends on t h e difference in cost between
making t h e move or ignoring it. T h e optimiza-
tion process ends when t h e temperature is suffi-
ciently low a n d no further moves are accepted.
In t h e inner loop, moves are chosen randomly.
T h e probability of acceptance of bad moves de-
creases with temperature.

Tabu Search (TS) [lo l l . This scheme
stores in a tabu list a specified number of re-
cently accepted moves. In the inner loop, sev-
eral moves outside t h e t abu list are proposed,
and t h e move with t h e highest positive or nega-
tive gain is accepted. In the outer loop, the last
accepted move replaces the oldest move in the
t abu list. Therefore, if this algorithm escapes a
local minimum, i t cannot use the same path in
t h e solution space t o reach this minimum again.

Stochastic Evolution (SE) [loa]. T h e main
difference between this algorithm and Simu-
lated Annealing is in t h e evolution of the con-
trol variable and t h e selection of t h e moves. At
each outer i teration, all interface elements are
proposed for a move in a predefined order. T h e
temperature decreases rapidly, thereby decreas-
ing t h e probability of accepting bad moves, un-
til t h e solution reaches a local minimum of the
cost function. A t this point, the temperature is
reset to i ts initial value. In general, this algo-
ri thm behaves as a series of fast SA processes
where t h e solution jumps from one local mini-
mum t o another.

A quality/speed trade-off can be applied to each
of the above optimization schemes by “tuning”
a few control parameters [98].

There is a t least one compelling reason for
having more t h a n one optimization algorithm
a t hand. In some cases, t h e initial mesh par-
tition generated in Step 1 can get entrapped
in a local minimum a t the first s tep of an op-
timization scheme, in which case Step 2 does
not improve t h e original decomposition. One
can hope t h a t switching t o another optimiza-
tion algorithm pulls t h e solution out of t h a t lo-
cal minimum. Everytime we have encountered
this problem for SA, we were able t o resolve it
by switching t o TS.

In order to illustrate t h e two-step method-
ology described above and highlight i ts po-
tential, we consider t h e partitioning of two
three-dimensional fluid dynamics unstructured
meshes into 64 and 128 subdomains. T h e first
mesh, FALC, is designed for t h e simulation of
external Euler flows around a Falcon aircraft. It
contains 439272 te t rahedra a n d 77279 vertices.
T h e second mesh, MUFF, is designed for t h e
simulation of internal viscous flows inside a car
muffler (Fig. 24). It contains 237963 tetrahe-
d r a and 43592 vertices. Here, we assume t h a t
t h e objective is to generate mesh parti t ions with
equal number of te t rahedra a n d minimum num-
ber of interface points. Hence, t h e load balance
factor can be written in this case as follows

k

(153)
averagek Ne

maxk Nk
LBF =

More complex objectives are discussed in Sec-
tion 8.6.

8-53

Fig. 24. Three-dimensional discretization of
the flow domain inside a car muffler

First, the GR and multilevel RSB algo-
rithms are used to partition the FALC mesh
into 64 subdomains, and the MUFF mesh into
128 subdomains. Following the recommenda-
tion given in [93], the computational size of the
lowest level is set to 300 for the RSB scheme.
Next, the two-step methodology is applied to
generate similar mesh partitions. The GR al-
gorithm is selected for Step l , and the SA op-
timization scheme for Step 2. For both meshes,
the cost function is defined as C = 0.5 x CI +
0.5 x CZ, and the parameters N k and N
are set to N k = N." and Nbest*k = N./N, . The

b e s t , k

characteristics of the resulting mesh partitions
are summarized in Tables 1 and 2. All com-
putations are performed on a Crimson Silicon
Graphics workstation.

The results reported in Table 1 show that
for the FALC mesh, RSB outperforms GR for
the imposed objective. The mesh partition pro-
duced by RSB has 18.40% less interface points
than that delivered by GR, but costs 48.07
times more CPU time to generate. On the
other hand, the two-step partitioning method-
ology with GR as an initial decomposer outper-
forms RSB €or the same objective. The mesh
partition generated by GR and optimized by
SA has 9.83% less interface points than that de-
livered by RSB and costs 1.97 times less CPU
time to produce. For the MUFF mesh, the re-
sults reported in Table 2 show that GR out-
performs RSB for the imposed objective. More
specifically, GR produces a mesh partition with
2.53% less interface points than RSB does and
115.40 times faster. The two-step partitioning
methodology with GR as an initial decomposer
outperforms both RSB and GR, is significantly
cheaper than RSB, but is also significantly more
expensive than GR.

Table 1
Partitioning of the FALC mesh: N e = 439272 - N , = 64

SGI/Crimson

Scheme Optimizer Nr LBF CPU CPU CPU

C = 0.5 x Ci +0.5 x Cz

Step 1 Step 2 Total

RSB None 21 139 0.999 707.10 s. 0.00 s. 707.10 s.

GR None 25 906 0.999 14.71 s. 0.00 S. 14.71 s.
GR SA 19 060 0.999 14.71 s. 342.76 s. 357.47 s.

8-54

Table 2
Parti t ioning of the MUFF mesh: Ne = 237963 ~ N , = 128
C = 0.5 X CI $0.5 X Cz
SGI/Crimson

Scheme Optimizer N I LBF C P U C P U C P U
Step 1 Step 2 Total

RSB None 17 810 0.999 791.69 s. 0.00 s. 791.69 s.

G R None 17 358 0.999 6.86 s. 0.00 s. 6.86 s.
GR SA 14 934 0.996 6.86 s. 551.72 s. 558.58 s.

For t h e above two examples, we have used
G R as a n initial decomposer in order to keep
t h e total partitioning costs as low as possible.
However, if preprocessing costs are not an is-
sue, RSB can also be used in Step 1. For t h e
M U F F mesh, t h e two-step method with RSB
as a n initial decomposer generates a mesh par-
tition with 14252 interface points and consumes
1212.49 s. C P U (791.69 s. (Step 1) + 420.80 s.
(Step 2)). This particular example shows t h a t
when an initial mesh partition is slightly better
t h a n another one, its optimized version is not
necessarily bet ter t han the optimized version of
t h a t other one.

Also note t h a t for t h e above problems, all
algorithms including t h e two-step methodology
deliver mesh partitions with perfect load bal-
ance factors.

We are particularly interested in fast and
good partitioning algorithms because we would
like to be able to inspect - possibly interac-
tively - a few mesh decompositions before se-
lecting one for a target parallel application. T h e
examples reported above highlight t h e poten-
tial of t h e two-step methodology for generating
excellent mesh partitions. However, the opti-
mization s tep is not as fast as we would like it
t o be. Next, we present a contraction proce-
dure for speeding u p t h e optimization process
in Step 2.

8.5. An Efflcient Contraction Procedure

T h e idea of contracting a mesh before parti-
tioning i t is not new. Apparently, it was first
proposed in [93] for reducing t h e costs of t h e
RSB partitioning scheme, and in [lo31 for stor-
age optimization purposes. T h e contraction ap-
proach presented in [93] is based on t h e con-
cept of maximal independent sets. T h e con-
traction approach proposed herein is based on
t h e Greedy algorithm and our experience with
this heuristic. Our main objective is to speed
u p t h e optimization process in Step 2 of t h e
partitioning methodology. Our main strategy
goes as follows.

First , t h e mesh is recursively coarsened us-
ing an 0 (N e) Greedy-based contraction pro-
cedure until i ts size reaches a user specified
value, say N,. = 5000 macro-elements. An ini-
tial decomposition is performed on t h e coarse
mesh using preferably a fast mesh partition-
ing algorithm. This decomposition is followed
by a few smoothing iterations using one of the
three optimization schemes introduced in Sec-
tion 3. Next, t h e obtained coarse parti t ion is
mapped onto t h e original a n d finer mesh, and
another optimization is performed on t h e fine
level. When more than one level of contrac-
tions is needed t o reach t h e specified number
of macro-elements Nme, coarse-to-fine mapping
and optimization are performed at every inter-
mediate level.

8-55

More specifically, the contraction step is
implemented as follows. Given a start ing ele-
ment, a fixed-size cluster is constructed by ag-
glomerating neighboring elements in a recur-
sive manner. This cluster defines a macro-
element in t h e contracted mesh. At t h e begin-
ning, t h e s tar t ing element is selected among t h e
peripheral elements. Later, it is selected among
those elements which neighbor existing clusters.
T h e contraction ends when all elements are at-
t r ibuted t o a cluster. In practice, we have found

t h a t 5 elements is a good choice for the size of
a cluster. However, fewer or more elements can
sometimes define a cluster for connexity pur-
poses.

T h e impact of t h e contraction procedure
described above on t h e two-step partitioning
methodology is highlighted in Tables 3 and 4
for t h e FALC and MUFF meshes, respectively.

Table 3
Parti t ioning of t h e FALC mesh: Ne = 439272 - N , = 64
C = 0.5 x C1 + 0.5 x C2
Effects of t h e contraction procedure
SGI/Crimson

Scheme Optimizer N I L B F C P U C P U C P U C P U
Contr. Step 1 Step 2 Tot a1

RSB None 21 139 0.999 0.00 s. 707.10 s. 0.00 s. 707.10 s.
GR None 25 906 0.999 0.00 s. 14.71 s. 0.00 s. 14.71 s.
GR SA 19 060 0.999 0.00 s. 14.71 s. 342.76 s. 357.47 s.
Contr. + GR Contr.+ SA 16 160 0.999 6.65 s. 0.08 s. 38.36 s. 45.09 s.

Table 4
Parti t ioning of t h e M U F F mesh: Ne = 237963 - N , = 128
C = 0.5 x C1 + 0.5 x Cz
Effects of t h e contraction procedure
SGI/Crimson

Scheme Optimizer N I LBF C P U C P U C P U C P U
Contr. Step 1 Step 2 Total

RSB None 17 810 0.999 0.00 s. 791.69 s. 0.00 s. 791.69 s.
GR None 17 358 0.999 0.00 s. 6.86 s. 0.00 s. 6.86 s.
GR SA 14 934 0.996 0.00 s. 6.86 s. 551.72 s. 558.58 s.

Contr. + GR Contr. + SA 12 792 0.999 3.02 s. 0.12 s. 143.70 s. 146.84 s.

For t h e FALC mesh and 64 subdomains, the
contraction procedure is shown to reduce the
cost of Step 2 by a full order of magnitude.
In t h a t case, t h e two-step partitioning method
with GR as an initial decomposer produces a

mesh partition with 23.55% less interface nodes
than t h a t generated by RSB, and is 15.68 times
faster t han RSB.

8-56

For t h e M U F F mesh and 128 subdomains,
t h e two-step partitioning method with graph
contraction a n d GR as a n initial decomposer
produces a mesh parti t ion tha t has 28.17% less
interface nodes t h a n the RSB parti t ion, and is
5.39 times faster t h a n RSB.

T h e performance results reported in Ta-
bles 3 and 4 also show t h a t the proposed con-
traction procedure not only speeds up the two-
s tep partitioning method, bu t also results in
better mesh decompositions. Indeed, the con-
tracted mesh represents t h e structure of the
original grid, and t h e optimization of i ts decom-
position tends t o improve the global structure
of t h e desired mesh partition by moving sev-
eral elements simultaneously. When t h e mesh
is not contracted, t h e global structure of the
mesh parti t ion remains identical t o t h a t of the
initial decomposition because the probability of
transferring large amounts of elements between
the initial subdomains is usually low.

As mentioned earlier, a quality/speed trade-
off can be applied t o each of t h e three optimiza-
tion schemes by “tuning” some of their control

parameters. An example of such trade-off is il-
lustrated in Table 5 for t h e FALC mesh and
various number of subdomains. From the re-
sults reported in this table, it follows t h a t , for
the cost function C = 0.5 x CI + 0.5 x C2,
the two-step partitioning method with contrac-
tion can generate even better mesh partitions
when t h e optimization algorithm is allowed t o
run longer in Step 2. Note t h a t even in t h a t
case, the two-step method is still significantly
cheaper t h a n the multilevel RSB algorithm. For
example, it can generate a 64-subdomain par-
tition for the FALC mesh with 14 613 interface
points only in 161.04 seconds, whereas t h e RSB
scheme consumes 707.10 seconds to generate a
64-subdomain mesh parti t ion with 21 139 inter-
face points (see Table 3). T h ’ is amounts to an
almost twice better mesh parti t ion at a quarter
of the price. T h e performance results summa-
rized in Table 5 also show t h a t t h e complexity
of the two-step partitioning method with con-
traction is sublinear with t h e number of subdo-
mains.

Table 5
Parti t ioning of t h e FALC mesh: N e = 439272 - N , = 64
C = 0.5 X C1 $0.5 X C2
Two-step partitioning method with contraction
Initial decomposer = GR - optimization scheme = SA
Computational complexity of Step 2 - quality/speed trade-offs
SGI / Crimson

N , C P U Step 1 N I N I C P U Step 2 C P U Step 2
(QUALITY) (SPEED) (QUALITY) (SPEED)

12.80 s. 6.19 s. 2 0.02 s. 1834 2371
4 0.03 s. 4291 4853 32.90 s. 12.72 s.

6903 51.19 s. 17.40 s. 8 0.03 s. 5997
9413 94.09 s. 27.01 s. 16 0.04 s. 8240
12682 124.40 s. 29.93 s. 32 0.06 s. 11414
16160 161.04 s. 38.44 s. 64 0.08 s. 14613

128 0.16 s. 18740 20520 207.30 s. 47.78 s.

In t h e remainder of this section, we use ex-

8-57

clusively GR for all initial decompositions. We
show that in all cases, the two-step partition-
ing methodology with the contraction proce-
dure described herein is a cheaper and better
alternative to the multilevel RSB algorithm.

8.6. Highlights

The two-step decomposition methodology and
the contraction procedure described in this sec-
tion are available in the TOP/DOMDEC [82]
interactive software package for mesh partition-
ing and parallel processing. Here, we illustrate
these two methodologies with examples from
computational structural mechanics and fluid
dynamics, and highlight their impact on the
parallel solution time of these problems on an
iPSC-860 multiprocessor and a Convex Meta
Series system.

Mesh partitioning algorithms are often
evaluated and/or benchmarked by simply as-
sessing and/or comparing the characteristics of
the mesh partitions they generate (interface
size, theoretical load balance factors, ...). Such
an approach is at best incomplete. The ulti-
mate goal of a mesh partitioning algorithm is
to reduce, if possible, the parallet CPU time
of the target parallel application. Hence, mesh
partitioning algorithms should be benchmarked
by comparing their impact on problem solving.
Here, we consider three classes of applications:
the solution of a set of semi-discrete differen-
tial equations via an explicit time-integration
scheme, the solution of a system of sparse linear
equations via a domain decomposition based it-
erative algorithm, and the solution of a system
of sparse linear equations via a frontal method.

8.6.1. Explicit Time-Marchinq

(Fig. 25). The corresponding number of equa-
tions is 233939. For this problem, the semi-
discrete finite element equations of dynamic
equilibrium are time-integrated using the ex-
plicit central difference scheme. Four differ-
ent mesh partitions are generated for parallel
computations on a 64-processor iPSC-860 sys-
tem. The characteristics of these decomposi-
tions are summarized in Table 6 where N Y i n * k ,
N I avcrage,L, ~ ~ m o z , k , and NI denote respectively
the minimum, average, and maximum number
of interface nodes per subdomain, and the to-
tal number of interface nodes in the mesh par-
tition. Given that the parallel performance
of the central difference scheme - and most
explicit time-integration algorithms - is gov-
erned by load balancing and communication
costs, the cost function C = 0.5 x CI +0.5 x Ca

N k / N p are used for this application.

For the above problem and 64 subdomains,
the interface size of the mesh partition gener-
ated by the RSB scheme is 14 % smaller than
that of the mesh partition produced by the GR
algorithm. On the other hand, the two-step
partitioning methodology without contraction
reduces the interface size of the GR decompo-
sition by 29%, and with contraction it reduces
it by 36% (see Table 6).

and the parameters N k = N k n and Nbest,' - -
k=N.

k = l

First, we consider a stress wave propagation
problem in a line-pinched plate with a cir-
cular hole. The plate is discretized using
47680 4-node shell elements and 48235 nodes

8-58

Table 6
Partitioning of the plate mesh: N. = 47680 - N , = 48235 - Nd = 233939 -
C = 0.5 x Ci +0.5 X Ca

averoge ,k N,maqt
Scheme Optimizer Contraction NYinIk NI

RSB None No 74 108 159 3433 1.14
GR None No 56 124 286 3912 1.00
GR SA No 53 101 149 3039 1.29
GR SA Yes 52 98 144 2876 1.36

The performance results on a 64processor
iPSC-860 system of the transient analysis of the
plate problem are reported in Table 7 for 2000
integration time-steps, and the four generated
64subdomain mesh partitions. Throughout
the remainder of this section, T,,,, and T..I
denote respectively the communication time,
and the total solution time for the target par-
allel application.

Fig. 25. Finite element discretization of
a plate with a circular hole

Table 7
Explicit central difference -
Solution time for 2000 time-stem on an LiGGZd

Scheme Optimizer Contraction T,,,, T..d %
RSB None No 115.28 s. 706.91 s. 1.14 1.20 1.03
GR None No 138.34 s. 728.12 s. 1.00 1.00 1.00
GR SA NO 101.72 s. 693.45 s. 1.29 1.36 1.05
GR SA Yes 98.81 s. 693.41 s. 1.36 1.40 1.05

Clearly, the results reported in Table 7 show
that the communication costs of the explicit
central difference time-integration algorithm
are directly related to the number of interface
nodes (for this problem, it turns out that all

generated mesh partitions have a similar aver-
age number of neighboring subdomains). How-
ever, these results also indicate that for this
class of parallel applications, there is little to

8-59

gain by searching for the “perfect” mesh parti-
tion with the least number of interface nodes.
For example, the two-step mesh decomposition
algorithm with contraction reduces the inter-
face size and communication costs of the GR
partition by factors equal to 1.36 and 1.40, re-
spectively, but improves the total CPU time
corresponding to the GR partition by 5% only.
Hence, i t would seem that the applications for
which one has legitimate reasons t o prioritize
the minimization of the interface nodes are the
least sensitive to the size of the subdomain in-
terfaces. Of course, such a statement assumes
that the given parallel processor is reasonably
fast in communication, and that the size of the
problem t o be solved justifies the chosen num-
ber of subdomains or processors.

One could argue that the above con-
clusions hold only for two-dimensional prob-
lems where the subdomain interfaces are topo-
logically one-dimensional, but not necessar-
ily for three-dimensional problems where the
subdomain interfaces are topologically two-
dimensional, and the average number of neigh-
bors for a given subdomain is higher. For this
reason, we investigate next the parallel per-
formance of the explicit central difference al-
gorithm applied to the evaluation of the lin-
ear transient response of a three-dimensional

engine nozzle subjected to a sudden pressure
burst. The nozzle is discretized into 12800 8-
node brick elements, 15579 nodes and 46701
active degrees of freedom (Fig. 26). Four dif-
ferent mesh partitions are generated for parallel
computations on a 64-processor iPSC-860 sys-
tem. The characteristics of these decomposi-
tions are summarized in Table 8. As for the
previous example, the cost function is set to
C = 0 . 5 x C 1 + 0 . 5 x C z , N ~ i s s e t t o N ~ = N , k ,

and NbesiVk =
k=N.

k = l
Nk/Np is adopted.

Fig. 26. Three-dimensional finite element
discretization of a nozzle

Table 8
Partitioning of the nozzle mesh: N. = 12800 - N , = 15579 - N d = 46701 -
C = 0.5 x Ci +0 .5 X Cz

NI Scheme Optimizer Contraction NF’n’k NI ouernge’k NFaz’k NI

RSB None No 116 185 272 5401 1.12
GR None No 129 212 316 6068 1.00
GR TS No 134 191 259 5494 1.10
GR TS Yes 120 177 220 5079 1.19

For the nozzle problem and 64 subdomains, the
mesh partition generated by the RSB scheme
has 1.12 times less interface nodes than that produced by the GR algorithm. The two-step

860

partitioning methodology with contraction re-
duces the interface size of the GR decomposi-
tion by a factor equal to 1.19. Note that re-
ducing the total number of interface nodes also
seems to improve the interface load balancing
factor I Z B F = ~ ; v e r a ~ e , t / ~ ; n n - , k . F~~ exam-

ILBF = 0.67 only for the 64-subdomain
mesh partition generated by the GR algorithm,

while lLBF = o,80 for that produced by the
two-step decomposition methodology~

Table 9 reports the CPU time on a 64-
Processor ipSc-860 system of a 2000 time-step
transient analysis of the engine nozzle using the
various 64-subdomain mesh partitions.

Table 9
Explicit central difference
Nozzle mesh: N. = 12800 - N, = 15579 - Nd = 46701 -

Solution time for 2000 time-steps on an iPSC-860/64 U
Scheme Optimizer Contraction T,,,, Tsoi % % E $ % ?
RSB None No 136.40 s. 338.00 s. 1.12 1.09 1.07
GR None No 149.08 s. 362.00 s. 1.00 1.00 1.00
GR TS No 139.46 s. 346.00 s. 1.10 1.07 1.05
GR TS Yes 129.63 s. 335.00 s. 1.19 1.15 1.08

Before commenting on the performance results
summarized in Table 9, it is worthwhile noting
that the iPSC-860 computer used for this appli-
cation has only 8 Mbytes of memory per proces-
sor. The smallest number of processors on this
machine that is a power of two and can meet the
storage requirements of this threedimensional
dynamics application is 64. From Table 8, i t
follows that 32% to 39% of the nodes of a 64-
subdomain mesh partition of the nozzle mesh
are interface nodes. Hence, the hardware con-
figuration of this iPSC-860 and the memory re-
quirements of the nozzle dynamics problem are
such that the computational and communica-
tion requirements of this target parallel appli-
cation are not particularly well balanced. This
is reflected in the performance results summa-
rized in Table 9 which show that 38% to 41%
of the total CPU time is spent in communi-
cation. To some extent, this situation is typi-
cal of three-dimensional finite element problems

solved on small memory massively parallel pro-
cessors. In Table 9, it is shown that RSB im-
proves the communication time over GR by a
factor equal to 1.09, and the two-step partition-
ing methodology with contraction improves the
communication time over GR by a factor equal
to 1.15. These factors are consistent with those
describing the reduction of the number of in-
terface nodes. However, for the enhanced mesh
partitions, the total CPU time is only 7% to
8% better than that corresponding to the GR
partition, which is also consistent with the dis-
tribution of the total simulation time between
computation and communication.

In summary, minimizing the number of
interface nodes of a mesh partition does im-
prove the total CPU time of this class of paral-
lel applications, but not by impressive factors.
Stated differently, unless communication costs
are overwhelming - in which case parallel pro-
cessing is not necessarily attractive - any rea-
sonable mesh partition is suitable for this type

8-61

particular, note that for the above problem
there is no correlation between NI and the com-
munication costs per FETI iteration. This is
essentially because the communication costs of
this application are dominated by those associ-
ated with global dot products and some other
full matrix linear algebra on a coarse grid prob-
lem. On the other hand, the results reported in
Table 10 clearly demonstrate the importance of
the subdomain aspect ratio for this class of ap-
plications. The two-step mesh decomposition
method with contraction improves the subdo-
main aspect ratio of the mesh partitions gener-
ated by GR and RSB by a factor equal to 1.7,
which reduces the number of FETI iterations
by a factor equal to 1.5, and the total solution
time by a factor equal to 1.4.

of parallel applications. This fact is rarely rec-
ognized in the parallel processing literature.

8.6.2. Domain Decomposition Based
Iterative Solvers

Here, we focus on the solution of the system
of equations arising from the finite element
static analysis of an elastic bearing under a
distributed surface load. The finite element
model of this three-dimensional structure con-
tains 9600 8-node brick elements and 33075 de-
grees of freedom (Fig. 27). The optimal domain
decomposition based FETI iterative solver (see
Section 5) is used for parallel computations on
a 64-processor iPSC-860 system. Three 6 4
subdomain mesh partitions are generated using
RSB, GR, and the two-step mesh partitioning
method with C = 0.5 X CZ $0.5 X C3, iVk = N."
and NbeaSrk = N, /N, . The characteristics of
these mesh partitions and the corresponding
performance results of the FETI solver are re-
ported in Table 10 where AR and Nit , denote
respectively the average subdomain aspect ratio
and the number of FETI iterations for conver-
gence.

Fig. 27. Finite element discretization
of an elastic bearing

For this application, it is clear that the size
of the interface problem does not control nei-
ther the communication time nor the total CPU
time of the domain decomposition solver. In

8-62

Table 10
Optimal FETI solver
Bearinc mesh: N . = 9600 - Nd = 33075 - - -
Effect of the subdomain aspect ratio

Scheme Optimizer Contraction NI AR Tcomm/NitT Nit, Taor

RSB None No 5 426 0.50 0.37 s. 45 36.09 s.

GR None No 5 032 0.52 0.37 s. 43 35.17 s.

GR SA Yes 4 430 0.84 0.40 s. 30 25.77 s.

8.6.3. Parallel Frontal Solvers

The problem of computing the steady-state flow
of an incompressible Oldroyd fluid in a two-
cam mixing apparatus arises in polymer pro-
cessing applications. This problem is governed
by a set of mixed elliptic/hyperbolic nonlinear
partial differential equations. Here, we con-
sider such a problem and the flow domain de-
picted in Fig. 28. Its finite element discretiza-
tion contains 1217 elements only, but generates
26082 equations. At each Newton iteration,
these equations are solved with the frontal di-
rect solver described in [99].

Fig. 28. Discretization of the flow domain
in a two-cam mixing apparatus

Among all parallel applications, the frontal
direct solver is perhaps the most challenging
one for mesh partitioning. Ideally, this algo-
rithm requires a mesh partition where: (a) each
subdomain frontwidth is smaller or equal to the
frontwidth of the global problem, (b) the com-
putational load is perfectly balanced, and (c)

the subdomain interfaces have a minimum and
equal number of nodes. Criterion (a) should
be emphasized, because trading computational
efficiency for parallelism is not always a win-
ning strategy. Enforcing criterion (b) is a seri-
ously difficult task, because the computational
load per subdomain cannot be derived a pri-
ori from the computational complexity of the
global problem. Criterion (c) attempts at mini-
mizing the communication and storage require-
ments associated with the elimination of the in-
terface unknowns.

Here, four 8-subdomain mesh partitions
are generated for parallel computations on an
8-processor Convex Meta Series system, using
GR, RSB, and the two-step mesh partitioning
method with both GR and RSB as initial de-
composers. For this application, the cost func-
tion t o be optimized is set to 0.5 x CI +0.5 X Cz.

can- However, note that in this case N
not be determined a priori. Let FE’ and

denote respectively the variable sub-
domain frontwidth and its maximum value.
During the optimization (or retrofitting) pro-

FRmoz,kZ is the same in all subdomains.

b e s t , k

cess, Nbest,k is computed so that Nbest” X

The characteristics of all four mesh par-
titions and the corresponding performances of
the parallel frontal solver are reported in Ta-
ble ll where EFRLBF = averagek(N.” X

FR”)/maxk(N.k xFR”2) is the estimated com-
putational load balance factor, Tkrernor is the

8-63

ternal renumbering scheme [32] is used in every parallel CPU time associated with t h e &mina-
tion of t h e subdomain internal unknowns, and
T,,I is t h e total parallel solution time. An in-

subdomain for minimizing f i 1 1 - h

Table 11
Parallel frontal solver
Polymer flow mesh: N e = 1217 - Nd = 26082 -
Effects of t h e subdomain frontwidth and load balancing

T p ~ e v a g e , k

E F R Z B F $%y+ T s o ~
Scheme O p t . N I ~ ~ a v e r a g e , k

," lc7".3l

RSB None 97 282.87 0.53 0.60 135.96 s.
RSB SA 88 269.38 0.83 0.85 80.01 s.
GR None 139 393.75 0.47 0.63 230.53 s.
GR SA 85 252.50 0.67 0.66 102.48 s.

T h e ability of EFRZBF t o predict t h e com-
putational load balance of t h e parallel frontal
solver is well illustrated in Table 11. Also, t h e
suitability of t h e selected cost function and t h e
effectiveness of t h e optimization algorithm are
well demonstrated. For example, t h e run-time
load balance factor for the RSB mesh partition
is equal to 0.53, while tha t of t h e optimized
RSB parti t ion is equal t o 0.83. T h e net result
of t h e optimization process is a speedup factor
in t h e solution t ime equal t o 1.69. For the GR
parti t ion, t h e net result of t h e retrofitting step
is a speedup factor equal t o 2.25. Note also
t h a t for t h e above problem, t h e mesh parti t ion
t h a t leads t o t h e fastest parallel solution of t h e
linearized equations is neither t h e one with t h e
minimum number of interface nodes, nor t h a t
with t h e minimum subdomain frontwidth, bu t
the mesh parti t ion with t h e best predicted load
balance factor - and it also turns out t o be
t h e mesh parti t ion with t h e best run-time load
balance factor.

10. APPLICATIONS AND
PERFORMANCE RESULTS

Here, we demonstrate t h e aeroelastic cornpu-
tational methodology described in t h e previous
sections with t h e numerical investigation of t h e

instability of flat panels with infinite aspect ra-
tio in supersonic airstreams, a n d t h e solution
of three-dimensional wing response problems in
the transonic regime. All flow computations are
performed using the Euler equations and the
explicit solver.

10.1. Two-Dimensional Aeroelastic
Supersonic Computations

10.1.1. Problem Definition

T h e flat panel with infinite aspect ratio con-
sidered here (Fig. 29) is assumed t o have
a length Z = 0.5m, a uniform thickness
h = 1.35 x 10V3 m, a Young modulus
E = 7.728 x 10" N/m2, a Poisson ratio
p = 0.33, a density p = 2710 ICg/m3, and
to be clamped at both ends. I t s rectangular
cross section is discretized into 1111 x 3 plane
strain 4-node elements. This fine discretization
- which generates 3333 elements with perfect
aspect ratios and 4448 nodes - is not needed
for accuracy; we have designed this structural
mesh only because we are also interested in
assessing some computational a n d 110 perfor-
mance issues.

T h e two-dimensional flow domain above
t h e panel is discretized into 32568 triangles and

844

16512 vertices. A slip condition is imposed at
the fluid/structure boundary. Because the fluid
and structural meshes are not compatible at
their interface (Fig. 30), the Matcher software
[35] is used to generate in a single preprocessing
step the data structures required for transfer-
ring the pressure load to the structure, and the
structural deformations at the upper surface of
the panel to the fluid.

We consider several supersonic flows at dif-
ferent Mach numbers and discuss the perfor-
mances of the partitioned analysis procedures
ALGO, ALG1, ALG2, and ALG3. Whenever
subcycling is used, the 1’ interpolation scheme
is used t o prescribe the motion of the fluid grid
points on r F / S .

10.1.Z. Computational Platfown

All computations are performed on an iPSC-860
parallel processor using double precision arith-
metic. The fluid and structure solvers are im-
plemented as separate programs that commu-
nicate via the intercube communication proce-
dures described in [104].

10.1.3. Assessment of the Partitioned Procedures

In order to illustrate the relative merits of the
partitioned procedures ALGO, ALG1, ALG2
and ALG3, we consider first two different se-
ries of transient aeroelastic simulations at Mach
number M , = 1.90 that highlight

the relative accuracy of these algorithms
for a fixed subcycling factor n s l ~ .

the relative speed of these algorithms for a
fixed level of accuracy, on both sequential
and parallel computational platforms.

In all cases, 64 processors are allocated to
the fluid system, and 2 processors are assigned
to the structural solver. Initially, a steady-state
flow is computed above the panel at M , = 1.90
(Fig. 31), speed at which the panel described
above is not supposed t o flutter. Then, the
aeroelastic response of the coupled system is

triggered by a displacement perturbation of the
panel along its first mode (Fig. 32).

- - - - - - -

Fig. 29. A flat panel with infinite aspect ratio

~ .~

Fig. 30. Mesh incompatibility

Fig. 31. Pressure isovalues for the
steady-state flow solution (Mm = 1.90)

8-65

Subcycling fador is Nsn - 30
I

Fig. 32. Initial perturbation of t h e panel
displacement field

. ..._
0 0.W2 0.004 0.W 0.008 0.01 0.012 0.014 0.016

Time (5)

Fig. 33. Lift coefficient history for n S I F = 30

Ix) precirh subcyclhg
0.wof I

\ First , t h e subcycling factor is fixed t o ! I
n S I F = 30, a n d t h e lift coefficient is computed
using t h e time-step At = 3 . 9 ~ correspond-
ing to t h e stability limit of t h e explicit flow
solver in t h e absence of coupling with the struc-
ture. T h e obtained results are depicted in Fig.
33 for t h e first 4102 time-steps. For n S I F = 30,
A L G l and ALGS exhibit essentially the same
accuracy. In t h e long run, their amplitude and
phase errors are less important t han those of
ALG2. Clearly, this highlights t h e superiority
of ALG3 which, despites i ts inter-field paral-
lelism a n d unlike ALG2, is capable of delivering
t h e same accuracy as t h e sequential algorithm
ALG1.

Next, t h e relative speed of t h e focus parti-
tioned solution procedures is assessed by com-
paring their CPU performance for a certain
level of accuracy dictated by ALGO. It turns
o u t t h a t in order to meet the accuracy re-
quirements of ALGO, A L G l and ALGS can use
a subcycling factor as large as n s / F = 10,
b u t ALG2 can subcycle only up to n S I F = 5
(Fig. 34).

Fig. 34. Lift coefficient history
for a fixed level of accuracy

T h e performance results measured on t h e
iPSC-860 are reported in Table 12 where ICC
denotes t h e intercube communication time.
Note t h a t ICC is measured in t h e fluid kernel
and includes idle t ime when t h e flow and struc-
tural communications do not overlap.

8-66

Table 12. Performance results on the iPSC-860

Fluid: 64 processors Structure: 2 processors

Elapsed time for 4102 fluid time-steps
~~

Algorithm Fluid Structure Fluid-Wait+ICC Total CPU
ALGO 2617.23 s. 1267.93 s. 1283.10 s. 3900.33 s.
ALGl 2625.11 s. 126.67 s. 127.90 s. 2753.01 s.

(n S / F = 10)
ALG2 2643.57 s. 253.34 s. 1.67 s. 2645.24 s.

(n S / F = 5)
ALG3 2603.56 s. 253.23 s. 1.37 s. 2604.93 s.

(n S / F = 10)

From t h e results reported in Table 12, t h e
following observations can be made

a

a

t h e fluid computations dominate the sim-
ulation time. This is partly because the
structural model is simple in this case, and
a linear elastic behavior is assumed for t h e
panel.

considering t h a t t h e iPSC-860 has 128 pro-
cessors and t h a t only clusters of 2" proces-
sors can be defined on this machine, allo-
cating 64 processors t o t h e fluid and 2 pro-
cessors t o t h e s t ructure achieves the mini-
mum possible inter-field load imbalance for
this coupled problem.

t h e effect of subcycling on intercube com-
munication costs is clearly demonstrated.
Because t h e flow solution t ime is dominat-
ing, t h e effect of subcycling on the total
C P U time is less important for ALG2 and
ALGS which feature inter-field parallelism
in addition t o intra-field multiprocessing,
t h a n for ALGl which features intra-field
parallelism only (note t h a t ALGl with
n S / F = 1 is identical to ALGO).

ALG2 and ALG3 allow a perfect overlap of
inter-field communications, which reduces
intercube communication and idle t ime t o
less t h a n 0.3% of t h e amount correspond-
ing t o ALGO.

a T h e superiority of ALGS over ALG2 is not
clearly demonstrated for this problem be-
cause of the simplicity of t h e structural
model and t h e subsequent load imbalance
between t h e fluid and s t ructure computa-
tions.

10.1 .A. Panel Flutter

T h e classical and analytical solution of t h e in-
stability problem of flat panels with infinite as-
pect ratio in supersonic airstreams assumes a
shallow shell theory for t h e s t ructure and a lin-
earized formulation for t h e flow problem (piston
theory). Within this analytical approach, the
dynamics of t h e focus coupled fluid/structure
system are governed by a fourth-order partial
differential equation [2, page 4191, and t h e flut-
ter condition is obtained by analyzing t h e roots
of the corresponding characteristic equation.
For t h e panel described t h e beginning of this
section, the classical linear theory predicts flut-
ter at the critical Mach number M g = 1.98.
T h e objective of this Section is to validate the
aeroelastic simulation capability presented in
this paper by reproducing t h e theoretical crit-
ical Mach number for t h e given panel. Note
t h a t in order to compare t h e analytical and fi-
nite element approaches, t h e coefficients of t h e
shallow shell equation described in [2, page 4191

n-oi

structure is shown t o be equal to that lost by
the fluid, as it should be.

must be computed t o represent the same equa-
tion as that corresponding to the finite element

10.2. T hree-Dimensional Aeroelast ic
Transonic Computations

model used in this paper.

Four different runs at M , = 2.0,
M , = 2.05, M , = 2.095, and M , = 2.13
are performed using ALG3. For each run, a
steady-state flow is first computed. Then, a dis-
placement perturbation of the panel along its
first mode (Fig. 32) is imposed, and the aeroe
lastic response of the coupled system is com-
puted. The predicted time histories of the lift
coefficient are depicted in Fig. 35 for all four
cases.

U l - U m W M -
om,,

From the results reported in Fig. 35, it fol-
lows that the flutter speed predicted by our for-
mulation verifies 2.05 < Mg < 2.095. Hence,
this flutter speed is 4.5 % higher than that pre-

6 0 " 8 x 0 8 ; 9:

Fig. 36. Accumulated external energy
(M , = 2.095)

~

dieted by the piston theory. This is a rather
good agreement, given that the piston the- 10..2.1. Problem. Defini t ion

ory and the computational approach presented
herein do not share exactly the same approxi-
mations.

Finally, we report in Fig. 36 the history
of the accumulated external energy at Mm =
2.095 for both the fluid and structural systems.
At this speed, the panel is clearly shown to ex-
tract energy from the fluid, and therefore to
flutter. Note that Fig. 36 also highlights the
quality of the matching performed by Matcher:
the amount of external energy extracted by the

Next, we consider transient aeroelastic reponse
problems associated with a simple structural
model of the ONERA M6 wing.

The wing is represented by an equivalent
plate model discretized in 1071 triangular plate
elements, 582 nodes, and 6426 degrees of free-
dom (Fig. 37). Four meshes M i - -M4 are
designed for the discretization of the three-
dimensional flow domain around the wing. The
characteristics of theses meshes are given in Ta-
ble 13 where N,.,, N t e t , Nfae, and N,,, denote

8-68

respectively the number of vertices, tetrahedra,
facets (edges), and fluid variables. A partial
view of the discretization of the flow domain is
shown in Fig. 38.

respectively 16 (Ml), 32 (M2), 64 (M3), and
12' processors (M4) Of a Paragon xp/s and
a Cray T3D systems. In particular, the sizes
of these meshes are such that the processors of

Table 13
Characteristics of meshes M1 - -M4

Mesh Nvep N*.* Nfec Nvar

M1 15460 80424 99891 77300
M 2 31513 161830 201479 157565
M 3 63917 337604 415266 319585
M4 115351 643392 774774 576755

*T*Vr &;,.
.I

Fig. 37. Finite element plate model of the wing

Fig. 38. Partial view of the fluid mesh M1
on the skin of the ONERA M6 wing

The sizes of the fluid meshes M1- -M4
have been tailored for parallel computations on

a Paragon XP/S machine with 32 Mbytes per
node would not swap when solving the corre-
sponding flow problems.

Here again, the fluid and structural meshes
are not compatible at their interface. Matcher [35]
is used to generate in a single preprocessing step
the data structures required for transferring the
pressure load to the structure, and the struc-
tural deformations to the fluid.

10.2.2. Computational Platforms

All computations are performed on an iPSC -
860, and/or a Paragon XP/S, and/or a
Cray T3D, and/or an IBM SP2 computers us-
ing double precision arithmetic. Message pass-
ing is carried out via NX on the Paragon XP/S
multiprocessor, PVM T3D on the Cray T3D
system, and MPI on the IBM SP2 parallel pro-
cessor. The fluid and structure solvers are im-
plemented as separate programs that commu-
nicate via the intercube communication proce-
dures described in [104].

10.2.3. Pamllel Performance of the FlowSolver

The performance of the parallel flow solver is
assessed with the computation of the steady
state of a flow around the given wing at a
Mach number M , = 0.84 and an angle of
attack p = 3.06 degrees (Fig. 39) . The
CFL number is set to 0.9. The four meshes
M1- -M4 are decomposed in respectively 16,
32, 64, and 128 overlapping subdomains using
TOP/DOMDEC [82]. The motivations for em-
ploying overlapping subdomains and the impact
of this computational strategy on parallel per-
formance are discussed in [49]. The CPU tim-
ings in seconds are reported in Tables 14-16 for
the first 100 iterations on a Paragon XP/S ma-
chine (128 processors), a Cray T3D system (128
processors), and an IBM SP2 computer (32 pro-
cessors), respectively. In these tables, Np, N,,,,

849

impact on the unsteady computations that we
perform in aeroelastic simulations such as those
that are discussed next. The mflop rates re-
ported in Tables 1416 are computed in a strict
manner: they exclude all the redundant com-
putations associated with the overlapping sub-
domain regions.

l O C T,,,,, T$&, Tcompr Tt,t and rnflops denote
respectively the number of processors, the num-
ber of variables (unknowns) to be solved, the
time elapsed in short range interprocessor com-
munication between neighboring subdomains,
the time elapsed in long range global interpro-
cessor communication, the computational time,
the total simulation time, and the computa-
tional speed in millions of floating point op-
erations per second. Typically, short range
communication is needed for assembling various
subdomain results such as fluxes at the subdo-
main interfaces, and long range interprocessor
communication is required for reduction opera-
tions such as those occurring in the the evalu-
ation of the stability time-steps and the norms
of the nonlinear residuals. Because message-
passing is also used for synchronization, the re-
ported communication timings include any idle-
time due to load imbalance. We also note that
we use the same fluid code for steady state and
aeroelastic computations. Hence, even though
we are benchmarking in Tables 14-16 a steady
state computation with a local time stepping
strategy, we are still timing the kernel that eval-
uates the global time-step in order to reflect its

r
Fig. 39. Steady-state Mach lines
(ONERA M6 wing - mesh M4)

Table 14
Performance of the parallel flow solver on the Paragon XP/S system (16-128 processors)

100 iterations - CFL = 0.9

Mesh N p T k k Ti%,,, Tcomp Tto< rnflops

M1 16 2.0 s. 40.0 s. 96.0 s. 138.0 s. 84
M 2 32 4.5 s. 57.0 s. 98.5 s. 160.0 s. 145
M3 64 7.0 s. 90.0 s. 103.0 s. 200.0 s. 240
M4 128 6.0 s. 105.0 s. 114.0 s. 225.0 s. 401

8-70

Table 15
Performa f the p d e l flow solve m th CI r T3D system (16-128 processors)

100 iterations - CFL = 0.9

Mesh Np Tkmm T % L Tcomp Ttot mflops

M1 16 1.6 s. 2.1 s. 87.3 s. 91.0 s. 127
M 2 32 2.5 s. 4.1 s. 101.4 s. 108.0 s. 215
M3 64 3.5 s. 7.2 s. 100.3 s. 111.0 s. 433
M4 128 3.0 s. 7.2 s. 85.3 s. 95.5 E . 945

Table 16
Performance of the parallel flow solver on the IBM SP2 system (4-32 processors)

100 iterations - CFL = 0.9

Ioc Tmmm ,910 Tcomp Ttot mflops Mesh Np Tcomm
M1 4 0.8 s. 0.4 s. 70.8 s. 72.0 s. 160
M 2 8 1.1 s. 0.6 s. 73.3 s. 75.0 s. 308
M3 16 1.4 s. 0.7 s. 78.9 s. 81.0 s. 594
A44 32 2.0 s. 1.0 s. 79.0 s. 82.0 s. 1102

The reader can easily verify that the num-
ber of processors assigned to each mesh is such
that N,,,/Np is almost constant. This means
that larger numbers of processors are attributed
to larger meshes in order to keep each local
problem within a processor at an almost con-
stant size. For such a benchmarking strategy,
parallel scalability of the flow solver on a target
parallel processor implies that the total solution
CPU time should be constant for all meshes and
their corresponding number of processors. This
is clearly not the case for the Paragon XP/S
system. On this machine, short range commu-
nication is shown to be inexpensive, but long
range communication costs are reported to be
important. This is certainly due to the latency
of the Paragon XP/S parallel processor which
is an order of magnitude slower than that of the
Cray T3D system. Another possible source of
global communication time increase is the load
imbalance between the processors since message

passing is also used for synchronization. How-
ever, this does not seem to be significant on the
T3D and SP2 parallel processors.

On the other hand, parallel scalability is
well demonstrated for the Cray T3D and IBM
SP2 systems. The results reported in Tables
15 and 16 show that all computations using
meshes Ml--M4 and the corresponding num-
ber of processors consume almost the same to-
tal amount of CPU time. For 128 processors,
the Cray T3D system is shown to be more
than twice faster than the Paragon XP/S ma-
chine. The difference appears to be strictly
in long range communication as the computa-
tional time is reported to be almost the same
on both machines. However, most impressive is
the fact that an IBM SP2 with 32 processors
only is shown to be three times faster than a
128 - processor Paragon XP/S, and faster than
a Cray T3D with 128 processors.

8-71

Fig. 40. Initial perturbation of the structure

10.2.6. Performance of the Partitioned

Analvsis Procedures

As in the two-dimensional application, we con-
sider first two different series of transient aeroe-
lastic simulations at Mach number M , = 0.84
that highlight

a the relative accuracy of these coupled solu-
tion algorithms for a fixed subcycling fac-
tor n s l p

the relative speed of these coupled solution
algorithms for a fixed level of accuracy.

a

In all cases, mesh M2 is used for the flow
computations, 32 processors of an iPSC-860
system are allocated to the fluid solver, and
4 processors of the same machine are assigned
to the structural code. Initially, a steady-
state flow is computed around the wing at
M , - - 0.84, Mach number at which the
wing described above is not supposed to flut-
ter. Then, the aeroelastic response of the cou-
pled system is triggered by a displacement per-
turbation of the wing along its first mode (Fig.
40).

Fig. 41. Lift history for the first half cycle
(n S l F = 10)

First, the subcycling factor is fixed to
n s l F = 10 then to n s / ~ = 30, and the lift is
computed using a time-step corresponding to
the stability limit of the explicit flow solver in
the absence of coupling with the structure. The
obtained results are depicted in Fig. 41 and
Fig. 42 for the first half cycle.

rig, 42, Lift history for the first half cycle
(~ S I F = 30)

r -

8-12

out that in order to meet the accuracy require-
ments of ALGO, the solution algorithms ALGl

The superiority of the parallel fluid-subcycled and ALG2 can subcycle only up to nslF = 5,

while ALG3 can easily use a subcycling factor
as large as nslp = 10. The performance results
measured on an iPSC-860 system are reported
in Table 17 for the first 50 coupled time-steps.
In this table, ICWF and ICWS denote the inter-
code communication timings measured respec-

timings include idle and synchronization (wait)
time when the fluid and structural communica-
tions do not completely overlap. For Program-
ming reasons, Icws is monitored together with
the evaluation of the Pressure bad .

ALG3 solution procedure is clearly demon-
strated in Fig. 41 and Fig. 42. For ns/F = 10,
ALG3 is shown to be the closest to ALGO,
which is supposed to be the most accurate since
it is sequential and non-subcycled. ALGl and
ALG2 have comparable accuracies. However,

more important phase error than ALG3, espe-
cially for nslF = 30.

both of these algorithms exhibit a tively in the fluid and structural kernels; these

Next, the relative speed of the partitioned
solution procedures is assessed by comparing
their CPU time for a certain level of accuracy
dictated by ALGO. For this problem, it turned

Table 17. Performance results on the iPSC-860
Fluid: 32 processors Structure: 4 processors

Elapsed time for 50 fluid time-steps

-45 Fluid Fluid Struc. ICWS ICWF Total
Solver Motion Solver CPU

ALGO 177.4 s . 71.2 s. 33.4 s. 219.0 s. 384.1 s. 632.7 s .
ALGl 180.0 s. 71.2 s. 16.9 S. 216.9 s. 89.3 s. 340.5 s .

ALG2 184.8 s. 71.2 s . 16.6 s. 114.0 s. 0.4 s. 256.4 s .

ALG3 176.1 s. 71.2 s. 10.4 s. 112.3 s. 0.4 s. 247.7 s.

From the results reported in Table 17, the
following observations can be made:

the fluid computations dominate the sim-
ulation time. This is partly because the
structural model is again simple in this
case, and a linear elastic behavior is as-
sumed. However, by allocating 32 proces-
sors to the fluid kernel and 4 processors to
the structure code, a reasonable load bal-
ance is shown to be achieved for ALGO.

during the first 50 fluid time-steps, the
CPU time corresponding to the structural

solver does not decrease linearly with the
subcycling factor nslF because of the ini-
tial costs of the FETI reorthogonalization
procedure designed for the efficient itera-
tive solution of implicit systems with re-
peated right hand sides (see Section 5) .
the effect of subcycling on intercube com-
munication costs is clearly demonstrated.
The impact of this effect on the total CPU
time is less important for ALG2 and ALG3
which feature inter-field parallelism in ad-
dition to intra-field multiprocessing, than

for A L G l which features .intra-field paral-
lelism only (note t h a t A L G l with n S / F =
1 is identical t o ALGO), because the flow
solution t ime is dominating.

ALG2 and ALG3 allow a certain amount
of overlap between inter-field communica-
tions, which reduces intercube communi-
cation a n d idle t ime on t h e fluid side t o less
t h a n 0.001% of t h e amount corresponding
to ALGO.

0

.

Most importantly, t h e performance results
reported in Table 17 demonstrate t h a t subcy-
cling and inter-field parallelism are desirable
for aeroelastic simulations even when the flow
computations dominate t h e structural ones, be-
cause these features can significantly reduce the
total simulation t ime by minimizing the amount
of inter-field communications and overlapping
them. For t h e simple problem described herein,
t h e parallel fluid-subcycled ALG2 and ALG3
algorithms are more t h a n twice faster t h a n the
conventional staggered procedure ALGO.

10. CONCLUSIONS

In this paper, we have highlighted some key
elements of t h e solution of large-scale three-
dimensional nonlinear aeroelastic problems on
high performance computational platforms. We

8-73

for t h e solution of coupled aeroelastic prob-
lems on heterogeneous and/or parallel compu-
tational platforms, and illustrated it with two-
and three-dimensional applications on a n iPSC-
860, a Paragon XP/S , and a Cray T3D mas-
sively parallel systems. We have shown t h a t
even when t h e flow computations dominate t h e
total CPU time of a coupled aeroelastic simula-
tion, subcycling a n d inter-field parallelism are
desirable as they can significantly speedup the
total solution time.

ACKNOWLEDGEMENTS

T h e author acknowledges partial support by
the National Science Foundation under Grant
ASC-9217394, partial support by R N R NAS
at NASA Ames Research Center under Grant
NAG 2-827, and partial support by CMB at t h e
NASA Langley Research Center under Grant
NAG-1536427. He wishes t o thank Po-Shu
Chen, St6phane Lanteri, Michel Lesoinne, Serge
Piperno, and Paul Stern for their help in this
research effort.

REFERENCES

[l] H. Tijdeman and R. Seebass, Transonic flow
past oscillating airfoils, Ann. Rev. Fluid Mech.
12 (1980) 181-222.

[a] R. L. Bisplinghoff and H. Ashley, Principles
have described a three-field arbitrary Lagrangian- of aeroelasticity, Dover Publications, Inc., 1962.
Eulerian (ALE) finite volume/element formu-
lation for t h e coupled fluid/structure prob-
lem, presented geometric conservation laws for
three-dimensional flow problems with moving
boundaries and unstructured and deformable
meshes, a n d discussed t h e solution of the corre-
sponding coupled semi-discrete equations with
partitioned analysis procedures. In particu-
lar, we have presented a family of mixed ex-
plicit/implicit staggered solution algorithms,
and discussed them with particular reference t o
accuracy, stability, subcycling, and parallel pro-
cessing. We have described a general framework

[3] Y. C. Fung, An introduction t o t h e theory of
aeroelasticity, Dover Publications, Inc., 1969.

[4] R. Da t and J. L. Meurzec, Sur les calculs de
flottement par la method di te du “balayage” en
frequence reduite, La Recherche Aerospatiale
133, Nov. Dec. 1969.

[5] C. Bon, M. G&radin, and J. P. Grisval, Pri-
vate communication, 1993.

[6] E. Albano and W . P. Rodden, A doublet-
lattice method for calculating lift distribution
on oscillating surfaces in subsonic flow, AIAA
J. 7 (1969) 279-285.

8-74

L71 W. P* Jones and K * APPa, super-
sonic aerodynamic theory for interfering sur-
faces by the method of potential gradient,
NASA CR 2898, October 1977.

[81 P* CO Chen and D. D* Liu, A harmonic gra-
dient method for unsteady supersonic flow cal-
culations, AIAA 830887 CP, May 1983.

[9] E. H. Dowel1 and M. Llgamov, Studies in
Nonlinear Aeroelasticity, Springer-Verlag, 1988.

88-2281, AIAA 29th Structures, Structural Dy-
namics and Materials conference, Williams-
burg, virginia, ~ ~ ~ i l , 18-20, 1988.

[17] T . Tezduyar, M. Behr and J. Liou, A new
strategy for finite element computations involv-
ing moving boundaries and in te r faces-~he de-
forming spatial domain / space-time procedure :
I. T h e concept a n d t h e preliminary numerical
tests, Comput . Meths. Appl. Mech. Engrg. 94

[101 J. Donea, An arbitrary Lagrangian-Eulerian (1992) 339-351.

finite element method for transient fluid-structure [18] M. Lesoinne and C. Farhat , Stability anal-
interactions, Comput . Meths. Appl. Mech. ysis of dynamic meshes for transient aeroelastic
Engrg. 33 (1982) 689-723. computations, AIAA Paper No. 93-3325, 11th

AIAA Computational Fluid Dynamics Confer-
ence, Orlando, Florida, July 6-9, 1993.

[ll] T . J. R. Hughes, W. K. Liu and T. K. Zim-
mermann, Lagrangian-Eulerian finite element
formulation for incompressible viscous flows, [19] M. Lesoinne, Mathematical analysis of
U.S.-Japan Seminar on Interdisciplinary Finite. three-field numerical methods for aeroelastic
Element Analysis, Cornel1 Univ., I thaca, NY, problems, P h . D. Thesis, T h e University of Col-
Aug. 7-11 (1978). orado at Boulder, December 1994.

[12] T . Belytschko and J. M. Kennedy, Com- [20] K. C. Park and C. A. Felippa, Parti t ioned
puter models for subassembly simulation, Nucl. analysis of coupled systems, in: Computational
Eng. Design 49 (1978) 17-38. Methods for Transient Analysis, T. Belytschko

[13] 0. A. Kandil and H. A. Chuang, Un-
steady vortex-dominated flows around maneu-

and T. J. R. Hughes, Eds., North-Holland Pub .
CO. (1983) 157-219.

vering wings over a wide range of mach num-
bers, AIAA Paper No. 88-0317, AIAA 26th
Aerospace Sciences Meeting, Reno, Nevada,
J anua ry 11-14, 1988.

[14] C. Farhat and T. Y. Lin, Transient aeroe-
lastic computations using multiple moving frames
of reference, AIAA Paper No. 90-3053, AIAA
8th Applied Aerodynamics Conference, Port-
land, Oregon, August 20-22, 1990.

[15] J. T. Bat ina, Unsteady Euler airfoil so-
lutions using unstructured dynamic meshes,
AIAA Paper No. 89-0115, AIAA 27th Aerospace
Sciences Meeting, Reno, Nevada, January 9-12,
1989.

[16] G. P. Guruswamy, Time-accurate unsteady
aerodynamic and aeroelastic calculations of
wings using Euler equations, AIAA Paper No.

[21] T. Belytschko, P. Smolenski and W. K. Liu,
Stability of multi-time s tep partitioned integra-
tors for first-order finite element systems, Com-
put . Meths. Appl. Mech. Engrg. 49 (1985)
281-297.

[22] C. Farhat, K. C. Park and Y. D. Pelerin, An
unconditionally stable staggered algorithm for
transient finite element analysis of coupled ther-
moelastic problems, Comput . Meths. Appl.
Mech. Engrg. 85 (1991) 349-365.

[23] S. Piperno, C. Farhat and B. Larrouturou,
Partitioned procedures for t h e transient solu-
tion of coupled aeroelastic problems, Comput .
Meths. Appl. Mech. Engrg., (in press).

[24] C. J . Borland and D. P. Rizzetta, Nonlinear
transonic flutter analysis, AIAA Journal (1982)
1606-1615.

[25] V. Shankar and H. Ide, Aeroelastic compu-
ta t ions of flexible configurations, Comput . &
Struc. 30 (1988) 15-28.

[26] R. D. Rausch, J. T. Bat ina and T. Y .
Yang, Euler flutter analysis of airfoils using un-
structured dynamic meshes, AIAA Paper No.
89-13834, 30th Structures, Structural Dynam-
ics a n d Materials Conference, Mobile, Alabama,
April 3-5, 1989.

[27] M. Blair, M. H. Williams and T . A. Weis-
shaar , T ime domain simulations of a flexible
wing in subsonic compressible flow, AIAA Pa-
per No. 90-1153, AIAA 8 t h Applied Aerody-
namics Conference, Port land, Oregon, August
20-22,1990.

[28] T. W. Strganac and D. T. Mook, Numerical
model of unsteady subsonic aeroelastic behav-
ior, AIAA Journal 28 (1990) 903-909.

[29] E. Pramono and S. K. Weeratunga, Aeroe-
lastic computations for wings through direct
coupling on distributed-memory MIMD paral-
lel computers, AIAA Paper No. 94-0095, 32nd
Aerospace Sciences Meeting & Exhibit , Reno,
J anua ry 10-13, 1994.

1301 V. Venkatakrishnan, A perspective of un-
structured grid flow solvers, ICASE Report No.
95-3, NASA Langley Research Center, Febru-
ary 1995.

[31] J. W. Edwards and J. B. Malone, Current
s ta tus of computational methods for transonic
unsteady aerodynamics and aeroelastic applica-
tions, Comput . Sys. Engrg. 3 (1992) 545-569.

[32] C. Farhat , J. Mandel and F. X. ROUX, Opti-
mal convergence properties of t h e FETI domain
decomposition method, Comput . Meths. Appl.
Mech. Engrg. 115 (1994) 367-388. .

[33] C. Farhat , P. S. Chen and J. Man-
del, A scalable Lagrange multiplier based do-
main decomposition method for implicit time-
dependent problems, Internat . J. Numer.
Meths. Engrg., (in press).

[34] C. Farhat , L. Crivelli and F. X. ROUX, Ex-
tending substructure based iterative solvers t o

8-15

multiple load and repeated analyses, Comput .
Meths. Appl. Mech. Engrg. 117 (1994) 195-
209.

[35] N. Maman and C. Farhat , Matching fluid
and s t ructure meshes for aeroelastic computa-
tions: a parallel approach, Comput . & Struc.

[36] M. Lesoinne and C. Farhat , Geometric con-
servation laws for aeroelastic computations us-
ing unstructured dynamic meshes, AIAA Paper
95-1709, 12th AIAA Computational Fluid Dy-
namics Conference, San Diego, California, J u n e

[37] P. D. Thomas and C. K. Lombard, Geo-
metric conservation law and i ts application t o
flow computations on moving grids, AIAA J. 17

[38] B. NKonga, H. Guillard, Godunov type
method on non-structured meshes for three-
dimensional moving boundary problems, Com-
put . Meths. Appl. Mech. Engrg. 113 (1994)

[39] H. Zhang, M. Reggio, J .Y. Trkpanier and
R. Camarero, Discrete form of t h e GCL for
moving meshes and its implementation in CFD
schemes, Computers in Fluids 22 (1993) 9-23.

[40] J. Steger and R. F. Warming, Flux vector
splitting for t h e inviscid gas dynamic with ap-
plications t o finite-difference methods, Journ.
of Comp. Phys. 40 (1981) 263-293.

[41] W.K. Anderson, J.L. Thomas and C.L.
Rumsey, Extension and application of flux-
vector splitting to unsteady calculations on dy-

54 (1995) 779-785.

19-22, 1995.

(1979) 1030-1037.

183-204.

namic meshes, AIAA Paper No 87-1152-CP,
1987.

[42] L.P. Franca, S.L. Frey and T.J.R. Hughes,
Stabilized finite element methods: I. Applica-
tion to t h e advective-diffusive model, Comput .
Meths. Appl. Mech. Engrg. 95 (1992) 253-
276.

[43] H. Schlichting, Boundary layer theory,
Fourth edition, McGraw-Hill, New York, 1960.

8-76

[44] C. Farhat , M. Lesoinne and N. Maman,
Mixed explicit/implicit t ime integration of cou-
pled aeroelastic problems: three-field formula-
t ion, geometric conservation and distributed so-
lution, Internat . J. Numer. Meths. Fluids, (in
press).

[45] C. Farhat , M. Lesoinne, P. S. Chen and
S. Lantdri, Parallel heterogeneous algorithms
for t h e solution of three-dimensional transient
coupled aeroelastic problems, AIAA Paper 95-
1290, AIAA 36th Structural Dynamics Meet-
ing, New Orleans, Louisiana, April 10-13, 1995.

[46] C. Farhat , S. Lantdri and L. Fezoui, Mixed
finite volume/finite element massively parallel
computations: Euler flows, unstructured grids,
and upwind approximations, in Unstructured
Scientific Computation on Scalable Multipro-
cessors, ed. by P. Mehrotra, J. Saltz, and R.
Voigt, MIT Press (1992) 253-283.

[47] C. Farhat , L. Fezoui, and S. Lantdri, Two-
dimensional viscous flow computations on the
Connection Machine: unstructured meshes, up-
wind schemes, and massively parallel computa-
tions, Comput . Meths. Appl. Mech. Engrg.

~

102 (1993) 61-88.

[48] S. Lantdri and C. Farhat , Viscous flow com-
putat ions on MPP systems: implementational
issues a n d performance results for unstructured
grids, in Parallel Processing for Scientific Com-
puting, ed. by R. F. Sincovec e t . al., SIAM
(1993) 65-70.

[49] C. Farhat and S. Lantkri, Simulation
of compressible viscous flows on a variety of
MPPs: computational algorithms for unstruc-
tured dynamic meshes and performance results,
Comput . Meths. Appl. Mech. Engrg. 119
(1994) 35-60.

[50] P. L. Roe, Approximate riemann solvers,
parameters vectors and difference schemes, J
Comp. Phys. 43 (1981) 357-371.

[51] B. Van Leer, Towards t h e ult imate conser-
vative difference scheme V: a second-order se-
quel t o Goudonov's method, J. Comp. Phys.

[52] A. Dervieux, Steady Euler simulations us-
ing unstructured meshes, Von Kbrmbn Inst i tute
Lecture Series, 1985.

[53] L. Fezoui and B. Stoufflet, A class of im-
plicit upwind schemes for Euler simulations
with unstructured meshes, J. Comp. Phys. 84

[54] X.-C. Cai, C. 'Fa rha t , and M. Sarkis,
Schwarz preconditioners and implicit methods
for compressible flows problems on unstruc-
tured meshes, Eighth International Conference
on Domain Decomposition Methods for Partial
Differential Equations, A M s , 1995, (in press).

[55] X.-C. Cai and O.B. Widlund, Multiplica-
tive Schwarz algorithms for nonsymmetric and
indefinite elliptic problems, SIAM J. Numer.
Anal. 30 (1993) 936-952.

[56] X.-C. Cai, W . D. Gropp, and D. E. Keyes,
A comparison of some domain decomposition
and ILU preconditioned iterative methods for
nonsymmetric elliptic problems, Numer. Lin.
Alg. Applics 1 (1994) 477-504.

[57] C. Farhat and F. X. ROUX, Implicit parallel
processing in structural mechanics, Computa-
tional Mechanics Advances 2 (1994) 1-124.

[58] C. Farhat and E. Wilson, A new finite el-
ement concurrent computer program architec-
ture, Internat . J. Numer. Meths. Engrg. 24

[59] P. E. Bjordstad and 0. B. Widlund, Iter-
ative methods for solving elliptic problems on
regions partitioned into substructures, SIAM J.
of Num. Anal. 23 (1986) 1097-1120.

[60] C. Farhat , A Lagrange multiplier based di-
vide and conquer finite element algorithm, J.
Comput . Sys. Engrg. 2 (1991) 149-156.

[61] C. Farhat and F. X. ROUX, A method of
finite element tearing a n d interconnecting and

32 (1979) 361-370.

(1989) 174-206.

(1987) 1771-1792.

i ts parallel solution algorithm, Internat. J. Nu-
mer. Meths. Engrg. 32 (1991) 1205-1227.

[62] J. H. Bramble, J. E. Pasciak, and A. H.
Schatz, T h e construction of preconditioners for
elliptic problems by substructuring, I, Math .
Comp. 47 (1986) 103-134.

[63] I. S Duff, Parallel implementation of mul-
tifrontal schemes, Parallel Computing 3 (1986)
193-204.

[64] J. W . H. Liu, T h e multifrontal method for
sparse matrix solution: theory and practice,
SIAM Review 34 (1992) 82-109.

[65] R. E. Benner, G. R. Montry and G.
G. Weigand, Concurrent multifrontal methods:
shared memory, cache, and frontwidth issues,
In t . J. Supercomp. Appl. 1 (1987) 26-44.

[66] M. Lesoinne, C. Farhat and M. Gkradin,
Parallel/vector improvements of the frontal
method, Internat . J. Numer. Meths. Engrg.
32 (1991) 1267-1282.

[67] A. Pothen and C. Sun, A mapping algo-
ri thm for parallel sparse matrix factorization,
SIAM J. Sci. Comput . 4 (1993) 1253-1257.

[68] A. Pothen, E. Rothberg, H. Simon and
L. Wang, Parallel sparse Cholesky factorization
with spectral nested dissection ordering, RNR-
094-011, NASA Ames Research Center, May
1994.

[69] M. Dryja and 0. B. Widlund, Domain
decomposition algorithms with small overlap,
SIAM J. Sci. Comput . 15 (1994) 604-620.

[70] J. Mandel and R. Tezaur, Convergence of
a substructuring method with Lagrange multi-
pliers, Numerische Mathematik, (in press).

[71] C. Farhat , Optimizing substructuring meth-
ods for repeated right hand sides, scalable par-
allel coarse solvers, a n d global/local analysis,
in: D. Keyes, Y. Saad and D. G. Truhlar,
eds., Domain-Based Parallelism and Problem
Decomposition Methods in Computational Sci-
ence and Engineering, SIAM (1995) 141-160.

8-17

[72] C. Farhat , P. S. Chen a n d P. Stern,
Towards the ult imate iterative substructuring
met hod: combined numerical and parallel scal-
ability, and multiple load cases, J . Comput .
Sys. Engrg. 117 (1994) 195-209.

[73] C. Farhat and F.X. ROUX, An unconven-
tional domain decomposition method for an ef-
ficient parallel solution of large-scale finite ele-
ment systems, SIAM J. Sc. S t a t . Comp. 13
(1992) 379-396.

[74] C. Farhat , L. Crivelli a n d F. X. ROUX,
A transient FETI methodology for large-scale
parallel implicit computations in structural me-
chanics, Internat . J. Numer. Meths. Engrg. 37
(1994) 1945-1975.

[75] J. Mandel and C. Farhat , T h e FETI
method for plate problems, Comput . Meths.
Appl. Mech. Engrg., (in press).

[76] C. Farhat , L. Crivelli and M. Gdradin, On
the spectral stability of t ime integration algo-
rithms for a class of constrained dynamics prob-
lems, AIAA Paper 93-1306, AIAA 34th Struc-
tural Dynamics Meeting, 1993.

[77] C. Farhat and M. Gdradin, Using a reduced
number of Lagrange multipliers for assembling
parallel incomplete field finite element approxi-
mations, Comput . Meths. Appl. Mech. Engrg.
97 (1992) 333-354.

[78] C. Farhat and M. Gdradin, On a component
mode synthesis method and i ts application to
incompatible substructures, Comput . & Struc.
51 (1994) 459-473.

[79] L. Petzold, Differential/algebraic equations
are not ODE’S, SIAM J. Sci. Stat. Comput . 3
(1982) 367-384.

[80] Y . Saad, On t h e Lanczos method for solv-
ing symmetric linear systems with several right-
hand sides, Ma th . Comp. 48 (1987) 651-662.

[81] C. Farhat and P. S. Chen, Tailoring do-
main decomposition methods for efficient par-
allel coarse grid solution a n d for systems with
many right hand sides,” Contemporary Mathe-
matics 180 (1994) 401-406.

8-78

[82] C. Farhat , S. Lanteri and H. D. Simon,
TOP/DOMDEC, A software tool for mesh par-
titioning and parallel processing, J. Comput .
Sys. Engrg. (in press).

[83] H. D. Simon, Parti t ioning of unstructured
problems for parallel processing, Comput . Sys.
Engrg. 2 (1991) 135-148.

[84] C. Farhat , A simple and efficient automatic
F E M domain decomposer, Comput . & Struct .
28 (1988) 579-602.

[85] C. Farhat and M. Lesoinne, Automatic par-
titioning of unstructured meshes for the parallel
solution of problems in computational mechan-
ics, Internat . J . Numer. Meths. Engrg. 36

[86] J. G. Malone, Automated mesh decom-
position and concurrent finite element analy-
sis for hypercube multiprocessors computers,
Comput . Meths. Appl. Mech. Engrg. 70

[87] J . Flower, S. O t t o and M. Salama, Optimal
mapping of irregular finite element domains t o
parallel processors, in: A. K. Noor, ed., Parallel
Computations and Their Impact on Mechanics,
T h e American Society of Mechanical Engineers,
AMD-Vol. 86 (1987) 239-252.

(1993) 745-764.

(1988) 27-58.

[88] A. Pothen, H. Simon and K. P. Liou, Par-
titioning sparse matrices with eigen vectors of
graphs, SIAM J. Mat. Anal. Appl. 11 (1990)
430-452. (1990)

[89] C. Farhat , E. Wilson and G. Powell, So-
lution of finite element systems on concurrent
processing computers, Engrg. with Comput . 2
(1987) 157-165.

[go] A. I. Khan and B. H. V. Topping, Subdo-
main generation for parallel finite element anal-
ysis, Comput . Sys. Engrg. 4 (1993) 473-488.

[91] P. Ciarlet and F. Lamour, An efficient low-
cost greedy graph partitioning heuristic, UCLA
CAM Report 94- 1.
[92] P. Ciarlet and F. Lamour, Recursive parti-
tioning methods and greedy partitioning meth-
ods: a comparison on finite element graphs,

UCLA CAM Report 94-9 (also submitted to In-
ternat . J. High Speed Computing).

[93] S. T. Barnard and H. D. Simon, A fast mul-
tilevel implementation of recursive spectral bi-
section for partitioning unstructured problems,
Concurrency: Practice and Experience 6 (1994)

1941 J. Zdenek, K . K. Mathur , S. L. Johnsson
and T . J. R. Hughes, An efficient communi-
cation strategy for finite element methods on
t h e Connection Machine CM-5 system, Com-
put . Methds. Appl. Mech. Engrg. 113 (1994)

[95] 0. Zone, D. Vanderstraeten, P. Henriksen,
and R. Keunings, A parallel direct solver for
implicit finite element problems based on auto-
matic domain decomposition, Proc. Int . Conf.
on Massively Parallel Processing Applications
and Development, L. Dekker (Ed.), Elsevier, (in
press).

[96] C. Farhat, N. Maman and G. Brown, Mesh
partitioning for implicit computations via iter-
ative domain decomposition: impact and op-
timization of the subdomain aspect ratio,” In-
ternat. J . Numer. Meths. Engrg. 38 (1995)

[97] D. Vanderstraeten, R. Keunings and C.
Farhat, Optimization of mesh parti t ions and
impact on parallel CFD, Proceedings Parallel
CFD’93, Paris, France, May 10-12 (1993).

[98] D. Vanderstraeten and R. Keunings, Op-
timized partitioning of unstructured computa-
tional grids, Internat. J . Numer. Meths. En-
grg. 38 (1995) 433-450.

[99] D. Vanderstraeten, C. Farhat , P. S. Chen,
R. Keunings, and 0. Zone, A retrofit and con-
traction based methodology for t h e fast gen-
eration and optimization of mesh partitions:
beyond the minimum interface size criterion,
Comput . Meths. Appl. Mech. Engrg., (in
press).

[loo] S. Kirkpatrick, C. Gelatt and M. Vecchi,
Optimization by simulated annealing, Science

101-107.

363-387.

989-1000.

220 (1983) 671-680.

[lo l l F. Glover, C. McMillan and B. Novick, In-
teractive decision software and computer graph-
ics for architectural and space planning, Ann.
Opns. Res. 5 (1985) 557-573.

[loa] Y . G. Saab and V. B. Rao, Combinato-
rial optimization by stochastic evolution, IEEE
Trans. C.A.D. 10 (1991) 525-535.

8-79

[lo31 T. N. Bui and C. Jones, A heuristic for
reducing fill-in in sparse matrix factorization,
Proceedings of t h e Sixth SIAM Conference on
Parallel Processing for Scientific Computing,
Norfolk, Virginia, (1993) 445-452.

[1041 E. Barszcz, Intercube communication
on the iPSC/860, Scalable High Performance
Computing Conference, Williamsburg, April
26-29, 1992.

/

1. Recipient’s Reference

6. Title
Parallel Computing in CFD

2. Originator’s Reference 3. Further Reference 4. Security Classification

AGARD-R- 807 ISBN 92- 8 36- 1025 -3 UNCLASSIFIED/
of Document

UNLIMITED

8. Author(s)/Editor(s)
Multiple

10. Author’sJEditor’s Address
Multiple

14. Abstract

9. Date
October 1995

11. Pages
352

Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on “Parallel
Computing in CFD” have been assembled in this report. The aim and scope of this Course was
to present and discuss the latest in advances and future trends in the application of parallel
computing to solve computationally intensive problems in CFD. Topics in this lecture series
focus on the increasingly sophisticated types of architectures now available, and how to exploit
these architectures by appropriate algorithms for the simulation of fluid flow. Some of the
subjects discussed are: parallel algorithms for computing compressible and incompressible flow;
domain decomposition algorithms and partitioning techniques; and parallel algorithms for solving
linear systems arising from the discretized partial differential equations.

The material assembled in this report was prepared under the combined sponsorship of the
AGARD Fluid Dynamics Panel, the Consultant and Exchange Program of AGARD, and the von
K h A n Institute (VKI) for Fluid Dynamics.

NATO -$ OTAN

7 RUE ANCELLE 92200 NEUILLY-SUR-SEINE

FRANCE

TeIBcopie (1)47.38.57.99 Telex 610 176

Aucun stock de publications n'a exist6 3 AGARD. A partir de 1993, AGARD detiendra un stock limit6 des publications associees aux cycles
de conferences et cows speciaux ainsi que les AGARDopphies et les rapparts des gmupea de lravail. organises et publies a partir de 1993
inclus. Les demandes de renseignements doivent Ctre adresees i3 AGARD par lettre ou par fax & I'adresse indiquk ci-dessus. Veuille; ne
pos rPIPphnner. La diffusion initiale de toutes les publications de I'AGARD est effectuee auprb des pays memhres de I'OTAN par
I'intermediaire des centres de distribution nationaux indiques ci-dessous. Des exemplaires supplementairer peuvent parfois Ctre ohtenus
auprhs de ces centres (a I'exception des Etata-Unisl. Si VOW souhaitez recevoir toutes les publications de I'AGARD. ou simplement celles
qui concernent cemins Panels. vous pauvez demander etre inch sur la lisle d'envoi de I'un de cer centres. Les publications de I'AGARD
sont en vente aupr.5~ des agences indiquks ci-dessous, sous forme de photocopie ou de microfiche.

CENTRES DE DIFFUSION NATlONAUX
ALL E MA G NE ISLANDE

Fachinformationszentm, Director of Aviation
Karlsruhe do Flugrad
D-76344 Eggenstein-Leopoldshafen 2 Reykjavik

Coordonnateur AGARD-VSL Aeronautica Militare
Etat-majm de la Force airienne
Quartier Reine Elisabeth
Rue d'Evere. I 1 4 0 BNxelles

BELGIQUE ITALIE

Ufficio del Delegato Nazionale all'AGARD

k%r Pomezia (Romal
rto Pratica di Mare

DIFFUSION DES PUBLICATIONS

AGARD NON CLASSIFIEES

CANADA
Directeur, Services d'information scientifique
Ministdre de la D6fense nationale
Ottawa, Ontario KIA OK2

Danish Defence Research Establishment
Ryvanas Alle 1

DANEMARK

P:O. BOX 2715
DK-2100 Copenhagen 0

ESPAGNE
INTA (AGARD Publications)
Pintor Rosales 34
28008 Madrid

NASA Headquarters
Code JOB-I
Washington. D.C. 20546

O.N.E.R.A. (Direction)
29. Avenue de la Division Leclerc
92322 ChPtillon Cedex

Hellenic Air Force
Air War Colle e
Scientific and $ethnical Library
Dekelia Air Force Base
Dekelia. Athens TGA 1010

EIATS-UNIS

FRANCE

GRECE

LUXEMBOURG

NORVEGE
Voir Belgique

Norwegian Defence Research Establishment
Attn: Biblioteket
P.O. Box 25
N-2007 Kieller

PAYS-BAS
Netherlands Delegation to AGARD
National Aeros ace Laboratory NLR
P.O. Box 905&
1006 BM Amsterdam

PORTUGAL
Forga Aerea Portuguesa
Centra de Documenta@o e InformaqFto
Alfragide
2700 Amadora

Defence Research Information Centre
Kentigern House
65 Brown Street
Glasgow G2 8EX

Mill! Savunma BaSkanligi (MSB)
ARGE D m s i Bqkanliii (MSB)
06650 Bakanliar-Ankara

ROYAUMEUNI

TURQUIE

Le entre de distribution national des Etats-Unis ne dktlent PAS de stocks des pubUeations de I'AGARD.
DCventuelles demandes de photocopies doivent Ctre formulees directement auprhs du NASA Center for Aerospace Information (CASI)
3 1'adres.w ci-dessous. Toute notifieation de changement dadresse doit Ctre fait Cgalemenl aupds de CASI.

AGENCES DE VENTE
NASA Center for ESAnnformation Retrieval Service The British Library

Aerospace Information (CASI) European Space Agency Document Supply Division
800 Elkridge Landing Road
Linthicum Heights. MD 21090-2934 75015 Paris West Yorkshire LS23 7BQ
Etats-Unis
Les demandes de microfiches ou de photocopies de documents AGARD (y compris les demandes faites aupds du CASI) doivent
comporter la dinomination AGARD, ainsi que le numb de sene d'AGARD (par exemple AGARD-AG-315). Des informations
analogues. telles que le titre et la date de publication son1 souhaitables. Veuiller noter qu'il y a lieu de spkifier ACARI-R-nnn et
AGARD-AR-nnn tors de la commande des rapports AGARD et des rapports consultatifs AGARD respectivement. Des Afkrences
bibliograpbiques complbtes ainsi que des r6sumCs des publications AGARD figurent dans les journaux suivants:

IO, rue Mario Nikis

France Royaume-Uni

Boston Spa, Wetherby

Scientific and Technical Aerospace Reports (STAR)
publie par la NASA Scientific and Technical
Information Division Springfield
NASA Headquarters (JTT) Virginia 22161
Washington D.C. 20546 Etats-Unis
Etats-Unis

Government Reports Announcements and Index (GRABrl)
publie par le National Technical Information Service

(accessible egalement en mode interactif dam la base de
doondes bibliographiques en ligne

2 5 OCT 1995 Imprim4 par le Graupe Communicarion Canada
45, boul. Sac,ri-Cawr, Hull (Qudhec), Conuda K I A OS7

!=FIANCE

Teletax (1)47.38.57.99 Telex 610 176
AGARD hold-Umited quantines of the publications that sccompsnisd Lecture Seriea and Spsia
AGAfUJograPes Md Workinn~oroUp mpa% published from 1993 onward For details, write 01 sad
Bbarc do mi telephone.

Courses held in 1993 or Isra. and of
a telefax M thc sddrssa given above.

-
Btat-msjor de la FaeC abisone
Qoartiar kine Elisabsth
RUC d'Evae. 1140 Bruxelles

Dirrnorscisntif ic~~msmricM
De@ of Nstional Defence
Ottawa, Ontario KIA OK2

Danish Defcna Research Establkhnent

P.O. Box 2715
DK-2100 Copenhagen 0

0N.E.R.A. @innion)
29 Avenoe de la Divlston LeElrrc
92322 CbPtiUm Cedex

CANADA

DENMARK

RYVangS All6 1

FRANCE
.

GERMANY

relating to one or mon spffific AGARD Panels, they m y be willin to includt you (or your
AGARD publications may be purchased Ran the Sales Agencies I d b e l o w , io photoMpy or n

BEL-
NATIONAL DISllUBUnON CBNTRES

LUXEMBOURG
See BeJ~iurn Cmdonneteur AaARD - VSL

NE

NORWAY
Eatablisbmmt

P.O. Box 25
N-2007 KjeUer

orgmisation) on thcit Wbution MaL
iicmfiok form.

Fachinfomatbmszentmm
Ksrtsnrhe
D-76344 Eggenstein-mWe.n i

HaU~nic Air Force
Air War M e
scientific Yecimica~ U-.
Dekelia Air Facc Base
DeMa Athens TGA 1010

Director of Aviation

Reykjavik

Auwautica Militare
Ufficio del Delegato NaziOnale d'AG

GREBCE

06650 BaLaoWrl

ICELAND

clo Flugrad

lTALY

rtohticadihkre

The Unlted Stptea National Distribution Centre d m NOT hold
Applications for copies sbould be made direct to the NASA Center for AaoSp

change of address requests s b d d also go
at the address below.

SALES AGENCIES
EsAllnformatim Retrieval Service
European Space Agency
10. rue Mario Nikis
75015 Paris
France

800 Elkridge Landing Road
Linthicum Heights. MD 210902934
united states
R uesb for microfiches or photocopies of AGARD documents
an? the AGARD suial number (for example AGARD-AG-31
desirable. Note that AGARD Repats and Advisory Repats
reanectivep =..(I L:Lx:--..L:n-l --F---inna sir(&.nofil. ,4 An

