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Preface 

This volume is a compilation of the edited proceedings of the “Parallel Computing in CFD” course held at the von KArmin 
Institute ( V U )  in Rhode-Saint-Genbe, Belgium, 15-19 May 1995 and at the NASA Ames Research Center, Moffett Field, 
California, USA 16-20 October 1995. 

In order to circumvent the limits posed by processor performance, today’s advanced computer architectures permit 
simultaneous computations on multiple functional units. This approach, termed parallel processing, has the potential for a 
dramatic improvement in overall computational speed. This revolution in parallel processing is expected to strongly influence 
the choice of algorithms used in computational fluid dynamics (CFD). 

This series of lectures, supported by the AGARD Fluid Dynamics Panel and the von KArmin Institute, presents and discusses 
the latest in advances and future trends in the application of parallel computing to solve computationally intensive problems 
in CFD. Topics in this lecture series focus on the increasingly sophisticated types of architectures now available, and how to 
exploit these architectures by appropriate algorithms for the simulation of fluid flow. 

Some of the subjects discussed are: parallel algorithms for computing compressible and incompressible flow; domain 
decomposition algorithms and partitioning techniques; and parallel algorithms for solving linear systems arising from the 
discretized partial differential equations. 

We want to thank all the speakers for their outstanding work, as well as the organizers at AGARD, V U ,  and NASA Ames. 
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Prkface 

Ce volume est un recueil des expos& du cours sur <(Le calcul en parallble en CFDB organis6 B I’Institut Von Karman ( V U )  B 
Rhodes-Saint-Genbse, en Belgique, du 15 au 19 mai 1995, ainsi qu’au NASA Ames Research Center, Moffett Field, en 
Califomie aux Etats-Unis, du 16 au 20 octobre 1995. 

Afin de circonvenir les limitations imposCes par les performances des microprocesseurs, les architectures informatiques 
avancCes d’aujourd’hui permettent le calcul simultant rCalisC sur de multiples unitCS fonctionnelles. Cette approche, appelCe 
(de calcul en parallble)), pourrait amener une amClioration spectaculaire des vitesses de calcul gCnCrales. Cette rCvolution dans 
le calcul en parallble devrait exercer une forte influence sur le choix des algorithmes B utiliser en aCrodynamique numCrique 
(CFD). 

Ce cours, organis6 sous 1’Cgide conjointe du Panel AGARD de la dynamique des fluides et de I’Institut Von Karman, prCsente 
et examine les demiers progrbs rCalisCs ainsi que les perspectives d’avenir en ce qui concerne l’application du calcul en 
parallble B la rCsolution de certains problbmes en CFD impliquant une grande puissance de calcul. Les sujets examinks lors du 
cours ont porte, principalement, sur les architectures de plus en plus sophistiquCes qui sont actuellement disponibles et sur 
leur exploitation par I’intermCdiaire des algorithmes appropriCs, pour la simulation des Ccoulements des fluides. 

Parmi les sujets examinks l’on distingue: les algorithmes parallbles pour le calcul des Ccoulements compressibles et non- 
compressibles; les algorithmes de dCcomposition de domaine et les techniques de dCcoupage en partitions et les algorithmes 
parallbles pour la risolution de systbmes IinCaires rksultant des Cquations aux dCrivCes partielles discrCtisCes. 

Nous tenons B remercier I’ensemble des confkrenciers pour la qualit6 de leurs contributions, ainsi que les organisateurs A 
I’AGARD, au VKI et au NASA Ames. 
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Parallel Computers and Parallel Algorithms for CFD : 
An Introduction 

Dirk Roose and Rafael Van Driessche 
Katholieke Universiteit Leuven 

Dept. of Computer Science 
Celestijnenlaan 200A 

B-3001 Heverlee-Leuven, Belgium 
Email: Dirk.Roose@cs.kuleuven.ac.be 

1 SUMMARY 

This text presents a tutorial on those aspects of par- 
allel computing that are important for the develop 
ment of efficient parallel algorithms and software for 
Computational Fluid Dynamics. 
We first review the main architectural features of 
parallel computers and we briefly describe some par- 
allel systems on the market today. We introduce 
some important concepts concerning the develop 
ment and the performance evaluation of parallel al- 
gorithms. We discuss how work load imbalance and 
communication costs on distributed memory paral- 
lel computers can be minimised. We present perfor- 
mance results for some CFD testcases. We focus on 
applications using structured and block structured 
grids, but the concepts and techniques are valid also 
for unstructured grids. 

2 PARALLEL COMPUTING 

2.1 Parallel computer architectures 

2.1.1 Classification of Flynn 

For many years the taxonomy of Flynn has been used 
for the classifcation of high-performance computers. 
This classification is based on the way instruction 
and data streams are handled (Single or Multiple 
Instruction / Data Streams). This leads to a clas- 
sification in three main architectural classes, see e.g. 
PI. 
SISD systems. These are the conventional sys- 
tems (workstations, compute-servers) that contain 
one CPU and hence can execute one instruction 
stream in serial mode. Nowadays many large 
compute-servers or mainframes have more than one 
CPU but these are most often used to execute un- 
related jobs (instruction streams). Therefore, such 
systems should be regarded as (a couple of) SISD 
machines. 

SIMD systems. Such systems have a large num- 
ber of (simple) processing units, ranging from 1,024 
up to 64K, that all may execute the same instruction 
on different data in lock-step. Thus a single instruc- 
tion manipulates many data items in parallel. In the 
past, SIMD machines such as the Connection Ma- 
chine CM-2 of Thinking Machines and the MasPar 
have been quite successful. Today, the SIMD archi- 
tecture has nearly disappeared, except in systems for 
specific application areas, such as image processing, 
that are dominated hy highly structured data sets 
and data access patterns. 

MIMD systems. In ‘Multiple Instruction, Multi- 
ple Data’ systems, the processors independently ex- 
ecute different instruction streams, each on its own 
data. Hardware and software are designed so that 
processors can cooperate efficiently. Parallel process- 
ing occurs when tasks executed on different proces- 
sors together form one single job. 

Vector processors are often considered as a subclass 
of SIMD systems. Vector processors contain special 
hardware (‘vector units’) to perform operations on 
arrays of similar data in a pipelined fashion. These 
vector units can deliver results with a rate of one, 
two and-in special cases-three per clock cycle. 
From the programmer’s point of view, vector proces- 
sors operate on their data in an almost parallel way 
(SIMD-style) when executing in vector mode. Vector 
processors are used in the Cray C90, J916 and T90 
series, the Convex C-series, Fujitsu VP-series, NEC 
SX-series, etc. 
The pipelined execution of floating point operations 
is also a key concept in RISCprocessors, used in high 
performance workstations. Advanced RISC proces- 
sors can also execute several instruction in parallel 
(e.g. ‘dual instruction mode’). 

2.1.2 Memory organisation of MIMD sys- 
tems 

Parallel computers can also be classified based to 
other criteria. MIMD systems are further distin- 
guished according to the organisation of the memory. 

Poperpresented m M AGARD-FDP-VKI Spec101 Course on ’‘Pamlkl Compurrng in CFD”, held at the VKI, RhodeSamt-Gedse. Belgwm 
from IS-19 May 199s and 16-20 October 1992 at NASA A m s ,  h u e d  States and publrshed in R-807. 
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Shared  memory  MIMD systems. In shared 
memory MIMD systems all processors have access 
to a common memory. The main architectural prob- 
lem in shared memory systems is that of the con- 
nection of the processors to the memory (or mem- 
ory modules). As more processors are added, the 
collective bandwidth to  the memory ideally should 
increase linearly with the number of processors, P. 
Unfortunately, full interconnection is very costly, re- 
quiring O ( P )  connections. So, various alternative 
interconnection networks are used, some of which 
are shown in Fig. 1. A crossbar uses Pz interconnec- 
tions and a omega-network uses PlogzP connections, 
while a central bus represents only one connection. 
In all present-day multi-processor vector processors, 
a crossbar is used. Due to  the limited capacity or the 
cost of the interconnection network, shared memory 
parallel computers are not scalable to a very high 
number of processors. 

The shared memory concept is used already for f 10 
years in multiprocessor vector machines (Cray X-MP, 
IBM 3090, their successors and similar systems from 
other vendors). However these systems have not been 
used very often as truly parallel systems: most jobs 
use only one processor. One reason for this is the 
limited number of processors (often 4 or 8), which 
l i t s  the possible ‘speedup’ of the execution. More  
over, because of timesharing, the user normally has 
no full control on the number of processors allocated 
to his job at  a particular moment. This may also 
limit the speedup that can be achieved. 

Nowadays, a number of vendors (Convex, Silicon 
Graphics, . . . ) offer shared memory MIMD systems 
based on RISC processors, with up to f 20 proces- 
sors. 

Distr ibuted memory  MIMD systems. A dis- 
tributed memory MIMD parallel computer consists 
of a number of processors, each with its own local 
memory, interconnected by a communication net- 
work. The combination of a processor and its lo- 
cal memory is often called a pmcessing node. Each 
processing node is in fact a complete computer, o p  
erating rather independently from the other nodes. 
Processing nodes can only communicate by passing 
messages over the communication network. 

Also for distributed memory machines, the structure 
of the communication network is of crucial impor- 
tance. Ideally, one would like to have a completely 
connected system where each processing node is di- 
rectly connected to every other node. However, this 
is not feasible for a large number of nodes. There  
fore the processing nodes are arranged in some inter- 
connection topology. The richness of the connection 
structure has to  be balanced against the costs. 

The hypercube topology has been used in several sys- 
tems in the past. A nice feature is that for a hyper- 
cube with P = 2d processing nodes the ‘diameter’ of 
the network (i.e. the maximum number of links be- 
tween any two nodes) is d. So, the diameter grows 
only logarithmically with the number of nodes. In 
addition, it is possible to simulate on a hypercube 
many other topologies, such as trees, rings, 2-D and 
3-D meshes, since these topologies are subsets of the 
hypercube topology. 

In the current parallel systems, the network topology 
and the communication diameter are of less impor- 
tance, because these systems employ some form of 
‘wormhole routing’ of messages. This means that as 
soon as a communication path between two nodes 
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is established, the data is sent through this path 
without disturbing the operation of the intermediate 
nodes. Except for a small amount of time in setting 
up the communication path between nodes, the com- 
munication time has become virtually independent of 
the distance between the nodes. 

Some systems use a 2-D or  3-0  mesh structure for 
the network. The rationale for this is that this inter- 
connection topology is sufficient for most algorithms 
used in large-scale scientific computing and that a 
richer interconnection structure hardly pays off. In 
other systems a multi-stage network is used, e.g. an 
omega-network as shown in Figs. 1 and 4. Multi- 
stage networks have the advantage that the ‘bisec- 
tion bandwidth’ can scale linearly with the number of 
processors, while maintaining a fixed number of com- 
munication links per processor. The bisection band- 
width of a distributed memory system is defined as 
the bandwidth available on all communication links 
that connect one half of the system (P/2 processors) 
with the second half. 

An important advantage of distributed memory sys- 
tems is that this architecture suffers less from the 
scalability problem. The network (with its limited 
bandwidth) has to be used only when processing 
nodes communicate, not for every memory access. 
A disadvantage is that the communication overhead 
is (much) higher than the overhead caused by using 
shared data in a shared memory system. When the 
structure of a problem dictates a frequent exchange 
of data between processors, it may well be that only 
a very small fraction of the theoretical peak perfor- 
mance can be achieved. 

The first generation DM-MIMD systems were based 
on simple, inexpensive microprocessors. Thus even 
when 100 to 1000 processors were interconnected, the 
peak performance of these machines was lower than 
that of typical vector processors and shared memory 
parallel supercomputers. Today, distributed mem: 
ory parallel computers are often outperforming more 
traditional supercomputers. This is due to the fast 
growing performance of the RISC processors used in 
distributed memory systems and due to the greatly 
improved network technology. Moreover, many sys- 
tems now have sophisticated hardware and software 
that allow fast parallel 1/0 to  disk storage (i.e. a 
‘Concurrent File System’). As a result, distributed 
memory parallel systems are rapidly gaining impor- 
tance in fields where computational performance is 
important such as Computational Fluid Dynamics. 

Examples of distributed memory machines are the 
Intel Paragon, the CM-5 of Thinking Machines, Cray 
T3D, IBM SP2. Distributed memory systems with 
more than a thousand processors exist, but most sys- 
tems have 16 to 128 processors. 

Since a few years, networks or clusters of worksta- 
tions are used as ‘low cost’ distributed memory paral- 
lel computers. A workstation cluster allows to exploit 
otherwise unused computing capacity. Of course, if 
workstations are simply connected together via Eth- 
ernet (or even via a fast FDDI interconnection), the 

number of workstation that can be used effectively 
together as a parallel system is limited, because 
of the limited communication performance. Some 
workstation vendors offer interconnection switches to 
provide fast communication (e.g. Digital). Such clus- 
ters are bridging the gap with ‘truly parallel comput- 
ers’. 

Thus a whole range of systems are used nowadays as 
parallel computers, ranging from small workstation 
clusters to large systems with many processors and 
sophisticated communication network technology. 

Hybrid memory organisations. Although the 
difference between shared and distributed memory 
systems seems clear cut, many parallel systems have 
a hybrid memory organisation. In a shared mem- 
ory system, every processor may have a large cache, 
which can be considered as a local memory. Some 
systems have a two-level organisation: processors are 
grouped together in shared memory modules, which 
are interconnected via a communication network. 
Finally, a distributed memory system may contain 
hardware and software support to access data in 
other processor’s memories in a way that is trans- 
parent to the user. Depending on the precise form of 
this support, this is called ‘virtual shared memory’, 
‘global shared memory’, ‘global virtual memory’, etc. 

Memory hierarchy and performance. Both 
vector processors and RISC processors can perform 
floating point operations much faster than data can 
be read and written into main memory. Vector reg- 
isters (in vector processors) or cache memories (in 
RISC processors) are placed between the processor 
and the main memory. These very fast memory mod- 
ules should keep the processors busy with compu- 
tation without having to frequently reference main 
memory. 

Vector registers, caches, local memories and/or the 
global (shared) memory form together a memory hi- 
erarchy. The performance that can be achieved for a 
given application program critically depends on the 
(re-)use of data stored in the ‘higher levels’ of the 
memory hierarchy. Thus in order to achieve a high 
performance, the algorithms should exhibit locality of 
data access, both in (address) space and time. 

2.2 Programming parallel computers 

We have indicated that there is no clear cut distinc- 
tion between shared memory and distributed mem- 
ory parallel architectures, and that some recent par- 
allel systems have a hybrid organisation. However 
we can clearly distinguish between two different pro- 
gramming models, the shared memory and the dis- 
tributed memory programming model. 

In both models, the execution of a program is split 
in several processes that are executed in parallel. In 
most cases, on each processor only one process is ex- 
ecuted and therefore we will use the term ‘processor’ 
in the discussion below, although ‘process’ would of- 
ten be more precise. 
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2.2.1 Shared memory programming model 

Regardless of the physical organisation of the mem- 
ory, the shared memory programming model is based 
on the existence of a common or global address space, 
i.e. every processor can address every memory lo- 
cation. Thus processors communicate by accessing 
(writing, reading) shared data. The time to access 
the shared data may differ very much, depending on 
the physical location of the shared data (cache, local 
memory, another processor’s memory). 

Also, situations are possible where different proces- 
sors wish to use a part of the common memory simul- 
taneously. In that case synchronisation of the pro- 
cesses is necessary. Synchronisation is also needed 
before a sequential part of a program, in order to 
assure that all processors have finished their parallel 
actions prior to this sequential part. 

Thus the performance may deteriorate substantially 
due to ‘memory conflicts’, synchronisation and ‘se- 
quential bottlenecks’. Further, the overhead associ- 
ated with the creation of (parallel) tasks can be very 
high. 

At present, Fortran and C compilers exist that per- 
form automatic parallelisation in the shared memory 
programming model. The programmer can influence 
the parallelisation via directives (as for vector pro- 
cessing). Parallelisation can be carried out a t  loop 
level or at task (or routine) level, also called ‘fine 
grained’, resp. ‘coarse grained’ parallelism, or ‘micro- 
tasking’ resp. ‘macro-tasking’. 

2.2.2 Distributed memory programming 
model 

In the distributed memory programming or message 
passing model, processors can only access their own 
private memory. Whenever a processor needs data 
that reside in the memory of another processing 
node, the data must be sent between the process- 
ing nodes. Such a message passing or communica- 
tion step involves preparation of the message in the 
sending node, transmission over the communication 
network and reception of the message in the destina- 
tion node. When the message passing model is used 
on a shared memory system, the actual transmission 
is replaced by storage of the information in shared 
memory. 

Also in a distributed memory model, synchronisation 
problems can occur. It is possible that a processor 
does not have the data available yet a t  the moment 
they are needed by another processor ; at this syn- 
chronisation point the processor has to wait for the 
other processor to catch up. Synchronisation may 
also be needed to assure that the communication be- 
tween processors proceeds in a correct way. 

Although each processor can execute a different pro- 
gram, most often the ‘Single Program, Multiple 
Data’ (SPMD) programming style is used: all pro- 
cessors execute the same program acting on different 
parts of the data set. This requires an appropriate 
partitioning (distribution) of the data of the data and 

of the operations that have to be performed on them. 
The partitioning of the data must be so that the work 
load is well balanced between processors and so that 
communication and synchronisation is minimised. 

Programming in the distributed memory model is 
often more difficult than programming in the shared 
memory model. The programmer must be aware of 
the location of the data in the local memories and 
has to move or distribute these data explicitly when 
needed. The partitioning of the data and all nec- 
essary communication has to be included explicitly 
into the program. A sequential program often needs 
significant changes in order to parallelise it. 

Distributed memory programs are written in conven- 
tional languages (Fortran, C, C++, . . .) and a com- 
munication library is used to implement the commu- 
nication and synchronisation operations. Basic com- 
munication routines allow messages to be sent and 
received between arbitrary processing nodes. Incom- 
ing messages are normally buffered by the operating 
system at the destination node until the application 
program requests the message. Also various ‘higher 
level’ routines are provided, e.g. for ‘global opera- 
tions’ on a set of data distributed across the nodes 
(broadcast, global sum, global maximum, ...) and 
for synchronisation. 

In addition to the machine dependent communica- 
tion libraries, several machine independent libraries 
have been developed. Widely used libraries are 
PVM [2], MPI [3], PARMACS [4]. Some of these 
libraries or environments (e.g. PARMACS) contain 
utility routines that perform automatic partitioning 
and mapping of vectors and matrices, and facili- 
ties for performance monitoring and analysis. The 
PVM environment provides facilities to use a (het- 
erogeneous) network of workstations as a distributed 
memory parallel computer. 

Compilers and software tools that perform (semi) au- 
tomatic parallelisation for DM-MIMD machines are 
becoming available now. High Performance Fortran 
is a set of extensions to Fortran 90 for writing parallel 
applications [5]. HPF includes features for mapping 
multi-dimensional arrays (i.e. structured data sets) 
to parallel processors and for specifying data parallel 
operations. Extensions to HPF are being developed 
that offer a similar functionality for more complex 
data structures, e.g. multi-block grids [6]. FORGE 
90 is a software tool for the analysis and the (semi) 
automatic parallelisation of existing sequential codes: 
based on a user defined partitioning of the data ar- 
rays, FORGE allows interactive or automatic selec- 
tion of do-loops to  be parallelised [7]. 

2.3 Description of some parallel sys- 
t ems 

Intel Paragon. The Intel Paragon is a distributed 
memory system in which the processing nodes are 
interconnected in a 2D mesh network, see Fig. 2. A 
Paragon system with 1874 processors is operational 
at Sandia Nat. Labs. Two types of processing nodes 
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Fig. 2: The architecture of the Intel Pamgon, based o n  a two- 
dimensional interconnection network. 

andthe  parallel eficiency E ( n , P )  

where n denotes the problem size, T ( n , l )  and 
T ( n , P )  denote the execution times of the algorithm 
on one and P processors respectively. 

Note that (1) does not give any information about 
the quality of the parallel algorithm. It solely mea- 
sures how well an algoritbm has been parallelised. 
As such, it should always be complemented with 
data which indicate the numerical eficiency of the 
parallel algorithm, which can be defined as the ra- 
tio of the following single processor execution times: 
Tb..t(n)/T(n, I), where Tb...t(?%) denotes the time 
taken by one processor of the parallel computer ex* 
cuting the fastest known sequential algorithm. Com- 
bination of the definitions of parallel speedup (or ef- 
ficiency) and numerical efficiency leads to the notion 
of total speedup and total eficiency, defined by 

q n ,  P) = $y$) 
\ I  

E (n ,P)  = y = &.& . 
Practical considerations limit the usefulness of the 
latter definitions. First of all, it is often very difficult 
to determine what algorithm is the best sequential 
one; this may depend on the problem size n. on the 
particular hardware used, on implementation issues, 
etc. Moreover, the notion of ‘best’ algorithm may 
change in time, as better algorithms become avail- 
able. Also, a good implementation of that algorithm 
is not always available. In practice one can define 
the total speedup by using the execution time of a 
good sequential algorithm instead of T*,,,(n). 

If we assume that a P-processor machine cannot ex- 
ecute more than P times faster than a single proces- 

sor machine, we obviously have that S(n, P) I P and 
E(n, P) 5 100%. We now enumerate some overheads 
that may cause a deviation from linear speedup. 

the sequential fraction. The speedup achiev- 
able on a parallel computer can significantly be lim- 
ited by the existence of a small fraction of inherently 
sequential code which cannot be parallelised. This is 
expressed by Amdahl’s law, see e.g. [ll]: 

Let a be the fraction of operations in a com- 
putation that must be performed sequen- 
tially, where 0 5 a 5 1. The maximum 
speedup achievable by a parallel computer 
with P processors is then limited as follows, 

1 < - . (3) 
1 s(n, P ,  a + (1 - a ) / P  - a 

For example, when 10% of the code must be executed 
sequentially, the maximum speedup is limited by 10, 
independent of the number of processors available. 

Amdahl’s law has been a central argument of people 
doubting the usefulness of massively parallel systems. 
Their criticism is justiied as long as one considers 
solving a particular problem of a fixed size (i.e., with 
a constant value of a). In actual practice, however, 
this is rarely the case, as problem sizes tend to scale 
with the number of processors and with the comput- 
ing power available. (Large scale parallel systems are 
used to solved bigger problems than the ones solved 
on small-scale parallel systems.) 

For many computational problems the sequential 
fraction a rapidly goes to zero as the problem size 
increases. Consequently, when problem scaling is 
in effect, a depends on the number of processors, 
and (3) looses much of its significance. An alterna- 
tive to Amdahl’s law was formulated by Gustafson 
et al. [12][13]. 

Let d denote the sequential fraction of the 
time spent during a computation on a par- 
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R8000), having multiple functional units, that can 
operate simultaneously. Each processor has a cache 
hierarchy with a small, fast on-chip cache and a large, 
slower but pipelined off-chip cache. The main mem- 
ory can be up to 8-way interleaved. 
The Fortran and C compilers are able to restructure 
programs to  reduce cache misses by interchanging 
loops, by ‘tiling’ or ‘blocking’ in case of nested loops, 
etc. (Loop blocking is a technique for optimising 
the performance of the memory hierarchy, in case of 
e.g. operations on matrices.) Further, the compilers 
support automatic and user-directed (via directives) 
parallelisation of Fortran and C programs. For more 
information, see e.g. [lo]. 
Up to eight Power Challenge systems can be inter- 
connected by a (switch-based) communication net- 
work, forming a ‘CHALLENGEarray’ system. Com- 
munication over this network must be programmed 
in distributed memory style using message-passing li- 
braries (PVM, MPI) or using High-Performance For- 
tran. 

Convex Examplar. The Convex Exemplar con- 
sists of a number of hypernodes, connected to  each 
other via a low latency ring network with four in- 
terleaved links. Each hypernode is a shared-memory 
multiprocessor, consisting of 8 processors (HP PA- 
RISC 7200) that are connected to 4 memory modules 
by a crossbar, see Fig. 5 .  
The Exemplar programming environment provides 
both shared memory and distributed memory pro- 
gramming support. For message passing, the PVM 
communication library is used. The shared memory 
programming environment is implemented through 
what is called ‘Global Shared Distributed Virtual 
Memory’. An application, programmed in shared 
memory style, can use processors located on various 
hypernodes. In that case, three levels in the memory 
hierarchy are used: the large cache of a particular 
processor, the global memory of the hypernode to 
which the processor belongs and memories located 
on different hypernodes. 
The time needed to access data located on a differ- 
ent hypernode is higher than to  access data within a 
hypernode. In order to reduce the delay caused by 
using the ring interconnect, each hypernode contains 
a cache of memory references made over the inter- 
connect. The information hold in this cache can be 
used to locate any global data that is currently en- 
cached in the hypernode. The system automatically 
maintains cache coherence between multiple hypern- 
odes. 

are available, both based on the Intel i860 processor. 
General Purpose nodes contain 2 processors (one for 
calculation and one for communication) and an 110 
expansion port. Multiprocessor nodes contain two 
processors for calculation (with shared memory) and 
one for communication. Wormhole message passing 
through the network is carried out by Mesh Router 
Chips, one for each node. The processing nodes are 
logically divided into a compute partition (for paral- 
lel program execution), an 110 partition (nodes des- 
ignated to disk 110 and networking) and a service 
partition (interactive use, compilation). 
The distributed operating system provides a sin- 
gle system image (single process ID space, single 
file system, etc.) and automatic scheduling of jobs. 
The distributed memory programming model is sup- 
ported via Intel’s NX communication system or via 
the SUNMOS environment (Sandia). The Parallel 
Development Environment contains various tools for 
software development and performance monitoring. 
For more information, see e.g. [8]. 

Cray T3D. The Cray T3D is a distributed mem- 
ory parallel system with 32 to 2048 processing nodes. 
The processing nodes (DEC Alpha processors) are 
connected by a bidirectional 3D torus (periodic 
mesh) network (each switch of the network is shared 
by two nodes), see Fig. 3. Various mechanisms are 
implemented to reduce the communication cost over 
the interconnection network and to synchronise pro- 
cessing nodes. The memory is physically distributed, 
but is globally addressable. Hence, three program- 
ming models are supported: SIMD (date paral- 
lel), shared memory MIMD and distributed memory 
MIMD programming styles. The software environ- 
ment includes a Fortran compiler with Fortran 90 
features (array syntax, etc.) which allows the user to  
mix all three programming models in one program. 
Also included are PVM, a performance analyser, etc. 
The T3D system needs a Cray vector processor as 
host system. 

IBM SP2. The IBM SP2 is a distributed memory 
system with up to 128 processing nodes. Two types 
of processing nodes are available, ‘thin nodes’ and 
’wide nodes’, both based on the POWER2 proces- 
sor. Wide nodes allow larger memories, provide a 
faster processor-to-memory connection and allow to 
attach various storage devices. The nodes are inter- 
connected by a ‘High-Performance Switch’, see Fig. 
4. The switch is a multi-stage omega network that 
performs wormhole routing. The available communi- 
cation bandwidth over the switch scales linearly with 
the number of processors. Support for short mes- 
sages with low latency and minimal message over- 
head is provided. For more information, see e.g. [9]. 
The AIX Parallel Environment contains a Message 
Passing Library (MPL), performance monitoring and 
visualisation tools. An optimised version of PVM 
is also available. Only the distributed memory pro- 
gramming model is supported. Job scheduling sup- 
port is provided by the ‘Loadleveler’ software. 

Silicon Graphics Power Challenge. The Silicon 
Graphics Power Challenge systems are shared mem- 
ory multiprocessors, with up to 18 processors (MIPS 

2.4 Parallel performance parameters 

The quality of a parallel implementation is often 
measured by the achieved speedup or eficiency. 

The parallel speedup achieved by a parallel algorithm 
running on P processors is defined as the ratio of the 
execution time of the parallel algorithm on a single 
processor and the execution time of the parallel al- 
gorithm on P processors. The parallel eficiency is 
equal to the speedup divided by P. We have thus the 
following definitions for the parallel speedup S(n, P) 
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Fig. 3: The architecture of the Cmy T3D (three-dimensional inter- 
connection network). 

Fig. 4: Left: A 16-node bidirectional multi-stage network, forming 
the basic building block ('fmmey for the High-Performance 
Switch in the IBM SP2. Flight: Twelve fmmes are used to 
interconnect 128 processors. 
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Fig. 5 :  The architecture of the Convex Exemplar : logic51 system view 
(lee) and physical system view (right). 

Uel system with P processors. The maxi- 
mum speedup achievable is then limited as 
follows, 

S‘(n,P) 5 P (1 - 6) + 6 . (4) 

S’(n,P) is usually called the scaled speedup. It 
is equal to the ratio T’(n, 1) over T‘(n, P), where 
T’(n, 1) is the time the parallel program would take 
to run on a single processor if sufficient resources 
(memory) were available. 

In Large scale applications, 6 is often a small num- 
ber, and very high scaled speedups are attainable on 
large-scale parallel processors. Fig. 6 shows the de- 
pendence of S(n, P) and S‘(n, P )  on the serial frac- 
tion a, resp. 6. 

non-optimal a lgori thms and algorithmic 
overhead. The best sequential algorithm may of- 
ten be difficult or impossible to parallelise (e.g., 
Thomas algorithm for solving tridiagonal linear sys- 
tems). In that case the parallel algorithm may have a 
larger operation count than the sequential one. Ad- 
ditionally, in order to avoid communication overhead 
one may wish to duplicate some calculations on dif- 
ferent processors, rather than having one processor 
doing the calculation and then distributing the result 
(e.g. ‘double flux calculations’, see further). 

0 software overhead. Parallelisation often results 
in an increase of the (relative) software overheads 
such as the overheads associated with indexing, p r o  
cedure calls, etc. Also, this approach usually results 
in shorter loops, thus restricting vector lengths. This 
reduces the potential gain of using vectorisation. 

load imbalance. The execution time of a par- 
allel algorithm is determined by the execution time 
of the processor having the largest amount of work. 
As soon as the computational workload is not evenly 
distributed, load imbalance will result, and proces- 
sor idling will occur : processors must wait for other 
processors to finish a particular computation. 

communication and synchronisation over- 
head. Finally, any time spent in communication 
and synchronisation is pure overhead. 

In the next section, we will discuss in detail these 
various sources of overhead. 

3 PARALLELISATION OF 
GRID-ORIENTED PROBLEMS 

3.1 Introduction 

In the remainder of this text, we will focus on dis- 
tributed memory parallelism for two reasons. Firstly, 
parallel systems with only distributed memory sys- 
tems have an ‘extreme’ parallel architecture. Sec- 
ondly, in the distributed memory programming 
model, the parallelism must be introduced explicitly 
in the application program. Algorithms designed for 
distributed memory systems will also perform well on 
shared memory (or hybrid) systems. Data partition- 
ing, which is necessary for distributed memory sys- 
tems, is also beneficial for shared memory systems. 
For example, entire matrices typically do not fit into 
the cache. The performance of the memory hierarchy 
can be optimised, by decomposing the matrix oper- 
ations into submatrix operations, with a submatrix 
size chosen so that the operands fit in the cache. 

The basic issues of parallel algorithm design ate 
nowadays well understood and are described in var- 
ious books and papers. The book of G. Fox et 
al. [14] is a key reference (although somewhat out- 
dated). The textbooks of E. Van de Velde [E] 
and C. de Moura [16] also provide a good in t ro  
duction. The proceedings of the yearly confer- 
ences on Parallel Computational Fluid Dynamics 
give an overview of research and achievements in this 
field [17,18,19]. Also the proceedings of the Scalable 
High Performance Computing Conferences [ZO, 211, 
the SIAM Conferences on Parallel Processing for Sci- 
entific Computing [ZZ, 231 and the HPCN conferences 
[24, 251 are valuable sources of information. 
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Fig. 6: Dependence of the speedup on the sequential fraction for P = 
128 and P = 1024. Left : parallel speedup S ( n , P )  ; right ; 
scaled speedup S'(n, P ) .  

For grid-oriented problems, such as the numerical so- 
lution of partial differential equations, the data are 
defined on a discrete grid of grid points or finite vol- 
umes or finite elements. In this paper, we will use 
the term (grid) point as a generic name for a grid 
point, finite volume or element and its data. 

Assume that a ZD structured grid is rtitioned in 
subdomains of equal size, such that , h processor 
deals with n, x ny grid points or celh Lssume fur- 
ther that the explicit timeintegration is based on a 
five-point stencil, i.e. 

Parallelisation of grid oriented applications is seri- 
ously facilitated because the calculations on a grid 
point typically involve only grid points that are ge- 
ometrically adjacent. Parallelisation is achieved by 
partitioning the grid into subdomains (subgrids) and 
assigning these subdomains to  the processors of the 
parallel system. Each processor performs the calcu- 
lations associated with the subdomain(s) assigned to  
that processor. Dependency (and communication) 
between subdomains is restricted to the perimeters 
of the subdomains. 

Many important issues concerning parallelisation of 
grid-oriented problems and performance analysis of 
parallel algorithms can be understood by studying 
the parallel execution of a 'model problem', repre- 
senting the explicit timeintegration of a finite differ- 
ence or finite volume discretisation of a partial dif- 
ferential equation on a structured grid. 

Due to the local nature of the calculations, each 
processor can perform the updates for all interior 
grid points (the white area in Fig. 7). The other 
grid points of the subdomain are called (subdomain) 
'boundary grid points'. In order to perform the u p  
dates of the subdomain boundary grid points, the 
processor must know also function values corre- 
sponding to grid points lying at the other side of the 
subdomain boundaries. This information must be re- 
ceived from the neighbouring processors and can be 
stored in the overlap regions indicated in Fig. 7. On 
the other hand, the boundary grid points must be 
send to neighbouring processing nodes, where they 
are part of the overlap region. Hence, before each 
integration step, neighbouring processors exchange 
information with each other, see Fig. 8. 
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Fig. 8: Concumnt exchange of local boundaries. 

1 1 
T =- 3.2 Analysis of the communication E(n, P )  = 

overhead 1 +  1 + f c  

tamea. can be written as 

T(n, P) = T'aic + Tcomm 

where Tcaic denotes the calculation time and T,,,, 
denotes the t i e  spent in communication. Assuming 
that no other overhead occurs except communication 
of the overlap regions, the sequential execution time 
is 

Hence the speedup and parallel efficiency are given 
T(n,  1) = P TCaic 

by 

The amount of data sent and received per processor is 
proportional to the number of boundary cells, while 
the amount of computations performed by each pro- 
cessor is proportional to the number of interior cells. 
For the model problem we have 

Tcnie = c1 nrny tc.ic 

Tcomm = ca . 2(nz + nv) tcmnm 

where teale represents the time required to perform 
a floating point operation, t,,,, denotes the time 
needed to communicate one floating point number, 
and cl, c2 are constants. This leads to the important 



1-11 

formula 

( 5 )  
cz 2(n, + n,) & 

t,,lc fc = C, n, x ny 

which indicates that the overhead depends on 3 fac- 
tors: 

1. the size of the subdomain: large subdomains 
have a small ‘perimeter to surface’ ratio 2(n, + 
nu)/n.n,, leading to a small value for fc; 

2. the machine characteristic teomm/teo~e, indicat- 
ing how fast communication can be performed 
compared with floating point operations; 

3. the algorithm via the ratio  cl. The overhead 
fc will he small for problems for which many 
floating point operations per grid point must be 
performed (c1 large), compared with the amount 
of data to  be communicated per grid point ( r e p  
resented by cz). 

Remark. An important characteristic of most 
communication systems is the rather high message 
startup time. The cost of sending a message between 
neighbouring processors can be written as 

T(n)  = tstortup + n tsend 

where n indicates the length of the message (number 
of words transferred), t,t,,t, is the message startup 
time (caused by hardware and software delays) and 
tsend is the marginal communication time per word. 
For many systems t,t.,t,,p is much larger than t..,d 
(even by a factor 1000). An immediate conclusion is 
that sending many short messages should be avoided 
if possible. 

In ( 5 )  t,,,,,, denotes the average time to communi- 
cate one word. This clearly depends very much on 
the average length of the messages that are sent : for 
small messages t,,,, N t,t,,t,p, while for very large 
messages tcomm cz teend. This must be taken into 
account when analysing parallel algorithms by using 
(5 ) .  

A further analysis of this model problem reveals some 
important guidelines that should be taken into ac- 
count when parallelisiig CFD aigorithms. 

Different grid partitioning strategies. For this 
model problem, the communication volume is pro- 
portional to the number of grid points on the (inte- 
rior) subdomain boundaries, i.e. proportional to the 
‘perimeter’ of the subdomain. When the size of the 
subdomain is fixed, the perimeter (and thus the com- 
munication volume) is minimal if the number of grid 
poinks in each direction is equal, i.e. n, = nu. We 
will use the term ‘square subdomain’ to denote the 
latter case. Hence, partitioning into square subdo- 
mains leads to a minimal communication volume. 

This observation can he generalised as follows. A 
stripwise (or one-dimensional) partitioning (Fig. 9, 
left) yields subdomains with long boundaries but 
with at most two adjacent subdomains. A blockwise 
(or two-dimensional) partitioning (Fig. 9, right) gives 
subdomains with shorter boundaries but with up to 

four neighbours. Thus a blockwise partitioning min- 
imises the total communication volume, while a s t r ip  
wise partitioning minimises the number of messages. 
What will be the best choice depends on the char- 
acteristics of the problem and of the parallel com- 
puter. When the message startup time dominates 
the communication t i e  per message the stripwise 
partitioning will be beneficial. 

Note that the communication requirements are not 
always ‘isotropic’ in all directions, but they may de- 
pend on characteristics of the problem or the numer- 
ical algorithm. This may influence the partitioning 
strategy. Consider for example the solution of the 
compressible Navier-Stokes equations around an air- 
foil. The inclusion of an algebraic turbulence model 
may lead to a global dependence (and communica- 
tion) in the direction perpendicular of the airfoil. 
Then a stripwise partitioning is to be preferred. 

Dependence on the size of the subdomains. 
When each subdomain contains N = n, x ny grid- 
points and a blodtwise partitioning is used with 
square subregions (n, = nu),  Ekq. ( 5 )  yields 

This indieates that the communication overhead fc 
remains constant, independent of the number of pr- 
cessors, as long ag the size of the subdomains remains 
constant ! Of course this implies that to maintain a 
given parallel efficiency, the total problem size M 
must grow when the number of processors P grows, 
since M = N x P. The relation fc a also in- 
dicates that, for k e d  (total) problem size M, the 
efficiency and speedup decrease when the number of 
processors increases (cf. Amdahl’s law). This analy- 
sis is only valid when the only communication is the 
exchange of information between neighbouring pro- 
cessors. Any ‘global communication’ (e.g., the col- 
lection of the local residuals to compute the global 
residual) implies an overhead which grows with in- 
creasing number of processors. However, the rela- 
tive importance of such global communications is of- 
ten very low and does not really affect the overall 
speedup and efficiency. 

Extension to larger stencils and to SD grids. 
The analysis presented above remains valid when 
other computational stencils are used instead of a 
5-point stencil [14]. It may be necessary to use a 
larger overlap region, (e.g., with a width of 2 points). 
In that case the communication volume increases 
(and the constant CZ), but the number of operations 
per cell (and thus the constant CI) also increases. 
Hence, the communication overhead does not neces- 
sarily grow. 

In case of three-dimensional grids, 1D-, 2D- and 3D- 
partitionings can be used. The communication vol- 
ume is then determined by the ‘surface to volume’ 
ratio of the subdomains, leading to a factor Nils in 
Eq. (6) ,  see e.g. [14]. 

Dependence on the machine characteristics. 
The speedup and parallel efficiency of a given al- 
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Fig. 9: Strip- and blockwise partitioning of a grid. 

gorithm is proportional to the machine characteris- 
tic tc,,,,,,,,/tc,,~c. The various parallel systems avail- 
able have quite different values for this character- 
istic. Thus the communication overhead may vary 
substantially on different machines. 

Note that computer manufacturers may upgrade al- 
ternatively the processors and the communication 
network of their systems. Upgrading the processors 
without also increasing the communication speed, 
may result in an 'unbalanced' system with a large 
ratio tcomm/tcoic. 

Dependence on the problem characteristics. 
Computational Fluid Dynamics applications are 
characterised by a high number of floating point o p  
erations per grid point or cell per iteration, while 
only a few variables are associated with each point. 
Thus the factor c.Jcl in the communication overhead 
will be small. 

As a result, minimisation of the communication over- 
head does not always influence the speedup and par- 
allel efficiency very much. However, it is always im- 
portant to minimise the work load imbalance. Below 
we show that in general a blockwise partitioning also 
minimises the load imbalance. Thus in many cases 
minimisation of communication overhead and min- 
imisation of the load imbalance go hand in hand. 

3.3 Analysis of the load imbalance 

Let TYlC,i  = 1 ... P, denote the time spent by the 
i-th processor in calculation, and let T:&gr and 
Tgi: denote respectively the average and the maxi- 
mum calculation time for the P processors. The load 
balance factor is defined as 

TC"1" 

(7) 
average 

X(%P) = 
m a =  

The load balance factor is a good estimate for the 
parallel efficiency, if the number of operations to be 
performed (counted sequentially) does not depend on 
the number of processors, and if the communication 

time can be neglected. Indeed, in this case the par- 
allel efficiency is given by 

and thus E(n ,p )  = X(n,p) .  

Note that a commonly made mistake is to measure 
load (im)balance by comparing the maximum and 
the minimum calculation times. 

In many applications, the processors are (implicitly) 
synchronised by the communication needed to u p  
date the 'overlap regions' at the end of each step of an 
iterative procedure. In that case, we can determine 
the efficiency and speedup by analysing one iteration 
step. Assume now that the amount of work per grid 
point is constant, and that the communication time 
can be neglected. We then obtain 

where M is the total number of grid points, N,,, is 
the maximum number of grid points in a subdomain 

Assume that a rectangular grid is distributed among 
P processors. If the grid cannot be equally dis- 
tributed among the processors, then a blockwise par- 
titioning leads to a higher load balance factor than 
a stripwise partitioning. A partitioning into square 
subdomains will lead to a maximal load balance fac- 
tor, i.e. a minimal load imbalance. 

The treatment of boundary conditions is also a PO- 
tential source of load imbalance. Indeed, in general 
the computational work to be done for boundary cells 
M e r s  from the work for interior cells. In order to 
minimise the load imbalance caused by the treat- 
ment of the boundary conditions, the boundary cells 
should be distributed as equal as possible among the 
processors. This is achieved when the subdomains 
are (nearly) square. 

The assumption that the amount of work per grid 
point or cell is constant is not always valid in CFD. 

and Naverage = M / P .  
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For example, the computational effort may differ for 
cells lying in a subsonic region and in a supersonic 
region. This can cause load imbalance, which cannot 
be accurately predicted beforehand. Similar prob- 
lems arise when the mathematical model differs in 
various parts of the domain, e.g. when chemical re- 
actions are taken into account in high-temperature 
zones. 

3.4 Numerical efficiency of parallel al- 
gorithms 

Until now, we have discussed how the parallel over- 
head affects the performance, by comparing the par- 
allel execution time with the time needed by the same 
algorithm on one processor. 

In many cases the algorithm used on the parallel ma- 
chine is different from the one typically used on a 
sequential machine. In order to obtain acceptable 
parallel efficiencies, sequential algorithms are often 
modified to decrease the communication volume or 
the number of synchronisation points. This may de- 
teriorate the numerical efficiency of the algorithm. It 
may even be necessary to use a rather different algo- 
rithm - with different numerical properties: number 
of operations, convergence properties, etc. -on a par- 
allel computer, if the sequential algorithm cannot be 
parallelised easily and efficiently. 

Explicit methods. Explicit methods are inher- 
ently parallel and the numerical properties are not 
affected by parallelisation (grid partitioning), when 
all necessary communication is performed. For ex- 
ample, communication is needed after each substep 
of a Runge-Kutta method. One can reduce the com- 
munication overhead by updating the overlap regions 
only after a complete time-integration step. Omit- 
ting some communication can result in slightly worse 
convergence properties, but can lead to a higher ‘to- 
tal speedup’. The effect is very problem depen- 
dent. Note that this technique results in a ‘block- 
structured’ approach, but here the number of blocks 
is determined by the number of processors, not by 
the geometry of the domain. 

Implicit methods. 
when implicit methods are used. 

The situation is more complex 

0 Assume that the resulting linear systems are 
solved by a point relaxation scheme. Jacobi 
relaxation is inherently parallel. In this case 
the communication requirements are exactly the 
same as in the model problem described above 
(exchange of the overlap regions). Gauss-Seidel 
relaxation usually has better convergence prop- 
erties. On a sequential computer, a Gauss-Seidel 
iteration typically sweeps through the grid cells 
in lexicographic order. On a vector or paral- 
lel computer, a Red-Black ordering of the grid 
points is necessary. All ‘red’ points can be 
updated in parallel, and afterwards the ‘black’ 
points can be updated. The convergence rate of 
lexicographic and Red-Black Gauss-Seidel can 
differ substantially. This will be illustrated in 
the section 4. 

0 When line relaxation schemes are used, (block) 
tridiagonal systems must be solved. This leads 
to data dependencies between the grid points 
lying on the same gridline. If one only sweeps 
in one direction, the tridiagonal systems - and 
the associated data dependencies - only occur 
along that direction. By using a stripwise par- 
titioning, one can ensure that each tridiagonal 
system belongs to only one processor. Then each 
system can be solved by the Thomas algorithm 
(i.e. Gaussian elimination), which is the optimal 
sequential solver. 
The parallelisation of line relaxation is not so 
easy, if a blockwise partitioning is used, or 
if one performs line relaxation in different di- 
rections. Then (part of) the tridiagonal sys- 
tems are distributed among processing nodes. 
Parallel solvers for (block) tridiagonal systems 
have been developed, based on substructured 
Gaussian elimination and/or on cyclic reduction 
[26][27]. However, the operation count of these 
solvers is f 2  times higher than for the Thomas 
algorithm - hence their numerical efficiency is 
low - and they contain a sequential part. Since 
many tridiagonal systems must be solved, the 
latter drawback can be avoided by distributing 
the sequential parts equally over the processors 
(at the expense of some communication). At- 
tempts are made to reduce the computational 
cost’ of the parallel algorithms by using approx- 
imate solvers [28][29]. 

An alternative is to solve the set of tridiago- 
nal systems by using the Thomas algorithm in 
a pipelined fashion. This strategy however re- 
quires the communication of many short mes- 
sages and leads to some load imbalance (during 
the start-up and the end phase of the pipeline). 
Another alternative strategy to  solve tridiago- 
nal systems oriented in two directions goes as 
follows. We know that when a stripwise parti- 
tioning of the data is used, the tridiagonal sys- 
tems oriented in one of the two directions can be 
solved by the Thomas algorithm. The Thomas 
algorithm can be used to solve the tridiagonal 
systems in both directions, if in both phases of 
the algorithm a different stripwise partitioning 
is used, such that in each phase a tridiagonal 
system is stored in only one processor. This 
requires that a complete ‘data transposition’ is 
carried out between both phases. The commu- 
nication volume of the data transposition is pro- 
portional with the number of grid points per pro- 
cessor. Since the same holds for the calculation 
cost, the parallel efficiency may still be accept- 
able. The latter strategy is the most efficient 
one (in terms of total efficiency) to implement 
the semi-implicit AD1 time integration scheme 
on finite difference grids with irregular bound- 
aries [30]. 

0 Another example of the interaction between nu- 
merical and parallel aspects can be found in 
multigrid. W-cycles are usually more efficient 
than V-cycles in terms of work-units needed to 
achieve convergence. On a parallel computer 
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4 

however, W-cycles result in poor parallel effi- 
ciency and one therefore frequently resorts to 
V-cycles despite their inferior numerical proper- 
ties [31]. 

Parallel algorithms for solving partial differen- 
tial equations can also be based on domain de- 
composition in the mathematical sense. Two ap- 
proaches are possible. 
In the Schwartz domain decomposition ap- 
proach, overlapping subdomains are used. The 
differential equations are solved on each subdo- 
main separately, using an approximation for the 
solution at  the subdomain boundaries. The re- 
sulting approximate solutions provide a new ap- 
proximation for the solution on the boundaries 
of the (overlapping) neighbouring subdomains. 
This process must be repeated in an iterative 
way. 
In the Schur Complement approach, non- 
overlapping subdomains are used. The subdo- 
main problems are solved in terms of the vari- 
ables on the borders of the subdomains. After 
computation of the variables on these borders 
(interface or ‘Schur complement’ problem), the 
variables on the subdomains can be determined. 
Note that both domain decomposition ap- 
proaches often require extra calculations com- 
pared to when no decomposition is used. These 
extra calculations must be considered as al- 
gorithmic overhead caused by the parallelisa- 
tion. Domain decomposition techniques for 
CFD problems are described in e.g. [32, 33, 34, 
351. 

EXAMPLES 

In this section we illustrate some of the concepts in- 
troduced in the previous sections. We first discuss 
the parallel performance of an explicit Euler Solver 
on Intel iPSC/2 and iPSC/860 distributed memory 
computers. We show that ‘double flux calculations’, 
caused by the grid partitioning, may form a substan- 
tial algorithmic overhead in the parallel code. We 
comment on various approaches to measure the par- 
allel performance and we introduce the effectivity as 
an alternative performance measure. 

We then present results of experiments on the par- 
allelisation of implicit Euler solvers. We discuss the 
achieved parallel speedup and parallel efficiency, but 
we also show how the numerical efficiency of parallel 
algorithms may influence the total speedup and total 
eficiency, which is a better measure for the actual 
performance. 

Finally, we describe results obtained with a block 
structured Euler solver, in which an adaptive block 
refinement procedure leads to the creation of new 
blocks. We show that the use of mapping heuristics 
allows to map the block structure onto the processors 
of the parallel machine, such that the load imbalance 
and the communication cost is low. 

4.1 Parallel performance of an ex- 
plicit Euler Solver 

We first describe some experiments with a parallel 
multi-block explicit Euler solver [36,37,38]. We have 
used the following schemes: 

Scheme 1) a first order upwind discretisation with 
Van Leer flux vector splitting, combined with 
a forward Euler time integration with local 
timestepping; 

Scheme 2) a second order Roe scheme, with a min- 
mod limiter on characteristic variables, com- 
bined with a five stage Runge-Kutta time in- 
tegrator. 

In the parallel version of the Runge-Kutta scheme, 
communication occurs only once per time step, i.e. 
before the first stage. Scheme 2 has a much higher 
ratio of calculation time to communication than 
scheme 1. 

We have used the following testcase: transonic flow 
around the NACA0012 airfoil, with boundary con- 
ditions : M = 0.80 (Mach number), angle of at- 
tack of 1.25’, TO = 278K (total temperature) and 
Po = 150000Pa (total pressure). The structured C- 
grid (240 x 19 cells) shown in Fig. 11 can be split in 
2, 4, . . ., 16 blocks of equal size (1D partitioning, or- 
thogonal to the airfoil), see Fig. l l a ) .  Thus all these 
partitionings allow a nearly perfect calculation load 
balance. 

Two sets of tests were done : the first set with N = P 
blocks and the second set with N = 16 blocks regard- 
less of the number of processors, P. The first case 
corresponds to a situation where the grid is parti- 
tioned for parallel processing purposes only. Extra 
calculations caused by the partitioning must be con- 
sidered as algorithmic overhead, as discussed below. 
The second case corresponds to a situation where the’ 
partitioning into blocks results from physical consid- 
erations. A sequential code would use the same par- 
titioning into blocks. 

4.1.1 Algorithmic overhead: double flux 
computations 

We first discuss a typical ‘algorithmic overhead’ that 
occurs in parallel CFD codes. At subdomain bound- 
aries, the parallel code cannot exploit the symmetry 
properties of the numerical fluxes. The fluxes are cal- 
culated twice on every edge of a subdomain bound- 
ary, once in every block. If the grid is partitioned for 
parallel processing purposes only, these ‘double flux 
computations’ form an overhead, not present in the 
sequential code. Experiments indicate that the time 
required for those extra flux computations is of the 
same order of magnitude as or even larger than the 
communication time, see [37] and Tables 1 and ??. 

Suppose that the number of blocks N is equal to the 
number of processors P .  The time lost in the extra 
flux computations and some additional overhead in- 
troduced by splitting the grid in subdomains is given 
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2 0.7 4.8 1 
4 
8 
16 

1.6 9.0 
2.4 12.6 
2.7 14.6 

Number of processors 
2 
4 

Table 3: Effectivity CY, efficiency E and speedup S on the iPSC/2 for 
first order Van Leer, Euler time integrator. 

scheme 1 scheme 2 
4.7 36.9 
3.8 33.3 

by tcalc(N = P, P )  - tcalc(l ,  l ) ,  where tcalc(N, P )  
denotes the total calculation time on P processors 
for a grid partitioned into N blocks. (Note that 
tcalc(N1 P )  is equal to the sum of the sequential calcu- 
lation times for all blocks; communication time and 
processor idle time is not taken into account.) 

The double flux computation overhead on the 
iPSC/2 for the two schemes mentioned above is given 
in Table 1. The results show that the time spent in 
the extra flux calculations in scheme 1 (first order 
Van Leer, forward Euler) is of the same order of mag- 
nitude as the communication time, while for scheme 
2 (second order Roe, Runge Kutta) the double flux 
computation overhead is much larger than the com- 
munication overhead. For a Navier-Stokes computa- 
tion, the double flux computation overhead would be- 
come even more dominant. Table 2 shows the results 
obtained on an iPSC/860 system, for which both cal- 
culation and communication are much faster than 
on the iPSC/2. For this example, the double flux 
computation overhead is even larger than on iPSC/2 
systems. Note however that the code has not been 
optimised for the cache memory on the processors of 
the iPSC/860. In an optimised code, the double flux 
calculation overhead would be smaller. 

This experiment shows that it does not always make 
sense to try to minimise the communication time. In 
some cases, it would be better to eliminate the double 
flux computations via additional communication of 
the fluxes. 

P 

1 
2 
4 
8 
16 

4.1.2 Parallel performance measurements 

We have measured the parallel performance on the 
Intel iPSC/2 of the explicit Euler solver using scheme 
1 (first order, forward Euler), because this scheme 
has a low calculation to communication ratio as com- 
pared to other methods, so the parallel performance 
of this scheme reflects a worst-case situation. 

The parallel efficiency E ( N ,  P )  and the speedup 
S ( N ,  P )  compare the execution times on one and on 
P processors. Another measure for the parallel per- 
formance of an algorithm can be defined as follows. 

The effectivity a of a parallel algorithm is defined as 
the amount of time spent in the actual calculation 
relative to the total execution time; for a multi-block 
code this can be computed as 

N = P  N = 1 6  

99.9 100 1 98.7 100 1 
99.7 99.8 1.995 98.4 99.8 1.996 
99.1 98.5 3.94 98.1 99.5 3.98 
97.9 96.3 7.70 97.1 98.4 7.87 
95.9 90.2 14.43 95.9 97.1 15.54 

1 4): P )  ( 7 )  0 Jqp, P )  (7) 0 S(P,  P )  a ( 1 6 , P )  ( 7 )  0 I &( 1 6 , P )  (7) 0 S( 16, P )  

where where ttalc denotes the calculation time for 
block i and where T ( N , P )  denotes the execution 
time of a parallel iteration step for an N-block grid 
on P processors (incl. communication). The effectiv- 
ity takes three factors into account : the load imbal- 
ance, the communication overhead and the schedul- 
ing overhead. For compute-intensive problems, one 
can expect that a ( N , P )  is approximately equal to 
the load balance factor X(N, P) .  Note that one must 
not be able to run the program on a single processor 
to determine a. 

In Table 3 we present the parallel efficiency, speedup 
and effectivity obtained for the two sets of tests men- 
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tioned above : a) N = P blocks; b) N = 16 blocks 
regardless of the number of processors. Only in case 
a) the extra flux calculations are considered to be a 
loss. Therefore, the parallel efficiency and speedup is 
higher in case b). However, lower effectivities are re- 
ported as more blocks have to be managed and more 
interblock communication occurs. 

This comparison stresses the importance of clearly 
stating how efficiencies and speedups are measured. 
It also demonstrates that for this type of applica- 
tions, a high parallel efficiency and speedup can be 
obtained when load imbalance is insignificant. 

4.2 Parallel implicit Euler solvers 

4.2.1 

In this section we report on some experiments with 
parallel implicit Euler solvers. A first series of tests 
has been done with a solver, based on a first order 
discretisation with Van Leer flux vector splitting and 
backward Euler time integration, see e.g. [39]. As 
test case, we have used the GAMM channel with 
circular bump and inlet Mach number A4 = 0.85, 
discretised on a structured grid with 96 x 32 inte- 
rior finite volume cells. Treatment of the bound- 
ary conditions leads, for each cell on the bound- 
ary, to a vector of ‘boundary unknowns’, which can 
be associated with a grid point on the boundary. 
Thus the computational domain consists of a grid 
of m, x my = 98 x 34 ‘grid points’, to be distributed 
among up to 16 processors. 

We have considered several partitionings of the com- 
putational domain, leading to different subdomain 
configurations N ,  x Ny, where N ,  and Ny denote 
the number of subdomains in respectively x- and 
y-direction. In all cases, the interior ‘grid points’ are 
equally distributed among the processors, but some 
load imbalance occurs, due to the unequal distribu- 
tion of the boundary points. 

In the previous section we have indicated that the 
load balance factor (7) gives a good prediction of 
the parallel efficiency and the parallel speedup, when 
the communication overhead is small and when all 
grid points require approximately the same amount 
of work. Table 4 presents these predicted efficiencies 
and speedups, and also shows the parallel efficiencies 
and speedups that are obtained when the linear sys- 
tems are solved with a Red-Black Gauss-Seidel relax- 
ation scheme on an Intel iPSC/2 parallel computer. 
(Similar performances will be obtained on other par- 
allel computers with a similar machine characteristic 

The results differ from the predicted values for two 
reasons : (1) the actual load imbalance is smaller 
than predicted because the boundary points (caus- 
ing load imbalance) require less operations than the 
other points; (2) the parallel overhead is higher 
due to the communication overhead. Note that (1) 
and (2) have opposite effects on the parallel efficiency 
and speedup. Since the ratio mx/my = 98/34 is 
approximately equal to 3, subdomain configurations 
with Nx/Ny N 3 yield nearly square subdomains. 

Influence of the partitioning strategy 

~ c o m m l t c a l c . )  

The results in Table 4 clearly show that, for a fixed 
number of subdomains, the load balance factor and 
the achieved parallel efficiency is maximal for nearly 
square subdomains. 

4.2.2 Total efficiency and speedup 

However, to measure the actual performance of a 
parallel solver, one should rather consider the to- 
tal speedup - see Eq. 2 - instead of the parallel 
speedup, by taking into account the numerical qual- 
ity of the parallel algorithms. We have therefore com- 
pared the convergence properties of Red-Black and 
lexicographic Gauss-Seidel relaxation schemes. For 
the lexicographic Gauss-Seidel scheme, two sweep 
directions were used alternatingly. For this test 
problem, the number of relaxation steps required to 
achieve convergence for lexicographic and Red-Black 
Gauss-Seidel were 492 and 1090 respectively. Thus 
the (sequential) execution time with the Red-Black 
Gauss-Seidel scheme is more than 2 times higher than 
with lexicographic Gauss-Seidel. As a result, the to- 
tal efficiency (taking into account the numerical effi- 
ciency) of the parallel Red-Black relaxation scheme 
is less than 50 %, even when the parallel efficiency is 
nearly 100 % ! 

An alternative is to use a multi-block approach: each 
subdomain is treated independently (i.e. in parallel) 
and in each subdomain a lexicographic Gauss-Seidel 
relaxation is performed. Information on subdomain 
boundaries is exchanged after each complete relax- 
ation step (i.e. after an upward and a downward 
sweep through the cells). 

Because the blocks (subdomains) themselves are 
treated in a Jacobi fashion, we expect convergence 
degradation when the number of blocks grows. This 
is indeed the case, as reported in Table 5. The re- 
quired number of relaxation steps depends on (a) the 
number of subdomains, i.e. the number of proces- 
sors and (b) the aspect ratio of the subdomains. Of- 
ten, the configuration with nearly square subdomains 
yields the fastest convergence. 

The total speedup of this multi-block solver can now 
be defined as the ratio of the execution times on P 
processors and on one processor to reach the pre- 
scribed convergence criterion. The achieved total 
speedup and total efficiency for some subdomain con- 
figurations are given in Table 6. Clearly, for this 
test problem and when the number of subdomains is 
not too high, the ‘Block Jacobi, lexicographic Gauss- 
Seidel’ scheme is to be preferred above the (single 
block) Red-Black Gauss-Seidel scheme, because the 
total efficiency of the latter scheme is less that 50 %. 

The convergence degradation of multi-block implicit 
methods due to the increase of the number of blocks 
is problem dependent, but in most cases the number 
of iterations increases only slightly. In [40] a study 
of the performance degradation for several implicit 
schemes is presented. The transonic flow computa- 
tion over the NACA0012 airfoil (see section 4.1, but 
with 0” angle of attack) has been used as a testcase. 
In all implicit solvers considered in this study, the Ja- 
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su bdomain 
configuration 

N ,  x N y  
16 x 1 
8 x 2  
4 x 4  
2 x 8  
1 x 16 
8 x 1  
4 x 2  
2 x 4  
1 x 8  
4 x 1  
2 x 2  
1 x 4  
2 x 1  
1 x 2  
1 x 1  

grid points predicted achieved predicted achieved 
parallel parallel parallel parallel 

Naverage N,,, efficiency (%) efficiency (%) speedup speedup 
208.25 238 87.5 90.5 14.0 14.5 
208.25 221 94.2 92.0 15.1 14.7 
208.25 225 92.6 89.1 14.8 14.3 
208.25 245 85.0 83.2 13.6 13.3 
208.25 294 70.8 73.4 11.3 11.7 
416.5 442 94.2 95.7 7.54 7.66 
416.5 425 98.0 97.4 7.84 7.79 
416.5 441 94.4 93.4 7.55 7.47 
416.5 490 85.0 86.4 6.80 6.92 
833 850 98.0 98.9 3.92 3.96 
833 833 100 99.3 4.00 3.97 
833 882 94.4 94.7 3.78 3.79 
1666 1666 100 99.6 2.00 1.99 
1666 1666 100 98.9 2.00 1.98 
3332 3332 100 100 1 .oo 1 .oo 

Table 5: Implicit Euler solver based on a multi-block approach: number 
of iterations as function of the subdomain configuration. 

subdomain number 
configuration of steps 

8 x 2  570 
4 x 4  574 
4 x 2  503 
4 x 1  489 
2 x 2  467 
2 x 1  438 
1 x 1  430 

total total 

11.3 70.4 
10.9 67.9 
6.66 83.2 
3.48 86.9 
3.65 91.2 
1.96 98.0 
1 .oo 100 

speedup efficiency (%) 

Table 6: Total speedup and efficiency of the multi-block implicit Euler 
Solver (Block Jacobi, lexicographic Gauss-Seidel). 
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cobian matrices of the residual are evaluated with a 
first order upwind discretisation (Van Leer, Approx- 
imate Steger-Warming or Yoon-Jameson), while the 
residual driven to zero is either first order or second 
order. Both line Gauss-Seidel and AD1 methods are 
used to solve the linearised system in each time step. 
The second order residuals are based on MUSCL ex- 
trapolation (third order upwind biased) and a gener- 
alised minmod limiter with a compression factor of 
2. 

The following implicit methods have been investi- 
gated, where the first item refers to the implicit solver 
and the second item to the residual driven to zero: 

0 Van Leer/Van Leer - Line Gauss-Seidel 

0 Van Leer/Van Leer - AD1 (VL/VL-ADI) 

0 Approximate Steger-Warming/Roe - Line 

0 Approximate Steger-Warming/Roe - AD1 

0 Yoon-Jameson/Roe - LU-SSOR (YJ/R-LU- 

(VL/VL-LGS) 

Gauss-Seidel (ASW/R-LGS) 

(ASW/R-ADI) 

SSOR) 

For the line Gauss-Seidel scheme, four different sweep 
directions are possible, namely in the positive and 
negative i- and j-directions. These sweep patterns 
are indicated in Figure 10. 

Fig. 10: Sweep patterns for LGS 

Experiments indicate that, for the single block case, 
fewer iterations are needed when sweeping in the 
j-direction (‘j-sweeps’) than when sweeping in the i- 
direction (‘i-sweeps’). This is to be expected, since 
within a j-sweep, 240 cells along the i-direction are 
taken implicitly, while within an i-sweep only 19 cells 
along the j-direction are taken implicitly. The higher 
implicitness of the solver for j-sweeps leads to faster 
convergence. Sweeping in the positive or negative 
direction has only a slight influence on the number 
of iterations. 

Assume now that a multi-block approach is used, 
with up to 16 blocks obtained by a 1D partitioning 
of the grid, orthogonal to the airfoil (as in Fig. I l a ) .  

The performance degradation of the multi-block 
implementation of the schemes presented above is 

shown in Table 7. As an initial guess, a first order 
solution computed with the same explicit operator as 
the one used in the second order computation, was 
employed. The convergence criterion was a reduction 
of the residual by a factor of lo4. The first order and 
the second order calculations have been done with 
respectively CFL = 30 and CFL = 4. For the Line 
Gauss-Seidel schemes, j-sweeps were used. The com- 
bination ASW/R-LGS did not converge for CFL = 
4 in the single block case (a decrease of the CFL- 
number was necessary for convergence). The LU- 
SSOR scheme needs more iterations than the other 
schemes; but one LU-SSOR iteration is considerably 
cheaper than an LGS or AD1 iteration. 

The results in Table 7 show that no severe degrada- 
tion in performance occurs for any of the schemes 
tested, with up to 16 blocks. Note that for the 
Line Gauss-Seidel schemes, a stronger degradation 
is to be expected when j-sweeps are used - as in 
the tests reported here - than when i-sweeps are 
used. Indeed, because of the 1D partitioning orthog- 
onal to the airfoil, the block boundaries are along 
the j-direction. When j-sweeps are used, the ‘implic- 
itness’ in the i-direction is cut by the block bound- 
aries. If i-sweeps would have been used, the implicit- 
ness (in the j-direction) would not have been affected 
by the partitioning. Thus for a very large number 
of blocks, i-sweeps will be more efficient, since line 
Gauss-Seidel with j-sweeps degenerates to a point 
Jacobi scheme, while with i-sweeps the scheme de- 
generates to a line Jacobi scheme, which is still a 
powerful scheme. However for a moderate number 
of blocks, j-sweeps are more efficient, since only 384 
iterations are needed when j-sweeps (in the positive j- 
direction) are used, compared to 561 iterations when 
+i-sweeps are used. 

Convergence degradation can also be observed when 
a preconditioned Krylov subspace iteration is used 
as linear system solver : often an efficient precondi- 
tioner (e.g. ILU) is replaced in the parallel code by a 
less effective preconditioner (e.g. diagonal precondi- 
tioner), that can be parallelised more easily. Also in 
this case, the pure parallel efficiency and speedup are 
not the appropriate measures for the performance, 
and the different convergence properties of the se- 
quential and parallel solver must be taken into ac- 
count. Also in this case, a multi-block approach can 
be useful [41]. 

4.3 Load balancing of block struc- 
tured CFD codes 

We now describe some results on the ‘mapping’ of 
block structured grids on distributed memory sys- 
tems and the obtained parallel performance. We re- 
fer to [37] for more information. 

Starting from the grid for the NACA0012 testcase 
with 16 blocks, each having the same number of cells, 
we have created block structured grids with up to 103 
blocks via grid refinement. Blocks have been refined 
by doubling the number of grid lines in both direc- 
tions, using refinement criteria based on the stream- 
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scheme I 1 block I 2 blocks I 4 blocks I 8 blocks I 16 blocks I 

Table 7: Number of iterations required to achieve convergence: influ- 
ence of the number of blocks (LGS-schemes: sweeps in the 
j-direction). 

wise entropy gradient. Refined blocks are split into 
four blocks. Thus all blocks contain approximately 
the same number of cells. The resulting block struc- 
tures are shown in figure 11. The first grid counts 16 
blocks, the second one 52 blocks and the third one 
103 blocks. 

A simiiar procedure has been used for a second 
testcase : the computation of the supersonic 00w 
in a scramjet geometry. The inlet conditions are 
M = 3.6, angle of attack of OD, To = 300K and 
Po = 100000Pa. The first grid contains 8160 cells, 
partitioned into 24 blocks, with sizes varying from 
10 x 15 to  34 x 15. The block structure of the refined 
grids with 24, 66,132 and 161 blocks (corresponding 
to 82152 cells) is shown in figure 12. 

Since the grid is already partitioned into blocks, load 
balance and communication minimisation must be 
achieved by an appropriate mapping of the blocks 
onto the processors. Various mapping strategies are 
incorporated into a software library, that we have 
developed to hide most of the parallel implementa- 
tion details from the application programmer [42]. 
The software library is especially designed to sup- 
port run-time load balancing for applications that 
use adaptively refined grids, see [37][43][38]. This 
software library has been used for the parallelisation 
of the multiblock code used for the tests described in 
this section and in section 3.1. The mapping strat- 
egy used for the test described here was based on 
a recursive bisection technique using a costfunction, 
that takes into account the calculation cost for each 
block, the communication between blocks mapped 
onto different processors, and the machine architec- 
ture (network topology). 

Table 8 shows the eflectruity for a parallel forward 
Euler timestep of the multi-block code on an Intel 
iPSC/S60. The loss of effectivity is due to load im- 
balance and communication overhead. The achieved 
load balance is reported in table 9. The correlation 
with the effectivity in table 8 reveals that load im- 
balance is the dominant loss factor. 

For the NACA0012 testcase, all 16 initial blocks have 
the same size, which allows a perfect load balance on 
up to 16 processors. Refinement of this grid leads 
to 52 and 103 blocks of almost equal size. As they 
cannot be equally distributed among the processors, 
some imbalance remains. For the scramjet testcase, 

we start with 24 blocks of varying size. Table 9 shows 
that load balancing works very well if the number of 
blocks is much larger than the number of processors 
(or if the block sizes are well-chosen). A certain vari- 
ation in block sizes is beneficial for load balancing. 
It is easily verified that the best possible load bal- 
ance that can he obtained with blocks of equal size 
is worse than the values reported in Table 9. 

Table 10 shows the communication cost, including 
the overhead of the message preparation (‘packing’ 
and ‘unpacking’ of the information in buffers). The 
communication cost does not grow fast with the num- 
ber of processors. 

Table 11 lists the estimatedparallel eficiency. It was 
impossible to determine the true parallel efficiency 
and speedup, as the refined grid did not fit in a single 
node’s memory. Therefore, the single processor time 
was estimated as the total calculation time plus the 
time for copying the data to or from the communica, 
tion buffer, using the same block structure. The esti- 
mated speedup is reported in table 12. The speedups 
obtained are high, due to the good load balance and 
the fact that the flow solver is so computeintensive. 

These results indicate that the mapping strategy 
computes a good mapping of blocks onto processors. 
Note that even for block structured grids of moderate 
complexity, it is very difficult or even impossible to 
find a good block distribution by hand and an autc- 
matic procedure is needed. Mapping techniques are 
closely related to gnd partrtionrng techniques used to 
partition unstructured grids for parallel processing. 
A tutorial on grid partitioning techniques is given in 
PI. 

ACKNOWLEDGMENT 

This text presents research results of the Belgian 
Incentive Programme ‘Information Technology’- 
Computer Science of the Future (IT/IF/5), and the 
Belgian programme on Interuniversity Poles of At- 
traction (IUAP 17), initiated by the Belgian S t a t e  
Prime Minister’s S e r v i c e  Federal Office for Scien- 
tific, Technical and Cultural Affairs. The scientific 
responsibility is assumed by its authors. 



1-20 

Fig. 1: Block shcture of the NACAOOl2 grids (16, 52 and 103 
blocks) 

Fig. 12: Block structure of the scmmjet grids (24, 66, 132 and 261 
blocks) 



number of processors I] 1 I 2 1  4 1  8 1 1 6 1 3 2 1 6 4 ]  

number of processors 1 
NACA 16 blocks 100.0 
NACA 52 blocks I 
NACA 103 blocks 
Scramiet 24 blocks I 

Table 8: Effectivity CY (%) on the iPSC/860 

2 4 8 16 32 64 
100.0 98.8 97.7 95.9 48.0 
99.7 98.4 92.7 82.8 80.4 

100.0 99.8 99.7 94.3 51.0 25.5 
I 98.3 97.7 89.6 81.4 

Scramjet 132 blocks I I 
Scramjet 261 blocks 

I 98.3 97.2 92.5 87.8 
/ 95.9 94.8 87.8 

Table 9: Calculation load balance X (%) on the iPSC/SSO 

[ number of processors I[ 1 I 2 I 4 I 8 I 16 I 32 I 64 I 
I NACA 16 blocks 1 11 0.5 I 1.1 I 0.8 I 1.7 1 1.3 I 0.6 I 

Table 10: Communication cost (%) on the iPSC/SSO 

number of processors I[ 1 I 2 1  4 1  8 1 1 6 1 3 2 1 6 4 ]  

Table 11: Estimated efficiency E (%) on the iPSC/SSO 

I number of processors 11 1 I 2 I 4 1  8 1  16 I 32 I 64 I 

Table 12: Estimated speedup S on the iPSC/SSO 
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1 SUMMARY 

Efficient use of a parallel computer requires the 
data and the operations that must be performed 
on them to be distributed over the processors in 
such a way that the work load is balanced and 
the communication cost minimised. This distri- 
bution problem is called the load balancing prob- 
lem. For CFD applications, the load balancing 
problem amounts to finding a partition of the 
grid and subsequently a mapping of the subgrids 
to the processors, that balance the work load 
and minimise the communication costs. This tu- 
torial contains a description of well-established 
methods for partitioning and mapping unstruc- 
tured grids. They range from simple heurist- 
ics, over global optimisation methods to very 
powerful and cost-effective algorithms that com- 
bine the strengths of simpler heuristics. Most 
of the methods that will be discussed, have 
been implemented in some well-documented and 
-supported partitioning tools. The tutorial dis- 
cusses two of the most important ones: Chaco 
and TOP/DOMDEC 

2 INTRODUCTION 

Today’s parallel computers potentially allow very 
high performances. Obtaining these in reality 
however, requires a careful analysis of the prob- 
lem and of the solution methods, and often re- 
quires that the characteristics of the parallel com- 
puter are taken into account during the develop 
ment of the parallel code. 
More specifically, to obtain high performance on 
a parallel computer, it  is of paramount import- 
ance to distribute the data and the operations 
that have to be performed on them in such a way 
that the work load is balanced over the processors 
in the parallel computer, while at the same time 

the communication cost is kept as small as pos- 
sible. We call this distribution problem the load 
balancing problem. 
In this tutorial, we will discuss the load balan- 
cing problem for Computational Fluid Dynamics 
(CFD) applications. Most CFD calculations are 
grid-oriented, i.e. the data are defined on a dis- 
crete grid of points, finite volumes or finite ele- 
ments, and the calculations consist of applying 
certain operations on (the data associated with) 
all the points, volumes or elements of the grid. 
Grid-oriented applications are usually parallel- 
ised by partitioning the grid and by distributing 
the subgrids among the processors of the paral- 
lel computer. Each processor then performs the 
calculations on its own grid points, volumes or 
elements. For grid-oriented problems, the load 
balancing problem amounts to finding a partition 
of the grid and subsequently a mapping of the 
subgrids to the processors, that balance the work 
load and minimise the communication costs. 

2.1 Static and dynamic load balancing 

The grids that are used in Computational Fluid 
Dynamics can either be structured or unstruc- 
tured, static or adaptive and single level or multi- 
level (the latter in case multigrid is used). If both 
the grid and the amount of work that is involved 
with each grid point do not change during the 
calculations, the distribution of a grid-oriented 
application can be done statically, usually as a 
pre-processing step on a sequential computer. If 
the grid or the calculations do change however, 
the grid points must be redistributed dynamic- 
ally over the processors of the parallel machine 
to maintain load balance. This problem is much 
more difficult than  the static one for several reas- 
ons: 

Paper presented in an AGARD-FDP- VKI Special Course on “Parallel Computing in CFD”, held at the VKI, Rhode-Saint-Genese. Belgium, 
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807. 
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1. the performance of the parallel computer 
must be monitored to detect the load im- 
balance, 

2. a decision must be made as to whether the 
gain of the redistribution will outweigh the 
cost of calculating the new distribution and 
transferring the grid points; if this cost is 
very high, it can in fact be advantageous to 
proceed with an unbalanced distribution, 

3. the new distribution must  be calculated on 
the parallel computer, which requires that 
the distribution algorithm is parallelised, 

4. the execution time of the balancer is much 
more critical than in the static case, because 
the new distribution is used for a shorter 
time period, 

5. the rebalancing algorithm must preferably 
find a distribution that is similar to the cur- 
rent distribution, so that only a mimimal 
number of grid points must be transferred. 

When adaptive refinement is used in a CFD- 
code, the grid remains fixed during rather long 
periods. In this case one can invoke a load bal- 
ancer after each grid refinement. This type of 
load balancing is called iterative static load bal- 
ancing [I, 21 or quasi-dynamic load balancing [3]. 
The techniques that will be discussed in this tu-  
torial are meant to be used for static load balan- 
cing, Nevertheless, many of them are also useful 
for quasi-dynamic load balancing. More specific 
algorithms, that explicitly t ry  to take the cost 

found in [4, 5, 61. 
, of transferring grid points into account, can be 

2.2 Partitioning and mapping 

While distributing the grid points of a structured 
grid among ,the processors of a parallel computer 
is a straightforward task,  doing the same for an  
unstructured grid is very complex. The problem 
can be alleviated by performing the distribution 
of the grid points among the processors in'two 
steps. First, the grid is partitioned in a num- 
ber of subgrids and subsequently these subgrids 
are mapped onto the processors. Typically, the 
number of subgrids is chosen equal to the num- 
ber of processors. In principle, the partitioning 
only depends on the characteristics of the prob- 
lem while the mapping takes the characteristics 
of the machine into account. Therefore, these two 
separate problems are easier to solve than the ori- 
ginal distribution problem. On the other hand, 
solving the partitioning problem separately from 
the mapping problem usually restricts the quality 

of the distribution that can be obtained because 
decisions made during the partitioning step may 
inhibit finding a good mapping afterwards. 

2.3 Requirements for partitioning 

In  general, an algorithm based on grid parti- 
tioning or domain decomposition involves inter- 
face operations and local computations. The 
interface operations consist of communication 
between subdomains and, in some cases, the solu- 
tion of a true interface problem (i.e. a Schur- 
complement operator) or the assembly of subgrid 
quantities at their common interfaces. The local 
computations correspond either to the solution of 
a local subproblem or simply to the explicit eval- 
uation of a subgrid quantity. 
I t  is clear that in order to keep the global cal- 
culation time as small as possible, the interface 
operations should take as little time as possible. 
The local computations should also take as little 
time as possible and should be balanced evenly 
among the processors. If this is not the case, the 
processors will have to wait for the overloaded 
processor(s) to catch up before they can start 
with the interface calculations. 
From these general requirements, we can deduce 
the requirements for a mesh partitioner. 

1. The time taken by the interface operations 
is a function of the number of points on the 
boundary of the subgrid. Very often it is 
also a function of the number of adjacent 
subgrids. Therefore the length of the bound- 
ary and the number of adjacent subgrids 
should be minimised for each subgrid. The 
latter requirements are very often conflict- 
ing, and their relative importance depends 
on the problem and on the characteristics of 
the parallel computer (especially the start- 
up to transfer time ratio). 

2. The time for the local calculations is a func- 
tion of the number of points in the subgrid. 
If the amount of work is the same for all 
the grid points, each subgrid should have the 
same number of points to balance the work 
load. 

If the local and/or the interface calculations are 
implicit, i.e. involve the solution of a system of 
equations, a number of additional considerations 
come into play: 

3. If the local calculations are implicit, the con- 
dition of this problem is (strongly) influ- 
enced by the aspect ratio of the subgrid. 
It can be shown that subgrids with bad as- 
pect ratios (i.e. subgrids that are very elong- 
ated) generate local problems that are poorly 
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conditioned and are difficult to solve iterat- 
ively [7, 81. Moreover, ill-conditioned local 
problems have a negative impact on the iter- 
ative solution of the interface problem [9] as 
well. Elongated subgrids tend to have long 
perimeters, therefore trying to obtain inter- 
faces with minimal length will typically yield 
grids with good aspect ratios. 

4. If the local calculations are implicit, and if 
a direct method is used to solve the local 
system, the calculation time for each sub- 
grid is influenced by the bandwidth of the 
local matrix. This bandwidth depends on 
the shape of the subgrid. 

5 .  If a frontal method is used to solve the lin- 
ear systems arising from a finite element 
approach, the frontwidth associated with 
each subgrid should not be greater than 
the frontwidth of the global grid. Ideally, 
the partitioning should generate subgrids in 
which the number of unknowns at the in- 
terface of any subgrid is smaller than the 
frontwidth associated with the undecom- 
posed grid and the frontwidth of each sub- 
grid is at most comparable to the frontwidth 
of the global grid [8]. 

2.4 Requirements for mapping 

The mapping algorithm must assign the subgrids 
to the processors of a parallel machine. Prefer- 
ably, subgrids that are mutually dependent are 
mapped onto processors that can communicate 
rapidly with each other. For a fully connected 
machine, the mapping task is trivial: any map- 
ping is as good as the other. For the existing 
machines with a limited communication topology 
(hypercube, 2D-, or 3D-mesh, . . .) this is not the 
case. Although communication between arbit- 
rary processors can be done efficiently, nearest- 
neighbour communication is preferable because 
it decreases the risk for communication link con- 
tention. 

As mentioned earlier, the mapping task  is not 
completely independent from the partitioning 
task.  The mapping task can be seriously facil- 
itated by already taking the machine topology 
into account during the partitioning step to en- 
sure that the dependency topology of the subgrids 
matches the communication topology of the ma- 
chine. 

3 A CLASSIFICATION OF PARTI- 
TIONING ALGORITHMS FOR UN- 
STRUCTURED GRIDS 

3.1 General optimisation techniques 
based on a cost function 

The most general approach to finding an optimal 
distribution of the grid points among the pro- 
cessors of a parallel machine is to model the total 
calculation time as a function of the mapping. In 
this way one obtains a function that associates 
a cost with each feasible distribution. Thus  it is 
possible to solve the partitioning and the mapping 
problem together. In fact, the cost function can 
be quite sophisticated, taking into account hard- 
ware characteristics and communication topology 
of the parallel computer, contention of the com- 
munication links etc. Normally, the cost func- 
tion contains a term that takes the communica- 
tion cost into account and another that is related 
to the load imbalance. The relative importance of 
those two terms depends on the characteristics of 
the problem and of the parallel computer. Indeed 
it is sometimes beneficial to tolerate a (slight) 
load imbalance if this decreases the communica- 
tion. 
The cost function can be minimised by a gen- 
eral optimisation technique that is appropriate 
for global combinatorial optimisation. For a grid 
with N points that must be mapped onto P pro- 
cessors, the search space has cardinality N P .  Be- 
cause the search space grows exponentially in the 
grid size, total enumeration is infeasible for real- 
istic problems, even when one takes advantage 
of possible symmetry properties or uses branch- 
and-bound techniques to exclude whole parts of 
the search space. 
However, some techniques that yield good sub- 
optimal solutions for combinatorial optimisation 
problems do exist. Two of them, viz. simulated 
annealing and genetic algorithms are frequently 
used. 

Simulated annealing. Simulated annealing 
[lo, 111 is a very general optimisation method 
which stochastically simulates the slow cooling 
of a physical system. A parameter T ,  analog- 
ous to the temperature, is slowly lowered in the 
course of the calculations. For each temperat- 
ure a number of transitions of the current solu- 
tion are consecutively proposed and either ac- 
cepted or rejected -according to the Metropolis 
criterion: If the cost function decreases (cost in- 
crease AC < 0), the change is accepted uncon- 
ditionally, otherwise it is accepted with probab- 
ility exp(-ACIT). It can be proved that un- 
der certain conditions the probability to find the 
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global optimum tends to 1. In practice, for suf- 
ficiently slow cooling rates this method produces 
good solutions, but then the method is very ex- 
pensive. Results of simulated annealing for grid 
partitioning can be found in [12, 31. 

Genetic algorithms. Genetic algorithms [13, 
141 resemble simulated annealing in that they 
are also general and robust optimisation methods 
that simulate an optimisation process found in 
nature. More specifically, genetic algorithms sim- 
ulate the processes of reproduction, crossover and 
selection that make living beings optimally adap- 
ted to their environment. Genetic algorithms are 
potentially able to yield optimal or near-optimal 
solutions but take a large amount of time. Res- 
ults of genetic algorithms for partitioning prob- 
lems are reported in [15, 16, 171. 

Modelling the execution time as a function of the 
distribution of the grid points has the advant- 
age that the partitioning and mapping problem 
can be solved together; and that sophisticated 
cost models can be used. However, stochastic o p  
timisation algorithms are extremely slow, can be 
trapped in local minima, and their behaviour de- 
pends on a lot of parameters, that must be care- 
fully tuned to optimise performance. 

3.2 Specific grid partitioning heuristics 

3.2.1 Introduction 

To make the distribution problem more tractable, 
one normally makes the following simplifications: 

1. 

2. 

The partitioning and the mapping problem 
are handled separately. Subsequently, we 
will restrict ourselves to the partitioning 
problem. 

Rather than trying to minimise both compu- 
tational workload imbalance and communic- 
ation simultaneously, only one of both terms 
is explicitly modelled while the other is used 
implicitly in guiding the search. In this 
way the search space can be substantially 
reduced. Most often, one explicitly tries to 
minimise communication while the heuristic 
implicitly provides equally-sized subgrids. 

3.2.2 Clustering techniques 

Some authors have proposed partitioning and 
mapping strategies based on clustering tech- 
niques. In these approaches clusters of grid 
points are formed with high intra-cluster depend- 
encies and low inter-cluster communication. The 

clustering is based on a sorting of the grid points 
and subsequent partitioning. 

Mapping algorithm of Sadayappan. Sa- 
dayappan et al. [18, 191 proposed a nearest- 
neighbour mapping algorithm, that proceeds in 
two steps: 

1. 

2. 

An initial mapping is generated by grouping 
grid points in clusters and assigning clusters 
to processors so that the nearest-neighbour 
property is satisfied, i.e. neighbouring points 
are assigned either to the same processor or 
to neighbouring processors. 

The initial mapping is successively modified 
using a boundary refinement procedure in 
which points are reassigned among the pro- 
cessors in a manner that improves calcula- 
tion load balance but always maintains the 
nearest-neighbour property. 

Thus the nearest-neighbour mapping scheme ex- 
plicitly attempts to minimise calculation load 
imbalance, while low communication costs are 
achieved implicitly by the search strategy. 

Bandwidth reduction algorithms. Algo- 
rithms that reduce the bandwidth and the profile 
of a (sparse) matrix by re-ordering the equations 
and the unknowns of the linear system can also 
be used for partitioning meshes [8, 201. 
For a given numbering of the n elements of a 
mesh,.we can associate an  adjacency matrix A ,  
which is a symmetric n x n matrix with elements 
a;j that are equal to either 1 or 0 according to 
whether the elements i and j are or are not ad- 
jacent in the mesh. Let m; (i = 1,. . . , n)  be the 
smallest number for which a;j = 0 if I i - j  I > mi. 
The bandwidth of A is then defined as maqm;, 
and the profile as Cy='=l m;. 
If the elements of the mesh have been numbered 
in such a way that the adjacency matrix has a 
small profile and bandwidth, a lezicographic par- 
titioning of the mesh will often place adjacent 
elements in the same subgrid, and each subgrid 
will only have a limited number of neighbouring 
subgrids. Figure 1 illustrates this. Notice that 
two adjacent 'elements are assigned to different 
subgrids if the corresponding element in the ad- 
jacency matrix is not in one of the blocks on the 
main block diagonal and that two subgrids are 
adjacent if the corresponding off-diagonal block 
is non-zero. 
The Reverse Cuthill-McKee (RCM) ordering 
scheme [21] is one of the most popular techniques 
for reducing the bandwidth and the profile of 
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Fig. 1: 
Mesh partitioned into 4 submeshes 
and the corresponding adjacency 
matrix 

sparse matrices. The Cuthill-McKee scheme, a p  
plied to the adjacency matrix of a mesh, essen- 
tially clusters the elements in level sets: 

choose an  initial element ; 
S1 := {initial element} ; 
while not all elements have been ad- 
ded to a level set do 

Si+1 := 0 ; 
forall elements e k  E Si in the order 
that they have been added to S; do 

add to S;+1 the adjacent elements 
of ek that have not yet been ad- 
ded to a level set ; 

endfor ; 
endwhile ; 

Next, the elements are numbered in the order that 
they have been added to the level sets. 
For the mesh in Fig. 1, the Cuthill-McKee al- 
gorithm, initiated with the upper left element cre- 
ates the level sets S1 = {l}, S2 = {3}, S3 = 

and S7 = (12). The resulting numbering, par- 
titioning, and adjacency matrix are shown in 
Fig. 2. 
Usually, the order obtained with the Cuthill- 
McKee algorithm is reversed. This does not af- 
fect the bandwidth of the matrix but it often de- 
creases its profile. 
Bandwidth minimiser algorithms have the ad- 
vantage that for each subdomain, the number of 
adjacent subdomains is small. Therefore, each 
processor must only send messages to a small 

{2,5}, s4 = (4, 61 7}, s5 = ( 8 ~ 9 ) )  s6 = (10, 11}i 

Fig. 2: 
Mesh in Fig. 1, numbered with the 
Cuthill-McKee heuristic and the cor- 
responding adjacency matrix 

number of neighbours. This can be important if 
the start-up cost of sending a message is high. 
However, bandwidth minimiser algorithms have 
a tendency to generate very elongated subgrids 
with rather large interface sizes. Usually these 
subdomains enjoy a very small local bandwidth, 
but suffer from a very bad aspect ratio. These 
problems are alleviated if the RCM algorithm is 
used recursively [SI. 

Greedy heuristic of Farhat. For the parti- 
tioning of finite element meshes, Farhat [22] pro- , 

posed a greedy algorithm that uses only con- 
nectivity information. A variation of the al- 
gorithm that also uses geometrical information 
was proposed by Al-Nasra and Nguyen [23]. We 
will discuss Farhat’s heuristic into more detail in 
Section 4. 

3.2.3 Geometry-based techniques 

In the geometry-bused techniques the partition- 
ing is based on geometrical information about 
the grid points (i.e. their coordinates). This 
is sensible becausej in most problems, interde- 
pendent grid points are geometrically adjacent. 
Geometry-based techniques are typically cheap 
methods that are nevertheless able to produce ac- 
ceptable partitionings. They are dealt with in 
Section 5. 
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3.2.4 Heuristics for graph partitioning 

The graph partitioning problem can be formu- 
lated as follows. .An undirected graph G = (V, E )  
with vertex set V and edge set E is given. Often, 
weights w,(e;j) are attributed to the edges eij E 
E. Also given are P positive integers n1,. . . , np, 
satisfying ni = n =_ IV(. The problem is 
then to partition the vertex set V into P disjoint 
subsets V I ) .  . .) Vp of sizes n l , .  . ., np, respect- 
ively, in such a way that the sum of the weights of 
edges connecting different subsets is minimal. In 

- = nP 
An edge which connects two distinct subsets is 
said to be cut by the partition. The graph par- 
titioning problem can also be generalised to the 
case that the vertices Vi  too have a weight w,(Vi). 

In this case, the weights of the subsets are im- 
posed instead of their sizes. 
Now, for grid-oriented problems, a dependency 
gruph can be defined as follows: 

most cases we require that n1 = n2 = 

1. Each grid point has a corresponding vertex 
in the graph. The weight of the vertex is 
proportional to the amount of computational 
work that is involved with the grid point. 
Very often the weights of all vertices are 
equal, e.g. when iterative solution schemes 
are used. 

2. For each pair of mutually dependent grid 
points, the corresponding vertices are con- 
nected by an  edge in the graph. The 
weight of the edge is proportional to the 
strength of the interdependency (‘communic- 
ation volume’). 

For a finite element mesh, two elements are usu- 
ally dependent on each other if they share an edge 
in two dimensions or a face in three,dimensions. 
Therefore, the interdependency graph is simply 
the dual graph of the mesh. An example is given 
in Fig. 3. 
Obviously, the grid partitioning problem is equi- 
valent to the graph partitioning problem for the 
dependency graph. The graph partitioning prob- 
lem is an NP-complete problem but a num- 
ber of specific heuristics that yield good near- 
optimal solutions do exist. We will discuss the 
Kernighan-Lin heuristic, the Recursive Graph 
Bisection algorithm, and the Recursive Spectral 
Bisection algorithm. 

Kernighan-Lin heuristic. Already in 1970, 
Kernighan and Lin introduced a heuristic to par- 
tition a graph into two or more subgraphs [24]. 
Their heuristic only .partitions graphs without 
vertex weights, but generalisation to graphs with 

Fig. 3: 
Finite element mesh and correspond- 
ing dual graph 

unequal vertex weights is straightforward. Fi- 
duccia and Mattheyses [25] demonstrated that, if 
the vertex weights are small integer numbers, the 
algorithm can be organised in such a way that 
the complexity of the algorithm is only linear in 
the number of edges. 

Recursive Graph Bisect ion algorithm. 
The Recursive Graph Bisection algorithm (RGB) 
recursively determines two vertices of maximal 
or near maximal distance in the (sub)graph, and 
subsequently assigns the vertices to one or to 
the other subset, according to whether they are 
closer to one or to the other extrema1 vertex. 
To determine the distance between two vertices, 
the gruph distance is used, i.e. the length of the 
shortest path between the vertices. A more thor- 
ough discussion of this algorithm and a compar- 
ison with other partitioning algorithms can be 
found in [26, 271. 

Recursive Spectral Bisection algorithm. 
The Recursive Spectral Bisection algorithm 
(RSB) is based upon results from spectral graph 
theory, in which eigenvectors of a matrix are used 
to bisect a graph. This algorithm is discussed in 
detail in Section 6. 

4 THE GREEDY HEURISTIC OF FAR- 
HAT 

4.1 Description 

The greedy algorithm of Farhat [22] is a heuristic 
that despite its simplicity often yields subgrids 
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4.2 Some examples 

Figure 5 shows a two-dimensional finite element 
mesh with 9000 triangular elements and with 
13278 internal boundary edges round an airfoil. 
Only the part of the mesh that lies in the vicin- 
ity of the airfoil, and which is strongly refined, 
is shown. Partitioning this mesh into eight sub- 
grids with the greedy algorithm of Farhat yields 
the partitioning in Fig. 6. This partition cuts 355 
edges. Notice that the subgrids have a good as 
pect ratio. However, the subgrid that was created 
last (darkly shaded in Fig. 6 )  is disconnected into 
three parts. 
Figure 7 shows the partition into eight subgrids of 
the two-dimensional RYMAMO model [28]. This 
model is a finite difference grid with 18675 points 
that covers the mouth of the Rhine and the Meuse 
and the coastal zone near the harbour of Rotter- 
dam. The greedy algorithm was actually applied 
on a finite element mesh with quadrilateral e k  
ments, so that each element of this mesh corres- 
ponds to a point in the finite difference grid and 
in such a way that the connectivities were pre- 
served. It is very difficult to partition this mesh 
into connected subgrids and in the partition that 
one obtains with the greedy algorithm, effectively 
four subgrids out of eight are disconnected. The 
partition yields 22 connected parts and cuts 365 
edges. 

with short boundaries and good aspect ratios. 
The algorithm first assigns to each node n, of 
the mesh a weight wt that is equal to the number 
of elements that are connected to it. Let RS, I" 
and C" respectively denote the body, the inter- 
face boundary, and the computational cost of a 
subdomain s and let C denote the computational 
cost of the whole domain. The algorithm consec- 
utively finds the domains R', . . . , RP. Once the 
first s- 1 domains Cl,, . . . , S2-1  have been found, 
it constructs the next domain R' as follows: 

locate a node n, E YS-l that has  a rnin- 
imal current weight w, ; 
initialise R' with all un-masked ele- 
ments that are connected to node n, ; 
for each element eh E R" do recurs- 
ively 

mask ek ; 
for each node n; attached to  e k  do 

reduce the weight w, by one ; 
endfor ; 
add to all un-masked elements 
that are adjacent to ek ; 
update C" ; 
break when C" = C / P .  

endfor ; 
Figure 4 illustrates how the algorithm expands a 

Fig. 4: 
Expansion of a subdomain using the 
greedy algorithm (after Farhat [22]). 

subdomain starting from the lower left element. 
The greedy heuristic of Farhat is probably the 
fastest partitioning algorithm. Since it can im- 
mediately partition a grid into the desired num- 
ber of subgrids, it is not necessary to use it ce- 
cursively. This has the advantage that the cal- 
culation time is essentially independent of the 
desired number of subgrids. In general this al- 
gorithm generates subgrids with good aspect ra- 
tios, but it often yields disconnected subgrids. 

5 GEOMETRY BASED BISECTION 
ALGORITHMS 

5.1 Introduction 

In the geometry-based bisection algorithms, one 
tries to exploit the geometric properties of the 
mesh, since data dependent grid points are geo- 
metrically adjacent. Clearly, this limits the a p  
plicability of this type of methods to problems 
where such geometric information is both mean- 
ingful and available. 
Based on the geometrical information, a scalar 
quantity U; is associated with each grid point. 
Following Williams [3], we call U, a separator 
field. By evaluating the median S of the set { U,} ,  

we can bisect the grid, according to whether U, 

is greater or less than S. In this way two sub- 
grids with an equal number of grid points are 
created. By recursively applying this strategy 
to the subgrids, the grid can be partitioned into 
2d, d = 1 , 2 , .  . . subgrids. 
Notice that, based on the ordering of the separ- 
ator field, a grid could easily be partitioned into 
more than two parts at once. However, the as- 
pect ratio of the subgrids is usually better if a 
grid is only partitioned into two parts. 



Fig. 5: 
Part of a finite element mesh with 9000 elements round 
an airfoil. 

Fig. 6: 
Partitioning into 8 subgrids of the finite element grid in 
Fig. 5 with the greedy heuristic of Farhat. 

Fig. 7: 
Partitioning into 8 subgrids of the RYMAMO grid with 
the greedy heuristic of Farhat. 
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5.2 Repeated x-bisection 

The simplest choice for ui is ai = zt with zi the 
z-coordinate of the grid point. Recursive applic- 
ation of this technique on the subgrids gives rise 
to a stripwise partitioning, with strips parallel 
to the y-axis. Such a partitioning causes long 
inter-subgrid interfaces and thus  a large commu- 
nication volume. 

5.3 Recursive Coordinate Bisection 

Recursive Coordinate Bisection (RCB) [27], also 
called Orthogonal Recursive Bisection (ORB) [3], 
consists of alternately bisecting the grid accord- 
ing to the I-, and y-coordinate and, for three- 
dimensional grids, the z-coordinate. This tech- 
nique leads to grids with a better aspect ratio 
than the ones that are obtained with repeated z- 
bisection. This has a positive effect on the com- 
munication volume. 

5.4 Recursive Inertial Bisection 

Using the z-, y- or z-coordinate of the grid points 
h a s  the disadvantage that the partitioning de- 
pends on the coordinate system used, which is 
not an intrinsic problem characteristic. 

Fig. 8: 
Angular momentum of a discrete 
point set. 

The basic idea behind the inertial bisection 
strategy is the following. The principal inertia 
direction of an object (or a discrete point set) is 
the direction for which the rotational inertial mc- 
mentum I = xi zuie is minimal when this dir- 
ection is taken as the rotation axis (see Fig. 8). 
If the domain is more or less convex-shaped, the 
minimal momentum axis will be aligned with the 
overall shape of the grid. We can therefore expect 
that the grid will have its smallest spatial extent 
in the direction orthogonal to this axis of rota- 
tion. This direction is then heuristically chosen 

to be the bisection direction. 
The inertia directions of the mesh are the eigen- 
vectors I1, 12 and I3 corresponding to the eigen- 
values A1 5 A2 5 A3 of the 3 x 3 inertia matrix: 

with 

2 2 = (Yi - Yc) + (Zi - zc) , 

I Y Y  = C ( Z i  - 2,) + (Zi - zc) , 

(Si - Zc)' + (yi - yC)', 

Z=v = I,, = -Chi - zc) (yi - yc), 

I Y Z  = I Z Y  = - c (Yi - yc) (Zi - zc) , 

i 
2 a 

i 
= 

i 

i 

i 

where the summations must be taken over all the 
grid points and where (zi, yi, zi) and (zc, y,, zc) 
respectively denote the coordinates of the grid 
points and the coordinates of the center of gravity 
of the mesh. The eigenvector I1 which is associ- 
ated with the smallest eigenvalue corresponds to 
the axis of minimal angular momentum. Once I1 
is determined, the grid points are projected (or- 
thogonal projection) onto it and this projection 
is used as the separator field U, for the bisection 
of the grid. 
The Recursive Inertial Bisection (RIB) algorith- 
m, also called the Inertial Recursive Bisection 
(IRB) [29] or the Recursive Principal Inertia 
(RPI) [26] algorithm, is more expensive than re- 
peated z-bisection or Recursive Coordinate Bi- 
section but generally gives much better results. 
Because the minimal rotational momentum axis 
is an inherent property of the grid, this parti- 
tioning does not depend on the orientation of the 
coordinate system. It still depends however, on 
the relative scaling of the z-, y- and z-axes. 
Recursive Inertial Bisection is now a widely used 
partitioning technique [8, 301, especially in com- 
bination with the Kernighan-Lin heuristic (see 
Section 3.2.4). 

5.5 Some examples 

We will first make a comparison between the res- 
ults obtained with repeated z-bisection, Recurs- 
ive Orthogonal Bisection, and Recursive Inertial 
Bisection. These methods have been thoroughly 
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Mesh Repeated z-bisection 

Recursive coordinate Bisection Recursive Inertial Bisection 

Fig. 9: 
Narrowing curved channel (structured grid) and parti- 
tions with geometry-based methods. 

studied and compared with each other in [29]. 
The following examples have been taken from it. 
Figure 9 shows a structured finite volume mesh 
for a narrowing curved channel. It consists of 
768 cells and 1472 edges. It is partitioned into 
16 parts, using the repeated 2-bisection, Recurs- 
ive Coordinate Bisection and Recursive Inertial 
Bisection heuristics. The load balance is in all 
cases (nearly) perfect, but the number of edges 
cut by the partition interfaces is respectively 324, 
236 and 191. Notice that for this structured grid 
of 48 x 16 cells, an optimal partitioning can easily 
be found by splitting it into 8 x 2 nearly square 
subgrids of each 6 x 8 cells. In this case only 160 
edges are cut by the partition interfaces. 
However for unstructured meshes like the one in 
Fig. 10, such an optimal partitioning cannot be 
found so easily. This mesh is used to calculate the 
supersonic flow through a channel with a forward 
step. It consists of 1186 cells and 1652 edges. It 
is again partitioned into 16 parts. The number 
of edges cut by the partition interfaces for the re- 
peated z-bisection, Recursive Coordinate Bisec- 
tion, and Recursive Inertial Bisection heuristics 
is respectively 430, 297 and 281. Examination 
of the figures reveals how in the Recursive Iner- 
tial Bisection method the axis direction adapts it- 
self to the non-convexity of the narrowing curved 
channel and to the increased mesh density in the 
channel. The above experiments illustrate that 

the Recursive Inertial Bisection heuristic should 
be prefered over the other two geometry-based 
techniques. 
Let us now compare the Recursive Inertial Bi- 
section algorithm with Farhat’s greedy heuristic. 
Figure 11 shows the partitioning into eight sub 
grids that one obtains with the Recursive Inertial 
Bisection algorithm of the grid in Fig. 5. This 
partition cuts 515 edges, which is more than with 
Farhat’s greedy heuristic. Also notice that some 
subgrids are quite elongated, which might be a 
problem with some iterative methods [7]. 
Inertial bisection implicitly assumes that the 
mesh is convex. For the RYMAMO model, this 
is obviously not the case. We can therefore ex- 
pect the Recursive Inertial Bisection algorithm to 
perform poorly. Figure 12 shows the partitioning 
into eight subgrids. This partition yields 20 con- 
nected parts, less than Farhat’s greedy heuristic, 
but it cuts 485 edges which is more than the 365 
edges that are cut by the greedy heuristic. 

6 THE RECURSIVE SPECTRAL BI- 
SECTION ALGORITHM 

6.1 Introduction 

The use of spectral methods to bisect graphs was 
first considered by Donath and Hoffman [31], and 
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Mesh Repeated =-bisection 

Recursive Coordinate Bisection Recurrive Inertial Bisection 

Fig. 10: 
Channel with forward step (unstructured grid) and par- 
titions with geometry-based methods. 

Fig. 11: 
Partitioning into 8 subgrids of the finite element grid in 
Fig. 5 with the Recursive Inertial Bisection algorithm. 
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Fig. 12: 
Partitioning into 8 subgrids of the RYMAMO grid with 
the Recursive Inertial Bisection algorithm. 

since then, spectral methods for computing vari- 
ous graph parameters have been used by several 
others. 
Barnes [32] introduced a bisection technique that 
uses the eigenvectors corresponding to the largest 
two eigenvalues of the adjacency matrix of the 
graph. 
The most frequently used spectral bisection tech- 
nique was introduced by Pothen et  al. [33]. In 
this method, the graph is bisected according to 
the eigenvector that corresponds to the second 
smallest eigenvalue of the Laplacian matrix of 
the graph. 
By recursively applying the spectral bisection al- 
gorithm to the subgraphs, it is possible to par- 
tition a graph into 2,4,. . . , 2d subgraphs. This 
heuristic was first used to partition finite element 
meshes by Simon [27], who used the name Re- 
cursive Spectral Bisection, and by Williams [3] 
who named the method Eigenvalue Recursive Bi- 
section. 

6.2 The algorithm 

Intuitively, it is not immediately obvious that the 
second eigenvector of the Laplacian matrix of a 
graph is a good separator for the graph. The 
following deduction of the algorithm helps to un- 
derstand why this is nevertheless the case. 
We denote the graph by G = (V, E )  where V = 
{v l ,v2 ,  . . ., U , )  is the vertex set, and E is the 
edge set. A weight w.(e,j) is associated with 
each edge eij E E. This graph is completely 
determined by its adjacency matriz A. This is a 
symmetric n x n matrix with elements, 

aii = 0, a = 1  , . . ., n, 
wjj if eij E E, 
0 otherwise, i , j  = 1,. . ., n; i # j .  aij = 

We search a mapping rn : {1,2 ,..., N} --t {1,2} 
that minimises: 

C WJeij) (1 - Jm(i),m(j)). 
eijEE 

This mapping partitions the vertex set V into two 
subsets VI and V,: 

Vl = {vi € V  I rn(i)= l}, 
v2 = {vi € v I m(i) =2}. 

The vertex sets VI and V, should have the same 
number of elements. 
Let z be a vector of length n whose components 
are defined as follows: 

-1 if m(i) = 1, 
1 if m(i) = 2. zj = 

This is convenient because 1 - &,(i),m(j) - - 
(1 - zizj). Moreover, the requirement that 

VI and V2 have the same number of elements is 
equivalent to  zi = 0. 
We must therefore minimise 

subject to zi E {-1,1} and z; = 0. It will 
prove advantageous to add to this expression the 
term 

Since zi = fl, this term is zero and does not 
change the value of the object function, but later 
on, we will relax the constraint zi = f l  and then 
this term will become important. 
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Using the notation 7- = CE1ti, we = 
C e ; ; E ~ ~ e ( e ; j ) ,  D = Diag(t;) and B = D - A ,  
we 'ban write our object function as 

- ( W e - $  7- + - s  l T  Bs. 1 
2 4 

This function must be minimised subject to the 
constraints s; E {-1,1} and Cy.l s; = 0. 
We choose the diagonal values ti so that each row 
sum of B is zero. This choice is convenient for 
several reasons: 

1. Since t; = CeijEEwe(e;j) implies that T = 
2We, the first term in the object function is 
identically zero. 

2. The matrix B is positive semidefinite. If the 
graph is connected, then B only has  a single 
null vector consisting entirely of 1's. 

3. If the edge weights are all 1, then the diag- 
onal elements b;; of B are equal to the degree 
of the corresponding vertex wi, and the off- 
diagonal elements b;j are equal to -1 if the 
corresponding vertices vi and w j  are connec- 
ted by an edge and are equal to 0 other- 
wise. This matrix is the so-called Laplacian 
matrix of the graph, and we can say that in 
general the matrix B is a weighted Lapla- 
cian. This is advantageous because a num- 
ber of interesting properties about the Lapla- 
cian matrix that can give us some guarantees 
about the quality of the solution, are already 
known [34, 351. We will say more about the 
Laplacian matrix later. 

Using the notation e = [l 1 .. .l] , our discrete 
minimisation problem becomes: 

Minimise f sTBs,  subject to 
2; E {-1, l}, and e T s  = 0. 

T 

This minimisation problem is still a discrete NP- 
complete problem. We now relax the constraint 
that each of the components of the vector s must  
be f l .  Instead, we impose the norm constraint 
s s = n. In this way we replace our discrete 
problem by the following continuous one: 

sTBs,  subject to sTz = n, 

T 

Minimise 
e T s  = 0, and xi E IR (i = 1,2, .  . ., n). 

I t  must be noticed that all the feasible solutions of 
the discrete problem are also feasible solutions of 
the continuous problem. Therefore, the solution 
of the continuous problem provides a lower bound 
for the solution of the discrete one. Contrary to 
the discrete problem however, the continuous o p  
timisation problem can be solved easily thanks 
to the special properties of the matrix B : 

1. B is symmetric positive semidefinite ; 

2. The eigenvectors of B can always be chosen 
to be pairwise orthogonal ; 

3. The vector e is an eigenvector of B with ei- 
genvalue zero ; 

4. If the graph is connected, e is the only ei- 
genvector of B with eigenvalue zero. 

Let 0 = X1 < A2 5 A3 5 5 An be the ei- 
genvalues of B with corresponding orthonormal 
eigenvectors e = ul, u2, u3, .  . . , un. We can write 
s as s = cle + c2u2 + - - + Cnun. Hence, sTs = 
Cy==,c?, and the requirement that eTs = 0 is 
satisfied if and only if c1 = 0. Therefore, our 
minimisation problem can be formulated as: 

Minimise $ EE2 Xicl,  subject to 
Cy=2 c? = n, and c; E IR (i = 2, .  . ., n). 

If A2 < X3, the object function is minimised for 
c2 = ,/E, and c3 = - - - = c, = 0. 
As the solution of the original discrete optimisa- 
tion problem, we take the vector s with compon- 
ents si E {-1,1} that lies closest to the solution 
of the continuous problem. We obtain this vec- 
tor by finding the median value among all the 2;'s 
and mapping s; values above the median to +1, 
and values below to -1. This gives a balanced 
decomposition with hopefully, a low cut-weight. 

6.3 Example 

We illustrate the spectral bisection algorithm 
by applying it to the mesh on the left in 
Fig. 13 [36]. The corresponding interdependency 
graph is shown on the right side of the figure. 
The Laplacian matrix L of this graph is 

Fig. 13: 
Example mesh and corresponding in- 
terdependency graph [36]. 
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L =  

1 - 1  0 0 0 0 
-1 3 -1  0 0 -1 

0 - 1  2 - 1  0 0 
0 0 - 1  2 - 1  0 
0 0 0 - 1  2 - 1  
0 - 1  0 0 - 1  2 

The second smallest eigenvalue of L is A2 = 
0.6972, and the corresponding eigenvector is 

u2 = [ -0.78 -0.24 0.12 0.39 0.39 0.121T. 

Therefore the vector z is 

2 = [ -1.91 -0.58 0.29 0.96 0.96 0.29IT. 

On the basis of this we can partition the mesh 
as PI = {1,2,3} and P2 = {4,5,6}, or PI = 
{ 1,2,6} and P2 = {3,4,5}. 

6.4 

In general, dropping the discreteness constraint 
in a n  optimisation problem and taking the dis- 
crete solution that lies closest to the solution of 
the relaxed continuous optimisation problem as 
the solution of the discrete optimisation problem 
is a dangerous technique that does not guarantee 
good solutions. 
Confidence can be gained about the fact that us- 
ing the spectrum of the Laplacian matrix of a 
graph does yield good partitionings, by study- 
ing this  spectrum for regular grid graphs. The 
following results for the path graph and for the 
five-point grid have been taken from [33]. 

Laplacian spectrum of regular grids 

6.4.1 The path graph 

Fig. 14: 
Path graph with 5 vertices. 

Let P, denote the path graph on n vertices (see 
Fig. 14). In the following discussion, we assume 
that n 2 2 is even. We number the vertices of 
the path from 1 to n in the natural order from 
left to right. 
The Laplacian matrix of P,, is tridiagonal. Its 
eigenvalues are A k  = 4sin2[(k - 1)7r/(%)] (k = 
1 , .  . ., n), thus 0 = A1 < A2 < < A,. An 
eigenvector zk  that corresponds to the eigenvalue 
A k  has components 

(2i - l)(k - 1) 77- . , a = 1  ,... ,n .  k 2; =cos 2n 

Therefore, A2 = 4sin2[7r/(2n)], and 2: = 
cos[(2i - 1) 7r/(2n)]. The components of z2, plot- 
ted against the vertices of P, decrease monoton- 
ically from left to right. The first n/2 compon- 
ents are positive and the last n/2 are negative. 
T h u s  bisection based on the separator 0; = zf 
splits the path graph in the middle. Intuitively, 
it is clear that this is the optimal partitioning. 

6.4.2 The five-point grid 

We consider the m x n five-point grid, and 
without loss of generality take m 5 n. We as- 
sume that n 2 2 is even. 
The spectrum of the five-point grid can be de- 
rived from the spectrum of the path graph. The 
eigenvalues are 

k = 1 , .  . . , n; 1 = 1, . . ., m. 
An eigenvector yk*" that corresponds to the ei- 
genvalue pk,l has  components 

(2i - l ) ( k  - 1) 7r (2 j  - 1)(1- 1) 7r 
cos k l  y . ' .  = cos 

'*3 2n 2m 1 

i =  1 ,... , n ; j =  1, ... ,m. 
The smallest eigenvalue p1,1 is zero. If m < 
n, the second smallest eigenvalue is p2,1 = 
4 sin2 [7r/(2n)] and the corresponding eigenvector 
y(2,1) has components y,",;! = cos[(2i - 1) 7r/(2n)]. 
The components of y2i1 are constant along each 
column of m vertices, and the components de- 
crease from left to right across a row. Columns 
numbered from 1 to n/2 have positive compon- 
ents, and the rest of the columns have negative 
components. The components of this eigenvector 
of the m x n five-point grid are shown in Fig. 15. 

If m = n, p 1 , ~  = p2,1 and the second smallest 
eigenvalue of the Laplacian matrix has  multipli- 
city two. The linearly independent eigenvectors 
~ ' 9 ~  and y2t1 span the two-dimensional eigenspace 
that correspond to this eigenvalue. These vectors 
correspond respectively to bisecting the graph 
horizontally and vertically in the middle, which 
are indeed optimal solutions. Notice that in prac- 
tice, a n  eigensolver will in general yield vectors 
that are linear combinations of these two optimal 
solutions. 

6.5 Connectivity of the subgraphs 

If the original graph is connected, it can be guar- 
anteed that at least one of the resulting subgraphs 
will be connected too. This follows from the fol- 
lowing theorem by Fiedler [35]. 
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6.6 Examples and experiments 

In Table 1, some results obtained by Ven- 
katakrishnan et al. [37] are presented. A mesh- 
vertex upwind finite volume scheme was used on 
a 64-processor iPSC/860 machine to solve the 
Euler equations around a multi-flap airfoil on 
Barth5, a two-dimensional triangular unstruc- 
tured fluid dynamics mesh from NASA Ames 
with 15606 vertices, 45878 edges, 30269 faces 
and 949 boundary edges. The finite volume mesh 
was partitioned using the Spectral Bisection and 
the Coordinate Bisection technique on the ori- 
ginal mesh-graph and using the Spectral Bisec- 
tion method on the dependency graph of the 
mesh. For this example, the use of the Spectral 
Bisection technique leads to a performance that 
is 30% higher than if the Coordinate Bisection 
method is used. 
Figure 17 shows the partitioning into eight sub- 
grids of the mesh in Fig. 5 that one obtains with 
the Recursive Spectral Bisection algorithm. This 
method cuts only 258 edges (97 less than the 
greedy heuristic of Farhat), and yields eight con- 
nected subgrids. Notice also that the subgrids 
have good aspect ratios. 
For the RYMAMO grid as well, the Recursive 
Spectral Bisection algorithm gives very good res- 
ults. Figure 18 shows the partitioning. It cuts 
280 edges (greedy heuristic: 365) and yields 
10 connected parts (greedy heuristic: 22). 

Fig. 15: 
The second Laplacian eigenvector of 
the fivepoint grid. 

Theorem. Let G be a connected graph and let 
z be an eigenvector, corresponding to the second 
smallest eigenvalue of the Laplacian matrix of the 
graph. For a real number r 1 0, define Vl(r) = 
{U E V I z, 2 -r). Then the subgraph induced 
by Vl(r) is connected. Similarly, the subgraph, 
induced by the set VZ(r) = {U E V I z, 5 r), is 
also connected. If r = 0, it is necessary to include 
the vertices with zero components in both sets VI 
and Vz for the theorem to hold. 

In practice, most often both subgraphs will be 
connected. It must be noticed that in general it 
is not possible to bisect aconnected graph in two 
connected and equally sized subgraphs anyway. 
A simple example of such a graph is shown in 
Fig. 16. 

i' 
e 1 - 0 

1 2 3 

Fig. 16: 
A connected graph that cannot be bi- 
sected in connected and equally sized 
subgraphs. 

6.7 Generalisations of the spectral bisec- 
tion algorithm 

Hendrickson and Leland extended the spectral 
bisection method to quadri- and octasection of 
graphs [38]. Moreover, they also generalised it 
to the case that not only the edges but also the 
vertices are weighted [39]. Hendrickson and Le- 
land show that the partitions that are obtained in 
th is  way are better than the ones obtained by r e  
cursively applying the bisection algorithm if the 
hypercube hop (or Manhattan) metric is used as 
the cost measure. Empirical study [40] has shown 
that this is an appropriate measure for modelling 
the performance of hypercube architecture miL- 
chines since minimising this metric corresponds 
to minimising congestion within the communica- 
tion network. The hop metric is also appropriate 
for and three dimensional mesh architectures. 
Van Driessche and Rome [5, 411 developed a 
spectral bisection algorithm for the constrained 
graph bisectioning problem, a generalisation of 
the graph bisectioning problem in which the as- 
signment of part of the vertices is imposed a pri- 
ori. Although this spectral algorithm was origin- 
ally developed for dynamic load balancing, it is 
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Table 1: 
Comparison between Spectral Bisection and Coordinate 
Bisection. 

Performanc'e (Mflops) 
Communication time (sec) 
Average number of neighbours 
Number of intern. bound. vertices 
Maximum number of neighbours 
Maximum number of vertices 

Method Spectral Coordinate Spectral 
Bisection Bisection (Depend. Graph) 

Total time (sec) 0.31 0.41 0.31 
143 188 

0.173 0.082 
6.7 4.5 

2631 1791 
14 14 

120 109 

187.5 
0.084 

4.7 
1819 

12 
101 

Fig. 17: 
Partitioning into 8 subgrids of the finite element grid in 
Fig. 5 with the Recursive Spectral Bisection algorithm. 

Fig. 18: 
Partitioning into 8 subgrids of the RYMAMO grid with 
the Recursive Spectral Bisection algorithm. 
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cian matrix can be exploited, and because it t y p  
ically converges to the extreme eigenvalues and 
eigenvectors of a matrix in O(& step, each of 
which has a complexity of order n. 
For large graphs, the calculation time and espe- 
cially the memory requirements of the Lanczos 
algorithm are often unacceptable. Barnard and 
Simon [44, 451 introduced a multilevel algorithm 
that calculates the Fiedler vector considerably 
faster and with less memory than the Lanczos 
algorithm. This algorithm first constructs a s e  
quence of graphs, in such a way that the initial 
graph is the first graph in the sequence, and that 
the other graphs are the contractions of the pre- 
vious graph in the sequence. 
A graph is contracted as follows. First, a max- 
imal number of non-adjacent vertices are selec- 
ted that will form the vertex set of the contrac- 
ted graph. Next, the edge set is constructed by 
growing domains in the original graph round the 
vertices of the contracted graph, and by adding 
an edge to the contracted graph whenever two 
domains intersect. 
Once the sequence of graph contractions has been 
constructed, the Fiedler vector of the smallest 
graph is calculated and is prolongated to the pre- 
vious graph in the sequence. This prolongation 
is already a good approximation for the Fiedler 
vector of this graph and can therefore be rapidly 
improved with Rayleigh quotient iteration. This 
procedure is recursively applied until the Fiedler 
vector of the first graph in the sequence, i.e. the 
Fiedler vector of the original graph, h a s  been cal- 
culated. 
Using this technique, Barnard and Simon claim 
to obtain partitions with comparable quality in 
up to 20 times less time than with the Lanczos 
algorithm. 
Van Driessche and Rome [46] have presented an 
alternative graph contraction algorithm that uses 
the same procedure to select the vertex set but 
that assigrls weights to the edges of the contrac- 
ted graph. This algorithm yields very good ei- 
genvector approximations. They are also able to 
give a formal analysis that helps to explain why 
and when the algorithm gives such good results. 
Hendrickson and Leland [47] use a completely 
different graph contraction algorithm, in which 
they contract some edges of the graph. They 
first search for a mazimal matching in the graph. 
This is a maximal set of edges, no two of which 
are incident on the same vertex. The edges in this 
set are then contracted as follows. The vertices 
joined by an edge that must be contracted, are 
merged into one 'super vertex', and the new super 
vertex is given edges to the union of the neigh- 
bours of the merged vertices. The weight of the 
super vertex is set equal to the sum of the weights 

also useful for static load balancing. By solving a 
sequence of constrained graph bisectioning prob  
lems, it is possible to take the mapping problem 
already into account during the mesh partition- 
ing [42]. In this way, it is possible to ensure that 
the subgrids are assigned to processors that are 
close to each other in the communication top- 
logy. Moreover, the number of neighbouring sub 
grids per subgrid is smaller than if the standard 
Recursive Spectral Bisection is used. 
Figure 19 shows the partitioning of the mesh in 
Fig. 5, that is yielded by this Recursive Con- 
strained Spectral Bisection algorithm for a hy- 
percube topology. This partition cuts slightly 
more edges than the partition one obtains with 
the standard Recursive Spectral Bisection al- 
gorithm (viz. 282 versus 258) but the maximal 
number of adjacent subgrids per subgrid is smal- 
ler (viz. 4 versus 5). Moreover, a small readjusb 
ment of the boundaries is sufficient to ensure that 
each subgrid has no more than 3 neighbouring 
subgrids. Fig. 20 illustrates that the interdepend- 

6 7 6 7 

0 1 

(b) 

Fig. 20: 
(a) Interdependency topology of the 
subgrids in Fig. 17 (standard Bisec- 
tion Algorithm). (b) Interdepend- 
ency topology of the subgrids in 
Fig. 19 (Constrained Bisection Al- 
gorithm). 

ency topology between the subgrids more closely 
matches the hypercube communication topology 
of the parallel computer, than if the standard Re- 
cursive Spectral Bisection algorithm is used. 

6.8 Calculation of the eigenvectors 

For the spectral bisection technique, one has to 
calculate the eigenvector that corresponds to the 
second smallest eigenvalue of a large, sparse (and 
symmetric) matrix. The Lanczos algorithm [43] 
is particularly well-suited for this problem be- 
cause it only uses the matrix through matrix- 
vector products, so that the sparsity of the Lapla- 
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Fig. 19: 
Partitioning into 8 subgrids of the finite element grid in 
Fig. 5 with the Recursive Constrained Spectral Bisec- 
tion algorithm. 

of its constituent vertices. Edge weights are left 
unchanged unless both merged vertices are ad- 
jacent to the same neighbour. In this case the 
new edge that represents the two original edges 
is given a weight equal to the sum of the weights 
of the two edges it replaces. 

7 COMBINATIONS OF PARTITION- 
ING ALGORITHMS 

The most powerful partitioning heuristics use a 
combination of the techniques discussed in the 
previous sections. We will discuss three ex- 
amples, viz. the combination of recursive spec- 
tral and inertial bisection with the Kernighan- 
Lin heuristic, the two-step approach of Vander- 
straeten and Keunings to optimise complicated 
cost functions, and the multilevel partitioning al- 
gorithm of Bui and Jones and Hendrickson and 
Leland. 

7.1 Improving a partition with the 
Kernighan-Lin heuristic 

The Kernighan-Lin heuristic is an iterative al- 
gorithm that improves an initial partition by 
repeatedly swapping elements among the parti- 
tions. Starting with a random assignment of grid 
points to processors usually gives disappointing 
results because of the inherently greedy and local 
nature of the algorithm. On the other hand, 
the Recursive Spectral Bisection algorithm often 
yields partitions that are globally good but that 
perform poorly in the fine details. It is therefore 
advantageous to calculate an initial partitioning 

with the Recursive Spectral Bisection algorithm, 
and improve this with the Kernighan-Lin heur- 
istic. As an example, in Fig. 17, the boundar- 
ies between the subdomains are not very smooth 
but this is considerably improved, and the num- 
ber of cut edges reduced from 258 to 226, with 
the Kernighan-Lin heuristic. Figure 21 shows the 
partitioning into eight subgrids of the mesh in 
Fig. 5, that results from applying the Kernighan- 
Lin heuristic to the partitioning in Fig. 17. Notice 
that the boundaries between the subgrids have 
become much smoother. 
The Recursive Inertial Bisection algorithm also 
benefits greatly from a Kernighan-Lin post- 
processing step. The quality of the resulting par- 
titions is often comparable to what one obtains 
with Recursive Spectral Bisection (but worse 
than what the combination of spectral bisection 
with Kernighan-Lin gives), while the calculation 
time is considerably lower. 
Figure 22 shows the partitioning of the 
RYMAMO mesh after applying the Kernighan- 
Lin heuristic to the result of the inertial bisec- 
tion algorithm. This partition has 13 connected 
parts (20 without the Kernighan-Lin heuristic) 
and cuts 281 edges (485 without the Kernighan- 
Lin heuristic), thus only 1 edge more than the 
partition, obtained with the Recursive Spectral 
Bisection algorithm. 

7.2 The multilevel-Kernighan-Lin algo- 

7.2.1 Description 

The good performance of the Kernighan-Lin 
heuristic at locally improving a partition that is 

rithm of Hendrickson and Leland 
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Fig. 21: 
Partitioning into 8 subgrids of the finite element grid in 
Fig. 5 with the Recursive Spectral Bisection algorithm 
and the Kernighan-Lin heuristic. 

Fig. 22: 
Partitioning into 8 subgrids of the RYMAMO grid 
with the Recursive Inertial Bisection algorithm and the 
Kernighan-Lin heuristic. 

L 
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already globally good, is also put to use in the 
multilevel algorithms of Bui and Jones [48] and 
Hendrickson and Leland [47]. 
The idea is to create a sequence of increasingly 
smaller graphs that in some sense approximate 
the original graph. The smallest graph is parti- 
tioned (with, say, Recursive Spectral Bisection) 
and this partition is projected back through the 
intermediate levels. Every few levels of projec- 
tion, the Kernighan-Lin heuristic is used to refine 
the partition. 
For the construction of the smaller graphs, 
Hendrickson and Leland use the same contraction 
algorithm, described in Section 6.8, that they use 
in the multilevel algorithm for the calculation of 
the Fiedler vector of a graph. Bui and Jones have 
proposed a similar algorithm, but in contrast to 
the algorithm of Hendrickson and Leland, it does 
not use vertex and edge weights. In practice, the 
difference between the two methods is small with 
neither method being consistently superior [49]. 

Inertial 

7.2.2 Examples 

Figure 23 shows the partitioning into eight sub- 
grids of the mesh in Fig. 5, which one obtains 
with the multilevel algorithm of Hendrickson and 
Leland. This partition cuts 202 edges, fewer than 
the partition that we obtained with the Recurs- 
ive Spectral Bisection algorithm even if it is im- 
proved with the Kernighan-Lin heuristic. Notice 
that the subgrids have very good aspect ratios. 
For the RYMAMO grid as well, the multilevel al- 
gorithm finds a partition that only cuts a small 
number of edges. Figure 24 shows the parti- 
tion into eight subgrids It cuts 246 edges (greedy 
heuristic: 365, Recursive Spectral Bisection al- 
gorithm: 280). 
Table 2, which is taken from [30], gives res- 
ults about the partitioning of Barth5, a two- 
dimensional fluid dynamics mesh, for which we 
presented results in Section 6.6 that demonstrate 
the influence of the partitioning on the calcula- 
tion time of an Euler solver. The dual graph, 
which has 15606 vertices and 45878 edges, was 
partitioned into 2 , 4 ,  8, 16,32 and 64 parts, both 
with the inertial and the spectral algorithm, alone 
and in combination with the Kernighan-Lin heur- 
istic. The graph was also partitioned with the 
multilevel algorithm. 
A comparison of the number of cut  edges on 
one hand and the calculation times on the other, 
demonstrates that the combination of Recursive 
Inertial Bisection with the Kernighan-Lin heur- 
istic yields partitions of comparable quality with 
the Recursive Spectral Bisection algorithm at a 
fraction of the cost. However, the most cost- 
effective method turns out to be the multilevel 

Spectral Multilevel 

2: Partitioning of Barth5 with the mul- 
tilevel algorithm of Hendrickson and 
Leland, and with the Recursive In- 
ertial and Spectral Bisection al- 
gorithms, both with and without 
Kernighan-Lin refinement [30]. 

Nu 
2 
4 
8 

16 
32 
64 

- 

- 

ber of cut edge 
245 200 
897 520 

1441 917 
2266 1383 
3141 2057 
4253 3128 

200 139 
521 367 
888 693 

1382 1148 
2075 1824 
3170 2927 

175 
379 
662 

1106 
1824 
2943 

Calculation time in seconds 
2.0 13.8 I 136.7 146.0 I 28.4 

algorithm: it finds partitions that are comparable 
to or even better than what one obtains with a 
combination of the Recursive Spectral Bisection 
algorithm and the Kernighan-Lin heuristic while 
the calculation time (and the memory usage) is 
considerably smaller. 

7.3 Improving a partition with a stochas- 
tic optimisation algorithm 

Vanderstraeten and Keunings have tried to im- 
prove an initial partition with stochastic o p  
timisation algorithms [50]. They have tested 
three algorithms, viz. simulated annealing (see 
Section 3.1 and the references therein), tabu 
search [51, 521, and stochastic evolution [53]. 
These algorithms are expensive, but they can 
start from a good initial solution. Moreover, only 
a relatively small search space must be explored 
because only subdomain interfaces are readjus- 
ted. 
This twc-step approach, first generating an ini- 
tial mesh decomposition with a suboptimal but 
fast partitioning algorithm, and next optim- 
ising this partition with a stochastic optimiza- 
tion algorithm, is able to generate partitions with 
smooth boundaries and a small number of cut 
edges. Moreover, thanks to the general applicab 
ility of the stochastic algorithms, it is also pos- 
sible to optimise much more complicated cost 
functions that do not just  take the number of cut 
edges into account [54]. 
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Fig. 23: 
Partitioning into 8 subgrids of the finite element grid in 
Fig. 5 with the multilevel algorithm of Hendrickson and 
Leland. 

Fig. 24: 
Partitioning into 8 subgrids of the RYMAMO grid with 
the multilevel algorithm of Hendridtson and. Leland. 
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8 SOFTWARE TOOLS FOR PARTI- 
TIONING 

8.1 Introduction 

Graph partitioning, and hence mesh partitioning 
for parallel computing, is by now a fairly well- 
understood problem, and several efficient soft- 
ware tools exist for this purpose. We will discuss 
two tools that contain state-of-the-art partition- 
ing algorithms and that are well-supported and 
-documented, viz. Chaco and TOP/DOMDEC. 
For most CFD applications these tools will be 
sufficient to obtain good mesh partitions, so that 
it is not necessary for users to develop their own 
code. 
Some open issues remain however. Firstly, these 
tools are meant to be used as a pre-processing 
tool on a sequential computer. They are there- 
fore not suitable for parallel applications that also 
want to calculate the partitions in parallel, like 
e.g. applications that need quasi-static load bal- 
ancing. Secondly, it has been argued that the 
standard optimisation criterion (minimal number 
of cut edges) is not suitable for many applica- 
tions [8, 30, 541. Although the tools that will be 
discussed here, provide a limited number of o p  
timisation criteria besides this standard criterion, 
it is still not clear whether any of these can ac- 
curately model the execution of an application on 
a parallel computer, where factors like commu- 
nication link contention and cache usage, which 
are difficult to model, often greatly influence per- 
formance. 

8.2 Chaco 

8.2.1 Introduction 

Chaco is a software package designed to partition 
graphs. It was written by Bruce Hendrickson and 
Robert Leland of Sandia National Laboratories 
(Albuquerque, New Mexico, USA). Version 1.0 
was released in 1993. The much improved Ver- 
sion 2.0 will be released in May 1995. It is this 
version that will be discussed here. 

8.2.2 Description 

Chaco implements four classes of global parti- 
tioning algorithms: 

Simple: three very simple partitioning schemes, 
in which vertices are assigned to processes ran- 
domly or according to their numbering in the ori- 
ginal graph. 

Inertial: recursive inertial bi-, quadri- or octas- 
ection (see Section 5). 

Spectral: recursive spectral bi-, quadri- or 
octasection (see Section 6).  The user can specify 
whether the eigenvectors of the Laplacian matrix 
must be calculated with a Lanczos algorithm or 
with a multilevel algorithm. 

Multilevel: the multilevel algorithm described 
in Section 7.2. 

The output of any of these global methods can be 
fed into a Kernighan-Lin algorithm which locally 
refines the partition. 
Chaco only offers graph partitioning and uses a 
non-graphics interface, so there are no visualisa- 
tion tools, or tools to create meshes. However, 
several people have written MATLAB interfaces 
for Chaco. In particular, John Gilbert at Xerox 
Park has written and agreed to maintain visual- 
isation software that is freely available. 
Chaco is normally used interactively with the 
program prompting for the name of input and 
output files, for the number of sets the graph 
should be partitioned into, and also for data 
about the requested partitioning heuristic. The 
behaviour of Chaco is determined by a large 
number of parameters and tolerances, for which 
the program chooses suitable default values. 
However, the user can create a file with alternat- 
ive values, and is thus able to experiment with 
Chaco. Although normally used interactively, 
Chaco also provides an interface routine that al- 
lows it to be called from user code. 

8.2.3 Availability 

Chaco is available under license from Sandia Na- 
tional Laboratories. It is distributed along with 
technical documentation and some sample input 
files via e-mail. To obtain a copy, contact the 
authors 

Bruce Hendrickson 
Dept. 1422, Mail Stop 1110 
Sandia National Laboratories 
Albuquerque, NM 87185, U.S.A. 
Email: bahQcs. sandia.gov 

and 

Robert Leland 
Dept. 1424, Mail Stop 1110 
Sandia National Laboratories 
Albuquerque, NM 87185, U.S.A. 
Email: lelandQcs.sandia.gov 

At the time of writing this text, licensing condi- 
tions for academics were not completely fixed. 
For corporations, Chaco will be licensed on a 
case-by-case basis. 



Chace is written in Kernighan and Ritchie style, 
but ANSI-compliant C, and, except for the math- 
ematics library, uses no external libraries. It 
should therefore compile and run correctly un- 
der any UNIX system with any ANSI-C standard 
compiler, and can usually be compiled without 
too many problems with non-standard compilers 
as well. 

8.3 T O P / D O M D E C  

8.3.1 Introduction 

TOP/DOMDEC is, in the words of the manual 
[55], a Totally Object oriented Package for visu- 
alisation, DOMain DEComposition, and parallel 
processing on finite element meshes. It was de- 
veloped by PGSoft and by the research group 
of C. Farhat at the University of Colorado at 
Boulder. 
As a partitioning tool, TOP/DOMDEC of- 
fers several state-of-the-art mesh partitioning 
algorithms, whose partitions can subsequently 
be smoothed and optimised using one of 
several non-deterministic optimisation schemes. 
TOP/DOMDEC also provides real-time means 
for assessing a priori the quality of a mesh par- 
tition and discriminating between different par- 
titioning algorithms. The user interface includes 
high speed three-dimensional graphics, a n  inter- 
processor communication simulator with a built- 
in cost model for some real-world parallel com- 
puters and for a generic message-passing parallel 
computer, and an  output function that automat- 
ically generates parallel 1/0 data structures. 

8.3.2 Description 

Here, we will only concisely describe TOP/ 
DOMDEC as a mesh partitioning tool. A more 
thorough discussion, which also discusses the 
other capabilities of TOP/DOMDEC can be 
found in the manual [55], or in Chapter 9 of [26]. 
Just like in Chaco, the idea in TOP/DOMDEC 
is that you first partition the mesh with a global 
partitioning algorithm, and that this initial par- 
tition is subsequently refined with a local optim- 
isation algorithm. TOP/DOMDEC provides the 
following global partitioning algorithms: 

Greedy: the greedy heuristic of Farhat (see Sec- 
tion 4). 

RCM and Recursive RCM: the Reverse 
Cuthill-McKee ordering scheme (RCM), and the 
Recursive RCM algorithm (see Section 3.2.2). 

Principal Inertia (PI)  and Recursive PI: 
the Principal Inertia algorithm projects all the 
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mesh points onto the principal inertia direction of 
the mesh and sorts the mesh points according to 
this  projection into the requested number of sub- 
domains. The Recursive PI algorithm uses the 
above procedure recursively to bisect the mesh 
and submeshes and is therefore identical to the 
Recursive Inertial Bisection heuristic, described 
in Section 5.4. 

Recursive Spectral Bisection: the standard 
Recursive Spectral Bisection algorithm (see Sec- 
tion 6). The Fiedler vector is calculated with the 
multilevel algorithm of Barnard and Simon [44] 
(see Section 6.8). 

Recursive Graph Bisection: the Recursive 
Graph Bisection heuristic described in Section' 
3.2.4. 

1D. Topology Frontal Algorithm: this algo- 
rithm tries to ensure that every subdomain has 
two neighbours at most. It was developed to par- 
tition meshes on which subdomain-based multi- 
frontal solution schemes are used [56]. 
Three non-deterministic optimisation algorithms 
are provided to further optimise the parti- 
tions, viz. tabu search, simulated annealing, and 
stochastic evolution. Since these algorithms are 
very general, it  is possible in principle to op- 
timise the partitions for very complicated cost 
functions. The following functions are provided 
in TOP/DOMDEC: interface size, subdomain 
frontwidth, the product of interface size and 
subdomain frontwidth, node-wise load balance, 
element-wise load balance, edge-wise load bal- 
ance, subdomains aspect ratio, or a weighted sum 
of the above items. 

8.3.3 Availability 

To obtain TOP/DOMDEC, contact 
Charbel Farhat 
College of Engineering 
University of Colorado 
Campus Box 429 
Boulder, CO 80309, U.S.A. 
Email: charbelQboulder . colorado. edu 

Users must pay a one-time fee, the amount of 
which depends on whether the requestor is a re- 
search partner, a research institution, a US gov- 
ernment sponsored institution, or a n  industrial 
corporation. 
TOP/DOMDEC is written in C++. It cur- 
rently runs on the SGI Iris and the IBM RISC 
System/6000 with GL graphics workstations. 
However, if the graphics capabilities are not re- 
quired, TOP/DOMDEC can run on other sys- 
tems as well. 
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1 Introduction 

In these notes we will present an overview of a num- 
ber of related iterative methods for the solution of 
linear systems of equations. These methods are 
so-called Krylov projection type methods and they 
include popular methods as Conjugate Gradients, 
Bi-Conjugate Gradients, CGS, Bi-CGSTAB, QMR, 
LSQR and GMRES. We will show how these methods 
can be derived from simple basic iteration formulas. 
We will not give convergence proofs, but we will refer 
for these, as far as available, to  litterature. 
Iterative methods are often used in combination with 
so-called preconditioning operators (approximations 
for the inverses of the operator of the system to be 
solved). Since these preconditioners are not essential 
in the derivation of the iterative methods, we will not 
give much attention to them in these notes. However, 
in most of the actual iteration schemes, we have in- 
cluded them in order to facilitate the use of these 
schetnes in actual computations. 
For the application of the iterative schemes one usu- 
ally thinks of linear sparse systems, e.g., like those 
arising in the finite element or finite difference ap- 
proximations of (systems of) partial differential equa- 
tions. However, the structure of the operators plays 
no explicit role in any of these schemes, and these 
schemes might also successfully be used to solve cer- 
tain large dense linear systems. Depending on the 
situation that might be attractive in terms of num- 
bers of floating point operations. 

It will turn out that all of the iterative are paral- 
lelizable in a straight forward manner. However, es- 
pecially for computers with a memory hierarchy (i.e., 
like cache or vector registers), and for distributed 
memory computers, the performance can often be im- 
proved significantly through rescheduling of the oper- 
ations. We will discuss parallel implementations, and 
occasionally we will report on experimental findings. 

2 Direct versus Iterative 

1. Standard Gaussian elimination leads to fill-in, 

and this makes the method often expensive. 
Usually large sparse matrices are related to some 
grid or network. In a 3D situation this leads typ- 
ically to a bandwidth - n* (= m2 and m3 = n, 
l / m  the gridsize). 
The number of flops is then typically C?(nm4) - 
n2* [36, 251. For 2D problems the bandwidth is - n i ,  so that the number of flops for a direct 
method then varies like n 2 .  
If one has to solve many systems with different 
right-hand sides, then one has to decompose the 
matrix only once after which the costs for solving 
each system will vary like n8 for 3D problems, 
and like n4 for 2D problems. 

2. For symmetric positive definite systems the er- 
ror reduction per iteration step of CG is - @ 

G+l’ 
with K = I(A1121(A-1/12 [14, 2, 351. 
For discretized second order pde’s, over grids 
with gridsize f we typically see K - m2.  Hence, 
for 3D problems we have that K - n s ,  and for 
2D problems: IC - n. For an error reduction of E 

we must have that 

For 3D problems we have that 

whereas for 2D problems: 

log€ 1 
j M --n2. 

2 

If we assume the number of flops per iteration to 
be - fn (f stands for the number of nonzeros per 
row of the matrix and the overhead per unknown 
introduced by the iterative scheme) 
+ flops per reduction with E: - -fn* log E for 3D problems, 
and - -fn$ loge for 2D problems. 

Paper presented in an AGARD-FDP-VKI Special Course on “Parallel Computing in CFD”, held at the VKI, Rhode-Saint-Genese, Belgium, 
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807. 
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Conclusion: If we have to solve one system at  a 
time, then for large n, or small f, or modest E :  

Iterative methods may be preferable. 

If we have to. solve many similar systems with differ- 
ent right-hand side, and if we assume their number 
to be so large that the costs for constructing the de- 
composition of A is relatively small per system, then 
it seems likely that for 2D problems direct methods 
may be more efficient, whereas for 3D problems this 
is still doubtful, since the flops count for a direct so- 
lution method varies like n % ,  and the number of flops 
for the iterative solver (for the model situation) varies 
like n4. 

Example 
The above given arguments are quite nicely illus- 
trated by observations made by Horst Simon [74]. He 
expects that by the end of this century we will have to 
solve repeatedly linear problems with some 5 x  lo9 un- 
knowns. For what he believes to be a model problem 
at that time, he has estimated the CPU time required 
by the most economic direct method, available a t  
present, as 520,040 years, provided that the compu- 
tation can be carried out at a speed of 1 TFLOP. On 
the other hand, he estimates the CPU time for pre- 
conditioned conjugate gradients, assuming still a pro- 
cessing speed of 1 TFLOPS, as 575 seconds. Though 
we should not take it for granted that in particular 
the preconditioning part can be carried out at that 
high processing speed (for the direct solver this is 
more likely), we see that the differences in CPU time 
requirements are gigantic, indeed (we will come to 
this point in more detail). 
Also the requirements for memory space for the iter- 
ative methods are typically smaller by orders of mag- 
nitude. This is often the argument for the usage of 
iterative methods in 2D situations, when flop counts 
for both classes of methods are more or less compa- 
rable. 

Remarks: 

0 With suitable preconditioning we may have 
fi - n i  and the flops count then becomes 

- -fni log€, 

see, e.g., [37].. 

0 For classes of problems some methods may even 
be faster: multigrid, fast Poisson solvers. 

0 Storage considerations are also in favour of iter- 
ative methods. 

0 For matrices that are not positive definite sym- 
metric the situation can be more problematic: 

it is often difficult to find the proper iterative 
method or a suitable preconditioner. However, 
for projection type methods, like GMRES, Bi- 
CG, CGS, and Bi-CGSTAB we often see that 
the flops counts vary as for CG. 

0 Iterative methods can be attractive even when 
the matrix is dense. Again, in the positive def- 
inite symmetric case, if the condition number is 
n2-2E then, since the amount of work per iter- 
ation step is - 7 t 2 ,  and the number of iteration 
steps N nl-' ,  the total work estimate is roughly 
proportional to n3-', and this is asymptoti- 
cally less than the amount of work for Choleski's 
method, which varies like - n3.  

The question remains at  the moment how well itera- 
tive methods can take advantage of modern computer 
architectures. From Dongarra's linpack benchmark 
[22] it may be concluded that the solution of a dense 
linear system can (in principle) be computed with 
computational speeds close to peak speeds on most 
computers. This is already the case for systems of, 
say, order 50000 on parallel machines with as many 
as 1024 processors. 
In sharp contrast with the dense case are computa- 
tional speeds reported in [24] for the preconditioned 
as well as the unpreconditioned conjugate gradient 
method (ICCG and CG, respectively). 

In [24] a test problem was taken, generated by dis- 
cretizing a three-dimensional elliptic partial differ- 
ential equation by the standard 7-point central dif- 
ference scheme. over a three-dimensional rectangular 
grid, with 100 unknowns in each direction (m = 100, 
n = 1,000,000). The observed computational speeds 
for several machines (1 processor in each case) are 
given in Table 1. 

3 Basic iteration method 
A very basic idea, that leads to many effective itera- 
tive solvers, is to to split the matrix of a given linear 
system in the sum of two matrices, one of which a 
matrix that would have led to a system that can eas- 
ily be solved. The most simple splitting we can think 
of is A = I - ( I - A ) .  Given the linear system Ax = b, 
this splitting leads to the well-known Richardson it- 
eration: 

x i + l  = b + ( I  - A)xi = xi + ri .  

Multiplication by - A  and adding b gives 

b - Axi+l = b - Axi - Ari 

or 

or, in terms of the error 
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Table 1: Speed in Megaflops for 50 Iterations of the Iterative Techniques. 

Machine 

NEC SX-3/22 (2.9 ns) 
CRAY Y-MP C90 (4.2 ns) 
CRAY 2 (4.1 ns) 
IBM 9000 Model 820 
IBM 9121 (15 ns) 
DEC Vax/9000 (16 ns) 
IBM RS/6000-550 (24 ns) 
CONVEX C3210 
Alliant FX2800 

optimized Scaled Peak 
ICCG CG Performance 
Mflops Mflops Mflops 

607 1124 2750 
444 737 952 
96.0 149 500 
39.6 74.6 444 
10.6 25.4 133 
9.48 17.1 125 
18.3 21.1 81 
15.8 19.1 50 
2.18 2.98 40 

+ z - ~ i + l  = Pi+l (A)(z  - 20). to other elements of the same Krylov subspaces. . . , .  
Let us write such an element still as x i + l .  

xi+l E Ki+' (A;  T O ) ,  we have that 
Since 

In these expressions Pi+1 is a (special) polynomial of 
degree i + 1.  Note that Pi+l(O) = 1.  . . .  

Results obtained for the standard splitting can be 
easily generalized to other splittings, since the more with Q i + l  an arbitrary polynomial of degree + 1. 
general splitting A = M - N = M - ( M  - A )  can be 
rewritten as the standard splitting B = 1 - ( I  - B )  

ory of matrix splittings, and the analysis of the con- (3.0a) = @ i + l ( A ) ~ o ,  

xi+i = Qi+i(A)ro, 

It follows that 

for the preconditioned matrix B = M - I A .  The the- ri+l = b - A ~ i + l  = ( I  - AQi+l(A))To 

vergence of the corresponding iterative methods, is 
treated in depth in [go]. We will not discuss this 
aspect here, since it is not relevant a t  this stage. 
Instead of studying the basic iterative methods we 
will show how other more powerful iteration meth- 

with, just as in the standard Richardson iteration, 

The Richardson iteration can be characterized by the 
polynomial Pi+l(A) = ( I  - A)"+'. 

P i + , ( O )  = 1.  

basic iteration methods. In the context of these ac- 
celarated methods, the matrix splittings become im- 
portant in another way, since the matrix M of the 
splitting is often used to precondition the given sys- 
tem. That is, the iterative method is applied to, e.g., 
M - I A x  = M-lb .  We will return to this later. 

From now on we will assume that xo = 0. This too 
does not mean a loss of generality, for the situation 
zo # 0 can through a simple linear transformation 
z = x - xo be transformed to the system 

- 
AZ = b -  AZO = b 

for which obviously zo = 0. 

For the simple Richardson iteration it follows that 

i 

xi+l = To + T1 + r2 + . . . + ri = C(I - A ) ~ T ~  

j = O  

E { T O , A T O ,  ..., A'To} = ~ ? + ' ( A ; T o ) .  

Apparently, the Richardson iteration delivers ele- 
ments of increasing Krylov subspaces. Including lo- 
cal iteration parameters in the iteration would lead 

matrices, like I<'-1, explicitly. Instead, vectors like 

puted by solving Fi from I<fi = b - Ax; .  The matrix 
A' is often sparse, whereas 1C-l usually is not, so that 
this procedure is much more efficient both in CPU- 
time and in computer memory space. 

4 Towards optimal iteration methods 
The natural question arises whether we can pick up 
a better zi+l  from the Krylov subspace that is gen- 
erated by the basic iterative method. One would like 
to see the xj+l for which IIzi+l - 2112 is minimal. 

f .  I - - K -  ' b  - 2 x i  = 1<-1(b - A Z ~ )  are usually com- 

E.g., 11 E { T O }  xi  = ( Y O T O .  

llx - 2111; = (x - QOTO, 2 - (YOTO) = 
= (x, 2) - 2(Yo(x, T o )  + (Y2(To,  Y o ) .  

Minimizing with respect to (YO gives 

and this is not practical, since x is unknown. 

The above expression for (YO suggests that with a 
different innerproduct the problem might, be solvable: 
(2, Y)A (2, AY). 
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5 Syiiiiiietric matrices 

proper innerproduct: 
*If A is symmetric positive definite then this defines a 

(2, ! / ) A  = (!/I x ) A ,  

(2, x ) A  = 0 e 2 = 0. 

Now we have that 

i - I  

This looks promising and therefore we will follow that 
line. 
In general we want 112; - xl lA minimal for xi E 
P(A;  ro) 

a Z j  - 2 L A  K' (A;  TO) 

j ri I K i ( A ; r o ) .  

In particular r1 E {ro ,Aro} .  Assuming that r1 # 
yro (it is easy to check that in that case ro is an 
eigenvector of A and the process could be stopped 
since the exact solution has then be obtained after 
only one iteration step), we see that { T O ,  T I }  form an 
orthogonal basis for K 2 ( A ;  YO). 
By an induction argument we conclude that when the 
process does not find the exact solution at or before 
step i then 

is an orthogonal basis for Ir'atl(A; YO). 
This leads to the idea to construct an orthogonal ba- 
sis for the Krylov subspace, a basis of which is gen- 
erated implicitly by the standard iteration anyway, 
and then to project zi - x, with respect to the A- 
innerproduct, onto the Krylov subspace and to de- 
termine zi from that. 

{ T o ,  r1, . . . ,Ti} 

We have seen that the rj form an orthogonal basis 
for K i ( A ;  T O ) ,  but the next remarkable property is 
that they satisfy a 3-term recurrence relation: 

(5.Oa) 

The proof is as follows. 
r1 E I i 2 ( A ;  1.0) alrl  = Aro - Pore 
7'2 E I i3(A;  ro) 3 r2 E { T O ,  r1, A2ro} 
* r2 E { T O ,  T I ,  A r i }  

aj+lr j+l  = Arj - Pjrj - 7 . r '  3 3 - 1 .  

j a2r2 = Arl - Plr l  - ylr0 

Now we use an induction argument. 

Because we want the new vector rj to be orthogonal 
with respect to all previous ones, the constants Si are 
determined by 

(Arj-1,  rk) - 6 k ( r k ,  r ~ )  = 0 

(5.0b) 

(note that we have used the symmetry of A )  
(Arj-1,  rk) = (r j -1 ,  Ark) 

= (r j -1 ,  f f k + l r k + l  + P k r k  + ykrk-1)  

Here we have used the induction argument for k. Be- 
cause of the orthogonality it follows that 6 k  = 0 for 
k = 0 , .  . . , j - 3 and hence rj also satisfies a 3-term 
recurrence relation. 
The values for Pj and yj follow from the orthogonality 
of the residual vectors: 

Pj = (rj , Arj ) / ( r j  9 rj), 

and 
yj = (r j -1 ,  A r j ) / ( r j - l ,  r j -1) .  

The value of aj+l determines the proper length of the 
new residual vector. From the consistency relation 
(3.0a) we have that each residual can be written as ro 
plus powers of A times T O .  Comparing the coefficient 
for TO in the recurrence relation (5.0a) shows that 

aj+l  + Pj + yj  = 0. 

At the end of this section we will consider the situa- 
tion where the recurrence relation terminates. 

We can view this 3-term recurrence relation slightly 
different as 

Arj = yjr j -1  + Pjrj + aj+lrj+l 

If we consider the rj as being the j- th column of the 
matrix 

R; = ( T O , .  . . , ri-1) 

then the recurrence relation says that A applied to 
a column of Ri results in the combination of three 
successive columns, or 
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or 
( 5 . 0 ~ )  ARi = RiX + cuirie:, 

in which Ti is an i by i tridiagonal matrix and ei is 
the ith canonical vector in 72'. 

Since we are looking for a solution xi in Ir"(A; T O ) ,  

that vector can be written as a combination of the 
h a i s  vectors of the Krylov subspace, and hence 

(Note that y has i components) 
Further we have for the xi, for which the error in 
A-norm is minimal, that 

T Ri (Ax* - b )  = 0 

j RTARiy - RTb = 0.  

Using equation ( 5 . 0 ~ )  and the fact that ri is orthog- 
onal with respect to the columns of Ri we obtain 

R T R ~ Z Y  = llroII$a 

Since RTRi is a diagonal matrix with diagonal ele- 
ments 11ro11; up to Ilri-1II; we find the desired solu- 
tion from 

Note that so far we have only used the fact that A 
is symmetric and we have assumed that the matrix 
T, is not singular. We will see later that this opens 
the possibility for several suitable iterative methods, 
among which the conjugate gradients method. The 
Krylov subspace method that has been derived here is 
known as the Lanczos method for symmetric systems 
[47]. We will exploit the relation between the Lanczos 
method and the conjugate gradients method for the 
analysis of the convergence behaviour of the latter 
method. 

Note that for some j 5 n - 1 the construction of 
the orthogonal basis must terminate. In that case we 
have that ARj+1 = Rj+lTj+l. Let y be the solution 
ofthe reduced system T j + l y  = e l ,  and xj+l = Rj+ly. 
Then it follows that xj+l = t, i.e., we have arrived at 
the exact solution, since Axj+l - b = ARj+ly - b = 
Rj+lTj+ly - b = Rj+lel - b = ' 0  (we have assumed 
that 20 = 0). 

5.1 THE CG-METHOD: 

The Conjugate Gradients CG method [41] is merely 
a variant on the above approach, which saves stor- 
age and computational effort. For, when solving the 
projected equations in the above way, we see that we 
have to save all columns of Ri throughout the pro- 
cess in order to  recover the current iteration vectors 
xi. This can be done cheaper. If we assume that the 

matrix A is in addition positive definite then, because 
of the relation 

R T A R ~  = R T R ~ Z ,  
we conclude that can be transformed by a rowscal- 
ing matrix RT Ri into a positive definite symmetric 
tridiagonal matrix (note that RTARi is positive def- 
inite for y E ai+'). This implies that can be LU 
decomposed without any pivoting: 

Ti = LiUi, 

with Li lower unit bidiagonal and U, upper bidiago- 
nal. Hence 

We concentrate on the factors, placed between paren- 
thesis, separately. 

1. 

Li = 

1 
f l  1 

f 2  ... 

f i - 1  1 

With q E L i l e l  we have that q can be solved 
from Liq = e l  3 f i - 1 q i - 2  + qi-1 = 0 * qi-1, in 
recursive manner. 

2. Write Bi E RiUF1, then we have that 

X l 

T i - i  = gi-~(Bi)i-z + di-l(Bi)i-l 

* (Bi)i-l.  

Glueing these two recurrences together we obtain 
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= xi-1 + qi-I(Bi)i-l 

and this is in fact the well-known conjugate gradients 
method. The name stems from the property that the 
update vectors (Bi)i-1, usually notated as pi-1, are 
A-orthogonal. 
Note that the positive definiteness of A is only ex- 
ploited as to guarantee the flawless decomposition of 
the implictly generated tridiagonal matrix Ti. This 
suggests that the conjugate gradients method may 
also work for certain non positive definite systems, 
but then at our own risk [59]. We will later see how 
other ways of solving the projected system will lead 
to other well-known methods. 

5.1.1 Computational notes 
The standard (unpreconditioned) Conjugate Gradi- 
ent dgorithm for the solution of Az = b can be rep- 
resented by the following scheme: 

zo= initial guess; TO = b - Azo; 
p-1 = 0;p-l = 0; 
Po = (r0,ro) 
f o r i = 0 , 1 , 2  ,.... 

pi = Ti + Pi-lpi-1; 
q; = Ap;; 
a .  - PI 
- ( P i t q i )  

Z i + l  = zi + %pi; 
ri+l = r, - a iq i ;  

if zi+l accurate enough then quit; 
~ i + l  = (ri+l, ri+l); pi = %. 

P i  ' 
end; 

CG is most often used in combination with a suit- 
able splitting A = K - R, and then K-' is called 
the preconditioner. We will assume that K is also 
positive definite. 
Note first that the CG method can be derived for any 
choice of the innerproduct. In our derivation we have 
used the standard innerproduct (z, y) = ziyi, but- 
we have not used any specific property of that inner- 
product. Now we make a different choice: 

[zl YI =- ( 2 1  Ji'Y). 

It is easy to verify that K-'A is symmetric positive 
definite wi th  respect to [ , 3: 

[K- lAz ,  y] = (K-lAz,  K y )  = ( A x ,  y) 
(5.la) = (z, Ay) = [z, K-'Ay]. 

Hence, we can follow our CG procedure for solving 
the preconditioned system I<-'Az = K-'b, using 
the new [ , l-innerproduct. 
Apparently, we now are minimizing 

[xi - 2, K-lA(zi - z)] = (x i  - Z, A(zi  - z)), 

which leads to the remarkable (and known) result 
that for this preconditioned system we still minimize 
the error in A-norm, bu t  now over a Krylov subspace 
generated by li'-'ro and K-lA.  

In the following computational scheme for precon- 
ditioned CG, for the solution of Az = b with precon- 
ditioner I<-1, we have replaced the [ , l-innerproduct 
again by the familiar standard innerproduct. E.g., 
note that with Fi+l = K-lAzi+l - K - ' b  we have 
that 

pi+] = [Fi+l, Fi+l] 

= [1<-1ri+1, 1<-1?y+1] = [r1+1, li'-%i+1] 

= ( T i + l ,  I<-lri+1), 

and K-'ri+l is the residual corresponding to the pre- 
conditioned system K-'Az = K-lb. 

zo= initial guess; ro = b - Azo; 
p-1 = o;p-, = 0; 
Solve WO from KWO = T O ;  

Po = ( r0 ,wo) 
for i = 0, 1 ,2 ,  .... 

pi = Wi + Pi-lpi-1; 
qi = Api; 

( P E A  
zi+l = X i  + aipi; 
ri+l = ri - a i q i ;  

if xi+' accurate enough then quit; 
Solve wi+l from Ir'~i+l = ri+1; 

p i t 1  = (r i+l  2 wi+l); pi = %. 

ai = 4j 

f s  ' 
end; 

Note that this formulation, which is quite popular, 
has the advantage that the preconditioner needs not 
to be splitt into two factors, and it is also avoided to 
backtransform solutions and residuals, as is necessary 
when one applies CG to L-'AL-' y = L-'b. T 

The coefficients aj and pj , generated by the above 
scheme, can be used to build the matrix Ti in the 
following way: 

(5.lb) Ti = 

Since aj > 0 and pj > 0 we see that t.., above ma- 
trix is similar to the following symmetric tridiagonal 
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( 5 . 1 ~ )  ma.tris: 

- 
Ti= 

The eigenvalues of the leading ith order minor of this 
matrix are the Ritz values of the preconditioned ma- 
trix IC-lA with respect to  the i-dimensional Krylov 
subspace spanned by the first i residual vectors. The 
Ritz values approximate the (extremal) eigenvalues 
of the preconditioned matrix increasingly well. These 
approximations can be used to get an impression of 
the relevant eigenvalues. They can also be used to 
construct upperbounds for the error in the delivered 
approsirnation with respect to the solution [45, 401. 
According to the results in [80] the eigenvalue infor- 
mation can also be used in order to understand or 
explain delays in the convergence behaviour. 
5.1.2 The convergence of Conjugate Gradi- 

ents 
The conjugate gradient method (here with K = I )  
constructs in the ith iteration step an x i ,  which can 
be written as 

- 2  2’ - 3: = Pi(A)(xo - X) (cf. ( 3 . 0 ~ ) ) ,  

such that [/xi - x11A is minimal over all polynomials 
Pi of degree i, with Pi(0) = 1. 
Let us denote the eigenvalues and the orthonormal- 
ized eigenvectors of A by X j ,  z j .  We write ro = 
Cj yj zj . It follows that 

ri = Pi(A)ro = C y j P i ( X j ) z j  
j 

and hence 

Note that only those X j  play a role in this process 
for which yj = 0. In particular, if A happens to 
be semidefinite, i.e., there is a X = 0, then this is 
no problem for the minimization process as long as 
the corresponding coefficient y is zero as well. The 
situa.tion where y is small, due to rounding errors, is 
discussed in [45]. 
Upperbounds on the error (in A-norm) are obtained 
by observing that 

for any arbitrary polynomial Qi of degree i with 
Qi(0) = 1, where the maximum is taken, of course, 
only over those X for which the corresponding 7 # 0. 
When Pi has zeros a t  all the different X j  then ri = 0. 
The conjugate gradients method tries to spread the 
zeros in such a way that Pi(Xj) is small in a weighted 
sense, i.e., 11xj - ~ 1 1 ~  is as small as possible. 

We get suitable upperbounds by selecting appro- 
priate polynomials for Qi. A very well-known up- 
perbound arises by taking for Qi the ith degree 
Chebychev polynomial transformed to the interval 
[Amira, A,,,] and scaled such that its value in 0 is 
equal to 1. 

and 

The purpose of preconditioning is to reduce the con- 
dition number IC .  

As we have seen the conjugate gradients algorithm 
is just an efficient implementation of the Lanczos 
algorithm. The eigenvalues of the implicitly gener- 
ated tridiagonal matrix Ti are the Ritz values of A 
with respect to the current Krylov subspace. It is 
known from Lanczos theory that these Ritz values 
converge towards the eigenvalues of A and that in 
general the extremal eigenvalues of A are first well 
approximated [46, 58, 631. Furthermore, the speed of 
convergence depends on how well these eigenvalues 
are separated from the others (gap ratio) [63]. This 
helps us to understand the so-called superlinear con- 
vergence behaviour of the conjugate gradient method 
(as well as other Krylov subspace methods). It can 
be shown that as soon as one of the extremal eigen- 
values is modestly well approximated by a Ritz value, 
the pocedure converges from then on as a process in 
which this eigenvalue is absent, i.e., a process with 
a reduced condition number. Note that superlinear 
convergence behaviour in this connection is used to 
indicate linear convergence with a factor that is grad- 
ually decreased during the process as more and more 
of the extremal eigenvalues are sufficiently well ap- 
proximated (for details on this see [80]). 

5.1.3 Further references 
A more formal presentation of CG, as well as many 
theoretical properties, can be found in the textbook 
by Hackbusch [39]. A shorter presentation is given 
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in [35]. An overview of papers, published in the first 
25 years of existence of the method, is given in [34]. 
Vector processing and parallel computing aspects are 
discussed in [23] and [57]. 

5.2 MINRES and SYMMLQ: 

When A is not positive definite, but still symmetric, 
then we can construct an orthogonal basis for the 
Krylov subspace, as we have seen before. We write 
the recurrence relations slightly different as 

ARi = Ri+lT; ,  

with 

t i - )  

In this case we have the problem that ( , ) A  does not 
define an innerproduct. However we can still try to 
minimize the residual. We look for an 

Now we exploit the fact that R ~ + I D , % ' ~ ,  with Di+l = 
diag(llroll2, Ilrlll2, ..., Ilrill2), is an orthonormal trans- 
formation with respect to the current Krylov sub- 
space: 

and this final expression can simply be seen as a min- 
imum norm least squares problem. 
The element in the (i + 1 , i )  position of 2 can be 
transformed to zero by a simple Givens rotation and 
the resulting upper bidiagonal system (the other sub- 
diagonal elements being removed in previous iteration 
steps) can simply be solved, which leads to the so- 
called MINRES method [60]. 
Another possibility is to solve the system T i y  = 
llr0112e1, as in the CG method ( E  is the upper i by 
i pa.rt of E .  Other than in CG we cannot rely on 
the existence of a Choleski decomposition (since A 
is not positive definite). An alternative is then to 
decompose E by an LQ-decomposition. This again 
leads to simple recurrences and the resulting method 
is known as SYMMLQ [60]. 

5.3 Parallelism and data locality in precondi- 

For successful application of CG one needs that the 
matrix A is symmetric positive definite. In other 
short recurrence methods, other properties of A may 
be desirable, but we will not exploit these properties 
explicitly in the discussion on parallel aspects. 
Most often, the conjugate gradients method is used 
in combination with some kind of preconditioning. 
This means that the matrix A can be thought of to 
be multiplied with some suitable approximation K - '  
for A - l .  Usually, A' is constructed as an approxima- 
tion of A ,  such that systems like Ky = z are much 
more easy to solve as Aa: = b .  Unfortunately, a pop- 
ular class of preconditioners, based upon incomplete 
factorization of A ,  do not lend themselves very much 
for parallel implementation., We will discuss some 
approaches to obtain more parallelism in the precon- 
ditioner in section 9.1. At the moment we will assume 
that the preconditioner is chosen such that the par- 
allelism in solving K y  = z is comparable with the 
parallelism in computing Ap,  for given p .  
For CG it is also required that the preconditioner Zi' 
is symmetric positive definite. This aspect will play a 
role in our discussions since it shows how some prop- 
erties of the preconditioner can be used sometimes to 
our advantage for an efficient implementation. 

tioned CG: 

The scheme for preconditioned CG is given in Sec- 
tion 5.1.1. Note that in that scheme the updating of 2 
and r can only start after the completion of the inner- 
product required for ai. Therefore, this innerproduct 
is a so-called synchronization point: all computation 
has to wait for completion of this operation. One can 
try to avoid such synchronization points as much as 
possible, or to formulate CG in such a way that syn- 
chronization points can be taken together. We will 
see such approaches further on. 
Since on a distributed memory machine communi- 
cation is required to assemble the innerproduct, it 
would be nice if we could proceed with other useful 
computation while the communication takes place. 
However, as we see from our CG scheme, there is no 
possibility to overlap this communication time with 
useful computation. The same observation can be 
made for the updating of p ,  which can only take place 
after the completion of the innerproduct for pi .  Apart 
from the computation of Ap and the computations 
with I<, we need to load 7 vectors for 10 vector float- 
ing point operations. This means that for this part 
of the computation only 10/7 floating point operation 
can be carried out per memory reference in average. 

Several authors ( [ l l ,  52, 531) have attempted to im- 
prove this ratio, and to reduce the number of syn- 
chronization points. In our formulation of CG there 
are two such synchronization points, namely the com- 
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putation of both innerproducts. 
Meurant [52] (see also [68]) has proposed a variant 
in which there is only one synchronization point, 
however a t  the cost of a possibly reduced numerical 
stability, and one additional innerproduct. In this 
scheme the ratio between computations and memory 
references is about 2. 
We show here another variant, proposed by Chrono- 
poulos and Gear [ll]. 

end i; 

In this scheme all vectors need only be loaded once 
per pass of the loop, which leads to a better exploita- 
tion of the data (improved data locality). However, 
the price is that we need 272 flops more per itera- 
tion step. Chronopoulos and Gear [ll] claim stabil- 
ity, based upon their numerical experiments. 
Instead of 2 synchronization points, as in the stan- 
dard version of CG, we have now only one synchro- 
nization point, as the next loop can only be started 
when the innerproducts at the end of the previous 
loop have been assembled. Another slight advantage 
is that these innerproducts can be computed in par- 
allel. 
Chronopoulos and Gear [ll] propose to further im- 
prove the data locality and parallelism in CG by com- 
bining s successive steps. Their algorithm is based 
upon the following property of CG. The residual vec- 
tors ro,  ..., ri form an orthogonal basis (assuming ex- 
act arithmetic) for the Krylov subspace spanned by 
ro, Aro, ..., Ai-- 'ro.  When arrived at  r j ,  the vectors 

rj also form a basis for ro, r1, ..., r j ,  A r j ,  ..., 
this subspace. Hence, we may combine s successive 
steps by generating r j ,  A r j ,  ..., AS-'rj  first, and then 
do the orthogonalization and the updating of the cur- 
rent solution with this blockwise extended subspace. 
This approach leads to a slight increase in flops in 
comparison with s successive steps of the standard 

Ai- j -1  

CG, and also one additional matrix vector product is 
required per s steps. 
The main drawback in this approach seems to be the 
potential numerical instability. Depending on the 
spectral properties of A ,  the set r j ,  ..., A'-'rj may 
tend to converge to a vector in the direction of a 
dominating eigenvector, or, in other words, may tend 
to dependence for increasing values of s. The authors 
claim to have seen successful completion of this ap- 
proach, with no serious stability problems, for small 
values of s. Nevertheless, it seems that s-step CG, 
because of these problems, has a bad reputation (see 
also [SS]). However, a similar approach, suggested by 
Chronopoulos and Kim [12] for other processes such 
as GMRES, seems to be more promising. Several au- 
thors have pursued this research direction, and we 
will come back to this in section 7.3.  

We consider still another variant of CG, in which 
there is possibility to overlap all of the communica- 
tion time with useful computations. This variant is 
just a reorganized version of the original CG scheme, 
and is therefore precisely as stable. The key trick in 
this approach is to delay the updating of the solution 
vector by one iteration step. 
Another advantage over the previous scheme is that 
no additional operations are required. 
It is assumed that the preconditioner K can be writ- 
ten as I< = ( L L T ) - ' .  Furthermore, it is assumed 
that the preconditioner has a block structure, corre- 
sponding to the gridblocks assigned to the processors, 
so that communication (if necessary) can be over- 
lapped with computation. 

Now we discuss how this scheme may lead to an ef- 
ficient parallel scheme, and how local memory (vector 
registers, cache, ...) can be exploited. 
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1. All computing intensive operations can be car- 
ried out in parallel. Only for the operations (2), 
(3), (7), (8), (9), and (0), communication be- 
tween processors is required. We have assumed 
that the communication in (2), (7), and (0) can 
be largely overlapped with computation. 

2. The communication required for the assembly of 
the innerproduct in ( 3 )  can be overlapped with 
the update for x (which could have been done in 
the previous iteration step). 

exploit parallelism in combination with suitable so- 
lution techniques, like for instance iterative solution 
methods. 
From a parallel point of view CG mimics very well 
parallel performance properties of a variety of it- 
erative methods such as Bi-CG, CGS, BiCGSTAB, 
QMR, and others. 
In this section we study the performance of CG on 
parallel distributed memory systems and we report 
on some supporting experiments on actual existing 
machines. Guided by our experiments we will discuss 
the suitability of CG for Massively Parallel Process- 

All computational intensive elements in precondi- 

tor operations) are trivially parallelizable for shared 
memory machines [23], except possibly for the pre- 

4. Steps (I), (2)) and ( 3 )  can be combined: the conditioning step: Solve wi+l from I<wi+l = ri+l. 

computation of a segment of pi can be followed For the latter operation parallelism depends very 
immediately by the Computation of a segment of much on the choice for I<. In this section we restrict 
qi (2), and this can be followed by the compu- ourselves to block Jacobi preconditioning, where the 
tation of a part of the innerproduct in (3). This blocks have been chosen so that each processor can 
saves on load operations for segments of pi and handle one block independently of the others. For 
Q i  . other preconditioners that allow some degree of par- 

3. The assembly of the innerproduct in (8) can be 
overlapped with the computation in (0). Also ing 
step (9) usually requires information such as the 

with (0). 
110rn1 of the residual, which Can be overlapped tioned CG (updates, innerproducts, and matrix 'e'- 

5. Depending on the structure of L ,  the computa- 
tion of segments of r;+l in (6) can be followed 
by operations in (7), which can be followed by 
the computation of parts of the innerproduct in 
(8), and the computation of the norm of ri+l, 
required for (9). 

6. The computation of pi can be done as soon as the 
computation in (8) has been completed. At that 
moment, the computation for (1) can be started 
if the requested parts of wi have been completed 
in (0). 

7. If no preconditioner is used, then wi = ri ,  and 
steps (7) and (0) have to be skipped. Step (8) has 
to be replaced by pi = (ri+l, ri+l). Now we need 
useful computation in order to overlap the com- 
munication for this innerproduct. To this end, 
one might split the computation in (4) per pro- 
cessor in two parts. The first of these parts are 
computed in paralell in overlap with (3), while 
the parallel computation of the other parts is 
used in order to overlap the communication for 
the computation of p i .  

5.4 Parallel performance of CG: 

Some realistic 3D computational fluid dynamics sim- 
ulation problems, as well as other problems, lead to 
the necessity to solve linear systems Ax = b with a 
matrix of very large order, billions of unknowns, say. 
If not of very special structure, such systems are not 
likely t80 be solved by direct elimination methods. 
For such very large (sparse) systems we will have to 

allelism see [23]. 
For a distributed memory machine at  least some of 
the steps require communication between processors: 
the accumulation of innerproducts and the computa- 
tion of Api (depending on the non-zero structure of 
A and the distribution of the non-zero elements over 
the processors). We consider in some more detail the 
situation where A is a block-tridiagonal matrix of or- 
der N ,  and we assume that all blocks are of order a: 

A1 D1 ( D1 A2 DZ 

in which the Di are diagonal matrices, and the Ai are 
tridiagonal matrices. Such systems occur quite fre- 
quently in finite difference approximations in 2 space 
dimensions. Our discussion can easily be adapted to 
3 space dimensions. 

5.4.1 Processor configuration and data dis- 
t ribut ion 

For simplicity we will assume that the processors are 
connected as a 2D grid with p x p = P processors. 
The data have been distributed in a straight forward 
manner over the processor memories and we have not 
attempted to fully exploit the underlying grid struc- 
ture for the given type of matrix in order to reduce 
communication as much as possible. In fact it will 
turn out that in our case the communication for the 
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processor 1 

processor 2 

processor 3 

etc. 

Fig.1: Distribution of A over the processors. 

ma.trix vector product plays only a minor role for ma- 
trix systems of large size . 
Because of symmetry only the 3 non-zero diagonals 
in the upper triangular part of A need to be stored, 
and we have chosen to store successive parts of length 
N I P  of each diagonal in consecutive neighbouring 
processors. In Figure 1 we see which part of A is 
represented by the data in the memory of a given 
processor. 

The blocks for block Jacobi are chosen to be the 
diagonal blocks that are available on each processor, 
and the various vectors ( T ; ,  p ; ,  etc.) have been dis- 
tributed likewise, i.e. each processor holds a section 
of length N I P  of these vectors in its local memory. 

5.4.2 Required Communication 

matrix vector product It is easily seen for a 2 0  proces- 
sor grid (as well as for many other configurations, in- 
cluding hypercube and pipeline), that the matrix vec- 
tor product can be completed with only neighbour- 
neighbour communication. This means that the com- 
munication costs do not increase for increasing val- 
ues of p .  If one follows a domain decomposition way 
of approach, in which the finite difference discretiza- 
tion grid.is subdivided into p by p subgrids ( p  in 2- 
direction and p in y-direction), then the communica- 
tion costs are smaller than the computational costs 

In [17] much attention is given to this sparse ma- 
trix vector product and it is shown that the time for 
communication can almost completely be overlapped 
with computational work. Therefore, with adequate 
coding the matrix vector products do not necessarily 
lead to serious communication problems, even not for 

by a factor of U (  p). fi 

relatively small-sized problems. 
On a MEIKO SP1 (located at Utrecht University, this 
machine has only 4 processors) we have observed, for 
N = 90000, a speed-up by a factor of 1.85 for two 
processors, and of 1.96 when overlap possibilities are 
exploited. In both cases we expect, by extrapolat- 
ing our timing results, a factor of 2 for very large N .  
According to a naive interpretation of Amdahl’s law 
we might expect a severe degradation in performance 
for more than two processors. However, if we in- 
crease the size of the problem for increasing numbers 
of processors then the local communication time for 
the matrix product does not increase so that it does 
not pose limits on the performance when we increase 
the value of p .  

vector update In our case these operations do not re- 
quire any communication and we should expect linear 
speed up when increasing the number of processors 
P .  

inner product For the innerproduct we need global 
communication for assembly and we need global com- 
munication for the distribution of the assembled in- 
nerproduct over the processors. For a p x p processor 
grid these communication costs are proportional with 
p .  This means that for a constant length of the vec- 
torparts per processor, these communicationcosts will 
dominate for values of p large enough. This is quite 
unlike the situation for the matrix vector product and 
as we will see it may be a severely limiting factor in 
achieving high speed-ups in a massively parallel en- 
vironment. 

For the MEIKO SP1 we have done some experi- 
ments in order to determine the costs of inter proces- 
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Fig.2: Modelled timings for 1 iteration with CG. 

sor communication and for communication. Assum- 
ing that the costs for communication (for the inner- 

of communication we have modelled the wall-clock 
time for 1 iteration with CG, for matrices of order 
9OOOOP, as in Figure 2. Note that we have increased 
the size of the linear system linearly with the num- 

larger computers one aims to solve larger systems. 
The value 90000 has been chosen since this is more 
or less the size of the part of the system that can 
be kept in the local memory of one processor of our 
MEIKO machine. 

From this Figure we learn that for P slightly larger 
than 400 the communication costs may be expected 
to dominate, and eventually they will lead to very 
low speed-ups (even for systems for which the size is 
as large as the total memory permits). We also see, 
that if overlap of communication and computation 
is possible, then potentially the communication can 
be hidden for values of P less than 400, but this de- 
mands for a reformulation of the CG algorithm. Of 
course, these expectations are based on a model, but 
we have also carried out similar experiments on the 
512 processor Parsytec GCel-3/512 of the University 
of Amsterdam [15]. In particular we have observed 
on that machine that the communication time for the 
innerproduct increases like f i ,  which just explains 
the behaviour of our model for the MEIKO-type of 
architecture. 

Our experiments and our modelling approach 
clearly show that even a method like CG, which 
might be anticipated to be highly parallel, may suf- 
fer severely from the communication overhead due 
to the required innerproducts. Our study indicates 
that if we want reasonable speed-up in a massively 
parallel environment then the local memories should 

I 

I 

I 

products) grow linearly with the length of the path 

~ 

I ber of processors, which seems realistically since with 

also be much larger when the number of processors 
is increased in order to accomodate for systems large 
enough to compensate for the increased global com- 
munication costs. 

Another approach would be to modify the CG 
method such that the innerproducts take relatively 
less time. Many of such approaches have been stud- 
ied recently. A quite popular approach is to refor- 
mulate CG such that the required innerproducts can 
be computed simultaneously, so that the communi- 
cation overhead is reduced (the communication re- 
quired for 2 simultaneous innerproducts is almost the 
same as for 1 innerproduct). An extreme form of this 
approach is to reformulate CG so that a number of 
basis vectors for the search space are computed with- 
out making them orthogonal. The orthogonalization 
is then carried out afterwards, and in this approach 
most of the communication can be combined. The 
numerical stability of these approaches is still a point 
of concern. For an overview and further references 
see [6] .  For some other iterative methods, such as 
GMRES, this approach can be quite effective as is 
shown in [17]. 

Still another approach is to try to more useful com- 
putational work per iteration step, so that the com- 
munication for the two innerproducts takes relatively 
less time. One way to do this is to use polynomial 
preconditioning, i.e., the preconditioner consists of 
a number of matrix vector products with the matrix 
A .  This may work well in situations where the matrix 
vector product requires only little (local) communica- 
tion. Another way is to apply domain decomposition: 
the given domain is split into P ,  say, subdomains with 
estimated values for the solutions on the interfaces. 
Then all the subproblems are solved independently 
and in parallel. This way of approximating the solu- 
tion may be viewed as a preconditioning step in an 



iterative method. In this way we do more computa- 
tional work per communication step. Unfortunately, 
depending on the problem and on the way of decou- 
pling the subdomains one may need a larger number 
of iteration steps for larger values of P ,  which may 
then, of course, detoriate the overall efficiency of the 
domain decomposition approach. For more informa- 
tion on this approach we also refer to references given 
in [6] .  

If a given architecture permits the overlap of com- 
munication with computation, then we may try to re- 
formulate CG in order to create possibilities for over- 
lap. For the (extrapolated) MEIKO this may help for 
values of P up to about 400. For larger P we will see 
communication dominating anyhow, but the adverse 
effects can be lessened. A stable reformulation of CG 
which has this effect has been described in [20]. 

6 Unsymmetric problems 
There are essentially three different ways to solve 
unsymmetric linear systems, while maintaining some 
kind of orthogonality between the residuals: 

1 .  Solve the normal equations ATAx = ATb with 
conjugate gradients 

2 .  Make all the residuals explicitly orthogonal in 
order to have an orthogonal basis for the Krylov 
subspace 

3. Construct a basis for the Krylov subspace by a 
3-term biorthogonality relation 

6.1 Normal Equations: 
The first solution seems rather obvious. However, it 
has severe disadvantages because of the squaring of 
the condition number. This has as effects that the so- 
lution is more susceptible to errors in the right-hand 
side and that the rate of’convergence of the CG pro- 
cedure is much slower as for a comparable symmetric 
system with a matrix with the same condition num- 
ber as A .  Moreover, the amount of work per iteration 
step, necessary for the matrix vector product, is dou- 
bled. 
There have been made several proposals to improve 
the numerical stability of this rather robust approach. 
The most well-known is by Paige and Saunders [61] 
and is based upon applying the Lanczos method to 
the auxiliary system 

I A  
( A T  O ) ( i ) = ( i )  

Clever execution of this delivers in fact the factors 
L and U of the LU-decomposition of the tridiagonal 
matrix that would have been delivered when carrying 
out the Lanczos procedure with ATA.  
Another approach to improve the numerical stabil- 
ity of this normal equations approach is suggested by 
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Bjorck and Elfving [ 8 ] .  They observed that the ma- 
trix ATA is used in the construction of the iteration 
coefficients through an innerproduct like ( p ,  ATAp).  
They simply suggest to  replace such an innerproduct 

The use of conjugate gradients in a least squares con- 
text, as well as a theoretical comparison with SIRT 
type methods, is discussed in [81] and [82]. 

by (AP, AP). 

An interesting variant of LSQR is the so-called 
Craig’s method [ 6 1 ] ,  The easiest way to think of this 
method is to apply Conjugate Gradients to the sys- 
tem ATAx = ATb, with the following choice for the 
innerproduct 

which defines a proper innerproduct if A is of full 
rank (see section 5.1.1). 
First note that the two innnerproducts in CG (as 
in section 5.1.1 can be computed without inverting 
A ~ A :  

[ p i , ~ ~ ~ p i ]  = ( p i , p i ) ,  

and, assuming that b E R ( A )  so that Ax = b has a 
unique solution x (since A has full rank): 

[ri ,  ri] = [AT(Azi  - b ) ,  AT(Azj - b] 
= [ATA(xi - x), AT(Azi - b ) ]  
= (xi - Z, AT(Axi - 6 ) )  

(6.la) = (Axi - b,Axi - b )  

Apparantly, we are with CG minimizing 

that is, in this approach the Euclidean norm of the 
error is minimized. Note, however, that the rate of 
convergence of Craig’s method is determined by the 
condition number of ATA,  so that this method is only 
attractive if one has a good preconditioner for ATA. 

6.2 FOM and GMRES: 

The second approach is to form explicitly an or- 
thonormal basis for the Krylov subspace. Since A is 
not symmetric we no longer have a 3-term recurrence 
relation for that purpose and the new basis vector 
has to be made explicitly orthonormal with respect 
to all the previous vectors: 

1 
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As in  the symmetric case this can be exploited in two 
different ways. The orthogonality relation can either 
be written as 

T (6.2a) AV, = V,Hi + hi+l,ivi+lei , 
after which the projected system, with a Hessen- 
berg matrix instead of a tridiagonal matrix as in the 
symmetric case, can be solved (nonsymmetric CG, 
GENCG, FOM, Arnoldi's method), or it can be writ- 
ten a.s 
(6.2b) A% = K+lHi ,  

after which the projected system, with an i + 1 by 
i upper Hessenberg matrix can be solved as a least 
squares system. In GMRES [72] this is done by the 
QR method using Givens rotations in order to anni- 
hilate the subdiagonal elements in the upper Hessen- 
berg matrix H i .  

The first approach (based upon (6.2a)) is similar to 
the conjugate gradient approach (or SYMMLQ), the 
second approach (based upon (6.2b)) is similar the 
conjugate directions method (or MINRES). 

In order to avoid excessive storage requirements 
and computational costs for the orthogonalization, 
GMRES is usually restarted after each m iteration 
steps. This algorithm is referred to as GMRES(m). 
Below we give a scheme for GMRES(m) which may 
be suitable to develop a computer code. It solves 
Ax = b ,  with a given preconditioner I<. 

10 is an initial guess; 
for j = 1,2 ,  .... 

Solve r from K r  = b - Azo; 
01 = r / l l r l l 2 ;  
s := Ilrll2e1; 
for i = 1,2 ,  ..., m 

orthogonalization of w 
against v's, by modified 
Gram-Schmidt process 

Solve w from K w  = Avi; 

for k = 1, ..., i 
h k , i  = ( w ,  vk) ;  
W = W - h k , i V k ;  

end k; 
hi+l , i  = IIw112; 
vi+l = w/hi+l , i ;  
apply J 1 ,  '.', J i - 1  on ( h l , i ,  ..', hi+l, i);  

construct J i ,  acting on i-th 
and (i + 1)-st component 
of h , , i ,  such that (i + 1)-st 
component of Jih,, i  is 0; 

s := J ~ s ;  
if s ( i  + 1) is small enough then: 
(UPDATE(2, i); quit); 

end i; 
UPDATE(2, m); 

end j; 

In this scheme UPDATE(2, i) replaces the follow- 
ing computations: 

Compute y as the solution of H y  = S,  
in which the upper i by i triangular 
part of H has h i j  as its elements 
(in least squares sense if H is singular), 
S represents the first i components of s; 

si+l equals ( ( b  - A2112; 
if this component is not small enough 
then x o  = 2 ;  
else quit; 

5 = 20 + y1 * V I  + ~ 2 ~ 2  + ... f y i v i ;  

Another scheme for GMRES, based upon House- 
holder orthogonalization instead of modified Grani- 
Schmidt has been proposed in [92]. For certain ap- 
plications it seems attractive to invest in additional 
computational work in turn for improved numerical 
properties: the better orthogonality might save iter- 
ation steps. 

The eigenvalues of H ,  are the Ritz values of K - l A  
with respect to the Krylov subspace spanned by 211, 

..., vi.  They approximate eigenvalues of K - ' A  in- 
creasingly well for increasing dimension i. 

There is an interesting and simple relation be- 
tween the two different Krylov subspace projection 
approaches (6.2a), the "FOM" approach, and (6.2b), 
the "GMRES" approach. The projected system ma- 
trix f i i  is transformed by a Givens rotations to an 
upper triangular matrix (with last row equal to zero). 
So, in fact, the major difference between FOM and 
GMRES is that in FOM the last ((i+l)-th row is sim- 
ply discarded, while in GMRES this row is rotated to 
a zero vector. Let us characterize the Givens rotation, 
acting on rows i and d + l ,  in brder to zero the element 
in position (i + 1, i ) ,  by the sine si and the cosine c i .  
Let us furt,her denote the residuals for FOM with an 
superscript F and those for GMRES with superscript 
G. Then the above observations lead to the following 
results for FOM and GMRES (for details see [72] and 
[91). 

1. The reduction for successive GMRES residuals 
is given by - 

( 6 . 2 ~ )  

([72]: p. 862, Proposition 1) 

2. If C k  # 0 then the FOM and the GMRES resid- 
uals are related by 

([9]: theorem 5.1) 



From these relations we see that when GMRES has a 
local significant reduction in the norm of the residual 
(i.e., s k  is small), then FOM gives about the same 
result. as GMRES (since c i  = 1 - s i ) .  On the other 
hand when FOM has a break-down ( c k  = 0), then 
the GMRES does not lead to an improvement in the 
same iteration step. 
Because of these relations we can link the conver- 
gence behaviour of GMRES with the convergence of 
Ritz values (the eigenvalues of the "FOM" part of the 
upper Hessenberg matrix). This has been exploited 
in [88], for the analysis and explanation of local ef- 
fects in the convergence behaviour of GMRES. 

In order to limit the required amount of memory 
storage and the amount of flops per iteration step, 
one often restarts the GMRES method after each m 
steps. This restarted version is commonly referred to 
as GMRES(m), while the not-restarted method often 
is called Full GMRES. 

There are various different implementations of 
FOM and GMRES. Among those equivalent with 
GMRES are: Orthomin [9l], Orthodir [44], Axels- 
son's method [3] and GENCR [27]. These methods 
are often more expensive than GMRES per itera- 
tion step. Orthomin seems to be still popular, since 
this variant can be easily truncated (Orthomin(s)), 
in contrast to GMRES. The truncated or restarted 
versions of these algorithms are not necessarily math- 
ematically equivalent. 
Methods that are mathematically equivalent with 
FOM are: Orthores [44] and GENCG [13, 931. In 
these methods the approximate solutions are con- 
structed such that they lead to orthogonal residuals 
(which form a basis for the Krylov subspace; analo- 
gously to the CG method). A good overview of all 
these methods and their relations is given in [7l]. 

6.3 Rank-one updates for the Matrix Split- 
ting: 

Iterative methods can be derived from a splitting of 
the matrix, and we have used the very simple split- 
ting A = I -  R ,  with R = I - A ,  in order to derive the 
projection type methods. In [26] it is suggested to up- 
date the matrix splitting with information obtained 
in the iteration process. We will give the flavour of 
this method here since it turns out that it has an in- 
teresting relation with GMRES. This relation is ex- 
ploited in [89] for the construction of new classes of 
GMRES-like methods, that can be used as cheap al- 
ternatives for the increasingly expensive full GMRES 
method. 

Assume that the matrix splitting in the L-th itera- 
tion step is given by A = H k l  - R k ,  then we obtain 
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the iteration formula 

The idea is now to construct H k  by a suitable rank- 
one update to H k - 1 :  

which leads to 

or 

or 
1 p k - l U k - 1  = A- ( I  - A H k - 1 ) T k - l .  

However, A-' is unknown and the best approxima- 
tion we have for it is H k - 1 .  This leads to the choice 

The constant p k - 1  is chosen such that I l rk l l2  is min- 
imal as a function of p k - 1 .  This leads to 

Since V k - 1  has to be chosen such that p k - 1  = 
~ T - ~ r k - l ,  we have the following obvious choice for 
it 

(note that from the minimization property we have 
that T k  1 A U k - 1 ) .  

In principle the implementation of the method is 
quite straight forward, but note that the computation 
of T k - 1 ,  E k - 1  and f i k - 1  costs 4 matrix vector multi- 
plications with A (and also some with H k - 1 ) .  This 
would make the method too expensive for being of 
practical interest. Also the updated splitting is most 
likely a dense matrix if we carry out the updates ex- 
plici tl y. 
We will now show, still following the lines set forth in 
[26], that there are orthogonality properties, follow- 
ing from the minimization step, by which the method 
can be implemented much more efficiently. 
We.define 



3-16 

or 

(6.3e) 

Furthermore (on behalf of (6 .3~)) :  

(6.3f) = n ( I -  c;cT)Eo. 
i=O 

We see that the operator E k  has the following effect 
on a vector. The vector is multiplied by Eo and then 
orthogonalized with respect to C O ,  ..., C k - 1 .  Now we 
have from (6.3e) that 

and hence 
(6.3g) c k  1 CO, ..., c k - 1  

A consequence from (6.3g) is that 

k - 1 k - 1  

j =O j =O 

and therefore 
k 

j = O  

The actual implementation is based on the above 
properties. Given r k  we compute r k + l  as follows (and 
we update X k  in the corresponding way): 

r k + i  = E k + i r k .  

With 
previous steps): 

= E O r k  we first compute (with the c j  from 

k - 1  k - 1  

j =O j =O 

The expression with leads to a Gram-Schmidt for- 
mulation, the expression with n leads to the Modi- 
fied Gram-Schmidt variant. 
The computed updates -c?€(O)c j  for r k + l  correspond 
to updates 

CT,$o)A-l~. 3 - - cT j € (O) u j l l l A u i l l 2  

for x j + l .  

below, represented by q. 
These updates are in the scheme, given 

From ( 6 . 3 ~ )  we know that 

G k  = H k E k r k  = H k t  ( k ) .  

Now we have to make A u k  - c k  orthogonal w.r.t. 
C O ,  ..., c k - 1 ,  and to update i i k  accordingly. Once 
we have done that we can do the final update 
step to make H k + l ,  and we can update both x k  

and r k  by the corrections following from includ- 
ing c k .  The orthogonalization step can be car- 
ried out easily as follows. Define c r )  = (YkCk = 
A H k E k r k  = ( I  - E k ) E k r k  (See (6.3e)) = ( I  - 
Eo+f$-lEo)((k) (See (6.3f)) = A N o < ( k ) + P k - l ( I -  

= c p )  + P k - l $ k '  - P k - l C p ) .  Note that the 
second term vanishes since $ k )  1 C O ,  ..., C k - 1 .  

The resulting scheme for the k-th iteration step 
becomes: 

1. = ( I  - A H o ) r k ;  q(O) = HOQ; 
for i = 0, ..., k- 1 do 

ai = c y ) ;  
p+l) = - f f i c i ;  q("+l) = ,(i) + (Yiui; 

2. = H o [ ( k ) ;  = Au(O). 
k k l  

for i = 0, ..., IC - 1 do 
p. - - T (i). c ( i + l )  = ( i )  + P . ~ . .  

u k  

I -  c i c k ~  k ' k  t 1 1  

( i + l )  = tp + piui;  
( k )  ( k )  . 

c k  = ck /lick 1121 'ilk = ~ ~ ) / ~ ~ c ~ ) ~ ~ 2 ~  

x k + l  = x k  + q(k )  + u k C r ( ( k ) ;  

r k + l  = ( I  - C k C r ) < ( k ) ;  

3. 

Remarks 

1. The above scheme is a Modified Gram Schmidt 
variant, given in'[89], of the original scheme in 
[261. 

2. I f  we keep Ho fixed, i.e., No = I ,  then the 
method is not scaling invariant (the results for 
pAa = p b  depend on p). In [89] a scaling invari- 
ant method is suggested. 

3. Note that in the above implementation we have 
'only' two matrix vector products per iteration 
step. In [89] it is shown that in many cases we 
may also expect comparable converge as for GM- 
RES in half the number of iteration steps. 
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4. A different choice for i i k - 1  does not change the 
formulas for E k - 1  and Ek-1. For each different 
choice we can derive similar schemes as the one 
above. 

I 5. From (6.3b) we have 

In view of the previous remark we might also 
make the different choice G k - 1  = HE-Irk-1. 

With this choice, we obtain a variant which is 
algebraically identical to GMRES (for a proof of 
this see [89]). This GMRES variant is obtained 
by the following changes in the previous scheme: 
Take Ho = 0 (note that in this case we have that 
Ek-lrk-1 = rk-1, and hence we we may skip 
part 1 of the above algorithm), and set < ( k )  = rk, 

$ k )  = 0. In step 2 start with u r )  = < ( k ) .  
The result is a different formulation of GMRES 
in which we can obtain explicit formulas for the 
updated preconditioner (i.e., the inverse of A is 
approximated increasingly well): The update for 
Hk is U.kcrEk and the sum of these updates gives 
an approximation for A-' .  

G. Also in this GMRES-variant we are still free 
to select uk a little bit different. Remember 
that the leading factor H k - 1  in (6 .3~)  was in- 
troduced as an approximation for the actually 
desired A-' .  With f i t - 1  = A-lrk-1,  we would 
have that r k  = E k - l r k - 1  - p k - l r k - l  = 0 for the 
minimizing p k -  1 .  We could take other approxi- 
mations for the inverse (with respect to the given 
residual r k - l ) ,  e.g., the result vector y obtained 
by a few steps GMRES applied to Ay = r k - 1 .  

This leads to the so-called GMRESR family of 
nested methods (for details see [89]). See also 
section 6.4. A similar algorithm, named FGM- 
RES, has been derived independently by Saad 
[70]. In FGMRES the search directions are pre- 
conditioned, whereas in GMRESR the residuals 
are preconditioned. This gives GMRESR direct 
control over the reduction in norm of the resid- 
ual. As a result GMRESR can be made robust 
while FGMRES may suffer from break-down. A 
further disadvantage of the FGMRES formula- 
tion is that this method cannot be truncated, or 
selectively orthogonalized, as GMRESR can. 
In [4] a generalized conjugate gradient method is 
proposed, a variant of which produces in exact 
arithmetic identical results as the proper variant 
of GMRESR, though at  higher computational 
costs and with a classical Gram-Schmidt orthog- 
onalization process instead of the modified pro- 
cess as in GMRESR. 

6.4 GMRESR and GMRESk: 
By Van der Vorst and Vuik [89] it has been shown 
how the GMRES-method can be combined (or rather 
preconditioned) with other iterative schemes. The it- 
eration steps of GMRES (or GCR) are called outer 
iteration steps, while the iteration steps of the pre- 
conditioning iterative method are referred to as inner 
iterations. The combined method is called GMRESk, 
where * stands for any given iterative scheme; in the 
case of GMRES as the inner iteration method, the 
combined scheme is called GMRESR[89]. 
Similar schemes have been proposed recently. In 
FGMRES[70] the update directions for the ap- 
proximate solution are preconditioned, whereas in 
GMRES* the residuals are preconditioned. The lat- 
ter approach offers more control over the reduction in 
the residual, in particular break-down situations can 
be easily detected and remedied. 
In exact arithmetic GMRES* is very close to the Gen- 
eralized Conjugate Gradient method[4]; GMRES*, 
however, leads to a more efficient computational 
scheme. 

The GMRES* algorithm can be described by the 
following computational scheme: 

20 is an initial guess; ro = b - Azo; 
for i = 0 , 1 , 2 , 3  ,... 

Let drn) be the approximate solution 
of Az = rj ,  obtained after m steps of 
an iterative method. 
c = A Z ( ~ )  (often available from the 

iteration method) 
for IC = 0,  ..., i- 1 

a = ( c k , c )  
C = C - - c k  
*(m) = J m )  - &Uk 

z i + l  = X i  + ( c i ,  ri)ui 
ri+l = rj - (ci, ri)ci 
if zi+l is accurate enough then quit 

ci = c/llcll2; ui = z(m)/llcl12 

end 

A sufficient condition to avoid break-down in this 
method (llc112 = 0) is that the norm of the residual 
at the end of an inner iteration is smaller than the 
right-hand residual: IIAz(") - rill2 < Ilrill2. This can 
easily be controlled during the inner iteration process. 
If stagnation occurs, i.e. no progress a t  all is made 
in the inner iteration, then it is suggested by Van der 
Vorst and Vuik[89] to do one (or more) steps of the 
LSQR method, which guarantees a reduction (but 
this reduction is often only small). 

The idea behind this combined iteration scheme 
is that we explore parts of high-dimensional Krylov 
subspaces, hopefully localizing the same approximate 
solution that full GMRES would find over the en- 
tire subspace, but now at much lower computational 
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costs. The alternatives for the inner iteration could 
be either one cycle of GMRES(m), since then we have 
also locally an optimal method, or some other iter- 
ation scheme, like for instance Bi-CGSTAB. As has 
been shown by Van der Vorst[87] there are a number 
of different situations where we may expect stagna- 
tion or slow convergence for GMRES(m). In such 
cases it does not seem wise to use this method. 

On the other hand it may also seem questionable 
whether a method like Bi-CGSTAB should lead to 
success in the inner iteration. This method does 
not satisfy a useful global minimization property 
and large part of its effectiveness comes from the 
underlying Bi-CG algorithm, which is based on bi- 
orthogonality relations. This means that for each 
outer iteration the inner iteration process has to build 
a hi-orthogonality relation again. It has been shown 
for the related Conjugate Gradients method that the 
orthogonality relations are determined largely by the 
distribution of the weights a t  the lower end of the 
spectrum and on the isolated eigenvalues a t  the up- 
per end of the spectrum[82]. By the nature of these 
kind of Krylov processes the largest eigenvalues and 
their corresponding eigenvector components quickly 
do enter the process after each restart, and hence 
it may be expected that much of the work is lost 
i n  rediscovering the same eigenvector components in 
the error over and over again, whereas these compo- 
neiits may already be so small that further reduction 
in those directions in the outer iteration is waste of 
time, since it hardly contributes to a smaller norm of 
the residual. 
This heuristic way of reasoning may explain in 
part our rather disappointing experiences with Bi- 
CGSTAB as the inner iteration process for GMRES*. 

De Sturler and Fokkema[lS] propose to prevent the 
outer search directions explicitly from being reinves- 
t,iga.ted again in the inner process. This is done by 
keeping the Krylov subspace that is build in the in- 
ner iteration orthogonal with respect to the Krylov 
basis vectors generated in the outer iteration. The 
procedure works as follows. 
In the outer iteration process the vectors CO, ..., c;-1 
build an orthogonal basis for the Krylov subspace. 
Let Ci be the n by i matrix with columns CO, ..., 
ci-1. Then the inner iteration process a t  outer iter- 
ation i is carried out with the operator Ai instead of 
A,  and Ai is defined as 

(6.4.3) Ai = ( I  - CiCT)A. 

It is easily verified that Aiz I CO, ..., ci-1 for all 2, 
so that the inner iteration process takes place in a 
subspace orthogonal to these vectors. The additional 
costs, per iteration of the inner iteration process, are 
i inner products and i vector updates. In order to 
save on these costs, one should realize that it is not 

necessary to orthogonalize with respect to all previ- 
ous c-vectors, and that “less effective” directions may 
be dropped, or combined with others. De Sturler and 
Fokkema[lS] suggestions are made for such strategies. 
Of course, these strategies in cases where we see too 
little residual reducing effect in the inner iteration 
process in comparison with the outer iterations of 
GMRES*. 
6.5 Bi -conjugate  Gradients: 

The third class of methods arises from the attempt 
to construct a suitable set of basis vectors for the 
Krylov subspace by a three-term recurrence relation 
as in (5.0a): 

(6.5a) crj+lrj+l = Arj - Pjrj - yjrj-1. 

As we have seen in the proof for the orthogonality of 
such a set of vectors (see section 4), we needed the 
symmetry of the matrix A .  In the nonsymmetric case 
we need instead of (5.0b) that 

T (Arj-1,rk) = (rj-1,A r k )  = 0 for IC < j - 2. 

By similar arguments as in the proof for (5.0a) we 
conclude that (6.5a) can be used to  generate a basis 
r0, ... ,ri-l for Ki(A; ro), such that rj I Kj-’(AT; ro), 
or even more general, 

rj I Kj-l(AT; SO), 

since there is no explicit need to generate the Krylov 
subspace for AT with ro as the starting vector. 
If we let the basis vectors sj for Ki(AT;  SO) satisfy the 
same recurrence relation as the vectors rj, i.e., with 
identical recurrence coefficients, then we see that 

(rk,sj)=O for l c f j  

(by a simple symmetry argument). 
Hence, the sets { r j }  and { s j }  satisfy a biorthogonality 
relation. Now we can proceed in a similar way as in 
the symmetric case: 

(6.5b) A R ~  = R ~ E  + cririe?, 

but now we use the matrix Sj = [SO, S I ,  ..., si-11 for 
the projection of the system 

T Si (Ax* - b )  = 0, 

or 
SFARiy - S,Tb = 0. 

Using (6.5b) we find that yi satisfies 

SFRiT,y = (r0,so)el. 

Since FRi is a diagonal matrix with diagonal ele- 
ments (r j ,  s j ) ,  we find, if all these diagonal elements 
are nonzero, that 
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This method is known as the Bi-Lanczos method [47]. 
We see that we are in problems when a diagonal el- 
ement of 5’: Ri becomes (near) zero, this is referred 
to in litterature as a serious (near) breakdown. The 
wa,y to get around this difficulty is the so-called Look- 
a1iea.d strategy, which comes down to taking a num- 
ber of successive basis vectors for the Krylov subspace 
together and to make them blockwise bi-orthogonal. 
This has been worked out in detail in [62] and [30], 

Another way to avoid break-down is to restart as 
soon as a diagonal element gets small. Of course, this 
strategy looks surprisingly simple, but one should re- 
alise that a t  a restart the Krylov subspace, that has 
been built up so far, is thrown away, which destroys 
possibilities for faster (i.e., superlinear) convergence. 

[311, [321. 

As has been shown for Conjugate Gradients, the 
LU decomposition of the tridiagonal system can be 
updated from iteration to iteration and this leads to 
a. recursive update of the solution vector. This avoids 
to save all intermediate r and s vectors. This variant 
of Bi-Lanczos is usually called Bi-Conjugate Gradi- 
ents, or shortly Bi-CG [28]. 
Of course one can in general not be certain that an 
LU decomposition (without pivoting) of the tridiago- 
nal matrix Ti exists, and this may lead also to break- 
down of the Bi-CG algorithm. Note that this break- 
down can be avoided in the Bi-Lanczos formulation 
of this iterative solution scheme. It is also avoided in 
the QMR approach (see Section 5.4.2).  
Note that for symmetric matrices Bi-Lanczos gen- 
erates the same solution as Lanczos, provided that 
SO = T O ,  and under the same condition Bi-CG de- 
livers the same iterands as CG for positive definite 
matrices. However, the Bi-orthogonal variants do so 
a.t t,he cost of two matrix vector operations per iter- 
ation step. 

It is difficult to make a fair comparison between 
GMRES and Bi-CG. GMRES really minimizes a 
residual, but a t  the cost of increasing work for keep- 
ing all residuals orthogonal and increasing demands 
for memory space. Bi-CG does not minimize a resid- 
ual, but often it has a comparable fast convergence 
as GMRES, at the cost of twice the amount of matrix 
vector products per iteration step. However, the gen- 
eration of the basis vectors is relatively cheap and the 
memory requirements are limited and modest. Sev- 
eral variants of Bi-CG have been proposed which in- 
crease the effectiveness of this class of methods in cer- 
tain circumstances. These variants will be discussed 
in coming subsections. 

The following scheme may be used for a computer 
implementation of the Bi-CG method. In the scheme 
the equation Ax = b is solved with a suitable precon- 

ditioner K .  

20 is an initial guess; T O  = b - Azo; 
solve WO from Kwo = T O ;  

FO is an arbitrary vector such that ( W O ,  F o )  # 0, 
usually one chooses ?O = ro or FO = W O ;  

solve GO from K * G ~  = ~ 0 ;  

p-1 = 13-1 = 0 ; P - l  = 0;po  = (w0,Po); 
for i = 0 , 1 , 2 ,  .... 

pi = W i  + Pi-1pi-1;  

Fi = Gi + P i - l F i - 1  ; 
~i = Api; 
a i=&;  

ri+l = Fi - aiATpi; 
ri+l = ri - CY(%(; 

solve wi+l from I-i”wj+l = ri+l;  

solve ~ i + 1  from K * I z ~ + ~  = ~ i + 1 ;  

- 

pi+l  = ( F i + l ,  W + I )  ; 
zit1 = x i  + a i p i ;  

p. - 
if zi+l is accurate enough then quit; 

P i  1 -  

end 

As with conjugate gradients, the coefficients aj and 
pj , j = 0 , .  . . , i - 1 build the matrix x, as given in 
formula (5 . lb) .  This matrix is, for BiCG, in general 
not similar to a symmetric matrix. Its eigenvalues can 
be viewed as Petrov-Galerkin approximations, with 
respect to the spaces { F j }  and { r j } ,  of eigenvalues of 
A .  For increasing values of i they tend to converge to 
eigenvalues of A .  The convergence patterns, however, 
may be much more complicated and irregular as in 
the symmetric case. 

6.5.1 Another derivation of Bi-CG 
An alternative way to derive Bi-CG comes from con- 
sidering the following symmetric linear system: 

for some suitable vector b .  
If we select b = 0 and apply the CG-scheme to this 
system, then we obtain LSQR again. However, if 
we select b # 0 and apply the CG scheme with the 
preconditioner 

(OI ;), 
in the way as is shown in section 4.4.1,  then we obtain 
right away the unpreconditioned Bi-CG scheme for 
the system A z  = b .  Note that the CG-scheme can be 
applied since K - l B  is symmetric (but not positive 
definite) with respect to the bilinear form 

[ P l  Q1 = (P, JCQ),  

which is not a proper innerproduct. Hence, this for- 
mulation clearly reveals the two principal weaknesses 
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of Bi-CG (i.e., the causes for break-down situations). 
Note that if we restrict ourselves to vectors 

.=(;:), 
then [13, q]  defines a proper innerproduct. This situ- 
ation arises for the Krylov subspace that is created 
for B and 6 if A = AT and 6 = b. If, in addition, 
A is positive definite then K-'B is positive definite 
symmetric with respect to the generated Krylov sub- 
space, and we obtain the CG-scheme (as expected). 
More generally, the choice 

where l i l  is a suitable preconditioner for A,  leads to 
the preconditioned version of the Bi-CG scheme, as 
given in section 5.4. 

The above presentation of Bi-CG was inspired by a 
closely related presentation of BI-CG in [42]. The lat- 
ter paper gives a rather untractable reference for the 
choice of the system Bf = 8 and the preconditioner 

I to [43]. 

6.5.2 QMR 

The QMR method [32] relates to  Bi-CG in a simi- 
lar way as MINRES relates to CG. For stability rea- 
sons the basis vectors rj and f j  are normalized (as 
is usual in the underlying Bi-Lanczos algorithm, see 
[94]), which leads to other coefficients in the 3-term 
recursion formulas. 
If we group the residual vectors rj, for j = 0, ..., i- 1 
in a matrix R;, then we can write the recurrence re- 
1a.tions as 

ARi = Ri+lTi, 

with 

Similar as for MINRES we would like to construct 
the x i ,  with 

xi E { ro ,A~o ,  . . . ,  Ai-lro}, xi = Rig 

for which 

IIAxci - bll2 = llARiy - b112 

= [lRi+iZY - b11z 

= I I Ri+ 1 &!I { Di+ I T,  Y - I I I I2  e I } I I2  

is minimal. However, in this case that would be quite 
an amount of work since the columns of Ri+l are 
not necessarily orthogonal. Freund and Nachtigal[32] 
suggest to solve the miniminum norm least squares 
problem 

( 6 . 5 ~ )  yER' min ( I ~ i + l T ; y  - IIToIIze1IIz. 

This leads to the simplest form of the QMR method. 
A more general form arises if the least squares prob- 
lem ( 6 . 5 ~ )  is replaced by a weighted least squares 
problem. No strategies are yet known for optimal 
weights, however. 
In [32] the QMR method is carried out on top of 
a look-ahead variant of the bi-orthogonal Lanczos 
method, which makes the method more robust. Ex- 
periments suggest that QMR has a much smoother 
convergence behaviour than Bi-CG, but it is not es- 
sentially faster than Bi-CG. 

6.5.3 CGS 

For the bi-conjugate gradient residual vectors it 
is well-known that they can be written as rj = 
Pj(A)ro and +j = Pj(AT)+O, and because of the bi- 
orthogonality relation we have that 

( r j ,  +i) = ( ~ j ( ~ ) r o ,  ~ i ( ~ ~ ) + o )  

= (Pi(A)Pj(A)ro, f o )  = 0 ,  

for i < j. 
The iteration parameters for hi-conjugate gradients 
are computed from innerproducts like the above. 
Sonneveld observed that we can also construct the 
vectors ;;j = Pf(A)ro, using only the latter form of 
the innerproduct for recovering the bi-conjugate gra- 
dients parameters (which implicitly define the poly- 
nomial Pj).  By doing so, it can be avoided that the 
vectors f j  have to he formed, nor is there any multi- 
plication with the matrix A T .  
The resulting CGS [79] method works in general very 
well for many unsymmetric linear problems. It con- 
verges often much faster than BI-CG (about twice as 
fast in some cases) and does not have the disadvan- 
tage of having to store extra vectors like in GMRES. 
These three methods have been compared in many 
studies (see, e.g., [67, 10, 65, 551). 
However, CGS usually shows a very irregular con- 
vergence behaviour. This behaviour can even lead 
to cancellation and a spoiled solution [86]. See also 
section 6.5.4. 



The following scheme carries out the CGS process 
for the solution of Az = b, with a given precondi- 
tiouer K: 

LO is an initial g u m ;  ro = b - Azo; 
?o is an arbitrary vector, such that 
( 7 0 ,  a) f 0, 
e.g., ?O = ro;po = (r0,FO); 
P-1=Po;P-1=qo=0; 
for i = 0,1 ,2 ,  __. 

ui = ri +Pi-Iqi; 
p i = u i + P i - l ( ~ i + p i - l p i - l ) ;  
solve 8 from Kp = pi ; 
6 = Ap; 
ai = *; 

V0,U 

Qj+l = ui -ai*; 
solve fi from Kir = ui + qi+l 
zit1 = zi +a& 
if zi+l is accurate enough then quit; 
ri+l = ri - cuiAir; 
Pi+l = (Fo, ri+A 
ifpi+l = 0 then method fails to converge !; 
Oi = y ;  

end 

In exact arithmetic, the aj and pj are the same con- 
stants as those generated by BiCG. Therefore, they 
can be used to compute the Petrov-Galerkin approx- 
imations for eigenvalues of A. 
6.5.4 Effects of irregulnr convergence 
By very irregular convergence we refer to the situa- 
tion where successive residual vectors in the iterative 
process differ in orders of magnitude in norm, and 
some of these residuals may be even much bigger in 
norm than the starting residual. We will try to give 
an impression why this is a point of concern, even 
if eventually the (updated) residual satisfies a given 
tolerance. For more details we refer to Sleijpen et 
al[75, 771. 

We will say that an algorithm is accurate for a cer- 
tain problem if the updated residual rj and the true 
residual b - Azj are of comparable size for the j ’ s  of 
interest. 

The best we can hope for is that for each j the error 
in the residual is only the result of applying A to the 
update wj+l for zj in finite precision arithmetic: 

(6.5d) 

if 

rj+l = rj - Awj+l- A ~ w j + i  

Z i + l  = zj + W j + l ,  (6.5e) 
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the update Awj for the residual rj from the update 
wj for the approximation zj by matrix multiplication: 
for this part, (6.5d) describes well the local deviations 
caused by evaluation errors. 
In the “ideal” case (i.e. situation (6.5d) whenever 

we update the approximation) we have that 

k 

(6.5f) 
j = 1  

where the perturbation matrix AA may depend on j 
and ej is the approximation error in the j t h  approx- 
imation: ej E L - zl.  Hence, 

j = O  

Except for the factor r, the last upper-bound a p  
pears to be rather sharp. We see that approximations 
with large approximation errors may ultimately lead 
to an inaccurate result. Such large local approxima- 
tion errors are typical for CGS, and Van der Vorst[86] 
describes an example of the resulting numerical in- 
accuracy is given. If there are a number of approxi- 
mations with comparable large approximation errors, 
then their multiplicity may replace the factor L, oth- 
erwise it will be only the largest approximation error 
that makes up virtually the bound for the deviation. 

Example. Figure 3 illustrates nicely the loss of accu- 
racy as described above; for other examples, cf. [86]. 
The convergence history of the updated residuals (the 
‘circles’: 00) and the true residuals (the solid curve: - 
-) of CGS is given for the matrix SEERMAN4 from 
the Harwell-Boeing set of test matrices. Here, as in 
other figures, the norm of the residuals, on log-scale, 
is plotted (along the vertical axis) against the num- 
ber of matrix-vector multiplications (along the hori- 
zontal axis). The dotted curve (. . . .) represents the 
estimated inaccuracy: 2fcJS, Ilrj 11 (here with r=  1; 
cf. (6.5g)). 

for each j, where AA is an n x n matrix for which 
[AA I 5 n~ IAl: n~ is the maximum number of non- 
zero matrix entries per row of A, IB( = (IbilI) if 
B = (bi,), is the relative machine precision, the 
inequality j refers to element-wise 5. In the Bi-CG 
type methods that we consider, we compute explicitly proaches leads to optimal accurate approximations 

We will discuss two approaches that lead to a 
smoother convergence. 
- Approaches to obtain the smoothing effect by 
adding a few lines to existing codes leave the speed of 
convergence essentially unchanged. One of these a p  
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ShMM"4 if llsll small enough then 
zi+l = zi + aip; quit; 

Solve z from K z  = s; - I N ~ C O S D S ~ I I ~ S  

o m ~ ~ t d C G S n r  t = Az;  
...( sa. 1naecunoy wi = ( i , s ) / ( t > t ) ;  

2;+1 = zi + aip + wiz;  
if zi+l is accurate enough then quit; 

= s - wit; 
end 

The matrix I< in this scheme represents the precon- 
ditioning matrix and the way of preconditioning [86]. 
The above scheme in fact carries out the Bi-CGSTAB 
procedure for the explicitly postconditioned linear 

A I C ' y  = b ,  
0 50 100 150 m 250 3M 350 400 system 

number of matrix-vsmr munipllcmions 

Fig.3: Convergence plot CGS for the true resid- 
uals and the updated residuals. 

[76] and will be discussed in Section 7. For other 
ones, we refer to the literature (e.g., [95]). 
- In the next section, we concentrate on techniques 
that really change the convergence: they smooth 
down and speed up the convergence, and lead to more 
accurate approximations, all a t  the same time. 

6.5.5 Bi-CGSTAB 

Bi-CGSTAB [86] is based on the following observa- 
tion. Instead of squaring the Bi-CG polynomial, we 
can construct other iteration methods, hy which z, 
are generated so that r,-= P,(A)P,(A)ro with other 
i th degree polynomials P. An obvious possibility is 
to take for F, a polynomial of the form 

but the vectors y, and the residual have been back- 
transformed to the vectors x, and r, corresponding to 
the original system Az = b .  Compared to  CGS two 
extra innerproducts need to be calculated. 
In exact arithmetic, the a, and P, have the same val- 
ues as those generated by Bi-CG and CGS. Hence, 
they can be used to extract eigenvalue approxima- 
tions for the eigenvalues of A (see Bi-CG). 
Bi-CGSTAB can be viewed as the product of Bi-CG 
and GMRES(1). Of course, other product methods 
can be formulated as well. Gutknecht [38] has pro- 
posed BiCGSTAB2, which is constructed as the prod- 
uct of Bi-CG and GMRES(2). 

6.5.6 Derivation of Bi-CGSTAB 

The polynomial P, and related polynomials are im- 
plicitly defined by the Bi-CG scheme. 

and to select suitable constants w j .  This expression 
leads to an almost trivial recurrence relation for the 

In Bi-CGSTAB wj in the j t h  iteration step is chosen 
as to minimize r j ,  with respect to w j ,  for residuals 
that can he written as rj = Qj(A)Pj(A)ro.  
The preconditioned Bi-CGSTAB algorithm for solv- 
ing the linear system Ax = b, with preconditioning 

Qi . 

I< reads as follows: 

z0 is an initial guess; ro = 6 -Azo; 
Fo is an arbitrary vector, such that 

(PO, Po) # 0, e.g., i;o = ro; 
p - 1  = a-1 = w-1 = 1; 
v-1 = p-1 = 0; 
for i = 0,1 ,2 ,  ... 

pi = (To, ri);Pi-l = ( P i / p i - l ) ( a i -  

pi = ri + P ~ - I ( P $ - I  - W i - l v i - l ) ;  
Solve p from K p  = p i ;  
vi = Ap; 
ai = pi / (Foy  v i ) ;  
s = ri - aivi; 

10 is an initial guess; PO = b -Azo; 
i o  is an arbitrary vector, such that 

PO = 1; 
$0 = PO = 0 ;  
for i = 1,2 ,3 ,  ... 

(Fo, To) # 0, e.g., i o  = ro; 

pi = ( f i - 1 , V i - 1 ) ; &  = ( P i / p i - l ) ;  
pi = T i - 1  + Pipi-1; 
p. - " z - ri-1+ P i A - 1 ;  
vi = Ap,; 
ai = p i / @ i ,  v i ) ;  
zi = zi-1+ a i p i ;  
if zi is accurate enough then quit; 
ri = ri-1 - aiv; ;  
f. , - - ~ i - 1  - aiATP<; 

end 

From this scheme it is straight forward to show that 
r, = Pi(A)ro and pi+l = E(A)ro, in which Pi(A) 
and T,(A) are f t h  degree polynomials in A. The Bi- 
CG scheme then defines the relations between these 
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polynomials: 

T,(A)ro = (Pi(A) + Pi+lTi-l(A))ro, 

and 

Pi(A)ro = (P i - l (A)  - aiAT,_l(A))ro. 

In the Bi-CGSTAB scheme we wish to have recur- 
rence relations for 

~i = Qi(A)Pi(A)ro. 

With Qi as in (6.5h) and the Bi-CG relation for the 
factor Pi and E ,  it then follows that 

Qi (A)Pi ( A)ro = 

( 1  - wiA)Qi- 1 (A) (  pi- 1 ( A )  - aiAT,- 1 (A))ro 

= { Qi- 1 (A)Pi- 1 ( A )  - ai AQi- 1 (A)Z- 1 ( A ) } ~ o  

-wi A{ (Qi  - 1 (A)Pi- 1 ( A )  - ai AQi- 1 (A)Ti- 1 (A))}ro. 
Clearly, we also need a relation for the product 
Qd(A)T,(A)ro. This can also be obtained from the 
Bi-CG relations: 

Qi ( A ) Z  ( A ) ~ o  = Qi (A) (  Pi ( A )  + Pi+l Z- 1 ( A ) ) ~ o  

= Qi(A)Pi(A)ro + P i + l ( l -  wiA)Qi-l(A)Z-1(A)~o 

= Qi ( A )  Pi ( A ) ~ o  + Pi+ 1 Qi - 1 ( A ) Z -  1 ( A )  TO 

-Pi+l wi AQi- 1 (A)T,- 1 (A)ro. 
Finally we have to recover the Bi-CG constants 

p i ,  P i ,  and a, by innerproducts in terms of the new 
vectors that we now have generated. 
E.g., Pi can be computed as follows. First we com- 
pute 

Pi+i = (+o, Qi(A)pi(A)ro) = (Qi(AT)+0, Pi(A)ro). 

By construction Pi(A)ro is orthogonal with respect 
to all vectors Ui-l(AT)+O, where Ui-1 is an arbitrary 
polynomial of degree i - 1 at most. This means that 
we have to consider only the highest order term of 
Qi(AT) when computing $i+1. This term is given by 
( - 1 ) ' w l w Z . .  . w ~ ( A ~ ) ~ .  We actually wish to compute 

Pi+l = (Pi(AT)+o, p i ( A ) r ~ ) ,  

and since the highest order term of Pj(AT) is given 
by (-l)ialcrz.. .ai(AT)', it follows that 

Pi = (Pi /Pi-  1 )  (ai - 1 /wi - 1 ) .  

The other constants can be derived similarly. 

Note that in our discussion we have focussed on the 
recurrence relations for the vectors ri and p i ,  while in 
fact our main goa1,is to determine zi.  As in all CG- 
type methods, z i  itself is not required for continuing 

the iteration, but it can easily be determined as a 
"sideproduct" by realizing that an update of the form 
ri = ri-1 -yAy corresponds to an update xi = xi-1 + 
yy for the current approximated solution. 

By writing r, for Qi(A)Pi(A)ro and pi for 
Qi-l(A)Z-l(A)rO, we obtain the following scheme 
for Bi-CGSTAB (we trust that, with the foregoing 
observations, the reader will now be able to verify 
the relations in Bi-CGSTAB). In this scheme we have 
computed the w, so that ri = Qi(A)Pi(A>ro is mini- 
mized in 2-norm as a function of wi. 

6.5.7 Bi-CGSTAB2 and variants 

The residual rk = b - Aa:k in the Bi-Conjugate Gra- 
dient method, when applied to Aa: = b with start 20 
can be written formally as Pk(A)ro, where Pk is a k- 
degree polynomial. These residuals are constructed 
with one operation with A and one with AT per iter- 
ation step. It was pointed out in [79] that with about 
the same amount of computational effort one can con- 
struct residuals of the form ?k = Pi(A)ro, which is 
the basis for the CGS method. This can be achieved 
without any operation with A T .  The idea behind the 
improved efficiency of CGS is that if Pk(A) is viewed 
as a reduction operator in BiCG, then one may hope 
that the square of this operator will be a twice as 
powerful reduction operator. Although this is not al- 
ways observed in practice, one typically has that CGS 
converges faster than BiCG. This, together with the 
absence of operations with AT,  explains the success 
of the CGS method. A drawback of CGS is that its 
convergence behavior can look quite erratic, that is 
the norms of the resdiduals converge quite irregularly, 
and it may easily happen that Ilrk+lllz is much larger 
than I l rk l l2  for certain k (for an explanation of this 
see [84]). 
In [86] it was shown that by a similar approach as 
for CGS, one can construct methods for which rk can 
be interpreted as r k  = Pk(A)Qk(A)ro, in which Pk is 
the polynomial associated with BiCG and Q k  can be 
selected free under the condition that Q k ( 0 )  = 1. In 
[86] it was suggested to construct Qk as the product 
of k linear factors 1 - wjA, where wj was taken to 
minimize locally a residual. This approach leads to 
the BiCGSTAB method. Because of the local mini- 
mization, BiCGSTAB displays a much smoother con- 
vergence behavior than CGS, and more surprisingly 
it often also converges (slightly) faster. One weak 
point in BiCGSTAB is that we get break-down if an 
wj is equal to  zero. One may equally expect negative 
effects when w j  is small. In fact, BiCGSTAB can be 
viewed as the combined effect of BiCG and GCR(l),  
or GMRES( l ) ,  steps. As soon as the GCR( 1 )  part of 
the algorithm (nearly) stagnates, then the BiCG part 
in the next iteration step cannot (or only poorly) be 
constructed. 
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Another dubious aspect of BiCGSTAB is that the fac- 
tor Qk has only real roots by construction. I t  is well- 
known that optimal reduction polynomials for matri- 
ces with complex eigenvalues may have complex roots 
a.s well. If, for instance, the matrix A is real skew- 
symmetric, then GCR( 1 )  stagnates forever, whereas 
a. method like GCR(2) (or GMRES(2)), in which we 
.minimize over two combined successive search direc- 
tions, may lead to convergence, and this is mainly 
due to the fact that then complex eigenvalue compo- 
nents in the error can be effectively reduced. 
This point of view was taken in [38] for the con- 
struction of the BiCGSTAB2 method. In the odd- 
numbered iteration steps the Q-polynomial is ex- 
panded by a linear factor, as in BiCGSTAB, but 
i n  the even-numbered steps this linear factor is dis- 
carded, and the Q-polynomial from the previous 
even-numbered step is expanded by a quadratic 1 - 
Q ~ A  - pkA2. For this construction the information 
from the odd-numbered step is required. It was antic- 
ipated that the introduction of quadratic factors in Q 
might help to improve convergence for systems with 
complex eigenvalues, and, indeed, some improvement 
was  observed in practical situations (see also [64]). 
However, our presentation suggests a possible weak- 
ness i n  the construction of BiCGSTAB2, namely 
in trhe odd-numbered steps the same problems may 
occur as in BiCGSTAB. Since the even-numbered 
steps rely on the results of the odd-numbered steps, 
this may equally lead to unnecessary break-downs or 
poor convergence. In [78] another, and even simpler 
approach was  taken to arrive at the desired even- 
numbered steps, without the necessity of the con- 
struction of the intermediate BiCGSTAB-type step 
in the odd-numbered steps. Hence, in this approach 
the polynomial Q is constructed straight-away as a 
product of quadratic factors, without ever construct- 
ing a linear factor. As a result the new method 
BiCGSTAB(2) leads only to significant residuals in 
the even-numbered steps and the odd-numbered steps 
do not lead necessarily to useful approximations. 
In fact, it is shown in [78] that the polynomial Q 
can also be constructed as the product of !-degree 
factors, without the construction of the intermedi- 
ate lower degree factors. The main idea is that ! 
successive BiCG steps are carried out, where for the 
sake of an AT-free construction the already available 
part of Q is expanded by simple powers of A. This 
means that after the BICG part of the algorithm 
vectors from the Krylov subspace s ,  As, A’S, ..., A‘s, 
with s = Pk(A)Qk-e(A)ro are available, and it is then 
relatively easy to minimize the residual over that par- 
ticular Krylov subspace. There are variants of this 
approach in which more stable bases for the Krylov 
subspaces are generated [77], but for low values of 
a. standard basis satisfies, together with a minimum 
norm solution obtained through solving the associ- 

ated normal equations (which requires the solution 
of an C by system. In most cases BiCGSTAB(2) 
will already give nice results for problems where Bi- 
CGSTAB or BiCGSTAB2 may fail. Note, however, 
that, in exact arithmetic, if no break-down situation 
occurs, BiCGSTAB2 would produce exactly the same 
results as BiCGSTAB(2) at the even-numbered steps. 

Bi-CGSTAB(2) can be represented by the following 
algorithm : 

xo is an initial guess; ro = b - Azo; 
i o  is an arbitrary vector, 

such that ( r ,  i o )  # 0, 
e.g., ro = r ;  

for i = 0,2 ,4 ,6 ,  ... 
Po = -W2P0 

Po = 1 ; u  = 0;cr = 0;wz = 1 ;  

even B i C G  s tep:  
PI = ( i o ,  T i ) ;  P = ~ P I / P O ;  PO = P I  
U = ri - pu;  
v = A u  
Y = (21, i o ) ;  = P o / %  
r = ri - crv; 
s = Ar 
2 = xi + cru; 

odd B i C G  step:  
P1 = ( i o ,  .);P = Q p l / P o ; P o  = p1 
v = s - p v ;  
w = AV 
Y = ( t u ,  i o ) ;  Q = P o / %  
u = r - p u  
r = r - c r v  

t = As 
s = s - c r w  

GCR( 2)-part:  
w1 = (r,s);c1 = ( s , s ) ;  
v = ( s ,  t ) ;  T = ( t ,  t ) ;  
w2 = ( r ,  t ) ;  T = T - v ’ / p ;  
w2 = ( U 2  - v U l / P ) / T ;  

U1 = (U1 - W ) / P  
~ i + 2  = x + w1r + W ~ S  + CYU 

, r,+2 = r - w1s - w2t 
if xi+2 accurate enough then quit 
U = U - W l V  - w2w 

end 

For more general BiCGSTAB(C) schemes see [78, 
771. 
Another advantage of BiCGSTAB(2) over BiCG- 
STAB2 is in its efficiency. The BiCGSTAB(2) al- 
gorithm requires 14 vector updates, 9 innerproducts 
and 4 matrix vector products per full cycle. This 
has to be compared with a combined odd-numbered 
and even-numbered step in BiCGSTAB2, which re- 
quires 22 vector updates, 11 innerproducts, and 4 
matrix vector products, and with two steps of Bi- 
CGSTAB which require 4 matrix vector products, 8 



innerproducts and 12 vector updates. The numbers A-domhrad@ba 

for BiCGSTAB2 are based on an implementation de- ... B1.M 
0 .- ow(Bs(zI) 

-2 

-BIc(IWIAB scribed in [64]. 
Also with respect to memory requirements, BiCG- 
STAB(2) takes an intermediate position: it requires 
2 n-vectors more than BiCGSTAB and 2 n-vectors 1 
less than BiCGSTAB2. 

For distributed memory machines the innerprod- 
ucts may cause communication overhead problems 3 .6 

very similar to conjugate gradient iteration steps, so 
(see, e.g., [16]). We note that the BiCG steps are 

that we may consider all kind of tricks that have been 
suggested to reduce the number of synchronization 
points caused by the 4 innerproducts in the BiCG am uy) MO 8m 

If on a specific computer it is possible to overlap 
communication with communication, then the BiCG 

parts. For an overview of these approaches see [6]. ~ o t l m u h - m a m ~ ~  

Fig.4: Convergence plot. 

a 

parts can be rescheduled as to create overlap possi- 
bil]ities: 1, the comDutation of D, in the even B~CG this type of matrices this behavior of Bi-CGSTAB is . -  
step may be done just before the update of U a t  the 
end of the GCR part. 
2. The update of zi+a may be delayed until after the 
computation of 7 in the even BiCG step. 
3. The computation of p1 for the odd BiCG step can 
be done just before the update for I at the end of the 
even BiCG step. 
4. The computation of y in the odd BiCG step has 
already overlap possibillities with the update for U. 

For the GCR(2) part we note that the 5 innerprod- 
ucts can be taken together, in order to reduce start- 
up times for their global assembling. This gives the 
method BiCGSTAB(2) a (slight) advantage over Bi- 
CGSTAB. Furthermore we note that the updates in 
the GCR(2) may lead to more efficient code than for 
BiCGSTAB, since some of them can be combined. 

Our next numerical example illustrates quite nicely 
the difference in convergence behavior of some of the 
methods that we have discussed. 

Example. We consider an advection dominated 2nd 
order PDE, with Dirichlet boundary conditions, on 
the unit cube (this equation was taken from [50]): 

(6.5i) 

The function f is defined by the solution 

This equation was discretized using 22 x 22 x 22 vol- 
umes, resulting in a seven-diagonal linear system of 
order 10648. In order to make differences between it- 
erative methods more visible, we have here and in our 
other examples not use any form of preconditioning. 

In Figure 4 we see a plot of the convergence history. 
Bi-CGSTAB almost stagnates, as might be antici- 
pated from the fact that this linear system has eigen- 
values with relatively large imaginary parts. Surpris- 
ingly, Bi-CGSTAB does even worse than Bi-CG. For 

- U=& - uyy - uzl + 1000~ .  = f. 

u ( r , y , z ) = r y z ( l  - z ) ( l - v ) ( l - z ) .  

not uncommon and, as we will see in the next sub- 
section, this can be explained by the poor recovery 
of the Bi-CG iteration coefficients ak and Ob.  Bi- 
CGstab(2) converges quite nicely and almost twice 
as fast as Bi-CG. GMRES(25) is about as fast as Bi- 
-CG. Since the GMRES steps are much more expen- 
sive, BiCGstab(2) is the most efficient method here. 
6.6 Maintaining Convergence: 
The BiCGstab methods are designed for smooth con- 
vergence, with the purpose to avoid loss of local bi- 
orthogonality in the underlying Bi-CG process. This 
is important, since then the convergence of the Bi- 
-CG part is exploited as much as possible. However, 
local bi-orthogonality may also he disturbed by, for 
instance, inaccuracies in the Bi-CG coefficients a and 
p. They are the quotients of scalars p 3 (T,, Fo) and 
7 E (Ap,Fo) (see the algorithms for BiCGSTAB and 
BiCGSTAB(2)) and they will be inaccurate if p or 7 
is relatively small (see (6.6b)). The question is, when 
does this occur and how can it  be avoided? Here, 
we will concentrate on p only, but similar arguments 
apply to 7 as well. 

As in the_inroduction of this se_etion, r, is the resid- 
ual r, = P,(A)P,(A)ro where P, is an appropriate 
polynomial of degree i with Pi(0) = 1. Now, p is 
given by 

- 

- 
(6.6a) p pi (P,(A)Pi(A)ro,?o). 

The scalar p, can be small if the underly- 
ing Bi-Lanczos process nearly breaks down (i.e. 
(F , (A)P~(A)~~ ,F~)  sz. o relatively, for any polynomial 
p, of degree i). Also an ‘unlucky’ choice of p, may 
lead to a small p ,  (which occurs in Bi-CGSTAB if the 
GCR(1) part stagnates). Here, we will concentrate 
on typical Bi-CGSTAB situations. Therefore, we a% 
sume that the Bi-Lanczos process itself (and the LU 
decomposition) does not (nearly) break down. 
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The relative rounding error ei in pi can relatively The GMRES polynomial q: of degree e solves (6.6d), 
the FOM polynomial 4,' solves (6.6e). For small 
residuals, the FOM polynomial is not optimal: 

and sharply be bounded by 

(6.6b) lei1 5 n €  I(ri,Fo)l 

For a small relative error we want to have the expres- 
sion at the right-hand side as small as poeaible. 

Since the Bi-CG residual Pi(A)ro, here to be de- 
noted by si, is orthogonal to &(AT;%,) it follows 

-(lril> IiW ,?II~4 IlFoll 
I(ri,Fo)l ' IIqP(A)sII = IciI IIqF(A)sII 

with ci as in (6.2d). Similarly, for accurate coeffi- 
cients, the GMRES polynomial is not optimal [75]: 

IqF(A)sl= lcil Iq?(A)sl 
that 

(r i ,?~)  = &(Aisi,?,,) 
if  

with the same scalar ci. For degree 1 factors, as in 
Bi-CGSTAB, (assuming no preconditioning) - 1. 

Pi(A) = &A' + B!L),A'-' + . . . . 
Therefore, since ~ ~ F ~ ~ ~ / ~ ( A ' s i , F ~ ) ~  does not depend on 

(6.6g) 

F,, minimizing the right-hand side of (6.6b) is equiv- and c, is the cosine of the angle between and As (in 
alent to minimizing the BiCGSTAB algorithm, 1 represents As). 

Clearly, for extremely small lcil, say I C , ~  5 & (in 
the e = 1 case, this means that s and As are almost Pi l orthogonal), taking GMRES polynomials for the de- 

with respect to all polynomials F, of exact degree i gree e factors will lead to inaccurate coefficients pi, (I 
with j5(0) = 1, This minimization problem is solved and p, while FOM polynomialson the other hand will 

initial residual s,: p,F is the irh degree polynomial of convergence will seriously be deteriorated. The 
for which r~ = ~ , F ( A ) ~ ~  (cf. same phenomena can be observed when in a consec- 
polynomial is characterized by: utive number of sweeps IC,[ is small, but not nets 

sarily extremely small (say, it takes k sweeps before 
lc,-bci-~+1.. . ci l  5 &). In other words, the inaccu- 
racies seem to accumulate. This seems to occur quite 

For optimally accurate coefficients, we sh_odd often in E.g,, for linear stemming 
lect FOM p o b o m i a l s  for OW polynomials Pi. How- from P D E ~  with large advection term, B~CGSTAB 
ever, since the hybrid Bi-CG methods are designed to often stagnates, although all e, may be larger than, 
avoid all the work for the construction of an orthogo- 

say to he rela- 
nal basis, the selection of complete FOM polynomials tively small (w - II 
is out of the ouestion. 

(6 .6~)  II k ('+I II 

by the FOM polynomial~,F, here aesociated with the lead to large residuals. In both Situations, the speed 

section 6.2). 

P,F(A)s, I Ki(A;s,) and P,F(O) = 1. 

and of the w, can 
I - Cl ~11/11ASll). 

For efficiency reasons, we have used products of 
first degree polynomials in Bi-CGSTAB and products 
of degree e polynomials in BiCGstah(e). Of course, 
our arguments can also be applied to such low degree 
factors. Therefore, suppose that s = Q,-t(A)P,(A)ro 
(as BiCGstab(e)) has been computed and that the 
vectors s, As, . . . , A's are available. The suggestion 
for BiCGstab(1) to minimize the residual over this 
particular Krylov subspace is equivalent to selecting 
a polynomial factor q, (Q, = q,Q,-t) of exact degree 
e with Q,(O)  = 1 such that 

(6.Gd) Ilqi(A)SII 

is minimal, while in this situation, for optimal accu- 
rate coefficients, we rather would like to minimize 

(6.6e) 

where, with Bi such that pi(A) = BiA' + . . ., 

Both Bi-CGSTAB and BiCGstab(e) are built on 
top of the same Bi-CG process. At roughly the same 
computational costs, one sweep of BiCGstab(e) cov- 
ers the same Bi-CG track as e sweeps of Bi-CGSTAB. 
In one sweep of BiCGstab(l), GMRES(L) is applied 
once, in L sweeps of BiCGSTAB, GMRES(1) is ap- 
plied e times. For two reasons it pays off to use GM- 
RES(L) instead of exGMRES(1): 
1. Due the super-linear convergence, one sweep of 
GMRES(L) may be expected to give a better residual 
reduction than e times GMRES(1). 
2. In e steps of GMRES(l), e small c,'s may con- 
tribute to inaccuracies in the coefficients a and p, 
where GMRES(e) contributes at0 this only once. 
BiCGstah(e) profits from GMRES(e) by a better 
residual reduction in the GMRES part and by the 
faster convergence of a better recovered Bi-CG due 
to the more stable computations. However, we do 
not recommend to take e large; e = 2 or e = 4 will 
usually lead already to almost optimal speed of con- 
vergence. The computational costs increase slightly 
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Fig.5: Convergence Bi-CGSTAB. 
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Fig.6: Convergence stabilized Bi-CGSTAB. 

by increasing t (i.e. 2t+10 vector updates and t+7 in- 
ner products per 4 matrix multiplications), and more 
vectors have to  be stored ( 2 + 5  vectors). Moreover, 
the method is less accurate for larger t due to the fact 
that intermediate residuals (as r and r - W ~ S  in the 
Bi-CGSTAB(2) algorithm) can be large, with similar 
negative effects as in Section 6.5.4. 

For Bi-CGSTAB there is a simple strategy that re- 
laxes the danger of error amplification in consecutive 
sweeps with small Icil: replace in the Bi-CGSTAB 
algorithm the line 

by the piece of code in Algorithm 1. In this way we 
limit the size of I C / .  The constant .7 is rather arbitrar- 
ily and may be replaced by any other fixed non-small 
constant less than 1. Since GMRES(1) reduces well 
only if l e i ]  x 1 (see (S.Zc)), this strategy still prof- 
its from a possible good reduction by GMRES(1). A 
similar strategy that is equally cheap and easy to im- 
plement can be applied to BiCGstab(t); see [75] for 

cw = ( s , t ) / ( t , t ) '  

- 2H1 a0 
50 1W 150 2M -160 

number ol matrix-vena munipliwlons 

Fig.7: Convergence BiCGstab(2). 

Example 1 
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Fig.8: Convergence stab. BiCGstab(2). 

details 
We give a few numerical examples that demon- 

strate the cumulative effects of small [cl 's and that 
illustrate the effects of limiting its sizes. 

Examples. The figures for the examples display, all 
on log-scale, the values for each iteration step of 
- the residual-norms llrll, by solid curves (-); 
- the scaled p ,  Fs ~ ( r , ~ o ) l / ( ~ l ~ ~ l  Il?oll) (cf. (6.6b)), by 
dashed-dotted curves (-.- .). 
- the scaled y: E [ ( A p ,  ?~)l / ( l lApl(  ll?oll), by dotted 
curves (.....). 
- lei, resp. max(lcl,O.7), by bullets (...) . 

Before describing the examples, we will discuss part 
of the results. 
In the figures 5-16, we see that the scaled p and the 
scaled y behave similarly (the dashed-dotted - and 
dotted curves coincide more or less). Further, none 
of the IC[ is extremely small even not in cases where 
the p^ and are. The decrease of p^ for values of p^ 
not in the range of the machine precision (2  lo-'') 
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Fig.9: Convergence Bi-CGSTAB. 

seems to be proportional to the product of previou, 
lel’s. In all the examples, the method stagnates if p̂ ’ 
or 7’s become extremely small, say less than lo-’’ 
In these cases, almost all significance of the Bi-CC 
coefficients a and p will be lost. Limiting the size o1 
IcI (Algorithm 1) slows down the decrease of p^ and 
7. In the caption of the figures, we used the adjec- 
tive ‘stabilized’ to indicate that we used the limiting 
strategy. Often ‘stabilizing’ is enough to overcome 
the stagnation phase, and to lead to a converging 
process. 

Erample 1 (Figures 5-8). BiCGstab(2) converges. 
Although stabilizing Bi-CGSTAB leads to more ac- 
curate Bi-CG Coefficients in the initial phase of the 
process, this is apparently not enough to restore full 
convergence 
Ezample 8 (Figures 9-12). Increasing l to e = 2 
leads to a slowly converging BiCGstab(2) process 
(many more than 300 matrix vector multiplications 
are needed; not shown in the graph). Our simple 
stabilizing strategy works well here. 
Example 3 (Figures 13-16). The combined improve 
ments, stabilizing and increasing l to e = 2, are nec- 
essary for convergence. 

For the first example, we have taken the PDE of 
(6.5i). The righ-hand side f is defined by the solution 

I 
50 im 150 200 m m  

nm&r d mlrlx-wnaot multlpllcdons 

Fig.11: Convergence BiCGstab(2). 

u(z,y, z )  = exp(tyz)sin(az)sin(ny)sin(az). 
The discretization is with 10 x 10 x 10 finite volumes 
(no preconditioner has been used). 

In the second and third example [33, 701, we have 
discretized 

-us= - u y y  + a ( ~ u c  + ~ y )  + bu = f 
on the unit-square with Dirichlet boundary condi- 
tions, with 63 x 63 finite volumes, taking n = 100 
and b = -200, respectively 66 x 66, 0 = 1000 and 
b = 10 (no preconditioner has been used). The func- 
tion f is such that the discrete solution is constant 1 
(on the grid). 

6.7 Generalized CGS: 

We have now discussed in some detail the family of 
BiCGstab(l) methods, but one should not deduce 
from this that these methods are to be preferred over 
CGS in all circumstances. We have had very good 
experiences with CGS in the context of solving non- 
linear problems with Newton’s method. I t  turns out 
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Fig. 13: Convergence Bi-CGSTAB. 
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Fig.14: Convergence stabilized Bi-CGSTAB. 
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ro in the direction of the eiEenvectors associated with that we can exdoit some of the nresented ideas also - 
extremal eigenvalues A: with reduction factor Pi(X)’. to improve on CGS itself. 

In the Newton method one has to  solve a Jacobian Of course, the value Pi(A) can also be large, specif- 
system for the correction. This can be done by any ically for interior eigenvalues and in an initial stage 
method of choice, e.g., CGS or BiCGstaUt). Often of the process. CGS amplifies the associated coin- 
fewer Newton steps are required to solve a non-linear ponents, (which also explains the typical irregular 
problem accurately when using CGS. Although the convergence behavior of CGS). The BiCGstab poly- 
BiCGstab methods tend to solve each of the linear nomial Qi does not have this tendency of favoring 
systems (defined by the Jacob matrices) faster, the the extremal eigenvalues. Therefore, the BiCGstab 
computational gain in these inner looPS does not al- methods tend to  reduce all eigenvector components 
ways compensate for the 108s in the outer loop be- equally well: on average, the “interior components” 
cause of more Newton steps. of a BiCGstab residual ~i are smaller than the cor- 

This phenomenon can he understood as follows. responding components of a CGS residual <! while, 
For eigenvalues X that are extremal in the convex hull with respect to the exterior components the situation 
of the set of all eigenvalues of A (the Jacobian ma- is the other way around. However, the non-linearity 
trix), the values Pi(.\) of t,he Bi-CG polynomials Pi of a non-linear problem seems often to  be represented 
tend to converge more rapidly towards zero than for rather well by the space spanned by the “extremal 
eigenvalues A in the interior. Since CGS squares the eigenvectors”. With respect to  this space, and hence 
Bi-CG polynomials, CGS may be expected to reduce with respect to the complete space, Newtons scheme 
extremely well the components of the initial residual with CGS behaves like an exact Newton scheme. 
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Fig.16: Convergence stab. BiCGstab(2). 

lution then the residual, computed in rounded arith- 
metic as b - Az,, may not be expected to be zero: 
using the notation of Section 6.5.4, 

Ilb - AzmlI 5 T (llbll + n~ JIIAIIl llzmll) 
(7.la) - < 2rfllbll.  

Therefore, the best we can strive for is an approxima- 
tion I, for which the true residual and the updated 
one differ in order of magnitude by the initial resid- 
ual times the relative machine precision (U($l[roll); 
recall that we assumed 10 = 0, and hence ro = b). 

Now it becomes also obvious why it is a bad idea to 
replace the updated residual in each step by the true 
one. Except from the fact that this would cost an ad- 
ditional matrix vector multiplication in each step, it 
also introduces errors in the recursions for the resid- 
uals. Although these errors may be expected to be - 
small relatively to ro, they will be large relatively 

w e  would like to Preserve this Property when Con- to r, if llr,ll Ilroll. This perturbs the local bi- 
structing iterative schemes for Newton- iterations. orthogonality of the underlying B~-CG process and 
Fokkema et al [291 suggest PolYnomials l': that lead it may significantly slow down the speed of conver- 
to efficient algorithms (small modifications of the gence. This observation suggests to replace the up- 
CGS algorithm) with a convergence that is slightly dated residual by the true one only if the updated 
smoother, faster, and more accurate, than for CGS, residual has the same order of magnitude as the ini- 
but that still has the property of reducing extrema1 tial residual. However, meanwhile z, and r, may 
components quadratic&'. As a linear Solver for have drifted apart, and replacing r, by b-Ax, brings 
isolated linear problems these "generalised CGS" in the c ' ~ ~ ~ ~  of in the recursion (bounded a4 in 
schemes do not seem to have much advantage over (6.5g)), and again the speed of convergence may be 
BiCGstab(e), but as a linear in a Newton affected. Although it is a good idea to use true resid- 
scheme for non-linear problem, they often do rather U& at  strategic places, the approximation +, should 
well. first be 'tied' more closely to the updated residual r,. 

7 RELIABLE UPDATING 
We can achieve this by updating I, cumulatively: if 
I, = I o  + tu1 + . . . + wi (cf. (6.5d)) then we actually 

In all the Bi-CG related methods we see that the 
approximation for z and the residual vector r are 
updated by different vectors, and that the value for 

compute zi in groups as 

(7.lb) E, = l o +  z; + z;+ . . . 
2 does not influence the further iteration Proce% where. for decreasinn Seauence of indices *(I) = - .  \ ,  
whereas the value for T does. In exact arithmetic 1 , r (2) ,  . . . , z: represents the sum of a group; 
the updated r is equal to the true residual b - A i ,  
but in rounded arithmetic it is unavoidable that dif- 
ferences between r and b- Az arise. This means that 
we may be misled for our stopping criteria, which are 
usually based upon knowledge of the updated r (and 
that we may have iterated too far in vain). 

In this section we will discuss some techniques that 
have been proposed recently for the improvement of 
the updating steps. I t  turns out that  this can be 
settled by relatively easy means. 

Although the techniques in the previous section led 
to smoother and faster convergence and more accu- 
rate approximations the approximation may still not 
as accurate as possible. Here, we strive for optimal 
accuracy, i.e the updated r, should be very close to  
the values of b - Ax,, while leaving the convergence 
of the updated T intact. 

First, we observe that even if I, is the exact s e  

Simultaneously, we compute r, as 

(7 .1~)  

In this way we eau control the size of the updates for 
z, and r,, and we avoid large errors (cf. (6.5g)): for 
a proper choice of the ~ ( j ) ,  the z; will be small even 
if some of the w, are large. 

In the modification of the algorithms that we will 
propose in Algorithm 2, we kept in mind that we only 
may allow errors which 
(a) are small with respect to the initial residual ro 
(otherwise accuracy will be disturbed) and 
(b) are small with respect to the present updated 
residual r, (otherwise local hi-orthogonality may be 
jeopardised). 

I r, = rg -Ax, - Ax; - 
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intermediate shifts do not change the iteration pa- 
rameters and vectors (except for the vectors x). Ob- 
serve that the updated residual ri+l is replaced by 
the true residual b‘ - Ax’ of the shifted problem if 
‘compute-res’is true. 

Update x and b‘ only if the residual is significantly 
smaller than the initial residual, while an interme- 
diate residual was larger (cf. (7.lb), (7.1~) and re- 
minder (a)): 

For this we propose the following strategy. 

‘update-app’= true 

(7.ld) if Ibi+111 5 Ilbll/lOO k llbll 5 P 
else ‘update-app’= false, 

where p maxllr.ll and the maximumis taken over 
all residuals since the previous update of I and b‘ 
(since the previous ‘update-app’ is true). 
The bound in (7.la) suggests that the norm llbll ofthe 
initial residual should be used as criterion for shifting 
the problem (‘update-app’is true if 11r,+111 5 llbll & 
llrill > 11611). However, if the process converges irreg- 
ularly this would lead to many shifts. The relaxed 
version in (7.ld) turns out to work equally well a t  
less costs. 
Compute a true residual whenever ‘compute-res’ is 
true and if a previous residual is larger than the ini- 
tial residual and significantly larger than the present 
updated residual: 

‘compute_res’= true 
if Ilrrtlll 5 M/100 & llbll 5 M 

or ‘update-app’ is true (7.le) 

else ‘compute-res’= false, 

where M maxllr,ll and the maximumis taken over 
all residuals since the last computation of the true 
residual. 
Replacing the updated residual by the true one 
perturbs the recursion for the residuals. If the 
residual decreases too much since the previous re- 
placement, the perturbation may become large rela- 
tively to the present residual (reminder (h)). There- 
fore, ‘compute-res’ may he true more often than 
‘update-app ’. 

Wesuggest to add the above strategy to an existing 
code. That means that an additional matrix-vector 
multiplication has to be performed whenever a true 
residual has to be computed. The conditions (7.ld) 
and (7.le) are chosen as to minimize the number of 
these additional computations. One also may trv to 

In Section 3, we have explained that it is no re- 
striction to  take x~ = 0, arguing that this situation 
can be forced simply by a shift: shift x by XO, and b 
by Axo. This shift can be made explicit in the hybrid 
Bi-CG algorithms by making three changes: 
(i) adding as a last line to the initialization phase 

x = xu; X I =  0; b ‘ =  ro; 

(ii) adding as a last line in the algorithms (just after 
‘end’) 

x = x + XI; 

(iii) replacing all zi (and x) by XI (skipping the index 

Even in rounded arithmetic, this modification willnot 
change the value of any of the vectors and scalars in 
the computational scheme, except for the 2’s. Since 
x+x‘ IS the approximation that we are interested in, 
one also may want to change the termination crite- 
rion. We propose to replace the line 

if x is accurate enough then qui t ;  

if IIr,+111 is small enough then quit; 
To allow for a more accurate way of updating of the 
residual and the approximation, we suggest to add 
another few lines just before ‘end’ in the algorithm, 
as is shown in Algorithm 2. We suggest to replace the 

i )  . 

by 

Z = I O ;  x ’ x O ;  b’=ro; 
for i = 0,1,2,  ... 

t Replace d l  zi and x by X I .  

if r,+l is small enough then quit: 
set ‘compute-res’ and ‘update-app’; 
if ‘compute-res’is t rue 

ri+l = b’ - Ax’; 
if ‘update-app’ is true 

endif 
x = I +x‘; x‘= 0; b’= r,+l; 

endif 
endfor 
I = I + XI; 

Alg.2: For accurate approximations. 
- -  

updated residual by the true one on strategically cho- skip a matrix-vector multiplication in one of the p r e  
sen steps (we have to explain when the value of the ceding lines of the algorithm, which requires some ad- 
boolean functions ‘compute-res’ is true). However, ditional care for BiCGstab(t?), but which easily can 
we also suggest t o  shift the problem once in a while be accomplished for CGS. 
(when the boolean function ‘updale-app’ is true) in If CGS is modified as suggested, then the new lines 
order to let the right-hand decrease (cr. (7.1a)). Here do not require additional matrix vector multiplica- 
we use the fact that, in exact arithmetic, also t h e e  tions, and there is no need to restrict the number of 
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computations of true local residuals. For this CGI 
variant, Neumaier [56] suggested places where the : 
and b’ can he updated for accurate approximationr 
update x and b‘ whenever the residual decreases wit1 
respect to the previous ‘hest residual’, 

‘updote-app’ = true 

else ‘compute_res’= false. 

The modifications according to Neumaier’s approacl 
are given in Algorithm 3. Observe that the norm o 

(7 I f )  if ll~~tlll 5 Ilb’ll 

z = 20; x‘ = 0; b‘ = Po; p’ = llb’ll; 
for i = 0,1,2,  ... 

I Replace all zi and x by x‘. 

Skip the CGS update for r 
together with the M V  involved 
an this update. Compute instead 

if p is small enough then quit; 
if p 5 p‘ 

ri+i = b‘ - AX’; /.I = l / ~ i + i / / ;  

x = x + 2‘; 2’ = 0; 
b’ = q+I ;  p’ = p;  

endif 
endfor 
x = x + x’; 

Alg.3: Neumaier’s strategy for CGS. 

the b’ (the residuals with respect to the x) stric ~ 

decrease. the Neumaier trick also smoothes conver- 
gence (without improving its speed!). 

Below, we discuss the effects of our strategies in 
practise. We illustrate our observations by a simple 
numerical example. 

Example. Figure 17 shows the convergence history of 
the h e  residuals as produced by standard CGS, and 
by the modified versions of CGS as suggested above, 
applied to the SHERMAN4 matrix of the Harwell- 
Boeing collection (as in the example of Section ??). 
The dotted curve (..-)represents the resuIts for stan- 
dard CGS. We also applied modified CGS as in Algo 
rithm 2, using the update criterions (7.ld) and (7.le). 
The solid curve (-) represents the results for this 
simple strategy, while the dashed-dotted curve (- .- .) 
represents the results for Neumaier’s strategy in Algo 
rithm 3 On log-scale, the norm of the true residuals 
Ilb - Az,II, Ilb - A ( x  + z’)11, respectively, is plotted 
against the number of matrix-vector multiplications. 
Neumaier’s strategy as well our’s lead to approxima- 
tions that are accurate (cf. (7.1a)): comparing llrOll 
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Fig.17: Reliable updates. 

IO 

with the norm of the smallest true residual, we see 
that a reduction is obtained by a factor M l O W i 4  
(2 = 2.210-i6). Standard CGS does not produce 
true residuals smaller than % 1 0 - g ~ ~ r ~ ~ ~ ,  which is ap- 
proximately r .  max))r , ) )  M 2.210-l~ 10’JlroJ); cf. 
(6.5g). Observe that, though the convergence h ie  
tories do not coincide for residuals less than M lo’, 
the speed of convergence is not affected: the modi- 
fied versions exhibit a rate of convergence that is very 
similar t o  the one of the updated residuals in stan- 
dard CGS as shown in Figure 3. 

Experiments for other examples and with other it- 
erative schemes, as Bi-CGSTAB and BiCGstah(!), 
led to similar conclusions. Although, two ohserva 
tions should he made. 
-Quite often the improvements are much more spec- 
tacular than for this SHERMAN4 example: CGS 
may produce intermediate residuals as large as ~ ~ r ~ ~ ~ / ~  
and none of the digits in the finial approximation of 
standard CGS will be correct. 
- There are some differences between CGS and 
the BiCGstab methods: (i) 88 observed above, Neu- 
maier’s strategy only works well for CGS, while the 
simple strategy of Algorithm 2 can always he applied. 
(ii) Especially for the BiCGstab methods, the sim- 
ple strategy of Algorithm 2 with update criterions 
(7.ld) and (7.le) does not lead to much additional 
work. The additional computation of a true resid- 
ual takes place after the process encounters residuals 
that are (much) larger than the initial residual. Since 
BiCGstah(t) tends to show much smoother conver- 
gence behavior than CGS, for small 1, the additional 
work in these methods is usually much less than for 
CGS. In the SHERMAN4 example, our strategy for 
CGS requires 7 additional matrix-vector multiplica- 
tions (‘compute-res’ is true 7 times) and one spe- 
cial update of the approximation (‘update-app’is true 
only once). For BiCGstah(l), P. 5 6, only 1 additional 

, 



matrix-vector mu1 tiplication was needed, Neumaier’s 
strategy for CGS does not require additional matrix- 
vector multiplications (but 364 additional updates for 
the approximation were needed). 

8 Termination Criteria 
An important point, when using iterative processes, 
is to decide when to terminate the process. Popular 
stopping criteria are based on the norm of the current 
residual, or on the norm of the update to the current 
approximation to the solution (or a combination of 
these norms). More sophisticated criteria have been 
discussed in litterature. 
In [45] a practical termination criterion for the conju- 
gate gradient method is considered. Suppose we want 
an approximation x i  for the solution x for which 

l l X i  - X112/11~112 5 E, 

where E is a tolerance set by the user. 
It is shown in [45] that such an approximation is ob- 
tained by CG as soon as 

where p1 stands for the smallest eigenvalue of the 
positive definite symmetric (preconditioned) matrix 
A. Of course, in most applications the value for p1 
will be unknown, but with the iteration coefficients 
of CG we can build the tridiagonal matrix z, and 
compute the smallest eigenvalue (Ritz value) pp) of 
E ,  which is an approximation for p1. In [45] a simple 
algorithm for the computation of p r ) ,  along with the 
CG algorithm] is described] and it is shown that a 
rather robust stopping criterion is formed by 

A similar criterion has also been suggested earlier in 
~401. 

A quite different, but much more generally appli- 
cable approach has been suggested in [l]. In this ap- 
proach the approximate solution of an iterative pro- 
cess is regarded as the exact solution of some (nearby) 
linear system, and computable bounds for the pertur- 
bations with respect to the given system are given. 
A nice overview of termination criteria has been pre- 
sented in [6]: Section 4.2. 

9 Implementation Aspects 
For effective use of the given iteration schemes, it is 
necessa,ry that they can be implemented such that 
high computing speeds are achievable. It is most 
likely that high computing speeds will be realized 
only by parallel architectures and therefore we must 
see how well iterative methods fit to such computers. 

The iterative methods only need a handful of basic 
operations per iteration step 
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0 Vector updates: in each iteration step the cur- 
rent approximation to the solution is updated 
by a correction vector. Often the corresponding 
residual vector is also obtained by a simple up- 
date, and we have update formulas as well for 
the correction vector (or search direction). 

0 Innerproducts: In many methods the speed 
of convergence is influenced by carefully con- 
structed iteration coefficients. These coefficients 
are sometimes known analytically, but more of- 
ten they are computed by innerproducts, involv- 
ing residual vectors and search directions, as in 
the methods discussed in the previous sections. 

0 Matrix vector products: In each step at least one 
matrix vector product has to be computed with 
the matrixof the given linear system. Sometimes 
also matrix vector products with the transpose 
of the given- matrix are required (e.g., BiCG). 
Note that it is not necessary to have the matrix 
explicitly, it suffices to be able to generate the 
result of the matrix vector product. 

0 Preconditioning: It is common practice to pre- 
condition the given linear system by some pre- 
conditioning operator. Again it is not neces- 
sary to have this operator in explicit form, it 
is enough to generate the ‘result of the operator 
aplied to some given vector. The preconditioner 
is applied as often as the matrix vector multiply 
in each iteration step. 

For problem sizes large enough the innerproducts, 
vectorupdates and matrix vector product are easily 
parallelized and vectorized. The more successful pre- 
conditionings, i.e, based upon incomplete LU decom- 
position, are not easily parallelizable. For that rea- 
son one is often satisfied with the use of only diagonal 
scaling as a preconditioner on highly parallel comput- 
ers] such as the CM2 [7]. 

On distributed memory computers we need large 
grained parallelism in order to reduce synchroniza- 
tion overhead. This can be achieved by combining 
the work required for a successive number of itera- 
tion steps. The idea is to construct first in parallel 
a straight forward Krylov basis for the search sub- 
space in which an update for the current solution will 
be determined. Once this basis has been computed, 
the vectors are orthogonalized, as is done in Krylov 
subspace methods. The construction as well as the 
orthogonalization can be done with large grained par- 
allelism, and has sufficient degree of parallelism in it. 
This approach has been suggested for CG in [ll] and 
for GMRES in [12], [5] and [18]. One of the disad- 
vantages in this approach is that a straight forward 
basis, of the form y ,  A y ,  A’y, ..., A i y  is usually very 
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ill-conditioned. This is in sharp contrast to the opti- 
mal condition of the orthogonal basis set constructed 
by most of the projection type methods and it puts 
severe limits on the number of steps that can be com- 
bined. However, in [5] and [IS] ways to improve the 
condition of a parallel generated basis are suggested 
and it seems possible to take larger numbers of steps, 
say 25, together. In [18] the effects of this approach 
on the communication overhead are studied and com- 
pared with experiments done on moderately massive 
parallel transputer systems. 

9.1 Parallelism in the preconditioner: 
In this section we consider a number of possibili- 
ties to obtain parallelism in the standard Incomplete 
Choleski preconditioner [51]. The linear systems are 
supposed to arise from standard finite difference dis- 
cretisations of second order pde’s over rectangular 
grids in two or three dimensional space. 

9.1.1 Overlapping Local Preconditioners 
Radicati di Brozolo and Robert [66] suggest to par- 
tition the given matrix A in (slightly) overlapping 
blocks along the main diagonal. Note that a given 
non-zero entry of A is not necessarily contained in 
one of these blocks. But experience suggests that 
this approach is more successful if these blocks cover 
all the non-zero entries of A. The idea is to compute 
in parallel local preconditioners for all of the blocks, 
e.g., 
(9.la) A,  = L,D,-?J, - R,. 

Then, when solving K W  = r in the preconditioning 
step, we partition r in (overlapping) parts r, ,  accord- 
ing to A, ,  and we solve the systems L,D;lU,w, = 
T, in parallel. Finally we define the elements of w to 
be equal to corresponding elements of the w,’s in the 
nonoverlapping parts and to the average of them in 
the overlapped parts. 

Radicati di Brozolo and Robert [66] report on tim- 
ing results obtained on an IBM3090-600E/VF for 
GMRES preconditioned by overlapped incomplete 
LU decomposition for a 2D system of order 32400 
with a bandwidth of 360. For p processors (1 5 
p 5 6) they subdivide A in p overlapping parts, the 
overlap being so large that thses blocks cover all the 
nonzero entries of A .  They found experimentally an 
overlap of about 360 elements to be optimal for their 
problem. This approach led to  a speedup of roughly 
p .  In some cases a speedup even slightly larger than p 
was observed, apparantly due to the fact that the par- 
allel preconditioner was slightly more effective than 
the standard one in those cases. 

9.1.2 Repeated Twisted Factorization 
Meurant [54] reports on timing results obtained with 
a CRAY Y-MP/832, using an incomplete repeated 

twisted block factorization for 2D problems. In his 
experiments the L of the incomplete factorization has 
a block structure, i.e., L has alternatingly a block be- 
low the diagonal, one above, one below, and it ends 
with one above the diagonal. For this approach Meu- 
rant reports a speedup, for preconditioned CG, close 
to 6 on the 8-processor CRAY Y-MP. This speedup 
has been measured relative to the same repeated 
twisted factorization process executed on one single 
processor. Meurant also reports an increase in the 
number of iteration steps, due to this repeated twist- 
ing. This implies that the effective speedup with re- 
spect to the nonparallel code is only about 4. 

9.1.3 Twisted and Nested Twisted Factoriza- 
tion 

For 3D problems we have used the blockwise twisted 
approach [23] in the 2- direction, i.e. the (2, y)-planes 
in the grid were treated in parallel from bottom and 
top inwards. Over each plane we used the diagonal- 
wise ordering, in order to achieve high vector speeds 
on each processor. 
On a dedicated CRAY X-MP/2 this led, for precondi- 
tioned CG, to a reduction by a factor of close to  2 in 
wall clock time with respect to the CPU time for the 
nonparallel code on one single processor. For the mi- 
crotasked code the wall clock time on the 2-processor 
system was measured for a dedicated system, whereas 
for the nonparallel code the CPU time was measured 
on a moderately loaded system. In some situations 
the speedup was even slightly larger than 2, due to 
better convergence properties of the twisted incom- 
plete preconditioner. 
The effects of these and other orderings on the conver- 
gence of preconditioned methods and on the amount 
of parallelism have been studied in [2l]. 

We can also apply the twisted incomplete factor- 
ization in a nested way [83]. For 3D problems this 
can be exploited by twisting also the blocks corre- 
sponding to (2, y) planes in the y-direction. Over the 
resulting blocks, corresponding to half (2, y) planes, 
we may apply diagonal ordering in order to fully vec- 
torize the four parallel parts. 
By this approach we have been able to reduce the 
wall clock time by a factor of 3.3, for preconditioned 
CG, on the 4-processor CONVEX C-240. In this case 
the total CPU time, used by all of the processors, is 
roughly equal to the CPU time required for single 
processor execution [85]. Other then for the exper- 
iments on the CRAY X-MP/2, as reported before, 
we have relied on the autotasking capabilities of the 
Fortran compiler for the C-240, for all of the code, ex- 
cept for the preconditioning part. Since some state- 
ments in the code lead to rather short vector lengths, 
this may explain partially why the factor 3.3 for the 
CONVEX C-240 stays well behind the theoretically 
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expected factor of about 3.9. Another reason might 
be that we were not completely sure whether our test- 
ing machine was executing constantly in stand alone 
mode during the time of our timing experiments. 
Even t8he system itself needs some CPU-time from 
time to time. 

9.1.4 Hyperp lane  Ordering 

For a CYBER 205 it has been reported how to ob- 
tain long vectorlengths for certain 3D situations ([23], 
[73]), and, of course, this approach can also be fol- 
lowed in order to obtain parallelism. This has been 
done by Berryman et.al. [7] for parallelizing stan- 
dard ICCG on a Connection Machine CM-2. For a 
4K processor machine they report a computational 
speed of 52.6 Mflops for the (sparse) matrix vector 
product, while 13.1 Mflops has been realized for the 
preconditioner, using the hyperplane approach. 
This reduction in speed by a factor of 4 makes it 
attractive to use only diagonal scaling as a precondi- 
tioner in some situations, for massively parallel ma- 
chines like the CM-2. The latter approach has been 
followed by Mathur and Johnsson [48] for finite ele- 
ment problems. 

We have used the hyperplane ordering for precon- 
ditioned CG on an ALLIANT FX/4, for 3D systems 
with dimensions n2 = 40,n, = 39 and nz = 30. For 
4 processors this led to a speedup of 2.61, to be com- 
pared with a speedup of 2.54 for the CG-process with 
only diagonally scaling as a preconditioner. The fact 
that both speedups are quite far below the optimal 
value of 4, must be attributed to cache effects [85]. 
These cache effects can be largely removed, when us- 
ing the reduced system approach suggested by Meier 
and Sameh [49]. However, for the 3D systems that we 
have tested sofar, the reduced system approach led, 
in average, to about the same CPU times as for the 
hyperplane approach, on Alliant FX/8 and FX/80 
computers. 
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SUMMARY 
This lecture is devoted to the parallelization of blockstruc- 
tured grid solvers for industrial applications. It is divided 
into two parts. Part I describes well established numerical 
algorithms with emphasis on spatial discretization and time 
stepping schemes. Attention is focused on the multigrid 
technique which is one of the most promising approach to 
improve the efficiency of numerical methods. Finally, sev- 
eral large-scale computations are shown which demon- 
strate the ability of current blockstructured flow solvers. 
Part I1 of the lecture addresses various aspects of the paral- 
lelization of such flow solvers. 
LIST OF SYMBOLS 

speed of sound 
dissipative operator 
internalknergy per unit mass 
specific total energy 
inviscid and viscous part of flux tensor 
specific total enthalpy 
heat conductivity 
Mach number 
outward pointing normal 
pressure 
Prandtl number 
vector of Cartesian velocities 
discrete flux balance 
Reynolds number 
surface vector 
time 
Cartesian velocity components 
control volume 
vector of conserved variables 
angle of attack 
ratio of specific heats 
spectral radius of flux Jacobian 

- 

P nondimensional viscosity 
cp density 

Indices 
I lamin’ar 
t turbulent 
00 free stream 
i j ,k  indices of grid node 

1. NIXODUCTION 
Numerical flow simulations have found their way into the 
aerodynamic design cycles of aerospace vehicles. Not only 
do these simulations reduce turn-around time and cost, but 
they also offer flow parameter variations which are not 
possible with wind tunnel testing. On the other hand, nu- 
merical simulations in aerodynamics are still an engineer- 
ing challenge. The governing partial differential equations 
do not always represent a well-posed problem, that is, 
uniqueness and existence of a solution is usually not 
proven and it is difficult to formulate suitable initial and 
boundary conditions. Moreover, the existence of turbu- 
lence in the majority of relevant flow problems makes the 
direct solution of the governing unsteady Navier-Stokes 
equations impossible because the relevant scales vary too 
much. The problem may be circumvented by averaging the 
turbulent motion. This yields the Reynolds-averaged Na- 
vier-Stokes equations which can be solved if a turbulence 
model is provided for closure. Suitable turbulence models 
have been under investigation over the last 70 years, and 
the matter is still not solved to satisfaction. However, in the 
present lecture we will assume that the effect of turbulence 
can be described by adding a turbulent viscosity and heat 
conductivity to their laminar counterparts. Even then, flows 
over aerodynamic configurations display flow phenomena 
with very different scales and with highly nonlinear behav- 
ior. We mention here the laminar and turbulent boundary 
layers at very high Reynolds numbers and their interaction 
with shocks as an example. Numerical simulation of such 
flow problems often converge slowly because the discreti- 
zed mathematical model is stiff. 

Paper presented in an ACARD-FDP-VKI Special Course on “Parallel Computing in CFD”, held at the VKI, Rhode-Saint-Genese, Belgium, 
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807. 



4-2 

The present lecture describes well established techniques 
used for numerical simulations of complex aerodynamic 
flows based on blockstructured meshes. We restrict our- 
selves to problems with steady mean flow, that is, we want 
to obtain steady-state solutions of the Euler equations gov- 
erning inviscid flows and of the Reynolds-averaged Na- 
vier-Stokes equations for viscous flows. In this paper atten- 
tion is focused on the general description of the two major 
parts of the numerical method. These are the spatial discre- 
tization and time stepping algorithms. The parallelization 
issues of blockstructured flow solvers for industrial appli- 
cations are treated in the second lecture [ 11. 

With the spatial discretization of the governing equations 
we seek to obtain accurate solutions with as few as possible 
discrete points in  the flow domain. Care must be taken to 
resolve all relevant flow phenomena, i.e. smoothly varying 
regions of inviscid flows, flow discontinuities as shocks 
and slip lines, and viscous layers which are governed by 
diffusion. Moreover. numerical analysis and well-known 
experience show that the choice of the spatial discretization 
also influences the convergence of the overall method to 
the desired steady-state. 
Possibilities to improve convergence to steady-state solu- 
tions by improving or adding numerical techniques has at- 
tracted the work force of many researchers over the last 20 
years. We will concentrate on one of the most promising 
approaches. which is called multigrid. The present state of 
the art in the use of multigrid for the solution of the hyper- 
bolic flow equations with time-stepping schemes is de- 
scribed in detail, analyzed, and demonstrated with a variety 
of sample calculations. 
Finally, we present several large-scale computations which 
demonstrate the usefulness of the efforts to improve accu- 
racy and convergence of current flow solvers. 

2. GOVERNING EOUATIONS 
The most general description of the fluid flow is obtained 
from the time dependent compressible Navier-Stokes equa- 
tions which express the conservation laws for mass, mo- 
mentum and energy for viscous fluids. For turbulent flows 
the so-called Reynolds-averaged Navier-Stokes equations 
are exploited. They are derived from the Navier-Stokes 
equations by introducing a time-averaging procedure. The 
laws of motion are then expressed for the mean, time-aver- 
aged, turbulent quantities. By this means the equations for 
turbulent flows look the same as the equations for laminar 
flow. 
The integral form of the three-dimensional Reynolds-aver- 
aged Navier-Stokes equations using nondimensional vari- 
ables in a Cartesian coordinate system can be written as 

‘ 

where 

is the vector of conserved quantities with p ,u,v,w and E 
denoting the density, Cartesian velocity components and 
specific total energy, respectively. V denotes an arbitrary 
control volume fixed in time and space with boundary a V  
and the outer normal h . The total enthalpy is given by 

H = E + p / p  (2.2) 
- 

The flux tensor F may be divided-into its inviscid (convec- 
tive) part FC and its viscous part FV as 

_ _ _  
F = FC-FV (2.3) 

with 

and 

with 

3 3 3  
where k,, k,, k, denote the Cartesian coordinate direc- 
tions. Assuming that air behaves as calorically perfect gas, 
the pressure is calculated by the equation of state 
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p = ( Y - U P ( E -  u 2  + v 2  2 + w2)  

where y denotes the ratio of specific heats. The temperature 
T is given by 

T = p / p .  (2.5) 

The elements of the shear-stress tensor and the heat-flux 
vector are given by the equations for Newtonian fluid 

For laminar flow the nondimensional viscosity p is as- 
sumed to follow the Sutherland law 

(2.7) 

with M,, Re, and 7 denoting the free stream Mach num- 
ber, Reynolds number and the dimensional temperature. re- 
spectively. The heat conductivity K is given by 

K = 
y -  1Pr 

with Pr being the Prandtl number. 
For turbulent flows, the laminar viscosity p in  eq. (2.7) is 
replaced by p + p, and p/Pr in  eq. (2.8) is replaced by 
p/Pr + pt /Pr,, where the eddy viscosity p, and the turbu- 
lent Prandtl Pr, number are provided by a turbulence 
model. For the transonic airfoil calculations presented in 
this paper the algebraic turbulence model of BaldwinLo- 
max [ 2 ]  is used. 
For hypersonic flow calculations it  is assumed that air be- 
haves as reacting air in thermochemical equilibrium. In this 
case a modified ratio of specific heats is used. Furthermore, 
the speed of sound is given by 

c2  = JP $ 1  e = +!+I p = const 
(2.9) 

where e is the internal energy per unit mass. For the calcu- 
lation of the effective ratio of specific heats and for the par- 
tial derivatives of pressure in eq. (2.9), piecewise analyti- 

cally defined functions [3] arc used. These functions relate 
the pressure to both, the density and specific internal en- 
ergy and take into account exitation of vibration and disso- 
ciation of 0 2  and N2 molecules. The temperature, viscosity 
and heat conductivity are similarly computed. 

3. SPATIAL DISCRETIZATION SCHEME 
The derivation of the conservation laws in integral form 
only requires the assumption that the density is twice con- 
tinuously differentiable with respect to time. Therefore, in  
contrast to the differential form, the integral form of the 
governing equations does not impose any assumptions on 
the regularity of the solution. This is extremely important 
since discontinuities such as shock waves and slip lines oc- 
cur in most of the relevant flow fields. 
The discretization of the integral form of the conservation 
laws leads to finite element or finite volume methods. This 
paper focuses on the discussion of the finite volume ap- 
proximation based on structured computational meshes. 

3. I Finite Volume ADDroximation 
In finite volume methods the flow field is subdivided into a 
set of non-overlapping cells which cover the whole domain 
without gaps. On each cell the conservation laws in inte- 
gral form are applied which also in the discrete formulation 
ensure the conservation of mass, momentum and energy. In 
general, the control volumes can have arbitrary shapes. 
With respect to computational efficiency, however, very of- 
ten structured hexahedral cells are used for 3D calcula- 
tions. For practical applications the control volumes are 
provided by a body-fitted mesh generated by grid genera- 
tion packages using curvilinear coordinates (see Fig. l ) .  
The only required data concerning the grid are the Cartesian 
coordinates of the vertices. Hence, no global transforma- 
tion of the governing equations into the curvilinear coordi- 
nate system is necessary. 
Through the application of the integral form of the Navier- 
Stokes equations a discrete flux balance is obtained for 
each control volume which can be used to approximately 
determine the change of flow quantities with respect to 
time in particular points. Various finite volume formula- 
tions are known in the literature. They differ in  the arrange- 
ment of control volumes and update points for the flow 
variables. The most frequently used schemcs are the cell- 
centered, the cell-vertex and the node-centered approach. 
They are sketched in Fig. 2. For the node-centered and 
cell-vertex scheme the flow variables are associated with 
the cell vertices, whereas for the cell-centered scheme they 
are located at the center of the cell. Each of these schemes 
has advantages and disadvantages. For example, using a 
central discretization i t  can be shown that for stretched or 
screwed meshes the discretization errors from the cell-cen- 
tered formulation is larger that those of the node-based 
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schemes [4]. However, for smooth meshes the spatial accu- 
racy is the same for all schemes. On the other hand, numer- 
ical experience has shown that for high speed flows the 
cell-centered and the node-centered arrangement seem to 
be more suited, especially in combination with an upwind- 
biased discretization operator [5]. 
This paper focuses on the cell-vertex and node-centered 
formulation. In both cases the spatial discretization leads to 
an ordinary differential equation for the rate of change of 
the conservative flow variables in each grid point 

J C  + v  where R,,, ,  k and Ri.,, k represent the approximation of 
the inviscid and viscous net flux of mass, momentum and 
energy for a particular control volume arrangement with 
volume Vi,j,k surrounding the grid node (i,j,k). The fluxes 
can be approximated using either central or upwind discre- 
tization operators. While classical central difference 
schemes perform admirably for inviscid sub-, trans- and 
even low supersonic flows, problems arise near strong dis- 
continuities in  high Mach number flows. Moreover, in re- 
cent papers (e.g. [6,7]) it  has been pointed out that central 
schemes show deficiencies in the resolution of viscous 
flows due to the unsuited scaling of the scalar artificial dis- 
sipation implemented in most of the standard methods. 
This lack of a suitable high-resolution capability has been 
considered as a major problem of central schemes and has 
led to the development of a variety of upwind-biased algo- 
rithms. These schemes rely on local wave propagation the- 
ory for the differencing of the convective terms of the gov- 
erning equations. This is not only important for capturing 
flow discontinuities but also it can lead to a high-resolution 
scheme for viscous flows, provided the linear waves are 
properly taken into account. In the following, various dis- 
cretization schemes for the convective terms are discussed. 
The special merits and shortcomings of each scheme are 
highlighted. In discretizing the Navier-Stokes equations, 
virtually all schemes rely on a centered approximation of 
the viscous fluxes. A brief description is given at the end of 
this chapter. 

3.2 Central Differencing with Scalar Dissiuation 
The central differencing of the convective terms of the 
governing equations discussed here is based on the cell- 
vertex scheme [4,8]. In this formulation the update of the 
flow variables in grid node (ij,k) is a function of the dis- 
crete flux balances of the surrounding eight cells (see 
Fig. 3). The term Re, ,  k in eq.(3.1) can be expressed as 

+ 

+ 
with Gi,,. k representing the convective flux for the mesh 
cell with vertices ((i+nj,k), (i+nj,k+l), (i+nj+l,k), 
i+nj+l,k+l), n=0,1 ) .  Accordingly, the volume Vi,,,k in 
eq.(3.1) represents the sum of the volumes of the corre- 
sponding cells surrounding the node (i,j,k). 
The net flux Gi,j,k is given by the sum of the inviscid 
fluxes through all cell faces of the particular mesh cell (see 
Fig. 3.b) 

+ 

where the flux through the cell face S i +  I , j ,  is evaluated 
using an arithmetric average of the flux quantities at the 
vertices. That is 

where $+  1 ,  ,, k denotes the surface vector of cell face 
S i +  I ,  J, calculated by projecting the cell face on the corre- 
sponding coordinate surface. 
A close inspection of eqs. (3.2) and (3.3) shows, that due 
to the fact that the fluxes across inner faces cancel, R,, J, k 

represents the flux balance over a super cell formed by the 
eight neighboring cells of node (i,j,k). According to [4,8], 
the scheme is at least first order accurate, if the normal vec- 
tor on each cell face is a smooth function with respect to 
grid refinement and if the cell faces do not degenerate to 
triangles. On smooth meshes the discretization is second- 
order accurate. 
The finite volume discretization based on central averaging 
is not dissipative, which means that high frequency oscilla- 
tions in the solution are not damped. In order to avoid these 
spurious oscillations, dissipative terms have to be explic- 
itly introduced. In most central schemes the well known 
scalar dissipation model of Jameson et al [9] is imple- 
mented. It uses a blend of second and fourth differences of 
the flow variables. In order to preserve the conservation 
form of the numerical scheme, the artificial dissipative 
terms are introduced by adding dissipative fluxes to the 
semi-discrete system (3.1) 

+ I  

+ 
The dissipative operator Di,,, k is defined as 

+ + + + 8'. 
-9 + + -f (3.2) 
I , J ,  k = Gi,j,k + Gi-  I , j .  k + Gi,j- I ,  k + Gi-  1 . j -  1 .k .  

-k Gi,j. k -  I + Gi-  1.j. k -  I + Gi,j-  I ,  k -  I + Gi-  1 . j -  I ,  k -  I 
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, where the dissipative flux & + I / ? ,  j, k is given as 

Here, ~i(:)~/~. j ,  and ~i(+4)~/~,,, are adaptive coefficients 
designed to switch on enough dissipation where it  is 
needed. The coefficient ai + , ,2 , , ,  is chosen such that the 
dissipative terms have a proper weightage. According to 
[9], the value is given as an average of the spectral radii of 
the flux Jacobians associated with the three curvilinear co- 
ordinates. 
The coefficients E(') and E(4) are adapted to the local flow 
gradients by 

, 
Ei(+2)1/2,j, k = (>' m a x ( v i  + 2,;. k'vi + 1,;. k. v i . l ,  k? - 1, j, k) (3'8) 

= max (0, k ( 4 )  - Ei ( ' )  i I /L ; ,  k) (3.9) 

where v,,,,k is defined as 

and k(*), k(4) are small constants. Typical values for k(') 
and k(4) are 1/2 and 1/64, respectively. The dissipation op- 
erators in  j-, and k-direction are defined in a similar man- 
ner. 
The coefficient E(') is proportional to the second difference 
of pressure and therefore proportional to the square of the 
mesh size in smooth regions of the flow, while E(4) is of or- 
der one. Since the operator in eq. (3.7) contains differences 
of the flow variables whigh are not divided by the mesh 
size, the dissipative flux di+lR,j ,k is of third order. How- 
ever, in regions where the pressure changes rapidly, as in 
the case of shock waves, the term vij,k is of order one and 
with eq. (3.9) the third order difference operator in eq. (3.7) 
is switched off. The dissipation is then of first order and the 
central finite volume scheme behaves like a first-order ac- 
curate scheme. The sensitivity of the numerical solution 
with respect to the dissipation parameter has been studied 
in detail in [ 10,l I]. Since the dissipative fluxes are formed 
by blended second and fourth differences, the evalutation 
of these terms near boundaries requires special care. The 
treatment at boundaries is described in [ 121 in more detail. 

As mentioned above, the dissipation in each coordinate di- 
rection is scaled the same by the average of the spectral ra- 
dii of all flux Jacobians. This leads to excessively large dis- 
sipation levels for cells with high-aspect ratios which are 
often required for accurate and efficient calculations of vis- 
cous flows. Therefore, according to Martinelli [ 131 the 
scaling factor of the dissipative term is adjusted for each 
coordinate direction taking into account a varying cell as- 
pect ratio (see also [ 141). The scaling function is 

- .  
a =I' I .  $ (3.1 1) 

I + ? . J . k  i + !  j , k  
2' 

i + !;j, I; 
2 

with 

where 

are the spectral radii of the flux Jacobians in i-, j-, k-direc- 
tion, respectively. 4 =[u,v,wIT is the vector of Cartesian ve- 
locities and c is the speed of sound. S , S I  S are the cell 
face vectors associated with i-, j-, and k-direction of the 
body-fitted coordinate system. The use of the maximum 
function _ .  _ .  in  the definition of $ is important for grids where 
k J / k '  and h k / i '  are very large and of same order of mag- 
nitude. In this case, if  these ratios are summed rather than 
taking the maximum, too large dissipative terms are ob- 
tained, which will degrade the solution. It has been found 
that for the exponent p the choice p = O S  yields a robust 
scheme. 
The transonic turbulent flow over the RAE 2822 airfoil is 
used to demonstrate the capabilities of the method for high 
Reynolds number turbulent flows. The well-known test 
case Mw=0.73, e 2 . 7 9 '  and ReW=6.5x1O6 has been con- 
sidered. The accuracy of the central scheme with scalar 
dissipation is examined using a variation of the grid den- 
sity. For this purpose a sequence of a coarse (193x33 
points), medium (385x65 points) and fine grid (577x97 
points) has been created. A C-grid topology has been se- 
lected with a first spacing of I O 5  chord lengths away from 
the wall. The calculations have been carried out with the 
BaldwinLomax turbulence model. The variation of the CO- 

J i  JJ J k  
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efficients for lift, pressure drag and friction drag with num- 
ber of mesh points N is presented in Fig. 4. The influence 
of the dissipation parameter of the second and fourth dif- 
ference dissipation operator is also indicated. On coarse 
meshes, the discretization error is obviously dominated by 
the artificial dissipation. The integral values show a large 
variation. The fine meshes allow the extrapolation of the 
coefficients to their values for an infinitely fine mesh. For 
the mesh with 385x65 points, the predicted lift is within 1.5 
percent, the pressure drag is within 3 counts and the fric- 
tion drag is within 0.3 count of the extrapolated values. For 
the fine mesh with 577x97 points, the predicted lift is 
within 0.5 percent, the pressure drag within 1 count and the 
skin friction drag within 0.1 count. Fig. 5 shows pressure 
and skin friction distributions for different grid densities. 
The experimental values [IS] are also included. The main 
features of the flow are essentially captured on the medium 
mesh. The differences between medium and fine mesh are 
small. 
In Fig. 6 the transonic flow around the ONERA-M6 wing 
is considered. The computational domain is discretized us- 
ing a C-type topology in the streamwise direction and an 
0-type topology in the spanwise direction with 289x65~45 
points. A somewhat coarser mesh has also been used in or- 
der to indicate the influence of the grid density for three-di- 
mensional viscous flows. The commonly used test case 
M_ =0.84, a=3.06' and Re_ = I  1 x IO6 has been considered. 
Here, again the BaldwinLomax turbulence model has been 
used. The pressure distributions along several spanwise 
stations of the wing are displayed in Fig. 3.6. The results of 
the fine mesh agree well with those from the coarser mesh 
and with experimental data [ 161. 
A comprehensive validation of the central cell-vertex 
scheme with scalar dissipation can be found i n  [4, 14, 17, 
181. 

3.3 Central Differencing with Matrix DissiDation 
As shown in the literature and indicated by the results 
above, it  is possible to obtain grid-converged solutions for 
transonic viscous flows with central schemes, provided 
sufficiently fine meshes are used for the computations. 
However, for efficiency reasons, especially for 3-D appli- 
cations, the accuracy of the solution needs to be improved 
on a given grid, in order to reduce the number of grid 
points required for obtaining a specified level of accuracy. 
The major drawback of standard central schemes, as the 
one presented above, is the scalar form of the artificial vis- 
cosity. In this approach the. dissipation of each conserva- 
tion equation is scaled the same. The spectral radius of the 
flux Jacobian associated with the corresponding coordinate 
direction is employed as the scaling factor. As suggested 
by Turkel [I91 and Swanson and Turkel [20] the central 
discretization can be improved by replacing the scalar dis- 

sipation by a matrix-valued dissipation using ideas from 
the concept of upwind schemes. In this case, the dissipation 
in a particular coordinate direction for each equation is 
scaled by the specific eigenvalue associated with the corre- 
sponding flux Jacobian matrix. 
In the case of matrix-valued dissipation the dissipative flux 
2, + 1/2,j, k of eq. (3.6) through interface i+1/2 is defined as 

In contrast to eq. (3.7), the differences of the flow quanti- 
ties are now scaled by a matrix which is given by 

(3.15) 

with T and (T)-' being the right and left eigenvector matri- 
ces of the flux Jacobian A associated with the i-direction of 
the curvilinear coordinate system. IAAI denotes a diagonal 
matrix, where the elements are the absolute values of the 
eigenvalues of A. The eigenvalues of A are given by 

(3.16) 

The matrices in eq. (3.15) are evaluated at the interface 
i+1/2 using simple averages of the flow quantities W at 
grid nodes (ij,k) and (i+l,j,k). According to [ 19,201, by 
taking advantage of the special form of the elements of 
[ A l .  the matrix vector products occurring in eq. (3.14) can 
be replaced by the products of row and column vectors. 
This leads to a simpler and more efficient procedure for the 
evaluation of the dissipative flux. For details see also [21]. 
The parameter E ( * )  and E ( ~ )  are essentially the same as in 
the case of the scalar dissipation. Also here, typical values 
of the coefficients k(*) and k(4) are 1/2 and 1/64, respec- 
tively. Note that, if IAl is replaced by its spectral radius, 
then the usual scalar dissipation outlined above is obtained. 
As can be seen in eqs. (3.14) and (3.15), for each flow 
equation the dissipation is scaled by the corresponding 
eigenvalue. In practice, however, the eigenvalues as given 
in eq. (3.16) can not be used. At stagnation points the 
eigenvalues h,, and h, vanish, whereas near sonic lines 
(M=l) the eigenvalue h4 or h~ approaches zero. It is well 

-) 
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known, that for a central difference scheme zero artificial 
viscosity can create numerical difficulties. Therefore, the 
eigenvalues are limited in the following manner according 
to [ 19,201 

where VI and V, are small coefficients which limit the 
eigenvalues associated with the linear and nonlinear char- 
acteristic fields to a minimum value that is a fraction of the 
spectral radius p(A) (largest eigenvalue) of A. The parame- 
ters VI and V, are determined through numerical experi- 
ments such that shocks are captured without spurious oscil- 
lations and good convergence behavior is still maintained. 
Typical values are 0.31V110.6 and Vn=0.4 (see [21]). It 
should be noted. that i n  the case of Vl=Vn=I the scalar 
form of the artificial dissipation is recovered. 
The improvement of the accuracy of the central scheme for 
a given grid by using a matrix-valued dissipation instead of 
a scalar dissipation is demonstrated for the turbulent flow 
around the RAE 2822 airfoil [21]. Fig. 7 shows the com- 
parison of the surface pressure distribution for scalar and 
matrix dissipation. The calculations have been carried out 
on C-grids with 160x32. 320x64 and 640x128 cells. It is 
obvious that the quality of the solution obtained with the 
scalar artificial viscosity model on the 320x64 and 
640x 128 cells can already be achieved with the matrix dis- 
sipation on the next coarser grid, that is on the 160x32 and 
320x64 grid. respectively. This is underlined in Fig. 8 
wherc the skin friction distributions are compared. Fig. 9 
shows the variation of the global force coefficients with 
number of mesh points N=NX*NY. In contrast to the scalar 
dissipation model, the matrix dissipation provides a sec- 
ond-order scheme which is indicated by the linear depen- 
dency of the integral values with respect to the total num- 
ber of grid points. Also this figure shows that the results 
calculated with the scalar dissipation model on the 
640x128 grid is already obtained on the 320x64 grid by us- 
ing the matrix dissipation approach. On the other hand, on 
a given grid the matrix dissipation model requires addi- 
tional computational costs due to the increased complexity. 
Furthermore, it  shows a degeneration of the convergence 
behavior to steady state [20,21]. However, for a specified 
level of accuracy the central scheme with matrix dissipa- 
tion is more cost-effective than with the scalar dissipation, 
since coarser grids can be used. Thus, e. g. for the two-di- 
mensional turbulent flow past an airfoil the computational 
effort could be reduced by a factor of 2-3. 

3.4 Flux Difference SDlitting 
Numerical analysis of high speed flow often involves the 
resolution of strong shocks producing pressure jumps of 
considerable strength, complex shock-shock 'interactions, 
expansion fans and contact discontinuities as well as re- 
gions of highly expanded flow as e. g. on the leeside of re- 
entry vehicles at high angle of attack. For such Rows, cer- 
tain aspects of the numerical methods which perform well 
for sub- and transonic applications have to be modified, i n  
order to facilitate robust, efficient and accurate calcula- 
tions. Classical central difference schemes are not well 
suited to such flows, since they require excessive artificial 
damping in order to suppress high frequency oscillations 
which may grow unbounded in the vicinity of strong 
shocks. This has led to the development of a variety of 
upwind schemes. These schemes rely on local wave propa- 
gation theory for the differencing of the convective terms 
of the governing equations throughout the domain. Promi- 
nent representatives of this class of algorithms are schemes 
based on the 'Flux Difference Splitting' (e. g. [22,23] and 
the' Flux Vector Splitting' (e. g. [24,25] concept. 
Out of the class of flux difference split methods we have 
focused on the upwind TVD discretization according to 
[23,26]. This scheme is based on the approximate Riemann 
solver of Roe [22] and uses the modified flux approach of 
Harten [23] for second-order accuracy. Upwinding in 
multi-dimensions is performed by applying the one-dimen- 
sional operator successively in each coordinate direction. 
In order to implement an approximate Riemann solver in 
the framework of a node-based finite volume scheme 
[5,27], control volumes are used which are defined by con- 
necting the cell centers of the original cell (see Fig. IO). 
The convective flux Rt;, I; for the control volume Vi,j,k in  
eq. (3.1) is then approximated by 

-) 

The flux 8' I through cell face i+1/2 is given as 
I + ? . I .  I; 

L 
(3.19) 

with T denoting the right eigenvector matrix of the flux Ja- 
cobian in the i-direction of the curvilinear coordinate sys- 
tem. Eq. (3.19) separates the inviscid numerical flux into 
the sum of an averaged term corresponding to central diffe- 
rencing and a dissipative term, which adapts the discretiza- 
tion stencil in accordance with local wave propagation. Ac- 
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cording to Yee and Harten [23], the n'th component q" of 
the flux function Q , IS  given as - f .  

where All represents the n'th eigenvalue of the transformed 
flux Jacobian in i-direction, an denotes the differ- 
ence of characteristic variables + i.;. 

I 
l and 

i f  an = 0. 

The function w .  often called entropy function, prevents the 
scheme from violating the entropy condition when the 
wave speeds. A,, vanish. According to Harten, this function 
is given by 

~ 

l 

where 0<6<0.5 is a suitable chosen parameter. The term h" 
in eqs. (3.20) and (3.21) represents a limiter function which 
brings the scheme to second order. Many limiter functions 
have been proposed in the literature (see e. g. [26,28]). In 
most of our calculations the function 

Y , , k  = (3.24) 

(ij,k) and (i+l,j,k). The fluxes through the other cell faces 
are evaluated in a similar manner. 
Setting the limiter h" identically to zero reduces this 
method to Roe's first-order flux difference method. It has 
been shown that the scheme is TVD (Total Variation Di- 
minishing) for one-dimensional nonlinear hyperbolic sca- 
lar equations and for linear constant coefficient systems. It 
is formally second-order accurate except at shocks where 
due to the limiter the accuracy is reduced to first-order. 
For viscous flows the entropy correction, eq. (3.23), has to 
be carefully designed. The shear layers along solid walls 
are numerically smeared, if  an entropy correction is ap- 
plied to the eigenvalues associated with the convective 
waves. On the other hand, if cells with high-aspect ratios 
are present. additional support for damping in the direction 
of the long side of a cell is needed in regions of low veloci- 
ties, such as stagnation points. Therefore, as proposed by 
Radespiel and Swanson [29], the correction is constructed 
as a function of the cell aspect ratio. In i-direction the cor- 
rection for the linear waves, n=1,2,3 (see eq. (3.16)) is de- 
fined as 

and for the acoustic waves, n=4,5 i t  is given by 

The parameter 6 is given according to Muller [30] 

- .  - .  - 
where h', AI, 1'; are the spectral radii of the flux Jacobians 
in i - ,  j-, k-direction, respectively and 0<w<l. The blending 
coefficient, p, accounts for the cell aspect ratio. It is given 
as 

(3.28) 

is used where E > 0 is a small constant to prevent division 
by zero. The quantities at face i+1/2 are evaluated using the 
Roe averaged state [22] involving the values at grid nodes 

It has been shown in [29] that a wide range of flow prob- 
lems can be solved accurately with a single set of parame- 
ters, that is 6=0.25 and 0=0.3. 

In the following some results obtained with the TVD 
scheme are shown in  order to demonstrate the capability of 
the method. Firstly, in  Figs. 11- 12 the accuracy is displayed 
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for the turbulent transonic flow around the RAE 2822 air- 
foil. Calculations have been carried out on a coarse (80x16 
cells), medium (160x32 cells) and fine grid (320x64) with 
C-grid topology. Fig. 11 shows the pressure distributions 
and skin friction distributions along the surface for the 
three different grids. It is seen that with the TVD scheme a 
grid-converged solution is obtained. The difference be- 
tween the medium and fine grid solution is very small. The 
improved force coefficients obtained with the upwind TVD 
scheme compared to the classical central scheme of chapter 
(3.2) is shown in Fig. 12 where lift and drag values are 
plotted as a function of the inverse of the total number of 
cells. 
Next the laminar flow over the NACA 0012 airfoil at 
M_ =25 and a=25" is chosen as a test case to demonstrate 
that the method is able to handle very strong shock waves 
and highly expanded flow. Fig. 13 shows the 250x80 mesh. 
The numerical solution is represented in Figs. 14-17. The 
streamlines in Fig. 15 feature a large separated flow region 
with two distinct vortices. The difficulties in  resolving this 
highly separated flow are illustrated by a comparison of the 
distribution of skin friction and Stanton number along the 
airfoil obtained from meshes with different fine grids. It is 
obvious, that the grid with 129x41 mesh points is still too 
coarse to resolve the separated flow region. 
The third viscous test case presented here is the hypersonic 
laminar flow past a 15" compression ramp. With onflow 
conditions M_=l1.68, ReC=2.47x10', T_=65K and 
T,/T_ =4.604 i t  corresponds to case 111.4 of the Workshop 
on Hypersonic Flows for Reentry Problems, Part 11, held in 
Antibes, France. 1991 [31]. Results have been obtained for 
three successive grids [32]. The Mach contours of the fine 
grid with 288x224 cells are shown in Fig. 18. The pressure 
coefficient, skin friction and Stanton number are displayed 
in Figs. 19-21. It is seen that almost identical solutions are 
obtained on the medium and fine meshes. Experimental 
data of Holden [33] are also plotted. The comparison of ex- 
perimental and theoretical results shows that the calculated 
separation extent is somewhat larger than the experimental 
result. The discrepancies may be attributed to the fact that 
the experimental data contain 3D effects which are not 
modeled in the computation. 
As a last test case, Edney's Type IV shock-interference 
flow [34] is investigated. This flow problem demands the 
solver to resolve many rigorous flow features (see Fig. 22) 
and i t  points out significant differences in the accuracy and 
convergence behavior of the numerical methods [35]. 
Fig. 23 shows the Mach contours for the TVD scheme and 
the classical central scheme with scalar dissipation. In- 
viscid results have been obtained for a coarse grid with 
60x40 cells and a fine grid with 120x80 cells as shown in 
Fig. 23. The results demonstrate the superior resolution of 
the upwind TVD scheme. As anticipated, the additional 

dissipation required for the central scheme to suppress os- 
cillations near shocks, considerably smears both the im- 
pinging shock and the distorted bow shock. The upwind 
method sharply resolves these features. Moreover, even on 
the coarse mesh the internal structure of the field is cap- 
tured including the imbedded shock and terminating nor- 
mal shock. In  contrast to that, the fine grid solution ob- 
tained with the central difference scheme still shows a lack 
of structure. 
Many two- and three-dimensional applications [27,29,37] 
have shown, that the upwind TVD scheme provides an ac- 
curate discretization for inviscid and viscous flows. Based 
on our experience, however, flux difference Split methods 
are of difficult use with respect to robustness and parameter 
sensitivities for hypersonic flow fields with strong expan- 
sions into regions of low pressure and low density as e.g. 
on the leeside of re-entry vehicles at high angle of attack. 
Moreover, the extension of flux difference.split methods to 
non-equilibrium flows is rather complex. 

3.5 Flux Vector Splitting 
Upwind methods based on the flux vector splitting concept 
have shown to be efficient and robust schemes for inviscid 
flows. However, often they exaggerate diffusive effects 
which take place in shear and boundary layers. Conse- 
quently, substantial effort has been put on the improvement 
of flux vector split methods for viscous flows [38,39,40]. 
A remarkably simple upwind flux vector splitting scheme 
has been introduced by Liou and Steffen [38,40]. It treats 
the convective and pressure terms of the flux function sepa- 
rately. The convective quantities are extrapolated to the 
cell interface in an upwind-biased manner using a properly 
defined cell face advection Mach number. Accordingly, the 
scheme is called Adwctiort Upstream Splitting Method 
(AUSM). Results for simple llow problems given by Liou 
[39,41] have shown that AUSM retains the robustness and 
efficiency of the flux vector splitting schemes but it 
achieves the high accuracy attributed to schemes based on 
the flux difference splitting concept. The computational ef- 
fort for the flux evaluation is only linearly proportional to 
the number of unknowns, as in  the case of central differen- 
cing. Furthermore, the scheme can be easily extended to 
real gas calculations.The application to various relevant 
flow problems, however, has shown [36,42,43,44] that the 
original flux vector splitting method of Liou and Steffen 
has several deficiencies. It locally produces pressure oscil- 
lations in the vicinity of shocks. Furthermore, the scheme 
has a poor damping behavior for small Mach numbers 
which leads to spurious oscillations in the solution and af- 
fects the ability of the scheme to capture flows aligned with 
the grid coordinates. 
In the present paper several modifications to the original 
advection upstream splitting method of Liou and Steffen 
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are proposed which substantially improve the scheme's 
ability to predict viscous flows accurately. In particular, a 
hybrid method is introduced which switches from AUSM 
to van Leer scheme at shock waves. This ensures the well- 
known sharp and clean shock capturing capability of the 
van Leer scheme and the high resolution of slip lines and 
contact discontinuities through AUSM. An adaptive dissi- 
pation is introduced in order to achieve sufficient numeri- 
cal damping in cases of adverse grid situations and flow 
alignment. Furthermore, the MUSCL implementation for 
higher-order accuracy is modified to allow a more accurate 
scaling of the numerical dissipation in boundary layers 
where the contravariant Mach number is usually small in 
the wall-normal direction. The improved accuracy of the 
modified scheme is demonstrated by the calculation of 
two- and three-dimensional inviscid and viscous flows. 
As shown.in [39,36], the discrete inviscid flux 8:+ 1 / 2 , , ,  I; 
through cell face i+1/2 (see eq.(3.18)) can be interpreted as 
a sum of a Mach number weighted average of the left (L) 
and right (R) state at the cell face i+1/2 (see Fig. 3.10) and 
a scalar dissipative term. It reads 

where 

denotes the surface vector normal to the cell face i + 1/2.  
The quantity c represents the speed of sound. M i +  ,,2,j, I; 

denotes the advection Mach number at the cell face i + I /2 
which is calculated according to [39] as 

M = M:+M; 
i + ! , j , k  2 

(3.31) 

where the split Mach numbers Mplm are defined as [25] 

i f  M 2 1  
i f  [ M I <  1 (3.32) 
i f  M I - l  

r o  i f  M 2 1  
i f  I M I < I  
i f  M I - l  

(3.32) 

M, and M, denote the Mach number associated with the 
left and right state, respectively. The advection Mach num- 
ber is given by 

1 ( ( s i p  + s i p  + sizw) ) 
(3.33) M = -  

C 

The pressure p at cell face i + 1/2 is calculated in a similar 
way as 

= P[+P? 
i + ! , j , k  

2 
P (3.34) 

where pp'm denote the split pressure defined according to 
~251 

i f  M 2 1  
pp = j ~ ( M + 1 ) ~ ( 2 - M )  i f  IMI< 1 

P :a i f  M S - I  

(3.35) 

i f  M 2 1  
i f  IMIc  1 

i f  M S - l  

The definition of the dissipative term @ determines the 
particular flux vector splitting formulation. A hybrid 
scheme is proposed here [45], which combines the van 
Leer scheme and the scheme of Liou and Steffen (AUSM). 
It reads 

with 
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and 

where 6 is a small parameter 0 < 6 20.5 and o is a con- 
stant 0 I o 5 1. 

The above equations clearly show that for a supersonic cell 
face Mach number the hybrid scheme represents a pure 
upwind discretization, using either the left or right state for 
the convective and pressure terms. depending on the sign 
of the Mach number. For 0=0 the method reduces to the 
classical van Leer flux vector splitting scheme. In the case 
of o=l and i = O  the original AUSM developed by Liou 
and Steffen is recovered. Comparing both fluxes it is obvi- 
ous that the van Leer scheme is more dissipative than 
AUSM ( $ = O ) .  It has an additional Mach number scaled 
dissipative term which does not vanish even for M=O. Con- 
sequently, the van Leer scheme is more robust but less ac- 
curate than the original scheme of Liou and Steffen, espe- 
cially for viscous Row calculations. 
The hybrid flux has been introduced in order to ensure 
both, the clean and sharp shock resolution of the van Leer 
scheme and the low diffusive solution of AUSM in smooth 
regions. This is realized by relating the parameter o to the 
second difference of the pressure, 

a = O ( 5 ) .  

The value of o is I in smooth regions and switches to 0 in 
the vicinity of shocks. Moreover, in order to improve the 
damping behavior of the original AUSM ( 6  =0) in regions 

with adverse grid situations and flow alignment, its dissipa- 
tive term has been modified. As i t  can be seen in eq.(3.38), 
controlled dissipation is locally introduced for small advec- 
tion Mach numbers, preventing the dissipative term from 
approaching zero as the Mach number tends to zero. In 
Fig. 24 the dissipative term 4 is plotted as a function of 
Mach number. Note, that for simplicity ML - MR is as- 
sumed, which is valid at least in  the vicinity of M=O on a 
sufficiently fine computational grid. 
Accurate and efficient calculations of viscous flows require 
computational grids with high-aspect ratio cells. Therefore, 
the dissipation term of the improved AUSM for small ad- 
vection Mach numbers (eq. (3.38)) has to be properly 
scaled in order to avoid smearing of the shear layers in  
wall-normal direction. As mentioned in [42], this is real- 
ized by defining the parameter 6 in eq. (3.38) not as a con- 
stant but as a function of the cell metric 

= 6 . 0  (3.40) 
i + !  j . k  i +  !,j. k 

6 
2' 2 

where 6 is a small constant, 0 < 6 10.5, and p is a scaling 
function. It may be given by 

(3.41) 
I + -  J k 2' . 

In the above. /8'/,/8'l,18k/ represent the surface areas asso- 
ciated with the i-j-,k-direction of the body-fitted coordi- 
nate system, respectively. The scaling function p in j- and 
k-direction is defined in a similar way. With this scaling, 
controlled adaptive dissipation can be introduced, which 
on the one hand improves the damping behavior of AUSM 
in adverse grid situations but on the other hand does not 
spoil the accuracy of the method for boundary layer calcu- 
lations. It is obvious from eqs. (3.38)-(3.41) that additional 
dissipation as a function of the grid aspect ratio is fed in 
only along the long sides of the cell, that is if  the cell face 
area (Z i l  is smaller than the+greas 18'1 and . In the con- 
trary, if  the cell face area IS I IS larger than areas and 

as typical in  wall-normal direction, the original non 
smearing dissipation of AUSM is recovered. 
An alternate scaling function is given by 

This function leads to a constant s = 6 along the long side 
of the cell, whereas in the wall-normal direction the dissi- 
pative coefficient is weighted by the cell aspect ratio. It is 
obvious that along the short cell face the dissipation is re- 
duced as the cell aspect ratio increases. 
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Another possibility for the scaling of the adaptive dissipa- 
tion is to use the local flow quantities instead of the metric 
terms. I n  this case the function p is defined as 

where hl,iJ,hk are the spectral radii of the inviscid flux Ja- 
cobians i n  the i-, j-, k-coordinate direction, respectively. 
The scaling function eq. (3.43) also introduces additional 
damping in the direction of the long side of the cell. In the 
wall-normal direction again only a small amount of dissi- 
pation is allowed. 
The spatial accuracy of the improved nux vector split 
scheme depends on the determination of the left and right 
state at cell interfaces. For a first-order scheme the flow 
quantities at the left and right state are given by their values 
at the neighboring mesh points, i.e. i j ,k  and i+i,j,k, respec- 
tively, (see Fig. IO).  Higher-order accuracy is obtained 
with the MUSCL approach in the present work. MUSCL 
uses extrapolation of flow quantities for the calculation of 
the left and right states. With this approach several deci- 
sions must be taken which affect the ability of the scheme 
to capture strong shocks and viscous shear layers aligned 
with the coordinate grids. These are the choice of the flow 
variables to be extrapolated to the cell face and the choice 
of the extrapolation function which gives higher-order 
fluxes in smooth regions of the flow. At discontinuities the 
function switches to first-order accuracy in order to guaran- 
tee shock capturing without spurious oscillation. Here. the 
van Albada limiter function is chosen according to [46] 

1 (Al+E)A- + ( A i  + € ) A +  
UL = 111, j. k + - (3.44) 

2 A:+A._? + 2 e  

with 

A- = u . .  1.1. t -  "i - I . ; .  I; 

where UL denotes the flow quantity U of the left state to be 
extrapolated to the face i+1/2. The right state, U R ,  is evalu- 
ated similarly by using the data of points (i,j,k), (i+l,j,k), 
(i+2j,k). This limiter function is equivalent to Fromm's 
scheme in smooth regions of the flow where the gradients 
squared, A: ,A: , are small compared to E. In [46] the 
quantity E is used in order to suppress limiting of the solu- 
tion in regions where the flow is nearly constant. This is ac- 
complished by taking 

E = K,Ax"  (3.45) 

where Ax denotes the distance between the grid points i j ,k  
and i+l j ,k .  K, is an empirical constant of O(10) and 
2<n<3. Note, that one can only expect eq. (3.45) to work 
well when solving the flow equations in their nondimensio- 
nal form. Eq. (3.45) can be extended to suppress limiting 
the fluxes within boundary layers. Not only does limiting 
in the wall-normal direction degrade accuray on coarse 
meshes but it  may also introduce spurious oscillations in 
the solution as seen in Fig. 2%). Here, we encounter the 
situation that the Cartesian velocity components, U and v, 
are nonzero but the contravariant velocity component in  
wall-normal direction is close to zero. Limiting the extrap- 
olation of U and v individually, as i t  is standard practise in 
most MUSCL implementations [47], may result in false 
values for ML and MR which define the inherent dissipa- 
tion of the split flux (eq. (3.29)). This problem is resolved 
by defining 

where r2=0(100). OmodAUSM is evaluated according to 
eq. (3.38) with s =0(0.1), and is the average of the 
contravariant Mach numbers at points i j ,k  and i+l,j,k. 
Fig. 3.2% demonstrates that oscillations in wall-normal di- 
rection are completely removed by using eq. (3.46) instead 
of (3.45). Note, that this type of oscillations does not occur 
in the higher-order results published in [39]. This may be 
explained by the fact that the viscous test cases selected in 
[39] used Cartesian meshes where the Cartesian velocity v is 
equal to the corresponding contravariant velocity compo- 
nent. For this special case eq.(3.45)is sufficient in order to 
obtain proper dissipative terms. 
It should also be mentioned that the second-order interpo- 
lant in eq. (3.44) may be replaced by the third-order for- 
mula of [48]. This alternative yields somewhat more accu- 
rate results for transonic and supersonic flows but i t  is less 
robust for hypersonic flows with strong shocks. 
The selection of flow variables for the extrapolation pro- 
cess is described next. Initially, wc tried some standard 
choices, these are the use of primitive or conserved flow 
variables for extrapolation. It turned out that the latter 
choice is not robust at transient shock waves, whereas the 
former tends to support oscillations in stagnation point re- 
gions behind strong shocks. Furthermore, either choice 
does not allow inviscid steady state solutions with constant 
total enthalpy. Constant total enthalpy in the steady state 
can be obtained if  the energy flux in eq. (3.29) is formed 
with total enthalpy H being an extrapolated quantity. How- 
ever, recalculation of the pressure p in eq. (3.29) from a 
single set of flow variables including H does not yield 
nonoscillatory fluxes for the momentum equation. Further 
numerical experiments showed, that extrapolation of the 
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primitives for mass and momentum fluxes combined with 
extrapolation of H in order to compute the energy flux re- 
sults in nonoscillatory flow solutions and superior conver- 
gence behavior. This numerical treatment corresponds 
closely to the underlying design principle of AUSM, which 
splits the flux vector into an advective and a pressure part. 
In the computations of 3D hypersonic flow problems, very 
strong shocks may occur in regions of strong variations of 
the grid metrics. For these cases shock resolution is further 
improved by modifying the limiter function, eq. (3.44), as 

( A , ~ + E ) A -  + (A! + € ) A +  
(3.47) 'L = 'I,,. k + ~ ' ~ . ~ ,  k A:+A? + 2 ~  

with the pressure switch v , given by eq.(3.39). Addition- 
ally, the contravariant Mach numbers, M, and MR, are ob- 
tained by extrapolation of the contravariant velocity com- 
ponent. More specifically, ML at cell face i+1/2 is 
computed by taking 

(3.48) 

where cL denotes the speed of sound associated with the 
left state and (4,) is the contravariant velocity which is 
evaluated with the help of eq.(3.47) and 

(3.49) 

(3.50) 

3 '  

A. = ( 6 i . j . k - 6 i - l . j . k )  + Si-I /I . , .k  (3.5 
lsili - i / l , j ,  ' 

Here, 4 = [U, v, W ]  is the vector of Cartesian velocities 

In the following, numerical results for inviscid and viscous 
flows obtained with the improved advection upstream split- 
ting method are presented. Emphasis is put on the method's 
capability to resolve wall-noma1 gradients of flow quanti- 
ties which for instance occur in entropy and boundary lay- 
ers. As test cases the inviscid flow around a blunt slender 
cone and viscous 2D flows are selected. 
Inviscid calculations around a blunt slender cone [49] at 
freestream Mach number M_ =8 and angle of attack a=O" 
have been carried out. The curved bow shock detached 
from the blunt nose produces a thick entropy layer in the 
front part of the configuration which, however, develops to 
a very thin layer in the rear part. Since the quality of the 

numerical results strongly depends on the resolution of the 
entropy layer, computational methods have to be used 
which accurately predict this flow feature. 
The grid used for the calculations is shown in Fig. 26. The 
C - 0  topology has been chosen with 161x41~31 grid points 
in  i-j-,k-direction, respectively [50]. 21 grid points were 
used to discretize the spherical nose shape in streamwise 
direction. In i-  and j-direction a linear stretching of the grid 
spacing was introduced. This allows a suitable grid distri- 
bution with respect to computational efficiency. The 
stretching in j-direction provides enough grid points in the 
near-wall region necessary to resolve the thin entropy layer 
in  the rear part of the configuration. Fig. 27 shows Mach 
number and pressure contours in the nose region obtained 
with the improved flux splitting method. The flow field is 
axi-symmetric since the angle of attack has been set to 
zero. In order to check the accuracy of the scheme, in Fig. 
3.28 the entropy value at the wall is plotted along the body 
in streamwise direction. Since for inviscid flows the body 
surface is part of the stagnation streamline, the entropy is 
constant along the body. Its value is determined through 
the entropy raise across the normal shock. In Fig. 28 nu- 
merical results obtained with the improved AUSM and 
with the classical van Leer scheme are depicted. In addi- 
tion, the analytical entropy value at the wall is given. In the 
front part of the configuration (almost up to 100 nose radii) 
the error of AUSM is less than 1%. In the rear part, how- 
ever, the accuracy is decreasing. This may be attributed to 
the computational grid, which in this part of the configura- 
tion is not sufficiently fine to resolve the thin entropy layer 
as accurately as in the front part. It should be noted that for 
this calculation the scaling function eq. (3.42) with 6 = 0.1 
has been used to control the dissipative term. Computa- 
tions with the other scaling functions or with different pa- 
rameters 6 did not improve the results. As it can be seen in 
Fig. 28, the classical van Leer scheme produces less accu- 
rate results along the whole configuration. This demon- 
strates that on a given grid the improved flux splitting 
method is less diffusive compared to the van Leer scheme 
and therefore more qualified for the accurate resolution of 
entropy layers. 
Several two-dimensional viscous flow problems serve to 
demonstrate the ability of the new flux vector split scheme 
to resolve viscous shear layers. We have chosen transonic 
and hypersonic test cases which are well known from liter- 
ature. 
The first test case is the transonic turbulent flow over the 
RAE 2822 airfoil at M_=0.73, a=2.79', R,=65x106. The 
computational grid consists of 320x64 cells. Flow compu- 
tations were carried out with explicit multi-stage time step- 
ping and multigrid with full coarsening. A typical conver- 
gence history is displayed in Fig. 29. Computing time was 
reduced by full multigrid, that is, coarse-mesh solutions on 
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grids with 80x16 cells and 160x32 cells were obtained with 
each 100 multigrid iterations in order to produce the initial 
solution on the next finer grid. An impression of the overall 
flow field is provided by Fig. 25b. The improved AUSM 
yields a clean resolution of the shock and the boundary lay- 
ers. Fig. 30 compares the distributions of skin friction 
yielded by AUSM and van Leer scheme under grid refine- 
ment. There is a dramatic improvement of resolution visi- 
ble for the improved AUSM. Not only does the improved 
resolution of shear layers affect friction drag of the airfoil 
but also the pressure forces due to viscous/inviscid interac- 
tion. This is demonstrated in Fig. 31 where l i f t  and drag 
values are plotted as a function of the inverse of the total 
number of cells, N. The results of the high-resolution 
upwind TVD scheme are included for comparison. The 
smeared boundary layers of van Leer 's scheme affect the 
interaction with the shock in that the shock location moves 
upstream (not shown here). Consequently, l i f t  is underpre- 
dicted by van Leer's scheme as compared to AUSM and 
Upwind TVD. The improved AUSM is best for the predic- 
tion of pressure drag whereas AUSM and Upwind TVD do 
similarly well for skin friction drag. The relatively large 
values of pressure drag for the upwind schemes on coarse 
meshes as compared to those for the central differencing 
plus matrix-valued dissipation given in Fig. 12 are caused 
by the effect of the flux limiter in the nose region of the air- 
foil. This effect disappears for subsonic cases when the 
flux limiting is switched off. The construction of a limiter 
function which is only active at shocks and does not adver- 
sly affect smooth flow regions is still unresolved. 
The next viscous 2D test case presented here is the hyper- 
sonic laminar flow past a 15" compression ramp. The on- 
flow conditions correspond to case 111.4 of the Workshop 
on Hypersonic Flows for Reentry Problems held in An- 
tibes, 1991 1311. The grid consists of 288x224 cells. In 
Fig. 32 the Mach contours are plotted. Results obtained 
with the second-order TVD scheme and the second-order 
improved AUSM with scaling eq. (3.42) and 6=0.05 are 
presented. There are no major differences between the re- 
sults of the different schemes visible. This statement is 
supported by the plots of the pressure coefficient the skin 
friction coefficient and Stanton number along the wall in 
Fig. 33. Only slight differences occur in the skin friction 
coefficient and the Stanton number. As in the previous test 
case, the scaling of the dissipative term in the modified 
AUSM has no influence on the result on this very fine grid. 
These calculations demonstrate that the improved flux vec- 
tor split method predicts viscous flows as accurate as the 
TVD flux difference splitting scheme. For the viscous test 
cases presented here almost no differences in the results 
have been observed for the different scaling functions 
which have been proposed for a proper scaling of the dissi- 
pative term. Compared to the TVD scheme the conver- 

gence behavior of the modified AUSM scheme is slightly 
worse. However, due to the reduced computational effort 
per time step, the overall efficiency of both methods is 
comparable. Since in contrast to the TVD scheme the nu- 
merical effort of AUSM is proportional to the number of 
unknowns, substantial reduction of the computational cost 
can be expected for 3D calculations and also for solutions 
of flow problems with additional conservation equations. 
Computations of complex 3D viscous flows over a winged 
reentry vehicle including deflected control surfaces and 
multiblock computations of the flow through the slot be- 
tween different control surfaces (see chapter 5) demon- 
strated the usefulness of the present discretization for gen- 
eral 3-D applications. AUSM enables us to compute flows 
with very strong shocks and strong expansions into leeside 
flow regions, which were impossible with flux difference 
split methods. 

3.6 Viscous Terms 
For the approximation of the Navier-Stokes equations all 
schemes presented in the previous sections rely on the 
same central discretization of the viscous terms. The vis- 
cous fluxes required to determine the solution at point 
(i.j.k) are approximated using the auxiliary cell shown in 
Fig. 3.10. They contain first derivatives of the flow vari- 
ables, which are computed using a local transformation 
from Cartesian coordinates to the curvilinear, coordinates 
5. q, ( [ 141. For an arbitrary flow quantity one obtains 

(3.52) 

The derivatives &,.I$,, and c$< are evaluated employing 
central finite differences, whereas the cell face vectors and 
the volume are used to compute the metric derivatives. 
In high Reynolds number flows with thin viscous shear 
layer the flow gradients in  the direction normal to the wall 
are much larger than those along the wall. This fact allows 
a simplified approximation of the viscous terms, called thin 
layer approximation. Using a body fitted mesh, there is one 
family of grid lines almost parallel to the wall and another 
one approximately normal to it. I f  the thin layer is to be re- 
solved accurately and if the number of points is to be kept 
within a limit which is tolerable to todays supercomputers, 
highly stretched grids in wall-normal direction are used. 
On such grids one cannot expect the viscous terms in stre- 
amwise direction to be resolved accurately. Therefore, with 
the thin layer approximation all the viscous contributions 
arising form gradients in the direction of the quasi-stream- 
wise coordinates are neglected. In all viscous applications 
shown in this paper the thin layer approximation has been 
used. 
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4. EFFICIENT ALGORITHMS FOR THE 
COMPUTATION OF STEADY-STATE SOLUTIONS 
As numerical flow simulations pave their way into the 
practical aerodynamic design process, the need for efficient 
methods to solve the equations governing inviscid and vis- 
cous flows has become very obvious. Many solvers still 
used in current aerospace development programs exhibit 
slow convergence, towards the desired steady-state solu- 
tions, which leads to high computer costs and long turn- 
around times. Consequently, there is a substantial amount 
of research work focused on methods for convergence ac- 
celeration. One of the promising approaches is the multi- 
grid method. Multigrid which uses a sequence of succes- 
sively coarser meshes in order to propagate and damp 
disturbances throughout the flow field, was initallly in- 
vented and analyzed for the solution of elliptic partial dif- 
ferential equations by A. Brandt [51]. Later, the idea was 
successfully applied to purely hyperbolic or mixed systems 
of equations in fluid mechanics, even though the mathe- 
matical backing of these extensions is still incomplete. 

4.1 Multigrid Aoproach 
To set the stage for the discussions of multigrid in subse- 
quent parts of the chapter we first describe the multigrid 
method and some means to analyze its performance. 

4.1.1 Definition of Multigrid Comuonents 
The multigrid method deals with a sequence of meshes 
which differ by their density of grid points. They may be 
created by successively deleting every second grid line in 
all coordinate directions. By this, 4-7 coarse meshes are 
generated for practical flow problems. Here, we will de- 
scribe an arrangement of a fine mesh with index f and a 
coarse mesh with index c. The semi discretization of chap- 
ter 3 on the fine mesh can be written as 

+ 
d +  -R1 -Wr = - 
dt "f 

+ .  + 
where Wf IS the solution vector, Rf represents the discrete 
flux balance, and V, is the discrete volume around the grid 
point. The fine-mesh solution, Wr,  may be improved by 
numerically advancing eq. (4.1) in time, which is called 
smoothing in multigrid terminology. Practical smoothing 
schemes based on explicit and implicit time stepping are 
discussed in chapter 4.2. In order to improve the solution 
on the fine grid with the aid of a coarse grid, a series of 
steps are carried out as follows. 
Both the solution vector and the residual vector are trans- 
ferred to the coarse mesh. Simple injection 

-9 

at the coincident grid point is used for transfer of the solu- 
tion. In order to ensure conservation property for the resid- 
ual transfer, full weighting according to [51] is applied as 

(4.3) 

and px, py, pz are the standard averaging operators in 
curvilinea: coordinate directions. Note, that the transferred 
re+sidual, Rf , should be based on the most recent solution, 
W f ,  in  order to obtain best efficiency of the overall 
method. The restricted residual is used to define a forcing 
function for the coarse mesh 

(4.4) 

as the difference between the restricted residual and the 
coarse-grid residual calculated with the injected solution. 
The use of the forcing function eq. (4.4) is necessary if we 
want to solve eq. (4. I )  on the coarse mesh in order to ob- 
tain corrections for the solution on the fine mesh. The 
smoothing scheme is then used to solve 

-pc = -( rt, + B,),",. (4.5) 

Note, that during the first numerical upd5te of eq. (4.5) on 
the coarse mesh the coarse-grid residual R, drops out. This 
ensures zero corrections from the coarse mesh if the re- 
stricted residual from the fine mesh, I f R f ,  vanishes in the 
steady state. 
Execution of one or several time steps on the coarse mesh 
yields corrections of the form 

+ 

+ -9k + o  
AW, = W, -w, 

where the superscripts denote the discrete time level. The 
correction is then transferred to the fine grid which is called 
prolongation. The prolongation operator is denoted by I,' 
and it contains linear interpolation for most of the results 
presented in the present lecture (see also chapter 4.3). The 
total correction on the fine mesh after n time steps on the 
fine mesh and k time steps on the coarse mesh is 

4.1.2 Analvsis of Model Problem 
Von Neumann analysis of a model problem is carried out in 
order to study the numerical behavior of the multigrid com- 
ponents defined above. Until now, we have used a 2D sca- 
lar model of the type 

+ +  w, = Wf (4.2) 
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aw aw aw azw 
at ax ay a y 2  
- + a - + b - = c -  . (4.8) 

With appropriate choices of a, b, and c, the model allows to 
investigate the properties of multidimensional convection 
dominated problems and also cases, where diffusion takes 
over. 
If one uses uniform spacings, Ax and A y ,  for discretiza- 
tion, one can also study the effect of high aspect ratio cells, 

Ax >> Ay (4.9) 

and convection aligned with the grid, 

aAy >> bAx . (4.10) 

The scalar model does not allow analysis i n  situations 
where the eigenvalues of the inviscid flux Jacobians of the 
system of flow equations differ due to large differences i n  
the acoustic and convective wave speeds. These differ- 
ences are typical features of low-speed flow regions and 
also near sonic lines. The interested reader is referred to 
Refs. [52-541 for more details about these problems. 
We apply semidiscretization for the spatial derivatives on a 
domain, R , which is covered with the fine mesh containing 
cells with spacings AX, and Ay, and the volume, Vf = 
Ax,Ayf.  Defining a time step on the fine mesh, for exam- 
ple, 

CFL V, 

aAyf  + bAxf 
Atf = (4.1 1) 

the discrete approximation of eq. (4.8) at point ( i j )  reads 

A X f  R .  . = a A y f D x +  bAx D -c-D 
1. J Y Ayf Y Y  

(4.12) 

D,, D, and D,, denote the difference operators used to ap- 
proximate the first and second derivatives of eq. (4.8), re- 
spectively. Suppose we want to investigate first-order 
upwind differencing for the convective terms. Then, we 
obtain 

for a > 0 and b > 0. Difference operators for higher-order 
discretization may be found in Refs. [55-561. 
Assuming a periodic boundary condition, the scalar func- 
tion, w(x,y,t), can be expressed by a Fourier series 

i J  

where the Fourier angles, 0, , O y  , vary between -n and n. 
In the Von Neumann analysis the behavior of a single mode 

is studied and the complete result is obtained by linear su- 
perposition. 
Inserting eq. (4.15) and (4.13) into eq. (4.12) one obtains 
the growth of the amplitude of the Fourier mode, 

At 
V 2 = - [ a A y ( I s i n O , +  ( I -cos$ , ) )  

+ b A x ( I s i n Q y +  ( I  -cosQy) (4.16) 

Ax + 2c- ( 1  - cos$) ] 
AY 

If the Fourier symbols of a time stepping operator used to 
solve eq. (4.16) is denoted by P ,  one can write eq. (4.16) as 

or 

i n + '  = go" ' 

g = I - P i  
(4.18) 

The Fourier symbols of some selected time stepping 
schemes used as a smoother for multigrid algorithms are 
discussed in section 4.2. Any time-stepping scheme to 
solve the semidiscrete equation (4.12) is linearly stable, if 
the Fourier mode does not grow in time, that is 

lgl 2 I . (4.19) 

4. I .3 Multigrid Analysis 
If a multigrid algorithm is used to solve semidiscrete equa- 
tion (4.12), the resulting iteration operator becomes a ma- 
trix according to Hackbusch [57]. Accordingly, the Fourier 
transform for analysis of an iteration with multigrid is a 
matrix with the dimension 2I-l x 2I-l where 1 denotes the 
number of grid levels involved. Analysis of this type for 
fluid mechanics has been published by Mulder [58], 
Leclercq [591, and Eliasson [60]. 
As an alternative, Jameson [61] has presented a so-called 
uniform analysis which simplifies the Fourier transform of 
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the matrix to a scalar. With the multilevel uniform analysis, 
fine-grid and coarse-grid corrections are formally com- 
puted at all points of the fine grid. Then a nonlinear filter is 
applied to remove the coarse-grid corrections at fine-grid 
points not contained in the coarse-grid. The filtering intro- 
duces errors in the analysis for the grid points not con- 
tained on the coarse grid, that is, it does not allow for the 
coupling effects due to the interpolation operator in the 
multigrid method. However, it does offer the advantages of 
simplicity and easy application to more than two-level 
schemes. Thus, i t  allows the rapid comparison of different 
multigrid algorithms. If a multigrid method is unstable or 
inefficient according to this analysis, then it is certainly not 
a reasonable scheme. 
In order to apply the uniform scheme analysis one needs 
the Fourier symbols of the multigrid components. The Fou- 
rier symbol of the injection operator from eq. (4.2) is sim- 
ply 1 .  The weighted residual transfer operator in 2D, 

has a Fourier transform, 

(4.20) 

As for prolongation, we consider only the mesh points 
which are contained in the coarse mesh and the fine mesh. 
Hence, Fourier transform of prolongation is simply 1. 

4.2 Smoothin? Schemes 
This section discusses two selected schemes to iterate the 
semidiscrete equation 

a~ 
at v - w + -  = 0 

towards its desired steady state solution. The chosen ex- 
plicit and implicit schemes are characterized by their low 
operation count and storage requirements. The analysis for 
1 D and 2D scalar model problems indicates good damping 
properties of these schemes for high-frequency compo- 
nents of transient errors whereas the long waves which oc- 
cur on fine coordinate meshes are slowly damped. There- 
fore, these schemes may be taken as smoother for a 
multigrid method. 

4.2.1 Explicit Multistage Schemes 
Explicit multistage schemes are considered here for several 
reasons. They are simple to program, in particular at 
boundaries, and for multiblock partitioned computational 
domains. Moreover, the number of stages and their coeffi- 
cients can be varied in order to optimize both damping and 
convection of transient disturbances [61-621. Finally, the 

explicit schemes usually do not require start-up proce- 
dures. The most simple multistage scheme with p stages 
reads 

w n +  I = (P )  

One can always represent the change of the Fourier mode, 
6 ,  according to eq. (4.16) by substitution of eq. (4.14) into 
(4.21). This yields the amplification rate, g, as function of 
the Fourier angles ax, ay Fig. 34 presents results of a 3- 
stage scheme and first-order upwind spatial discretization 
for a ID convection problem taken from Ref. [62]. High- 
frequency error modes for x/2 c 0, < TI are well damped 
whereas the damping for lower frequencies is poor. The 
Courant number of this scheme is limited to about I .5. This 
indicates that transient errors in the solution are convected 
out of the computational domain at a relatively low rate per 
time step. 
In eq. (4.21) we have assumed that both the central (con- 
vective) and dissipative parts of the spatial discretization 
operator, Z , are evaluated on each stage of the time step- 
ping scheme. Somewhat more freedom in the design of 
multistage schemes is gained by evaluating the dissipative 
parts only at q out of p total stages. Moreover, the dissipa- 
tion evaluations may be weighted. If one defines C and D 
as the centrally discretized and dissipative part of the flux 
approximation, the residual function of weighted multi- 
stage schemes is defined as 

(4.22) * 

One can extend the stability range of the explicit multistage 
schemes by a simple scalar implicit operator acting on thc 
residuals. For two dimensions, this residual smoothing can 
be applied in the factored form 

( 1  - p,VxAx) ( I  - pyvyAy) % ( I )  = (4.23) 

where the residual %:I) is defined as 

(4.24) 

0 and A are the normal forward and backward difference 
operators. The smoothing coefficients, p, and py depend 
on the Courant numbers in the individual coordinate direc- 
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tions according to Refs. [63,64]. This implicit procedure 
allows the explicit stability limit to be increased by a factor 
of 2 to 3. The performance of a particular 5-stage scheme 
which was optimized by Tai [65] using weighted residual 
evaluation and implicit residual smoothing is displayed in 
Fig. 35. The scheme damps disturbances much better for 
the long-wave range, as compared to the 3-stage scheme of 
Fig. 4.1. Note, that this scheme requires only 3 evaluations 
of dissipative flux terms which usually take the majority of 
floating point operations. Contours of constant amplifica- 
tion factor over the Fourier angles in 4 and 5 directions for 
the 2D convection problem with a=b=l are shown in 
Fig. 36. Results of the uniform multigrid analysis briefly 
described in section 4.1 are also included. It is seen that the 
multigrid scheme acts as to improve damping at lower fre- 
quencies. There is enough stability margin of the scheme 
for Fourier, angles 101 > ;/4 which indicates that the errors 
contained in the uniform analysis can be tolerated. 

4.2.2 ImDlicit LU-SSOR Scheme 
Multigrid methods based on explicit multi-stage schemes 
have been shown to yield good convergence rates for both 
inviscid and viscous flows. As seen in chapter 4.2.1 the 
principal reason for this is, that the number of stages and 
the stage coefficients can be tuned such that good high fre- 
quency damping is obtained which is necessary for an effi- 
cient multigrid process. However, for flow problems which 
are governed by equations with strong source terms. as for 
example viscous flows for which turbulence viscosity is 
determined by multi-equations turbulence models and hy- 
personic non-equilibrium flows, a severe time-step restric- 
tion is imposed on explicit schemes. This leads to slow 
convergence, even if a multigrid method is used. In order 
to overcome the time-step restriction, some kind of implicit 
operator has to be used. Various approaches are known i n  

the literature. Preferable techniques are the point-implicit 
treatment of source terms or the full implicit treatment of 
all equations. Thus there is an urgent need to develop im- 
plicit multigrid methods. 
I n  the past efficient multigrid methods have been devel- 
oped in conjunction with implicit schemes (e.g. [66-701). 
Various implicit operators have been used as a multigrid 
driver including factored and unfactored schemes. This re- 
port focuses on the investigation of the damping properties, 
convergence behavior and stability of the implicit LU- 
SSOR scheme in the framework of a standard multigrid 
method. 
The LU-SSOR scheme (Lower-Upper Symmetric Succes- 
sive Overrelaxation) became quite popular because of its 
low numerical effort, efficient implementation on vector 
computers and reasonable convergence speed. The algo- 
rithm belongs to the class of factored schemes and is based 
on the decomposition of the full implicit operator into 

lower and upper triangular matrices. The LU-SSOR 
scheme originally introduced by Yoon and Jameson 
[69,71] and further developed by Rieger and Jameson [72] 
and Yoon and Kwak [73] combines the advantages of the 
LU-factonization and the symmetric Gauss-Seidel relax- 
ation. Recently, Yoon et al [74] and Blazek [70,75] have 
used the LU-SSOR scheme as an effective smoother for an 
efficient multigrid scheme. They have shown fast conver- 
gence for many inviscid and viscous flow problems includ- 
ing high speed flows. 
In  the following the LU-SSOR scheme is briefly presented. 
Details are given in 17.51. In general an implicit scheme for 
the system of ordinary differential equations (4.1) can be 
formulated as 

with the solution correction 

and the discrete flux balance 

(4.25) 

(4.26) 

(4.27) 

+ 
where RC and 8' denote the convective and viscous part, 
respectively. The parameter p (1/21p11) determines the ac- 
curacy of the implicit scheme in time. For p=1/2 the 
scheme is second-order accurate, while for all other values 
the time accuracy drops to first order. 
Linearizing eq. (4.25) by 

(4.28) +n d i t  -+ 
= R +>AW+O(At2) 

aw 

and dropping all terms of second- and higher-order, one 
obtains the general unfactored implicit scheme 

(4.29) 

+ - + .  For a grid point (ij,k) the term a R / a W  I S  expressed as 
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Here it is assumed, that the thin layer approximation of the 
Navier-Stokes equations is used in which the viscous flux 
only in the wall-normal direction (j-direction) are taken 
into account. 
The evaluation of the quantities on the right hand side of 
eq. (4.30) in terms of the flux Jacobians yields 

where A', B', e denote the split matrices of the flux Jaco- 
bians A,B,C in i-j-k-direction, respectively. The matrices 
with superscript '+' contain only positive and those with 
superscript '- ' only negative eigenvalues. As proposed in 
[72] they are given by 

(4.32) 1 
2 A' = - ( A + o r , I )  

with 

rA = max { /hl:A eigenvalue of matrix A} . (4.33) 

The factor cq 0 2 1 ,  determines the amount of implicit dissi- 
pation and hence influences the damping and convergence 
properties of the scheme. 
The terms B' and cf: are defined in the same manner. The 
matrix H in eq. (4.31) corresponds to a viscous flux Jaco- 
bian without the spatial operators. It has been found that in 
the framework of a finite volume formulation the use of 
correct metric terms is a critical point. For details the 
reader is referred to references [75]. 

Inserting expression (4.3 1) into equation (4.29) one obtains 

The LU factorization of the implicit operator of eq. (4.34) 
then yields 

+ + 
( L D - ' U ) A W  = -At R n .  1. J ,  k (4.35) 

with the factors 

D =  (4.36) 

The use of splitting according to eq. (4.32) allows a simpli- 
fied evaluation of the diagonal operator D 

At 
D = I + p- V [ ( T A  + rB + rc. I ,  J ,  . k ) + 2Hi ,  j, k]  . (4.37) 

The diagonal dominance of the factors L and U is provided 
by eq. (4.32). Hence, each factor of the decomposition is 
diagonally dominant and thus the numerical stability of the 
inversion process is ensured. 
As demonstrated in [75] one iteration of the LU-SSOR 
scheme is carried out in two steps, a forward and a back- 
ward sweep 

The sweeps are accomplished along diagonal lines. As a 
consequence, in comparison to the most other implicit 
schemes, only a block diagonal matrix for viscous flows - 
or even a scalar diagonal for inviscid flows - instead of 
block tri- or pentadiagonal matrices has to be inverted. 
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block tri- or pentadiagonal matrices has to be inverted. 
This reduces the numerical effort significantly and i t  also 
allows a straight forward vectorization. Furthermore, as 
shown in [72] the Jacobian matrices can be substituted by 
fluxes which considerably reduces the number of opera- 
tions. All in  all, the computational expense of the 
LU-SSOR scheme is comparable to that of an explicit two- 
stage scheme (see chapter 4.2. I ) .  
In combination with multigrid the LU-SSOR scheme de- 
scribed above is used as smoother on all grid levels. Its 
damping properties have been investigated in detail by Bla- 
zek [75] using single- and a two-grid von Neumann Fourier 
analysis as described in section 4.1. Central as well as 
upwind spatial discretizations of the explicit operator (right 
hand side of eq. (4.29)) have been considered. Figs. 37 and 
Fig. 38 present contours of the single-grid amplification 
factor for the central discretization and the second-order 
upwind discretization for a fully convection dominated 
model problem. In both cases the influence of the relax- 
ation parameter w (eq. (4.32)) is shown. For the central dis- 
cretization (Fig. 37) the best damping is obtained with e l  
(no overrelaxation). However, it  is evident, that compared 
to the very good damping properties of explicit multi-stage 
schemes the high frequency modes are only poorly damped 
with the implicit LU-SSOR scheme. Fig. 38 shows that i n  
the case of upwind discretization the high frequency damp- 
ing behavior of the LU-SSOR scheme can be significantly 
improved by a moderately increased relaxation parameter. 
Further improvement can be achieved by spendin, 0 two 
time steps on the fine grid. 
Despite the fact that compared to the explicit multi-stage 
schemes the damping behavior of the implicit LU-SSOR 
scheme is rather poor, an efficient and robust multigrid 
method driven by the LU-SSOR scheme can be con- 
structed as demonstrated in [75]. Fig. 39 displays the con- 
vergence behavior for the transonic inviscid flow past the 
NACA 0012 airfoil for M_=0.8, a=1.25". An 0-type grid 
with 160x48 cells has been used and the right hand side has 
been discretized by central differences. The convergence 
histories of a single-grid and two different 5-level multi- 
grid schemes are compared. The number in the parentheses 
denote the number of time steps on each grid, ordered from 
the finest to the coarsest one. As one can observe, a signifi- 
cant improvement of the convergence is obtained by using 
the LU-SSOR scheme in combination with multigrid. 
Note, that the usual multigrid scheme with one time step on 
each grid was not running stable. This may be due to the 
poor high frequency damping of the LU-SSOR scheme. 
Fig. 40 presents the convergence behavior of the implicit 
multigrid scheme for a hypersonic laminar flow past a 15" 
compression ramp at a medium Reynolds number (test case 
111.4 of Antibes workshop see Figs. 32-33). The flow pa- 
rameters are M_ =11.68, Re,=2.47x105, T_=65k and 

TWIT_ =4.604. A computational grid with 288x224 cells 
has been used. Fig. 40 displays the convergence histories 
of different multigrid strategies. As one can observe, the 
multigrid schcmk with two time steps on all grids shows 
the fastest convergence and requires by far the shortest 
CPU-time for the same residual level. It is also evident 
from Fig. 40 that the LU-SSOR scheme is only in combi- 
nation with multigrid adequate to solve this flow problem. 

4.3 Multigrid Strategies 
The numerical simulation of high Reynolds number flows 
requires coordinate meshes with high-aspect ratio cells in 
order to resolve thin shear layers with a reasonable number 
of grid points. This renders the discretized flow equations 
stiff because the spectral radii of the flux Jacobian in wall- 
normal and tangential coordinate directions are very differ- 
ent. Consequently, convergence to the steady state slows 
down considerably for such flows if no action is taken to 
circumvent the problem. Similarly, stiffness occurs in situ- 
ations where the flow is aligned with the grid lines and 
hence, the numerical dissipation inherent in modern 
upwind schemes vanishes. One possibility to cope with 
stiffness resulting from high-aspect ratios is to use specific 
multigrid strategies in  order to improve damping rates. The 
semicoarsening method introduced by Mulder [58] is one 
possible approach. Fig. 41 gives a sketch of the idea for 
two grid levels. With conventional full coarsening the fine 
mesh with m x n cells is coarsened to yield a mesh with 
m/2 x n/2 cells. Figs. 41b-d show schemes with semicoars- 
ening in the different coordinate directions, which use two 
coarse meshes, m/2 x n, and m x n/2. The various semi- 
coarsening schemes differ in how the corrections on the 
coarse meshes are assembled and prolongated according to 
Ref. [76]. The coarse-mesh corrections of the scheme, 
Fig. 4 I b. are averaged before adding them to the fine mesh. 
This is indicated by the numbers at the "up" arrows. Due to 
this averaging, half of the individual corrections on the 
coarse meshes is lost. 
In order to overcome this deficiency of the semicoarsening 
scheme, two more variants are considered. For the scheme 
of Fig. 41c. the solutions on the coarse meshes are com- 
puted sequentially. Hence, the corrections obtained on the 
m/2 x n mesh can be used to update the m x n/2 mesh be- 
fore time stepping (as indicated by the horizontal arrow). 
The sequential update of the second coarse mesh allows the 
full amount of corrections to be passed up to the fine mesh. 
An interesting compromise between the schemes of 
Figs. 41 b and 41c is displayed in Fig. 41d. Here, only the 
corrections common to both of the coarse meshes, m/2 x n, 
and m x n/2, are averaged, whereas the corrections to the 
modes living either on m/2 x n or on m x n/2 are passed to 
the fine mesh in full. 
For the numerical solution of the Navier-Stokes equations, 
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the two-level strategies presented in Fig. 41 are extended to 
multilevel schemes as displayed i n  Fig. 42 following ideas 
of Mulder [58]. Suitable coordinate meshes for thin bound- 
ary layers exhibit mostly cells with high aspect ratios in the 
surface-aligned direction. Fig. 43 displays further variants 
of semicoarsening for these situations which are computa- 
tionally cheaper than the schemes shown in Fig. 42. 
Detailed numerical investigations for various viscous flow 
problems have been reported in Ref. [76]. A sample result 
is presented in Figs. 44-45. The flow over a slender fore- 
body is chosen to represent a generic configuration corre- 
sponding to an air-breathing high-speed transport. The high 
Reynolds number requires a mesh with aspect ratios up to 
25000. The flow computations where done with boundary 
layer transition fixed at 2 percent chord. The flow solution 
shown in Fig. 44 was extensively investigated with respect 
to both grid convergence and residual convergence. The 
convergence histories presented in Fig. 45 indicate sub- 
stantial convergence acceleration by multigrid. The se- 
quential semicoarsening scheme takes 194 cycles and 570s 
on CRAY-YMP to reduce the averaged residuals by 6 or- 
ders of magnitude. The scheme with full coarsening takes 
1024 and 1230s whereas the single-mesh code requires 
7762 steps and 6190s to achieve the same level. We con- 
clude that suitable multigrid strategies can improve compu- 
tational efficiency by an order of magnitude for tough flow 
problems. 

5 .  APPLICATIONS 
Applications to complex, three-dimensional configura- 
tions are siven in this section. To demonstrate the range of 
applicability. sub-. trans-, and hypersonic flow fields are 
considered. Since the solution method uses structured. 
body-fitted meshes. the multiblock approach is employed. 
Hence, this section begins with an outline of the multiblock 
concept. The first problem to be presented is concerned 
with the interaction of a jet with a multi-element wing at 
subsonic speed. The next application deals with engine-air- 
frame integration for transonic transport aircraft. At last the 
flow field around a reentry vehicle at hypersonic speeds 
will be analyzed. 

5.  I Multiblock ApDroach 
Using structured, body-fitted meshes the physical domain 
is decomposed into a set of computational cells by the cur- 
vilinear coordinates \ ,  q , and < ,  as sketched in Fig. 46 for 
a three-dimensional wing. The curvilinear coordinates al- 
low the mapping of the physical domain into a computa- 
tional domain as shown in Fig. 47, where the computa- 
tional coordinates i ,  j ,  k are defined along the curvilinear 
directions 5 ,  q , and < . With the indices i ,  j ,  k each point in 
the computational domain and his neighbors may directly 
be identified, and the underlying structure allows an easy 

implementation of the solution algorithm on vector com- 
puters. 
For complex configurations in general it is not possible to 
map the physical domain into one coherent computational 
domain. Therefore, the physical domain of interest is de- 
composed into different appropriate regions which are 
called blocks. Each block is mapped into a separate com- 
putational domain, and the How solver is then repeatedly 
applied to the different blocks. In order to establish a com- 
munication between the blocks, data has to be transferred 
between adjacent block faces. In the DLR CEVCATS code 
considered here, the exchange of data is established by us- 
ing the concept of fictitious points, as sketched for a two- 
dimensional example in Fig. 48. For a 2D problem the real 
computational domain ranges from i = 2 to i = imax and j = 
2 to j = jmax. This real computational domain is sur- 
rounded by a sheet of fictitious cells, as indicated by the 
dashed lines i n  Fig. 48. Considering a simple 0-mesh 
around an airfoil. the physical domain may be mapped into 
the computational domain by introducing' a computational 
cut at i = 2 and i = imax, see Fig. 49. Since in the physical 
domain the block faces at i = 2 and i = imax are adjacent to 
each other, the exchange of data can be performed by load- 
ing the data of line i = 3 into the line of fictitious points at i 
= imax+l. and by loading data of i = imax-l into the line 
with i = 1. as kketched in Fig. 50. It should be noted that 
when using a vertex based method, it is not sufficient to 
transfer only the dependent variables. In order to evaluate 
the flux balances for the points lying directly on the line of 
the computational cut, the Cartesian coordinates of the ad- 
jacent block face have also to be provided for the fictitious 
points. However, for time-invariant grids this needs only to 
be done once at the beginning of the computation. 
I t  is well known that there does not exist one optimal grid 
topology for arbitrary configurations. Each aerodynamic 
component of an aircraft may have its own natural grid 
structure. and different configurations call for different 
block arrangements. Therefore, the part of a computer code 
which depends on the specific configuration has to be kept 
to a minimum to allow an easy change of grid topologies. 
In  the CEVCATS code this flexibility is provided by an ex- 
ternal logic-file which contains all information about the 
arrangement of blocks, adjacent block faces, and boundary 
conditions on these block faces. With the information 
stored in the logic-file, data in the fictitious cells is updated 
depending on the boundary conditions specified on the par- 
ticular block face. In order to allow a high flexibility for 
complex problems, block faces may be subdivided into ar- 
bitrary segments. The logic-file then identifies the size and 
the type of boundary condition on the segments. The use of 
the logic-file allows to apply one source code to various 
kinds of problems without the need to change and recom- 
pile the program. 
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As long as the data of all blocks is stored in the main mem- 
ory of the computer, the fictitious cells at computational 
cuts may be updated after each operation inside a block, 
and sweeping successively through all blocks by consis- 
tently updating the block boundaries at coordinate cuts, the 
block structure can be made invisible for the solution algo- 
rithm for explicit time stepping methods. However, in  or- 
der to enable the computation of problems which exceed 
the storage capacity of the main memory, the DLR CEV- 
CATS code allows the storage of block data on external 
high-speed storage devices. In this case only one block at a 
time is loaded into the main memory, and data of all other 
blocks is stored on the external devices. Having performed 
a certain number of operations inside the block, data is un- 
loaded onto the external devices and data of the next block 
is transferred into the main memory. This strategy theoreti- 
cally enables the computation of problems with an almost 
unrestricted number of grid points. The problem with this 
strategy is the high amount of I/0 operations which arise 
when the cut boundaries should be consistently updated. 
This becomes especially important when multigrid acceler- 
ation is used. since performing more operations inside a 
block before switching to the next one introduces a time- 
lag in the evolution of the solution in different blocks. This 
time-lag may severely deteriorate the damping properties 
of the scheme. which are mandatory for good multigrid 
performance. In the CEVCATS code different strategies for 
multiblock multigrid have-been implemented to allow the 
best compromise between convergence and U0 operations, 
depending on the problem. Without going into the details 
of the different strategies i t  may be noted that even in the 
strategy with the,lowest amount of I/0 operations, a sweep 
through all blocks is completed on one grid level before 
starting on the next coarser grid. It was found that perform- 
ing a complete multigrid cycle inside a block before 
switching to the next block degrades the multigrid perfor- 
mance to that of a code without multigrid acceleration or 
even inhibits convergence. The application of Full Multi- 
grid may alleviate the problems associated with the time- 
lag, since the solution which evolved on coarser meshes 
provides a well conditioned starting solution on the finest 
mesh, and time-differences between blocks are then al- 
ready rather small. 
Details of the implementation of the multiblock multigrid 
technique into the CEVCATS code may be found in [77] 
and [78]. 

5.2 Interaction of a Jet with a Multi-Element Wing 
The influence of a jet on a High-Lift device was investi- 
gated. It was assumed that the flow field will be dominated 
by the momentum of the jet flow, and the solution of the 
Euler equations was regarded as being sufficient to de- 
scribe the main flow phenomena. The greatest challenge 

was to decide on an appropriate grid topology. On the one 
hand the components of the High-Lift device had to be suf- 
ficiently resolved, and on the other hand the jet generator 
had to be incorporated into the mesh. Therefore, a prelimi- 
nary two-dimensional study was performed to investigate 
different grid topologies for multi-element airfoils. In the 
finally chosen topology all single components were re- 
solved by local 0-meshes around each component, and the 
0-meshes were then embedded into a global H-mesh. The 
grid was generated with the mesh generation tool MEGA- 
CADS [79]. Fig. 51 gives a view of the 2D mesh around 
the complete multi-element airfoil, and Fig. 52 and Fig. 53 
show the mesh topology in the region of the slat and in the 
region of flap and tab. 
Since the CEVCATS code has an option for the computa- 
tion of two-dimensional flows on block structured grids, 
the same source code as for the following three-dimen- 
sional computations could be used for this preliminary test 
problem. Fig. 54 shows the pressure distribution computed 
for M, = 0.182 and a = IO".  The corresponding distribu- 
tion of total pressure losses is displayed in Fig. 55. On all 
components total pressure losses are well below 2%. The 
convergence history for this case is given in Fig. 56, where 
a W-cycle with four grid levels had been used. 
The described grid topology had proved to be adequate for 
this problem, and the incorporation of the jet-generator was 
achieved as sketched in Fig. 57. Fig. 58 shows a view of 
the symmetry plane of the final grid, where the components 
of the multi-element wing and the jet-generator are dis- 
played as solid objects. The jet-generator had been re- 
solved by a local polar mesh, and this polar mesh was em- 
bedded into the global mesh, as shown in Fig. 59. 
First computations were performed at M, = 0.182 and OL = 
IO", and the ratio of the total pressure of the jet to the ambi- 
ent static pressure was chosen to P, je,/P, = 2.0. At these 
conditions the Mach number of the jet is close to M, = 0.9 
at the exit of the jet generator. Fig. 60 shows the Mach 
number distribution in the symmetry plane. The jet can be 
identified by the concentration of isolines at the jet bound- 
aries. Due to the numerical viscosity, the boundaries are 
spread into regions of large gradients instead of being dis- 
continuities. Since for these calculations the basic cell ver- 
tex central differencing scheme had been used, the srnear- 
ing effect of the scalar dissipation is clearly visible. The jet 
passes very closely beneath the slat, and due to the pres- 
ence of flap and tab the jet is deflected by nearly 25'. In 
Fig. 61 the corresponding streamline pattern is displayed. 
When the jet hits flap and tab, streamlines are running 
against the main flow direction around the leading edges of 
flap and tab. Fig. 62 gives an enlargement of the region 
around the tab. Since the streamlines are following the sur- 
faces of flap and tab, the momentum of this deflected part 
of the flow leads to a deflection of the total jet. The interac- 
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tion between jet and flapltab influences a large region of 
the flow around the wing. Fig. 63 shows the streamline pat- 
tern on the lower wing surface. Hitting flap and tab, fluid 
divcrts i n  all directions. It takes about five engine diame- 
ters apart from the symmetry plane until the main flow di- 
rection prevails again. It should be noted that the boundary 
at the wing tip was modelled by solid wall conditions to 
simulate the wind tunnel walls. 
For the onflow conditions of M, = 0.147, a = IO", and a 
pressure ratio of P, ,,,/P, = 1.252, experimental data were 
available. Sectionwise pressure distributions were mea- 
sured in the symmetry plane, half an engine diameter apart 
from the symmetry plane, and one engine diameter apart 
from the symmetry plane. Figs. 64-66 show a comparison 
of experimental and computational data. The qualitative 
agreement between calculation and experiment is quite 
good, despite the neglection of viscous effects. The influ- 
ence of the jet on the pressure distribution in different sp- 
anwise direction is accurately predicted by the calculation. 

5.3 Engine Intecration for Transoort Aircraft 
Engindairframe integration is a key feature i n  the design 
and development of advanced technology aircraft, since 
the interaction between propulsion system and airframe 
can have a significant impact on the performance of the air- 
craft. It is evident that an optimal integration of the propul- 
sion system into the airframe will result in  an enhanced 
performance of the whole aircraft. In order to get a better 
understanding of the aerodynamic phenomena playing the 
major roles in  the interference process, substantial efforts 
have been made to simulate interference effects. Besides 
wind tunnel testing numerical methods are increasingly 
gaining attention. and the solution of the Euler equations 
has successfully been used to predict interference effects 
[80, 81, 821. However. the flow around modern transonic 
wings is very sensitive .to viscous effects, and neglecting 
viscosity leads to systematic deviations from experimental 
results [83]. Therefore, the Navier-Stokes equations have 
LO be solved for an adequate simulation. For complex con- 
figurations grid generation becomes a substantial chal- 
lenge, especially for viscous flows, since the boundary lay- 
ers on all components have to be resolved. To alleviate the 
necessary effort and to approach the task of generating a 
viscous grid for the complete configuration step by step, i t  
therefore seems appropriate to first resolve only the bound- 
ary layer on the wing and to treat all other components as 
in inviscid flow. 
In the study to be presented here, the DLR-F6 configura- 
tion has been selected as a generic twin-engine transport 
aircraft configuration. The propulsion system is simulated 
by axisymmetric throughflow nacelles, and the nacelle po- 
sition was chosen to give rise to quite strong interference 
effects. Fig. 67 presents a view of the model in tail-off con- 

figuration including the main geometrical dimensions. 
Using block-structured methods, an appropriate grid topol- 
ogy has to be chosen. On the one hand different engine sys- 
tems may have to be realized, and on the other hand the 
boundary layer around the wing has to be resolved ade- 
quately. Here a global H-topology in streamwise direction 
and an 0-topology in spanwise direction have been chosen. 
Nacelle and pylon have been embedded into this grid by 
using a local polar subgrid with an H-type topology in stre- 
amwise direction. Fig. 68 shows selected grid planes to vi- 
sualize the spanwise topology of the wing and the nacelle. 
To resolve the wing boundary layer, an C-grid wrapped 
around the wing has been integrated into the global H - 0  to- 
pology. Fig. 69 presents the resulting H-C-0  topology. The 
C-block is generated using the surface normal vectors of 
the wing, and the first distance off the wall is about 1.0 x 

Fig. 70 shows a grid plane at the pylon location 
through the nacelle to display the embedded C-grid. It 
should be noted that in the figures not all grid lines have 
been displayed to allow a clear presentation. The complete 
field grid consisted of about 1,200,000 cells, and 14 com- 
putational blocks had been used. The number of blocks 
was not only dictated by topological requirements, but the 
maximum block size had to be adapted to the limited main 
memory of the computer. 
Experiments for the DLR-F6 model have been carried out 
in the S2MA wind tunnel of ONERA [83]. Pressure distri- 
butions have been measured at eight different wing sec- 
tions with two of them located closely inboard and out- 
board of the pylon. Transition was fixed and the Reynolds 
number was kept constant to Re = 3.0 x IO6. The results to 
be presented here are restricted to typical cruise conditions 
of a transonic transport aircraft at M, = 0.75 and a = 0.98". 
For the computations the flow was assumed to be fully tur- 
bulent and the algebraic turbulence model of Baldwin and 
Lomax [84] was used in the solution of the Reynolds-aver- 
aged Navier-Stokes equations. 
Fig. 71 shows a comparison of measured and computed 
pressure distributions at two sections inboard of the pylon, 
and Fig. 72 gives the comparison for two sections located 
outboard. The exact location of the sections is given in the 
sketch in the figures. The shock location predicted by the 
computation agrees favorably with the experimental data. 
The interference effects caused by the nacelle are clearly 
visible by the difference in the pressure distributions just 
inboard (yls = 0.331) and outboard (yls = 0.377) of the py- 
lon. At y/s = 0.331 on the lower wing surface a strong flow 
acceleration occurs. The computation accurately predicts 
the corresponding pressure peak. Outboard at y/s = 0.377 
however, the flow is only accelerated around the pylon 
leading edge, but then no further acceleration occurs. This 
difference between inboard and outboard side of the pylon 
is simulated in agreement with the experiment, indicating 
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that in  this case interference is mainly caused by the dis- 
placement effect of pylon and nacelle. Besides this overall 
agreement, there are still discrepancies in the simulation. 
Downstream of the shock an overexpansion occurs in  the 
computation, which is not observed i n  the experiment. Fur- 
thermore, the effect of the rear loading is overpredicted by 
the computation. The reason for these effects is still not 
clear. On the one hand the wing had a blunt trailing edge 
which was artificially closed for the computation. On the 
other hand the grid distortion in the vicinity of the pylon 
may be too large and lead to a reduction of solution accu- 
racy. Computations of the configuration without nacelle 
gave better agreement with experimental data [84]. The 
overexpansion downstream of the shock and the overpre- 
diction of the rear loading lead eventually to an overpredic- 
tion of the spanwise lift distribution. Fig. 73 shows a com- 
parison of measured and calculated spanwise lift 
distributions. Besides the overprediction of lift, the charac- 
teristic discontinuity at the pylon location is accurately pre- 
dicted by the computation. The computations have been 
carried out on the CRAY Y-MP computer of DLR, and 
Fig. 74 presents the convergence history for this case. Full 
Multigrid has been used with 4 grid levels on the first 
mesh. The residual could be reduced by 3 orders of magni- 
tude within 150 iterations. The computation required about 
6000 seconds of CPU-time on the CRAY Y-MP. 

5.4 Aerothermodvnamics of Winged Reentry Vehicles 
At hypersonic flow conditions the thermal stability of the 
materials used for the fabrication of the flight vehicle limits 
the maximum allowed heating of the surfaces. The heating 
becomes critical during reentry maneuvers at high Mach 
numbers where peak heating rates occur at the nose of the 
vehicle, along. the leading edges of wing and winglet, and 
on deflected control surfaces which are necessary to 
achieve equilibrium in pitching moment. 
Fig. 75 shows the European space plane HERMES which 
is a typical design for personnel transport to orbit and re- 
turn missions. The critical heat loads on HERMES config- 
uration during reentry have been analyzed using a series of 
global and local flow solutions which were computed with 
the DLR multiblock code CEVCATS. The hypersonic flow 
computations require high resolution of very strong shocks 
and thin temperature layers near the surfaces. Therefore, 
the hybrid AUSM scheme described in section 3 was eni- 
ployed for spatial discretization instead of the central-dif- 
ference scheme used for the transonic flow cases. 
Elevon heating and pitching moment coefficients of HER- 
MES were computed with global flow solutions on a grid 
with 800,000 points shown in Fig. 76 and an additional se- 
ries of local flow solutions, Fig. 77 with deflected elevons 
[85]. As the inviscid part of the flow is supersonic in axial 
direction, the flow variables in the inflow plane of the local 

computational domain for the rear of HERMES could be 
obtained from the global flow solutions. Steady-state solu- 
tions where obtained with about 300 multigrid cycles. 
Fig. 78 displays streamlines and Stanton numbers for the 
rear of the windward side of HERMES (1.0) configuration 
and IO' deflection of elevon and body flap. The flow condi- 
tions correspond to windtunnel tests in ONERA S4MA. A 
large separation occurs at the hinge line of the deflected 
controls. The computed Stanton numbers are in good 
agreement with the wind tunnel data. Some discrepancies 
occur along the symmetry line which were traced to bound- 
ary layer transition in the experiment. Note, that the exper- 
imental M _ = 1 0  data represents the highest Mach number, 
for which reliable experimental data for the complete con- 
figuration can be obtained in Western Europe. However, 
flight peak heating rates occur at M_ =25 and an trajectory 
point of 75 km altitude. At these flow conditions, the Rey- 
nolds number is lower than at M _ = 1 0  and significant 
chemical reactions take place in the flow due to high tem- 
peratures. These reactions were taken into account by as- 
suming air in thermochemical equilibrium in our computa- 
tions. Fig. 79 displays significant differences in the flow 
behavior between both flow conditions. The flow separa- 
tion almost disappears at M- =25. However, the heat flux is 
more sensitive to local flow divergence than at M _ = I O ,  
that is, heating increases largely towards the lateral edges 
of the deflected elevon. Ref. [85] presents a detailed analy- 
sis of the flap heating versus flap efficiency and also the ef- 
fect of changing flap geometries. 
The need for aerodynamic control makes the integration of 
control surfaces for pitch, roll, and yaw control necessary. 
This is accomplished by defining the body flap, the elevon 
and the rudder. according to Fig. 75 . The controls are sized 
by the requirement of sufficient control surface efficiency 
at hypersonic speed and the maximum deflection angle al- 
lowed to limit aerodynamic heating. A large slot between 
the rudder and the elevon is thus unavoidable due to the di- 
hedral of the winglet. The winglet of a winged reentry ve- 
hicle with aerodynamic control has therefore two edges 
which are exposed to the incoming flow. These are: 
- the leading edge of the winglet with a local maximum 

of the heat flux which depends on the angle of attack, 
the geometric angle w according to Fig. 75 , and the 
leading edge radius 

the lower edge of the rudder where an attachment line 
with a local maximum of the heat flux expected. 

Computations of peak heating rates along the attachment 
lines at the winglet leading edge and the lower edge of the 
rudder are reported in Ref. [86]. Here, we will only present 
some surprising results which could not have obtained 
without extensive use of 3D flow computations. As for the 
computations of flap heating we have used a series of glo- 

- 
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bal and local flow solutions to compute attachment line 
heating. The local flow solutions where necessary to repre- 
sent the complex geometry of the slot in between elevon 
and rudder with a two-block computational domain, ac- 
cording to Fig. 80. 
Peak heating rates along the heading edges of the wing and 
winglet of HERMES are presented in Fig. 81. It is seen that 
there exist a large sensitivity of winglet heating due to an- 
gle of attack. At higher angles of attack, the effective 
sweep of the leading edge increases thereby reducing heat 
load. Even though peak heat fluxes may be measured in 
wind tunnel tests at M _ = 1 0 ,  numerical flow simulations 
are necessary for trajectory points at higher Mach numbers. 
Fig. 8 1 demonstrates that semiempirical correlations in or- 
der to collapse peak heating at different flow conditions for 
simple shapes, i.e. the use of Stanton-Miller numbers of 
Ref. [87], do not neccessarily work well at the winglet. The 
differences in Stanton-Miller numbers between wind tun- 
nel and flight condition may be due to increased viscous in- 
teraction at the lower Reynolds number, and also, the high 
temperature chemical effects on local flow angles ahead of 
the winglet. 
A completely different trend is observed for heating along 
the lower edge of the rudder. Fig. 82 shows that nondimen- 
sional heat fluxes reduce by 35% for flight conditions as 
compared to wind tunnel conditions. Inspection of the 
computed flow fields shows two flow phenomena which 
may be responsible for this behavior. Firstly, we observe 
large flow separations at the lateral edges of the elevon for 
the wind tunnel conditions which seem to form a modified 
effective slot shape with more rapid flow expansion, see 
Fig. 83. Secondly, the thicker boundary layers present in  
the flow solution for flight conditions, Fig. 84, tend to 
block the slot and hence, they reduce flow expansion and 
peak heating rates. 
In  conclusion we have successfully used 3D flow computa- 
tions in the aerothermal analysis of winged reentry vehi- 
cles. These computations allow detailed understanding of 
critical flow phenomena and much more accurate transpo- 
sition from wind tunnel to flight as compared to strategies 
used for the US-Orbiter twenty years ago. Consequently, 
uncertainties of data to be used to design the thermal pro- 
tection system is considerably reduced which improves the 
weight of space planes. 

6. CONCLUSION 
Well established algorithms used in current blockstructured 
EulerNavier-Stokes solvers for industrial applications 
have been reviewed. Attention has been focused on various 
spatial discretization and time stepping schemes. The ap- 
proach of blockstructured meshes has been discussed in de- 
tail. It allows the treatment of complex configurations and 
forms the basis of parallelization of structured solvers. 

Special emphasis has been put on the implementation of 
multigrid within a blockstructured solver. Several large- 
scale computations have been shown which demonstrate 
the ability of current blockstructured flow solvers for 3D 
complex applications. 
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8. FIGURES 
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Fig. 66 Comparison of measured and calculated 
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Fig. 77 Definition of local grid around windward side of 
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(1.0) configuration 
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Structured Grid Solvers I1 
Parallelization of Block Structured Flow Solvers 
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DLR, Braunschweig, Germany 
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SUMMARY 
This paper reviews some general considerations on the par- 
allelization of large block structured flow solvers for pro- 
duction use. Parallelization is therefore not treated as an 
isolated subject of research, but as a tool to increase the 
computational power for the user and as integral part of the 
developmental environment of a CFD code. As an example 
the parallelization of the FLOWer code using the portable 
communications library CLIC-3D is given. Results of 
benchmark tests obtained on various computer hardware 
architectures demonstrate today ‘ s  possibilities of parallel 
processing in CFD applications. 
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I .  INTRODUCTION 
Reviewing the topics of computer applications of the last 
few years an increasing interest in parallel processing is 
observed , i n  CFD as well as in other engineering disci- 
plines, since experts predict the TFLOP/s computer until 
the end of the century being a parallel architecture [ I ,  21. 
Therefore, parallel computing has become subject of basic 
research, carried out by mathematicians, computer scien- 
tists, engineers and other scientists dealing with a large va- 
riety of aspects. In literature one can find benchmark re- 
sults for studying different hardware architectures [3], 
discussions on fast communication protocols [4] or consid- 
erations on computer languages supporting parallel pro- 
cessing, e. g. [5, 6, 71. Others demonstrate that they have 
parallelized their special application program and that it is 
working reasonably well on different platforms, e. g. [8, 9, 
IO]. 
The paper presented here will touch all these areas, but not 
in detail, because it shall be devoted to the major goal of all 
parallelization effort made in CFD: The increase of com- 
pute power, in order to either reduce the response time for a 
given problem or to extend the problem size to be solved. 
It should be kept in mind that an engineer applying a large 
CFD-code in general is not interested in details of the com- 
puter his program is running on, but in details of the solu- 
tion he can obtain, i. e. in the aerodynamics of the problem 
he is investigating on. Therefore, i n  this paper paralleliza- 
tion is considered as a tool improving the capabilities of 
numerical research in aerodynamics, not as a field of re- 
search for its own sake. 
From this point of view the question must be asked, 
whether parallelization is always useful and when should i t  
be applied'? The answer is, that the usefulness of parallel- 
ization depends on the program to be dealt with. The im- 
provement in run time to be obtained by any acceleration 
technique can never exceed the run time currently needed 
to solve a typical problem, and an automatic parallelization 
is only possible on those few machines where auto-paral- 
lelizing compilers are available. Therefore, a certain 
amount of parallelization effort has to be considered, if  one 
does not want to restrict oneself to a special hardware envi- 
ronment, such that the gain is highest when parallelizing 
programs for large applications. 
Secondly it  is questionable to parallelize algorithms which 
guarantee a high parallel efficiency but converge slowly. 
Such programs clearly show an excellent acceleration by 
exploiting many CPUs, but probably reveal longer re- 
sponse times than sequentially running algorithms which 
converge much faster. 
Therefore, only for large CFD-codes that employ the most 
efficient numerical techniques, the improvement due to 
parallelization will be the greatest, and this paper will deal 

especially with this class of programs. Furthermore it is re- 
stricted to block structured codes, i. e. to solvers which 
work on structured grids which are split into smaller, inter- 
connected subdomains which can be treated separately of 
each other. As described previously [ I  I ] ,  this is a standard 
technique, in  order to allow computations of flow fields 
around complex geometries for which no structured grid 
can be generated as one logically rectangular block for 
mathematical reasons. 
Such software usually is the historic product of many sci- 
entists throuthout a long period and is applied by a number 
of different users, so that parallelization cannot be treated 
as an isolated problem, but has to meet general require- 
ments. 
After identifying some of them in the next section discuss- 
ing their influence, i t  is dealt with strategies for the paral- 
lelization of CFD-codes which depend as well as on hard- 
and software aspects of the computer as on the type of pro- 
gram. As an example for the parallelization of a large 
structured flow solver, the parallelization of the FLOWer 
code is described in the following section. This program 
has evolved from the previously described DLR standard 
flow solver CEVCATS [ I  I ]  and is developed in coopera- 
tion with the German national research center for computer 
science GMD and the German aeronautical industry as a 
multi purpose flow solver. Benchmark results obtained on a 
variety of different parallel computers are demonstrating 
the success of the approach chosen and the potential of par- 
allel processing in realistic applications. 

2. REOUIREMENTS FOR THE PARALLELIZATION 
OF LARGE CFD-CODES 

2.1 Portability 
As already mentioned in the introduction, large CFD-codes 
are applied by a variety of users, since otherwise the costs 
for their development could not be accepted. Of course it 
cannot be guaranteed that all these users are working on the 
same platform, neither parallel nor sequential. Moreover 
the life time of such programs exceeds that of today's com- 
puters by far, so that portability is an essential demand for 
any application program in industrial use. 
For sequentially running codes this problem can be circum- 
vented by restricting the implementation to standardized 
languages for which compilers exist on any machine, e. g. 
ANSI-C or Fortran 77 (Fortran 90 is still problematic, 
since compilers do not exist for as many computers as for 
Fortran 77). Furthermore it is possible to exclude danger- 
ous programming techniques which are allowed by the lan- 
guage standard, but which might not work correctly on ev- 
ery target platform, by rigid application of programming 
standards. 
For parallel programs things are much more difficult. Of 
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course, all techniques for guaranteeing portability in se- 
quential mode still apply, but this is not sufficient, since the 
communication between different processes has to be por- 
table, too. Up to now, each manufacturer of parallel com- 
puters employs his own proprietary communication system 
being generally incompatible with that of others. The MPI- 
standard for message passing systems [ 121 has been estab- 
lished about one year ago, but still implementations are 
hardly available, so that it is not yet guaranteeing portabil- 
ity. 
In the contrary the PVM communication system [I31 is 
widely spread, but since i t  is public domain software it 
might be dangerous to base large application programs on 
it. In case of severe problems nobody would be responsible 
for trouble shooting, and applications are urgent most of- 
ten. 
A third possibility to obtain portability as far as message 
passing systems are concerned is the PARMACS library 
[I41 which is a commercial product that has been imple- 
mented on a large variety of parallel computers. A defined 
path to MPI is guaranteed, when this system has become a 
real standard, but the popularity of PARMACS is clearly 
restricted to European users. 
Even i f  a decision has been made for one system or an- 
other, still the problem remains that parallel computers 
might not be available to any user, i. e. one should seek for 
the possibility to run the same program on sequential as 
well as on parallel computers. 

2.2 Consideration of DeveloDment Effort 
The development of large CFD-codes which are able to 
treat large problems and complex flow situations takes a 
long time and necessitates the experience of many scien- 
tists in order to establish an efficient, accurate and robust 
solver. Furthermore the users usually have been working 
with those programs for a long time, too, so that they are 
familiar with its behavior and experienced in the interpreta- 
tion of its numerical results. 
Therefore, parallelization must not result in the complete 
re-implementation of the Row solver, but is restricted to 
modifications of the given code, as far as large application 
programs are considered. 

2.3 Parallelization Effort 
As already pointed out, parallelization is only a means of 
high performance computing, i. e. as any other acceleration 
technique its efficiency decides about its worthiness for the 
user. Unfortunately any larger gain in efficiency is only 
possible by increasing the developmental effort, in order to 
gain it. The latter is clearly restricted for economical rea- 
sons, since the parallelization costs must not exceed the re- 
duction of computational costs for an institution or an in- 
dustrial business as a whole. 

Therefore a parallelization strategy has to be applied guar- 
anteeing sufficient acceleration with as little effort as possi- 
ble. 

3. PARALLELIZATION STRATEGIES 

3.1 Parallel Architectures and Parallelism in Structured 
Grid Solvers 
Since expectations head towards some TFLOPk peak per- 
formance by parallel processing, a variety of different ar- 
chitectures has been developed attempting to step further 
into this direction, but it  is not yet clear which design is go- 
ing to succeed. Generally one distinguishes two classes of 
parallel computers: shared memory machines where all 
CPUs are coupled by a common memory (Cray C90) and 
distributed memory machines where each processor has its 
own memory unit. In this case the nodes are coupled by an 
interconnecting network either between the CPUs (IBM 
SP2) or between the memory units (KSR I) .  Latest devel- 
opments attempt to combine both types by clustering to- 
gether several processors around one shared memory and 
connecting these clusters via network (NEC SX-4). 
Looking on the design of large structured grid solvers, they 
reveal different levels of inherent parallelism to be ex- 
ploited. First of all on statement level, operations could be 
performed concurrently, e. g. one addition and one multi- 
plication at a time on super scalar processors. Secondly the 
grid structure implies a parallelism of data, such that opera- 
tions on different grid points could be carried out indepen- 
dently which is already known from vector processors. 
Last but not least large structured grid solvers are multi 
block codes for grid generation reasons. These blocks char- 
acterize the coarse grain parallelism of programs consid- 
ered here, since the different blocks could be treated con- 
currently. 
Comparing machine architecture and code structure with 
each other one finds out, that different platforms fit  to a dif- 
ferent level of inherent parallelism. Fine grain parallelism 
on statement level is already exploited by single processor 
machines, data parallelism seems to be best suited for 
shared memory computers, whereas coarse grain parallel- 
ism based on the block structure corresponds best with a 
distributed memory architecture. Therefore, computers 
combining all three features might be best suited for struc- 
tured grid solvers, but until they are available one has to in- 
vestigate the possibilities of exploiting data parallelism and 
multi block parallelism separately. This leads to the ques- 
tion of how to perform communication between proces- 
sors. 

3.2 Communication Models 
According to the different machine architectures there exist 
different types of communication models which support ei- 
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ther data or multi block parallelism. Nevertheless these 
models are not restricted to the corresponding computer ar- 

' chitecture and moreover their implementations are gener- 
ally incompatible with each other. 

3.2.1 Parallelizing Languages 
There exist attempts to describe data parallelism already by 
the programming language such as high Performance For- 
tran or Vienna Fortran. However, these systems have not 
yet reached a widely accepted standardization level, such 
that portability is hardly guaranteed for the moment. This 
could be overcome by current developments incorporating 
parallel communication within objects of existing object 
oriented programming languages like C++ [ S ,  6, 71, but 
one major drawback remains: Any large solver not yet im- 
plemented i n  such a language would have to be completely 
rewritten which will clearly not be acceptable for the rea- 
sons mentioned in the last section. 

3.2.2 ComDiler Directives and Autotasking 
Another data parallel approach which makes paralleliza- 
tion more feasible for the programmer is to use directives 
telling the compiler which sections of the code can be 
treated concurrently. e.g. where loops incorporate data par- 
allel structures. This method has got the great advantage 
that an existing code basically remains unchanged and that 
there exist analyzing tools at least on some machines, mak- 
ing suggestions about where to place such directives. 
The problem is. that this procedure has to be repeated on 
each platform again, since compiler directives are naturally 
machine dependent. Furthermore, experiments employing 
autoparallelizing compilers have revealed that best effi- 
ciencies were always achieved by putting in these direc- 
tives manually increasing the parallelization effort [IS]. 
The autotasking approach only assumes that only data in- 
corporate parallelism, i. e. only array data can be treated in- 
dependently of each other, so that good efficiencies can 
only be expected from highly vectorizable programs. This 
assumption will generally hold for structured grid solvers, 
but depends on the block size which might be low for grid 
generation reasons and which becomes definitely low on 
coarse grids of multigrid algorithms. The advantage of this 
method is, that it is definitely portable, since parallelization 
is carried out automatically. 
On virtual shared memory machines, i.e. distributed mem- 
ory computers which are programmed as if they had a glo- 
bal shared memory, efficiency decreases, because data 
have to be transferred by global communication. 
Last but not least compiler directives are spread all over the 
code such that any algorithmic development cannot be sep- 
arated from the parallel machine where the code is running 
on. 

3.2.3 Message Passing 
The typical communication model corresponding to coarse 
grain parallelism is message passing where the program- 
mer is responsible himself for all types of communication 
between the different processes. This means the program- 
mer explicitly must tell the program when and where to 
send or receive data respectively which of course is in- 
creasing the parallelization effort. The advantage of this 
type of communication model is its efficiency, since data 
transfer takes place only, when needed. Moreover all oper- 
ations can be performed in parallel, independent of vector- 
ization features. 
Of course portability is still a problem, because of the ven- 
dors implementing proprietary systems, but as pointed out 
in  the last section, there already exist widely spread sys- 
tems and the MPI-standard allowing an acceptable degree 
of portability today. 
On the contrary to data parallel communication models, the 
message passing technique can be treated independently 
from all algorithmical considerations as far as single blocks 
are concerned. Each block is treated the same way in the 
parallel mode as in the sequential mode, and all communi- 
cation takes place outside the block algorithm. 

3.3 Guidelines for the Parallelization of Block Structured 
Flow Solvers 
In the following four rules will be given and explained 
which have proven to lead to an efficient parallelization 
while meeting the objectives on large block structured flow 
solvers for industrial use. Of course they should not be un- 
derstood as the eternal laws of parallelization, but they 
have successfully be applied for parallelizing at least two 
solvers of this category, i.e. the FLOWer code and the NS- 
FLEX-code [ 161. 

3.3.1 Grid Partitioning as Parallelization Strategy 
This method is based on the idea of splitting a given grid 
into smaller subdomains which can be treated indepen- 
dently of each other. The arising intersections between the 
different blocks are treated as boundaries with a special cut 
condition. In general there exists an overlap region at those 
cuts where data are copied to from the corresponding 
neighboring block. As an example figure 1 shows schemat- 
ically the partitioning of a two-dimensional domain around 
an airfoil into four subdomains. 
This technique is chosen, since it is an approach of relative 
simplicity. Furthermore, this strategy is agreed to be the 
most efficient one [17, 181, when solving partial differen- 
tial equations as it is done by flow solvers. From a more 
practical point of view, this method has got the great ad- 
vantage of being already well established in sequential 
structured grid solvers, since the multi block technique is 
nothing else but grid partitioning. 
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The main difference between a parallel and a sequential 
code then is, that the exchange of boundary data between 
neighboring blocks has to be replaced by sending and re- 
ceiving procedures. Another slight difference concerns glo- 
bal operations involving all blocks, e.g. the computation of 
the overall residual which has to be realized by global com- 
munication techniques. Therefore, applying grid partition- 
ing as basic strategy is an aeproach that leads straight for- 
ward to parallelization while keeping a sequentially proven 
algorithm widely unchanged. 

/ 

far field 

Fig. 1 Schematic multi block decomposition of the flow 
field around a generic transport aircraft. 

3.3.2 SeDaration of ComDutation and Communication 
Only keeping to this rule strictly will allow the develop- 
ment of algorithms independently from hardware aspects. 
This feature is necessary with respect to the conditions un- 
der which large block structured codes are usually devel- 
oped. There are several scientists, engineers or program- 
mers working on the same software, and one cannot 
assume that all of them are sharing the same parallel super 
computer for development purpose, i.e. for testing, and de- 
bugging instead of high performance computing. Separat- 
ing all communication operations from the algorithmical 
parts therefore allows the integration of developments car- 
ried out on simple workstations without problems. 
Furthermore from software engineering reasons it must be 

aimed at a high degree of modularity of the program design 
which enables a coordinated development by a group of re- 
searchers. Any intermixing of communication and compu- 
tation would therefore contradict to this basic principle of 
software realization. 
Last but not least the portability problem becomes much 
more feasible to handle, when all communication proce- 
dures are concentrated within separate units of the pro- 
gram. Even if  communication systems are not compatible 
with each other, the effort for porting a program to another 
parallel platform is reduced, since only defined modules 
have to be modified or exchanged respectively. 

3.3.3 Communication bv Message Passing 
The decision for the message passing programming mqdel 
evolves quite naturally from the things said above. As has 
been shown, this type of communication corresponds to 
coarse grain parallelism, and that is exactly what is repre- 
sented by the grid partitioning strategy or multi block tech- 
nique. 
Additionally, one gets the highest efficiency, since parallel- 
ism is not restricted to the vectorizable parts of the code. 
One should never forget that it is high performance com- 
puting what is aimed at by parallelization. Another advan- 
tage is what programmers might fear for the increase of im- 
plementation effort: communication has to be realized by 
explicit calls of system routines for sending and receiving 
data and so on. Therefore, the message passing routines al- 
ready form some type of library which exists indepen- 
dently of any application program, such that separating 
communication from computation becomes a simple task. 
One only has to concentrate all these routine calls within 
distinct modules of the program. 
Finally, the application of message passing does not ex- 
clude the possibilities of data parallel communication mod- 
els as far as compiler directives are concerned. Since mes- 
sage passing is only touching the block structure of a flow 
solver, there still remains the inherent data parallelism 
within each block. Therefore a combination of techniques 
involving message passing for the inter block communica- 
tion and data parallel directives within each block might be 
thought of, especially with respect to future multi level ar- 
chitectures. Nevertheless drawbacks and advantages of 
such an approach would have to be assessed after practical 
experiences have been made. 

3.3.4 Use of a Communication Librarv 
Returning back to pure message passing and what has been 
said about its features, i t  is only one step further to demand 
for a library realizing all necessary communication in a 
parallel code. Remembering the last subsections this would 
only be a more detailed guideline concluding what has 
been already said, but it is more than that. 
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What is thought about, is a high level library incorporating 
the whole functionality involving communication in block 
structured programs, e.g. an exchange of boundary data at 
block interfaces. Since all these functionalities must have 
been realized already in sequential mode, ideally within 
separate modules, portability between sequential and paral- 
lel computers is no problem any more. One only has to ei- 
ther link different libraries or call different subroutines de- 
pending on the architecture. 
Additionally, such a library can be developed in almost 
complete independence of the calling CFD-solver, such 
that specialists on parallel computing could be employed 
for its, implementation guaranteeing a high degree of reli- 
ability. The application programmer on the other hand is 
relieved from any basic considerations on parallelism. He 
only must be familiar with the interfaces to the library rou- 
tines, the functionality of which he already knows from his 
sequential experience. 
Therefore, although the effort of realizing such a library is 
high, the parallelization costs for the application program 
are low, and, since a library can be re-used again and again 
by different codes. its implementation is worthwhile. This 
approach is not a vision for the future fairly to be reached, 
but has already become reality, and will be described 
within the next section. 

4. THE COMMUNICATIONS LIBRARY CLIC-3D 
At GMD this approach has been followed with the creation 
of the GMD communications library CLIC (,,Communica- 
tions Library for Industrial Codes", former versions are 
known as the GMD Comlib). The target applications are 
PDE solvers on regular and block-structured grids, as they 
result from finite difference or finite volume discretiza- 
tions. In particular, the library supports parallel multigrid 
applications. For this class of applications it turned out 
that, while the numerics differ widely, the communication 
sections are quite similar in many programs, depending 
only on the underlying problem geometry. As a conse- 
quence of the high level abstraction, the CLIC library is 
useful only for the application class for which it was de- 
signed. 
The development of the CLIC library started at GMD in 
1986 with the definition and implementation of routines for 
2- and 3-dimensional logically rectangular grids. It fol- 
lowed the implementation of routines for 2-dimensional 
block-structured grids. The routines for 3-dimensional 
block-structured grids are currently developed in the 
project POPINDA. The routines support vertex-oriented as 
well as cell-centered discretization schemes. 
POPINDA is a German national project, funded by the 
German Federal Ministry for Education, Science, Research 
and Technology (BMBF). Its central goal is to provide the 
utilization of highly parallel systems for aerodynamic pro- 

duction codes. The parallel codes being developed in the 
project are based on highly efficient numerical algorithms 
(multigrid). They will allow more accurate simulations, 
which are indispensable due to increased economic, eco- 
logical and technical requirements. 
The aim in the development of CLIC is to make program- 
ming for complex geometries as easy as for a single cube 
and to provide high level library routines for all communi- 
cation tasks. The CLIC user interface provides the applica- 
tion program with all required information about the prob- 
lem geometry. 
The CLIC library is based on the PARMACS message 
passing system [ 141 and, thus, is designed for a host-node 
(master-slave) model. A host process starts the distributed 
application, performs the input and output and data trans- 
fers with the node processes. The host process does not 
participate in the grid computations; this is performed by 
the node processes. As a consequence the user application 
is separated in a host program and a node program, as illus- 
trated by figure 2. 

HOST 

data distribution AY 
and collection 

Q 
NODE 

data exchange 

Fig. 2 Host-node-structure of the parallel FLOWer code. 

In the host program of a 3-dimensional block-structured 
application, the same input parameters are read as in the'se- 
quential user program. Then, CLIC-routines read in the de- 
scription of the block-structured grid, create the node pro- 
cesses, distribute the blocks in a load-balanced way to the 
allocated node processors and distribute the input parame- 
ters to the node processes. Another routine reads the grid 
coordinates and sends them to the corresponding node pro- 
cesses. After the data is distributed to the node processes, 
the host program usually calls a CLIC-routine which waits 
for output generated by the node processes and writes that 
output to the corresponding output units. 
Each node process executes the node program which is 
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parallel efficiency, because the corresponding CLIC-rou- 
tine is generally called most of all and is the most crucial 
routine especially on coarse grids of multigrid algorithms. 
An example for such an optimization of the update proce- 
dure is regular corners of 8 blpcks; a straightforward tech- 
nique to update the overlap regions is to send and receive 
messages over all faces edges and comers of a block; thus, 
26 messages (6 faces. 12 edges, 8 corners) have to be sent 
and received for each block in such a regular case. How- 
ever, in such regular cases. the number of messages to up- 
date the overlap regions can be decreased to 6 by the tech- 
nique as follows: in the first step, all blocks exchange their 
data with neighbor blocks in I-direction (1  message per 
block face); in the second and third step. all blocks ex- 
change their data with neighbor blocks in 1- and K-direc- 
tion. respectively. but now including the already updated 
overlap regions. This technique is illustrated by figure 4 for 
a two-dimensional example. 

very similar to the sequential user program without reading 
the input data. The input data is transferred by CLIC-rou- 
tines, which receive data containing the essential block in- 
formation of blocks, together with global information 
passed by the host program. The grid coordinates art also 
received by a library routine. It should be noted that a node 
process receives the information and grid coordinates only 
for the blocks for which the node process performs grid 
computations. A schematic flow chart of the host and node 
process cooperation is given in figure 3. 

Nom 1 mm 1 

EOlltro1 e t r e m  - data scram 

Fig. 3 Schematic flow chart of host and node process 
execution supported by the CLIC communications 
library. 

Library routines also analyze the block-structure; i. e. for 
each segment edge and segment point. the adjoining blocks 
and the number of coinciding grid cells are determined and 
the edge or point is topologically classified. If the segment 
edge or point is part of the physical boundary, the physical 
boundary conditions of all adjoining blocks are also deler- 
mined. In addition. the grid coordinates can be examined, 
and geometrical singularities such as block faces which 
collapse to a single point can be detected. All that data can 
be inquired and may be used in the user program, for ex- 
ample in the discretization of irregular grid points or physi- 
cal boundary points. 
This data may be important for the user program, however, 
it is essential for the CLIC library to correctly update the 
overlap regions (to exchange the boundary data) of neigh- 
boring blocks and to optimize this update procedure. An 
optimization of this update procedure is significant for the 

2nd 6t-D 
j-direction 1 

00000 't30000 
o m m m o  o m m m o  
o m m m o - o m m m o  
o m m m o  o m m m o  

00000 00000 

Fig. 4 CLIC exchange stragegy. 

So, the data resulting from the analysis of the block-struc- 
lure is used to optimize the update of the overlap regions. 
Since it is too expensive to optimize this update sequence 
and to determine the areas which have to be sent to neigh- 
bor blocks within each update, these tasks are performed 
only once by CLIC-routines in an initialization routine of 
the user program. Within the solution process of the user 
program. the update of the overlap regions of all blocks is 
then performed by the call of a single CLIC-routine. In that 
call, the user specifies the number of the multigrid levels 
and can choose the number of grid functions to be simulta- 
neously exchanged. 
Among other tasks, the CLIC library performs also the 
computation of global values (for example global residu- 
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als) and the output to files and standard output which is 
generated by the node processes. In the next year, the li- 
brary will be extended to adaptive block-structures (i. e. hi- 
erarchies of block-structures). This will include routines 
which create and manage adaptively refined new grid lev- 
els, which perform a load-balanced dynamic mapping and 
which perform all data re-distribution required during 
adaptive multigrid algorithms. 
An important fact for the development and management of 
user programs is that there is also a sequential version of 
the 3-dimensional block-structured CLIC library. Thus, a 
user program can be sequentially executed with the same 
interfaces as in the parallel case. 

5. PARALLELIZATION OF THE FLOWer CODE 
The development of the FLOWer code was initiated within 
the parallelization project POPINDA. The program has di- 
rectly evolved from the DLR-CEVCATS code [ I l l  and is 
further developed in close cooperation of the DLR and the 
German aerospace industry, i.e. DASA. 
As the DLR-CEVCATS code, the FLOWer code is written 
in standard Fortran 77 for portability reasons and operates 
on block structured grids. Therefore, it allows computa- 
tions of flows around complex aircraft geometries as illus- 
trated by figure 5. Furthermore effort is made, in order to 
push all FLOWer development towards the design of a 
multi purpose standard code for a wide area of complex ap- 
plications. Since many different depamnenu of various in- 
stitutions of research and industry are involved, the future 
FLOWer code must cover all of their aerodynamical prob- 
lems reaching from incompressible flows to hypersonics. 

- - 
Fi = 

Fig. 5 Generic aircraft configuration consisting of wing, 
body, engine and pylon 
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5.1 Numerical Method 
The FLOWer code is solving the Euler- or Navier-Stokes 
equations in conservative form written as 

- - 
Fv = 

+ where W denotes the vector of conservative variables 

a x  Tay TXZ 

I,, 0, ?,I 

T X Z  Tyz 

- 
and F is the flux tensor which can be split into an inviscid 
and a viscid part: 

with the inviscid flux tensor being defined hy 

The components of the energy dissipation function are: 

For the non-dimensional pressure and temperature the fol- 
lowing relations hold 
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The elements of the viscous stress tensor are given by 
Newton's law of skin friction, i. e. 

au 2 3 a =-2p-+-p . a  ax 3 
av 2 3 a = -2P-+-p . a  

Y a y  3 
aw 2 3 az = -2p-+-p .: ax 3 
au av 

Ixy = -p( a y  - + ax -) 
aV aw 

Ty* = -P( < a + -) ay 

This formulation is further simplified by applying a thin 
shear layer approximation such that gradients in stream- 
wise direction. i. e. along quasi sueamwise grid lines, are 
neglected [ 191. 
The system is closed by the relations for the transport coef- 
ficients 

P = Kl+P, 

k=C(.I+!! ! )  P Pr, Pr, 

where the laminar viscosity pI is given by Sutherlands's 
formula 

and the turbulent viscosity p, being computed from the al- 
gebraic Baldwin-Lomax model [ZO]. 
These equations are discretized in space by the method of 
lines resulting in a system of ordinary differential equa- 
tions involving each hexaeder of the structured grid 

The discretization is central. but it can be switched be- 
tween a cell vertex and a node centered scheme (figure 6). 

c e l l  vertex node centered 
Fig. 6 

Therefore, an artificial dissipation term due to Jameson et 
al. [211 is added damping high frequency oscillations and 
allowing a sufficiently sharp resolution of shock waves in 

the flow field. 
The resulting system of equations then reads 

Discretization stars of the FLOWer code 

f with R,jk being the veclnr of the residuals of convective 
and viscous fluxes and Dijk the vector of the artificial dissi- 
pative fluxes respectively. 
The time integration is carried out by an explicit. hybrid 
Runge-Kutta scheme involving multiple stages 1221. The 
convergence to steady state is further accelerated by the 
techniques of local time stepping and an implicit smooth- 
ing of the residuals obtained within a Runge-Kutta stage. 
For Euler computations there exists a possibility of driving 
the solution to steady state faster by exploiting the demand 
for constant enthalpy [U]. 
Alternatively, a two stage implicit LU-scheme has been 
implemented only recently and is currently tested for the fi- 
nal integration. 
Both iteration techniques are embedded into a powerful 
multigrid algorithm 1241. Depending on the user input data 
standard single grid computations are as well possible as a 
successive grid refinement, simple multigrid or full multi- 
grid algorithms. As is illustrated in [ll], high convergence 
rates can be obtained, using this technique. 
A more detailed description of the algorithms used can be 
foundonceagain hy Krolletal. [ll]. 

3 

5.2 Block Structure 
Since grids around complex geometnes cannot be gener- 
ated as one logically rectangular block, the m o w e r  code 
is block structured. That means that the domain is split into 
regions for each of which the generation of a structured 
grid is possible. Figure 7 is showing schematically such a 
grid around a transport aircraft. The program then treats the 
blocks more or less independently from each other which 
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can only be done properly by exchanging data of the cur- 
rent solution at block interfaces before each time step. 

Fig, 7 Schematic multiblock decomposition of the flow 
field around a generic transport aircraft. 

Therefore. each block is surrounded by one or two layers 
of dummy cells respectively which are used for the formu- 
lation of boundary conditions. At block intersections these 
cells correspond with those of their neighboring block and 
carry the solution of the points there. This technique has al- 
ready been illustrated by figure l where a 2D example of 
the block structure around an airfoil is given involving one 
dummy layer. 
The overlap width at such intersections decides about the 
order of accuracy that could be obtained at boundaries. 
such that the FLOWer code allows two dummy layers on 
demand by the user, in order to keep the accuracy at block 
intersections unchanged at second order in space. 
This number of dummy layers is necessary for computing 
the artificial dissipation terms at cuts correctly. Since these 
involve cenual fourth differences in space, each grid point 
needs a support of two further vertices to either side. 
Therefore, grid points located on the intersection of two 
blocks need information on data of two layers of points 
from their neighbor, i. e. two dummy layers, in order to 
compute the artificial dissipation there exactly as if there 
were no cut. 
That inaccuracies at block interfaces may influence the so- 
lution is demonstrated by figures 8 and 9, where the pitch- 
ingmoment of an oscillating NACA 0012 airfoil is plotted 
versus the angle of attack [29]. When involving only one 
layer of dummy cells, the multiblock solution deviates 
from that obtained hy a single block computation. Re-es- 
tablishing second order accuracy at the cuts by adding the 
second dummy layer, these differences vanish. 

a 

Fig, 8 Pitching moment of an oscillating airfoil versus 
angle of attack. Comparison of single block and 
multiblock solution with one dummy layer at cuts 
~ 9 1 .  

Fig. 9 Pitching moment of an oscillating airfoil versus 
angle of attack. Comparison of single block and 
multiblock solution with two dummy layers at cuts 
Wl. 

Since exchange of data between blocks creates an addi- 
tional overhead with respect to single block computations, 
the FLOWer code inhabits different strategies for this pro- 
cedure varying by the frequency of exchange during one it- 
eration [25]. They are sketched in figure IO. 
The first approach contains a complete exchange at block 
boundaries before each Runge-Kutta stage and before the 
computations of the residuals for the forcing functions of 
the multigrid algorithm. 



5-11 

The second possibility is, to update the block interface be- 
fore each complete Runge-Kutta iteration step and again 
before computing the residuals for the forcing functions on 
the coarse grid. 
Finally, a third strategy is carrying out the data exchange 
only once per grid level before the Runge-Kutta iteration 
step. All three techniques differ as far as the convergence 
behavior is concerned and in the memory needed, because 
the less exchange is Derformed the less data have to be 
stored intermediately. 

Fig. IO Strategies for exchange of d at block interfaces. 

The complete procedure is realized as an in-core solver as 
well as an offcore solver locating all block data on an ex- 
ternal storing device. Therefore, large problems usually ex- 
ceeding the main memory capacity as a whole can be 
solved. 

5.3 Paralletization of the FLOWer CO& 

As already pointed out, the paralleiization of the FLOWer 
code followed the guidelines which were explained above. 
Therefore, parallelization meant integration of calls of the 
CLIC-library at distinct locations within the code. This 
leads to the structure of software layers sketched in figure 8 
which illustrates how parallelization and portability are 
achieved at once. 
Since the CLIC-library is based on the PARMACS mes- 
sage passing interface, there are two different programs 
necessary for a parallel run, called host and node program 
(figure 2). This feature was used, in order to establish a 
possibility for applying the FLOWer code as well as on 
parallel as on sequential computers: 

vendor's systemn 

Fig. I 1  Software layers of the parallelized FLOWer code. 

The host program is only needed in parallel mode and per- 
forms the YO-operations. It creates and starts the node pro- 
cesses and distributes the initial data correspondingly. i. e. 
grid coordinates and global control data. During the pro- 
gram run the host process receives the convergence infor- 
mation from all nodes and prints it to the standard output. 
At the end it collects the solution data from the nodes and 
writes them to the specified output files. 
All parallel output operations performed by the host pro- 
cess are completely bidden from the user, since they are 
driven from the node process. There is only one call of the 
CLIC-library necessary, in order to initiate the communica- 
tion between the host and the nodes, the rest is  carried out 
automatically. 
The node program contains the complete sequential flow 
solver. There is only one parameter to be specified by the 
user which switches between routines of the CLIC-library 
and standard sequential procedures. Therefore. the parallel 
mode differs essentially only in four points from the se- 
quential mode 
* Input read operations are replaced by reception of input 

data from the host process. 
Global operations involving all blocks of the given 
block strumre are performed by the CLIC instead of 
within do loops over all blocks. 
The exchange of data at block interfaces is carried out 
fully automatically within distinct CLIC-routines. 
There is no intermediate storing or reordering of data 
necessary any more. 
Write statements for putting out data are replaced by 
parallel write operations of the CLIC consisting of an 
initialization, an output format, output data and a termi- 
nation procedure. 

* 

- 

* 
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These differences are all only slight additions to the se- 
quential program, such that the advantages of the applied 
guidelines described above become quite clear. - The program is fully portable, since the FLOWer code 

and the CLIC-library are portable for themselves. 

All modifications do not touch the numerical algorithm. 
so that users and developers can keep theis well known 
environment. 

The parallelization effort is exuemely low, when 
assuming an existing communications library CLIC. 

6. RESULTS 
After integrating the CLIC calls into the FLOWer program 
structure. several test computations and benchmarks have 
been carried out. in order to demonstrate the success of the 
approach chosen and for investigating the potential of par- 
allelization of a real application code. These will be re- 
ported on in the following. 

5.1 Testcases 
Two different test cases were defined for comprehensive 
studies of the performance of computers and networks rep- 
resenting typical problems in aerodynamics while still re- 
maining simple. 
The first problem to be solved was the inviscid flow around 
a non-swept wing consisting of NACAWl2 airfoils at a 
free stream Mach number of M = 0.6 and an incidence of 
a = 0'. For this case two different grids were generated. a 
coarse one consisting of 160 x 32 x 8 cells and a fine one 
consisting of 320 x 64 x 16 cells. Both gridsmainly were 
subdivided into I ,  4 and 8 blocks of equal size as shown in 
figure 12. This subdivision was driven further for the fine 
grid. gi\aing a 16 block and a 32 block case. Each computa- 
tion consisted of IM) multigrid W-cyles involving three 
mesh le\,els. where the wall clock time was measured be- 
tween the start of the initialization of the solution and the 
end of the iterations. 
The second test case was the DLR-F4 wing-body combina- 
tion. a generic. Airbus like aircraft given in figures 13 and 
14. Here, the inviscid flow was computed at a free stream 
Mach number of M = 0.75 at a = Oo incidence. The C-grid 
consists of 256 x 40 x 40 cells and is blocked along the C- 
lines into I ,  4 and 8 blocks of equal size respectively. Each 
computation consisted of 35 multigrid W-cycles involving 
four mesh levels. The time measurement was carried out as 
described above. 
In both cases each block was mapped to one processor. 

Fig. 12 Block structure for the NACA 0012 wing test 
cases 

Fig. 13 Block structure of the DLR-F4 wing-body 
combination. 

Fig. 14 Iso-Mach-contours on the DLR-F4 wing-body 
combination. M = 0.75, a = 0 '. 
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cds of Performance Ass e m  
Different quantities have been evaluated, especially for the 
NACA 0012 test case, in order to assess various parallel 
and sequential computers. This procedure is necessary, if 
one wants to get information on the real performance of a 
computer, since a restriction to only one criterion could 
possibly give a wrong impression of a computer's abilities. 
Therefore, some characteristic values are defined in the fol- 
lowing. 

6.2.1 Soeed-uo 

The speed-up gives the value of aceeleration obtained by 
employing several CPUs for a problem of a given size. It is 
defined as 

which is the ratio of wall clock times needed by one pro- 
cessor and by Np processors. This is usually compared with 
the number of processors used which is called linear speed- 
up. The true speed-up is always deviating from the linear 
one. because employing several CPUs is always creating 
an overhead for communication. 
Since the blocking creates an additional overhead for com- 
puting block interfaces multiply (once per block) by the 
FLOWer code, an algorithmic speed-up is defined as 

which is the ratio of computing times for the one block 
case and the NB block case on a single processor multiplied 
with the number of processors which could be employed, i. 
e. the number of blocks. This value gives the algorithmi- 
cally possible speed-up for a given problem. 

6.2.2 Efficiency 
The efficiency of a parallelization denotes the degree up IO 
which the theoretically linear speed-up is reached, i. e. 

Because of the algorithmic overhead lo be expected by the 
blocking, an algorithmic efficiency can be defined by 

showing the degree up to which the parallel code reaches 
the algorithmically possible speed-up. Thefore, the stan- 
dard efficiency is a global indicator for the degree a parallel 

code is exploiting a given machine, whereas the algorith- 
mic efficiency characterizes the quality of the paralleliza- 
tlon itself. 

6.2.3 Relauve Performance 
Since speed-up and efficiency are both related to measure- 
ments on the same computer, a comparison between differ- 
ent machines IS mandatory for a true assessment of a paral- 
lel program. Therefore, one can define a relative 
performance 

tR P = -  rei t 

which is the ratio of the computing time on a reference pro- 
cessor (usually a Cray C90) and the time needed on the 
benchmark machine. Ihis value allows comparisons even 
between parallel and sequential computers, given that the 
program will perform on all platforms. 

6.2.4 Concludine Rem a r k  
Assessing computers using the above defirutions is still 
problemaucal and bas to be done with great cautlon. 
Speed-up and efficiency as isolated values do not say any- 
thing about the quality of a computer or the program. since 
they lack any informauon about the absolute time needed. 
For example figure I5 shows the speed-up obtained for a 
two-dimensional eomputation of the flow around a NACA 
0012 airfotl. On I60 blocks aspeed-up of 125 was reached 
on a Parsytec GCel. A great value, but the time still ex- 
ceeded that one obtained on only four pmesson of an 
IBM SP1 [28] 

Fig. 15 Speed-up versus processor number on Parsytec 
GCel for a two-dimensional NACA 0012 airfoil 
Wl. 
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Furthermore both quantities, as defined here, are related to 
the solution of a problem of a given size employing an in- 
creasing number of processors. Therefore, it is necessary 
that the problem can be solved completely on a single CPU 
of a machine for computing these values. But paralleliza- 
tion is done for solving future problems exceeding today's 
single processor capabilities. 
Therefore. all results given here can only be taken as a gen- 
eral information on today's abilities of parallel computers 
with respect to sequential machines. In addition, it is the 
potential of parallel processing in CFD which can he indi- 
cated. 

6.3 Comoarison of Cornouter Performance 
The NACA 0012 wing test case has been used for compar- 
ative performance measurements on a number of comput- 
ers of different architecture. The results are given as histo- 
grams in figures 16 and 17 showing the relative time 
needed with respect to that one measured on a C90 single 
processor.As one can see in figure 16, the workstations 
tested cannot compete even with older vector computers as 
the Cray Y-MP, as far as performance is concerned. Their 
application is therefore restricted to research and develop 
ment duties. 
Within the class of vector computers, the NEC SX-3. 
which is the DLR working horse is clearly the strongest 
machine outperforming the reference Cray C90 processor. 
On this machine a sustained performance above I 
GFLOP/s was achieved. 
Switching to figure 17, one sees that older parallel comput- 
ers. i. e. the CM5 and the Intel Paragon, need many proces- 
sors, i. e. blocks, in order to reach a high performance. For 
the case tested here consisting of eight blocks, they can 
only compete with single processor workstations, since 
their node CPUs are too weak. Another problem showed to 
be their little main memory, such that the large test case 
could not be computed on them using less than 32 proces- 
sors. Since the results for the coarse grid were already dis- 
appointing. this calculation was not carried out. 
Somewhai more promising are the results obtained on an 
IBM SP1. On eight nodes using the fastest communication 
system available one can almost reach the performance of 
older generation vector processors as the Cray Y-MP. 
More recent distributed memory parallel computers which 
have been tested then, revealed that they are able to com- 
pete even with today's vector machines. If the problem is 
sufficiently large, the C90 single processor performance 
can almost be reached employing 32 nodes of a NEC 
Cenju-3. Using the same number of CPUs on an IBM SP2 
the CY0 single processor is already outperformed. 
A special case is the result of the J916, since it is a shared 
memory vector computer. As one can see in this case, eight 
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Fig. 16 Relative performance of sequential computers 
obtained for the NACA 0012 wing test case 
(16Ox32x8cells) with respect to a Cray C90 single 
processor. 

I e-. I -_ 8,. -_ ,111 .-. .,I, -, 1,. -. 
Fig. 17 Relative performance of parallel computers 

obtained forthe NACA 0012 wing test case 
(16Ox32x8cells) with respect to a Cray C90 single 
processor. 

computing nodes are already sufficient for reaching the 
C90 single processor performance. 
In figure 18 the development of the relative performance is 
plotted versus the respective processor number involved 
for the most powerful parallel computers tested. As one 
can see, the highest performance is achieved on the com- 
puters with the most powerful single processors. On the 
other hand, the more powerful the computers are the worse 
their scalability becomes. i. e. the less steep is the slope of 
the corresponding curve. 
This clearly indicates that on all these computers the per- 
formance is mainly gained by an increase in the single pro- 
cessor performance. whereas the network cannot keep 
track. The bener scalability of the less powerful parallel 
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computers is therefore not gained by an improved network 
speed, but by weaker processors leading to a better balance 
of both components. 

10.0 r 

p-l 7.5 \ 

0 0 1  I 

Fig. 18 Development of the relative pe~ormance versus 
0 4  II 12 I6 20 24 28 Np 32 

processor number with respect to a C90 single 
processor. 
Test case: NACA 0012 wing, 320x64~16 cells. 

e of the Communication Svstem 
It is clear that the performance of parallel computers is 
mainly influenced by the communication system including 
hardware and software aspects. This effect was studied 
computing both test cases, the NACA 0012 wing and the 
DLR-F4 wing-body combination, on an IBM SP1 using 
different communication systems available there. The re- 
sults of the measurements are given as speed-up versus 
number of processors in figures 19 to 21. 

0.0 4.0 *.o 0.0 4.0 5.0 II.0 ,.a 1 0 N p  

Fig. 19 Speed-up versus processor number on IBM SPl. 
Test case: NACA 0012 wing, coarse grid 
(160x32~8 cells). 
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Fig. 20 Speed-up versus processor number on IBM SPI. 
Test case: NACA 0012 wing, fine grid 
(320x64~16 cells). 

There have been tested five different communication sys- 
tems: 

PVM using Ethernet 

PVM using the IBM High Performance Switch * 

- MPL(P0E) 
* 

* 

Figures 19 to 21 clearly indicate that PVM using an Ether- 
net connection is not suited for the CFD problems treated 
here, i. e. workstation clusters with an Ethernet connection 
are definitely not suitable for replacing a true parallel com- 
puter at least for the FLOWer code. 

MPUp (euih) in default configuration 
MPUp (euih) with interrupt control. 

Fig. 21 Speed-up versus processor number on IBM SPl. 
Test case: DLR-F4 wing-body combination 
(256x40~40 cells). 
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The main reason for the speed down on eight nodes is the 
low performance of the Ethernet as can be seen from the 
improvement using PVM with the high performance 
switch. Nevertheless there is still too much software over- 
head within the communication which is drastically re- 
duced by applying the IBM proprietary systems. 
With the fastest systems the algorithmically ideal speed-up 
is reached up to an acceptable degree depending on the 
problem size. One can clearly perceive an increase of the 
speed-up when increasing the work load per processor, i. e. 
the block size. 
For the larger NACA 0012 wing test case even a super lin- 
ear speed-up was obtained (figure 20) which is due to a 
paging effect. Indeed, the one block case exceeded the 
main memory capacity of a single CPU, such that this is a 
typical case where parallel processing becomes advanta- 
geous while speed-up measurements are questionable. 
Another observation is. that the algorithmically ideal 
speed-up considerably deviates from the linear one due to 
the algorithmic overhead because of multiple computations 
on block interfaces. This overhead is reduced of course, 
when increasing the block size per processor, as can be 
seen from a comparison of both NACA 0012 wing test 
cases. 
On the other hand this overhead is remarkably increasing, 
when involving a fourth multigrid level, as is done for the 
DLR-F4 wing-body combination. Since it is W-cycles 
which are performed. much more time is spent on coarse 
grids where the ratio of boundary points to field points is 
getting worse. As it  seems, the EXOWer code behavior 
there is dominated by the corresponding algorithmic over- 
head at the inter block boundaries and not by the increasing 
communication activity. because the algorithmic ideal is 
reached to a high degree indicating an excellent paralleliza- 
tion efficiency. 

p 
Finally it is possible to compare the efficiencies ofdifferent 
communication models using the FLOWer code on shared 
memory computers. Therefore, measurements carried out 
on a Cray C916 and a Cray J9 16 computer using on the one 
hand the CLIC-library, i. e. exploiting coarse grain paral- 
lelism by message passing, and on the other hand using the 
auto-parallelizing compiler distributing parallel data to dif- 
ferent processors. In the latter case the CLIC library was 
replaced by a dummy library, and no additional compiler 
directives were used. The message passing solutions were 
obtained for the multi block cases, whereas the auto-paral- 
lelizer worked on the single block problems. 
The results of the measurements are given in figures 22 to 
25 as speed-up versus number of processors for the two 
NACA 0012 wing test cases. What can be seen, is that only 

for the coarse grid problem the message passing approach 
is working slightly worse than the auto-parallelization ap- 
proach, although it is creating a considerable algorithmical 
overhead at block interfaces as pointed out above. For the 
fine grid problem the parallelizarion via CLIC not only is 
competitive on the Cray C916. but even outperforms the 
auto-parallelization on the Cray 1916. 
Furthermore the scalability of the loop based data parallel 
approach is rather poor which is indicated by the strong 
non-linear deviation of the speed-up from the linear one. 
Using message passing this deviation is higher for small 
processor numbers, but remains almost linear, at least until 
eight CPUs, such that it is lo be expected that this approach 
is performing better for large processor numbers. 

Fig. 22 Speed-up versus processor number on Cray C916. 
Test case: NACA 0012 wing, coarse grid 
( I  60x32~8 cells). 

Fig. 23 Speed-up versus processor number on Cray 0 1 6 .  
Test case: NACA 0012 wing, fine grid 
(320x64~16 cells). 
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ferent processors. Of course there remains a body of opera- 
tions outside of loops, i. e. scalar operations. These are 
excluded from the parallelization using an auto-paralleliz- 
ing compiler, but of course take part in the coarse grain 
parallelization based on the block structure. Therefore, the 
number of operations which cannot be performed in paral- 
le1 is higher for the data parallel approach than for the mes- 
sage passing approach. Due to Amdahl's law [U] 

NP S =  I + f .  ( N p - l )  

0 0  
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Fig. 24 Speed-up versus processor number on Cray J916. 
Test case: NACA 0012 wing, coarse grid 
(160x32~8 cells). 
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Fig 25 Speed-up versus processor number on Cray J916. 
Test case: NACA 0012 wing. fine grid 
(320x64~16 cells). 

The reasons for that interesting behavior might be the fol- 
lowing [26]: 
First of all, employing the CLIC-library creates some soft- 
ware overhead necessary for the operations involved in the 
communication. In additlon. the algorithmic overhead due 
to multiple computatlons at block boundaries further de- 
creases the parallel efficiency to be obtained by the 
FLOWer code. This explains the somewhat expected be- 
havior for small processor numbers, that a vendor's spe- 
cific strategy outperforms a portable one. 
On the other hand the auto-parallelizmg approach is re- 
sulcted to the distribution of array data within loops to dif- 

where f is the portion of operations which cannot perform 
concurrently. this must lead to a higher speed-up theoreti- 
cally to be obtained by the parallelization via CLIC, since 
the value off is smaller there reducing the denominator of 
the above expression. 
Another reduction of the speed-up gained by auto-parallel- 
ization is caused by small load imbalances which are indi- 
cated by the small wiggles of the speed-up curves for that 
approach. Depending on the strategy chosen for the distri- 
bution of concurrently processed data and depending on 
the number of array data to be treated, it can hardly be 
avoided that there will be processom computing slightly 
more data than others reducing further the efficiency. On 
the contrary the blocks of the test cases for the message 
passing parallelization were of equal size guaranteeing an 
ideal load balancing for that strategy. 
What can be observed further, is that both techniques per- 
form better with an increase of the problem size which is 
due to an increase of the vector length in either approach. 
But in the message passing solution additionally the com- 
munication and the algorithmic overhead becomes less im- 
portant, since the local ratio of boundary data to field data 
is getting better. Therefore, the message passing efficiency 
becomes less dependent on the processor number, when in- 
creasing the problem size while keeping the work load con- 
stant per CPU. 
The figures 22 to 25 clearly indicate that message passing 
is superior to auto-parallelizing compilers for sufficiently 
large blocks and for a sufficiently balanced ratio of com- 
munication to computational power. The latter is demon- 
strated hy the Cray J916 results where the single CPU is 
much weaker than that one of a Cray C916, but where the 
message passing speed-ups are always above the corre- 
sponding ones on the Cray C916. Therefore, the crossover 
point for the message passing approach is reached earlier 
than on the C916 machine. 
Of course these conclusions are only valid, when no addi- 
tional compiler directive are put into the code for tuning, 
but this was excluded, for the reasons given with the guide- 
lines for parallelization. 
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5.6 Massive Parallelism 
It is clear that the benefits of parallelism will be greatest, 
when applying a higher number of processors assuming a 
sufficiently powerful network. There exist attempts to em- 
ploy hundreds or thousands of CPUs working on the same 
problem at an overall performance of about 1 TFLOP/s. 
Therefore investigations with a two-dimensional code were 
carried out, in order to study the effects occuring in a mas- 
sively parallel environment (281. 
There were standard computations carried out on a Par- 
sytec GCel for the flow field around a NACA 0012 airfoil 
at M = 0.8 and a = I .25O on an 0-grid of 320 x 64 cells. 
The mesh was split according to different strategies in up 
to 160 blocks of equal size. The block structures varied 
with respect to the direction the grid was split, i. e. the 
mesh was subdivided in the normal direction j into I. 2.4 
and 8 blocks keeping the number of blocks constant in the 
circumferential direction i at I ,  5. 10 or 20 blocks respec- 
tively. The results of these computations are shown in fig- 
ure 26 where the obtained efficiencies are plotted versus 
the respective number of processors. 

- 1 block ln i~dlrenion,1 .2 .4 .8bl~doln] -~~dlon 
& 5 blocks In 8dirsnion. 1.2.4.8 blacks In j-diredion + 10 bl&ln l.dll~cllon. 1.2.4. 8bl&lnjdireM + 20 blodoln l&dlrsnion. 1 , 2 . 4 , 8 ~ l n l d l ~  

OW 
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Fig. 26 Efficiency versus processor number for different 
block structures for the Zd NACA 0012 airfoil on 
Parsytec GCel. 

As one can see, the efficiency varies remarkably between 
the different strategies applied. Moreover, it is essentially 
determined by the number of blocks in the normal direction 
j. The efficiency values for 8 blocks in j direction differ 
only between 85% and 81%. although the total number of 
blocks, i. e. processors, covers a range from 8 to no less 
than 160. 
The reason for that behavior is found, when thinking about 
the communication pattern in the different cases. The time 
needed for communicating a set of data is usually given by 

the following linear relation 

t,,,,,,,, = a + hn 

where a is the start-up time needed for initialization, b the 
bandwidth and n the number of data to be transferred. The 
latter usually is proportional to the number of points at a 
block interface. 
In the case here the number of messages sent per block de- 
pends only on the number of neighbors. This value varies 
slightly from 2 (1 block in any direction) to 4 (4 or 8 blocks 
in any direction) in the worst case, but this does not differ 
between a blocking in i- and in j-direction. What counts. is 
that the blocks resulting from a splitting in the normal di- 
rection j always have longer edges along j than along i in 
the range considered. such that the length of at least part of 
the messages is always longer in j- than in i-direction (fig- 
ure 27). Therefore, for this test case it is always profitable 
to achieve a given number of blocks by slicing the grid in 
the circumferential direction instead of a blocking in nor- 
mal direction. 
Therefore. when blocking a problem for parallelization 
purpose one should not only think of the load balancing 
problem, i. e. to produce equally sized subdomains. but 
also of an optimum grid partitioning with respect to the 
communication pattern. 

Fig. 27 Schematic block structure around the 2d NACA 
0012 urfoil. 

3. CONCLUSIONS 
It has been shown that parallelizatlon is an interesting 
method for accelerating large CF'D solvers for production 
use, but for this class of programs parallelization cannot be 
treated in isolation. Moreover the requirements for porta- 
bility. conservation of the effort spent for the numerical de- 
velopment in sequential mode and reduction of the paral- 
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lelization effort have to be met.Therefore, guidelines, how 
to proceed, are given which have been proven to lead to a 
parallel code fulfilling these industrial objectives on soft- 
ware. 
The strategy suggested is based on grid partitioning using 
message passing for communication, since this technique 
corresponds to the well known multiblock approach in se- 
quential programs. All functionalities involving communi- 
cation between parallel nodes should be concentrated 
within a high level library guaranteeing portability and 
simplifying the parallelization task. 
The communications library CLIC which is currently de- 
veloped at the GMD within the POPINDA-project is such a 
library. Based on the portable message passing interface 
PARMACS i t  is supporting any block structured program. 
As an example the parallelization of the FLOWer code is 
described which is developed for production use in aerody- 
namics. It is demonstrated that the chosen approach using 
the CLIC library allows this program to run on computers 
of any architecture ranging form single processor worksta- 
tions up to shared and distributed memory parallel ma- 
chines. 
Comparisons of performance data obtained with the 
FLOWer code show that modern parallel computers are al- 
ready able to reach the single processor performance of a 
Cray C90 processor employing a moderate number of 
nodes. 
Studies on different communication systems demonstrate 
that the communication performance clearly determines 
the potential of parallel processing. As it comes out, work- 
station clusters connected by Ethernet are definitely not 
suitable for replacing true parallel computers, at least for 
CFD applications of the FLOWer code. 
A comparison of different parallelization techniques on 
shared memory computers reveals that the portable mes- 
sage passing approach suggested is not necessarily inferior 
to vendor‘s auto-parallelking compilers. It was demon- 
strated that only for small processor numbers the FLOWer 
code performs worse using the CLIC-library, but the scal- 
ability features of the message passing communication 
model appeared to be generally better than that of the data 
parallel model involving an auto-parallelizer. 
Finally, studies on the behaviour of different block struc- 
tures reveal a strong influence of the grid partitioning on 
the resulting communication amount yielding remarkable 
differences of the efficiency to be obtained in a parallel run. 

8. OUTLOOK 
Further development is to be carried out for the future, in 
order to improve the parallel behavior of the FLOWer 
code. Major effort will have to spent on the reduction of 
the algorithmical overhead at block intersections for in- 

creasing the absolute speed-up rates. 
Furthermore investigations on the parallelization features 
of the program have to be devoted to Navier-Stokes com- 
putations, since up to now only Euler results have been 
studied. 
Finally the integration of a local grid refinement has to be 
done within the research project POPINDA involving as 
well the FLOWer code as the communications library 
CLIC. Additional features of this library will be realized in 
the near future, i. e. an automatic load balancing and a spe- 
cial detection and treatment of mesh singularities. 
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Summary 
Consideration is given to the techniques required to sup- 
port adaptive analysis of automatically generated unstruc- 
tured meshes on distributed memory MIMD parallel com- 
puters. The key areas of new development are focused 
on the support of effective parallel computations when 
the structure of the numerical discretization, the mesh, 
is evolving, and in fact constructed, during the compu- 
tation. All the procedures presented operate in parallel 
on already distributed mesh information. Starting from a 
mesh definition in terms of a topological hierarchy, tech- 
niques to support the distribution, redistribution and com- 
munication among the mesh entities over the processors 
is given, and algorithms to dynamically balance proces- 
sor workload based on the migration of mesh entities are 
given. A procedure to automatically generate meshes in 
parallel, starting from CAD geometric models, is given. 
Parallel procedures to enrich the mesh through local mesh 
modifications are also given. Finally, the combination of 
these techniques to produce a parallel automated finite 
element analysis procedure for rotorcraft aerodynamics 
calculations is discussed and demonstrated. 
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Nomenclature 

Notation used to describe models and topological entities 
within the models 

Domain associated with model U ,  ZI = g , p  or m 
where g signifies the geometric model, p 
signifies the partition model, and m signifies the 
mesh model. 
Closure of domain associated with the model 
v , v = g , p o r m  
Topological entity i from model v of dimension 
d, d = 0 is a vertex, d = 1 is an edge, d = 2 is 
a face, d = 3 is a region. 
Indicates the kth use of the topological entity 
,T;. Use entities uniquely identify how entities 
are used in non-manifold models. The simplest 
case of uses arises from the fact that a face can 
be bounding two regions. One face use is 
associated with each region. 
The f indicates a directional use of the 
topological entity ,T,# as defined by its ordered 
definition in terms of lower order entities. A + 
indicates use in the same direction, a - 
indicates use in the opposite diection. 

a ( u ~ : )  Boundary of topological entity 
v = g , p  or m 

U'' (,,T;Ua(,,T:)), v = g , p o r m  
c 

- Closure of topological entity defined as 

Classification symbol used to indicate the 
association of one or more entities from one 
model, typically m or p ,  with a higher model, 
typically p or g 

Groups of topological entities used in the definition of 
topological adjacencies 

d (n) Unordered group of n topological entities of 
dimension d 

dimension d 

entities of dimension d 

d without order specified 
d (n) The ith entity in a group of n topological 

LuTdJ (4 Ordered group of n topological entities of 

[uTd] ( n )  Cyclicly ordered group of n topological 

( u T d ) ( n )  Group of n topological entities of dimension 

) i  entities of dimension d 

Notation used to describe adjacency relationships for 
topological entities 

d (n) Set of n topological entities of dimension d 
adjacent to, or contained in cp. cp may be an 
entity, ,,T>, or a group of entities, (,Td) 

) 

Examples of adjacency groups 

v{,Td} All model entities of dimension d in model w 

U { ~ T ~ } ,  The ith entity of dimension d in model w in 
the group. Note that v ( , , T ~ ) ~  = ,,Tf 

d j  (n) The n entities of dimension dj-adjacent 
to entity uqd%JT 1 

Adjacency relationships are evaluated left to right. For 
example uT~{ , ,To}{uT3}  is found by first finding the 
group defined by cp = { ,,To} and then by defining 
the group cp{ ,,T3} 

1. Introduction 

Adaptive techniques provide the promise of reliably solv- 
ing many complex flow problems to the desired level of 
accuracy. The computational requirements of these solu- 
tion processes can only be met by scalable parallel com- 
puters. The development of effective parallel algorithms 
for adaptive techniques is challenging due to the irregular 
nature of adaptive discretizations and the constant mod- 
ification of the discretization. These notes discuss the 
techniques required to support automated adaptive analy- 
sis on distributed memory MIMD parallel computers. 
Three assumptions underlying the techniques presented 
are (i) the parallel computation algorithms assume a par- 
titioning of the mesh onto the processors, (ii) the meshes 
are unstructured, and (iii) the mesh generation and enrich- 
ment processes interact directly with a geometric defini- 
tion of the domain being analyzed as it exists in a CAD 
system. These assumptions have a defining influence on 
the procedures developed. The most critical of the as- 
sumptions is the direct link to the CAD definition of the 
domain which allows the adaptive procedures to solve the 
problem over the intended domain, not some approxima- 
tion based on an initial mesh. The results of our adaptive 
CFD calculations clearly demonstrate that adaptive results 
in which the mesh enrichments do not improve the geo- 
metric approximation often yield no improvement in the 
solution accuracy. This is because the adaptive procedure 
is obtaining a better solution to the wrong problem. 
A key aspect to supporting calculations on adaptively 
evolving mesh is the data structure used to describe the 
mesh and support its evolution during the adaptive analy- 
sis process. When the analyses are performed on parallel 
computers, capabilities must be available to support the 
communications between the partitions of the mesh as- 
signed to various processors. As the mesh is adapted, 
partition work load becomes unbalanced, therefore pro- 
cedures must be available to effectively modify the mesh 
partitions to regain load balance for the next computa- 
tional step. Chapter 2 of these notes presents a set of 
data structures and algorithms for the effective parallel 
control of evolving meshes. 
The demand for continuously larger meshes indicates the 
need for the development of efficient parallel automatic 
mesh generators which can operate directly from the geo- 
metric representations housed in CAD systems. Chapter 
3 of these notes discusses the issues of automatic mesh 
generation from solid models and presents an algorithm 
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for parallel mesh generation. Although the mesh enrich- 
ments dictated by an adaptive analysis can be satisfied 
through remeshing by the automatic mesh generator, the 
computational cost and need to project parameters be- 
tween meshes indicates the desire to employ alternative 
mesh enrichment techniques when possible. Chapter 4 
presents a set of local mesh modification procedures for 
the effective refinement and coarsening of meshes. 
Given a set 'of parallel procedures for controlling mesh 
partitions, for the generation and enrichment of the mesh, 
the remaining ingredient of the automated adaptive analy- 
sis is the adaptive solver. Consistent with the other com- 
ponent procedures presented in these notes, it is assumed 
that the solver operates on an unstructured mesh which 
has been partitioned to the various processors of the par- 
allel computer. Under this assumption, adaptive finite 
volume and finite element solvers are most appropriate. 
Chapter 5 presents the structure of such a solver. The 
specific solver discussed is a finite element based proce- 
dure which builds directly on the parallel mesh control 
tools of the earlier sections. 

2. Parallel Control of Evolving Meshes 

Central to the parallel automated adaptive analysis proce- 
dures considered here are tools to control the mesh and its 
distribution among the processors as the meshes are gen- 
erated and analyzed. These tools must be able to maintain 
load balance as the mesh evolves during the computations 
in such a manner that the interprocessor communications 
are kept as small as possible. Its is also critical that these 
procedures operate in parallel and scale as the problem 
size grows so they do not become the bottleneck in the 
parallel computation process. 
The tools required to support parallel automated adaptive 
analysis include: 

1. 

2. interprocessor communication control mechanisms 
3. 

data structures and operators to support the model 
representations employed 

mechanisms to effectively move portions of the dis- 
crete models generated to various processors so load 
balance can be maintained 
techniques to partition the mesh among the proces- 
sors so the load is balanced and communications are 
minimumized 
techniques to up-date the mesh partitions to regain 
load balance which was lost due to mesh modifica- 
tions 

4. 

5 .  

The minimum data structures needed for an automated 
adaptive analysis are (i) a problem definition, in terms of 
a geometric model and analysis attributes, and (ii) a mesh, 
which the discrete representation used by the analysis pro- 
cedures. The next section describes a general structure, 
based on boundary representations, for the problem def- 
inition and the mesh. This same form of structure is 
used to support the partition model used by the partition 
operators, mesh migration procedures and dynamic load 

balancing procedures. In additional to these data struc- 
tures, several procedures described employ tree structures 
to support searching and spatial enumeration. The mesh 
partition procedures described in section 2.2 are designed 
to effectively collect groups of mesh entities for migra- 
tion and, using the interprocessor communication oper- 
ators, transfer the information and update all local data 
structures as needed. 
A number of algorithms have been developed to partition 
a given mesh to a set of processors. The interested reader 
is referred to references [4, 20, 21, 56, 801 for more 
information. The current document focuses on procedures 
to update an existing set of mesh partitions after the 
mesh has been modified by a mesh adaptation procedure. 
Section 2.3 presents two classes of procedures for this 
purpose. 

2.1. Mesh Data Structure to Support 
Geometry-Based Automated Adaptive Analysis 
The classic unstructured mesh data structure of a set 
of node point coordinates and element connectivities is 
not sufficient for supporting automated adaptive analysis. 
Richer structures are required to support adaptive mesh 
enrichment procedures and to provide the links to the 
original domain definition needed by critical functions, 
including ensuring that the automatic mesh generator has 
produced a valid discretization of the given domain. A 
number of alternative mesh data structures have been 
proposed for various forms of mesh adaptation. Instead 
of describing and comparing these structures, a general 
data structure based on a hierarchy of topological entities 
is given. 
The goal of an analysis process is to solve a set of par- 
tial differential equations over the geometric domain of 
interest, ,R. Generalized numerical analysis procedures 
employ a discretized version of this domain in terms of 
a mesh. Since the mesh domain, ,R may not be identi- 
tal to the original geometric domain, ,R, and/or various 
procedures, such as automatic mesh generation, adaptive 
mesh refinement and element stiffness integration need 
to understand the relationship of the mesh to the geo- 
metric model, it is critical to employ a representational 
scheme which maintains the relationships between these 
two models. Although a number of schemes are possi- 
ble for defining a geometric domain [%I, the most ad- 
vantageous for the current purposes are boundary-based 
schemes in which the geometric domain to be analyzed 
is represented as 

- 
- 

where g{,S} represents the information defining the 
shape of the entities which define the domain and g{  ,T} 
represents the topological types and adjacencies' of the 

I In the context of a domain representation, adjacencies 
are the relationships among topological entities which 
bound each other. For example, the edges that bound a 
face, is a commonly used topological adjacency. 
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entities which define the domain. In addition to being 
unique, the use of topological entities and their adja- 
cencies provides a convenient abstraction for defining 
the relationship of different models of the same domain. 
Boundary representations also allow the convenient spec- 
ification, with respect to the geometric domain, of the 
analysis attributes of material properties, loads, boundary 
conditions and initial conditions [72, 751. An additional 
advantage of boundary representations is the fact that cur- 
rent computer aided design systems support a boundary 
representation of the domains defined within them. This 
allows the effective combination of these packages with 
automatic mesh generation. A final advantage of recent 
boundary representations are their ability to properly rep- 
resent the non-manifold geometric domains commonly 
used for analysis processes [89, 321. 
Since individual volume finite elements will be limited 
to simple regions, bounded by simply connected faces, 
consideration of the topological entities for a model can 
focus on the basic 0 to d dimensional topological entities, 
which for the three-dimensional case (d=3) are: I 

where v{,Td} , d = 0 , 1 , 2 , 3  are respectively the set of 
vertices, edges, faces and regions defining the primary 
topological elements of the domain2. 
Critical to the understanding of the relationship of the 
mesh with the geometric domain is the concept of classi- 
fication of a derived model to its parent model [66, 671. 
Definition: Mesh Classifcation Against the Geometric 
Domain - The unique association of a topological mesh 
entity of dimension d; , Tp’, to a topological geometric 
domain entity of dimension d j  , gTj”’, where d, 5 d j ,  is 
termed classijication and is denoted 

,Tft c ST? (3) 

where the classijication symbol, E, indicates that the left 
hand entity, or set, is Classified on the right hand entity. 
Multiple Tp’ can be classified on a Tp’. A mesh 
region, ,T:, is classified in the domain region, ST;, in 
which it lies. A mesh face, ,Tf, is classified in the 
domain region, ST;, in which it lies, or on the domain 
face, ST:, on which it lies. A mesh edge, ,T:, is 
classified in the domain region, ST;, in which it lies, on 
the domain face, ST:, on which it lies, or on the domain 
edge, ST;, on which it lies. Finally, a mesh vertex, ,TP, 
is classified in the domain region, ST;, in which it lies, 
on the domain face, ST:, on which it lies, on the domain 
edge, ST;, on which it lies, or on the domain vertex, ST:, 

Proper consideration of general geometric domains re- 
quires consideration of the loop and shell topological 
entities, and, in the case of non-manifold models, use 
entities for the vertex, edge, loop, and face entities [89]. 
We will introduce any of these additional entities only 
as needed. 

on which it lies. Mesh entities are always classified with 
respect to the lowest order object entity possible. 
Any automated adaptive analysis must consider both the 
geometric domain representation, - g n ( g { g S } ,  g { , T } ) ,  
and the mesh representations, ,~(m{,S},m{,T}) 
where m{,S} is limited to pointwise information at 
specific locations obtained by interrogation of the geo- 
metric model representation. Since the mesh representa- 
tion lacks the complete geometric shape information of 
the geometric domain representation, that shape infor- 
mation must be accessed during various operations such 
as integrating elements to the true geometry, or placing 
new nodes defined by adaptive refinement on the true 
boundary of the domain. 
Classification of the mesh against the geometric domain is 
central to (i) ensuring that the automatic mesh generator 
has created a valid mesh [66,67], (ii) transferring analysis 
attribute information to the mesh [75], (iii) supporting h- 
type mesh enrichments, and (iv) integrating to the exact 
geometry as needed by high order elements. 
In addition to the mesh representation, it is often desirable 
to consider other derived representations of the domain. 
The one of central importance to the parallel adaptive 
analysis is the processor representation, pn .  This repre- 
sentation is an intermediate representation between that of 
the mesh and the geometric domain. Therefore, its topo- 
logical entities can be classified against the geometric do- 
main. Since the mesh is the lowest order representation, 
its entities can be classified against both the geometric 
domain and the processor representation. 
An additional representation employed in the parallel 
mesh generation procedure, and one set of parallel adap- 
tive procedures, is an octree representation. Since tree 
representations are derived to support specific searching 
operations, or spatial enumerations, they vary dramati- 
cally from the topological hierarchies used to define the 
geometric domain and mesh. Structures of these types 
will be described as they are used in specific algorithms. 
The adjacencies of various order mesh topological en- 
tities and their classification with respect to the higher 
order models are used to support a great number of the 
operations required by a parallel automated adaptive anal- 
ysis. Therefore, it is important that they can be quickly 
determined. Clearly, if the adjacencies of each order 
entity against all other entities were stored, all possible 
adjacency information would be readily available. This 
approach would be highly wasteful with respect to the 
amount of data storage required. On the other hand, stor- 
ing only a minimal number of adjacencies could require 
extensive searches and sorts to determine other specific 
adjacencies. An examination of the specific adjacencies 
used by the various algorithmic operations provides guid- 
ance as to the minimum number of adjacencies needed. 
For example references [6, 13, 30, 381 define adjacencies 
used in specific finite volume and finite element proce- 
dures. Since the procedures considered here must support 
the highly demanding, from the view point of topologi- 
cal adjacencies, automatic mesh generation procedures, 

- 

- 
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For mesh faces 

(5) 
which defines the loop of edges that bound the face, where 
n = 3 for a triangular face and , n = 4 for a quadrilateral 
face. 
For mesh edges 

a & 1 (4 
mTi [mT 1 

,T: (6) 
which indicates the two vertices that hound the edge. 
The specific upward adjacencies stored are: 
For mesh vertices 

(7) I (4 
mTP{mT I 

which indicates the edges the vertex is on the boundary 
of. 
For mesh edges 

(8) a (4 
mT: { mT I 

which indicates the faces the edge partly bounds. 
For mesh faces 

(9) 
3 (2) 

mT?lmT I 

MESH 
9DJACENCIES 

mesh region 

1 

and any form of adaptive analysis on conforming un- 
structured meshes3, all adjacencies are either stored, or 
can be quickly determined through a set of local travers- 
als and sorts which are not a function of the mesh size. 
One set of relationships that can effechvely meet these 
requirements is to maintain adjacencies between entities 
one order apart. Figure 1 graphically depicts this set of 
relationships as well as the classification with respect to 
the geometric domain represenmon. 

GEOMETRIC DOMAIN 
ENTITIES - region 

region, face or 
edge 

t 
mesh edge 

t I  
mesh t vertex l. region, face, I edge, or vertex 

Figure 1. Mesh topological adjacencies 
and classification information 

Since there are natural orderings for several of the a d p  
cencies which prove useful to the operations performed, 
the forms of adjacencies employed are: an unordered list 
of n entities adjacent to entity 9 signified by 9{,,Td}("', 
a linear list of n entities adjacent to entity 8 signified 
by 9 LuTd] (*), and a cyclic list of n entities adjacent to 
entity 9 signified by I J [ ~ T ~ ] ( ~ ) .  Specific entities also 
store directional knowledge of how that entity is used in 
the specific adjacency. In these cases the left superscript, 
f, on the entity, ;qd, indicates a directional use of the 
topological entity "TP as defined by its ordered defini- 
tion in t e r n  of lower order entities. A + indicates use 
in the same direction, while a - indicates a use in the 
opposite direction. 
The specific downward adjacencies stored are: 
For mesh regions 

,T: {:TZ (4) 

which indicates the faces bounding the mesh region, 
where n = 4 for a tetrahedron, n = 6 for a hexahe- 
dron, etc. 

A conforming mesh is one where all mesh entihes ex- 
actly match. For example, a situation where the mesh 
edge bounding one mesh face has two mesh edges from 
another mesh face lying exactly on top of it is not al- 
lowed. Although possible to extend the procedures pre- 
sented here to support those situations, they will not be 
considered in the present document. 

which indicates the zero, one, or two regions the face 
partly bounds. 
An alternative set of adjacencies which can directly meet 
the needs of many applications is to maintain the same 
downward adjacencies and store only the single upward 
adjacency from the vertices to the highest order entities 
using them. In the case of a manifold mesh in 3-D this 
upward adjacency would be 

*TP{T31 (10) 
which are the regions that the vertex bounds. In the 
case of general non-manifold models, it is the upward 
adjacencies form the vertices to any mesh entity it bounds 
which itself is not bounded by a higher order entity. In 
this case the adjacency relationship is a bit more complex 
being 

This set includes the regions the vertex bounds, the faces 
the vertex bounds which do not bound any regions, and 
the edges the vertex bonds which do not bound any faces. 
2.2. Partition Communication 
and Mesh Migration 
Adaptive unstructured meshes on dishibuted memory 
computers require data structum which provide efficient 
queries for various entity and processor adjacency infor- 
mation as well as fast updates for changes in the mesh. 
The requirements for sequential implementations of h p  
adaptive finite element methods can be satisfied by the 
SCOREC mesh database just given. For parallel appli- 
cations, we first enumerate the major requirements of a 
distributed memory mesh environment. These require- 
ments are met by the distributed mesh environment Par- 
allel Mesh Database (PMDB) that is then described. 
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2.2.1 Requirements nf PMDB and Related Efforts 

A parallel mesh database must: - Provide a common interface and a single library 
for all the mesh related applications, namely, mesh 
generation, mesh refinementkoarsening and finite 
element analysis. 
Provide a full spectrum of adjacency relations among 
shared entities on different processors. 
Provide a general purpose mesh migration algorithm 
which will facilitate arbitrary mobility of mesh en- 
tities on processors. Additionally, the update pro- 
cedures for data structures should be scalable after 
migration. 
Support meshes generated on non-manifold models. 
In a non-manifold representation the surface area 
around a given point on a surface might not be 
flat in the sense that the neighborhood of the point 
need not be a simple two-dimensional disk [89]. 
Figure 2 shows examples of meshes on non-manifold 
geometric models. Just as the mesh data sbuctures, 
the PMDB can handle the situations in which mesh 
entities attach to vextex contacts. This specifically 
requires the ability for such entities to he migrated 
with no loss of information, and that the vertex at 
the contact can be a shared partition boundary entity. 

* 

- 

la) ibl IC) 

Figure 2. Example meshes handled by PMDB library 

The early parallel and distributed memory implementa- 
tions of finite element methods such as [SI] involved 
static meshes and used the data parallel SIMD computing 
systems such as CM2. The ease of programming static 
and regular problems using the data parallel model led the 
compiler writers to incorporate this model in high perfor- 
mance Fortran compilers. The analysis for generating 
communication primitives for irregular references found 
in unstructured meshes could not be done at compile time. 
Therefore, runtime systems such as the PART1 primitives 
[63] were designed which would compute these refer- 
ences prior to entering a loop where the actual computa- 
tions are done. If the distribution of the mesh changes, 
then all the references have to be recomputed. Since 
limited analysis can be done at the level of references 
only, the data parallel Foman compilers soon proved to 
be weak for handling the dynamically changing mesh data 
StruCNIeS of adaptive applications. This weakness has di- 
rected other researchers to design distributed mesh envi- 

ronments providing functionalities for refinement, coars- 
ening, migration and load balancing. 
A heuristic which has been the by product of high perfor- 
mance Fortran compilers is the owner computes paradigm 
[11][95]. This heuristic was used as a rule for letting the 
processor which owns a data item to perform the com- 
putations which define it. This paradigm is also used in 
other contexts such as parallel linear solvers provided by 
PetSc [31] which requires the designation of owners of 
the rows. A variation of this paradigm is used in imple- 
menting the current mesh migration algorithm. 
Williams' Distributed Irregular Mesh Environment 
(DIME) project 1901 can be considered as one of the ear- 
liest distributed unstructured mesh environments. This 
initial version was restricted to two dimensional meshes 
and could not handle non-manifold models and surface 
meshes such as a torus. The newer version DIME++ 
[93] implemented in C++ provides support for three 
dimensional elements. 
DIME uses a hash table to implement voxel datubuses 
[92] which store a global key associated with an entity. 
This key is the geometric centroid of the entity. The co- 
ordinates of the centroid are converted to integer hash 
table index by dividing it with a user supplied tolerance. 
We show in sections 2.2.2 and 2.2.3 that explicit genera- 
tion of global key by computing and storing the centroid 
is not necessary. When elements are migrated in DIME, 
new voxel entries are packaged into a message and the 
message is passed from processor to processor in a ring 
until each has seen the message. Each processor takes 
the voxel entry and checks if a match is found in the 
hash table. If found, then this implies that the entity is 
shared and the off-processor address is stored. Note that 
Williams uses the notion of secretary points which cor- 
respond to the owner of shared entities in PMDB. Even 
though the secretary points are used in computing the 
scalar products, they are not utilized in the implemen- 
tation of an eflicient update procedure after migration. 
Since the new voxels are passed in a ring of all proces- 
sors, the update procedure has a fixed cost dependent on 
the number of processors. 
Vidwans et al. [85] present a procedure to migrate 
tetrahedral elements between face adjacent and sender- 
receiver-disjoint processors. The sender-receiver-disjoint 
requirement necessitates processors involved in migration 
to be paired as either a sender or a receiver. This pairing 
process is carried out as part of their divide and conquer 
dynamic load balancing algorithm. Since a face can be 
shared by no more than two processors and a processor 
migrates to its face-adjacent processor, the shared face 
identification is readily available. Hence Vidwans et 
al. does not need use global identification numbers. A 
disadvantage of sender-receiver disjoint migration is that 
elements cannot be piped by a receiver processor to other 
processors in the same cycle of migration. This can 
lead to memory problems whereby a receiving processor 
obtains a large number of elements and has to store them 
before it can pass them onto other processors. 



The Tiling system developed by Devine [I81 is the first 
distributed environment to support hp-adaptive analysis 
and provides migration routines for regularly structured 
two dimensional meshes which can be hierarchically re- 
fined. b h  tiling element stores pointers to neighboring 
four elements with partition boundary elements pointing 
to a ghost-element data which acts as a buffer during 
communication. The elements are assigned a unique id 
at the beginning and after refinements. The elements with 
unique ids are maintained in a balanced AVL tree [68] to 
allow efficient insertion and deletion during migration. 
The Tiling system supports only rectangular elements 
as the basic entity and the notion of shared entities like 
edges is implicit. 
2.22 Distributed Mesh Model and Notation Used 
?he distributed mesh is viewed analogous to the model- 
ing of non-manifold geometric objects. Figure 3 shows 
the hierarchical classification of the global mesh enti- 
ties ,,,T,~, the processor model entities p ~ d r  and geomet- 
ric model entities gTP". Given the set of mesh entities 
{,,,T}, a partitioning at the d,,, dimension level divides 
the mesh into n, parts. pTpd;', each of which is assigned 
to a processor with id p k  = 0,. . . , n, - 1. As a re- 
sult of partitioning, some of the entities with dimension 
d < d ,  will be shared by more than one processor. The 
d,-dimensional entity will be held by only one pmees- 
sor. Hence in general, partitioning with d ,  > 0 defines a 
one-to-many relation from a mesh entity ,TP to its uses 
kTP where k 5 ~nin(A(~T,~) ,n~) .  Here A defines the 
degree of an entity, i.e. given the dimension d of an en- 
tity, A is the number of d+ 1 dimensional entities which 
use it. 
Since the procedures in a distributed memory environ- 
ment operate on private local processor address space, 
we refer to each entity use &TP in the global model as 
(pt3at)Kd m or in shorthand notation (pk, a&). The tuple 
@k, ak) stands for the use of an entity by processor pk at 
local address a&. In the algorithm descriptions presented 
later this tuple is also called a link particularly if it is 
stored on a different processor than pk. 

For the implementation of owner computes paradigm. 
one of the processors holding a given entity is 
designated as the owner of that entity. In the distributed 
processor address space, wedistinguish the owned entities 
as bo, a.). Therefore, a partitioning in this case defines 
a one-to-one and onto mapping of global mesh entities 
onto the owned distributed mesh entities: Note that the 
inverse of this mapping exists and hence the pair bo, a,) 
can serve as a global key of a distributed entity. 
The uses of the shared entities are mapped onto the owner 
entity by a many-to-one relation : 

Figure 3 shows the relationship between the geometric 
model entities ,TP". the global mesh entities ,,,TP and 
the processor model. Given the uses ( p k , a k )  of an 
entity distributed over processors pb, an agreement can 
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be reached among these processors on whether they hold 
the identical entity by computing the ownership using the 
function Q,. 

Figure 3. The relationship between the mesh 
model, processor model and the geometric model 

2.2.3 Data Sboctures 

PMDB data struchue.~ were designed to provide full variety 
of adjacency information. At the mim level of a partition 
boundary entity, one should be able to get all the uses 
or links of an entity on other processors. Each partition 
boundary entity stores all the uses on other processors as a 
linked list. This is shown in Figure 4. Note that one ofthe 
processors holding a shared entity is marked as an owner 
of that entity. The bold edges and vertices indicate the 
owners of the shared entities. This ownership information 
can be used in the implementation of the owner computes 
rule, for example, during link updates in mesh migration 
or scalar product computation in an iterative linear solver. 

PROCESSOR 0 

Figure 4. PMDB inter processor 
links and entity ownership 

Since each processor stores the uses (pk, a&) on all the 
processors that hold a shared entity, the ownership can 
be computed as a function of these uses. An example 
of an ownership function Q, given in equation 12 is 
to choose the processor which has the tuple (pb,ak) 
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as the minimum. The other alternative is to let the 
owner regenerate the ownership. Whereas the former 
method can be done locally, the latter method needs 
communication of ownership information from the owner 
to the holders. 
Note that the ownership information provides a global 
key for identifying an entity uniquely over all processors. 
Since the pair (p,,, a,,) is the global key, there is no need 
to generate and store a separate key as Wtlliams [92] does 
by computing the centroid of the entity. On a processor, 
at the level of entities, the sets of entities that are on the 
partition boundary or adjacent to a specific processor are 
organized in doubly linked lists which provide constant 
insertion and deletion. Figure 5(a) shows the organiza- 
tion of the partition boundary entities. The lists can be 
traversed to get partition boundary entities shared among 
processors. For example, the set of all partition boundary 
vertices given by; 

can be enumerated by the data structure. The set of 
all partition boundary edges E which can be similarly 
defined, is also readily available. 

PROCESSOR 0 

m) 
Figure 5. Doubly linked structures of 

partition boundary entities : global view 
(a) and partition boundary entity view (b) 

In addition, adjacent processors based on various entity 
connectivity as well as the number of entities adjacent to 

the processor are maintained by storing this information in 
a linked list. Figure 5(b) shows the structure of the vertex 
adjacent processors and the doubly linked lists attached 
to it. 
The list of partition boundary vertices vpk adjacent to a 
particular processor pk can be given by: 

which is directly accessible from the data structures. 
2.2.4 Mesh Migration 
Analogous to the owner computes rule, the mesh migra- 
tion pmcedure of PMDB uses an owner updates rule to 
collect and update any changes to the links on partition 
boundaries after moving entities among processors. The 
migration of a set of mesh entities from a given processor 
to destination processors proceeds in three stages. Firstly, 
sender processors migrate the mesh entities to receiver 
processors. Secondly, the senders and receiver proces- 
sors report the deletions or new addresses of migrated 
mesh entities to owner processors. In the last stage, the 
owner processors inform the affected processors about the 
updates in links. The processing which is done in the first 
stage is proportional to the number of mesh entities be- 
ing migrated, whereas in the second and third stages, it is 
proportional to union of boundary of the migrated mesh 
entities. The migration procedure is given in Figure 6 and 
the detailed steps of the algorithm are explained below: 
Senders to Receivers: These steps are responsible for 
sending the raw mesh data from the sender to the receiver 
processors. The mesh entities in { ,T,d: } to be sent are 
packed into messages together with the data attached to 
the entities. The entities on the union of the boundary 
of the migrated mesh entities are also found. since any 
possible link updates will be limited to these. 
In the case of all tetrahedral mesh in 3D space, the mi- 
grated boundary is given by faces which have exactly 
one migrated region targeted to the same processor at- 
tached to it. This applies to two dimensional meshes also 
with the migrated boundary enclosed by edges having 
exactly one face on its side which is being migrated to 
the same processor. Finding the migrated boundary for 
three dimensional meshes which contain both tetrahedral 
and dangling faces as shown in Figure 2(b) requires ad- 
ditional work. In this case if dangling faces are being 
migrated then migrated boundary cannot be derived by 
just checking the edges in the manner that is done for 2D 
meshes. Additionally, the vertices must be checked to see 
if they are used by any edge which is not being migrated. 
The migrated internal entities can be deleted immediately 
since they cannot be referred to again by any processor. 
The migrated boundary entities cannot be deleted imme- 
diately, since if they happen to be owned by the processor, 
they will act as a fixed point where all the shared entity 
uses will be collected later. 
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ales global numbers after mesh is refined. The global 
numbers can be used for debugging and also provides 
a readily available equation number for linear equation 
solvers which assemble the global matrix. A future ver- 
sion of PMDB will make the global number generation 
optional in order to save memory for applications which 
do not need it. 
Senders and Receivers to Owners: These steps operate 
only on the sent and received migrated boundary entities. 
These entities are tested to see if they are used by pT 
on processor p .  Determining the use on processor p of a 
d-dimensional entity requires determining if that entity 
is part of the boundary of a d + 1 dimensional entity 
on processor p .  The entity hierarchy data structures of 
SCOREC mesh database readily provide this d to d + 1 
dimensional entity adjacency relationship. If the entity is 
used, its use ( p ,  a) is packed and identified by the ( p o ,  a,) 
use to be sent to owner processor. If the entity is not used 
( p ,  null) is packed. Once packed, this information is sent 
to the owner processors. The overall complexity of these 
steps is proportional to the size of the sent and received 
migrated boundaries. 
Owners to Affected Processors: Owners receive updates 
targeting a particular entity ( p o , a , )  it owns. If a use 
( p , a )  is received, it is inserted in the list of uses of 
the shared entity at address a.. If ( p ,  null) is received, 
the use (p ,  a) is deleted from the list of uses at address 
a.. Once all the updates are completed, the ownership 
of these entities are regenerated. The updated links are 
then packed and sent to the affected processors. The 
affected processors receive these uses and update the 
corresponding local shared entities' list of uses. At this 
point, the migrated boundary entities can be deleted and 
mesh migration completes. 
Computing Number of Receives: The steps 5 - 6,lO - 
11 and 14 - 15 implement non-blocking sends and re- 
ceives. Each processor needs to know how many mes- 
sages are being sent to it by other processors so that it 
can post a corresponding number of receive statements. 
A simple way to compute the number of receives is by 
first having each processor initialize a vector T of length 
np and to set T~ to 1 if a message will be sent to proces- 
sor p and 0 otherwise. A follow-up sum scan operation 
can then be executed by all the processors resulting in 
each location T~ containing the number of receives. This 
procedure has O(nplognp) run time complexity and re- 
quires a message of length np to be communicated dur- 
ing the combine operation. Whereas this scheme will 
be efficient for small np ,  it is nevertheless non-scalable. 
The DIME environment, for example, makes use of the 
crystal-router 1241 which provides a scheme for 
this problem by utilizing log(np) message exchanges 
across the dimensions of the hypercube multiprocessors, 
Considering the fact that each processor p usually sends 
to a small number s p  of processors, a scalable strategy 
is desirable for large n p .  We can make this scheme 
scalable by making use of the radix sort routine [7]. 
Since the processor ids are in the range 0,. . . , np - 1, 

procedure m e s  h-mi gra t e (PSI { ,T$ } , P, , { ,,,T' } ) 
input: P.: destination processors. 

output: P,: source processors 

begin 

1 
2 Find the migrated boundary. 
3 Delete migrated internal entities 
4 

5 
6 
7 

{ ,,,T$ } : sets of regions to be migrated 

{ ,,,T$ }: sets of regions received 

I* I .  senders and receivers to owners *I 
Pack the mesh {mT$} to be sent. 

Pack the owners' uses corresponding to migrated 
boundary 
Send packed submeshes and uses to P8, 
Receive packed submeshes and uses from Pr, 
Unpack the submeshes to get { J" } 

I* 2. senders and receivers to owners *I 
8 Establish usage of both sent and received migrated 

boundary entities. 
9 Pack local uses of migrated boundary and owners 

uses to be sent to owner processors Po 
10 Send packed local and owner uses to owner proces- 

sors. 
1 I Receive packed uses from senders and receivers. 

I* 3 owners to affected *I 
Owners update use lists by insertingldeleting re- 
ceived local uses intdfrom use lists pointed to by 
owner uses and generate new ownerships. 

13 Pack updated uses list of entities to be sent to af- 
fected processors Pa. 

14 Send updated use lists and ownership to owner pro- 
cessors. 

15 Receive updated uses list and ownership from owner 
processors. 

16 Pa update use lists and ownership. 
17 Delete unused sent migrated boundary entities. 

end 

12 

Figure 6. Mesh Migration Algorithm 

Once the packed submesh has been received, the proces- 
sors unpack it and insert it into the mesh p h { , T }  held 
by the processor p k .  It is also possible that when more 
than one submesh anives from different processors, they 
all might share some common entities. Figure 7 shows 
an example of such a case. As shown processors 0 and 
2 both migrate to processor 1. Among the migrated enti- 
ties are those which are shared by both 0 and 2. In such 
a case, these commonly shared entities, once unpacked, 
should not be unpacked for the subsequent received sub- 
meshes which also contain them and comes from a differ- 
ent processor. This process is achieved by inserting the 
unpacked migrated boundary entities into a red-black tree 
I681 which has guaranteed logarithmic access for each in- 
serted entity. A key is needed to represent the entity in 
the red-black tree. This key can be either a global key or 
the readily available ( p o ,  ao) tuple which was discussed 
earlier. Currently, PMDB version 3.1 by default gener- 



6-10 

send to processor 

sort 

mark end 

segment sum 

number of recvs 

ranges of no-recvs 

0 1 2 3 4 5 6 7  

x x 7 4 x x o 4  

0 4 4 7 x x x x  

1 0 1 1  

1 1 2 1  

1 2 1  

11.31 15.61 

this problem can be solved by sorting T. = sp 
keys each of length bits. Before applying the 
radix sort, the keys are balanced by moving them such 
that each processor has ~#/~,4, ne balancing be 

the sorting scheme. A more elaborate scheme in the 
reference [41l provides radix sorting in b ( n p ) .  We a h  
remark that currently pMDB uses the simp1e O(ndOg%) 
procedure since the largest number of processors used 
is 64, a number too small to make the scalable version 
worthwhile to use. assuming wlog that T. is divisible by np 



2.2.5 Sealability of Mesh Migration and Extensinns 
In the mesh migration procedure presented above, the 
amount of communication involved is proportional to the 
volume of submeshes in the fist stage of the algorithm 
and to the surface of submeshes during link updates 
in the second and third stages. As a result, if each 
processor migrates to a small number of processors, such 
as its neighbors, then we expect that the migration will 
scale as the number of processors is increased. Various 
tests have been performed to demonstrate scalability of 
migration. The data involving the maximum number 
of regions migrated by a processor, the total number of 
regions migrated by all processors, the time taken, and the 
throughput, that is, the number of regions sent hy a single 
processor per second are plotted against the number of 
processors used. 
Test 1: In the first test, we let each processor exchange a 
slice on its partition boundary with its neighbors. This test 
is a realistic representative of the migration patterns that 
occur in iterative dynamic load balancers since regions 
near partition boundaries are migrated in clusters to the 
neighborhood of a heavily loaded processor. Another 
application that performs this kind of migration is mesh 
coarsening [lo]. Figure 8 shows the exampie mesh that 
was used before (a) and after migration (b). Figure 9(a) 
plots the maximum number of regions sent by a processor 
and (b) shows the wall time taken. From these plots, we 
see that execution time is proportional to the number of 
regions sent irrespective of the number of processors. 
Figure IO on the other hand plots the total number of 
regions sent by all processors. As the number of pro- 
cessors are increased the total number of regions at par- 
tition boundaries increases. Hence even though overall 
more regions have been moved, the time is proportional 
to the maximum sent by a single processor. This behav- 
ior demonstrates that when processors migrate to a small 
number of neighbors, the migration procedure scales well. 
Figure 1Wb) plots the throughput attained. 

lb) 

Figure 8. Neighborhood migration test; before 
boundary exchange (a), after boundary exchange (b) 

Test 2: In the second test, we let each processor hold 
2500 regions corresponding to a partition of the box 
mesh and migrate all its regions randomly targeted to 
a processors with a = 1, . . . , 2', . . . , np - 1. The plots of 
time taken for migration and the throughput per processor 
is shown in Figure 11. The plot in (a) shows that as the 
number of processors is increased, the time taken grows 
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number of processors 
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2 4 8 16 32 E4 

number of processors 
(b) 

Figure 9. Neighborhood migration test 
for box ; maximum number of regions 

migrated hy a processor (a), wall time (b) 

slowly. In particular, if we look at the a = 1 case, we see 
a flat curve between 32 and 64 processors. The number 
of processors has been doubled, yet the execution time 
remains the same. As a is increased the execution time 
growth is larger as expected, since the number of total 
migrations is increased. In particular, if s = np - 1. we 
have all-to-aU migration. Note that, there is a pronounced 
drop in the throughput as shown in Figure lI(b) between 
the cases a = 1 and 2. For example, with n, = 48, 
the throughput is 519 regions for s = 1 and drops to 
309 regions at s = 2. The major cause of this drop 
is not the mere increase in a, but rather the fact that 
when regions are assigned random destination, the union 
of the migrated boundary of the mesh entities being sent 
becomes proportional to the number of regions sent. In 
the case of s = 1, the migrated boundary is proportional 
to the surface of the mesh entities sent. As a result, 
since the cost of stages 2 and 3 of the mesh migration 
algorithm is dependent on the size of migrated boundary, 
these stages conmhute greatly to the drop in cases a > 1. 
The sets of regions which are migrated in practice are 
clustered locally and hence the migrated boundary size is 
rarely proportional to the volume being sent. Therefore, 
higher throughput rates can be attained for larger s as is 
evident from Test 1 above. 
This section discussed the data structures and the migra- 
tion routines used in the PMDB library. PMDB library cur- 
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number of processors 
(a) 

number of processors 
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Figure 10. Neighborhood migration test for box 
mesh ; total number of regions migrated by all 

processors (a), throughput per processor @) 

rently supports triangular and tetrahedral meshes. How- 
ever, the data structures and the mesh migration proce- 
dures easily extend to other types of elements such as 
quads, bricks or mixed meshes. Further fine tunings are 
also possible which can reduce memory requirements and 
improve the throughput of the migration procedure by, 
for example, generating ownership corresponding to the 
target processor for entities on migrated model boundruy. 

23. Dynamic Load Balancing of 
Adaptively Evolving Meshes 

The evolving nature of an adaptive discretization intro- 
duces load imbalancx into the solution process. There- 
fore, it is critical that the load be dynamically rebalanced 
as the adaptive calculation proceeds. The current reper- 
toire of partitioning and dynamic redistribution heuristics 
for unstructured meshes can be classified into three main 
categories given as follows: 
The most popular category involves Recursive Bisection 
(RE) techniques which repeatedly split the mesh into two- 
submeshes. Coordinate RE methods bisect the elements 
by their spatial coordinates. If the axis of bisection is 
Cartesian, then it is called Orthogonal RB [4]. If the axes 
are chosen to be along the principal axis of the moment 
of inertia matrix, then it is called Inertial RB. Spectral 
RB is another method which utilizes the properties of the 
Loplacian matrix [22] of the mesh connectivity graph and 

21 I 
2 4 8 16 Y €4 

number of processors 

(a) 

- 

2 c-- --_. * 
2 40 

0 .+__--- 
L 4 -__ - 350 

--- -. . -. ___.__. . . .. _ _ _  m ,  
I- - _ _ _ _ _ _ _ _  ~ 
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(b) 
Figure 11. Migrating to s processor ; wall time 

in seconds (a), throughput per processor (b) 

bisects it according to the eigenvector corresponding to 
the second smallest eigenvalue of this matrix [561. 
The least popular choice for partitioning meshes is the 
probabilistic methods which include simulated annealing 
and genetic algorithms. These methods require many 
iterations and are expensive to use as mesh partitioning 
methods [91]. 
Iterative Local Migration techniques have been the tar- 
get of recent attention due to their potential for dynami- 
cally balancing adaptive meshes which change incremen- 
tally. These techniques exchange load between neigh- 
boring processors to improve the load balance andor de- 
crease the communication volume. The definition of pro- 
cessor neighborhood can either be the hardware link or 
the connectivity of the split domains. The cyclic pairwise 
exchange [33] pairs processors connected by a hardware 
link and exchanges the nodes of the mesh to improve 
the communication. LeissIReddy [43] on the other hand 
uses the hardware link as the neighborhood to transfer 
work from heavily loaded to less loaded processors. The 
Tiling system [I81 uses and extends the LeisdReddy 
algorithm to the case where the neighborhood is defined 
by the connectivity of the split domains. The algorithm , 
of Lohner et al. [50] exchanges elements between sub- 
domains according to a deficit difference function which 
reflects the imbalance between an element and its neigh- 
bors. The procedure by Vidwans et al. [85] uses a divide 
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and conquer approach to pair processors and uses connec- 
tivity as well as coordinate information to decide which 
elements to migrate. 
A disadvantage of the common implementations RB 
methods is they start with the entire mesh on a single 
processor and partition from there. Two problems with 
this approach in a parallel adaptive calculation are (i) the 
time required to gather the distributed mesh together on 
a single processor, and (ii) the fact that after the mesh 
has been adapted, it may have grown to the point that it 
can not fit on a single processor. These problems can be 
alleviated it the mesh remains distributed during the repar- 
titioning process. The next subsection discusses a parallel 
implementation of Inertial Recursive Bisection that oper- 
ates on a distributed mesh. 
RB methods operate on the whole mesh and compute the 
direct destination for each element. Because of this, it is 
possible that RB methods may require complete remap- 
ping of the elements at the end. On the other hand, it- 
erative local migration techniques propagate the excess 
load by local transfers to other processors. A disadvan- 
tage of iterative local migration techniques is that many 
iterations may be required to regain global balance and 
hence elements reach their final destination after many 
local transfers rather than directly. In particular, when 
elements are migrated, the full element data involving 
connectivity and local attached data are communicated. 
For parallel repartitioners based on coordinate bisection, 
only the centroids and region pointers need to be com- 
municated during a parallel sorting phase. As a result 
this class of repartitioners may have better performance 
on machines in which the communication between any 
pair of processors is distance-independent. 
Subsection 2.3.2 presents an iterative load balancing pro- 
cedure based on the LeissReddy heuristic of requesting 
load from the most heavily loaded neighbor. The perfor- 
mance of this procedure is compared with repartitioning 
by the parallel distributed inertia recursive bisection al- 
gorithm. 

2.3.1 Geometry-Based Dynamic 
Balancing Procedures 

Geometry-based dynamic balancing (or repartitioning) re- 
lies here on the Inertial Recursive Bisection (IRB) method 
[50] which is a variation of the more classic Orthogo- 
nal Recursive Bisection (ORB) [4]. ORB is a recursive 
process that bisects a set of entities by considering the me- 
dian of the set of corresponding centroids with respect to 
a given coordinate axis. As ORB is recursively called, the 
choice of coordinate axis is circularly permuted (x,y,z,x, 
etc). Unlike ORB, IRB considers the inertial coordinate 
system (origin is at the center of gravity and the three axes 
are the principal axes of inertia) for the set of entities to 
be bisected. In three dimensions, the determination of the 
three principal axes of inertia is an eigenvalue problem of 
order 3. Once the inertial coordinate system is defined, 
the coordinates of the centroids are transformed and the 
cut is made at the median with respect to the first coor- 

dinate. This first coordinate is the “key” that the sorting 
algorithm described later in this section works on. 
The main assumption for performing repartitioning in 
parallel is that the entities are distributed. It is also 
assumed that there is no reason for the number of entities 
stored on processor to be uniform across processors. The 
result of this repartitioning will be an equal number of 
entities per processor. It should be noted that, in this 
context, the goal of repartitioning is equivalent to the 
goal of dynamic load balancing [15, 55,  73, 54, 43, 851. 
The key algorithm in IRB (and ORB) is the determination 
of the median for a given set of doubles (referred to as 
“keys”) [68]. With respect to this paper, the “keys” are 
the first coordinates, in the inertial frame, of the entities 
to be bisected. The method used here is to sort the “keys” 
and then pick the entry at the middle of the sorted list. 
In this case, efficiently performing IRB in parallel can be 
reduced to efficiently sorting in parallel [34]. From the 
conclusions of the paper by Blelloch et al. [8] which 
compares different parallel sorting algorithms (Batcher’s 
bitonic sort, radix sort, and sample sort), it appears that 
the sample sort algorithm is the fastest of the three for 
large data sets. Therefore, a parallel sample sort algorithm 
has been implemented in order to efficiently support IRB. 
Given a set of n “keys” distributed on p processors (n >> 
p), a sample sort algorithm consists of three main steps: 

1. p - f  splitters (or pivots) are chosen among the n 
“keys” 

2. Each key is routed to the processor corresponding to 
the bucket the “key” is in 

3. Keys are sorted within each bucket (no communi- 
cation ) 

The goal of step 1 is to split the set of “keys” into p 
parts (buckets) as evenly as possible and as efficiently 
as possible. The p - f  splitters which are implicitly sorted 
(say with respect to increasing value) are labeled from 
f to p - I .  All distributed “keys” below splitter f belong 
to bucket 0, all distributed “keys” between splitter i (0 
c i c p - 1 )  and splitter i + f  belong to bucket i, and all 
distributed “keys” above splitter p - f  belong to bucket p- 
I. Processor i (0 5 i c p )  is responsible for the bucket 
labeled i .  In step 2, assuming the p-f splitters have been 
found and broadcasted to all processors, any distributed 
“key” can tell in which bucket it belongs and is rerouted 
to the processor that is responsible for that bucket. At 
this point, any processor has knowledge of all “keys” 
that belong to the bucket it has been assigned to. Step 
3 can be performed using any efficient sequential sorting 
algorithm, like quicksort [68]. It is clear that the parallel 
efficiency of the sample sort algorithm depends on the 
sizes of the buckets. Parallel efficiency is maximal when 
the sizes of the buckets are near equal. A sampling 
method is used to obtain “good” splitters. Given the n 
input “keys”, ps  “keys” (s is an integer 2 f called the over 
sampling ratio) are selected at random and sorted typically 
sequentially. The entries in the sorted list of ranks s, 2s, 
... , (p - f ) s  are the p - f  splitters. The bound for bucket 
expansion (ratio of maximum bucket size to average) is 
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given in the paper by Blelloch et al [8]. In practice, the 
over sampling ratio should be such that the sorting to find 
the splitters (which is done serially) does not become a 
bottleneck for the global parallel sample sort algorithm. 
For the purpose of the presented repartitioning technique, 
the over sampling ratio is chosen such that ps  is of the 
order of nlp (nlp being of the order of the number of 
“keys” to sort in step 3). 
The following pseudo-code shows the process of reparti- 
tioning using IRB in parallel. It is assumed that the enti- 
ties are already distributed on processors. A statement of 
the form for ( i = 0 ; i < n ; i++ ) { ... } indicates a loop 
that is executed as long as the loop variable i, initially 
set to 0 (i = 0) and incremented by 1 upon completion of 
each pass (i++), has a value less than n (i < n) [40]. Each 
processor executes the following pseudo-code (MIMD): 

1. Associate each entity with a “key” structure consist- 
ing of: 

3 doubles for the coordinates of the entity’s cen- 
troid with respect to the current inertial coordi- 
nate system (initially with respect to original 
coordinate system) 
1 integer that indicates on which processor the 
actual entity is stored 
1 pointer to the entity 
1 integer that indicates the destination processor 
for the entity 

2. for ( step = 0 ; step < logg ; step ++ ) { 
a. Split the p processors into 2sfeP processor sets 

(each set is of cardinality p ’  = ~/2”~p))  
b. Balance the load such that each processor 

has approximately the same number of keys 
(reroute the keys accordingly) 
Get center of gravity, find the three principal 
axes of inertia, and apply transformation to the 
keys 
Get p ’  - 1 splitters among the keys 
Depending on the position with respect to the 
splitters, determine in which bucket (processor) 
each key goes (reroute the keys accordingly) 
Sort the keys (no communication) 
Depending on the position with respect to the 
median, determine in which bucket (processor) 
each key goes (reroute the keys accordingly) 

c. 

d. 
e. 

f. 
g. 

h. Free the processor sets 

The destination processor is set to the processor the 
key is currently in 
Reroute all keys to the originating processors 
Migrate entities according to the destination proces- 
sor stored at the key level 

Steps 2.b through 2.g are done independently on each 
processor set. Once all keys have been sorted in the 
processor set (at the end of step 2.0, the median (key that 
splits the set of keys into two subsets of same cardinality) 
is easily obtained. Any key that is before the median is 

1 
3. 

4. 
5. 

placed (if not already there) on a processor with a low 
rank (0 to p’l2 - 1) and any key that is after the median 
is placed (if not already there) on a processor with a high 
rank @’I2 top’ - 1). This guarantees that any key stored 
on a processor set is smaller that any key in the next 
processor set. Figure 12 is a graphical depiction of steps 
2.b through 2.g in the case when p ’  equals two. At each 
step, the array of keys (distributed across the processors 
in the set) is represented by a horizontal line which is cut 
to show how it is currently distributed. The symbol < 
indicates that the keys in the array are not sorted if above 
the processor cutter, it also indicates that any key in the 
left processor’s array is smaller than any key in the right 
processor’s array. If there is no such symbol, the keys 
are not sorted yet. 

Initial state 

Balance - Transform - Get splitters 

Put in buckets (splitters) 

< 
sort 

< < < 
Put in buckets (median) 

Median-)< < 

Figure 12. Graphical description of the 
repartitioning algorithm (2-processor set) 

Figure 13 shows a randomly distributed mesh (approx- 
imately 35,000 elements) and the resulting dynamically 
repartitioned mesh for eight processors. Figure 14 shows 
timings (wall-clock seconds on IBM sp-2) for that partic- 
ular mesh on 2, 4, 8, and 16 processors. The processor 
assignment timing corresponds to steps 1 to 4 (decision 
making). The migration timing corresponds to step 5. It 
should be noted that a randomized mesh as the initial state 
is a worst-case scenario for the migration part of the repar- 
titioning procedure. Past four processors, the time spent 
decreases as the number of processors increases, which is 
a good indication of scalability. It is conjectured that the 
“abnormal” speed with two processors is due to the fact 
that (i) the only processor set ever used is the full set of 
processors and (ii) there is some performance degradation 
when more than one processor set is defined. 
2.3.2 Topologically-Based Dynamic 
Balancing Procedures 

’bee Based Load Balancing Algorithm The Tiling 
system which uses the LeissIReddy approach calculates 
the load averages utilizing the immediate neighborhood. 
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Figure 15(a) shows an example of requests that can be 
formed. Given this hierarchical arrangement of proces- 
sors as the nodes of m s ,  we balance the trees as shown 
in Figure 15(b) and iteratively repeat the process until the 
load distribution converges to optimal load balance within 
a user supplied tolerance. The full algorithm is given in 
Figure 16. The procedure details are given as follows. 

Randomly parlltloned mesh 
6 processors 

L .  

I 
- 

Dynamically repartltloned mesh 
8 processon 

Figure 13. Dynamic repartitioning 
on a randomly distributed mesh 

50, I 

m r  aulgnnmnt low 1 
O 2  4 8 16 

Number of pmcouon 

Figure 14. Timings for dynamic repartitioning 

To incorporate more global information and to direct load 
transfers, we view the processor requests for load from 
heavily loaded processors as forming a forest of trees. 

load4 

h d = 3  

Figure 15. Load balancing example; load 
request (a) load migration on the tree (b) 

procedure tree_load_balance(toli,,d, maz,t.,) 
in toll,.dimbalance load tolerance 
in 
begin 
1 iter = 0 
2 

3 
4 Compute neighboring load differences. 
5 

6 Linearize processor trees. 
7 
8 Select and migrate load. 
9 endwhile 
end 

: maximum number of iterations 

while (max. load difference > tollood ) and 
(iter < mazit.,) do 

iter = iter + 1 

Request load from neighbor pmessor having 
largest load difference (creates processor trees). 

Compute amounts of load migration. 

Figure. 16. Tree based dynamic load balancing procedure 

Steps of the procedure The steps of balancing the for- 
est of trees are repeated until convergence is achieved. 
Assuming that load transfer occurs when there is a load 
difference of at least two units, LeissdReddy’s algorithm 
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has worst case. imbalance of d/2 where d is the diameter 
of the network. In such a converged state, all the pm- 
cessors have a load difference of one with its neighbors. 
This configuration forms a smcase load distribution. For 
OUT tree-load-balance, a smcase will not be the 
worst case distnbuhon. but rather a forest of trees each of 
which has a maximum height of two and load difference 
of one. In such a state, the worst case imbalance will 
be d/4. This lund of imbalance can be tolerated on a 
coarse grain machine. For example, a lOOK mesh on 64 
processors will imply a worst case of 1.02% imbalance. 
In step 4, load differences are computed by having each 
processor send its load value to its neighbors and corre- 
spondingly receive load values from its neighbors. 
Step 5 invokes the Leiss/Reddy load request process. 
Since each processor can receive requests from mulbple 
processors, but can only request from a single processor, 
a forest of trees is formed. 
In step 6, the trees are linearized for efficient scan op 
erations. One possible lineahtion is given by Euler 
Tour [U]. This however requires 2( IT1 - 1) links where 
IT1 denotes the number of vertices on a tree. We use 
the depth-first-links [41][83] which use between IT1 and 
2(ITI - 1) number of links. 
Step 7 computes the amounts of load migrations on the 
tree using logarithmic scan operations on the l inear id  
tree. Let loadmig, denote amount of load that will be 
migrated into or out of a tree node i which represents a 
processor. Let also T, denote the subtree with node i as 
the root of the subtree and Iwd(T,) be the sum of loads 
of nodes in this subtree. The amount of load migrabon 
is then calculated as 

'pai t  6-mnG.dat' - 2800 
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load-mig, = load(Ti) - avgJoad(T) * IT,I 

m1 

with avgJoad(T) = load(T)/ITI representing the aver- 
age load on the tree when balanced. Given Ioadmig,, 
the direchon of load nugrabons can be found as 

load-mig, = 0, do nothing with parent, 
< 0, get load from parent, 
> 0, send load to parent. 

Having calculated the directions of load migration, step 
8 migrates the elements on the partition boundary in 
a slice by slice manner until load-mig, of them has 
been transferred. Each slice of elements forms a peeling 
of the partltion boundary and are selected by choosing 
elements which touch the boundary by any one of their 
vertices. Figure. 17 shows the element selection criteria 
for migrabon. 

Examples In t h ~ s  section we plot various statistics that 
show the performance of the load balancing on refined 
meshes and compare them with coordinate based repar- 
titioning. 
Teat 1: In this test a patella mesh is refined manually 
in the center of the model. At the beginning, the mesh 

1.5 2 2.5 3 3.5 4 

processsor 0 processor 1 



high frequency of load imbalances, the load balancer will 
have better performance. The repartitioner bypasses the 
effects of distance by directly sending load from heavily 
loaded to lightly loaded processors. On an architecture 
such as the IBM-SE, in which communication cost 
is independent of the distance between the processors 
and hence the same between any pair of processors, the 
repartitioner will be advantageous since it directly sends 
the load to its final destination. The load balancer will 
he disadvantageous since it will incur expensive latency 
cost during many local transfers it performs. 

.- - _ _ _  - . - . . . = _ _ -  ---- .._..__ _ - -  ___-- - - ___-- - - parallel repartition 
____-.-- - - 

2 4 a 16 
number of p~occssors 

5 

0 

Figure 19. Time taken for load balance, 
parallel repartitioning and bisection 

Finally, Figure 20 shows the quality of the partitions 
produced in terms of maximum and total percentage of 
faces cut. The load balancer’s element selection criteria 
for migration dictates the quality of the partitions. The 
criteria currently used can be improved by incorporating 
coordinate information to selection decision. 

25 I I 

I 
16 4 8 

number of processors 
2 

Figure 20. The total and maximum 
number of cut faces for each method 

lkst 2: In this mt ,  various statistics are r e p o d  for the 
adaptively refined onera-m6 wing mesh during an ac- 
tual CFD analysis on 32 processors. At the beginning 
the mesh has 85567 tetrahedrons. Three stages of adap 
tive refinements are performed during which the number 
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of tetrahedrons increase to 131000, 223501 and finally 
to 388837. Figure 21 shows the convergence history of 
the iterative load balancer. In all cases of load balanc- 
ing after refinement, the imbalance reduces to less than 
4% during the first 8 iterations and takes far more num- 
ber of iterations to reduce this imbalance further to 0% 
imbalance. One need not run the tree-balance to 
full convergence. It can be stopped when a reasonable 
imbalance is achieved. 

’ ‘on&a-mnv.dit’+ 
‘onemwnv.dat’- 

2ooo0 10 20 30 40 50 60 70 BO 90 
number of iterations 

Figure 21. The convergence history for load 
balance during three stages of refinement 

IO 

Table 2 shows the execution time comparisons between 
the tree-load-balance and the parallel moment of 
inertia partitioner. In all cases, moment of inertia out- 
performs tree-load-balance for the same reasons 
which was explained in Test 1. I refinement I li:l I 2[48 I 31il21 

percent imbalance 1.7 0 3.8 0 1.9 0 

tree-balance(sec) 73 85 127 210 189 28 

inertia partition (sec) 

Table 2 Execution times (in seconds) for 
tree-load- balance and inertia partitioner 

Finally, Table 3 shows partition quality comparisons be- 
tween the tree-load-balance and the moment of 
inertia partitioner. The percentage of maximum num- 
ber and the total number of cut faces are given for both 
tree-load-balance and the inertia partitioner. 

refinement I 1st I 2nd I 3rd I 
I percent cuts I max I tota~ I max I total I max I total I 
1 -  I I I I 

tree-balance 24 10 26 11 25 10 

inertia partition 26 7 25 7 19 6 

Table 3 Maximum and total percentage of cut faces for 
tree-load-balance and inertia partitioner 
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3. Parallel Automatic Mesh Generation 

3.1. Introduction 

The development of automatic mesh generation tech- 
niques for complex three-dimensional configurations has 
been an active area of research for over a decade [26,78]. 
The introduction of these mesh generation procedures has 
removed a major bottleneck in the application of finite 
element and finite volume analysis techniques. The in- 
troduction of scalable parallel computers is allowing the 
solution of ever larger models. It is now common to see 
meshes of several million elements solved on these com- 
puters, with the ability to solve on meshes of hundreds of 
millions of elements coming in the near future. As mesh 
sizes become this large, the process of mesh generating 
on a serial computer becomes problematic both in terms 
of time and storage. Therefore, parallel mesh generation 
procedks that operate on the same computer, and us- 
ing similar structures, as the parallel analysis procedures 
must be developed 
With recent advances in the efficiency of automatic mesh 
generators which create well over two million elements 
per hour on a workstation [881, one may question the 
need for the parallel generation of meshes. The obvious 
answer is that as the problem size grows, the solution 
process on parallel computers will continue to scale by the 
addition of more processors. However, mesh generation 
on a single processor will not scale, therefore becoming 
the computational bottleneck. A second critical reason for 
parallel mesh generation is the shortage of memory on a 
sequential machine when dealing with very large meshes. 
On a parallel machine, the memory problem is addressed 
by distributing the mesh over a number of processors, 
each of which stores its own portion of the mesh. 
Efficient parallel algorithms require a balance of work 
load among the processors while maintaining interproces- 
sor communication at a minimum. Key to determining 
and distributing the work load and controlling commu- 
nications is knowledge of the structure of the calcula- 
tions and communications. In the finite element analysis 
process. the mesh and its connectivity naturally provide 
the required structure. The ability to maintain efficiency 
is compromised when the structure and, therefore, work 
load and communications is altered as is the case in par- 
allel adaptive finite element analysis [15, 55, 73, 541. 
Parallel mesh generation is even more complex to effec- 
tively control since the only structure known at the start 
of the process is that of the geometric model which has 
no discernible relationship to the work load needed to 
generate the mesh. On the other hand, the more useful 
structure to discem work load and control communica- 
tions is the mesh which is only fully known at the end 
of the process. The lack of initial structure and ability to 
accurately predict work load during the meshing process 
underlies the selection of algorithmic procedures in the 
parallel mesh generation procedure presented here. In 
particular, the procedure employs an octree decomposi- 
tion of the domain to control the meshing process. The 

octree structure supports the distribution or redistribution 
of computational effort to processors. 

3.2. Background and Meshing Approach 

To date, there has been limited attention given to parallel 
automatic mesh generation algorithms. Liihner et al [49] 
have parallelized a two-dimensional advancing front pro- 
cedure which starts from a pre-triangulated model bound- 
ary. The approach taken is to subdivide (partition) the 
domain (with the help of a background grid) and distrib 
Ute the subdomains to different processors for triangu- 
lation. The interior of subdomains are meshed indepen- 
dently. Then, the inter-subdomain regions are meshed 
using a coloring technique to avoid conflicts. Finally, the 
“comers” between more than two processors are meshed 
following the same basic strategy. A “one master-many 
slaves” paradigm has been chosen to drive the parallel 
procedures. This approach has been extended to three 
dimensions with some modifications [79]. A load bal- 
ancing phase follows the initial domain splitting (at the 
background grid level). The interface gridding incorpo- 
rates mechanisms (i) to avoid degradation of performance 
by using fine grain parallelism and (ii) to reduce the num- 
ber of processors when there is too much communication 
overhead. Results show scalability of the method. 
Saxena and Permchio [64] describe a parallel Recursive 
Spatial Decomposition (RSD) scheme which discretizes 
the model into a set of octree cells. Interior and bound- 
ary cells are meshed by either using templates or element 
extraction (removal) schemes in parallel. The algorith- 
mic procedure they employ to create these octant level 
meshes requires no communication between octants. The 
main difficulty for this meshing approach is to guarantee 
that a boundary octant can always be meshed regardless 
of the complexity of the model. Robust loop building al- 
gorithms which include possible tree refinement to resolve 
invalid configurations are in general difficult to parallelize 
[76]. Parallel results have been simulated on a sequential 
machine. 
The parallel mesh generator presented here builds upon 
previous work on sequential octxec-based mesh generators 
[66, 76, 771, parallel adaptive finite element analysis 
procedures [15, 55, 731, and parallel mesh generation 
[16]. It meshes three-dimensional non-manifold objects 
following the hierarchy of topological entities. That is, 
the model edges are meshed first, the model faces are 
meshed second, and the model regions are meshed last. 
The current discussion focuses on the octree-based region 
meshing procedure. 
Figure 22 graphically depicts the basics of the present 
mesh generator. The first step in meshing a model re- 
gion is to develop a variable level octree which reflects 
the mesh control information and is consistent with the 
triangulation on the boundary of the model region. Oc- 
tants containing mesh entities classified on the boundary 
of the model region to be meshed are constructed to be 
approximately of the same size as the mesh entities they 
contain. A one level difference on octants sharing one 
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Mesh faces to which tetrahedral elements will eventually 
be connected are referred to as partially connected faces. 
They are basically nussing one connected tetrahedron 
in the manifold case, and one or two in non-manifold 
situations. Initially. the mesh faces classified on the 
model boundary are the partially connected mesh faces. 
Once templates have been applied, that is, at the start of 
face removal, the interior mesh faces connected to exactly 
one tetrahedron are also partially connected mesh faces. 
In the remainder of this discussion, the current set of 
partially connected mesh faces will be referred to as the 
front. During face removal, tetrahedra are connected to 
these faces, therefore eliminating them. Any nonexisting 
face of a newly created tetrahedra, referred to as a new 
face, is a partially connected face untll if is eliminated. 
The face removal process is complete when there are no 
partially connected mesh faces remaining. 

33.1 Underlying Octree 

The octree IS built over the given surface mesh to (i) help 
in localizing the mesh entines of interest, and (ii) pro- 
vide support for the use of fast octant meshing templates. 
Proper localization is aclueved by having each tenrunal 
octant reference any partially connected mesh face which 
is either totally or partially inside its volume. This infor- 
mation is used to efficiently guarantee the correctness of 
the face removal technique. The octree building process 
can be decomposed into: (i) root octant building. (ii) oc- 
tree building, (iii) level adjustment, (iv) assignment of 
partially connected mesh faces to terminal octants, and 

or more edges is enforced during this process to con- 
trol smoothness of the mesh gradations. Once the octree 
is generated, the octants are classified as interior, ouf- 
side, or boundary. Those classified as outside receive 
no further consideration. Some interior octants are re- 
classified boundary d they are too close to mesh entities 
classified on the boundary of the model region (boundary- 
interior). The purpose of this reclassification is to avoid 
the complexities caused when inrerior octant mesh enti- 
ties (coming from the application of templates) are too 
close to the boundary and may lead to the creation of 
poorly shaped elements in that neighborhood. Interior 
octants are meshed using templates. Face removal proce- 
dures are then used to connect the boundary hiangulation 
to the interior octants. Figure 23 graphically describes a 
face removal in a two-dimensional setting. 

(v) terminal octant classification. 
The root octant is such that the given surface mesh is 
contained within it. It is cubic in order to avoid the 

Figure 22. Graphical depiction of the 
basics of the presented mesh generator 

creation of unnecessary stretched tetrahedra coming from I 

the application of meshmg templates on stretched octants 
(assuming isotropy is desirable in the resulting mesh). 
me terminal octants are constructed to be approximately 

I 

I 
I 

I 
the same size as any partially connected mesh face asso- 
ciated with them in order to ensure appropriate element 
sizes and gradations. This is done by visiting each mesh 
vertex in the initial surface mesh, computing the average 
size of the conne.cted mesh edges, and refining the oc- 

P.~W* Fully 
connected m n M d  octant is given by: I.E. faM 

Figure 23. Face removal (2-D setting) 

level comsponding to that average size. The level of the 

rootlength odlev = logz 

where rootlength is the length of the root octant and 
size iS the size of the mesh entity (defined here as the 
average length of the bounding edges). It should he noted 
that this procedure does not theoretically ensure a match 
in Size between every terminal octant and the partially 
mmcted mesh faces it h w s  about. 
To ensure a smooth gradation between octant levels, no 
more than one level of difference is allowed between 
terminal octants that share an octant edge. Application 
of this rule can possibly lead to refinement of some 

3.3. Sequential Region Meshing 

As indicated above, the starting point for the region 
meshing process is a completely triangulated surface. 
The surfiace hangdation must sahsfy the conditions of 
topological compatibility geometric similarity 1671 
with respect to the model faces. The region meshing 
process consists of the three steps of (i) generation of 
the underlying octree, (ii) template meshing of interior 
octants, and (ii) face removal to connect the given surface 
triangulation to the interior octants. I 
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terminal octants past the level that was set by the partially 
connected mesh faces in their volumes. 
Once the tree is completed, partially connected mesh 
faces are assigned to terminal octants. Given a mesh 
face, terminal octants that should h o w  about it can be 
separated into two groups: (i) those that are in the path of 
each bounding mesh edge (obtained by intersecting line 
segments with axis aligned solid boxes) and (ii) those 
whose octant edges are in the path of the mesh face 
(obtained by intersecting line segments with triangles). 
Any terminal octant which knows at least one partially 
connected mesh face is classified boundary. Terminal 
octants classified boundary separate interior terminal oc- 
tants from ourside terminal octants. At this point, it 
should be noted that the interior of the model can be 
made of several model regions. One octant comer of a 
boundary terminal octant is then classified either interior 
or outside by firing a ray toward a corner of the root oc- 
tant. Considering the partially connected mesh face closer 
to the octant corner among the ones that intersect the ray, 
the classification corresponding to the model region on the 
side of the mesh face facing the octant comer is given to 
the octant corner [76]. If there is no intersection, the oc- 
tant corner is classified outside. In case the intersection 
is on the boundary of the partially connected mesh face, 
no decision can be taken and a ray to another corner of 
the root is fired. The classification of the octant comer 
is then propagated to any neighboring terminal octant (in 
a recursive way) which has not been classified yet. The 
process of classifying an octant corner and propagating 
its classification continues until all terminal octants have 
been classified. 
After the basic octant classification process, interior ter- 
minal octants can exist which have boundary entities ar- 
bitrarily close to surface triangles in boundary octants. 
Since poorly shaped elements can result when these en- 
tities are too close, some inzerior terminal octants are 
reclassified as boundary. If an interior terminal octant is 
too close to a partially connected mesh face, it is reclassi- 
fied boundary. In this discussion, distances between two 
entities are always considered relative, that is, the actual 
distance should be divided by the average size of the enti- 
ties involved. In this particular case, the relative distance 
between a partially connected mesh face and an octant 
is equal to the absolute distance divided by the average 
size of the octant (its length) and mesh face. The thresh- 
old for closeness is set to 1.0, which basically guarantees 
that there is at least a one-element buffer between interior 
terminal octants and surface triangles. 
33.2 Template Meshing of Interlor Oetants 
Terminal octants classified interior are meshed using (i) 
meshing templates or (ii) fast meshing procedures when 
a template is not available. Examination of the number 
of templates required for all cases and the distribution 
of template usage indicates that octants with eight, nine, 
t h i n ,  and seventeen vertices cover over 90% of the 
interior octants. All the eight, nine, thirteen, and seven- 
teen vertex Octant configurations can be meshed by six 

templates (Fig. 24) with the correct rotations applied. 
The remaining interior octants are then quickly meshed 
using a fast procedure which accounts for the fact that 
the octant is a rectangular prism. One very fast option 
is to create an interior vertex and to create the correct 
connections to it [94]. 

a vertkea 9 vertices (1) 9 vsrtlcw (2) 

Figure 24. Terminal octant meshing templates available: 
one eight vertex case, two nine vertex cases, one 

thirteen vertex case, and two seventeen vertex cases 

3.3.3 Face Removal 

Given a part~ally connected mesh face, a face removal 
consists of connecting it to a mesh vertex. Since the 
volume to be meshed consists of the space between the 
given surface triangulation and the interior octree, the 
vertex used is usually an existing one. However, in some 
situations, it is desirable to create a new vertex. The 
choice of the target vertex (existing or new) must be such 
that the created element is of good quality and its creation 
does not lead to poor (in terms of shape) subsequent face 
removals in that neighborhood. 
The following pseudo-code indicates how the target ver- 
tex is selected for a given partially connected mesh face 
to be removed. Detailed explanation for the key steps 
is given in the next paragraphs of the section. In this 
pseudo-code and any other thereafter, break forces an 
exit from a loop, return forces an exit from the function 
or routine (in other words, the function terminates), and 
text between I* and *I  denotes a comment [40]. 

1. 

2. 

3. Initialize: 

Collect set of potential target vertices from tree 
neighborhood 
Reorder target vertices with respect to decreasing 
shape measure (for the element to be created) 

a dist-lim = a 
b. target-vert = 0 
c. ma-min-dist = 0.0 
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4. for each potential target vertex vert { 

a. 

b. 

c. 

d. 

Perform preliminary check on acceptability. If 
not acceptable, continue 
If the new element contains any mesh vertex 
belonging to the front, continue 
If the new element intersects any existing mesh 
entity, continue 
Evaluate how close the new element is to exist- 
ing mesh entities (compute relative minimum 
distance min-dist) 
if ( min-dist 2 dist-lim ) { 

* target-vert = vert 
m-min-dist= min-dist 

* break 

1 
else if ( min-dist > max-min-dist ) { 

target-vert = vert 
mu-min-dist = min-dist 

1 

e. 

f. 

I 
if ( mu-min-dist Z dist-Iim ) return 
if target-vert == 0 { 

a. 

b. target-vert = vert 

else { I* Consider creating a new vertex ' I  

a. 

b. 

c. 

5. 
6. 

Create a new vertex v e n  at the best position for 
the partially connected mesh face to be removed 

I 
7. 

Create a new vertex vert at the best position for 
the partially connected mesh face to be removed 
Evaluate closeness of new element to existing 
mesh entities (min-dist) 
if ( min-dist > mu-min-dist ) target-vert = 
vert I* Better to create a new vertex ' I  

I 
The neighborhood of an entity is defined as a tree neigh- 
borhood of a given order. Given a mesh entity, a tree 
neighborhood of order 0 consists of all terminal octants 
that know about the entity (have the entity or part of 
it within their volumes). A tree neighborhood of order 
n (n > 0) consists of a tree neighborhood of order n-I 
to which is added all terminal octants that neighbor any 
octant comer of any terminal octant in the tree 'neigh- 
borhood of level n-I. The set of potential target vertices 
is obtained via the partially connected mesh faces in the 
tree neighborhood of the appropriate order for the face in 
consideration. The set of potential target vertices should 
be as small as possible (for efficiency reasons) but should 
not be missing the best target (with respect to both shape 
of new element and closeness to nearby existing mesh en- 
tities) assuming all mesh vertices of the front were con- 
sidered. A tree neighborhood of order 0 is clearly not 
enough while a tree neighborhood of order 1 is adequate 
when the terminal octants have approximately the same 

sizes as the partially connected mesh faces they know 
about. 
It is of interest to be able to discard potential target 
vertices as early as possible for purpose of efficiency. 
A potential target is kept only if it satisfies one of the 
three following conditions (types): 

1. 

2. 

3. 

connects to a bounding vertex of the face to be 
removed through a mesh edge of the front. This 
allows for the removal of partially connected mesh 
faces other than the face in consideration (not in all 
cases) and therefore leads to a reduction of the size of 
the front (guaranteeing convergence of the method) 
is positioned inside the sphere centered at the best 
position (with respect to shape) for the fourth vertex 
of the face to be removed with a radius the size of 
the face to be removed. This avoids the creation 
of a stretched element with respect to the face in 
consideration. 
any of the three bounding vertices of the face to 
be removed are positioned inside the sphere of any 
of the partially connected mesh faces connected to 
the target vertex. This allows for the creation of a 
stretched element with respect to the face in consid- 
eration which is not stretched with respect to par- 
tially connected mesh faces connected to the target. 

Figure 25 shows potential target vertices of type 1, 2, 
and 3 for the face to remove. 

I' 

Figure 25. The three types of 
potential target vertices ( 2 4  setting) 

Given a potential target vertex, one has to make sure that 
any new mesh entity (resulting from the creation of the 
new mesh region) does not intersect an existing mesh 
entity. The creation of a new mesh region may result 
in the creation of a new mesh vertex, up to three new 
mesh edges, and up to three new mesh faces. New mesh 
edges are checked for intersection against nearby partially 
connected mesh faces. Given a virtual new mesh edge, 
the nearby partially connected mesh faces are obtained 
through the tree neighborhood of order 0 (of the new 
edge). If no intersection is detected, new mesh faces are 
checked for intersection against nearby front mesh edges. 
Given a virtual new mesh face, nearby front mesh edges 
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are obtained through the partially connected mesh faces 
in the tree neighborhwd of order 0 (of the new face). 
Because any terminal octant knows about the partially 
connected mesh faces in its volume, considering a tree 
neighborhood of order 0 guarantees that no intersection 
can be missed. 
The closeness of the new mesh region to existing mesh 
entities is evaluated by considering the minimum relative 
distance between any new mesh entity and nearby exist- 
ing mesh entities. The relative distance is defined as the 
absolute distance divided by the average size of the mesh 
entities involved. The nearby mesh entities are obtained 
through a tree neighborhood of order 1 of the new entity 
being tested. It is important to note that nearby existing 
mesh entities in a tree neighborhood of order 1 may not 
be in a tree neighborhood of order 0. On the other hand, 
nearby existing mesh entities cannot be missed with a 
tree neighborhood of order 1 .  If there is a new vertex, 
distances between the new vertex and nearby existing par- 
tially connected mesh faces are considered. For any new 
mesh edge, distances between the new edge and nearby 
existing front mesh edges are considered. If the point on 
the new edge corresponding to the distance (that is, clos- 
est to the nearby existing front mesh edge) corresponds 
to an existing hounding mesh vertex, the distance is dis- 
carded. In that case, it means that the nearby existing 
front mesh edge is close to another existing mesh entity 
and not to a new mesh entity. Also, for any new face, 
distances between the new face and nearby existing front 
mesh vertices are considered, Again, distances are dis- 
carded if the point on the new mesh face corresponding to 
the distance (that is, closest to the nearby existing front 
mesh vertex) is actually on an existing bounding mesh 
vertex or edge. The three different cases are shown in 
Figure 26. The threshold a corresponds to what is con- 
sidered acceptable in terms of closeness when creating a 
new element. Experimentation led to the use of a value 
of 0.2 for a. 

New vertex vs 
nearby tams 

New edge vs New face YS 
nearby edgea nearby Mrt1IC.S 

Figure 26. Evaluation of relative minimum distance 
between new entities and nearby existing mesh entities 

If a new vertex needs to be created, its location must 
be such that the new element is well-shaped, and neither 
causes intersection nor is too close to nearby existing 
mesh entities. The initial location for the new vertex is at 
the position which creates the best shaped element for the 
face to be removed. This location is on the perpendicular 
to the face passing through the centroid. If the current 

location causes the new element to intersect nearby ex- 
isting mesh entities, a new location is considered on the 
normal half-way from the current location. and so on, un- 
til a valid location is found. In order not to be too close 
to existing mesh entities, the final location is considered 
conservatively half-way from the current location. 
Figure 27 graphically depicts a face removal in a two- 
dimensional setting. There are four target vertices ordered 
(1. 2, 3, and 4) with respect to increasing shape measure 
of the element to be created. Target vertex 1 is rejected 
since the new element is too close to an existing mesh 
entity (vertex 3). Target vertex 2 is rejected since the new 
element intersects existing mesh entities. Target vertex 3 
is therefore accepted. 

2 intersection 

Face to remove 

Figure 27. Potential target vertices 
and best face removal ( 2 4  setting) 

3.4. Parallel Constructs Required 
3.4.1 Octree and Mesh Data Structures 
The two main data structures are the mesh and octree data 
smctures. The mesh data structure (sequential) and par- 
allel mesh data base (PMDB) both described above are 
used here to support the presented mesh generator. The 
octree data structure is on top of the mesh data structure. 
To gather a tree neighborhwd or all terminal octants in 
the path of a mesh entity (new vertex, edge, or face), 
any processor must be able to effectively determine to 
which processor any given terminal octant is assigned. 
This information is easily available when each proces- 
sor has full knowledge of the basic octree in terms of 
structure and processor assignment. This is the approach 
currently implemented. Although the size of the tree is 
small compared to that of the mesh and this tree informa- 
tion can easily be copied to each processor, this approach 
does not scale indefinitely. Any terminal octant stores 
links to on-processor partially connected mesh faces and 
off-processor partially connected mesh faces totally or 
partially within its volume. Octree neighboring informa- 
tion (like finding terminal octants neighboring an octant 
face, edge, or corner) is obtained through tree traversals 
(logarithmic complexity). 
Techniques that maintain only portions of the tree on indi- 
vidual processors while providing tree neighboring infor- 
mation efficiently are currently under investigation. It is 
of interest to be able to retrieve tree neighboring informa- 
tion without having to communicate. If communication is 
allowed during a neighboring information request, some 
processors will have to interrupt and be involved in the 



request, which certainly can degrade the overall perfor- 
mance if not done carefully. An easy solution is to make 
sure that all processors participate in the request (soft 
synchronization). On a sequential machine, performing 
tree traversals to obtain neighboring information, typi- 
cally, getting all terminal octants that neighbor an octant 
entity (face, edge, or comer) can he avoided if octant 
face neighboring terminal octants are stored. The lim- 
ited increase in data storage is well worth the constant 
time complexity for getting neighboring information. In 
a parallel setting, it is difficult to conceive such a scheme 
without having to communicate between processors. 

3.4.2 Multiple Octant Migration 

When the mesh generation process comes to a point when 
no face removal can be applied (face removals are not 
applied when needed tree neighborhoods are not fully 
on processor), the tree and associated mesh is reparti- 
tioned. The migration of octants is key to repartitioning 
once decisions concerning new destinations of terminal 
octants (classified boundnry) have been made. Multiple 
octant migration itself relies on the multiple migration of 
partially connected mesh faces and/or mesh regions (de- 
scribed above). Note that multiple mesh region migration 
is also used in the final repartitioning at the region level 
once the mesh has been fully generated. 
Any processor can send any number of terminal octants 
to another processor. When a terminal octant is migrated 
from one processor to another, the partially connected 
mesh faces not connected to any mesh region (these are 
the mesh faces remaining from the given surface triangu- 
lation) owned hy the octant and/or the mesh regions that 
are bounded by at least one partially connected mesh face 
owned by the octant are migrated as well. An octant owns 
a mesh entity when it knows about it (has it within its 
volume) and has its centroid within its volume. Note that 
a partially connected mesh face not known by the octant 
may be migrated as part of a mesh region if that region is 
bounded by another partially connected mesh face whose 
owner is the octant. Also, if a mesh region is bounded 
by more than one partially connected mesh face known 
to the octant to be migrated (up to four), the ownership is 
arbitrarily dictated by the first partially connected mesh 
face to be processed (from the list of partially connected 
mesh faces known to the octant). Figure 28 shows a two- 
dimensional example of the mesh regions to be migrated 
within an octant. When the multiple octant migration 
completes, the processor is informed of the octants it has 
received. For each received octant, a list of associated 
mesh entities is also given, basically the partially con- 
nected mesh faces and/or mesh regions that were sent. 
The primary complexity that arises when migrating oc- 
tants and associated mesh information is the absence of 
a global labeling system for the mesh entities. Each pro- 
cessor employs a local labeling for the hierarchy of mesh 
entities that it is assigned. The interprocessor mesh adja- 
cency links maintain the required knowledge of the adja- 
cent mesh entities on neighboring processors. Although 
the mesh data for a partially connected face is on one 
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Figure 28. Octant migration 

processor, the octants which refer to that face may be on 
multiple processors. Since the face removal procedure 
must perform geometric checks on all partially connected 
faces known to that octant, the time required to perform 
these operations would be greatly increased if the required 
information had to be fetched from neighboring proces- 
sors. To eliminate this requirement, each partially con- 
nected face known to an octant will either be a pointer to 
face, when the face is actually on-processor, or a set of 
three coordinates when the face is stored off-processor. 
Although this approach avoids interprocessor communi- 
cations, it complicates the process of updating references 
to partially connected mesh faces on and off-processor 
when octants are migrated. Concerning the update of 
processor assignment at the octant level, since the tree 
smcture is currently stored on all processors, a broad- 
cast is performed to all processors indicating the fact that 
octants have been relocated. 

3.4.3 Dynamic Repartitinning 
Dynamic repartitioning enables redishibution of the load 
among processors as evenly as possible at key stages of 
the mesh generation process. These key stages are: 

1. at the beginning of template meshing, 
2. at the beginning of each face removal step, and 
3. at completion of the mesh generation process. 

Repartitioning for stages 1 and 2 is done at the terminal 
octant level (1 with respect to terminal octants classified 
interior and 2 with respect to terminal octants classified 
boundary). Repartitioning for stage 3 is performed at 
the mesh region level. The strategy is identical for 
both cases, only the process of migrating differs. The 
methods used here are geometry-based dynamic balancing 
(repartitioning) procedures which are described in section 
2.3.1. 

3.5. Parallel Region Meshing 
35.1 Underlying Octree 
At this point in time, the octree is built sequentially on 
a single processor (processor 0). Since a sequential oc- 
tree building can become a bottleneck when dealing with 
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very large meshes, techniques to build the tree in par- 
allel are currently considered. A distributed tree can be 
constructed in parallel as long as operators to subdivide 
and migrate octants are available. Octant migration guar- 
antees that the tree can be well distributed at any stage 
during the building process, which is important memory 
wise. Those operators are key to the problem since they 
update possible inter-processor links in a distributed tree. 

35.2 Template Meshing of Interior Octants 

Once all terminal octants have been properly classified, 
the terminal octants classified interior are partitioned. 
The parallel application of templates is a straight for- 
ward process in which there is no communication required 
during the process of creating the octant level meshes. 
It should be noted that the application of templates to 
octants sharing the same octant face implicitly lead to 
the same octant face triangulation. The finite elements 
generated in these octants are loaded into the processor 
mesh data structure. The interprocessor communication 
required at the end of this step is for the updating of inter- 
processor mesh entity links for mesh entities created on 
the boundaries of interior octants whioh are on processor 
boundaries. The cost for the application of templates is 
small compared to the cost of performing face removals. 
Therefore, the parallel efficiency of parallel region mesh- 
ing is dictated primarily by the face removal part only. 

35.3 Face Removal 
Parallel face removal is an iterative process where each 
iteration consists of three steps: 

1. 

2. Face removal step, and 
3. 

Tree repartitioning at the terminal octant (classified 
boundary) level, 

Reclassification of terminal octants from boundary 
to meaningless 

The goal of step 1 is to make sure that all processors will 
have an equal amount of work to perform during step 2. It 
is difficult to predict how much work or, more precisely, 
how many face removals (step 2) any processor will per- 
form and the total amount of effort for a particular face 
removal. However, a terminal octant classified boundary 
is a good unit of work load since the set of all terminal 
octants classified boundary approximately corresponds to 
the domain still to be meshed. The difficulty of perform 
ing face removals in parallel resides in the fact that any 
face removal requires the knowledge of tree neighbor- 
hoods. Tree neighborhoods of order 0 or 1 are needed at 
different steps of the removal of a given mesh face. If, at 
any point during the face removal, a tree neighborhood 
is not fully on-processor, the face removal is aborted and 
the next mesh face is considered for removal. Once all 
possible face removals have been performed on proces- 
sor, some terminal octants classified boundary which used 
to know about partially connected mesh faces (on or off- 
processor) are reclassified meaningless. Because those 
octants no longer cover any portion of the domain still 
to be meshed, they are now useless (for the purpose of 

face removals) and will therefore not influence the next 
repartitioning. 
Figure 29 depicts the first iteration on a simplistic exam- 
ple. In the left-side picture, terminal octants classified 
boundary have been partitioned and each of them is as- 
signed to a processor (0 to 3). The right-hand side picture 
shows the current mesh after all possible face removals 
have been performed on processors. Shaded areas repre- 
sent the domain still to be meshed. 

3 :  ! i.."...."? ": i ..... " .... i i ...___.____, 

Figure 29. Parallel face removal ( 2 4  setting) 

The process of performing face removals and repartition- 
ing the tree continues until there are no more partially 
connected mesh faces in the mesh. Define the efficiency 
of the face removal stage as beiig the ratio of the number 
of performed face removals to the number of attempted 
face removals. After a few iterations, the efficiency of 
the face removal stage can be very low because informa- 
tion required to perform face removals is almost always 
off-processor. When more than half of the processors 
have an efficiency below some given threshold (25%), 
the processor set is reduced (by half). 
Since migration of terminal octants only deals with those 
classified boundary and only womes about mesh regions 
bounded by partially connected mesh faces, it is very 
likely that the final mesh will be scattered across proces- 
sors with no real stmchue. It is therefore necessary to 
repartition in parallel the distributed mesh using IRB at 
the mesh region level with the original full set of proces- 
sors. Figure 30 shows the whole process of parallel face 
removal on four processors. The first 8 pictures display 
the currently partially connected mesh faces after the ter- 
minal octants classified boundary have been repartitioned. 
Note that iterations I, 2.3, and 4 use all four processors, 
iterations 5 ,  6, and 7 use two processors, and iteration 8 
uses one processor. The final picture displays the final 
three-dimensional repartitioned mesh on four processors. 
Tables 4 and 5 show speed-ups for up to four processors 
for the connecting md and blade models, respectively (fi- 
nal repartitioned meshes on four processors are shown in 
Fig. 31 and Fig. 32. respectively). Tables 6,  7 and 8 
show speed-ups for up to eight processors for the onera 
wing. mechanical part, and mechanical part 2 models, 
respectively (final repartitioned meshes on eight proces- 
sors are shown in Fig. 33, 34, and Fig. 35, respectively). 
The number of mesh regions created indicated in  the cap- 
tions corresponds to parallel face removal only and does 
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Iteration 2 
4 I 4  procs 

Iteration 1 
4 I 4  procs Table 4 Face removal statistics for 

connecting md (35.000 mesh regions 
created by face removals - 70,000 total) 

c 
I 

Iteration 3 
4 I 4  procs 

Iteration 4 
4 I 4  procs 

I 

Figure 31. Final repartitioned mesh 
for connecting rnd (4 processors) Iteration 5 

2 I 4  procs 
Iteration 6 
2 I 4  procs 

Iteration 7 
2 I 4 procs 

Iteration 8 
1 I 4  procs 

Final mesh 

Figure 30. Successive face removal iterations 
and final repartitioned mesh for chicklet 



Figure 32. Final repartitioned 
mesh for blade (4 processors) 

Rocs 2 4 8 I 
Iterations ( 4  7 I I 1  I I Face I 1.0 I 1.9 12.8 I 
removal 
d U 0  

I I I 

Total I 1.0 1 1.8 12.6 I 
ISP..d.P I I I I 
Table 6 Face removal statistics for onem wing (W,OOO 
mesh regions created by face removals - 220.000 total) 

Figurc 33. Final repartitioned mesh 
for onera wing (8 processors) 

4. Parallel Mesh Enrichment 

4.1. Local Retriangulation Tools 
Local retriangulation techniques have been used IO mns- 
form locally non-Delaunay triangulations of a set of 

Ilterations 14 I 12 I 
L I 

Table 7 Face removal statistics for 
mechanical pan (120,000 mesh regions 

created by face removals - 230,000 total) 

Figure 34. Final repartitioned mesh 
for mechanical part (8 proussors) 

lpmcs 12  1 4  I 8  

I Iterations I 4  17 I 1 1  

I Face I 11 

I I 
Total I 1.0 I 1.9 13.2 

Table 8 Face removal statistics for 
mechanfcdlpar~ 2 (lzS,OOO mesh ngions 

c ~ t e d  by face r~novals  - 240.000 10tal) 

points into Delsunay triangulations [35], generate. Gee 
metric triangulatim of models with faceted boundaries 
[28] (boundary recovery), optimize existing triangulations 
[U, 171. etc. The local retriangulation took presented in 
this section do not deIete or creatc v e r b s .  The mesh 
entity splitting presented in the refinement section creates 
a vertex. The edge collapsing pmented in the derefim 
ment section deletes a vertex. Local retriangulation tools 
SIC used here to optimize triangulations (locally 01 glob- 
a y )  ancl to help in '*snapping" refinement mesh vertices 
to the modcl boundary (if required). 
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Figure 35. Final repartitioned mesh 
for mechanical parr 2 (8 processors) 

A few definitions related to triangulation quality relevant 
to local retriangulation tools are now given: 
Triangulation quality: lfeach mesh entify ,TP( of a tri- 
angulation ,R is associated with a qualify measure p,. 
the qualify of :he triangulation is def ied  as Q = min ( s i )  

Triangulation acceptability: Given 4 qualify threshold 91. 
a triangulation ,,,a is acceptable with respect to ninngu- 
lation qualify ifQ > qi. 
Triangulation comparison: A triangulation ,ni of a set 
of points is considered better with respect to triangulation 
qualify than another triangulation ,Rj of the same set of 
points if Qi > Qj. 

4.1.1 Edge Swapping 

In two and three dimensions, a swapping step is per- 
formed after inserting a new node into the triangulation 
to transform a locally non-Delaunay triangulation into a 
Delaunay one. Aside from the refinement issue, it is a 
method to incrementally build a Delaunay triangulation 
of a set of points. 
Swapping relies on the general result given by Lawson 
which states that a set of n+Z points in R" may be 
triangulated in at most two ways [42]. In two dimen- 
sions, there are two ways to triangulate a strictly con- 
vex quadrilateral. Edge swapping consists of switching 
diagonals for the quadrilateral resulting from the union 
of the two connected triangles (if convex). In three di- 
mensions, there are two ways to triangulate a strictly 
convex triangular hexahedron containing five and only 
five points (the five apices of the triangular hexahedron). 
Joe provided a set of workable swappable configura- 
tions for the three-dimensional case [35]. If a mesh face 
,T: is not locally optimal (does not satisfy the Delau- 
nay criterion) and corresponds to one of the two situ- 
ations on the left side of figure 36, it is swapped. If 
[,,,q, ,,,GI n,T: # 0 ([,T:, ,T:] being the line seg- 
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ment spanning from ,,,G to ,T;), the triangular hexahe- 
dron initially containing two tetrahedra is retriangulated 
withthree. If [ , ~ , , , , T ~ ]  n ( S l u S z u S 3 ) # 0 ( w h e r e  
the S,'s are plane sectors appearing shaded in figure 36) 
and 3 ,T: I { , ' G ? , , , , ~ , , T . , , ~ }  E a(,,,T?), the 
triangular hexahedron initially containing three teeahe 
dra is retriangulated with two. 

Figure 36. 240-3 and 340-2 swaps in three dimensions 

These swaps, commonly referred to as 240-3 and 
340-2, are suited for Delaunay triangulations and by 
extension for regular triangulations [ 191. Refemng 
to Fig. 36, if& ,T:,,,,q TO \ n ( S i U S z U S 3 )  # 0 
and VmT? 27, 3 i m  T 4 , ,  TO} 5 B B(,Tf) or 
[ m T i , m G ]  n (,,,T: U S1 U Sz U 5 3 )  = 0, there is 
no possible swap. When dealing with Delaunay tri- 
angulations (or regular triangulations), theoretical re- 
sults indicate that non swappable faces (in Joe's 
sense) are not critical. However, when dealing with 
any other criterion, non swappable faces (in Joe's 
sense) may be critical. The other non swappable 
configuration from figure 36 which corresponds to [,,,e, ,,,Ti] n (,,,T: U SI U S, U S3) = 0 consists of 
four tetrahedra bounded by { , T ~ , , , , T ~ , , , , T ~ , , , , ~ } .  t , ~ , , ~ ' , , T ~ , , T ;  1 , respectively [35]. It is clear 
that there is no other way of triangulating this convex 
hull. The ideas presented by Bri&re de I'Isle and George 
[17] about edge removal enable the extension of the 
classic 3 4 d  swap [35. 191. 

4.1.2 Edge Removal 

Bribre de I'Isle and George [17] have proposed an edge 
removal technique as part of an algorithm to optimize the 
quality of a given mesh. It can also be used as part of a 
scheme to recover the faceted boundary of a model [28]. 
A mesh edge ,,,Ti C T3 which is bounded by vertices 

g 1. ,TP and ,,,Ti can be eliminated by retriangulating the 
polyhedron of all connected tetrahedrons. The polyhe- 
dron is retriangulated by: (i) triangulating the polygon 

,,,'G?,,G',,T.o,,T~ . {,Tf,,,,Ta",,T3",,T!}. and 
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of all mesh vertices of the polyhedron which are neither 
,Tp nor ,T$, and (ii) connecting the new mesh faces 
to ,Tp and ,T; (Fig. 37). 

Figure 37. Edge removal 

If the polyhedron originally consisted of m tetrahedra, the 
associated polygon has m sides and m apices. The number 
of possible retriangulations is N ,  = N,-1Nm+2-i 
with N2 = 2 [U ,  171. Clearly, if the polyhedron is not 
convex, some possible retriangulations have to be dis- 
carded. The number of different triangles when consider- 
ing all retriangulations is NT,  = m(m - l)(m - 2)/6 
[ 171. Table 9 shows computed values of N ,  and NT,  
for m = 3 to 9 1171. 

m 

i=3 

I I I 
N, 1 2 5 14 42 132 429 

NT- 1 1  1 4  I IO I 2 0  I 3 5  I 5 6  I84  

Table 9 Number of possible retriangulations and different 
triangles as m (number of connected tetrahedra) increases 

Since N ,  grows rapidly, Brikre de I'Isle and George have 
chosen m = 9 as an upper limit for their edge removal 
scheme. It should be noted that those retriangulations 
represent all possible triangulations of the polyhedron that 
do not have ,Ti but are only a subset of all possible 
retriangulations of the polyhedron. 
Given a mesh edge ,T: connected to more than one 
mesh region, edge removal consists of retriangulating the 
polyhedron pol(,T:) of all mesh regions connected to 
,,,T: in such a way that ,,,Ti is not present in the retrian- 
gulation (Fig. 37). When edge removal is topologically 
possible, the mesh edge is said to be topologically re- 
movable. An edge removal is positive (negative) if the 
retriangulation of the polyhedron is better (worse, respec- 
tively) than the original triangulation, in other words, the 
variation of the local triangulation quality is positive (neg- 
ative, respectively). A brief description of the algorithm 
to remove an edge in the context of Geometric triangu- 
lation optimization follows [17]: 

I .  Determine quality Qorg of triangulation of 
pol(mT:) 

2. Get the associated polygon as an ordered list of 
vertices 

3. Consider among all possible retriangulations of 
pol(,T:) those that are better than the original 
one and keep track of highest (maz(Qnew)) 

4. If maz(Q,,,) exists: 

a. Delete all mesh regions connected to ,,,Ti to 
form a polyhedral cavity 

b. Retriangulate such that new quality is 
m4Qney)  

The initial triangulation of the polyhedron for a mesh 
edge classified in model region is such that there are: 

I .  m mesh regions, 
2. 

3. 

The resulting triangulation is such that there are: 

1. 2m-4 mesh regions, 
2. 
3. 

m interior (with respect to the polyhedron) mesh 
faces, and 
I interior mesh edge connected to m mesh regions. 

m-2 interior mesh faces, and 
m-3 interior mesh edges each connected to 4 mesh 
regions. 

A local retriangulation tool like edge removal is typically 
used to remove an undesirable mesh region from a hi- 
angulation. Since a mesh region has six edges, there are 
six possibilities to remove the mesh region using edge 
removals. It is sometimes of interest to have more ways 
to remove that mesh region. Beside edge collapsing and 
mesh entity splitting, the procedure that reverses the edge 
removal process can he used to attempt to remove the 
mesh region. This new procedure is described in the next 
section and is called multi-face removal. 

4.1.3 Multi-Face Removal 

Multi-face removal is a procedure that reverses edge 
removal, in other words, it considers a configuration that 
could have resulted from edge removal and obtain the 
starting configuration. When applied to a single mesh 
face, it is the classic 2-to-3 swap [35, 191. 
Given a simply connected set of mesh faces {,T:} 
such that any mesh face in the set connects (through 
a mesh region) to ,TF on one side and MTZD on the 
other side, the polyhedron pol (  { mT:}) is defined by the 
union of all mesh regions that connect to a mesh face 
in {,T)}. Multi-face removal retriangulates the polyhe- 
dron pol( (,Tf}) such that all mesh faces in { ,T)} are 
removed. As for the edge removal, a multi-face removal 
is positive (negative) if the new triangulation is better 
(worse, respectively) than the original one. Multi-face 
removal is topologically possible if (i) the deletion of all 
mesh regions in pol( { ,,,'T2}) does not lead to the deletion 
of a mesh vertex, and (ii) the set of mesh edges peripheral 
to {,T:} constitutes a single loop that does not touch 
itself. Figure 38 illustrates cases of multi-face removals 
that are not topologically possible. When a multi-face 
removal is topologically possible, the set of mesh faces 
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Figure 38. Cases when the topological state of the set 
of mesh faces {,,,T,?} prevents multi-face removal 

{ ,,,T:} (as well as any mesh face in the set) is said to 
be topologically removable. 
Since the goal of the presented optimization algorithm is 
to get rid of undesirable mesh regions, the input to the 
multi-face removal procedure is a mesh region ,T: and 
a hounding mesh face ,T: from which the simply con- 
nected set of mesh faces is constructed. The description 
of the algorithm follows: 

I .  
2. 
3. 
4. 

Get vertex ,,,q opposite ,,,T: in ,T: (Fig 39.a) 
Get region ,,,T; on other side of ,T: 
Get the vertex ,,,e opposite ,,,T: in ,T; (Fig 39.h) 
Gather all pairs of face-connected mesh regions such 
that one mesh region connects to ,TP and the other 
connects to ,,,e. Keep track of the mesh faces in- 
between pairs of mesh regions ({,,,T,?}). The set 
of gathered mesh regions defines poI({, , ,T,?}) (Fig 
39.c) 
If retriangulation would create invalid elements, do 
not perform removal 
Compute quality of initial triangulation QOvg 

Compute quality Q,,, of triangulation that would 
result from connecting all boundary faces of 

8. If Qnew < QOTg, do not perform removal 
9. Delete the mesh regions in pol( { ,,,T,?}) to form a 

polyhedral cavity 
10. Connect all faces of polyhedral cavity to ,,,q (Fig 

39.d) 

5 .  

6. 
7. 

pol({, , ,T,?}) to 2: 

The initial triangulation of the polyhedron (Fig 39.c) is 
such that there are: 

1. 
2. 

3. 

m mesh regions (note that m is an even number), 
3mR-2 interior (with respect to the polyhedron) 
mesh faces, and 
mR-1 interior mesh edges each connected to 4 mesh 
regions. 

The resulting triangulation (Fig 39.d) is such that there 
are: 

1. m R + Z  mesh regions, 
2. 
3. 

m R + Z  interior mesh faces, and 
1 interior mesh edge connected to M i 2  mesh re- 
gions. 
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m tst. mR+zmta 
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M-l int.eddgM 1 Int. edge 

Figure 39. Multi-face removal in three dimensions 

mR + 2 inL face. 

4.1.4 Triangulation Optimization Using 
Local Retriangulation Tools 

The goal of the optimization algorithm is to improve 
the quality of Geometric triangulations with respect to 
a given criterion (e.g., element shape). The optimization 
procedure described here makes use of the local retri- 
angulation tools described above, namely edge removal 
and multi-face removal. Other local retriangulation tools 
which change the number of mesh vertices like mesh en- 
tity splitting, edge collapsing, and even local remeshing 
are not incorporated into this specific optimization proce- 
dure. Also, smoothing techniques (vertex repositioning) 
[23, 141 are not addressed. In this discussion, triangula- 
tion optimization can be used over the whole triangulation 
or locally over a subtriangulation resulting from adaptive 
enrichments such as refinement and derefinement. 
The optimization procedure is region based, that is, it 
looks for mesh regions that are not acceptable (quality 
helow ql) and attempts to remove them from the trian- 
gulation with local retriangulation tools. Given a non 
acceptable mesh region ,T:, one can potentially remove 
that mesh region from the triangulation by considering 
edge removal with respect to any of its four hounding 
edges or multi-face removal with respect to any of its 
four bounding faces. The optimization algorithm is de- 
scribed as follows: 

I .  

2. 

Initialize queue Qu of non acceptable mesh regions 
(quality below q1) 
If (Qu empty) or (there is no edge removal or multi- 
face removal that can successfully be applied to any 
mesh region in Qu), end 
Pop a region from Qu 
Consider which edge removal (with respect to any 
hounding edge) or multi-face removal (with respect 
to any bounding face) gives the best quality improve- 
ment of the corresponding polyhedron 

3. 
4. 
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5. If either an edge removal or a multi-face removal 
has been performed 

a. 
b. 

Else (re)enqueue mesh region 

Remove from QU any deleted region 
Enqueue any new non acceptable mesh region 

6. Goto step 2 

The process terminates when either the queue is empty 
or no local retriangulation can be applied to any mesh 
region in the queue. It terminates in a finite number of 
steps. This is easily proven by examining the criterion for 
locally retriangulating. A domain is locally retriangulated 
only if the quality of the new triangulation of the domain 
is strictly greater than the original one. Assume the 
above process does not terminate, the quality of the global 
triangulation would improve indefinitely which cannot be. 
If the queue is empty when the program terminates, the 
resulting geometric triangulation is acceptable and the 
goal of the optimization procedure has been met. If 
the queue is not empty when the procedure terminates, 
neither local transformation procedure (edge removal or 
multi-face removal) could be applied to any of the mesh 
regions in the queue. 
The optimization of a triangulation using local retriangu- 
lation techniques leads to a local optimum. Depending in 
which order the local transformation procedures are a p  
plied, different local optima can be reached. Also, local 
retriangulation procedurw may have to be applied even 
if they are negative. It is impossible to say whether those 
local optima are far or close to the global optimum. It 
is conjectured that a global optimum cannot be reached 
with local retriangulation techniques. However, in prac- 
tice, these local retriangulation techniques often improve 
the quality of a triangulation. 
4.2. Relinement 
Refinement algorithms have been decomposed into three 
groups, depending on which technique they are based: 
i) subdivision patterns [2, 6, 57, 48, 9, 381, ii) bisection 
(generalized [59, 60, 45, 441 and alternate [3]), and iii) 
insertion in a Delaunay context [E71 or by mesh entity 
splitting [53, 30, 461. The following sections describe 
these known schemes and introduce a new procedure 
which considers a full set of subdivision patterns, there- 
fore allowing the possibility of no over-refinement. A 
set of definitions is given prior to the description of the 
refinement algorithms: 
Conformity: An n-dimensional triangulation ,,,O is con- 
forming if the intersection of any two non disjoint ele- 
ments is a common ddimensional geometric entity with 
0 5 d < n. It is assumed here that conformity is a 
requirement. Figure 40 illustrates the definition with a 
two-dimensional example. 
Triangulation refinement sequence: The ordered set 
{,,,Ol,,Oz, ..,,ON} is a triangulation refinement se- 
quence i f V  i E [1,N - 11 ,,,O,+l is obtained by selec- 
tively refvling ,Oi. 
Nesting: A triangularion ,,,O, is nested into a triangu- 
lation ,Oj if any element of ,,,Oi is fully inside one 

element of ,Rj. 
Refinement stability: A refinement scheme is stable if 
all interior angles of all triangulations in the sequence 
{,RI, ,Oz, .., ,ON} are boundedfrom below andabove 
as N goes to infinity. 

Non-conforming Conforming 

Figure 40. Non-conforming and conforming 
triangulations in two dimensions 

4.2.1 Subdivision Patterns 
In the two-dimensional case, two subdivision patterns are 
commonly used: i) regular 1:4 (each child triangle is sim- 
ilar to the parent) and ii) “green” 1:2 (Fig. 41). Bank and 
Sherman [2] use a 1:4 subdivision scheme to refine ele- 
ments. Any element with two or three non-conforming 
vertices is 1:4 subdivided (iteratively). At this stage, all 
elements can not have more than one non-conforming ver- 
tex. A clean-up phase which “green” subdivides any re- 
maining non-conforming element completes the process. 
For the next refinement iteration, if an element resulting 
from a “green” subdivision is marked for refinement, the 
parent element is reinstated and 1:4 subdivided (Fig. 42). 
This ensures an angle is not divided more than once. 

Regular 1:4 Green 1 :2 

Figure 41. Classic element 
subdivision patterns in two dimensions 

In three dimensions, given a mesh region, subdivision 
patterns are applied depending on the number of marked 
edges. The set of available subdivision patterns varies. 
Biswas and Strawn [6]. Rausch et AI. [571, and Lohner 
and Baum [48] have the 1 2 ,  1:4, and 1:8 subdivision 
schemes (Fig. 43). Bornemann et Al. [9] have the 1:2 
(“green I”), “green II”, 1:4 (“green III”), and 1:8 subdi- 
vision schemes. The “green II” scheme corresponds to 
the case where there are 2 non-conforming edges for the 
element. Kallinderis and Vijayan [38] use the 1:2, 1:4, 
1:8, and a centroidal node subdivision schemes. In the 
centroidal node subdivision scheme, a vertex is created 
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Nonconforming 
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Reinstatement 

Regular 
subdlvlslon 

Figure 42. Reinstatement of parent element 
followed by regular subdivision in two dimensions 

Figure 43. Classic element subdivision 
patterns in three dimensions 

at the centroid of the element and the element is split 
accordingly. If a marking pattern does not correspond to 
a predefined configuration, it is upgraded to the closest 
one. The process terminates in a finite number of steps. 
It has been shown that the regular 1:8 subdivision scheme 
is stable as long as the proper (shortest) inner diagonal 
is chosen [29, 51. Algorithms based on subdivision pat- 
terns are stable if irregular child elements (not resulting 
from regular subdivision) are never further subdivided, 
in other words, parents of those are reinstated and subdi- 
vided with the 1:8 subdivision scheme prior to any further 
subdivision [57, 48, 91. Note that ,,,Ri is always nested 
into ,,,RI but ,,,R;+I may not be nested into ,Ri due 
to the possible reinstatement of parents (i 2 2). Any 
refinement scheme based on subdivision patterns which 
does not have all possible subdivision patterns and/or re- 
instates some parent elements prior to further subdivision 
will in general over-refine, that is, produce more refine- 
ment than requested by the adaptive procedure. Also, 
using subdivision patterns which add a centroid vertex 
when not actually needed will over-refine as well. 

4.2.2 Generalized Bisection 

In two dimensions, an element is refined by bisecting 
its longest edge (twc-triangle algorithm) [59]. Elements 
with non-conforming edges are subdivided following the 
patterns of Figure 44. The process terminates in a finite 
number of steps. Following the results of Rosenberg and 
Stenger I611 and Stynes [82] about longest edge bisection, 
the scheme is stable, furthermore, interior angles are 
always greater than one half of the lowest angle in the 
initial triangulation ,,,RI [59]. 

1 non-conf. vert. 2 nonconf. vert. 3 nonconf. veh 

Figure 44. Non-conforming elements and 
their triangulations in two dimensions 

This method of subdivision along the longest edge has 
been extended to three dimensions [60]. Elements 
to be refined are bisected along their longest edges. 
Non-conforming elements are subdivided along their 
longest edges in a recursive fashion. Unlike the two- 
dimensional case, an element that needs refinement or is 
non-confoming must be bisected at its longest edge. 
This scheme guarantees nesting. In two dimensions, 
following the longest edge bisection results of Rosenberg 
and Stenger I611 and Stynes [U], the scheme is stable, 
furthermore, interior angles are always greater than one 
half of the lowest angle in the initial triangulation ,,,RI 
[59]. In three dimensions, to this point in time, no 
one has yet presented a proof of the stability of the 
scheme probably because (i) the longest edge in a mesh 
region is not necessarily opposite the largest dihedral 
angle and (U) the sum of all dihedral angles of a mesh 
region is not constant. However, the scheme seems to be 
“experimentally” stable. Because the non-conformity can 
propagate, this scheme will in general over-refine. 
Joe [45] has proven that the infinite bisection of a tetra- 
hedron is stable using generalized bisection on a mapped 
special tetrahedron. Note that this result does not prove 
that generalized bisection in the real space is stable. Liu 
and Joe [44] have presented a stable refinement algorithm 
that makes use of this result. In ,,,RI. for each element, 
a bisected edge is uniquely chosen (this does not mean 
that all elements will be subdivided). Elements that need 
to be subdivided are bisected along their bisected edges. 
When an element is subdivided into two elements, the 
bisected edges for the two new elements are imposed ac- 
cording to rules given in [44]. Once all elements that need 
refinement have been subdivided, there may be some non- 
conforming elements in the triangulation. The process of 
subdividing elements continues until there are no more 
non-conforming elements in the mesh. At this point, the 
scheme guarantees nesting, is stable, and will in general 
over-refine. After all levels of refinement have been ap- 
plied, local transformations [35] are applied to further im- 
prove the quality of the final mesh. It should be noted that 
if local transformations are applied after each refinement 
iteration, a priori control of stability is lost. From ex- 
perimental results given in [44], this scheme over-refines 
less than the scheme by Rivara and Levin [60] especially 
as the number of refinement levels becomes high. As a 
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remark, this scheme appears very similar to the alternate 
bisection scheme [3] presented in the next section. 

42.3 Alternate Bisection 
This approach has been presented by B h c h  [3]. In 
,,,fll, refinement edges are chosen for each element (a 
good choice is the longest edge). Note that choosing 
a refinement edge for each element does not mean that 
all elements will be subdivided. Elements that need to 
be subdivided are bisected along their refinement edges. 
When an element is subdivided into two elements, the 
refinement edges are topologically imposed on the two 
new elements according to Fig. 45. A conforming step 
subdivides elements with non-conforming edges. 

Figure 46. Watson’s algorithm in two dimensions 

Region spllt Face split Edge split 

Figure 45. Alternate bisection in two dimensions 

This scheme extends to three dimensions. In ,!?I, each 
face is given a refinement edge (e.g., longest edge). For 
each element in it is then assumed there is at least 
one common refinement edge for two adjacent faces, 
called a global refinement edge. In particular, this as- 
sumption holds if the longest edge of each face in ,RI 
is chosen as the refinement edge. Each element to be 
refined is bisected along its global refinement edge. The 
refinement edges on the four new faces resulting from 
bisection of the two parent faces are imposed as in the 
two-dimensional case and the refinement edge on the in- 
terior face is chosen according to rules given in [3]. The 
two new elements are then guaranteed to have a global 
refinement edge. Elements with nonconforming edges 
are bisected until no non-conforming elements remain. 
This scheme guarantees nesting and is stable [69, 31. 
Because the non-conformity can propagate, this scheme 
will in general over-refine. 

4.2.4 Delaunay Insertion 
Inserting a new node into a Delaunay triangulation can 
be done using, for example, Watson’s algorithm 1871. 
AU elements which contain the new node (in terms of 
circumcircle in two dimensions or circumsphere in three) 
are deleted to form a pointconvex polyhedral cavity. 
New elements are created by connecting the boundary 
of the cavity to the new node (Fig. 46). The new 
triangulation is guaranteed to be Delaunay. 

4.2.5 Splitting 
The insertion of a point into a triangulation can be done 
by splitting the mesh entities the new point falls on. 
In three dimensions. a mesh region can be split into 
four new regions, a mesh face into three new faces, 
and a mesh edge into two new edges. Mesh entity 

m:3m (m = 1 or 2) 

(face)cncted tets (edgebncted tets 

m:2m 
1 :4 m = nbr of m = nbrof 

Figure 47. Mesh entity splitting in three dimensions 

splitting retriangulates a polyhedron by adding a vertex 
and connecting the boundary faces of the polyhedron 
to the new vertex. In the case of a mesh region, the 
polyhedron is the mesh region itself. In the case of a 
mesh face or a mesh edge, the polyhedron is built from 
the union of all mesh regions connected to the face or 
edge, respectively. Figure 47 displays the three types of 
split in three dimensions and indicates for each one of 
them the change in number of mesh regions. 
This technique can be used to add vertices into a given 
triangulation. For instance, if the error indicator is edge- 
based, any marked mesh edge is split. Mesh entity split- 
ting guarantees nesting, is not stable, and will not over- 
refine if the mesh entities that are marked for refinement 
are the only ones to be split. 
For a given mesh region to refine, Golias and Tsiboukis 
[30] split its longest edge, which leads to the refinement 
of all tetrahedra connected to the edge. At this point, 
the scheme guarantees nesting, is not stable, and does not 
artificially refine. Then, Delaunay transformations and 
node relaxation (repositioning) techniques are applied to 
improve the quality of the resulting triangulation (nesting 
is lost). The Delaunay transformations used are: 

1. exchange of interface faces (in Fig. 36 upper-left, 
when the faces bounded by { ,q, ,,,Ti, ,T:} and 
{ ,,,q, ,,,Ti, ,,,TS} are classified on the same model 
face, a 240-2 swap which is a degenerate case of 
the 2-to-3 swap can be applied), 

local transformation of tetrahedron (the above three 
transformations are applied recursively to the tetra- 
hedron under consideration, then the tetrahedron’s 
neighbors, etc). 

2. 2-to-3 and 340-2, and 
3. 
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Muthukrishnan et al. [53] sort mesh regions that are 
to be refined with respect to increasing length of their 
longest edges. The first region to be refined is the one 
at the end of the list. Before splitting the longest edge, 
the regons connected to the edge are examined. If a 
connected region has a longest edge different from the 
edge to be split, it is put in the list of regions to be 
refined at the appropriate rank. After the split, the list 
is updated. This refinement scheme is actually identical 
to the scheme described by Rivara and Levin [60] and 
therefore has the same properties. It is followed by a 
node repositioning procedure (nesting is lost). 
Lo [46] sorts (in an approximate way) the mesh edges 
marked for refinement with respect to increasing length. 
The mesh edge at the end of the list is split and the list 
is updated. This scheme is different from the one by Ri- 
vara and Levin [60] and Muthukrishnan et al. [53] since 
only edges marked for refinement will be split. At this 
point, the scheme guarantees nesting, is not stable, and 
does not artificially refine. It is followed by a triangu- 
lation optimization procedure which makes use of node 
repositioning and local transformations (nesting is lost). 
These local transformations are: 

I. 24m3, 
2. 3 4 ~ 2 .  and 
3. 4-04 which is an edge removal when there are four 

mesh regions connected to an edge. 

4.2.6 Refinement Using FuIl Set 
of Subdivision Patterns 
Refinement is performed by marking appropriate mesh 
edges for refinement and applying subdivision patterns to 
each mesh region. Each mesh region has from zero to 
six marked edges. Subdivision patterns for each possible 
configuration of marked edges have been developed in 
order to annihilate any over-refinement. There are ten 
possible patterns which are as follows (Fig. 48): 

I. I-edge: this is the classic 1:2 subdivision pattern 

2. 
(one template) 
2-edge (this is also the Green Il in [9]): 

a. 
b. 

3. W g e :  

a. 

b. 

c. 

One face has two marked edges (two templates) 
All faces have one marked edge (one template) 

One face has three marked edges: this is the 
classic 1:4 subdivision pattern (one template) 
' b o  faces have two marked edges (four tem- 
plates) 
Three faces have two marked edges (eight tem- 
plates) 

4. W g e :  

a. 

b. 

One face has three marked edges (four tem- 
plates) 
All faces have two marked edges (sixteen tem- 
plates) 

5. 5 4 g e  (four templates) 
6. W g e :  this is the classic 1:8 subdivision pattern 

(one template) 

Itulae 

Figure 48. Subdivision patterns in three dimensions 

When only the 1 2 ,  1:4, and 1% subdivision patterns are 
used, there is no possible triangulation incompatibility at 
the face level, in other words, the subdivision patterns 
on both sides of a face with either one or three marked 
edges will always match (at the face level). Inclusion of 
all the refinement types requires explicit consideration of 
triangulation compatibility at the face level. If a face with 
two and only two marked edges has been triangulated 
due to the subdivision of one region usmg that face, the 
template used to subdivide the other region must match 
the face triangulation. Since there are a priori two ways 
to triangulate a face with two marked edges (Fig. 49). 
any pattern which has N faces with two and only two 
marked edges needs ZN templates. 

Figure 49. The two ways to triangulate 
a mesh face with two marked edges 

As is, this refinement scheme is not stable since it is pos- 
sible, and likely, that an angle (solid) will be bisected 
more than once when multiple refinements are applied in 
the same areas. However, it can be made stable at the 
price of some over-refinement. Assuming the quality of 
the initial triangulation ,ill is Q1. stability requires that 
for any subsequent triangulation ,n, (i > 1) its quality 
Q, is such that Q% 2 q1 with qt = aQ1 where a is some 
constant. Given a mesh region with at least one marked 
edge but fewer than six, the template corresponding to the 
number of marked edges is applied and the optimization 
procedure (with qj as the threshold) is applied locally to 
the subdivided mesh region. If the optimization procedure 
is successful, nothing else has to be done for that mesh 
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region. However, if the optimization procedure is unsuc- 
cessful, the situation that existed prior to the application 
of the template is recovered and the subdivision pattern 
is upgraded by marking an additional edge. ‘Ibis process 
is repeated until the optimization procedure is successful 
or the number of marked mesh edges reaches six. Re- 
call that the application of the 1:8 template (with shortest 
inner diagonal) does not affect the stability of the refine- 
ment scheme (neutral) [29, 51. Another approach is to 
duectly upgrade to six marked mesh edges and apply the 
1:8 template. It should be noted that as soon as a subdivi- 
sion pattern is upgraded, neighboring mesh regions have 
to be reprocessed for subdivision. 
In the context of curved model boundary, vertices re- 
sulting from refinement that are classified on the model 
boundary need to be “snapped” to the appropriate model 
entity. For example, when studying the flow around an 
airfoil, it is critical to be able to snap refinement vertices 
to the airfoil (especially at the leading edge) in order to 
make sure the resulting flow corresponds to the actual 
airfoil geomew. Difficulties may arise as moving a ver- 
tex to its destination target can generate invalid elements 
especially when the triangulation is rather coarse. Fig- 
ure 50 illustrates this problem in two dimensions when 
the triangulation around a circular hole is selectively re- 
fined. If the snapping of a refinement vertex causes a 
mesh region to be invalid or of poor quality, the local re- 
triangulation tools described above can be used to attempt 
to remove that mesh region. This process is repeated un- 
til the refinement vertex can be snapped. Note that other 
local retriangulation techniques. such as edge collapsing, 
mesh entity splitting, and local remeshing can be applied 
to these situations. It is possible that local retriangula- 
tion tools may not succeed in snapping all refinement 
vertices, however, it is believed that local remeshing will 
permit all snappings. Efforts are under way to complete 
the appropriate algorithms. A mesh adaptation proce- 
dure should in theory not only be stable (with respect to 
triangulation quality) but also capable of snapping all re- 
finement vertices classified on the model boundary to the 
proper model entities. This new requirement lessens the 
importance of stability and justifies the presented mesh 
adaptation pmcedure which makes use of local retriangu- 
lation tools to optimize the current triangulation and snap 
refinement vertices. 

Ref. Snap 

Figure 50. Snapping refinement vertex to 
the model boundary in two dimensions 

4.3. Derehement 
Schemes that use subdivision patterns or bisection for re- 
finement can derefine by simply reversing the refinement 
process [6,59,48,38,57]. To illustrate this concept, con- 
sider the methodology employed by Biswas and Strawn 
[6] which is representative of such derefinement schemes. 
If two sibling edges (same parent edge) are marked for 
derefinement, they are replaced by the parent edge and 
all parent elements sharing the parent edge are reinstated. 
The procedure described for refinement and/or conformity 
can then be applied to the set of elements that have been 
reinstated. Figure 51 shows a simple example of der- 
finement. In Figure 51.a. edges marked with a “d” are to 
be derefined. Once the parent edges have been reinstated, 
any parent edge with at least one child edge not marked 
“d” is marked ‘T’ (Fig. 51.b). The refinement proce- 
dure described earlier is then applied to produce the final 
derefined triangulation (Fig. 51.c). It should be noted that 
Biswas and Strawn [6] perform refinement and dereiine- 
ment simultaneously. Derefinement has been separated 
only in the wope of the present paper. In order to effi- 
ciently reinstate parent entities, parent elements and edges 
are stored resulting in an overhead estimated at 15% of 
total memory requirements in Biswas and Strawn’s case. 
It should be noted that any triangulation in the sequence 
cannot be coarser than the first one. 

a) b) C) 

Figure 51. Derefinement example 

Derefinement is performed here by using a local retrian- 
gulation technique that deletes a vertex: edge collapsing. 
A mesh edge is derefined by collapsing it to one of its 
end vertices. A description of the algorithm follows (see 
also Fig. 52 for a graphical description): 

1. Check if edge collapsing is topologically possible. If 
it is possible, one end vertex is the collapsed vertex 
(,T;) while the other is the target vertex (,Ti) 
Check if edge collapsing is geometrically possible 
Delete all mesh regions connected to ,q, which 
produces a polyhedral cavity 
Connect the faces of the polyhedral cavity to ,,,Ti 
to form new mesh regions 

Since edge collapsing locally modifies a Geometric 
(valid) triangulation [67, 771, one bas to make sure the 
validity of the triangulation is not violated by the mod- 
ification (this check refers to step 1 of the algorithm). 
Since any mesh entity is classified agamst the model, it 
is always possible to predict such violations. Figure 53 
contains the nseud-code to check if a mesh edee can 

2. 
3. 

4. 

can generate geometric invalidity be collapsed to one of its end vertices. It returns TRUE 



Figure 52. Edge collapsing in three dimensions 

if the mesh edge can be collapsed (FALSE otherwise). 
Figure 54 illustrates graphcally some of the case.s where 
edge collapsing is not possible which are pointed out in 
the pseudo-code. 
Before physically collapsing the edge, the geometry of the 
mesh regions to be created can be predicted exactly (this 
check refers to step 2 of the algorithm). The volumes of 
the new mesh regions can be computed by considering 
all mesh regions which are connected to ,,,q but not 
connected to ,T,' and virtually moving ,,,q to ,TiO. 
Since the computation of the volume of a mesh region 
always consider the bounding vertices in a certain order, 
the (virtual) movement of one of its bounding vertices 
is valid only if the new volume is positive. Therefore, 
one can always tell beforehand if the to-be created mesh 
regions are invalid. The quality of the to-be created mesh 
regions can be predicted as well. If the quality of the to 
be created elements is not good enough with respect to 
some predetermined threshold, the derefinement of the 
edge need not be performed. This is important in order 
to guarantee the stability of the refinemedderefinement 
scheme. Also, assuming both end vertices are candidates 
to be the target vertex, the target vertex that would create 
the "bener" triangulation of the two is chosen. 

4.4 Complete Mesh Adaptation Procedure 
The actual implementation of the mesh adaptation scheme 
uses the following steps: 

1. Derefinement using edge collapsing as described 
above 

2. Global optimization with ql = QI 
3. Refinement using full set of subdivision patterns 

without consideration for stability 
4. Refinement vertex snapping (to the model boundary) 
5. Global optimization with q, = Q1 

So far, problems due to the non-stability of the imple- 
mented refinement scheme have not appeared. If they 
happen, the refinement can be made stable as described 
above at the price of some over-refinement 

45. Parallelization of Mesh Adaptation 
Today's CFD computations are costly both in CPU time 
and memory. For big enough problems, the flow solver 
cannot be run on a classic scalar workstation for which 
performance and memory are limited. For large-scale 
analysis of fluid flows, it is necessary to use a parallel 
flow solver. Since the mesh adaptation is an integral part 
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Get bounding vertices lmq C 

of edge ,TI C ,!If': 

,,q C nT$'l 
i f 4 = 4  

if #?+ = gT$i 
if 4 = 3 rot- TRUE (ok to collapse) 

elm return FALSE (cannot collapsel (Fig. 
54.a) 

.I.. 

if 8 = 3 or 4 = 3 rotttrn TRUE (target 
vertex is the one classified on lower 
order model entity) 
At this point, the two mesh vertices are 
classified on model boundary 
if d: = 3 return FALSE 
Switch (if necessary) ,q and ,,,e SO that 
8 > 8 (from now on, target vertex will 
be ,$ if collapsing is possible1 
i f  ge # ,e' nturn FALSE (Fig. 54.b) 

At this point, the two vertices are classified 
on model boundary and the edge is classified 
on the model entity of hgher order 
for each pair of mesh edges (,,,Ti C #T$,,,,T; C 

Td:I that Connect to ,q and ,e respec- 
"t:ely and connect to each other 

if d' - or d: = 3 continue 
i f  d] 1 i; 

if ,I$' # &'$ return FALSE 
alae if d$ = 1 roturn FALSE 

At this point, the two edges are classi- 
fied on same model face or one is clas- 
sified on model face and the other is 
classified on the model face's boundary 
Switch (if necessary) ,,,T: and ,,,Ti so 
that dk > d$ 

Find face ,q C ,e' bounded by 
L,,T~,,,,'C,,T~) 
if ,T2 does not exist, roturn FALSE 
i f  ,T,dt # ,T$' rot- FALSE (Fig. 5 4 . ~ 1  

for each pair of mesh faces l,T; c ,7;"',,,,T~ c 
Td;) that connect to ,q and ,,,T; respec- 
Lgely and connect to each other by a mesh 
edge 

if d: = 2 md 4 = 2 ret- FALSE (Fig. 
54.d) 
i f  (,,,T:, ,TI I do not bound a mesh region, 
roturn FALSE 

nturn TRUE 

Figure 53. Pseudo-code for checking 
topological validity for edge collapsing 

of the flow solver, it must be running in parallel as well 
in order not to become a bottleneck. 

4.5.1 Derefinement 
If a mesh edge ,T,' is marked for derefinement, it is at- 
tempted to be collapsed. If the polyhedron po[(,TP) is 
on processor p,, the edge collapsing is performed on p,. 
If p o l ( , q )  is not fully on p,, the missing mesh regions 
are requested from the appropriate processors. When all 
processors are done traversing their lists of mesh edges, 
the processors that have received requests send (migrate) 
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6) 

Figure 54. Some cases when edge collapsing in 
three dimensions is not possible due to topology 

pld I 3' 'pld I 2 pld = 3 pld I 2 

Figure 55 .  Mesh migration to support 
parallel distributed derefinement 

the requested mesh regions. In Figure 55, processor po  
requests mesh regions from processors @I. pz, p3)  and 
the requested mesh regions are migrated. If there is con- 
flict, the processor with lowest pi has priority. On the 
next iteration, it is the processor with highest p; that will 
have priority. This switching is done to prevent too much 
load imbalance at completion. The process of traversing 
the list of mesh edges and sendinglreceiving requests con- 
tinues until all marked mesh edges have been collapsed 
(more exactly, have been attempted to be collapsed). Be- 
cause mesh regions are migrated, it is possible that the 
processors are not well balanced after the derefinement 
step. The triangulation is therefore submitted to a load 
balancing step (at the region level) before going further. 
Figure 5 6  shows the speed-ups for a triangulation of ap- 
proximately 85,000 elements where 50% of the mesh 
edges are derefined (the resulting triangulation has ap- 
proximately 46,000 elements). 
4.5.2 %angulation Optimization 
Assuming the current triangulation is partitioned, each 
processor pi (0 5 i < np) optimizes its own partition 
(pTp,) considering a global quality threshold q1. As 
processor pi pops a mesh region from its queue Qui. 
two situations may occur: 

1. All polyhedra to be considered for edge removal and 
multi-face removal are fully on pi (that is, all mesh 

Figure 56. Speed-ups for derefinement 
(85,000 elements - 50% edges derefined) 

regions of all polyhedra belong to p J ,  in that case, 
the proper local retriangulation tool can be applied (if 
needed) and any new mesh region of quality below 
p1 is pushed in Qui 
At least one polyhedron is not fully on pi,  in that 
case, pi requests for each polyhedron (concerning 
edge removal and multi-face removal) any mesh 
region that is not on pi and push back the mesh 
region in Qui 

The mesh region popping process continues until Qui 
is empty or stuck (does not change). Clearly, requests 
concerning mesh regions that have been deleted since 
are cancelled. After a synchronization step, all proces- 
sors examine the requests they have received and send 
(migrate) the appropriate mesh regions to the appropri- 
ate processors. If a mesh region is requested by several 
processors, the processor with lowest pi has priority and 
will be granted the mesh region. On the next iteration, 
it is the processor with highest p ;  that will have prior- 
ity. This switching is done to prevent too much load 
imbalance at completion. Each processor pi adds to its 
queue Qui any new mesh region of quality below q, that 
it has received and restarts popping mesh regions. The 
combined process of emptying the queue and migrating 
requested mesh regions terminates when all queues Qui 
(0 5 i < np) are empty or stuck and there is no mesh 
region to migrate. Because mesh regions are migrated, 
it  is possible that the processors are not well balanced 
after the optimization step. The triangulation is therefore 
submitted to a load balancing step (at the region level) 
before going further. Figure 51 shows the speed-ups for 
a triangulation of approximately 85,000 elements. 
4.5.3 Refinement 
Any mesh face on some partition boundary with at 
least one marked mesh edge is triangulated using two- 
dimensional subdivision patterns (Fig. 58). Since two 
sibling mesh faces (physically identical mesh faces on two 
neighboring procs) have same orientation. it is guaranteed 
that the application of these templates will produce phys- 
ically identical triangulations (in terms of child faces). 

2. 
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Numbar d processon 

Figure 57. Speed-ups for the 
optimization procedure (85,000 elements) 

Figure 58. Subdivision patterns at the mesh face level 

Once all mesh faces on the partition boundary are subdi- 
vided, links for all new mesh entities are updated. Then, 
each processor can apply the three-dimensional templates 
on any mesh region with at least one marked edge (as 
described above) without any communication. 
Once all appropriate mesh regions have been subdivided, 
the refinement vertices which are classified on the model 
boundary need to be snapped to the corresponding model 
entity. Since snapping makes use of the local retrian- 
gulation tools, the technique to parallelie that process 
is similar to the one used to parallelize the derefinement 
and optimization steps. All processors iterate on a two 
step process: (i) (sequential) vertex snapping along with 
requests for missing mesh regions, and (ii) sending of re- 
quests and migration of requested mesh regions until all 
refinement vertices have been attempted to be snapped. 
At the end of the refinement step, the processors may 
not be well balanced for two reasons: (i) refinement is 
selective, and (ii) mesh regions have been migrated (due 
to snapping). Therefore, a load balancing step is applied 
before going further. Figure 59 shows speed-ups for the 
refinement procedure on 36,000 elements when 20% of 
the mesh edges are refined (resulting triangulation has 
88,000 elements). 

5. Parallel Adaptive Analysis Procedures 

5.1. Structure of a Parallel Adaptive 
Analysis Procedure 
Although the most computationally intensive operations 
in an adaptive analysis are of the same type as those 
of a fixed mesh analysis, an adaptive analysis must use 

Number ol pmcuwn 

Figure 59. Speed-ups for parallel refinement 

Mesh Generation 

Mesh Migration 
Load Balance 

Element Formation I 
I I  I 

I + 
Equation Solution U 

I . I I Error Estimation I 
I I  I 

Figure 60. Components of a 
parallel adaptive analysis procedure 

more general smctures which effectively account for 
the evolution of the discretization. The structure of a 
parallel adaptive analysis procedure follows directly from 
the procedures used for the parallel control of evolving 
meshes presented in the previous sections. Figure 60 
presents an overall flow chart of a parallel automated 
adaptive analysis procedure. 
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Two main processing phases naturally emerge in the finite 
element method, the “form phase”, where the local finite 
element arrays at the sub-domain level are generated, and 
the “solve phase”, where the global problem is solved. 
Parallel implementation of the form phase is straightfor- 
ward, in the sense that it can be performed in parallel 
with no communication among the processing nodes. 
On the other hand, the efficient scalable realization of the 
solve phase is a non trivial task. Current Multiple In- 
structionhlultiple Data (MIMD) computers tie together 
independent processors using a high speed switch under a 
message passing paradigm. The resulting system incorpo- 
rates relatively powerful individual processors with large 
local memories. The communication handwidth between 
processors remains well below that of the individual pro- 
cessor to memory bandwidth resulting in significant cost 
for interprocessor communication compared to local com- 
putation. This type of architecture has significant impact 
on the design of parallel algorithms for the solution of 
large linear systems. Such algorithms must amortize any 
communication costs over large amounts of simultaneous 
parallel computation. Additionally, the large local data 
space is still only a fraction of the global memory space 
and data cannot be highly duplicated over multiple pro- 
cessors if full advantage is to be taken of the available 
memory. Under these constraints, two different algorithm 
classes become attractive for the solution of linear sys- 
tems, Krylov space based iterative solvers and domain 
decomposition techniques. 
In the remainder of this subsection a brief review of the 
Krylov space based GMRES procedure used in the rotor- 
craft aerodynamics discussed in subsequent subsections 
is given. Readers interest in more information on Krylov 
space based domain decomposition methods are referred 
to the chapters of this report by van der Vorst and Farhat, 
respectively. 
Given the non-symmetric linear system A , x = b, 
the Generalized Minimal Residual (GMRES) algorithm 
of Saad and Schultz [62] attempts to find the approx- 
imate solution po + z, z being in the Krylov space 
K = (ro,A.ro, ..., Ak-’ . ro) and ro = b - A .  PO. 
z is the solution of the minimization problem rninSEK 11 
b-A.(po+z) 11. whichissolvedbymeansoftheQRal- 
gorithm. The GMRES algorithm obtains an orthonormal 
basis of K by means of a GramSchmidt procedure which 
involves matrix-vector multiplications and dot products. 
These operations represent the computer intensive part of 
the algorithm. In general, all Krylov methods can be writ- 
ten in terms of these two basic kernels. It is therefore im- 
portant to devise efficient ways of performing distributed 
matrix-vector and dot product operations in parallel. 
The matrix-vector multiplications necessitate the ex- 
change of data through the inter-processor boundaries. 
In order to overlap communication and computation for 
efficiency reasons, these operations can be realized fol- 
lowing a four step procedure on each processing node: 
(i) send data relative to the inter-processor boundaries 
to each neighboring processor, (ii) perform computations 

involving only data relative to nodes that lie within the 
internal volume of the partition, (iii) receive data relative 
to the inter-processor boundaries from all the neighbors, 
(iv) perform computations involving only data relative to 
nodes lying on the inter-processor boundaries. 
For the implementation of the dot product operations, 
nodes that lie on the inter-processor boundaries are ran- 
domly split, so that two partitions that share an internal 
boundary are assigned only a subset of the nodes of that 
internal boundary. Each processing node then performs 
the dot product involving nodes contained in its internal 
volume and its subset of nodes on the partition bound- 
aries. Global sum of the local results at the processor 
level yields the global dot product result. 
The minimization problem in the GMRES algorithm can 
be written in terms of an upper Hessenberg matrix, whose 
entries are essentially the results of the dot products per- 
formed during the orthogonalization procedure. At the 
end of the GramSchmidt procedure, each processing 
node has then complete knowledge of the upper Hes- 
senberg matrix and it is therefore able to perform the 
solution of the minimkition problem independently with 
no communication. It should be remarked that the size 
of the Hessenberg matrix is the size of the Krylov space 
employed, typical values for the applications here consid- 
ered being around 5-30. The computer intensive SAXPY 
operations needed in order to update the solution of the 
linear system are consequently performed in parallel with 
no communication. Once convergence is achieved in the 
iterative linear solver, each processing node has complete 
knowledge of the incremental solution at the current New- 
ton or time step, and it is therefore able to update the 
current state completely independently, without any in- 
ter-processor communication. 
It should be noted that the GMRES algorithm, like all 
other Krylov methods, does not need to operate on the 
system matrix by itself, but just needs to compute prod- 
ucts of this jacobian matrix with a given vector. One 
can take advantage of this feature, and develop a ma- 
trix-free version of the algorithm [37, 361 in which the 
matrix-vector products are approximated with a finite dif- 
ference stencil. This has the advantage of avoiding the 
storage of the tangent matrix, thus realizing a substan- 
tial saving of computer memory at the cost of additional 
on-processor computations. In the matrix-free version of 
the algorithm, matrix-vector multiplications of the form 
A(f). U are approximated by means of a finite difference 
of residuals b as 

b(f) - b(f + EU) A(f) . U = 
E 

where f is the vector of the field variable nodal values and 
E is a perturbation parameter which is computed minimiz- 
ing the truncation enor, which results from truncating the 
Taylor expansion, and the cancellation error, which is a 
consequence of operating in finite precision arithmetic. 
The addition of preconditionem to the solution strategy 
is a necessary ingredient for the successful application of 
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Krylov space solvers. However, they can complicate their 
parallelization, leading to increased data communications 
or the need for a global ordering. However, depend- 
ing upon the underlying problem, local preconditioners 
may prove adequate to assure convergence in a reason- 
able number of iterations, or the preconditioner may be 
calculated one time, stored, and used repeatedly. 

5.2. Finite Element Code for 
Rotorcraft Aerodynamics 

This section presents an parallel adaptive procedure for 
the automated aerodynamic analysis of helicopter rotors 
based on the procedures discussed in this paper. Adaptive 
analyses on unstructured discretizations represent an ef- 
fective and accurate method to address the complex phys- 
ical phenomena that characterize rotorcraft systems. The 
problem of the accurate numerical simulation of these 
phenomena has recently stimulated a vigorous research 
effort in the scientific community, certainly prompted by 
the fact that rotor-body interactions, transonic effects, 
wake effects and blade stall, all have a major impact on 
the performance, stability and noise characteristics of he- 
licopter rotors. 
One of the most important characteristics and distinguish- 
ing features of the software presented here is that all the 
different phases of the analysis, namely the mesh parti- 
tioning, the finite element solution, the error indication, 
the mesh adaptation and the subsequent load balancing, 
are realized without leaving the parallel environment. In 
contrast with other procedures that perform only part of 
the analysis in parallel, as for example just the finite el- 
ement solution phase, our approach has the advantage of 
making better use of the power of a distributed memory 
architecture, leading to an integrated software environ- 
ment, reducing the i/o and avoiding the bottlenecks that 
are always present when one tries to solve certain phases 
of the analysis in serial, especially when very large prob- 
lems are addressed. 
This integrated approach to the parallel adaptive solu- 
tion of PDE's has lead us to select the message passing 
paradigm as our method of choice for the parallel pro- 
gramming. This is in contrast with the trend shown by 
some recent publications [36,39,52], where parallel finite 
element methodologies on fixed meshes have been devel- 
oped based on data parallel techniques. In fact, we be- 
lieve that the software development is more easily accom- 
plished in a message passing programming model when 
one has to deal with adaptive strategies and mesh mod- 
ification techniques. With the idea of developing a uni- 
form software environment, we have used portable mes- 
sage passing protocols in each stage of the analysis. The 
implementation has been carried out using the message 
passing library standard MPI [l] and it has been tested 
on IBM SP-1 and SP-2 systems. 
The procedure developed employs a stabilized finite ele- 
ment formulation which is valid for forward flight and for 
hovering rotor problems, as well as for general unsteady 
and steady compressible flow problems. The linear alge- 

bra is solved by means of a scalable implementation of 
the standard and matrix-free GMRES algorithms. Simple 
techniques are used for estimating regions of high error 
with the purpose of driving the adaptive procedures. 
Techniques to effectively handle the far-field and symme- 
try boundary conditions for a hovering rotor are consid- 
ered. Results are presented to demonstrate the ability of 
the parallel adaptive procedures to solve rotorcraft aero- 
dynamics problems. 
Consideration is also given to measures of efficiency and 
scalability of the parallel adaptive procedures that have 
been developed. The importance of these measures are 
demonstrated. 
5.2.1 Finite Element Formulation 
The initialhoundary value problem can be expressed by 
means of the Euler equations in quasi-linear form as 

plus well posed initial and boundary conditions. In 
equation (17), n,d is the number of space dimen- 
sions, while U = p ( 1 , ~ 1 , ~ 2 , ~ 3 ,  e )  are the con- 
servative variables, A, . U,i = Fi,i where Fi = 

ler flux, and E = p (0 ,  b l ,  b 2 ,  b 3 ,  biu; + T )  is the source 
vector. In the previous expressions, p is the density, 
U = ( u I , u ~ , u ~ )  is the velocity vector, e is the total 
energy, p is the pressure, 6 i j  is the Kronecker delta, 
b = ( b l ,  b 2 ,  b 3 )  is the body force vector per unit mass 
and T is the heat supply per unit mass. 
The Time-Discontinuous Galerkin Least-Squares finite 
element method is used in this effort [70, 711. The 
TDGLS is developed starting from the symmetric form 
of the Euler equations expressed in terms of the entropy 
variables V and it is based upon the simultaneous dis- 
cretization of the space-time computational domain. A 
least-squdes operator and a discontinuity capturing term 
are added to the formulation for improving stability with- 
out sacrificing accuracy. The TDGLS finite element 
method takes the form 

P U i ( l , U l , W , U 3 , e )  + P ( o , & i , 6 2 i , & i , % )  is the Eu- 

+ 1 Wh- .U(Vh-)  dD - J W h +  . U(Vh-) dD 
W f n + l )  'Wtn) 

+ ln W h  F;(Vh) dP 

(nei)n 

+ ( L W " )  . s(LVh) dQ 
e=l Q n  +(z Le vhVcWh * diag [&]$,Vh dQ = 0. (18) 

Integration is performed over the space-time slab Q,, 
the evolving spatial domain D ( t )  of boundary r(t) and 
the surface P, described by r(t) as it traverses the time 
interval I, =Itn, tn+l [. Wh and V h  are suitable spaces 

n 
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for test and trial functions, while r and vh are appropriate 
stabilization parameters. A 0  = aU/aV is the metric 
tensor of the transformation from conservation to entropy 
variables. Refer to [70, 711 for additional details on the 
TDGLS finite element formulation. 
Two different three dimensional space-time finite ele- 
ments have been implemented. The first is based on 
a constant in time interpolation, and, having low order 
of time accuracy but good stability properties, it is well 
suited for solving steady problems using a local time step- 
ping strategy. The second makes use of linear-in-time 
basis functions and, exhibiting a higher order temporal ac- 
curacy, is well suited for addressing unsteady problems, 
such as, for example, forward flight. In these cases, mov- 
ing boundaries are handled by means of the space-time 
deformed element technique [84]. 
For efficiently solving hover problems a formulation start- 
ing from the Euler equations written in a rotating frame 
is included in the program. This allows treatment of a 
hovering rotor as a steady problem when the unsteadi- 
ness in the wake can be neglected, thus allowing the use 
of the less computationally expensive constant-in-time 
formulation. 
Assuming that the axis of rotation is coincident with the 
z axis and that the angular velocity is R, the compressible 
Euler equations in a rotating frame can be expressed in 
terms of the absolute flow variables U as 

U,* + (Ai - v ~ I ) .  U,, = E + EG, (19) 

where v1 = -Ry, 212 = Rx, 213 = 0 and EG can be 
defined as 

0 0 0 0 0  
0 n o 0  

or, in terms of entropy variables, EG = CV, C = 
-pT C. Clearly, by the nature of the gyroscopic terms, 
we have that CT = -C. 
We remark that the rotating frame formulation of the 
compressible Euler equations in terms of absolute flow 
variables is formally equivalent to a change of variables 
(modification of the jacobians A, into Ai - viI) plus the 
introduction of a source term EG. 
From the formulation expressed in equation (19), a 
TDG/LS finite element formulation can be easily con- 
structed along the lines of equation (18). In an inertial 
frame, a definition of T that results in full upwinding on 
each mode of the system [70] is given by 

-1 
T = A,' (ATdiag(A;')AtAi') , 

where 

and [; are the local element coordinates, xo and re- 
ferring to the time dimension. In a rotating frame, we 
redefine At as 

Solution to (21) can be obtained based upon the eigen- 
problem 

(ATdiag(A,')At - X2Ai') . Ti = 0. (22) 

The eigenproblem is simplified by means of a similarity 
transformation S that diagonalizes AI and A2 and sym- 
metrizes A3 [86]. However, the term arising from EG 
remains non-symmetric. We have implemented both the 
non-symmetric and a symmetric form obtained by drop- 
ping the contribution of EG from (22) and have found 
that for the hovering rotors that we have studied in our 
numerical simulations, the symmetric form gives results 
indistinguishable from those of the non-symmetric form 
at a lower computational cost. 
Discretization of the weak form implied by the TDG/LS 
method leads to a non-linear discrete problem, which is 
solved iteratively using a quasi-Newton approach. At 
each Newton iteration, a non-symmetric linear system 
of equations is solved using the GMRES algorithm. We 
have developed scalable parallel implementations of the 
preconditioned GMRES algorithm and of its matrix-free 
version [37, 361. This latter -algorithm approximates the 
matrix-vector products with a finite difference stencil 
with the advantage of avoiding the storage of the tangent 
matrix, thus realizing a substantial savings of computer 
memory at the cost of additional on-processor computa- 
tions. Preconditioning is achieved by means of a nodal 
block-diagonal scaling transformation. 
In this work we have implemented a simple error indicator 
based on the norm of the gradient of the flow variables 
and a slightly more sophisticated one [47] for linear 
elements which takes the basic form 

hZ I Second Derivative of 9 I 
h I First Derivative of 9 I + E  1 Mean Value of 9 1 ' e;  = 

where e, is the error indicated at node i, h is a mesh size 
parameter, !D is the solution variable being monitored, 
E is a tuning parameter. The second derivative of il? is 
computed using a variational recovery technique. 
The edge values of the error indicator are computed by 
averaging the corresponding two nodal values. These 
edgewise error indicator values are then used for driving 
the mesh adaptation procedure. Appropriate thresholds 
are supplied for the error values, so that the edge is refined 
if the error is higher than the maximum threshold, while 
the edge is collapsed if the error is less than the minimum 
threshold. 
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5.2.2 Boundary Conditions for Hovering Rotors 
The imposition of the correct far-field boundary condi- 
tions is a critical issue in the analysis of hovering rotors, 
when one wants to give an accurate representation of the 
hovering conditions within a finite computational domain. 
For determining the inflowloutflow far-field conditions 
we have adopted the methodology suggested by Srini- 
vasan er al. [Sl], where the 1-D helicopter momentum 
theory is used for determining the outflow velocity due 
to the rotor wake system. The inflow velocities at the 
remaining portion of the far-field are determined con- 
sidering the rotor as a point sink of mass, for achieving 
conservation of mass and momentum within the compu- 
tational domain. 
Another important condition that must be considered for 
the efficient simulation of hovering rotors is the period- 
icity of the flow field. This allows consideration of a 
reduced computational domain given by the angle of peri- 
odicity rl, = 2 r/nb. ns beiig the number of rotor blades. 
The introduction of the periodicity conditions in the ro- 
tating wing flow solver has been implemented treating 
them as linear Z-point constraints applied via transforma- 
tion as part of the assembly process. This approach has 
the double advantage of being easily parallelizable and of 
avoiding the introduction of Lagrange multipliers. On the 
other hand, it requires the mesh discretizations on the two 
symmetric faces of the computational domain to match on 
a vertex by vertex basis. Since this is not directly obtain- 
able with the currently used unstructured mesh generator, 
a mesh matching technique has been developed for a p  
propriately modifying an existing discretization. 
In order to simplify the discussion, define one of the 
symmetric model faces as "master" and the other as 
"slave". The face discretization of the slave model face 
is deleted from the mesh, together with all the mesh 
entities connected to it. The mesh discretization of the 
master model face is then rotated of the symmetry angle rl, 
about the axis of rotation and copied onto the slave model 
face, yielding the required matching face discretizations. 
The matching procedure is then completed filling the gap 
between the new discretized slave face and the rest of 
the mesh using a face removal technique followed by 
smoothing and mesh optimization. 
The imposition of the constraints can be formalized in 
the following manner. Consider the partition of the un- 
knowns V in internal (Vi), master (V,) and slave (Va), 
as 

v = (Vi,V,,V.). 

The slave unknowns V, can be expressed symholically 
as functions of the master unknown V, as 

where 

or, for the j-th master-slave pair of nodes as 

R being the rotation tensor associated with the rotation 
of the symmetry angle I,/I about the axis of rotation. 
The minimal set of unknowns P = (Vi, V,) is related 
to the redundant set V by 

The unconstrained linearized discrete equations of motion 
read 

J .  AV = r, 

where J is the tangent matrix and r is the residual vec- 
tor. Applying the transformation I? to the unconstrained 
system yields the constrained reduced system 

Refer to [74] for implementation details of thii technique. 

5.23 Subsonic and l h n m n i c  Hovering Rotors 
Caradonna and Tung [U] have experimentally investi- 
gated a model helicopter rotor in several subsonic and 
transonic hovering conditions. These experimental tests 
have been extensively used for validating CFD codes for 
rotating wing analysis. The experimental setup was com- 
posed of a twAladed rotor mounted on a tall column 
containing the drive shaft. The blades had rectangular 
planform, square tips and no twist or taper, made use of 
NACA0012 airfoil sections and had an aspect ratio equal 
to six. 
Figure 61 shows the experimental and numerical values 
of the pressure coefficients at different span locations for 
three subsonic test cases investigated by Caradonna and 
Tung, namely 8, = OD and Mt = 0.520, 8, = So and 
Mt = 0.434, 8, = 8' and Mt = 0.439. The agreement 
with the experimental data is good at all locations, in- 
cluding the section close to the tip. Only two pressure 
distributions are presented for each case for space limita- 
tions, however similar correlation with the experimental 
data was observed at all the available locations. Rela- 
tively crude meshes have been employed for all the three 
test cases, with the coarsest mesh of only 101,OOO tetra- 
hedra being used for the 8, = 0' case, and the finest of 
152,867 tetrahedra for the 8, = 8" test problem. 
The analysis was performed on 32 processing nodes of an 
IBM SP-2. Reduced integration was used for the interior 
elements for lowering the computational cost, while full 
integration was used at the boundary elements for better 
resolution of the airloads, especially at the trailing edge 
of the blade. The GMRES algorithm with blcck-diagonal 
preconditioning was employed, yielding an average num- 
ber of GMRES iterations to convergence of about 10. The 
analysis was advanced in time using one single Newton 
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Figure 61, Computed and experimental pressure 
coefficients on the blade at different span locations, for 

the three. subsonic cases 8, = 0'. Mt = 0.520: 
e, = 50, M, = 0.434; e, = 80, Mi = 0.439. 

iteration per time step and a local time stepping strat- 
egy denoted by CFL numbers ranging from 10 at thf 
beginning of the simulation to 20 towards convergence 
yielding a reduction in the energy norm of the residual 01 
almost four orders of magnitude in 50 to 60 time steps 
The symmetric form of the least-squares stabilization w a  
employed, and the discontinuity capturing operator w a  
not activated. 
Figure 62 shows the experimental and numerical values 
of the pressure coefficients for a transonic case denoted by 
0, = 8O and Mt = 0.877. The first two plots of Figure 62 
present the pressure distributions obtained using an initial 
crude grid consisting of 142,193 tetrahedra. Three levels 
of adaptivity were applied to this grid in order to obtain 
a sharper resolution of the tip shock, yielding a final 
mesh characterized by 262,556 tetmhedra. The pressure 
distributions obtained with the adapted grid are shown in 
the third and fourth plots of the same picture. Note that 
the smearing present in the first two plots and due to the 
numerical viscosity introduced in the formulation with the 
purpose of stabilizing it, has disappeared. Consistently 
with the nature of the Euler equations, the shocks appear 
as jumps and are resolved in only one or two elements. 
Note also the appearance of the analytically predicted 
overshoot just aft of the shock which is typical of the 
transonic Euler solutions. 
The effect of the adaptation of the mesh on the resolution 
of the shock is clearly demonstrated in Figure 63, where 
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Figure 62. Computed and experimental pressure 
coefficients on the blade, at two different span locations 
close to the tip, 8, = 8', Mi = 0.877. Top two plots: 

initial coarse 142,193 tetrahedron grid. Bottom two plots: 
adapted (three levels) final 262,556 tetrahedron grid. 

Figure 63. Density isocontour plots on the upper 
surface of the blade tip, 8, = 8". Mr = 0.877. At left: 

initial coarse grid. At right: final adapted grid. 

the density isocontour plots at the upper tip surface are 
presented for the initial and adapted meshes. The effect 
noted in Figure 62 can be more fully appreciated here. 
The parallel adaptive analysis was conducted on 32 pro- 
cessing nodes with the GMRES algorithm, using once 
again reduced integration for the interior elements and 
full integration at the boundary elements. The symmetric 
form of the least-squares stabilization was employed, to- 
gether with the discontinuity capturing term for improved 
shock confinement. After partitioning of the initial coarse 
mesh using the IRB algorithm, the simulation was per- 
formed for 60 implicit time steps with CFL condition 
equal to 10 in the initial 20 steps and equal to 15 for 
the remaining steps. The results gathered at convergence 
were used for computing an error indicator based on den- 
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sity and Mach number, which was employed f a  driving 
the parallel adaptation of the mesh. For the new ver- 
tices created by the adaptation process, the solution was 
projected from the coarser mesh using simple edge in- 
terpolation. The solution obtained in this way was used 
for restarting the analysis, which was advanced for 60 
time steps with a Cn number of 15. Similarly, a sec- 
ond adaptation was performed, yielding the final mesh for 
which another 40 time steps were performed at a CFL of 
20, until convergence in the energy norm of the resid- 
ual, The average number of GMRES cycles per time 
step throughout the analysis was 8. 
Figure 64 shows the mesh at the upper face of the blade 
tip, before and after refinement. The different grey levels 
indicate the different subdomains, i.e. elements assigned 
to the same processing node are denoted by the same level 
of grey. Note the change in the shape of the partitions 
from the initial to the final mesh, change generated by the 
mesh migration pmedure for rebalancing the load after 
the refinement procedure has modified the discretization. 
Note also how the mesh nicely follows the shock. 

Figure 64. Meshes with partitions on the upper surface 
of the blade tip, 0, = 8". Mt = 0.877. At left: initial 

coarse grid with IRB partitions. At right: final 
adapted grid with partitions obtained by migration. 

53. Effectiveness of Parallel Adaptive 
Analysis Procedures 
The evaluation of the efficiency and performance of a 
parallel adaptive analysis is a task complicated by the 
numerous aspects that must be considered. In the follow- 
ing we will try to address at least some of them with the 
help of a classical problem in CFD, namely that of the 
Onera M6 wing in transonic flight, that we have used in 
the early stages of development of our code for validation 
purposes. This wing has been studied experimentally by 
Schmitt and Charpin [65] and it has been employed by 
numerous researchers for validating both structured and 
unstructured flow solvers. ?he wing is characterized by 
an aspect ratio of 3.8, a leading edge sweep angle of 

30". and a taper ratio of 0.56. The airfoil section is an 
Onera D symmetric section with 10% maximum thick- 
ness-to-cord ratio. 
We consider a steady flow problem characterized by an 
angle of attack a = 3.06' and a value of M = 0.8395 for 
the freestream Mach number. In such conditions, the flow 
pattern around the wing is characterized by a complicated 
doublc4mhia shock on the upper surface of the wing 
with two triple points. 
We first address the scalability of the parallel solver on 
a fixed mesh, i.e. we analyze the spee&ups attained by 
the code using one single mesh and varying the num- 
ber of processing nodes. This is a classical measure of 
efficiency, and it is important to show that the imple- 
mented procedure performs well with respect to it before 
measuring other properties that are more pertinent to an 
adaptive analysis. 
?he simulation was performed using a mesh consisting of 
128,172 tetrahedra, using the matrix-free GMRES algo- 
rithm with reduced integration of the interior elements and 
full integration of the boundary elements. A local time 
stepping strategy was employed with one single Newton 
iteration per time step, using a CFL condition of 5 in the 
first 20 time steps and a CFL equal to 10 for another EO 
time steps, attaining a drop in the residual of three orders 
of magnitude. The mesh was partitioned using a paral- 
le1 implementation of the IRE algorithm. The time for 
partitioning, even if small when compared with the time 
needed for achieving convergence in the finite element 
analysis, is not considered in the following. The analysis 
was run on 4, 8, 16, 32, 64. 128 processors of an IBM 
SP-2 and the results are presented in Figure 65 in terms 
of the inverse of the wall clock time versus the number 
of processing nodes. The highly linear behavior of the 
parallel algorithm shows the excellent characteristics of 
scalability of the code. 

I 
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Figure 65. Parallel efficiency evaluated at 
fixed mesh for the Onera M6 wing in transonic 

flight. 128,172 tetrahedra, IRB partitions. 

The same problem was then adaptively solved in order to 
more accurately resolve the complicated features of the 
flow. An initial coarse mesh of 85,567 tetrahedra was par- 
titioned with the IRB algorithm on 32 processing nodes 
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and the analysis was carried on to convergence as previ- 
ously explained. The results obtained were then used for 
computing an error indicator based on density and Mach 
number, which was employed for performing a first level 
of refinement, bringing the mesh to 131,OOO tetrahedra. 
The solution was projected on the new vertices using a 
simple edge interpolation technique, and the analysis was 
then performed on the refined mesh for 80 time steps at a 
CFL number of 10. Similarly, other two levels of refine- 
ment followed by subsequent analysis were performed, 
obtaining an intermediate 223,499 tetrahedron mesh and 
a final 388,837 tetrahedron mesh. 
Figure 66 shows the density isocontour plots on the upper 
surface of the wing corresponding to the initial and the 
final mesh discretizations. Note that the forward shock 
is barely visible in the results obtained with the initial 
coarse mesh, the aft shock presents significant smearing 
and the lambda shock located at the tip of the wing is 
not resolved. As expected, considerable improvement in 
the resolution of the shocks can be observed when mesh 
adaptation is employed. 
Figure 67 shows the initial and final meshes. Once again, 
elements assigned to the same subdomains are denoted 
by the same grey level. For the final mesh, the partitions 
shown are those obtained with the iterative load balancing 
algorithm. 
The fact that the analysis is conducted in parallel doesn’t 
modify the convergence characteristics of a classical ti 
refinement technique, such as the one considered here. 
However, while in a serial environment essentially only 
the accuracy of the solution versus the size of the prob- 
lem and its computational cost enter into the picture, 
in a parallel environment other factors must be consid- 
ered. In particular, we consider here the evolution dur- 
ing the analysis of two fundamental parameters: (i) the 
surface-to-volume ratio for the subdomains, and (ii) the 
number of neighbors of each subdomain. The first of 
these two parameters essentially dominates the volume 
of communication in terms of the size of the messages 
to exchange, while the second parameter dominates the 
number of messages that each processor must send and 
receive. 
In a parallel adaptive environment, the issue is then: 
given certain repartitioning algorithms, which is the qual- 
ity of the partitions that they produce compared to their 
relative cost? It is well known that certain classes of 
partitioning algorithms, such as the Spectral Bisection 
method, produce very high quality partitions. However, 
the cost associated with spectrally bisecting increasingly 
larger meshes during an adaptive analysis would be pro- 
hibitive. Therefore in this work we consider two rela- 
tively low cost approaches to the problem, the previously 
mentioned parallel IRE3 repartitioning and the iterative 
load migration scheme. 
Two distinct runs were made, the only difference between 
them being the repartitioning strategy adopted. In both 
cases, all the stages of the analysis -initial IRB parti- 
tioning, flow solution, error sensing, adaptation and load 

Figure 66. Onera M6 wing in transonic 
flight, (I = 3.06O. M = 0.8395. Density 

isocontour plots for the initial and final meshes 

balancing- were performed automatically in parallel on 
32 processing nodes, i.e. without ever leaving the parallel 
environment. The load balancing algorithm was activated 
three times during the adaptation of each of the meshes, 
after the refinement, after the snapping of the newly gen- 
erated vertices to the curved boundaries of the model and 
after the local retriangulationS. At every call, the algo- 
rithm was requested to perform only approximately eight 
migration iterations, yielding a maximum out of balance 
number of elements per processing node equal to one at 
the end of each refinement level. This strategy allows 
better efficiency of the various stages of the adaptive al- 

We remark that in the current implementation. snapping 
can also cause load imbalance since it makes use of 
local triangulation. 
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&lob = Boundary Faces/Faces. 

fi i)  Neighbor measures: 

N,, = m=(Neighbors,/(Procs - l)), 

Navrg = (E Neighbors,/(Procs - l))/Proca. 
i 

All these quantities are reported in Figure 68 versus the 
number of tetrahedra in the mesh at a certain adaptive 
level normalized by the number of tetrahedra in the initial 
mesh. The solid line represents the values of the parame- 
ters obtained for the parallel adaptive analysis where the 
iterative mesh migration procedures were employed. The 
dashed line corresponds to the parallel adaptive analysis 
where the refined meshes were repartitioned after each 
adaptive step using the parallel IRB algorithm. 
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Figure 68. Boundary faces and neighbor statistics for 
the parallel-adaptive analysis of the Onera 
M6 wing in transonic flight using the mesh 

migration and IRB rebalancing schemes. 

From the analysis of the first two plots at the top of 
Figure 68, it is clear that the migration procedures im- 
plemented in this work control very effectively the sur- 
face-tevolume ratios, which in fact remain constant and 
fairly similar to the ones obtained with the IRB parti- 
tioning for the whole simulation. On the other hand, the 
second two plots of the same figure show that the num- 
ber of neighbors of each subdomain tends to increase with 
the number of adaptive steps performed. A more detailed 
analysis shows that in general each subdomain is con- 
nected by a significant amount of mesh entities (vertices, 
faces, edges) only with a reduced number of neighbors, 
while it shares a very limited number of mesh entities 
with the other neighbors. We are currently investigating 
ways of removing such small contact area interconnec- 
tions, in order to achieve a better control on the number 
of neighbors. 

A 

A 

A 

1 

Figure 67. Onera M6 wing in transonic flight, 
a = 3.06'. M = 0.8395. Initial and final meshes. 

Grey levels indicate processor assignment. 

gorithm that can then operate on balanced or nearly bal- 
anced meshes. This "incremental" rebalancing capability 
represents a nice advantage of the iterative load balancing 
scheme over other algorithms. The parallel repartitioning 
algorithm was instead activated just once at the end of 
each adaptive step. 
The meshes obtained during the two previously men- 
tioned parallel adaptive simulations of the Onera M6 wing 
were analyzed for gathering data on the overall perfor- 
mance of the analysis. Figure 68 reprts plots of the 
boundary faces and neighbor statistics. The quantities 
plotted are defined as: 
( i j  Surface-tevolume measures: - 

The different partition statistics provided by the two re- 
balancing algorithms and shown in the previous figure 

s,, = ms(Boundary Facesi/Facesi), . 



6.46 

clearly have an impact on the performance of the flow 
solver. For example, the ratio of the wall clock tim- 
ings for the flow solutions performed on the final adapted 
mesh was found to be 0.83, in favor of the repartitioning 
algorithm. It should be pointed out that this is not an o b  
jective measure of efficiency of the rebalancing strategy, 
in the sense that it depends on the algorithm used for the 
flow solution. On the contrary, S,,, Sglob, N,, and 
Navrg are objective measures. 
The two approaches were also compared in terms of rela- 
tive wall clock timing cost. The repartitioning algorithm 
outperformed the migration scheme at each adaptive step. 
The ratio of the iterative migration wall clock time to the 
rebalancing wall clock time was found to be 4.07 at the 
first level (131,000 tetrahedron mesh), 4.41 at the sec- 
ond (223,1499 tetrahedron mesh) and 2.21 at the thud 
(388,837 tetrahedron mesh). 
These preliminary test results seem to indicate that the 
iterative load migration scheme tends to be more compu- 
tationally expensive than the parallel IRB algorithm, and 
at the same time does not yield the same quality of the 
partitions, at least with the currently implemented heuris- 
tics. However, it must not be forgotten that these tests are 
certainly not as exhaustive as one might desire for d i n g  
in favor of one approach over the other. Moreover, it is 
clear that this result is partially due to the low cost of the 
IRB partitioning, and comparing the migration scheme 
with other more expensive partitioning algorithms might 
lead to opposite conclusions. For example, if an algo- 
rithm with better control over the number of neighbors 
could be devised, then the migration scheme used in con- 
junction with a high quality initial partition (such as the 
one provided by a spectral partitioning) could yield an 
overall better performance than a repartitioning scheme. 
A more complete analysis of the relative merits of the 
two approaches will be the subject of future work. 

I' 

6. Closing Remarks 

This paper has presented progress made to date on the 
development of parallel automated adaptive analysis pro- 
cedures for unstructured meshes which operate on dis- 
tributed memory MIMD computers. m e  procedures pre- 
sented allow for the reliable analysis, through the use 
of automated adaptive analysis, of large problems which 
can only be supported by the computational power of 
parallel computers. Specific emphasis was placed on the 
techniques needed to effectively support evolving meshes 
such that computational load balance was maintained 
throughout the simulation process. 
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Introduction and Overview 

The intent of these notes is to review several 
basic algorithms and procedures used in com- 
putational fluid dynamics (CFD) with emphasis 
on algorithms suitable to  parallel computing en- 
vironments. In particular, we will concentrate 
on numerical methods in CFD which require the 
formation and solution of large sparse linear sys- 
tems of algebraic equations. These matrices will 
arise from the discretization of the Navier-Stokes 
equations which govern compressible fluid flow. 
From this point of view, a large portion of these 
notes addresses algorithms used in the forma- 
tion, manipulation, and solution of sparse ma- 
trices on serial and parallel computers. 

Chapter 1 begins by considering the task of or- 
dering (numbering) vertices of an unstructured 
mesh. Good vertex orderings can greatly im- 
prove the efficiency and memory storage required 
in many sparse matrix algorithms. For example, 
techniques for iterative matrix solution some- 
time; exploit incomplete matrix factorizations. 
The quality of these factorizations usually de- 
pends on the ordering of matrix unknowns and 
consequently mesh vertices. Next, we review the 
mesh partitioning problem. Three simple proce- 
dures for decomposing an arbitrary triangulated 
domain into a specified number of subdomains 
are discussed. Each subdomain may then be 
placed on an individual processor of the paral- 
lel computer. Communication between proces- 
sors is accomplished using message packet ex- 
changes. This computational model places de- 
mands on the partitioning algorithms so that 
computational work is evenly distributed (bal- 
anced) while requiring minimal communication 
among processors. 

In Chapter 2 we turn to  the compressible 
Navier-Stokes equations. These equations repre- 
sent conservation principles for mass, momenta, 
and energy of a Newtonian fluid. In high 

speed aerodynamic applications, the effects of 
turbulence are very important and must either 
be accurately computed or approximately mod- 
eled. This increases the difficulty and complex- 
ity of solving the Navier-Stokes equations. In 
the present applications, a one-equation turbu- 
lence model equation is added to the basic time- 
averaged Navier-Stokes equations. The result- 
ing system of coupled integral equations are dis- 
cretized using a finite-volume technique based on 
linear least squares reconstruction. This yields a 
system of nonlinear coupled algebraic equations 
which are solved via Newton iteration. The most 
difficult task in Newton's method is the solution 
of the resulting sequence of large sparse linear 
matrix problems. Iterative methods based on 
preconditioned bi-conjugate gradient and gener- 
alized minimum residual iterations are consid- 
ered. Numerical examples are then shown to 
demonstrate the convergence characteristics of 
the uniprocessor algorithm. 

Chapter 3 focuses on domain decomposed vari- 
ants of the uniprocessor CFD algorithm given in 
Chapter 2. As a starting point, the Schwarz do- 
main decomposition algorithm for elliptic equa- 
tions is reviewed. This technique requires the 
isolated solution of subdomain problems. Next 
we derive the well-known relationship between 
convergence rate of the Schwarz algorithm and 
overlap of subdomains. This analysis reveals 
that special care must be taken to  insure that 
the domain decomposition procedure does not 
become ill-conditioned as the number of sub- 
domains is increased. The Schwarz algorithm 
can also be applied to the solution of nonelliptic 
equations. Computations of inviscid and viscous 
fluid flow are shown to demonstrate the favorable 
effect of increasing subdomain overlap on conver- 
gence of the Schwarz algorithm. In these compu- 
tations, each subdomain is independently solved 

Paper presented in an AGARD-FDP- VKI Special Course on "Parallel Computing in CFD", held at the VKI, Rhode-Saint-Genese, Belgium, 
from 15-19 M a y  1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807. 



using the Newton algorithm given in Chapter 
2. An alternative to the conventional domain 
decomposition procedure is the Newton-Krylov 
technique with the overlapping Schwarz method 
used to  precondition the underlying global ma- 
trix problems. Inviscid and viscous computa- 
tions are shown to demonstrate the efficiency of 
this method. 

Finally, Chapter 4 presents some selected com- 
putations performed on the IBM SP2 parallel 
computer located at  NASA Ames. 
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Chapter 1 

Graph Ordering and Partitioning 
Algorithms for CFD 

In this section we review a few basic graph al- gin a discussion of the Cuthil-McKee algorithm 
gorithms which are frequently used in numerical by simply stating the procedure. 
computations performed on parallel computers. 

Algorithm: Graph ordering, Cuthill-McKee. 

1.1 Graph Ordering 
Step 1. Find vertex with lowest degree. This is 
the root vertex. 

The particular ordering of mesh (graph) ver- 
tices can sometimes alter the amount of com- 
putational effort and memory storage required in 
solving sparse matrix problems. In sparse matrix 
L - U factorization, the number of Ill elements 
produced during factorization is dependent on 
the ordering of equations. Good ordering algo- 
rithms attempt to reduce the number of fill ele- 
ments produced during factorization. Similarly, 
the quality of inexact factorizations such as in- 
complete Cholesky and incomplete L - U factor- 
ization also depends on the ordering of matrix 
unknowns. Reordering vertices can also lead to 
improved processor efficiency by reducing “cache 
misses”, an important consideration for compu- 
tations performed on workstation class comput- 
ers. In parallel computation, ordering algorithms 
can be used as means for partitioning a mesh 
among processors of the computer. This last 
consideration will be addressed in a later section. 

In this section we review the Cuthill-McKee 
[CM691 ordering algorithm. This popular algo- 
rithm is simple yet surprisingly effective. Other 
popular ordering strategies which deserve atten- 
tion but are not discussed here include the mini- 
mum degree algorithm [GLSl] and &sen’s algo- 
rithm [&s68] for bandwidth reduction. We be- 

Step 2. Find all neighboring vertices connecting 
to the root by incident edges. Order them by 
increasing vertex degree. This forms level 1. 

Step 3. Form level k by finding all neighbor- 
ing vertices of level k - 1 which have not been 
previously ordered. Order these new vertices by 
increasing vertex degree. 

Step 4 .  If vertices remain, go to step 3. 

The heuristics behind the Cuthill-McKee al- 
gorithm are very simple. In the graph of a ma- 
trix, neighboring vertices must have numberings 
which are near by, otherwise they will produce 
entries in the matrix with large band width. The 
idea of sorting elements among a given level is 
based on the heuristic that vertices with high de- 
gree should be given indices as large as possible 
so that they will be as close as possible to ver- 
tices of the nect level generated. Figures 1.1 and 
1.2 show the dramatic improvement in matrix 
bandwidth achieved using the Cuthill-McKee al- 
gorithm. 

Studies of the Cuthill-McKee algorithm have 
shown that the fill characteristics of a matrix 
during L - U decomposition can be greatly re- 
duced by reversing the ordering of the Cuthill- 
McKee algorithm, see George [Geo’ll]. This 



where n is the size of the matrix. While this 
does not change the bandwidth of the matrix, 
it can dramatically reduce the fill that occurs 
in Cholesky or L - U matrix factorization when 
compared to the original Cuthill-McKee order- 
ing. 

1.2 Graph Bisection and Mesh 
Part it ioning 

An efficient partitioning of a mesh for distributed 
memory computation is one that ensures an even 
distribution of computational workload among 
the processors and minimizes the amount of time 
spent in interprocessor communications. The 
former requirement is termed load balancing. For 
if the load were not evenly distributed, some pro- 

~i~~~~ 1.1: N~~~~~~ matrix elements produced cessors will have to sit idle at synchronization 
by a ~ ~ ~ l a e i ~ ~  discretization (left) on the trim- points waiting for other processors to catch up. 
gulated domain shown in Figure 1.4. The second requirement comes from the fact that 

communication between processors takes time 
and it is not always possible to hide this latency 
in data transfer. The actual cost of communi- 
cation can often be accurately modeled by the 
linear relationship: 

cost = cl + pm 

where (I is the time required to initiate a mes- 
sage, p is the rate of data-transfer between two 
processors and m is the message length. For n 
messages, the cost would be 

Cost = C((I + pm,). 
n 

This cost can be reduced in two ways: (1) re- 
duce the number of messages n, (2) reduce the 
size of each message m. Consider the partition- 
ing shown in Figure 1.3. The left figure requires 
3 pairwise communication messages of length 5 
while the right figure requires 4 pairwise mes- 
sages of length 2 and 2 pairwise messages of 
length 1. The choice of partitioning depends 
critically on the hardware dependent constants 
(I and p. 

In practice, it is difficult to partition an un- 

Figure 1.2: Nonzero matrix elements after 
Cuthill-McKee reordering (right). 

amounts to a renumbering given by 

k - n - k t l  
structured mesh while simultaneously minimiz- 
ing the number and length of messages. In the 



(a) (a) 

Figure 1.3: (a) Mesh partitioning with mini- 
mized number of messages, (b) Mesh with mini- 
mized message length. 

Figure 1.4: Typical triangulation for a square- 
shaped domain. 

following paragraphs, a few of the most popu- 
lar partitioning algorithms which approximately 
accomplish this task will be discussed. All the al- 
gorithms discussed below: coordinate bisection, 
Cuthill-McKee, and spectral partitioning are dis- 
cussed in the paper by Venkatakrishnan, Simon, 
and Barth [VSB92]. This paper evaluates the 
partitioning techniques within the confines of an 
explicit, unstructured finite-volume Euler solver. 
Spectral partitioning has been extensively stud- 
ied by Simon [Simgl] for other applications. Al- 
though we restrict our discussion to  partitioning 
planar triangulations, all of the algorithms dis- 
cussed below extend naturally to arbitrary cell 
complexes and higher space dimensions. 

Figure 1.5: Geometric dual of previous triangu- 
lation for a square-shaped domain. In the following sections, we consider mesh 

partitioning via recursive application of graph 
bisection. The mesh is first divided into two sub- 1.2.1 Recursive Coordinate Bisection 
meshes of nearly equal size. Each of these sub- 
meshes is subdivided into two more sub-meshes In the coordinate bisection algorithm, graph ver- 
and the process in repeated until the desired tex coordinates are sorted either horizontally or 
number of partitions p is obtained ( p  is a inte- vertically depending of the current level of the 
ger power of 2). In many applications it makes recursion. A separator is chosen which balances 
Sense to partition mesh cells such that parti- the number of vertices. Vertices are then 2- 
tion boundaries correspond to edges of the mesh. colored depending on which side of the separator 
This can be viewed as a vertex partitioning ofthe they are located. 
graph dual to  the cell complex, see for example Figure 1.6 shows the recursive coordinate bisec- 
Figures 1.4 and 1.5. In this way, dual graph ver- tion of a multi-element airfoil geometry. In this 
tices are associated with mesh cells. example, the dual graph of the triangulation has  
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Figure 1.6: Recursive coordinate bisection parti- 
tioning of multi-element airfoil mesh. 

been used for partitioning with dual graph ver- 
tices assigned the centroid coordinates of cells in 
the triangulation plane. The recursive coordi- 
nate partitioning is very efficient to create but 
gives sub-optimal performance on parallel com- 
putations owing to  the long message lengths than 
can routinely occur. 

1.2.2 Recursive Cuthill-McKee Bisec- 
tion 

The Cuthill-McKee algorithm described earlier 
can also be used for recursive mesh partition- 
ing. In this case, the Cuthill-McKee level struc- 
ture is used to 2-color vertices of the graph. 
A separator is chosen either at the median 
of the level structure ordering or at the level 
set boundary closest to the median. This lat- 
ter technique has the desired d e c t  of reducing 
the number of disconnected sub-graphs that oc- 
cur during the recursive partitioning. Figure 
1.7 shows a Cuthill-McKee partitioning for the 
multi-element airfoil mesh. The Cuthill-McKee 
ordering tends to produce long boundaries b e  
cause of the way that the ordering is propagated 

tion messages required to exchange boundary in- 
formation tends to be higher using the Cuthill- 
McKee algorithm when compared to the coordi- 
nate bisection algorithm. The results shown in 
[VSB92] for multi-element airfoil grids indicate 
an overall performance on parallel computations 
which is slightly worse than the coordinate bi- 
section technique. 

Figure 1.7: Recursive Cuthill-McKee bisection 
partitioning of multi-element airfoil mesh. 

1.2.3 Recursive Spectral Bisection 

The last partitioning algorithm considered is 
the spectral bisection algorithm [PSLSO] [SimSl] 
[VSB92] [BSS3] [HL95]. This algorithm deter- 
mines a 2-color bisection of a graph such that 
the cut-weight, W,, is approximately minimized. 
The cut-weight of a graph is defined as the sum 
of edge weights for all edges with vertices of dis- 
joint color. For simplicity, we will consider un- 
weighted (unit edge weight) graphs. The prob- 
lem of minimizing the cut-weight of a graph sub- 
ject to the constraint that the number of ver- 
tices is balanced is related to a simpler problem 
in graph bisection which is known to be nphard 
[GJS76]. The spectral bisection algorithm can be 

through a mesh. The number of communica- seen as an algorithm for approximately solving 
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compute the eigenvalue problem. Recently, this 
cost has been reduced by the use of a multilevel 
Lanczos algorithm as discussed in [BS93]. 

The spectral partitioning exploits a peculiar 
property of the "second" eigenvector of the 
Laplacian matrix associated with a graph. Con- 
sider a the graph G = (V, E) consisting of n ver- 
tices and rn edges. The Lapladan matrix of a 
graph C E RnX" is given by 

C = - V + A .  

where A E RnXn is the standard adjacency ma- 
trix 

this nphard combinatorial problem by solving 
a continuous (hopefully nearby) problem. The 
algorithm consists of the following steps: 

Algorithm: Spectral Graph Bisection. 

Step 1. Calculate the matrix C associated with 
the Laplacian of the graph. 
Step 2. Calculate the eigenvalues and eigenvec- 
tors of C. 
Step 3. Order the eigenvalues by magnitude, 
A1 5 A2 5 A3 ... A,. 
Step 4 .  Determine the smallest nonzero eigen- 
value, Af and its associated eigenvector xf (the 
Fiedler vector). 
Step 5. Sort elements of the Fiedler vector. 
Step 6. Choose a divisor at the median of the 
sorted list and 2-color vertices of the graph which 
correspond to elements of the Fielder vector less 
than or greater than the median value. 

Figure 1.8: Recursive spectral bisection parti- 
tioning of multi-element airfoil mesh. 

The spectral partitioning of the multi-element 
airfoil is shown in Figure 1.8. In [VSB92] it was 
observed that superior performance was attained 
for parallel flow field computations using spectral 
partitioning. The cost of the spectral partition- 
ing is high even using a Lanczos algorithm to 

(1.1) 
Aij = [ 1 e(vi ,wj) E G 

0 otherwise 
and 'D is a n x n diagonal matrix with entries 
equal to the degree of each vertex, Dj = d(vi). 
Alternatively, the Laplacian of a graph can be 
written in terms of the rectangular incidence ma- 
trix C E %"xm 

-1 

0 otherwise 

if vi is the origin of edge I 
if vi is the destination of edge 1 . c i ~  = 1 

(1.2) 
{ 

Using the incidence matrix, the Laplacian of the 
graph is given by 

L = CCT (1.3) 

Multiplication of CT times a vector z E %" 
is equivalent to differencing vertex values of z 
across each edge so that 

( " j - Z i )  a - -2 T C C T ~  = zTCz (1.4) 
e(ui.wt)EE 

This provides an easy way to verify the sym- 
metry and positive semi-definiteness of C. Also 
from the above definitions, it should be clear that 
rows of C each sum to zero. Define the summa- 
tion vector s € %", s = [l, l,l, ... IT. By con- 
struction we have that Ls = 0. This means that 
at least one eigenvalue is zero with s as an eigen- 
vector. To understand the spectral bisection al- 
gorithm, define a partitioning vector p E Rn 
which 2-colors the vertices of a graph 

p = [+I, -1, -1, +1,+1, ..., +l,-1IT (1.5) 
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depending on the sign of elements of p and the In the spectral bisection method the discrete np 
one-to-one correspondence with vertices of the hard problem is replaced by a simpler continu- 
graph, see for example Figure 1.9. A critical ob- ous minimization problem. The constraint that 
servation is that the cut-weight can be expressed p take on integer values f l  is removed and r e  
in terms of the partitioning vector p and the placed with a normalization condition on a con- 
Laplacian of the graph by the following easily tinuous partitioning vector. 
verified formula Continuous Bisection Problem (z E 9") 

w, = z p  1 ,  Cp. 
1 T (minimize continuous 
4 cut -weight 

minimize -2 Cz 
(1.6) 

subject to 
ITS = 0 (balanced partitioning) 
zTz = n (normalization) (1.8) 

After solving the continuous bisection problem 
(exactly), the partitioning vector p is obtained 
using discrete approximation: 

p(') = sign(di)). (discrete approximation) 

It is the replacement of the discrete partitioning 
vector by a continuous counterpart followed by 
discrete appmzimation which makes the spectral 
bisection algorithm appmzimate. 

The solution to the continuous bisection prob- 
lem has a well-known (exact) solution in terms of 
the eigenvector associated with the first nonzero 
eigenvalue. To show this consider the spectral 
decomposition of L, 

(1.9) 

Figure 1.9: Arbitrary graph with 2-coloring n 

c = A; yiy', o 5 A; 5 ~j i < j (1.10) 

where A; E 8 and y; E 9" denote the eigenvalues 
The objective of the spectml bisection algorithm and orthonormal eigenvectors of C. For ease of 
is to determine a balanced 2-color partitioning of exposition, assume the graph consists of a sin- 
each connected component of the graph such that gle connected component and let A2 denote the 
the number of edges cut by the partition boundary first nonzero eigenvalue. The cut-weight of the 
(the cut-weight) is appmzimately minimized. continuous problem is given by 

state the discrete bisection problem: 

Discrete Bisection Problem (nphard) 

showing separator and CUT edges (left) 
i=l 

Using the cut-weight formula, we can succinctly n 

(1.11) 4wc = 2TCz = CA;(y;  T 2  2) . 
i=2 

Since the orthonormal eigenvectors completely 
span all space in 9" and yl = s, we can expand 
z (suitably normalized) in terms of the remaining 
eigenvectors vectors 

1 
4 

minimize -pTCp (minimize cut -weight) 
. 

n n 
z = n1/2 c p;y; = n1/2 ((1 - (r)1/2yz + ai c qy;  

subject to (1.7) 
pTs = 0 (balanced partitioning) 

(discrete partitioning vector) ( i 7 2 )  
i=2 

p(i) = fl 



with Cy==,@ = 1 and xy’3uj = 1. A direct 
computation yields 

which is minimized when (I = 0 so that the so- 
lution 

z = n1I2y2 

satisfies the continuous bisection problem with a 
lower bound cut-weight estimate of 

7 4  W, = -. 
4 

Figure 1.10 shows contours of the second eigen- 
vector for a multi-element airfoil mesh. 

Figure 1.10: Contours of Fiedler Vector for Spec- 
tral Partitioning. Dashed lines are less than the 
median value (right). 

1.3 Graph Quadrisection and 
Higher Order Partition- 
ings 

One complaint commonly leveled against recur- 
sive bisection algorithms is that they are too 
greedy and lack “look ahead” properties. For 
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example, if the goal is to  construct a partition- 
ing containing 4 subdomains then a more opti- 
mal partitioning might be possible by consider- 
ing all four partitions simultaneously when de- 
termining the cut-weight of the graph rather 
than cut-weights for pairwise bisections. This 
has prompted generalizations [HL95] of the spec- 
tral bisection algorithm which require more than 
one eigenvector. The spectral quadrisection al- 
gorithm by Henrickson and Leland [HL95] uses 
the first two eigenvectors, yz and y3, associated 
with nonzero eigenvalues. The algorithm then 
considers orthogonal combinations subject to  a 
rotation angle 8 

1 2  = yzcos8 -+ y3sin8 
5 3  = -yz sin 8 t y3 COS 8. 

Again using discrete approximation, p!’ = 

tors are calculated from which quadrants are as- 

The angle 8 is determined by minimizing the dis- 
tance between I and p 

sign(zt)), pt)  = sign(z3 (4 ), partitioning vec- 

signed {( +1, +I), (-1, t I),  (-1, -I), (+I,  - 1)). 

(1.14) 
This has the effect of finding continuous solu- 
tions that are nearby the desired discrete so- 
lution. The results shown in [HL95] are very 
promising and show a definite improvement over 
the standard spectral bisection algorithm (which 
is already considered to  be quite good). The 
technique extends naturally to higher order par- 
titionings. 
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Chapter 2 

A Uniprocessor CFD Algorithm 

2.1 Basic Flow Equations 

We consider the standard compressible Navier- 
Stokes equations in integral form for a domain R 

with bounding surface 80 ( x V T - n )  

An analysis of the viscous flux reveals the follow- 
ing limiting form for no slip surfaces: 

0 
g(u,Vu;n) ,=g, .n= p V u j . n  . 

”/ at n 
dV+Ln(f.n)dS = L n ( g . n ) d S  (2.1) The last entry in the viscous flux vanishes for 

adiabatic flow. These conditions can be enforced 
where U represents the vector of conserved vari- weakly. In addition, for viscous flow the strong 
ables, f and g the inviscid and viscous flux vec- condition can be applied that the velocity vector 
tors respectively. In Rd the vectors are written vanish at the surface. 
in Einstein summation form (j = 1,2,. . . , d): 

2.1.2 Far Field Boundary Conditions 

Let A(u; n) denote the flux Jacobian matrix di- 
rected along the normal vector n 

A(u;n) = --.n 

(2.3) and define the characteristic projector matrices 

p * - - 2 [  - I f sign(A)] . 

via Characteristic Projectors 
(2.2) 

PUi 

(2.5) 
df 

ui(E t P) UkTjk - Wj du 

(2.6) 
1 with viscous stresses given by 

(a,,> 
~ (sui 8.j) 

(2‘4) The far field inviscid flux is computed from r = x  - - + - .  azi aZi azi 
- 

and Fourier heat transfer given by q = -KVT. 
Finally, an ideal gas is assumed P = PRT = (7 - 
1) ( E  - $(U2 t v”) .  known Friedrichs [Fri58] strong solution admis- 

sibility condition for symmetric hyperbolic prob- 
2.1.1 Surface Boundary Conditions lems: 

At solid walls with no permeability and/or no p - p + U +  P-p-U, = P-UCO. (2.8) 
slip boundary conditions the inviscid flux re- For viscous flow, the inviscid flu (2.7) can be 

combined with a weak Neumann condition for duces to the following form: 

the viscous flux. Alternatively, strong Dirich- 
let conditions can be imposed as dictated by the 
physical problem. 

f, = f(ii), U = P+u t P-U, (2.7) 

so that the boundary condition satisfies the well- 



2.2 Turbulence 2.3 The Spatial Discretization 
Algorithm 

In addition to the basic Navier-Stokes equations, 
we model the effects of turbulence on the mean The flow equations are discretized in space us- 
flow equations using an eddy viscosity turbulence ing a finite-volume method. In this technique 
model. In a report with Baldwin [BBSO], we the solution domain is tessellated into a num- 
proposed a single equation turbulence transport ber of smaller subdomains (0 = UR;). Each 
model with the specific application to unstruc- subdomain serves as a control volume in which 
tured meshes in mind. This model was subse- mass, momentum, and energy are conserved. In 
quently modifled by Spalart and Allmaras [SA921 the present application, the control volumes are 
to improve the predictive capability of the model formed from a median dual obtained from the 
for wakes and shear-layers as well as to sim- triangulation, see Figure 2.1. 
plify the model's dependence on distance to 
solid walls. In the present computations, the 
Spalart model is solved in a form fully coupled to 
the Navier-Stokes equations. The one-equation 
model for the viscosity-like parameter C is writ- 
ten T m &  

- MeaanDual 

- 
- - [v. ((U -t q v q  t caz(Viqa] B6 ------* Clrichlet Dual 4 1 DP 

Dt 
_ -  

U 
2 .. ' -cwlfw ( 5 )  + c*1%'. (2.9) .. 2' 

5 In the Spalart model the kinematic eddy viscos- 
ity is given by Figure 2.1: Local triangulation with Dirichlet 

(2.10) and median duals. ut = Ffwl 

and requires the following closure functions and 
constants 

Fundamental to the finite-volume method is 
the definition of the integral cell average. Com- 
ponentwise, the integral cell average is defined in 
each subdomain as: 

U? s = IwI -t z f w 2  

x3 
x3 + 41 f"1 = 

X 
f"Z = 1 - 

1 + XfWl 
I 

U 

- 1 
ui = -li U dV 

vi 
where vi = $,,, dV.  The integral conservation 
law can then be rewritten in the following form: 

The integral cell averages are the basic un- 
with w the fluid vorticity, d the distance to the knowns (degrees of freedom) in the scheme. The 
closest surface, and the constants cbl = 0.1355, task at hand is to evaluate the flux integral 
C& = 0.622, cwl = 7.1, c,l = 3.24, c,2 = 0.3, given these cell averages of the solution. The 
cws = 2.0, K = .41, U = 2./3.. The model also basic solution process is summarized in the fol- 
includes an optional term for simulating transi- lowing steps and further details are given in 
tion to turbulence. (Bar911 [BJ89]: 
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Reconstruction 
Given integral averages of the solution in each 

control volume, reconstruct a piecewise polyno- 
mial which approximates the behavior of the so- 
lution in each control volume. 

Flux Quadrature 
Rom the piecewise polynomial description of 

the solution, approximate the flux integral in 
(2.11) by numerical quadrature. Because the 
piecewise polynomials are not continuous at con- 
trol volume boundaries, special flux functions are 
employed which are functions of multiple solu- 
tion states. Those flux functions which can be 
characterized as some approximate and/or ex- 
act solution of the Riemann problem of gasdy- 
namics result in upwind biased approximations. 
Present computations utilize Roe’s approximate 
Riemann solver [Roe81]. 

Evolution 
Given a numerical approximation to the flux 

integral, evolve the system in time using any 
class of implicit or explicit schemes. This results 
in new integral cell averages of the solution. The 
solution process can then be repeated. 

It is important to  realize that for steady-state 
calculations, the spatial accuracy of the scheme 
depends solely on the reconstruction and flux 
quadrature steps. Moreover, the use of cell aver- 
ages can be replaced by pointwise values of the 
solution associated with each control volume. In 
our application, we place the solution unknowns 
at mesh vertices. As we will see, this can greatly 
simplify the reconstruction step. Unfortunately, 
schemes based on these reconstructed polynomi- 
als are subject to  the generation of spurious os- 
cillations near discontinuities and regions of high 
solution gradient unless additional measures are 
taken which limit extremum behavior of the re- 
constructed polynomial. These measures are the 
basis for the class of MUSCL schemes devd- 
oped by van Leer [vL79]. This framework of 
reconstruction followed by monotonicity enforce- 
ment extends naturally to  unstructured meshes 
in higher dimensions and sufficient conditions re- 
quired by the reconstructed polynomial to guar- 
antee monotonicity are generally known, see for 
example [Bar94]. 

2.3.1 Linear Least-Squares Recon- 
struction 

Consider a vertex vo and suppose that the solu- 
tion varies linearly over the support of adjacent 
neighbors of the mesh. In this case, the change 
in vertex values of the solution along an edge 
.+vi, vo) can be calculated by 

  VU)^ . (ri - ro) = ui - uo 

where r denotes the spatial position vector. This 
equation represents the scaled projection of the 
gradient along the edge e(vi, VO). A similar equa- 
tion could be written for all incident edges sub- 
ject to an arbitrary weighting factor. The result 
is the following matrix equation, shown here in 
two dimensions: 

or in symbolic form C Vu = f where 

in two dimensions. Exact calculation of gradi- 
ents for linearly varying U is guaranteed if any 
two row vectors wi(ri - ro) span all of 2 space. 

This implies linear independence of L 1 and L 2. 

The system can then be solved via normal equa- 
tions 

+ + 

The row vectors qi are given by 

.. 
(232)  

+ +  
with l i j  = ( L i . L j). 

Note that reconstruction of N independent 
variables in gd implies (d:l) + d N inner prod- 
uct sums. Since only d N of these sums involves 
the solution variables themselves, the remain- 
ing sums could be precalculated and stored in 
computer memory. Using the edge data struc- 
ture, the calculation of inner product sums can 
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be calculated for arbitmry combinations of poly- and similarly the residual vector R for all mesh 
hedral cells. In all cases linear functions are re- vertices. The basic scheme is written as 
constructed exactly. 

Algorithm: Weighted Least-SWares Gradient where 
Calculation 

DUt = R(U) (2.13) 

is a positive diagonal matrix. perform- 
ing a backward Euler time integration, equation 

For k = 1, n(e) through edges (2.13) is rewritten as 
j 1  = e-'(k, 1) Edge origin 
j z  = e - ' (k ,~ )  Edge destination 
A z  = w ( k ) .  (z ( j2 )  - z(j1)) Weighted A z  
Ay = w ( k ) .  ( y ( j z )  - y(jl)) Weighted Ay 
lll(jl) = lll(jl) + Az . Az Z l 1  orig sum 
Zll(jz) = lll(jz) + AZ . Az 111 d& sum 

I&,) = 112( j z )  + A z  . Ay Z1z dest sum 
h ( j 1 )  = h ( j 1 )  + A z  . Ay 112 orig sum 

Au = w ( k ) .  (u(j2) - u(j1)) Weighted Au 
fi(ji) + = A z .  AU L 1f sum 
f i ( jz)  + = A z .  Au 

D(U"+' - U") = At R(U"+') 

where n denotes the iteration (time step) level. 
Linearizing the right-hand-side of the preceding 
equation in time produces the following form: 

D(U"+'U") = At R(U") + -(U"+'- U")] 
(2.14) 

By rearrangement of terms, we arrive at the delta 
form of the backward Euler scheme 

dR" 
dU [ 

+ 

+ 
L z f  sum f z ( i i )  + = A Y .  AU dR" 

fz ( jz )  + = AY. A U  At dU 
[" - -1 (U"+' -U") = R(U"). (2.15) 

Endfor 
Note that for large time steps, the scheme be- 

For j = l ,n(v)  Process vertices dividing by det comes equivalent to Newton's method. In prac- 
tice the diagonal entries are locally scaled as a 
exponential function of the norm of the residual 

det = Zll(j). ZZZ(j )  - lTz(j)  
U&) = ( l z z ( j ) .  fl(d - llZ(j). fz(j))/det 
.Y(j)  = (hl(j) ' f Z ( A  - l l Z W  . fdj)) /det  

9 cflmaz = f(llR(U)"ll) 
_ -  D, cfl, 
At cflmm 

-- Endfor 

This formulation provides freedom in the choice so that when I I R ( U ) ~ ~  ~ o, ,-flm,, ~ oo and the 

and/or solution. Classical approximations in one scheme is technically an Newton 
dimension can be recovered by choosing geomet- method which becomes exact only in the final 

Of coefficients, W. These weighting scheme approaches Newton's method. It should 
 dents can be a function Of the geometry be emphasized that by using this strategy, the 

t 

2. Data dependent choices 
nCal weights Of the form w: = l . / I A r ~  - 
for values Of t = O, 

few iterations of the computation. 
The following two sections present examples 

which demonstrate the convergence character- 
istics of Newton's method for inviscid and vis- 

are discussed in [Bar94]. 

cous fluid flow problems. In viewing these ex- 
2.4 Exact and *pproximate amples, the reader can assume that each matrix 

problem required in the Newton scheme is solved Newton Methods 
"exactly." In reality, these matrix problems are 

In this section we consider implicit solution solved iteratively to a user specified tolerance. 
strategies for the upwind discretization scheme The topic of solving the linear algebra problem 
described in the previous section. Define the so- will be discussed in detail in later sections. The 
lution vector test case examples are presented at this time so 

that they may be used in the remaider of these 
notes for comparison purposes. U = [Ul, U21 u3, ..., .NIT 
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2.4.1 Test Case 1: Inviscid Flow Past 
a Multi-Element Airfoil 

As a first test case, inviscid Euler flow is com- 

( M ,  = 0.2) with a 2' free stream angle of attack. 
Figures 2.3 - 2.5 show Mach number contours, 
surface pressure coefficient, and convergence his- 
tory for the calculation. An initial time step was 

uuted about a multi-element airfoil geometry as chosen for the calculation corresponds to 
shown in Figure 2.2. 

Figure 2.2: Multi-element airfoil mesh, 4900 ver- 
tices. 

Fieure 2.3: Solution isomach contours about 

- 
an effective local CFL number of approximately 
50, but over the next 10 iterations the effective 
CFL number quickly reaches lo8. This test case 
will be used extensively in Chapter 3 when eval- 
uating parallel solution strategies. 

............... i" ....... .""""""" _. .............. i. .............. i. ............... 

24 I 
-0.25 0.00 0.25 050 0.75 1.00 1.25 

X/C 

Figure 2.4: 
puted from multi-element geometry. 

Surface pressure coefficient com- 

Newton Iteration 
multi-element geometry, M ,  = 0.2, CY = 2.0'. 

Figure 2.5: Numerical solution convergence his- 
The mesh contains approximately 4900 mesh tory. 

vertices. Subsonic flow conditions are imposed 
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bulence is computed about the multiple-element 
airfoil geometry. This geometry has been trian- 
gulated using the Steiner triangulation algorithm 
described in [Bar95], see Figure 2.6. The mesh 
contains approximately 22,000 vertices with cells 
near the airfoil surface attaining aspect ratios 
greater than 1OOO:l. This example provides a 
demanding test case for CFD algorithms. The 
experimental flow conditions are M, = .20, 
Q = 16‘, and a Reynolds number of 9 million. 
Experimental results are given in [VDMG92] and 
computed results are shown in Figure 2.7. Even 
though the wake passing over the main element 
is not well resolved, the surface pressure coeffi- 
cient shown in Figure 2.8 agrees quite well with 
experiment. The convergence history in Figure 

2.4.2 Test Case 2: Viscous Flow Past 
a Multi-Element Airfoil 

Figure 2.6: Multi-element airfoil triangulation, 
22,000 vertices. 

e 

Figure 2.7: Multi-element airfoil solution iso- 
ma& contours, M, = 0.2, Q = K O 0 ,  Re = 9.0 
million. 

As a second test case, viscous flow with tur- 

l Z T  ....... ~ ............. i ~ . ~  i 

24 4 
-0.250.00 0.25 0.50 0.75 1.00 1.25 

XIC 

Figure 2.8: Comparison of computational and 
experimental surface pressure coefficients. 

2.9 shows that roughly twice as many iteration 
steps are needed for the viscous turbulent flow 
calculation when compared to the inviscid flow 
computation of Test Case 1. This seems to be 
typical for aerodynamic high lift computations. 
This is contrasted by single element airfoil com- 
putations which show very little difference in the 
number of iterations needed when computing in- 
viscid and viscous flow. This test case will also 
be used extensively in subsequent chapters for 
evaluating various solution strategies. 
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Dim. nnz (Distancel) 
2 7N 
3 14N 

lo 0 10 20 30 40 50 60 

nnz (Distance-2) 
19N 
55N 

Newton Iteration 

Figure 2.9: Solution convergence history for Case 
2 computation. 

2.4.3 Storage Requirements 

It is worthwhile to assess the computer mem- 
ory requirements for storing sparse matrices ob- 
tained from discretizations on simplicial meshes 
(triangulations). In practice we will be solv- 
ing systems of I coupled equations so that each 
nonzero entry of the matrix is actually a small 
1 x 1 block. The schemes discussed in previous 
sections require data from distanceone neigh- 
bors in the graph (mesh). In addition, the 
higher order accurate schemes require distance- 
two neighbors in building the scheme. First 
consider the situation in which the scheme re- 
quires only distance-one neighbors. The num- 
ber of nonzero entries in each row of the ma- 
trix is related to the number of edges incident to 
the vertex associated with that row. Or equiva- 
lently, each edge e(wi, w j )  will guarantee nonzero 
entries in the i-th column and j - th  row and sim- 
ilarly the j - th  column and i-th row. In addi- 
tion nonzero entries will be placed on the diagc- 
nal of the matrix. From this counting argument 
we see that the number of nonzero block entries, 
nnz, in the matrix is exactly twice the number 
of edges plus the number of vertices, 2 E + N  (ap- 

proximately 7N in 2-d). Using a similar count- 
ing argument we obtain the following approxi- 
mate requirements for storing distance-one and 
distance-two neighboring information as a sparse 
matrix: Note that the entries of the sparse ma- 

Table 2.1: Storage Estimates for Sparse Matrices 

trix associated with Newton's method are actu- 
ally small 5 x 5 and 6 x 6 blocks in two and 
three dimensions respectively. At first glance, 
this storage requirement appears prohibitively 
large. While this may be true to some extent 
today, the memory capacity of computers is ex- 
panding at a rapid rate. It is quite reasonable 
to expect that in the foreseeable future sufficient 
memory will be available for solving most prob- 
lems of engineering interest. Even so, it is pos- 
sible t o  reduce, and in some cases eliminate, the 
explicit storage of the Jacobian matrix without 
compromising the favorable convergence charac- 
teristics of Newton's method. These techniques 
will be discuss in subsequent sections. 

2.4.4 Calculating Analytic Jacobian 
Derivatives 

In this section we address the task of comput- 
ing Jacobian derivatives for Newton's method. 
In the following section we consider the related 
task of multiplying an arbitrary vector by the 
Jacobian matrix. 

A major task in the overall calculation of the 
Jacobian derivatives for the finite-volume dis- 
cretization is the linearization of the numeri- 
cal flux vector with respect t o  the two solution 
states, e.g. given the Roe flux function [Roe811 

1 
h(uR,uL;n) = 5 (f(uR,n)+f(uL,n))2.16) 

- - I A ( ~  R L  ,u ;n)l (U" - e 7 1  
2 
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dh we require the Jacobian terms 
Exact analytical expressions for these terms are 
available [Bar87]. In constructing the Jacobian 
matrix for the entire scheme it is useful to con- 
ceptualize the finite-volume scheme in composi- 
tion form: 

and 9. Sparse Matrix-Vector Multiply 

The most straightforward strategy is to analyt- 
ically compute and store the Jacobian matrix 
using a compressed storage scheme designed for 
sparse matrices. This strategy has the added 
benefit that a copy of the matrix can also be used 
as a preconditioner for the iterative solver. In ad- 
dition, the explicit storage also permits the’for- 
mation of the transposed matrix problem which 
is often encountered in optimization procedures 
coupled with Newton’s method. Obviously, a de- 
traction of this approach is the large storage re- 
quirement . 

R(U)  = Ll(C2(U>) (2.18) 

with C1 representing the flux quadrature and ac- 
cumulation step and C2 representing the data 
reconstruction step. In this form, each operator 
requires distance- 1 information. The Jacobian 
matrix can then be written as 

(2.19) Approximate Frechet Derivatives 

An alternative to the analytic calculation of 
with the critical observation that the Jacobian 
matrix can be calculated as the sparse product 
of two matrices. This could potentially be an 

FrCchet derivatives is to approximate them using 
a finite-difference approximation [Joh92] [BS94] 
[EW94]. The required FrCchet derivative is a lim- 

expensive task, but because of the special form of iting form of the difference approximation 
C1 and C2, the resulting sparse product produces 
at most distance-2 fill and can be computed at 
reasonable cost. 

dR . R ( U  + EP) - R(U)  -p = hm 
dU € 4 0  E 

2.4.5 Exact and Approximate Jaco- 
bian Matrix-Vector Products 

Consider the standard matrix equation Ax- b = 
0. As we will see, iterative matrix solution 
algorithms for this problem such as the gen- 
eralized minimum residual method (GMRES) 
and the stablized bi-conjugate gradient method 
(Bi-CGSTAB) both require the computation of 
matrix-vector products of the form Ap for some 
arbitrary p vector. In the approximate Newton 
algorithm 

(2.20) 

The primary concern with this approach is the 
accuracy of derivatives and the optimal choice 
for E. If derivatives are not computed accurately 
then methods such as GMRES or Bi-CGSTAB 
iteration may stall or fail. Using a forward dif- 
ference approximation, E must be carefully cho- 
sen. In general it is insufficient to choose E as a 
constant such as the square root of machine pre- 
cision. Johan [Joh92] also mentions this fact and 
gives some analysis for choosing E but this analy- 
sis assumes that R(u )  is well scaled. A common 
choice for E is given by 

(2.22) 

so that a major computation in the matrix- 
vector Product AP is the computation of Jato- 

with suitably chosen constants h0 and An 
alternative is to use higher order accurate for- 

bian derivatives in the direction of p (a FrCchet mulas such as central differencing at double the 
derivative) computational cost. 

(2.21) The clear attraction of this approach is the Ap = -p. 
low memory requirement. On the other hand, 

Several possible strategies exist for computing the numerical computation of FrCchet derivatives 
the needed F’rdchet derivatives: does not produce a matrix approximation which 

- d R  
dU 
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can be used to precondition the system. Lastly, 
for situations requiring the solution of the trans- 
posed matrix problem, there does not appear to 
be a Frdchet-like technique for constructing the 
matrix-vector product 

using numerical difference approximations. We 
consider this a serious shortcoming of the 
met hod. 

Exact Product Forms 

In this section we will present a technique for 
constructing matrix-vector products which is an 
exact calculation of the FrCchet derivative. Ex- 
tension to systems and the inclusion of diffusion 
terms are also handled using this technique. 

Let G(E,V)  denote the triangulation in 2-d 
or 3-d with n vertices and m edges. Next recall 
the definition of the incidence matrix given in 
Equation (1.2): 

-1 

0 otherwise 

if v; is the origin of edge 1 
I C;i = 1 if v; is the destination of edge 1 . 

(2.23) 
Let h = h(uL, uR; n) denote the numerical flux 
function as defined by Equation 2.17. For a sys- 
tem of 1 coupled differential equations, the Ja- 
cobian matrix entries are actually small 1 x I 
blocks. For ease of exposition, we tacitly treat 
these small blocks as scalar entries. Under these 
simplifications, the desired matrix-vector prod- 
uct is given by 

{ 

(2.24) 
where [g] E RmXm with nonzero diagonal ele- 

ments, and [$$-I E $Imxn. If we do not incorpo- 
rated monotonicity enforcement into the recon- 
struction procedure then a considerable simplifi- 
cation occurs in the calculation of matrix-vector 
products. The main idea is given in the following 
almost trivial lemma. 

Lemma: Let v = R(U) = R(u1, u2, ..., Un) de- 
note an arbitrary order reconstruction operator. 
If R depends linearly on U; then 

Proof: Linearity implies that 

n 
v = R ( u ~ ,  ~ 2 ,  ..., Un) = C Q ~ U ;  

i=l 

so that & = a;. The desired result follows im- 
mediately 

n dv dv 
du - p  = c -p; = trip; = R ( p ) .  

i=l du, i=l 

This lemma suggests the following procedure for 
calculation of matrix-vector products. 

(2.25) 
This amounts to a reconstruction of the vec- 

tors pL and pR from p using the same recon- 
struction operator used in the residual computa- 
tion. Next, the linearized form of the flux func- 
tion is computed: 

Finally, the linearized fluxes are assembled using 
the same procedure as the residual vector assem- 
bly. In actual calculations, the conservative flow 
variables are not reconstructed, thereby necessi- 
tating that a change of variable transformation 
be embedded in the formulation. This is not a 
serious complication. 

Equation ( 2.25) does not reveal how to con- 
struct the transposed matrix-vector product 

[%ITP. 

But by introducing addition matrices, we can de- 
rive the required equation. In addition, the fol- 
lowing forms allow the incorporation of mono- 
tonicity limiting in the reconstruction process, 



7-19 

although we have not done so here. Define 
A,S+,S- E PXm 

If e(vi ,  Vj) E G(E, V), then 

A;, = SL = 1, Aj, = SJ& = 1 

and zero otherwise. In addition, define the diag- 
onal m x m matrices containing weighted edge 
geometry [AS] and [Ay] as well as the n x n 
diagonal matrices D,, containing pointwise de- 

Using these matrices the left and right recon- 
structed states obtained by least squares recon- 

terminant values f h  or t e least squares solution. 

struction are given by 

u L =  [ [s-1' 

u R =  [[S']' 

+ [ $1 [S-] [ [Dtt] A [Az] + [DtY] A [AY]] CT 

+ [+I [s-lT [ [ D ~ . I A [ A ~ I  + [ D ~ I A [ A Y I ] C T  

L 

- [ $1 [S'] [[D==l A [Az] + [DtY] A [Ay]] CT 

U 

- [ $1 [s'] [ [Dyt] A [Az] + [DYY] A [Ay] CT U. 1 1  

Just as equations ( 2.26) have an implemen- 
tation using an edge data structure (one would 
newer store the connectivity as A or C in dense 
matrix form), the transposed equation has an 
implementation using an edge data structure for 
the calculation of [ s] p. For example, the ma- 
trix operation ATV performs a gather and sum 
of the two edge vertex values of v for each and 
every edge. The matrix operation Aw performs 
a scatter and accumulate of an edge quantity w 
to the two edge vertices locations for each and 
every edge. Similar edge operations exist for the 
incidence matrix C. Thus we have constructed 
a technique for matrix-vector products based on 
elementary edge operations which also permits 
constructing the transposed matrix-vector prod- 
uct. The ability to write the entire algorithm in 
terms of a sequence of edge operations makes the 
parallel implementation straightforward. 

2.4.6 Solving the Matrix Problem 

The next task is to solve the large sparse linear 
system of the form 

A p - b = O  

From these formulas the transposed matrix- Produced by Newton's method. Owing to the 
nonsymmetry of A, we consider solving this 
system using the generalized minimum residual 
method (GMRES) of Saad and Schultz [SSSS] 
and the stabilized bi-conjugate gradient method 
of Van der Vorst [vdV92]. Both algorithms are 
outlined in Table 2.2. The paragraphs given be- 
low briefly describe the methods but for a full 

[Azl AT [DYII + [AY] AT [DYY1] [s-] [ $1 description we defer to the lectures of Prof. Van 
der Vorst. 

problem problem is easily calculated 

dR 
[ E ] P  = [[s-I 

AZ + c [ [A21 AT [ L I  + [AY1 AT [D*#l] [s-] [ ?] 

J The GMRES Algorithm 

The GMRES algorithm explicitly forms an 

Krylov sequence [ro, Aro, A2r0,.  . . , A"-'ro] us- 

- C [ [Az] AT [L] + [AY] AT [Otyl] [S'] [ F] 
orthogonal basis [ v o , v ~ , v ~  ,..., v k ]  from the 

] [ - g y T C T p .  
ing a modified Gram-Schmidt orthogonalization 
procedure. Using this orthogonal basis, GMRES 

(2.26) iterates are computed 

Pk = PO i- aivi + ( ~ 2 ~ 2  + . . . + akvk (2.27) 
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by minimizing the residual norm 

(2.28) 

The algorithm requires k + 1 vector inner prod- 
ucts, k + 1 SAXPY operations, and k matrix- 
vector multiplies for iteration k. Thus as k in- 
creases, the storage increases linearly and the 
computation quadratically. To avoid the stor- 
age and computation demands imposed by large 
matrices, Saad and Schultz devised a variant, 
GMRES(k), in which the GMRES algorithm is 
restarted every k steps. The proper choice of k 
is problem dependent and a strong function of 
the choice and quality of preconditioning. 

The Bi-CGSTAB Algorithm 

The stabilized bi-conjugate gradient method (Bi- 
CGSTAB) is a short recurrence method designed 
for nonsymmetric matrices. Roughly speaking, 
Bi-CGSTAB combines the basic bi-conjugate 
gradient method with GMRES( 1). The inclusion 
of the GMRES(1) steps is intended to smooth 
the irregular convergence behavior of the basic 
Bi-CG method. The Bi-CGSTAB method re- 
quires 4 vector inner products, 6 SAXPY op- 
erations, and 2 matrix-vector products for each 
iteration. 

Matrix Preconditioning 

Practical experience has shown that the success 
or failure of the GMRES and Bi-CGSTAB al- 
gorithm hinges heavily on the choice of matrix 
preconditioning. In left preconditioned form, the 
matrix problem becomes 

P ( A p  - b) = 0. (left preconditioned) (2.29) 

An alternative is the right preconditioned system 

APP-’p  - b = 0. (right preconditioned) 
(2.30) 

If available, the optimal choice of P (left or 
right) is clearly A-’ or its L - U factors. In 
this instance the underlying matrix problem is 
trivially solved in one step. More generally, we 
consider finding a nearby preconditioning matrix 

such that %(AI‘) < %(A) ,  i.e. AP is better con- 
ditioned than A alone. 

In the present applications, we consider a pre- 
conditioning matrix based the incomplete lower- 
upper (ILU) factorization of the matrix A.  ILU 
preconditioning is a popular and robust precon- 
ditioning procedure for use in iterative matrix 
solvers. ILU factorization is a modification to  
the standard Gaussian elimination for which the 
nonzero fill pattern is either preimposed or de- 
termined. dynamically based on the size or lo- 
cation of fill elements. In this way the amount 
of storage required can be specified and in some 
instances minimized. Technical aspects of ILU 
factorization such as existence and spectral prop- 
erties have been proven for M-matrices, but the 
general applicability is much broader and well 
documented in the literature. The triangular 
solves required in the application of ILU precon- 
ditioning generally give the method global sup- 
port. This is usually considered a favorable char- 
acteristic of the method. 

The finite-volume scheme with high order data 
reconstruction suggests two possible matrices 
suitable for incomplete factorization. 

1. Distance-1 matrix preconditioning. Con- 
struct the preconditioning matrix from 
the Jacobian matrix associated with the 
lower (first) order accurate discretization of 
the flow equations. This matrix involves 
distance-1 neighbors in the triangulation. 
Matrix-vector products are computed “ex- 
actly” using the Jacobian matrix associated 
with the full second order accurate scheme. 

2. Distance-2 matrix preconditioning. Use the 
Jacobian matrix of the entire second or- 
der accurate scheme for both matrix-vector 
products and preconditioning. 



Algorithm: Premnditioned GMRES(L) 

m restart iterations 
Vn := b - AD" initial residual 

For I = 1, m 
- .- 

P := llrol la 

yj := P V j  

VI := ro/P 
For j = 1, k 

w := Ayj 
For i = 1. i 

Table 2.2: GMRES and Bi-CGSTAB Algorithms 
for Nonsymmetric Matrices 

initial residual norm 
define initial Krylov Performance of GMRES and Bi-CGSTAB 

preconditioning 
matrk-vector prod 
Gram-Schmidt 

inner iterations- I for Case 1 and Case 2 Test Problems 

The test problems given in Sections 2.4.1 and 
2.4.2 provide representative matrices for evalu- .- 

hi j  := ( w , v ~ )  
w := w - hijvi 

End For 
hj+l,j := l lw l l~  

define Krylov vector 

least squares solve 
approximate solution 
convergence check 

vj+l := w/hj+l,j 
End For 
s := mi% ][pel- Hill2 

:= Po + xEl yisi 
If llpel- Hell2 5 c exit 
PO := P restart 

End For 

ating the GMRES and Bi-CGSTAB algorithms. 
In evaluating the iterative methods we construct 
approximate Newton matrices corresponding to 
flow CFL numbers of lo3 and lo8. In addition, 
distance1 and distance-2 preconditioning matri- 
ces are used to accelerate the algorithms. Figures 
2.10-2.11 graph the convergence histories for the 
GMRES and Bi-CGSTAB algorithms in solving 
matrix problems produced from the inviscid flow 
problem given in Section 2.4.1. Since the matrix- 
vector products and preconditioning solves dom- 

Algorithm: Preconditioned Bi-CGSTAB 

ro := b - Apo 
i. := ro 
For i = 1, m 

initial residual 

m total iterations 

method fails 
pi-, := -T r 9 - 1  . 
If pi-1 = 0 (Breakdown) 
I f i = l  

Else 
yi := ri-1 

Pi-1 := (pi-l/Pi-2)(ai-l/wi-l) 
yi := ri-l+ Pi-1(yi-rwi-1vi-1) 

Endif 
j := Pyi preconditioning 
vi := A j  matrix-vector prod 

s := ri-1- aivi 
If llsllz < E 

ai := Pi-lJiTVi 

check tolerance 
pi := pi-1 + ai9 
Exit 

Endif 
i := P S  

t :=Ai 
wi  := tTs/tTt 
p' . -p.  +a.-. s .- s - 1  S Y ~  + w i i  
ri:=s-wit 
If l lr i l la < E Exit 
If wi  = 0 (Breakdown) method fails 

End For 

preconditioning 
matrix-vector prod 

inate the iterative calculation, convergence his- 
tories are plotted against the number of matrix- 
vector products required. Each GMRES iter- 
ation requires one matrix-vector product while 
each Bi-CGSTAB iteration requires two prod- 
ucts. The GMRES algorithm is clearly adversely 
affected by the distance-1 preconditioning. For 
this case the distance1 preconditioned system 
requires roughly twice as many iterations as the 
distance2 preconditioned system. These graphs 
also show the somewhat erratic convergence be- 
havior of the Bi-CGSTAB method. Even so, the 
Bi-CGSTAB appears to require a similar number 
of matrix-vector products when compared to the 
GMRES algorithm. 

The second test case given in Section 2.4.2 is 
more revealing. Matrices have been taken from 
this test case corresponding to CFL numbers 
of lo3 and lo8. Computations show a definite 
degradation in convergence for both methods us- 
ing the distance-l preconditioning, see Figures 
2.12-2.13. In fact for CFL = lo8, the conver- 
gence is unacceptably slow. In general we find 
that when using the distance-1 preconditioning 
matrix, an optimal CFL number exists for con- 
vergence and efficiency which is large but not 
infinite. 
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Matrix-VW P&uc~~ 

Figure 2.10: Case 1 (Inviscid Flow) matrix solu- 

5 i ! 
10 0 is 50 75 loo 125 

j 

Matrix-Vector products 

Figure 2.12: Case 2 (Viscous Flow) matrix solu- - 
tion convergence histories for the GMRES(20) tion convergence histories for the GMRES(30) 
and Bi - CGSTAB algorithms at  CFL = IO3 and Bi - CGSTAB algorithms at  CFL = 103 
using ILU(0) distance-1 and distance-:! precon- using ILU(0) distance1 and distance-2 precon- 
ditioning matrices 

5 I 

100 2Ga 300 
Matrix-Vector Products 

ditioning matrices 

lo 0 25 50 75 100 125 
Matrix-Vector products 

Figure 2.11: Case 1 (Inviscid Flow) matrix soh- Figure 2.13: Case 2 (Viscous Flow) matrix solu- 
tion convergence histories for the GMRES(20) tion convergence histories for the GMRES(30) 
and Bi - CGSTAB algorithms at  CFL = los and Bi - CGSTAB algorithms at CFL = lo8 
using ILU(0) distance-1 and distance-2 precon- using ILU(0) distance-1 and distance-2 precon- 
ditioning matrices ditioning matrices 
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Chapter 3 

Parallel Algorithms 

In this section we review the Schwarz theory for 
elliptic problems. Beginning with analysis of the 
two point boundary value problem, we derive the 
exact theory governing the alternating Schwarz 
method introduced in 1869 by Schwarz [Sch69]. 
Next we consider the discrete Schwarz procedure 
and mention some known results concerning the 
method for unstructured meshes. 

3.1.1 

Consider two point boundary value problem on 
the interval z E [0, L] 

The Model Two Point BVP 

-u)f(z) = f(2) 
u(0) = u(L) = 0 

which has the solution 

(3.6) 
In the following paragraphs we consider the 

additive and multiplicative Schwarz algorithms 
which utilize (3.3) and (3.4). 

The Additive Schwarz Algorithm 

The basic idea in additive Schwarz domain de- 
composition is to consider the iteration 

-V"(z) = f(z), 0 < z < PL 
U k + l ( O )  = O,Uk+l(PL) = Vk(PL) (3.7) 

-V"(z)  = f (Z) ,  az < z < L 
v & + ' ( ~ L )  = V ~ ( ~ L ) , V ~ + ' ( L )  = o (3.8) 

From Equations (3.5) and (3.6) it follows that 
(3.2) 

in terms of the Green's function go(z; t )  defined PL 
U k + W  = ? V k ( P Z )  + Jo g 1 ( z ; t ) f ( t ) d t  

PL on that interval. Equation (3.1) implies that for 
0 < (I < P < 1 the following Dirichlet problems: 

u k ( a L )  t J" g z ( z ; O f ( t ) d t  
L - z  

Irk++) = 

define the error functions 

dk+'(z) = ~ k + l ( z )  - u(z) = (L) ek(pL) 

ek+'(z) = vk+'(z) - U(.) = 

-U"(.) = f(Z), 2 E [O,PL] (1 - a ) L  aL 

~ ( 0 )  = 0, u ( p ~ )  = %(pL) (3.3) where the interval of validity is understood. Next 

-U"(.) = f(z), 
u(aL)  = u(aZ),  U(L) = 0 (3.4) PL 

2 E [aL ,Z]  

L - z  
Let g l ( z ;  t )  and g 2 ( z ;  t )  denote Green's functions 
on the intervals [0 ,  PL] and [aZ, L] respectively. (3.9) 
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Clearly the error behaves linearly and of the form Theorem 3.2 Consider the multiplicative 
Schwarz itemtion given by (3.15), (3.16). There 

k ak k bk L - z  ezists a constant C = C( Uo, V") such that d ( 2 )  = -2, e ( 2 )  = - (-) (3.10) bL L 1-n 

Substitution into (3.9) yields 

so that 

From this we obtain a fundamental r e s i t  in 
domain decomposition concerning the additive 
Schwarz algorithm: 

Theorem 3.1 Consider the additive Schwarz 
itemtion given by (3.7), (3.8). There ezists a 
constant C = C( Uo, V") such that 

The proof follows directly from (3.12) an 

(3.13) 

(3.14) 

(3.9). 

The Multiplicative Schwarz Algorithm 

Two subdomain multiplicative Schwarz algo- 
rithm differs from the additive Schwarz algo- 
rithm only in that the subdomains are updated 
sequentially, i.e. 

-U"(z) = f(z), 0 < z < PL 
U"'(0) = 0,  Uk+'(p&) = V k ( p L )  (3.15) 

-V"(z) = f(Z), nL < z < z 
Vk+' (aL)  = Uk+'(aL),Vk+'(L) = 0 (3.16) 

Following a similar analysis to the previous sec- 
tion we obtain the following result concerning 
the multiplicative Schwarz algorithm: 

4 

aL BL L A  
additive Schwan 

4 

multiplicative Schwan 

Figure 3.1: Comparison of the 2 subdomain ad- 
ditive Schwarz (top) and multiplicative Schwarz 
(bottom) algorithms for the two point BVP. 

The theory clearly shows the favorable conse- 
quences of increased overlap. Figure 3.1 graphs 
the error functions d(z) and e(.) for the two do- 
main additive and multiplicative Schwarz algo- 
rithms. As predicted by the theory, the mul- 
tiplicative algorithm converges at a rate twice 
that of the additive algorithm. Next, consider 
the situation in which both subdomains are of 
equal size with overlap distance 6. Some simple 
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algebra yields t€ 
for the convergence parameter: 

following simple relationship 

which is graphed in Figure 3.2. But as Figure 3.3 

Figure 3.2: Convergence parameter 3 for the 
two subdomain Schwarz iteration with equal sub- 
domain size and overlap 6 / L .  

1 + L  

4 I Increasing Iteration 

L 

additive Schwarz 

I Increasing Iteration t 

L 
multiplicative Schwarz 

Figure 3.3: Comparison of the 4 subdomain ad- 
shows, the algorithm deteriorates as the num- ditive Schwarz (top) and multiplicative Schwarz 
ber of subdomains increases. This effect will be (bottom) algorithms for the two point BVP. 
quantified in the next section. 

3.1.2 The Discrete Schwarz Theory 

In this section we review the Schwarz theory 
for discrete systems using the notation given in 
Chan and Mathew [CM94]. Consider the sym- 
metric positive definite linear system uk+llZ = uk + RTA;'Rl( f - Auk) 

The local subdomain matrices are then given by 
Ai = RiART. The discrete form of the alter- 
nating Schwarz procedure produces the following 
sequence of iterates 

Au = f (3.19) uk+l = uk+1/2 + RzA,'R2( f - Auk+'/z) 

obtained from the 2-D discretization of an el- 
liptic equation on the domain 51 which consists Defining the matrices 
of two overlapping subdomains R1 and Rz such 
that R = RI U Rz, 0 1  fl R2 # 0. Let 11 and 12 de- pi = RTA;'R;A 

(3.21) 

(3.22) 

note the set of interior mesh vertices contained the convergence is governed by the iteration ma- 
in % and Qz respectively. The total number trix (I - &)(I - 5 ) .  This motivates the term 
of esh vertices is n and the number of interior multip[jcative SAwarz iteration. Similarly, the 
vertices in 11 and I2 is nl and nz. Next define sequence of iterates 
the zero extension matrices RT E W x n ~  for each 
subdomain such that for zi E gZ"* uk+'I2 = uk t RFA;'R1( f - Auk) 

(3.20) 
otherwise 

(RT2i)k = 
Uk+l = uk+'tZ + RTA;'Rz( f - Auk) 

(3.23) 
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produces the combined additive Schwarz scheme 3.1.3 Interface Substructuring 

number of algorithms exist in domain decom- 
= U k  t (RTAT'R1 -I- RTAT'R2) (f - AUkf osition which exhibit superior conditioning to  

= MG1(f-Auk) that given in Equation (3.27) while still main- 
(3.24faining parallel scalability. The lectures by Pro- 

fessor Farhat will describe the two-level Finite 

so that the convergence is governed by the sum Element Tearing and Interconnectivity (FETI) 
M,;'A = P1 t P2. The additive Schwarz algo- method which has 
rithm is appealing in parallel computation since (3.28) 
each subdomain solve can be done in parallel. 
Unfortunately the performance of the algorithm conditioning properties for self-adjoint equations 
deteriorates as the number of subdomains in- on meshes with element size h.  In this method, 
creases. This effect was observed in Figure 3.3. Lagrange multipliers are introduced to couple 
Let H denote the characteristic size of each sub- subdomains and ensure continuity at interface 
domain, 6 the overlap distance, and h the mesh boundaries. 
spacing. The condition number K of M,-bA is Other interface strategies begin by ordering 
given in the following theorem: matrix unknowns in each subdomain first fol- 

lowed by interface unknowns as shown in Figure 
Theorem 3.3 There exists a constant C inde- 3.4. This matrix ordering can be represented by 
pendent of H and h such that 

K(M- 'A)  5 C (1 +log2(H/h)) 

K(M,-,'A) 5 CH-' 

Proof: Given in [DW89] [DW92]. 

This theorem describes the deterioration as the 
number of subdomains increases (and H de- 
creases). With some additional work this de- 
terioration can be removed by the introduction 
of a global, coarse subspace and a global restric- 
tion matrix RH E gZnCx". The two level additive 
Schwarz matrix for p subdomains becomes 

~i~~~~ 3.4: Arbitrary domain with subdomains 
1 - 4 and interfaces 5 - 9. 

the following partitioned matrix equation: 
P 

T -1 A I  A2 Mzl = R ~ A ; ; ' R H  t E R ;  A, Ri. (3.26) 
( A 3  A41 (Et) = 

Next consider the 2 x 2 inverse 

c1 c2 

i=l 

Under the assumption of "generous overlap" we 
have the following result: 

Theorem 3.4 There exists a constant C inde- where 
pendent of H and h such that 

A - ' =  (c3 c 4 ) y  

C1 = A;' t A;'A2S-'A3A;' 
K(M,;'A) 5 C (1 t (f)). (3.27) C2 = -A;'AzS-' 

C, = -S-'A3A;' 

Proof: See [DW89] [DW92] and Chan and Zou S = A4 - A3AT1A2 
[CZ93]. c4 = s-l. 
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In practice, we do not require the explicit in- 
verse of the matrix A but rather the ability to 
apply A-' to an arbitrary vector. In this con- 
text the Schur complement strategy requires the 
ability to solve matrix systems for A1 and the 
Schur complement matrix S. Observe that the 
matrix A1 consists of decoupled subdomain milr 
trices which can be solved independently (in par- 
allel). The Schur complement matrix provides a 
form of global coupling of interface unknowns. 
In Smith [Smi92], the Schur complement form 
of the equations is considered together with a 
vertex, edge, and face space decomposition thus 
producing a coarse-fine space algorithm with 

n(M-'A) 5 C ( l  t log(H/6)). (3.29) 

conditioning. A complete discussion of these ad- 
vanced techniques is beyond the scope of these 
notes. Further details and references can be 
found in Chan and Mathew [CM941 and Tallec 
[Tal94]. 

3.1.4 Boundary Condition Admissi- 
bility and Hyperbolic Equations 

Consider the model d-dimensional hyperbolic 
differential equation 

multiplicative Schwarz type algorithm 

x * vu:+' = f 

u:+~ = p+u:+lln, t p - U [ , ,  r nrl 
u1 P u1 Inl t p - 4 ,  rl noz 

with boundary conditions 

k+l  = + k+l 
(3.33) 

followed by 

x . vu:+' = f 
with boundary conditions 

uk+l = P + uz k+l In, tp-u:+l, 

k+l = + k+l u2 P uZ In, tp-ut,, r n  rz 
rznR1.  

(3.34) 

An additive Schwarz-type algorithm can be sim- 
ilarly posed [Quago]. In the next section, we 
will show that numerical schemes based on up- 
wind differencing naturally inherit the admissi- 
bility condition so that Dirichlet overlap con- 
ditions can be imposed even in the hyperbolic 
limit. 

3.1.5 Numerical Admissibility for Hy- 
perbolic Equations 

Consider the model advection equation 

A(z) .Vu(z)  = f(z), z E Sd (3.30) 
ut + c(z)uz = 0, 0 5 z 5 L (3.35) 

in a domain with boundary 
normal n. Next subdivide l? into segments r- 
and r+ associated with incoming ( A .  n < 0) 

and boundary together with the prototypical differencing 
scheme 

~. 
and outgoing ( ( A .  n > 0)) characteristics. The 
admissibility condition requires that Az 

hj+l/z - hj-1/2 = 0, j = 0,1, ..., N 
(3.36) 

U = uln, X . n > O  defined on the mesh z j  = jAz with Az = L I N .  
Next consider the following conventional upwind 
flux function for the interface position located 

U = U[,, X . n < O  (3.31) 

- midway between z j  and zj+l In terms of the characteristic projectors p - 

hj+l/z = ; c j + 1 / 2 ( ~ j + 1  +uj )--Icj+l/~l 2 (uj+l -uj ). 
U = P+Ul$l t P-ul,. (3.32) (3.37) 

$[l+sign(A.n)] the boundary condition becomes 1 1 

After some manipulation, this flux can be placed 
Next consider a two subdomain overlapped prob- in the following revealing form 
lem, R = R1 U Rz with R1 fl Rz # 0. The hyper- 
bolic form of the equations suggests the following hj+1/2 = ~+l 'z(P~+,/zuj t Pj;l/2uj+l) (3.38) 



7-28 

with pj+l12 = i[l + ~ign(cj+~/z)].  If we impose 
a Dirichlet condition on U at z = L for c(L) > 0 
this would normally lead to an ill-posed hyper- 
bolic problem. But by using (3.37) we see that 
numerically the ill-posed data is ignored by the 
scheme. More generally we make the following 
observation: 

Roe'sfluz function [RoeSl] permits the nu- 
merical overspecification of boundary data. 
In the stnmg solution limit, the chamcter- 
istic nature of the jiuz function correctly 
ignores all ill-posed boundary data. 

This remarbable property greatly simplifies the 
implementation of Schwarz schemes for hyper- 
bolic equations. The only complication that 
arises concerns higher order schemes in which the 
flw formula takes a slightly more general form 

where uL and uR denote states obtained from 
higher order reconstruction and extrapolation. 
For example the extrapolation formulas 

would require having values of the solution gra- 
dient &U at subdomain boundaries. A one- 
sided approximation could be made but would 
lead to an inconsistency in residuals at mesh 
vertices distance-1 from subdomain boundaries. 
The alternative is to compute numerical gradi- 
ents in each subdomain followed by at exchange 
at subdomain boundaries as shown in Figure 3.5. 
When gradient data is exchanged in this way, the 
final solution obtained in each subdomain will be 
identical to a single domain computation. 

3.1.6 Numerical Results for Additive 
and Multiplicative Schwarz Iter- 
ation 

The following paragraphs present sample 
Schwarz calculations for the inviscid and vis- 

= 9 . 9 1  

Figure 3.5: Strategy for exchanging boundary 
gradients prior to flux computation. 

2.4.2. In these calculations, we will consider 
overlap distances of 1,2, and 3 as partially d e  
picted in Figures 3.6 and 3.7. Note that we have 
not included a "coarse space" correction to the 
Schwarz method. Consequently, we expect to 
see a degradation in the method as the number 
of partitions increases. 

Figure 3.6: A triangulated and partitioned do- 
main exhibiting distance-l overlap 

Test Case 1 (Inviscid Flow) 

Using the mesh and flow conditions given in 
Section 2.4.1 inviscid flow was computed about 
the multi-element airfoil geometry. Figures 3.8- 
3.11 graph convergence histories for multiplica- 
tive and additive Schwarz iterations. 

cous flow test cases given in Sections 2.4.1 and Each graph contains data for overlap distances 
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Figure 3.7: A triangulated and partitioned do- 
main exhibiting distance2 overlap 

schwan Iterations 

. -  1 ._ * ** i 
........................ .................... 4 

i i ! i 

20 40 60 80 

i AA 1 
i ._ 1 -i 

schwan Iteratiom 

Figure 3.8: Case 1 Inviscid Flow. Variation in Figure 3.10: Case 1 Inviscid Flow. Variation 
Overlap For Multiplicative Schwarz with 1st or- in Overlap For Additive Schwarz with 1st order 
der discretization. discretization. 

of 1,2, and 3 and domains partitioned into 2 and each subdomain problem need only be solved to 
8 subdomains. Using a variant of the unipro- some reasonable level of convergence. This re- 
cessor algorithm described Chapter 2, each sub- sults in a tremendous savings in computation 
domain problem is solved “exactly”. In reality, time. The graphs shown on the right represent 
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10 U) 30 40 50 
Schwarz Iterations Multiplicative Schwan Iterations 

~i~~~~ 3.11: case 1 hvisdd Variation in Figure 3.12: Residual history for Case 2 viscous 
overlap For Additive Schwarz with 2nd order airfoil using multiplicative Schwarz iterations on 
discretization. 4 partitions. 

computations using the second order accurate 
finite-volume scheme with linear reconstruction. 
The graphs shown on the left represent compu- 
tations using a first order accurate finite-volume 
scheme which only requires distance-1 data on 
the triangulation. The basic trends show a no- 
ticeable degradation in the convergence rate with 
increased partitioning and a mild improvement 
with increased overlap. 

Test Case 2 (Viscous Turbulent Flow) 

Using the mesh and flow conditions given previ- 
ously in Section 2.4.2 viscous turbulent flow was 
computed about the multi-element airfoil geome- 
try. Figure 3.12 graphs convergence histories for 
computations using distance 1,2, and 3 overlap 
on a 4 subdomain partitioning. The improve- - 
ment with increased overlap is rather slight. In 
Figures 3.14-3.18 the mesh and Mach number 
contours for a subdomain near the leading edge 

Figure 3.13: Mesh partition for multi-element 
viscous flow computation. 

of the main element are shown for Schwarz iter- 
ations 1,3,5,7, and 40. Note that at iteration 
7 the solution visually appears quite close to its 
final value. Even so, the number of iterations gence is relatively large wh L compared to the 
required to  reach a comfortable level of conver- uniprocessor Newton scheme. 



Figure 3.14: Snapshot of solution isomach con- 
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Figure 3.16: Solution isomach contour snapshots 
tours at iteration 1. 

- 
at iteration 5 .  

Figure 3.15: Solution isomach contour snapshots 
at iteration 3. Figure 3.17: Solution isomach contour snapshots 

at iteration 7. 

3.2 Newton's Method with 
Schwarz Preconditioning 

CGSTAB methods. When used as a precondi- 
Next we consider using the additive Schwarz tioner, some flexibility and compromises can be 
precedure to precondition the GMRES and Bi- made which can lead to reduced execution times: 
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U 

preconditioning matrices by neglecting off- 
processor contributions to on-processor ma- 
trix elements. We refer to this as “inexact 
matrix restriction.” 

3.2.1 Case 1 (Inviscid flow) Numerical 
Results. 

Using the mesh and flow conditions given in Sec- 
tion 2.4.1, inviscid flow is computed on a 4 sub- 
domain mesh using the Schwarz-type precondi- 
tioning of GMRES(20) iterations. All compu- 
tations were performed using a Newton matrix 
corresponding to a CFL number of approx lo8. 
Fimres 3.19 and 3.20 demonstrate the viability - 
of using inexact matrix restriction. In addition, 
this figure shows the degradation in convergence 
due to the use of a lower order accurate precon- 

Figure 3.18: Solution isomach contour snapshots 
at final iteration. 

ditioning matrix and the enhancement in conver- 
gence with increased overlap. Figure 3.21 shows 
the mild effect of increasing the number of mesh 
subdomains (4,8,16). 

1. Increased Sparsity Preconditioner. This is 
a common technique for higher order dis- 
cretization methods. In the oresent second 
order finite-volume discretization, the Jaco- 
bian matrix contains distance-2 nonzero en- 
tries. For purposes of preconditioning only, 
the Jacobian matrix associated with a lower 
(first) order discretization is used. 

2. Inexact Matrix Restriction. Exact matrix 
restriction performs the task of extracting 
local submatrices (a gather, scatter opera- 
tion) 

Ai = &ART. (3.41) 

In some parallel implementations not all 
data for this calculation is processor resi- 
dent. This implies communication overhead 
if an exact computation is to be achieved. In 
the next section a 3-D parallel implementa- 
tion is described in which the mesh contains 

....................... 

.......................... 

I 

100 m 300 
Matrix-Vector products 

no overlap, yet through communication the 
performs Schwarz preconditioning Figure 3.19: Convergence of GMRES(20). Effect 

exactly of boundary fill strategies on 4 partition mesh 
is sometimes referred to as “implicit” over- with unit Overlap. 
lap. Using implicit overlap, a compromise 
is possible in the formation of subdomain 

distance-2 overlap. 
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on a 4 subdomain mesh using the Schwarz- 
type preconditioning and GMRES(30) itera- 
tions. All computations were performed us- 
ing a Newton matrix corresponding to a CFL 
number of lo8. Figure 3.22 shows the result- 
ing convergence histories for the GMRES calcu- 
lation using single and 4 partitions as well as 
distance-1 and distance2 preconditioning matri- 
ces. The distance2 preconditioning works very 
well for this problem. The distance-1 precondi- 
tioning initially reduces the matrix residual norm 
rapidly but then reverts to a much slower rate of 
convergence. 

1 

10q0 100 200 300 400 
Matrix-Vector Products 

Figure 3.20: Convergence of GMRES(20). Effect 
of increasing overlap. 

! 
1 

50 100 150 200 

Matrix-Vector Prcducts 

Figure 3.21: Convergence of GMRES(2O). Effect 

! 
! ~ 5 

lo! i o  lb I50 h 250 
Matrix-Vector Prcducts 

Figure 3.22: Case 2 (viscous flow). Convergence 
of GMRES(30). Effect of increasing number of 
partitions, unit overlap 

3.3 Some 3-D Computations 
on the IBM SP2 

of increasing number of partitions, unit overlap, our current platform for 
distance 2 preconditioning 

computation at 
the NASA Ames Research Center is the IBM SP2 
computer. The current configuration consists of 
160 rack-mounted IBM 590 workstations with 

Case 2 (Viscous flow) Numerical total memory CaPadtY exceeding 20 &abYtes. 
Results. Each processor has a peak theoretical speed of 

250 megaflops. For these computations a sin- 
Using the mesh and flow conditions given in Sec- gle processor attains a sustained speed of about 
tion 2.4.2, viscous turbulent flow is computed 55 megaflops. The processors are interconnected 

3.2.2 
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via a fast network switch with measured band- 
width of approximately 33 megabytes/second 
and a measured latency of about 45 microsec- 
onds. For maximum portability MPI message 
passing protocol has been chosen for implemen- 
tation of the parallel Newton algorithms. 

The overall strategy in the parallel implemen- 
tation is to  reduce the entire algorithm to a se- 
quence of steps requiring only distance-one in- 
formation on the triangulation. The greatly 
simplifies the implementation of the algorithm 
while still replicating uniprocessor results. The 
implementation contains several algorithmic ele- 
ments. Each of these elements will be described 
in the following sections and elucidated using the 
realistic example of fluid flow over a multiple- 
component wing geometry. The wing geometry, 
symmetry plane mesh, and Mach contours at  a 
midspan cutting plane are shown in Figure 3.23. 

More precisely, mesh volumes (tetrahedra, hex- 
ahedra, prisms, etc) lie entirely on a given parti- 
tion, triangulation vertices are repeated on par- 
tition boundaries, and control volumes for the 
finite-volume scheme span partition boundaries. 
The situation is depicted in Figure 3.24. In 
general we find that the spectral partitioning 
method outperforms the others but at  a higher 
partitioning cost. Figure 3.25 shows the mesh 
subdivisions (bold lines) induced by a spectral 
partitioning on the midspan cutting plane. 

Figure 3.24: Portion of mesh spanning partition 
boundary showing control volume subdivision. 

Figure 3.23: Inviscid flow M ,  = 2 0 ,  (2 = 0 over 
a multiple-component wing geometry (600,000 Figure 3.25: Mach Contours and Partition 
degrees of freedom). Boundary (bold lines). 

Mesh Part i t ioning 

In the 3-D parallel algorithm, the mesh is (I priori 

Computa t ion  of t h e  Explicit Residual a n d  
Reconstruction Gradients  

partitioned into N nonoverlapping subdomains, For control volumes completely contained within 
each of which resides on one of N processors. a single partition domain, the calculation of the 



residual is identical to the uniprocessor compu- 
tation. For the control volumes subdivided by 
partition boundaries, integral conservation im- 
plies that 

(3.42) 
In Figure 3.24, Ro and RI correspond to the 
control volume portions on processors 0 and 1 
respectively such that R = Ro U 01. There- 
fore residuals can be computed on a processor- 
by-processor basis followed by an exchange and 
sum of residuals on interprocessor boundaries. 
This yields results identical to that obtained on 
a uniprocessor mesh. The least-squares recon- 
struction technique also extends in a similar way 
if a bit mask is assigned to all edges in the mesh 
so that edges lying on processor boundaries con- 
tribute only once to the accumulation formulas. 

The GMRES Algorithm 

The GMRES algorithm requires three basic op- 
erations: vector inner products, matrix-vector 
products, and preconditioning. The parallel im- 
plementation of each of these is described below. 
In our implementation of GMRES all processors 
solve the same small least-squares problem. This 
redundancy is of minor consequence. 

Vector Inn er Products 

Redundancy of boundary vertices in vector in- 
ner products is eliminated with a mask bit p r e  
assigned to each vertex. The actual inner prod- 
uct is calculated by a local masked inner prod- 
uct followed by a global summation reduction 
( M P I X E D U C E ) .  

Matrix-Vector Products 

Previously, we discussed several strategies foI 
computing matrix-vector products in the unipro- 
cessor case. If Frkhet approximate derivatives 
are used, then the procedure is straightforward 
and uses exactly the same communication steps 
needed in computing the explicit residual. If ex- 
act matrix-vector products are desired, we store 
only the matrix associated with the distance- 
one neighbors on the triangulation and compute 
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the remaining terms in a matrix-free way as dis- 
cussed in Chapter 2. 

Processor Local ILUfO’I Preco n ditioni ng 

Our preconditioning matrix for the GMRES 
solver is based on the Jacobian matrix of the 
first-order accurate spatial discretization. This 
matrix has nonzero entries placed at distance- 
one locations in the connectivity graph. In a de- 
parture from the uniprocessor code, we compute 
and store on a processor nonzero entries in the 
matrix associated with mesh vertices residing on 
that processor. As a second step, the diagonal 
matrix blocks corresponding to interprocessor 
boundary vertices are exchanged and summed. 
This yields diagonal block entries in the result- 
ing processor local matrix that are identical to 
the corresponding uniprocessor matrix. At the 
cost of increased interprocessor boundary vertex 
communication, all processor local matrix entries 
could be made identical to the uniprocessor ma- 
trix entries. The processor local matrix is ILU 
factored and used for preconditioning GMRES 
iterations. If these matrix entries are retained 
then a unique value must be obtained from a 
linear combination of the multiple computed val- 
ues. Our experience has shown that the local 
processor preconditioning does not significantly 
impact the effectiveness of the ILU precondition- 
ing. In Figure 3.26, we show the convergence of 
GMRES( 12) with local ILU(0) preconditioning 
on 16, 32, and 64 processors for the multiple 
component wing calculation at  a CFL number 
of about 20000. 

Keep in mind that this departure from the 
uniprocessor algorithm only affects the GMRES 
convergence and not the convergence of New- 
ton’s method. Figure 3.27 shows the couver- 
gence history of the Newton scheme for the first 
and second order accurate spatial discretization 
schemes. 

3.3.1 Scalability 

The scalability of the current parallel algorithm 
on the IBM SP2, while not excellent is certainly 
acceptable. This is particularly true since the 
parallel algorithm retains the favorable qualities 
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10 20 M 
GMRES(l2) Iterations 

Figure 3.26: GMRES Iterations (restarts) re- 
quired. 

......... .- I .. 

Global Iterations 

Figure 3.27: Convergence History for Inviscid 
Multiple Component Wing Case (16 Processors) 

of the uniprocessor algorithm, such as Newton- 
like convergence. Furthermore, because the par- 
allel algorithm makes very few compromises in 
implementing the uniprocessor algorithm, the 
primary contribution to the degradation of scala- 
bility is the time taken by interprocessor commu- 
nication. This implies that the scalability would 
be better on parallel computers with faster in- 

Table 3.1: Wallclock Time in Minutes for the 
Multiple-Component Wing Calculation 

I # Procs I First Order I Second Order 

64 15.6 55.0 

terprocessor communication. Figure 3.28 shows 

.. 
16 24 32 40 48 56 ai 

Number of F’rocessors 

Figure 3.28: Relative speedup of parallel com- 
putations using 16, 32, and 64 processor. Each 
speedup is normalized by the 16 processor value. 

the relativc speedup of computations on the IBM 
SP2 for 16, 32, and 64 processors, for both the 
first order and second order schemes. Once 
again, the problem being solved is the inviscid 
flow about a multiple component wing, as de- 
scribed above. The speedups are normalized by 
the 16 processor value, since the memory reqnire- 
ments made 16 processors a minimum require- 
ment to run the problem. The Table 3.1 shows 
the total wallclock time in minutes taken by the 
runs corresponding to Figure 3.28. In each case 
the second order scheme takes roughly 3.5 times 
as long as the first order scheme. 
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3.3.2 3-D Parallel Computation Re- tion, the turbulence model equation is solved us- 
sults ing only first order advection. This is a common - 

procedure used to increase robustness, even in 

bulent viscous computation about the multiple fully coupled with the flow equations in cornput- 
component wing described above. The Mach ing the Jacobians. This insures that Newton's 
number of the run is 0.2, with a Reynolds num- method is approached at large timesteps even 
ber of 5 Million. The angle of attack is 8'. For for turbulent computations~ 
this run, 64 processors are used' To minimize 
storage, the Jacobian matrices are stored using on a cutting plane placed at approximately mid- 
single precision (32 bits on the SP2), although 
all floating point Operations are still performed 
in double precision. 

roughly 400,000 vertices and over 2,000,000 
tetrahedra. Because of the need to resolve the 
turbulent boundary layer, the mesh is highly 
stretched near the wall, with cell aspect ratios 
of more than 10,000. The mesh on the center- 
line plane is seen in Figure 3.29. 

In this section we present for a tur- structured mesh codes. The turbulence model is 

Figure 3.30 shows the resulting Mach contours 

span. Note the qualitative agreement between 
these results and those by the corre- 
sponding two-dimensional computation shown in 

The tetrahedral mesh about the body has Chapter 2, albeit at a different angle of attack. 

Figure 3.30: Mach Contours on the midspan cut- 
ting plane. 

In Figure 3.31, contours of the eddy viscosity- 
like turbulence parameter 17 defined earlier are 
depicted on the mid-span cutting plane. Note 

~i~~~ 3.29: viscous turbulent flow ( M ~  = the high levels generated downstream of the 
. 2 0 , ~  = 50, R~ = 5 M a o n )  over a multiple- main wing element over the aft flaps. 
component wing. Mach contours axe shown on Presently, this Computation takes about 10 
the midspan cutting plane. minutes per step, and about 80 steps to con- 

verge to steady-state (a relatively large num- 
ber for Newton's method). This is due to the 

The Spalart and Allmaras turbulence model slow development of turbulence over the wing. 
[SA921 is used to simulate the effect of turbulence This situation is likely to improve in the near 
on the mean flow equations. Although the basic future, as we refine our technique for approaeh- 
flow equations are solved using linear reconstruc- ing steady-state and compute on a sequence of 
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Figure 3.31: Turbulence quantity contours show- 
ing the buildup of turbulence over the aft flap. 

coarser meshes to accelerate the removal of the 
initial transient. 
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HIGH PERFORMANCE SIMULATION OF COUPLED 
NONLINEAR TRANSIENT AEROELASTIC PROBLEMS 

Charbel Farhat  
Department of Aerospace Engineering Sciences 

and  Center for Aerospace Structures 
University of Colorado at Boulder 
Boulder, CO 80309-0429, U. S. A. 

SUMMARY 

Aeroelasticity studies t h e  mutual interaction 
between aerodynamic and  elastic forces for a n  
aerospace vehicle. A flexible aircraft s t ructure  
immersed in a flow is subjected to surface pres- 
sures induced by t h a t  flow. If t h e  incident 
flow or boundary conditions are  unsteady, these 
pressures become time-dependent. Moreover, 
structural  dynamic motions induced by these 
pressures in t u r n  change t h e  boundary condi- 
tions of t h e  flow. T h e  accurate prediction of 
aeroelastic phenomena such as  divergence a n d  
flutter is essential in t h e  design of high perfor- 
mance and  safe aircrafts. This  prediction re- 
quires solving simultaneously t h e  coupled fluid 
and  s t ructural  equations of motion. Therefore, 
numerical aeroelastic simulations are  in general 
resource intensive. They  belong to the  fam- 
ily of Grand  Challenge engineering problems, 
and  as such, can benefit from t h e  parallel pro- 
cessing technology. This  paper highlights some 
important  aspects of nonlinear computational 
aeroelasticity. These include a three-field ar- 
bi t rary Lagrangian-Eulerian (ALE) finite ele- 
ment/volume formulation for coupled transient 
aeroelastic problems, a rigorous derivation of 
geometric conservation laws (GCLs)  for flow 
problems with moving boundaries and  unstruc- 
tured deformable meshes, t h e  design of a family 

of staggered procedures for t h e  efficient solu- 
tion of t h e  coupled fluid/structure partial dif- 
ferential equations, and  fast parallel domain 
decomposition solvers. T h e  derivations of the  
GCLs are  presented for A L E  based finite vol- 
ume formulations as  well as A L E  based stabi- 
lized finite element methods. T h e  impact of 
these GCLs on  t h e  numerical algorithms used 
for time-integrating t h e  semi-discrete equations 
governing t h e  s t ructural  and  fluid mesh mo- 
t ions is also discussed. T h e  solution of the  
governing three-field equations with mixed im- 
plicit/implicit and  explicit/implicit staggered 
procedures are analyzed with particular ref- 
erence t o  accuracy, stability, subcycling, dis- 
t r ibuted computing, 1/0 transfers, and  paral- 
lel processing. A general and  flexible frame- 
work for implementing t h e  parti t ioned analysis 
of coupled transient aeroelastic problems with 
non-matching fluid/structure interfaces on  het- 
erogeneous and /o r  parallel computational plat- 
forms is also described. This  framework and  the  
staggered solution procedures are  demonstrated 
with examples ranging from t h e  numerical in- 
vestigation on  a n  iPSC-860 massively parallel 
processor of t h e  instability of flat panels with 
infinite aspect ratio in supersonic airstreams, 
to t h e  solution on  t h e  Paragon XP/S, Cray 

I 

Paper presented in an AGARD-FDP-VKI Special Course on “Parullel Computing in CFD”, held at the VKI, Rhode-Saint-GenPse. Belgium. 
from 15-19 May 1995 and 16-20 October 1995 at NASA Ames, United States and published in R-807. 
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T3D and  IBM SP2  parallel systems of three- 
dimensional wing response problems in t h e  
transonic regime. 

1. INTRODUCTION 

Aeroelasticity is t h e  s tudy  of t h e  effect of aero- 
dynamic forces on  elastic bodies. Because these 
effects have a great impact on performance 
and  safety issues, aeroelasticity has rapidly be- 
come one of t h e  most important  considerations 
in aircraft design. T h e  basic mechanism of a 
fluid/structure interaction phenomenon can be 
simply explained as  follows. T h e  aerodynamic 
forces acting on  an  aircraft depend critically on  
t h e  a t t i tude  of i ts  lifting body with respect to 
t h e  flow, which in t u r n  depends on t h e  flexibil- 
ity of t h e  aircraft. Therefore, t h e  elastic defor- 
mations of a s t ructure  play a n  important  role 
in determining i ts  external loading. Since t h e  
magnitude of t h e  aerodynamic forces cannot be 
known until t h e  elastic deformations are  first 
determined, i t  follows t h a t  t h e  external load 
cannot be evaluated until t h e  coupled aeroelas- 
t ic problem is solved. 

In  general, aeroelastic problems are  di- 
vided into: (a) stability, and  (b)  response prob- 
lems. Each of these two classes can be further 
classified into steady-state or static problems 
in which t h e  inertia forces may be neglected, 
and  unsteady, or dynamic, or transient prob- 
lems which are  characterized by t h e  interplay 
of all of t h e  aerodynamic, elastic, and  inertia 
forces. Throughout  this  paper,  we focus exclu- 
sively on dynamic aeroelasticity problems. 

If one notes t h a t  the  external aerodynamic 
forces acting on a n  aircraft s t ructure  increase 
rapidly with t h e  flight speed, while t h e  in- 
ternal elastic and  inertial forces remain essen- 
tially unchanged, one can easily imagine t h a t  
there  may exist a critical flight speed at which 
t h e  s t ructure  becomes unstable. Such insta- 
bility may cause excessive structural  deforma- 
tions a n d  may lead t o  t h e  destruction of some 

components of t h e  aircraft. Panel or wing Put- 
ter,  which is a sustained oscillation of panels or 
wings caused by t h e  high-speed passage of air 
along t h e  panel or around t h e  wing, is an  ex- 
ample of such instability problems. Bufleting, 
which is t h e  unsteady loading of a s t ructure  by 
velocity fluctuations in t h e  oncoming flow, is 
another important  example. Because of the  po- 
tentially disastrous character of these phenom- 
ena,  aircraft f lutter and  buffeting speeds must 
be well outside t h e  flight envelope. I n  many 
cases, this  requirement is t h e  determining fac- 
tor  in t h e  design of wings and  tail surfaces. 

An aeroelastic response problem can as- 
sociate with a stability problem. For exam- 
ple, if a control surface of a n  aircraft is dis- 
placed, or a turbulence in t h e  flow is encoun- 
tered, t h e  response to be found may be the  
motion, t h e  deformation, or t h e  stress s ta te  in- 
duced in t h e  elastic body of t h e  aircraft. When 
t h e  response of t h e  s t ructure  to such a n  input  
is finite, t h e  s t ructure  is stable and  flutter will 
not occur. When t h e  s t ructure  flutters, i ts  re- 
sponse to a finite disturbance is unbounded. 
However, a n  aeroelastic response problem can 
also associate with a performance rather t h a n  
a stability problem. For example, i t  is well- 
known t h a t  for transonic flows, small variations 
in incidence may lead to considerable changes 
in t h e  pressure distribution, shock position, and  
shock strength.  It is also well-known t h a t  there 
are  some margins within t h e  Mach number and  
incidence t h a t  can be varied around t h e  de- 
sign condition of a supercritical airfoil without 
a serious deterioration of t h e  favorably low-drag 
property of t h e  shock-free flow condition [l]. 
Determining whether a n  oscillating airfoil is 
within or outside these margins requires deter- 
mining i ts  aeroelastic response. 

Past  l i terature on  aeroelasticity is mostly 
devoted to linear models where t h e  motion of 
a gas or a fluid past  a s t ructure ,  t h e  defor- 
mation and  vibration of t h a t  structure,  and  
more importantly t h e  interaction phenomenon 
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equations of dynamic equilibrium of t h e  aircraft 
elastic s t ructure  can be writ ten as  

Mq+Dq+Kq = -X(Aiq(t)+Azq(t))+Fo(t) 
(2) 

where a dot superscript denotes a time deriva- 
tive, a n d  M, D, and  K are  respectively the  
symmetric positive mass, damping, and  stiff- 
ness matrices associated with t h e  discretized 
s t ructure  - for example, b u t  not necessarily, 
via finite elements. Eq. (2) above can be rear- 
ranged as follows 

Mq+ (D + XAz)q+ (K + XAi)q = Fo(t) (3) 

itself are  described with linear mathematical 
concepts [2,3]. Even experimental results are  
often interpreted by assuming a linear behavior 
of t h e  physical model. However, just  as  swim- 
ming in a pool is a prerequisite for swimming 
in a n  ocean, understanding linear aeroelastic- 
i ty problems is essential for solving nonlinear 
ones. Next, we summarize t h e  linear theory of 
aeroelastici ty. 

1.1. Linear Theory of Aeroelasticity 

T h e  fundamental  assumptions behind t h e  linear 
formulation a n d  solution of transient aeroelastic 
problems are  

0 t h e  s t ructure  is elastic. 

0 it undergoes a harmonic motion with small 
displacement amplitudes. 

t h e  flow can be approximated by a lin- 
earized theory. 

0 

Under  t h e  above conditions, given a free- 
stream Mach number M,, t h e  aerodynamic 
forces acting on  a n  aircraft elastic s t ructure  im- 
mersed in a n  unsteady flow can be written as  

where X(Aiq(t) + Azq(t)) represents t h e  aero- 
dynamic forces generated by t h e  transient mo- 
t ion of t h e  flexible structure,  and  Fo(t) rep- 
resents t h e  unsteady aerodynamic forces t h a t  
would have been generated if t h e  aircraft had 
a rigid rather  t h a n  elastic structure.  Here, t 
denotes time, X is t h e  dynamic pressure, A1 
and  A2 denote t h e  linear aerodynamic opera- 
tors accounting for t h e  surrounding flow a n d  
computed for a given M ,  and  a unit  dynamic 
pressure, a n d  t h e  time-dependent vector q(t) 
represents t h e  discretized structural  displace- 
ments. Because these displacements are as- 
sumed to have small amplitudes, t h e  governing 

If t h e  flow is steady, Fo does not vary with 
time, and  t h e  solution of t h e  above problem can 
be decomposed into a steady a n d  unsteady com- 
ponents 

q(t) = q" + q"(t) (4) 

(K+XAi)q" = Fo ( 5 )  

where q8 is solution of 

and  q"(t) is solution of 

Mq"+(D+XAz)q"+(K+XAi)q" = 0 (6) 

Eq. ( 5 )  is t h e  governing equation for static 
aeroelasticity, where t h e  central problem is t h e  
effect of elastic deformation on  t h e  lift distribu- 
tion over lifting surfaces such as  airplane wings 
a n d  tails. At higher speeds, t h e  effect of elas- 
t ic deformation can become important  enough 
to cause a wing to become unstable, to ren- 
der a control surface ineffective, or even worse 
to reverse t h e  sense of control. T h e  first phe- 
nomenon is known as divergence, a n d  t h e  last 
as  aileron reversal. Mathematically, t h e  di- 
vergence speed can be obtained from t h e  in- 
vestigation of t h e  values of X for which the  
matrix (K + XA1) becomes singular. On  the  
other  hand,  Eq. (6) is t h e  governing equation 
of aeroelastic dynamic stability (or instability). 
T h e  flutter dynamic pressure corresponds to the  
critical value A"' beyond which Eq. (6) has a 
solution q"(t)  t h a t  grows continuously in time. 
This  value A"' of t h e  dynamic pressure defines 
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the  stability limit of t he  solution of Eq. (6). 
Beyond this critical value, t he  elastic s t ructure  
will continuously extract  energy from t h e  sur- 
rounding flow and  become dynamically unsta- 
ble. For dynamic pressure values below A"', t he  
s t ructure  will release energy to the  surrounding 
flow which will act  a s  a damper.  

If t h e  flow is unsteady, Eq. (3) becomes 
the  governing equation for t he  dynamic aeroe- 
lastic response problem, and  i ts  homogeneous 
counterpar t  

M i  + (D + AA2)q + (K + AAi)q = 0 (7) 

becomes the  governing equation for t he  aeroe- 
lastic dynamic stability problem. Note t h a t  
each of Eq. (3) and  Eq. (7) represents a system 
of n coupled second-order differential equations, 
where n is t he  size of t he  square matrices M, 
D, K, A1 and A2, and is equal to t h e  number 
of structural  degrees of freedom (d.0.f.) intro- 
duced in t h e  computational structural  model. 
For a detailed structural  wing model or a com- 
plete aircraft configuration, n can be as large as 
a hundred thousand,  and  therefore solving di- 
rectly Eq. (3) for t he  aeroelastic response q(t) 
or Eq. (7) for t h e  flutter dynamic pressure A"' 
becomes a formidable task. For this reason, Eq. 
(3) and/or  Eq. (7) are  usually projected onto  
a n  m-dimensional subspace (m << n) repre- 
sented by i ts  basis \km = &, ..., $,I. 
Th is  basis is called a modal basis because each 
column vector $j is a n  eigenvector of t he  gen- 
eralized symmetric eigenvalue problem 

and  therefore each $j is a mode shape of 
t he  structure. T h e  above generalized sym- 
metric eigenvalue problem admits  n eigenpairs 
(U!, $j}jz; where wj is t h e  circular frequency 
associated with t h e  mode shape +j. This  prob- 
lem arises when the  conservative structural  sys- 
tem 

Mq+Kq = 0 (9) 

is considered, and  harmonic solutions of t he  
form q( t )  = $e'"' are  sought. Here and  
throughout this section, i denotes t h e  complex 
number satisfying i2 = -1. If t he  $j eigen- 
vectors are mass normalized, from Eq. (8) and 
the  symmetry properties of M and K, i t  follows 
t h a t  

where t h e  superscript T designates t h e  trans- 
pose operation, and  I, denotes t h e  m x m iden- 
t i ty  matrix. Hence, projecting q( t )  onto  the  
modal basis !Pm 

subst i tut ing t h e  above expression in Eq. (3), 
premultiplying t h a t  equation by !Pz, and ex- 
ploiting t h e  relationships given in Eqs. (10) 
leads to t h e  modal equations of equilibrium 

and y(t) is known as t h e  vector of generalized 
or modal coordinates. If t he  so-called Rayleigh 
structural  damping is used (D = aM 4- bK, 
a 2 0, b 2 0), or a modal damping is assumed 
for t he  structure,  D, also becomes a diagonal 
matrix. However, Ai, and  A2, are  in general 
m x m full matrices. 

In summary, even though projecting Eq. (3) 
and/or  Eq. (7) onto  t h e  modal basis \k, 
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does not completely uncouple the n second- 
order differential equations because of the pres- 
ence of the aerodynamic operators A1 and A2, 
this procedure is still attractive because it re- 
duces the number of coupled ordinary differen- 
tial equations to  be solved from n to  m << n. 

If an aeroelastic response problem is in- 
vestigated, Eq. (12) is usually solved for y(t) 
using a numerical time integration algorithm. 
Then, the structural displacement field q(t)  is 
recovered by making use of Eq. (11). However, 
it should be noted that Eq. (11) can also be 
written as 

which highlights the fact that q( t )  is a trun- 

cated modal solution of the original Eq. (3). 
Aside from time discretization errors, the accu- 
racy of such a solution depends on the impor- 
tance of the contributions to  the exact response 
of the structure of the truncated mode shapes 
or eigenvectors. In other words, it depends on 
the load distribution of the aircraft and the fre- 
quency content of the aeroelastic response of 
the structure. For wing flutter problems, the 
behavior of the structure is often dominated by 
low frequency dynamics, and therefore is well 
represented by the first few modes. In that 
case, only the first few eigenvectors t,hj are usu- 
ally kept in the modal basis *m, and the trun- 
cated modal superposition method delivers an 
accurate solution of the dynamic aeroelastic re- 
sponse problem. 

On the other hand, if an aeroelastic dy- 
namic stability problem is investigated, the ho- 
mogeneous form of Eq. (12) is solved for the 
flutter dynamic pressure A"'. One methodol- 
ogy for obtaining A"' goes as follows. Let V, 
denote the free-stream velocity (flight speed), 
and pw the free-stream air density. We have 

(15) 
1 
2 " "  

x = - p  v2 

When the structure undergoes a harmonic mo- 
tion characterized by a circular frequency w, the 
linear aerodynamic operators A1 and A2 be- 
come a function of the reduced frequency & 

w & = -  
V" 

If structural damping is neglected, seeking a so- 
lution of the homogeneous form of Eq. (12) of 
the form 

leads to  

.. 

(18) 
Note that the first of Eqs. (17) can be rear- 
ranged as 

(19) 
y(t) = y e  - -awt  e i w t  

which shows that the homogeneous form of 
Eq. (12) will have a stable solution if and only 
if all of the solutions (3 of Eq. (18) have a pos- 
itive real part a 2 0. Therefore, cr = 0 is 
the stability limit, and the sought after flut- 
ter dynamic pressure A"' corresponds to  the 
critical value V g  of the flight speed, or the 
critical value E"' = G/Vz of the reduced fre- 
quency, for which Eq. (18) admits a real solu- 
tion 6 = w ( l +  i x 0) = W. 

From the second of Eqs. (17), it follows 
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Hence, substituting Eq. (20) into Eq. (18), 
making use of the third of Eqs. (16), and ex- 
ploiting the assumption lcrl << 1 finally gives 

which shows that (1 - i2cr)/u2 is a complex 
eigenvalue of a matrix Z, that, for a fixed free- 
stream air density p,, depends only on the re- 
duced frequency i. Therefore, the flutter dy- 
namic pressure A"' = p,V,z/2 can be found 
by sweeping over the values of IC, and solving 
for each i the eigenvalue problem (21). Among 
all possible critical values of the reduced fre- 
quency 5"' for which a real eigenvalue l/uZc' is 
found - and therefore for which a vanishes - 
the flutter speed is given by the smallest value 
V: = wcr/kc',  and the flutter dynamic pres- 
sure by the corresponding 'A"' = p,Vg'/2. 
This procedure is known as the "k" method, 
or the "k-sweeping" method. It is implemented 
in many industrial codes (see, for example, [4]). 
It is accurate when the structure is less than 
10% damped. When the structure has a higher 
percentage of damping, other methods such as 
the "p-k" method [5] can be used for finding the 
flutter dynamic pressure A"'. Such methods are 
in general more expensive than the "k" method 
and are beyond the scope of this paper. 

I 

At this point, the reader should recall that 
the linear aerodynamic operators AI and A2 
are computed for a specified free-stream Mach 
number, and therefore V g  is also computed 
for a specified M, (and a specified free-stream 
air density p,). This implies that for each 
value of M,, there exists a critical free-stream 
speed of sound c z  = Vg/M,, and that a 
curve c z  = c z ( M , )  can be determined. The 
intersection of this curve with the horizontal 
line c z  = 320m/s gives the critical free-stream 
Mach number M z .  

So far, the derivation of the linear aero- 
dynamic operators A1 and A2 has not been 
discussed. It has only been stated that a lin- 
earized flow theory and a harmonic motion 
of the structure with small displacement am- 
plitudes are assumed. More precisely, A = 
A1 + iGA2 can be computed using the doublet- 
lattice method [6] in the subsonic regime, and 
the potential gradient method [7], or the har- 
monic gradient method [8], or the piston the- 
ory [2] in the supersonic regime. In all cases, 
the flow is assumed to  be inviscid, irrotational, 
and isentropic. In the transonic regime, the 
mixed subsonic-supersonic flow patterns and 
shock waves are such that there are no reliable 
theoretical means for predicting the unsteady 
aerodynamic forces. In that case, the linear 
aeroelasticity theory simply breaks down. This 
is most unfortunate because of the current re- 
newed interest in transonic flight for both mili- 
tary (F-16) and civil aircraft. 

Besides transonic flights, there are many 
other important cases where the linear aeroelas- 
tic theory cannot be used for predicting the dy- 
namic response or stability of an aircraft. These 
include, to  name only a few, problems where the 
structure undergoes large displacements and/or 
rotations - as an example, we note that the 
maximum upward deflection of the wing of the 
B52 bomber is 22 feet [2] - parachute dynam- 
ics, bluff body oscillators, airfoil oscillations in 
separated flow, buffeting, and high-G and high 
angle of attack maneuvers such as those per- 
formed by the X-31 aircraft. Some of these 
and related problems are discussed in [9] where 
emphasis is placed on the fundamental under- 
standing of the nonlinear theory of interaction, 
others are still unresolved. The pressing need 
for solving and understanding all of these prob- 
lems is the main motivation for designing a re- 
liable nonlinear transient aeroelastic numerical 
simulation capability. 



1.2. Formulat ion of Coupled  Nonlinear 
Aeroe las t ic  P r o b l e m s  

Here, the structure is no longer restricted to  a 
harmonic motion with small displacement am- 
plitudes. In principle, there is also no reason to 
confine its constitutive modeling to that of an 
elastic material. However, while aircraft struc- 
tures can undergo large displacements and ro- 
tations, they seldom experience large strains. 
Therefore, the nonlinear modeling of the struc- 
tural behavior can be limited to the proper ac- 
counting of nonlinear geometric effects without 
a serious loss of generality. 

More importantly, the aerodynamic forces 
acting on the structure are no longer predicted 
here by the use of a linear aerodynamic oper- 
ator because of the important limitations as- 
sociated with such an approach and discussed 
at  the end of Section 1.1. Rather, these un- 
steady forces are determined from the solution 
of the compressible Euler equations when vis- 
cous effects are neglected, and the solution of 
the compressible Navier-Stokes equations oth- 
erwise. Furthermore, no restriction is imposed 
on the nature of the fluid/structure coupling, 
at least in principle. This coupling is numeri- 
cally modeled by suitable fluid/structure inter- 
face boundary conditions. Clearly, this means 
that the methodology described here for simu- 
lating nonlinear transient aeroelastic problems 
is based on the simultaneous solution of the gov- 
erning nonlinear fluid and structure equations, 
and as such, is computationally intensive and 
can benefit from parallel processing. 

One difficulty in handling numerically the 
fluid/structure coupling stems from the fact 
that the structural equations are usually formu- 
lated with material (Lagrangian) co-ordinates, 
while the fluid equations are typically written 
using spatial (Eulerian) co-ordinates. There- 
fore, a straightforward approach to  the solution 
of the coupled fluid/structure dynamic equa- 
tions requires moving at each time-step at  least 
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rhe portions of the fluid grid that are close to 
the moving structure. This can be appropri- 
ate for small displacements of the structure but 
may lead to severe grid distorsions when the 
structure undergoes large motion. Several dif- 
ferent approaches have emerged as an  alterna- 
tive to partial regridding in transient aeroelastic 
computations, among which we note the arbi- 
trary Lagrangian/Eulerian (ALE) formulation 
[lo-121, the co-rotational approach [13,14], dy- 
namic meshes [15] which are closely related to  
ALE concept, interpolation based methods [16], 
and space-time formulations [17]. All of these 
approaches treat a computational aeroelastic 
problem as a coupled two-field problem. 

However, a moving mesh (Fig. 1) can also 
be viewed as a pseudo-structural system with 
its own dynamics [18], and therefore, the cou- 
pled transient aeroelastic problem can be for- 
mulated as a three- rather than two-field prob- 
lem: the fluid, the structure, and the dynamic 
mesh (Fig. 2). The semi-discrete equations 
governing this three-way coupled problem can 
be written as follows: 

M- d2 9 + f'"'(q) = f e z * ( W ( z , t ) , z )  
dt2 

dt a d t  
- d 2 x  - d x  - - 
M - + D - + K x  = Kcq 

where x is the displacement OP position, depend- 
ing on the context of the sentence of a moving 
fluid grid point, W is the fluid state vector, 
V results from the finite element/volume dis- 
cretization of the fluid equations, F' is the vec- 
tor of convective ALE fluxes that depend on the 
fluid grid velocity, R is the vector of diffusive 
fluxes, q is as before the structural displacement 
vector, fSn' denotes the vector of internal struc- 
tural forces that is equal to  Kq in the linear 
case, feZt the vector of external forces acting on 
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the structure, M is the finite element mass ma- 
trix of the structure, M, D, and k are fictitious 
mass, damping, and stiffness matrices associ- 
ated with the fluid moving grid (Fig. 3) and con- 
structed to  avoid any parasitic interaction be- 
tween the fluid and its grid, or the structure and 
the moving fluid grid [18], and kc is a transfer 
matrix that describes the action of the motion 
of the structural side of the fluid/structure in- 
terface on the fluid dynamic mesh [19]. For ex- 
ample, M = D = 0, and K = K where K is 
a rotation matrix corresponds to  a rigid mesh 
motion of the fluid grid around an oscillating 
airfoil, and M = D = 0 includes as particu- 
lar cases the spring-based mesh motion scheme 
introduced in [15] and the continuum based up- 
dating strategy advocated by several investiga- 
tors (see, for example, [17]). 

- -  

- -  - -R - R  

- - 

Fig. 3. A pseudo-structural tetrahedron 
in a fluid mesh 

Fig. 1. Moving and deforming fluid grid 

Computational Domain 

@ Fluid (far field) 

Fig. 2. Three-field formulation 

The first of Eqs. (22) is derived in details 
in Section 2. The second of Eqs. (22) is the 
standard nonlinear structural dynamics equa- 
tion of equilibrium. The notation fe”‘(W(t),x) 
is used to  remind the reader that the external 
forces acting on the structure include, among 
others, the aerodynamic forces that are com- 
puted from the knowledge of t h e  fluid state 
vector W and the motion and deformation of 
the surface of the structure, which in turn con- 
trols the motion x ( t )  of the fluid grid. Hence, 
Eqs. (22) are fully coupled. 

1.3. Obiectives and outline of this paper 

Each of the three components of the three-way 
coupled problem described by Eqs. (22) has dif- 
ferent mathematical and numerical properties, 
and distinct software implementation require- 
ments. For Euler and Navier-Stokes flows, the 
fluid equations are nonlinear. The structural 
equations and the semi-discrete equations gov- 
erning the pseudwstructural fluid grid system 
may be linear or nonlinear. The matrices result- 
ing from a linearization procedure are in general 
symmetric for the structural problem, but they 
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are  typically unsymmetric for the  fluid prob- 
lem. Morevoer, t he  nature  of t he  coupling in 
Eqs. (22) is implicit ra ther  t han  explicit, even 
when the  fluid mesh motion is ignored. T h e  
fluid and  the  s t ructure  interact only at their 
interface, via t he  pressure and  viscous forces, 
and  the  motion of t he  physical interface. How- 
ever, for Euler and  Navier-Stokes compressible 
flows, t h e  pressure variable cannot be easily iso- 
lated neither from the  fluid equations nor from 
the  fluid s t a t e  vector W. Consequently, the  nu- 
merical solution of Eqs. (22) via a fully coupled 
monolithic scheme is computationally challeng- 
ing and  software-wise unmanageable. 

Alternatively, Eqs. (22) can be solved 
via a partitioned analysis or a staggered proce- 
dure  [20-231. This  approach offers several ap- 
pealing features including the  ability t o  use well 
established discretization and  solution methods 
within each discipline, simplification of software 
development efforts, and  preservation of soft- 
ware modularity. 

Traditionally, nonlinear transient aeroelas- 
t ic problems have been solved via the  simplest 
possible parti t ioned analysis whose cycle can 
be  described as follows: a) advance the  struc- 
tu ra l  system under a given pressure load, b)  up- 
d a t e  the  fluid mesh accordingly, and c) advance 
the  fluid system and  compute a new pressure 
load [15,16,24-271. Occasionally, some investi- 
gators have advocated the  introduction of a few 
predictor/corrector i terations within each cycle 
of this three-step staggered integrator in order 
t o  improve accuracy [28], especially when the  
fluid equations are  nonlinear and treated im- 
plicitly [as]. However, more efficient staggered 
solution procedures can and should be devised. 

T h e  main objective of this paper is t o  
present a computational framework for the  mas- 
sively parallel solution of t he  three-way coupled 
Eqs. (22) t h a t  is being developed at the  Uni- 
versity of Colorado by the  author  and his co- 
workers. This  is certainly not t o  imply t h a t  

we are  the  only research group working on this  
problem. However, we believe t h a t  our  com- 
putational framework includes many innovative 
ideas and unique capabilities t h a t  a re  worthy 
discussing. For this purpose, t h e  remainder of 
this paper is organized as follows. 

A t  the  heart  of nonlinear transient aeroe- 
lastic simulations is t he  computation of un- 
steady flow problems with moving boundary 
conditions and dynamic unstructured meshes. 
In  this paper,  we d o  not discuss the  state- 
of-the-art of unsteady flow solvers, especially 
t h a t  their s ta tus  seems t o  be  far from satis- 
factory [30]. For this specific topic, we refer 
t he  reader t o  references [30,31]. However, we 
focus in Section 2 on the  important  issues of 
geometric conservation laws (GCLs) which, in 
the  presence of dynamic meshes, impose im- 
portant  constraints on the  algorithms employed 
for time-integrating the  semi-discrete equations 
governing the  fluid and  dynamic mesh motions. 
In  particular, we address the  problem of satis- 
fying both displacement and  velocity continu- 
ity constraints between the  s t ructure  and  fluid 
mesh motions a t  t he  fluid/structure interface, 
and the  impact of this problem on the  accuracy 
and  stability of t he  time-integrator selected for 
predicting the  aeroelastic s t ructural  response. 
In  Section 3, we present a broad family of stag- 
gered solution procedures where the  fluid flow 
can be integrated using either a n  implicit or a n  
explicit scheme, and  the  s t ructural  response is 
advanced using a n  implicit one. We address im- 
portant  issues pertaining t o  numerical stability, 
subcycling, accuracy vs. speed trade-offs, im- 
plementation on heterogeneous computing plat- 
forms, and inter-field as well as intra-field par- 
allel processing. Next, we describe in Section 4 
our particular two- and  three-dimensional un- 
steady flow solvers. In  Section 5 ,  we discuss 
the  solution of t he  s t ructural  dynamics equa- 
tions. Because our  goal is t o  handle linear as  
well as nonlinear s t ructural  dynamics problems, 
we op t  for a direct t ime integration method 
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rather t h a n  t h e  restrictive modal superposition 
approach. We describe a substructure based 
nonlinear t ime integration implicit algorithm 
t h a t  features second-order accuracy and  uncon- 
ditional stability. For scalability purposes, we 
also adopt  as  a linearized solver the  substruc- 
tu re  based preconditioned conjugate gradient 
FETI method [32,33] equipped with the  pro- 
jection scheme presented in [34] for solving it- 
eratively and  efficiently systems with repeated 
right hand sides. In  general, the  fluid and  
s t ructure  meshes have two independent repre- 
sentations of t h e  physical f luid/structure in- 
terface, and  d o  not necessarily match a t  t h a t  
interface. We discuss th i s  and  other related 
issues in Section 6 where we also describe 
“Matcher” [35], a program for generating in 
parallel t h e  d a t a  structures needed for handling 
arbi t rary and  non-conforming fluid/structure 
interfaces in aeroelastic computations. In Sec- 
tion 7, we t u r n  t o  t h e  solution of the  equations 
governing the  dynamic motion of t h e  fluid grid. 
In  Section 8, we describe a unified and  portable 
approach for parallel fluid/structure computa- 
tions t h a t  is based on t h e  mesh partitioning 
paradigm. We also briefly discuss t h e  contro- 
versial topic of what  constitutes a good mesh 
parti t ion for parallel processing. In Section 9, 
we illustrate our framework for computational 
dynamic aeroelasticity with examples ranging 
from t h e  numerical investigation on an iPSC- 
860 massively parallel processor of the  instabil- 
ity of flat panels with infinite aspect ratio in 
supersonic airstreams, t o  the  solution on the  
Paragon XP/S ,  Cray T3D and  IBM SP2  paral- 
lel systems of three-dimensional wing response 
problems in t h e  transonic regime. Finally, we 
conclude this  paper in Section 10. 

REMARK 1: Some of t h e  content of this 
paper is based on  recent publications by the  
author  a n d  his co-workers. These publications 
are indicated between [ ] at the  beginning of 
each section and  wherever is appropriate. 

2. GEOMETRIC CONSERVATION 
LAWS 119,361 

As stated earlier, the  matrices Kc a n d  K t h a t  
appear in the  third of Eqs. (22) are  designed to  
enforce continuity between t h e  grid motion and  
the  structural  displacement and /o r  velocity a t  
the  moving fluid/structure boundary I ‘ F I S ( t )  

T h e  first of Eqs. (22) involves both t h e  po- 
sition and  velocity of the  underlying fluid dy- 
namic mesh. These entities are  usually ob- 
tained from the  solution of t h e  second and  third 
of Eqs. (22), and  optionally from t h e  use of a 
predictor. When selecting a method for inte- 
grating the  fluid equations, it is desirable t o  
choose one t h a t  preserves t h e  trivial solution 
of a uniform flow field ( in t h e  absence of other 
boundary conditions, a uniform flow field is a 
solution of the  Navier-Stokes equations). In 
this section, we show t h a t  this property is veri- 
fied only when the  numerical scheme chosen for 
solving the  fluid equations a n d  t h e  algorithm 
constructed for updat ing t h e  mesh position and  
velocity satisfy a certain condition. We refer to 
this condition as t h e  Geometric Conservation 
Law (GCL)  because: (a) it can be identified 
as  integrating exactly t h e  area or volume swept 
by the  boundary of a cell in a finite volume 
formulation, and  (b)  i ts  principle is similar t o  
the  GCL condition t h a t  was first pointed out  
in [37] for structured grids and  finite difference 
schemes. In t h e  present work, we derive t h e  
conditions imposed by the  G C L  in terms of an 
appropriate choice of integration points in t ime, 
and  a consistent scheme for updat ing the  grid 
point velocities. This  is in contrast  with pre- 
vious works [38,39] where t h e  GCL was ad- 
dressed in terms of averaged normal or velocity 
coefficients for moving finite volume cells. T h e  
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approach exposed herein for deriving and  satis- 
fying a G C L  is deemed more general t han  those 
previously discussed in t h e  literature. For ex- 
ample, it  recovers t h e  results of the  normal av- 
eraging algorithm recently proposed in [38] for 
finite volume discretizations, and  applies as well 
t o  finite element methods t h a t  are not covered 
by this  normal averaging procedure. 

Throughout  this section, we consider flow 
computations using unstructured moving meshes. 
We focus on  t h e  Euler equations, because in our 
formulation t h e  viscous terms are not explicitly 
affected by t h e  mesh motion. We derive several 
G C L  conditions for these problems, and  dis- 
cuss their  various algorithmic implications. We 
consider first t h e  case where the  finite volume 
method is chosen for t h e  spatial approximation 
of t h e  flow equations, and  t h e  ALE formulation 
is used for handling dynamic meshes. Then ,  
we analyze t h e  cases where t h e  finite element 
method is employed for spatial discretization, 
and  t h e  moving mesh is treated with either a 
space-time or an  A L E  formulation, respectively. 
In  particular,  we show t h a t  space-time finite el- 
ement methods always satisfy t h e  fundamen- 
ta l  geometric conservation law. We investigate 
t h e  consequences of t h e  GCL condition on the  
temporal integration of the  structural  equations 
of motion. Most importantly, we address the  
problem of satisfying both displacement and  ve- 
locity continuity equations between the  struc- 
tu re  and  fluid mesh at t h e  fluid/structure in- 
terface, without violating the  GCL. Finally, we 
highlight the  importance of t h e  GCL with an  
illustration of its effect on t h e  computation of 
t h e  transient aeroelastic response of a flat panel 
in transonic flow. 

2.1. The Finite Volume Method 
with an ALE Formulation 

Let Q(t)  C R" (n  = 2, 3) be the  flow domain of 
interest a n d  r(t) be i ts  moving and  deforming 
boundary. We introduce a mapping function 
between R(t) where t ime is denoted by t and  

the  grid point coordinates by z, a n d  a reference 
configuration Q(0) where t ime is denoted by 0 
and  the  grid point coordinates by t as follows 

T h e  conservative form of t h e  equations describ- 
ing Euler flows can be written in arbitrary 
Lagrangian-Eulerian (ALE)  form as  

FC(W,5) = F(W)-2W 
(25) 

where J = d e t ( d z / d t )  is t h e  jacobian of the  
frame transformation 5 + z, W denotes the  
fluid conservative variables, 3' denotes t h e  con- 
vective ALE fluxes, and  x = Elf is t h e  ALE 
grid velocity t h a t  may be different from t h e  
fluid velocity and  from zero. 

T h e  finite volume method for unstructured 
meshes relies on t h e  discretization of t h e  com- 
putational domain into control volumes or cells 
Ci constructed around t h e  vertices Si, with 
boundaries denoted by dC;, a n d  normals to 
these boundaries denoted by vi. 

Fig. 4. Control volume 
(unstructured two-dimensional mesh) 

Eq. (25) can then be integrated over t h e  con- 
trol cells. In  a n  ALE formulation, these cells 
move and  deform in time. First ,  integration is 
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performed over a reference cell in the  [ space as 
follows 

JVx.Fc(W, i )  dot  = 0 
Ci(0)  

(26) 
+J  

In  the  above equation, the  partial t ime deriva- 
tive is evaluated at constant [; hence, it can be 
moved outside of t he  integral sign t o  obtain 

"J W J d R t  
dt C i (0 )  

V x . F c ( W , i )  J dot = 0 
Ci(0)  

(27) 
+ J  

Switching back to the  time-varying cells, Eq. (27) 
above can be rewritten as 

L /  W d R x + /  V x . F c ( W , i )  d o ,  = 0 
dt C i ( t )  C i ( t )  

(28) 
Finally, integrating by par ts  t he  last term yields 
the  governing integral equation 

"1 WdoX+\ F " ( w , i ) . ~ i  do = 0 
dt ci ( 1 )  a c i ( t )  

(29) 
In  a finite volume method, the  flux through the  
cell boundary aCi(t) is usually evaluated via a 
flux splitting approximation [40] as follows 

F ; " ( W , X , X )  = 

(30) 
where dCi,j is t he  intersection between the  
boundaries of cells Ci and Cj ,  Wi denotes the  
average value of W over the  cell Ci, W is the  
vector formed by the  collection of W;,  and x 
is the  vector of t he  time-dependent grid point 
positions. T h e  numerical flux functions FT and 
F: are  designed t o  make the  resulting system 

stable. An example of such functions can be 
found in [41]. For consistency, these numerical 
fluxes must verify 

F:(W,i) + Fz(W, i )  = F"(W, i )  (31) 

Thus,  the  resulting discrete equation is 

d I d t  
-(KWi) + F:(w,x ,x )  = 0 

where 

v,= 1 dox (33) 
Ci ( t )  

is the  area for two-dimensional flow problems, 
and the  volume for three-dimensional flow prob- 
lems, of cell C;. Collecting all Eqs. (32) into a 
single system yields 

d 
d t  I -(VW) + F " ( W , x , x )  = 0 I (34) 

where V is the  diagonal matrix of t he  cell areas, 
W is t he  vector containing all s ta te  variables 
W;,  and F" is the  collection of the  fluxes F t .  
This  also completes the  derivation of t he  first 
of Eqs. (22). 

2.1 .l. The Geometric Conservation Law 

Let At and t" = n A t  denote respectively the  
chosen time-step and  the  n - th  time-station. In- 
tegrating Eq. (32) between tn  and tn+' leads 
t o  

K(x"+')w:+' - v,(X")W? 
tn+l 

+ F:(W,x,x)dt = O  
J t n  

(35) 
T h e  most important  issue in the  solution of 
the  first of Eqs. (22) via an  A L E  method is 

the  proper evaluation of Ln FF(W,x,x)dt in 
Eq. (35). In  particular, i t  is crucial t o  establish 
where the  fluxes must be  integrated: on the  
mesh configuration at t = t" ( x " ) ,  on t h a t  at 

tn+l 



8-13 

t = tn+' (x"+'), or in between these two con- 
figurations. T h e  same questions arise as t o  the  
choice of t h e  mesh velocity vector x. 

Clearly, a proposed numerical algorithm 

for computing t h e  quantity hn Ft(w, x, x)dt 
involving general and  arbitrary t ime depen- 
dent  fluid s ta te  vectors and  mesh configura- 
t ions cannot be acceptable unless it conserves 
t h e  state of a uniform flow. Let W *  denote a 
given uniform s ta te  of the  flow. Substi tuting 
Wp = W;+' = W *  in Eq. (35) gives 

tn+l  

Ff(W*,x,x) dt = 0 

(36) 

(qn+l- V,")W* + 

where W* is t h e  vector of t h e  s ta te  variables 
when W k  = W* for all I C .  From Eq. (30)) it 
follows t h a t  

Ft(W*,X,X) = 

which can be rewritten as 

t n + l  

(K(x"+') - K(x")) = / / xu; da dt 
t"  aci (XI 

(41) 
Eq. (41) above defines a geometric conservation 
law (GCL) t h a t  must be verified by any pro- 
posed ALE mesh updat ing scheme. This  law 
states t h a t  t h e  change in area (volume) of each 
control volume between tn  and  tn+' must be 
equal t o  the  area (volume) swept by the  cell 
boundary during At = tn+' - tn .  Therefore, 
the  updat ing of x and  x cannot be based on 
mesh distorsion issues alone when using A L E  
solution schemes. 

T h e  assumption t h a t  t h e  numerical method 
performs exactly t h e  integration of Eq. (38) is 
referred t o  in [39] as  t h e  Surface Conservation 
Law (SCL). Satisfying of this condition is nec- 
essary for flow computations on  s ta t ic  meshes 
and  is not specific t o  dynamic ones. Therefore, 
we do not discuss this condition in this section / ( F i ( W * , k )  + FE(W*,k)).vi da 

j aci,j(Z) 

Given t h a t  t h e  integral on  a closed boundary 
of the  flux of a constant function is identically 

i t  follows t h a t  

XW*.vi do (39 J Fic(W*,X)X) = - 
ac;(x) 

Hence, subst i tut ing Eq. (39) into Eq. (36) 
yields 

any further and  refer the  reader t o  [39] for ad- 
ditional details. 

2.1.2. Implications of the GCL 

From t h e  analysis presented in t h e  previous sec- 
tion, it follows t h a t  an  appropriate scheme for 

evaluating hn Ff(W*,x,x)dt in Eq. (36) is 
a scheme t h a t  respects t h e  G C L  (41). Note 
t h a t  once a mesh updat ing scheme is given, 
the  left hand side of Eq. (41) is always ex- 
actly computed. Hence, a proper method for 

evaluating Jn F,"(W*,x,x)dt is a method 
t h a t  obeys t h e  GCL and  therefore computes ex- 
actly t h e  right hand side of Eq. (41)- t h a t  is, 

tn+l  

t n + l  
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2.1.3. The Two-Dimensional Case 

Given t h a t  in two dimensions dCi is t -  e union 
of segments, it suffices to consider t h e  integra- 
tion of x.n along a segment [ab] with a normal 
n 

Ilab] = l:n+l lab] x.n dsdt (42) 

Let xa and  2 6  denote t h e  instantaneous po- 
sitions of two connected vertices a and b 
(Fig. 5). T h e  position of any point on the  edge 
[ab] during t h e  time-interval [tn,tn+'] can be 
parametrized as  follows . 

where 

and  6 ( t )  is a real function t h a t  satisfies 
I 

6 ( t " )  = 0;  s(t"+') = 1 (45) 

n+l 
a 

xn+l 
b 

Fig. 5 Parametrization of an  edge 
in a two-dimensional space 

Substi tuting Eqs. (43,44) into Eq. (42) yields 

+ (1 - b ( t ) ) ( X c a "  - 2;)) dt 

where 1 is the  length of edge [ab],  and 

H = ( y  i'). T h e  mesh velocities x a  and 

xb can be obtained from t h e  differentiation of 
Eq. (44). 

(46) 

and Iia6] can be finally writ ten as 

H(S(z:+' - zF+l) + (1 - S)(z," - z:)) d t  
1 

_ -  - ; 1 ((.E+' - .E) + ($+' - x;)) 

H(6(zE+' - or") + (1 - S)(x; - $)) d6 

Clearly, the  integrand of I[ab] is linear in 6. 
Therefore, I[,b] can be exactly computed using 
the  midpoint rule, provided t h a t  Eq. (47) holds 
- t h a t  is 

(48) 

A6 
At x = B(t)(."+l - 2) = -(."+I - 2) (49) 

which in view of Eq. (45) can also be written 
as 

In summary, t h e  G C L  derived herein 
shows t h a t  for two-dimensional problems, t h e  

integrand.of s,,, F[(W,x,X) dt in Eq. (35) 
tn+ l  



must be evaluated at the midpoint configura- 
tion, and that this integral must be computed 
as follows 

where the superscript k depends on the time 
discretization of the flow equation. 

2.1 .b. The Three-Dimensional Case 

In a three-dimensional space, the boundary of 
each cell is polygonal and can be decomposed 
into a set of non overlapping triangular facets. 
Similarly to  the two-dimensional case, let Irabe] 
denote the flux crossing the facet [abc] 

t"+l 

&bcI = in iabol dcdt (52) 

Let x o ,  X b  and xe denote the instantaneous 
positions of three connected vertices a ,  6 and 
e. The position of any point on the facet 
can be parametrized as follows (see Fig. 6) 

Fig. 6. Parametrization of a facet 
in a three-dimensional space 
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~ ( t )  = 6(t)xz+' + ( 1  - 6( t ) )xz  

X b ( t )  = 6( t )xr f '  t (1 - 6(t))xF (54) 
X b ( t )  = 6( t )xr f '  + (1  - 6(t))xr  

and 6 ( t )  is given in (45). Substituting the above 
parametrization in (52) we obtain 

'-a1 

I [ a b c ]  = 1;" l1 1 (al?i., + U Z i b  

+ (1 - (YI - c ~ z ) i c ) . n  1xOc A xbel daa dal dt 

= L;+l 1 

= i;+' 1 .  

-(ia + i b  + i c ) . ( X m c  A X b c )  d t  

 AX. + A X b  + A ~ c ) . ( ~ o c  A X b c )  d t  

= + hxa + Axc) . (xac A xbc) d6 

(55) 
with 

Noting that 

X a c  A xbc = 
(6x2:' + (1 - 6 ) ~ : ~ )  A (6x;$' + (1 - 6 ) ~ ; ~ )  

is a quadratic function of 6, the integrand of 
is clearly quadratic in 6 and therefore can 

be exactly computed using a 2-point integration 
rule, provided that Eq. (50) is used to  com- 
pute i. 

(57) 
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Expanding q*, we obtain 

Hence, the proper method for evaluat- 
ing Jrtl e ( W , x , x )  dt that respects the 
GCL (41) in the three-dimensional case is 

F[(W,X,X) dt 

- - -( At F[(Wk1 ,Xml ,  x n + + )  

2 + F[(Wk2,x ma ,x  

I I 
m l =  n +  - -  - 

2 2& 
1 1  

m2 = n + -+  - 
2 2& 

where the superscripts k l  and k2 depend on the 
time discretization of the flow equation. 

1 + g(& A z:? + 2::' A &)) 
(61) 

which shows that the proposed GCL (20) recov- 
ers the same results as the averaged-normals 
method proposed in [38] for the finite volume 
discretization of flow equations with moving 
meshes. 

2.2. The Stabilized Finite Element 
Method with a Space-Time Formulation 

2.2.1. Semi-Discretization 

Time-integration in space-time finite element 
methods is derived in a different manner than 
what has been presented so far. Space-time 
finite element methods contain the time inte- 

2.1.5. Recovew of the Avaraqed-Normals Method gration formula in the chosen shape functions. 
These methods are basically weighted resid- 

In [381, the convected flux accross the facet b l  ual formulations that perform an integration in 
is computed using space and time of the product of the Euler equa- 

tions and an appropriate weighting function. 
Stabilization is usually required for the spatial 
approximation [42]. In this section, we focus on 

n + l  A .rCt1 (59) the stabilized Least-Square/Galerkin method 11 = ~ ( d &  A zrC + % e  

and time-discontinuous shape functions. 

1 
3 
1 

I[abe] = -(AZa + Azb + Azc).q 

Let 0 = tD < t' < ... < tN = T be a 
partition of the time-interval I = ]O,T[, and In 
be the ~ ~ n , ~ n + l [ .  A space-time slab 
is defined in In x E d ,  where d designates the 
spatial dimension, as follows 

while the evaluation of Eq. (52) using the two- 
point rule gives 
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with boundary 

P, = {(t,r(t)) I t E 
2.2.2. The Geometric Conservation Law 

Provided that the spatial integration SI ieme 
can compute exactly the following quantities 

For each space-time slab, the spatial domain is 
subdivided into n,l elements fl:(t), e = 1, ..., n , ~  
(see Fig. 7). The following notational conven- 
tion is adopted 

l V h  dfl 

r 
W(t2 )  = lim W(tn  + e )  (64) 

E-& 

do = 0 
Given some finite element spaces S," and V,", 
the space-time (discontinuous) Least-Square/Galerkin 
method for solving the ~~l~~ flow equations it follows that W = W' is always a solution of 
goes as follows Eq. (65) Hence, a space-time stabilized finite 

element method always satisfies the GCL. This 
Find W h  E S," such that for all V h  E V," 

is certainly an advantage. However, space-time 
finite element methods are rather computation- 

( v " ~ 2  - V?F:W'),) dQ ally expensive. 

h n  h n  h n  +/ (t+)(W (t+) - W (t-))  dfl 2.3. The Stabilized Finite Element 
Method with an ALE Formulation nctq, 

+%I ( f ,Wh)p( f ,Vh)  dQ = 
e = l  8: 

(65) 
k=3 

k = l  
where f ,  = & + 
lizat ion paramet er. 

%&-, and p is a stabi- 

Fig. 7. Space-time slabs 

2.3.1. Semi-Discretization 

The stabilized finite element method with an 
ALE formulation can be derived by multiply- 
ing Eq. (25)  by a weighting function V h ( t ) ,  
integrating over f l (O) ,  and adding a consistent 
stabilization term S(Vh,  W) to obtain 

+S(Vh,W) = 0 

For example, S(Vh,W) can be selected as 

S(Vh,W) = 

.. . 

(68) 

Consistency requires that S vanishes when W is 
solution of the Euler equations. Integrating by 
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.3Vh parts Eq. (67) and exploiting 
to  

= 0 leads 

V t E ( W ,  &)dR, 

+ S ( V " W )  = 0 
(69) 

Integrating the above equation between tn and 
tn+' yields 

2.3.2. The Geomet~c Conservation Law 

Substituting a constant field W = W' in 
Eq. (70) leads to 

V h W *  dR, - J V ~ W *  dR, J n(t"+') W t . )  

+ l:l1 
- l:"" l,,, V!'E(W*,*)  do, dt 

S (Vh ,  W ' )  dt = 0 

(71) 

At this point, it is essential to assume that 
the consistency of S is preserved in its dis- 
crete counterpart (at least for a uniform field), 
and therefore the last term in the above equa- 
tion is identically zero. From Eq. (68) it can 
be observed that the least-square term identi- 
fies pointwise with zero, and hence the assump- 
tion is satisfied independently of the integration 
rule. One can also reasonably assume that the 
first and second terms of the above equation can 
be computed exactly, and that the evaluation of 
any term of the form 

(72) 

where p, are constants, can also be carried out 
exactly. Indeed, the latter condition is desirable 
not only for ALE computations, but also for 
flow computations using fixed meshes. Violat- 
ing this condition will introduce artificial fluxes 
throughout the mesh. Therefore, this condi- 
tion is the finite element form of the Surface 
Conservation Law introduced in [39]. For ex- 
ample, if the weighting functions V h  are linear 
polynomials over each element, Vf is constant 
over each element and a single point integra- 
tion rule will yield an exact integration formula, 
provided that the area/volume of the element 
is computed exactly. 

Consequently, provided the SCL is satis- 
fied, and for weighting functions that are zero 
on the boundary, it follows that 

Hence, Eq. (71) can be rewritten as 

(73) 

and can be simplified to 
(74) 

Eq. (75) establishes the geometric conserva- 
tion law for the stabilized finite element method 
with an ALE formulation. 

2.3.3. Implications of the GCL 

In order to  find the appropriate formula for inte- 
grating exactly the last term of the above GCL, 
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we proceed as  follows. First ,  we introduce the,  
function 

V r x i  dRxdt  (76 )  
G(T)  = LT J,,.) 

and  note t h a t  this function can also be written 
as  

G ( T )  = 

( 7 7 )  
- l(tn) V"(r(~l t"))  d f l x  

From t h e  differentiation .of Eqs. (76,77) it fol- 
lows t h a t  

Hence, t h e  appropriate formula for integrating 
exactly the  last term in Eq. ( 7 5 )  and  satisfy- 
ing t h e  G C L  is t h e  one which computes exactly 

2.3.4. The Two-Dimensional Case 

Let N k  be some arbi t rary mapping functions 
between t h e  current and  reference configura- 
tions. We have 

where summation is assumed over repeated in- 
dices, and  zki are given by 

Here, 6 ( t )  satisfies t h e  conditions given in 
Eq. (45 ) .  This  form shows t h a t  t h e  matrix in- 
volved in the  computation of J is a linear func- 
tion 066,  and therefore J is a quadratic function 
of S t h a t  can be written as  

T h e  function G can now be rewritten as 

G ( T )  = 

Therefore, t h e  following conclusions can be 
made 

0 G(T)  is quadratic in S(T),  and  since 

&G(S(T)) is linear in S a n d  hence, the  GCL 
condition will be satisfied if t h e  midpoint rule 
is used for t h e  integration of t h e  last term in 
Eq. (75) .  k = l  

where t h e  subscripts 1 and 2 designate the  two 
different coordinates, and  t h e  subscripts k refer 
t o  t h e  nodal vertices of the  element. T h e  ja- 
cobian J of t h e  above transformation is given 
by 
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2.3.5. The  Three- Dimensional Case 

Similarly t o  t h e  two-dimensional case, the  map- 
ping between a reference and  current element 
configuration can be written as 

k = l  

k m a z  

k = l  

k = l  

and  i ts  jacobian J is given by 

Following t h e  same reasoning as  in the  two- 
dimensional case, t h e  following conclusions can 
be made  

0 G ( T )  is cubic in S(T),  -&G(6(T)) is quadratic 
in 6, and  therefore t h e  GCL condition will 
be satisfied if t h e  two-point rule is used for 
t h e  integration of t h e  last term in Eq. (75). 

2.3.6, Integration Formulae 

As discussed above, t h e  integrand of the  last 
term of t h e  geometric conservation law (75) can 
be linear or quadratic.  For a linear integrand, 
t h e  midpoint rule will perform an  exact integra- 
tion. For a quadratic integrand, the  two-point 
rule must be employed. In  all cases, Eq. (78) 
holds only if x is computed in a manner tha t  is 
compatible with t h e  deformation of O(6)- t h a t  
is, if it is obtained by derivation of Eq. (81). 
Recalling t h a t  we are  interested in computing 

and  making t h e  change of variable suggested in 

we obtain 
Eq. (81) and  t h a t  implies ki = 8(x,+' - x?), 

This in turn  implies t h a t  t h e  mesh velocity x 
must be computed as  follows 

In summary, the  following formulae apply 

wo-dimensional flow problems: 

where the  superscript k depends on t h e  t ime 
discretization of t h e  flow equation. 
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0 three-dimensional flow problems: 

1 1 
ml = n +  - - - 

2 2& 

where the  superscripts k l  and k2 depend on the  
t ime discretization of t he  flow equation. 

2.4. Impact of the GCL on the Temporal 
Solution of Aeroelastic Problems 

T h e  most remarquable implication of the  GCL 
condition is t he  constraint  it  imposes on the  
mesh velocity computat ion,  independently of 
t he  integration formula for t he  flow equations 

This  formula is intuit ive and has been "nat- 
urally" used by several investigators indepen- 
dently from any geometric conservation law 
(see, for example, [15]). However, when sophis- 
t icated time-integrators are  used for the  struc- 
tu re  and /o r  t he  mesh equations, neither the  

computed mesh velocities xn+i  nor the  com- 
puted s t ructural  velocites on the  fluid/structure 

hc 

n t l - , n  

At * 
interface are  guaranteed t o  obey xn+i = 
In  t h a t  case, satisfying the  GCL requires 

0 using the  mesh velocity xn+* computed by 
the  time-integrator, only for evaluating xn+'. 

X"+1 -X" 
0 using the  mesh velocity xn+$ = 

in t he  evaluation of the  fluid fluxes. 

This  means t h a t  it is not always possible t o  re- 
spect t he  continuity of both the  displacement 
and velocity fields on the  fluid s t ructure  bound- 
ary as prescribed by Eqs. (23) without violating 
the  GCL. For example, if t he  displacement con- 
t inuity condition x ( t )  = q( t )  is enforced at the  
fluid/structure interface l?FIS, - and t h a t  is 
usually the  case - respecting the  GCL implies 
computing a mesh velocity field on I'FIS t h a t  
is equal to 

_r 

At 

In t h a t  case, satisfying also the  velocity con- 
tinuity condition i ( t )  = G(t) on r F I S  requires 
t h a t  

which is not enforced by all s t ructural  time- 
integrators. Therefore, it  is not always possible 
t o  satisfy the  continuity between both the  dis- 
placement and the  velocity of t he  s t ructure ,  and  
those of t he  fluid mesh at the  fluid/structure in- 
terface, without violating the  GCL. 

Unfortunately, a discontinuity between the  
velocity of t he  s t ructure  and  t h a t  of the  fluid 
mesh a t  t he  fluid/structure interface can per- 
t u rb  the  energy exchange between the  fluid and 
the  s t r u c t y e .  However, i t  can be  shown t h a t  
when the  implicit midpoint rule is used for ad- 
vancing the  s t ructure  and  the  displacement con- 
dition ~ ( t )  = q( t )  is enforced on r F I S  using 
a staggered algorithm, both continuity equa- 
tions (23 ) can be enforced without violating 
the  GCL. T h e  proof goes as follows. 

Given some initial conditions qo and qo,  
suppose t h a t  t he  mesh motion is initialized such 
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t h a t  t h e  following holds on the  fluid/structure 
interface 

Also suppose t h a t  at each time-station t n ,  the  
continuity of the  velocity field is enforced on the  
fluid/structure boundary 

If t h e  midpoint rule is used for time-integrating 
t h e  structural  equations of motion, and  t h e  dy- 
namic fluid mesh is updated consistently with 
t h e  GCL as in Eq. (92), it can be proved by 
induction t h a t  

Indeed, t h e  above relation holds at n = 0. As- 
suming it holds at n, it follows t h a t  

n++ = x n - L  2 +AtXn X 

At 
2 (98) = qn - -4" + Atq" 

Since t h e  midpoint rule algorithm applied to 
t h e  structural  equations implies 

At 
qn+l - qn = ,(in +in+') (99) 

it follows t h a t  

which completes t h e  proof by induction of 
Eq. (97). 

Now, a staggered algorithm for solving t h e  

using the  mesh displacement x n - i ,  and  
t h e  mesh velocity xn t h a t  matches t h e  

coupled Eqs. (22) can be described as  follows 

1) 

structural  velocity q" on r F / S ,  update  the  
mesh as follows 

(101) 
x n + l  2 = ~ " - 3  + A t x n  

n- 1 using x 2 ,  xn+$ and  xn,  update  the  
fluid s ta te  vector Wn++ in a manner  t h a t  
satisfies t h e  GCL 

using t h e  pressure computed from Wn+$, 
compute qnf l  and  qn+l using t h e  mid- 
point rule 

Defining xn as  

and  substi tuting Eq. (101) into Eq. (102) leads 
to 

(103) 
n n-i At 

2 
x = x  2 + - x n  

which in view of Eqs. (97,96) yields 

and  demonstrates t ha t ,  when t h e  midpoint rule 
is used for time-integrating t h e  s t ructure  and  a 
proper staggered procedure is used for solving 
the  coupled fluid/structure problem, t h e  con-. 
tinuity of both t h e  displacement and  velocity 
fields ca be enforced on r F / S  without violating 
the  GCL. 

2.5. Numerical Example 

In  order t o  highlight t h e  impact of t h e  G C L  
on coupled aeroelastic computations,  we con- 
sider here the  simulation of t h e  two-dimensional 
transient aeroelastic response of a flexible panel 
in a transonic regime. T h e  panel is represented 
by its cross section t h a t  is assumed t o  have a 
unit length and  a uniform thickness and  Young 
modulus, and  t o  be clamped at both ends. 
This rectangular cross section is discretized into 
plane strain 4-node elements with perfect as- 
pect ratios. T h e  two-dimensional flow domain 
around the  panel is discretized into triangles, 
and  the  Euler equations are  used for this com- 
putation. T h e  free stream Mach number is set 
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t o  M ,  = 0.8, and  a slip con1 ,ion is imposed 
at t h e  fluid/structure boundary. Further details 
on  t h e  specifics of this simulation are deferred 
t o  Section 9. 

Initially, a steady-state flow is computed 
a round t h e  panel at M ,  = 0.8. Next, this flow 
is perturbed via a n  initial displacement of the  
panel t h a t  is proportional to its  second funda- 
mental mode, and  t h e  subsequent panel motion 
a n d  flow evolution are  computed using one of 
t h e  staggered explicit/implicit f luid/structure 
procedures described in t h e  following section. 
Two computed histories of the  lift using the  
same time-step are  reported in Fig. 8 for t h e  
case where t h e  GCL is violated by updat ing t h e  
mesh velocity field at t h e  fluid/structure inter- 
face via a higher-order scheme than  t h a t  given 
in Eq. (92), and  in Fig. 9 for the  case where 
t h e  GCL is respected. Clearly, this example 
demonstrates t h e  impact of the  GCL on  aeroe- 
lastic computations as it shows t h a t  violating 
this  law leads to undesirable spurious oscilla- 
t ions in t h e  lift prediction. 

0 OW< 0031 O m  0-  O W  0- OW7 O W  O m 0  003 
QW,, 

T i n o  

Fig. 8. Lift history when t h e  GCL is violated 

Fig. 9. Lift history when the  GCL is obeyed 

3. A FAMILY OF STAGGERED 
S OLUTION PROCEDURES 12 3,44,451 

In  Section 1, we have shown t h a t  in t h e  linear 
theory, the  flutter speed of a n  aircraft can be 
obtained directly from t h e  solution of an  eigen- 
value problem. In t h e  nonlinear theory, predict- 
ing whether an  aircraft will f lutter or not for a 
given set of flight conditions is determined by 
computing t h e  solution of Eqs. (22), and  estab- 
lishing numerically whether this solution grows 
continuously in t ime or not.  In  other words, 
a linear aeroelastic dynamic stability problem 
can be solved without computing explicitly t h e  
response of t h e  structure,  b u t  a nonlinear aeroe- 
lastic dynamic stability problem is typically 
solved by simulating a set of corresponding non- 
linear response problems. Hence, transient non- 
linear aeroelastic investigations are  in general 
computationally intensive. For example, estab- 
lishing t h e  transonic flutter boundary of an  air- 
craft for a given set of aeroelastic parameters 
requires about  30 aeroelastic response analyses, 
which clearly demonstrates t h e  need for a fast 
capability for solving Eqs. (22). Such a capabil- 
ity requires not only powerful supercomputers, 
bu t  also powerful computational methodologies 
and  algorithms. 

One  approach for solving t h e  three-way 
coupled aeroelastic problem described in Eqs. (22) 
is known as  t h e  “monolithic augmentation” 
approach where, as  specific problems arise, a 
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large-scale single computer program - for ex- 
ample, a finite element structural  analysis code 
- is expanded to house more interaction ef- 
fects - for example, fluid/structure interac- 
tion. Such a n  approach poses several diffi- 
culties, most of which are related to  the  fact 
t h a t  each of t h e  three components of the  three- 
way coupled aeroelastic problem described in 
Eqs. (22) has different mathematical and  nu- 
merical properties, and  distinct software imple- 
mentation requirements. Some of these diffi- 
culties have been mentioned in Section 1, oth- 
ers are summarized in [20]. In our opinion, the  
monolithic augmentation approach is unattrac- 
tive because once it is implemented, it can- 
not easily accommodate  neither new or im- 
proved problem formulations, nor future ad- 
vances within any of t h e  computational fluid 
and /o r  structural  dynamics disciplines. 

Alternatively, t h e  solution of Eqs. (22) 
can be obtained through a staggered procedure 
in which separate fluid and  structural  analy- 
sis programs - often called field analyzers [20] 
- execute and  exchange da ta .  Such an  ap- 
proach is also known as  partitioned analysis. 
It offers several appealing features, including 
t h e  ability to use well established discretization 
and  solution methods within each discipline, 
simplification of software development efforts, 
reuse of existing and  validated code, accom- 
modation of future  single discipline improve- 
ments, and  preservation of software modular- 
ity. Traditionally, nonlinear transient aeroelas- 
t ic problems have been solved via the  simplest 
possible staggered procedure where the  sepa- 
ra te  fluid and  structural  analysis programs ex- 
ecute in a strictly sequential fashion, and  ex- 
change strictly interface-state data such as pres- 
sures and  velocities at each single time-step 
(see, for example, [15,16,24-271). T h e  objective 

of this section is t o  overview a broader fam- 
ily of more powerful staggered solution proce- 
dures t h a t  address some important  issues re- 
lated to  numerical stability, subcycling, accu- 
racy vs. speed trade-offs, implementation on 
heterogeneous computing platforms, 'and inter- 
field as well as intra-field parallel processing. 

3.1. Preliminaries 

Of course, the  global performance of a parti- 
tioned analysis for solving t h e  time-dependent 
Eqs. (22) depends on the  local performances 
of t h e  fluid and  structural  field analyzers. Bu t  
more importantly, the  global performance also 
depends on the  stability and  accuracy proper- 
ties of t h e  staggered solution procedure itself. 
For a given prescribed accuracy, t h e  more stable 
a staggered algorithm is, t h e  larger is t h e  allow- 
able coupled time-integration step, and there- 
fore the  faster is t h e  total  solution time. Hence, 
our primal goal is t o  construct partitioned anal- 
ysis procedures for Eqs. (22) with superior sta- 
bility properties. 

REMARK 2: T h e  reader is reminded t h a t  the  
stability properties of a staggered solution algo- 
ri thm depend, among other  things, on t h e  sta- 
bility properties of t h e  field analyzers. However, 
it is also well-known t h a t  using a n  uncondition- 
ally stable t ime integration algorithm in each 
field analyzer does not guarantee t h e  uncondi- 
tional stability of t h e  overall staggered solution 
algorithm . 

Because t h e  aeroelastic response of a struc- 
ture  is often dominated by low frequency dy- 
namics, we consider only implicit schemes for 
time-integrating t h e  structural  displacement 
field. However, we consider both explicit and  
implicit time-integrators for advancing t h e  fluid 
field, as both approaches are  popular in compu- 
tational fluid dynamics. On t h e  other hand, we 
also note t h a t  time-accurate implicit and  un- 
structured flow solvers seem t o  be less avail- 
able than  their explicit counterparts.  In  t h e  
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sequel, we refer t o  a partitioned analysis pro- 
cedure as  an  explicit/implicit one if an  explicit 
time-accurate flow solver is employed, and  as  an  
implicit/implicit one if an  implicit flow solver 
is used. In  t h e  implicit/implicit case, our goal 
is t o  devise a n  unconditionally stable staggered 
algorithm, or at least a partitioned procedure 
t h a t  allows a relatively large time step. In  t h e  
explicit/implicit case, our  objective is to design 
a staggered solution algorithm whose stability 
limit is not worse t h a n  t h a t  of the  underly- 
ing explicit flow solver. These are not trivial 
tasks because coupling effects can restrict the  
stability limits of the  independent field time- 
in t egrators. 

Next, we make the  following observations 

linear and  nonlinear transient fluid /struc- 
tu re  interaction problems have one partic- 
ularity: they possess a wide variety of self- 
excited vibrations and  instabilities. We 
have already mentioned t h e  flutter prob- 
lem. Another example of a dynamic in- 
stability is t h a t  of t h e  vibrations due to  
Von KBrmAn vortices [43]. If the  fre- 
quency of t h e  s t ructure  loading caused by 
t h e  vortices is close or equal to the  nat-  
ural frequency of the  body, then a reso- 
nance effect is present and  large ampli- 
tudes of vibrations result. Therefore, when 
it comes to analyzing t h e  numerical sta- 
bility of a proposed staggered algorithm 
for ti me-int egrat  i ng fluid /s t ruct ure inter- 
action problems, it is essential t o  consider 
t h e  case where t h e  coupled system is physi- 
cally stable - t h a t  is, when Eqs. (22) have 
a solution t h a t  does not grow indefinitely 
in time. 

when t h e  s t ructure  undergoes small dis- 
placements, the  fluid mesh can be frozen 
and  “transpiration” fluxes can be intro- 
duced at t h e  fluid side of the  fluid/structure 
boundary t o  account for the  motion of t h e  

0 

0 

structure.  In  t h a t  case, the  nonlinear t ran-  
sient aeroelastic problem simplifies from a 
three- t o  a two-field coupled problem. 

0 most fluid/structure instability problems 
can be analyzed by investigating the  re- 
sponse of t h e  coupled system t o  a pertur- 
bation around a steady s ta te .  If t h e  re- 
sponse is an  amplification of t h e  initial per- 
turbat ion,  it is an  indication t h a t  the  sys- 
tem is unstable. If it  is a dissipation of the  
initial perturbation, it means t h a t  the  sys- 
tem is stable. This  suggests t h a t  aeroelas- 
t ic stability or instability problems can be 
investigated by linearizing t h e  flow around 
an  equilibrium position WO, and  analyzing 
the  response of the  fluid/structure system 
to  a perturbation. 

Based on t h e  above observations, t h e  au- 
thors of reference [23] have constructed a sim- 
plified but  relevant aeroelastic “test” problem 
where t h e  coupled fluid/structure system is al- 
ways physically stable. They  have also pre- 
sented a mat  hematical framework for analyzing 
the  accuracy and  stability properties of stag- 
gered procedures applied t o  t h e  solution of their 
test problem. Subsequently, this test  problem 
was also shown t o  be a good model problem 
for the  complex nonlinear aeroelastic systems 
t h a t  we are interested in solving [23,18,19]. In  
the  test problem, t h e  s t ructure  is assumed to  
remain in the  linear regime, and  t h e  flow is lin- 
earized around an  equilibrium position of t h e  
fluid s ta te  vector denoted here by WO. T h e  
semi-discrete equations governing this coupled 
aeroelastic model problem are given by (see [23] 
for details) 

(6:) = (A* C D* B ) ( J Y )  



8-26 

where 6W is t h e  perturbed fluid s ta te  vector, 

Q = (:) is the  s t ructure  s ta te  vector, A* re- 

sults from t h e  spatial  discretization of the  flow 
equations, B is t h e  matrix induced by the  t ran-  
spiration fluxes at the  fluid/structure boundary 
b / S ,  C is t h e  matrix t h a t  transforms the  fluid 
pressure on r F / S  into prescribed structural  

where as  before, M, D, and  K are the  s t k c -  
tural  mass, damping, and  stiffness matrices. 

In  [19], t h e  aeroelastic model problem de- 
scribed in Eqs. (105) has been extended to  in- 
clude t h e  mesh motion of the  fluid grid, and  
therefore to truly represent the  three-way cou- 
pled aeroelastic problem governed by Eqs. (22). 
More importantly,  reference [19] d '  iscusses a 
methodology for considering a staggered solu- 
tion procedure t h a t  was designed for solving 
t h e  three-field equivalent of the  model prob- 
lem (105), and  extending it t o  the  case of non- 
linear transient aeroelastic problems such as 
those governed by Eqs. (22). 

In  this  section, we overview a family of par- 
titioned analysis procedures for solving t h e  non- 
linear transient coupled Eqs. (22). These algo- 
ri thms are based on  the  mathematical results 
established in [23,19], and  have recently been 
described in [44,45]. Rather  t han  discussing 
mathematical proofs and  details tha t  can be 
found in [23,19], we emphasize important com- 
putational and  implementational issues per- 
taining t o  accuracy, stability, distributed com- 
puting, 1/0 transfers, subcycling, and  parallel 

In order not t o  obscure t h e  following discus- 
sion by t h e  complex notation needed for three- 
dimensional viscous flows, we focus here, with- 
out  any loss of generality, on t h e  case of two- 
dimensional Euler flows discretized by the  finite 
volume method. For three-dimensional invis- 
cid flows, Eqs. (58) should be used instead of 
Eqs. (51). For finite element and /o r  space-time 
discretizations, Eqs. (51) should be replaced by 
the  appropriate equations derived in Section 2. 

From the  results established in Section 2, it 
follows tha t  t h e  semi-discrete equations govern- 
ing the  three-way coupled aeroelastic problem 
can be written in t h a t  case as 

x"++ - xn + xn+l - 
2 

processing. - 1. 

(106) 
where t h e  superscript k depends on t h e  t ime 
discretization of the  fluid flow equations. 

In  many aeroelastic investigations such as  
wing flutter problems, first a steady flow is com- 
puted around a s t ructure  in equilibrium. Next, 
the  structure is perturbed via a n  initial dis- 
placement and/or  velocity and  t h e  aeroelastic 
response of t h e  coupled fluid/structure system 
is analyzed. This  suggests t h a t  a natural  se- 
quencing for t h e  staggered time-integration of 
Eqs. (106) is 

3.2. Explicit /implicit partitioned procedure 

3.2.1. ALGO: the basic explicit/implicit 
staqqered solution procedure 

3. 

perturb t h e  s t ructure  via some initial con- 
ditions. 

update  the  fluid grid t o  conform t o  the  new 
s t r u c t u r a1 boundary. 

advance t h e  flow with t h e  new boundary 
conditions. 
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4. advance t h e  s t ructure  with the  new pres- 
sure load. 

5 .  repeat from step 2 until t h e  objective of 
t h e  simulation is reached. 

An important  feature of partitioned solu- 
tion procedures is t h a t  they allow using exist- 
ing single discipline software modules. In our 
work, we have been particularly interested in re- 
using t h e  massively parallel explicit flow solver 
described in [46-491 for two-dimensional prob- 
lems, a n d  a variant for three-dimensional appli- 
cations. Therefore, we consider here the  case 
where t h e  semi-discrete fluid equations are in- 
tegrated with a 3-step variant of the  explicit 
Runge-Kut ta  algorithm. Of course, other ex- 
plicit time-integrators can be equally employed. 
On  t h e  other  hand,  t h e  aeroelastic response of 
a s t ructure  is often dominated by low frequency 
dynamics. Hence, t h e  structural  equations are 
most efficiently solved by an  implicit time- 
integration scheme. For example, we select t o  
time-integrate t h e  structural  motion with t h e  
implicit midpoint rule because it allows enforc- 
ing both continuity Eqs. (23) while still respect- 
ing t h e  G C L  (see Section 2). Consequently, 
we propose t h e  following explicit/implicit so- 
lution algorithm for solving t h e  three-field cou- 
pled problem (106). 

Given a steady flow and  initial structural  conditio 

1. Update  the  dynamic fluid grid 

2. Advance t h e  fluid system using RK3 

3. Advance t h e  s t ructure  using t h e  midpoint rule 

At 
q n + l  = q" I ( q n  + qn+l) 

(107) 

In t.he sequel, we refer t o  t h e  above ex- 
plicit/implicit staggered solution procedure as  
ALGO. It is graphically depicted in Fig. 10. 
Extensive numerical simulations using this al- 
gorithm have shown t h a t  i ts  stability limit is 
governed by t h e  critical time-step of t h e  explicit 
fluid solver, and  therefore is not worse t h a n  t h a t  
of t h e  underlying fluid explicit time-integrator. 

S 



8-28 

T h e  3-step Runge-Kutta  algorithm is third- 
order accurate for linear problems and second- 
order accurate for nonlinear ones. T h e  mid- 
point rule is second-order accurate. A simple 
Taylor expansion shows t h a t  the  partitioned 
analysis procedure ALGO is first-order accu- 
ra te  when applied t o  the  linearized Eqs. (105). 
When applied t o  Eqs. (106), its accuracy de- 
pends on the  solution scheme selected for solv- 
ing the  mesh equations. As long as  the  time- 
integrator applied to the  last of Eqs. (106) is 
consistent, ALGO is guaranteed t o  be at least 
first-order accurate. 

Q" Q n +  1 

Fig. 10. ALGO: the  basic staggered algorithm 

3.2.2. ALG1: subcvclinq 

T h e  fluid and  s t ructure  fields have often differ- 
ent  t ime scales. For problems in aeroelasticity, 
t he  fluid flow usually requires a smaller tem- 
poral resolution than  the  structural  vibration. 
Therefore, if ALGO is used to solve Eqs. (106), 
t he  coupling time-step At, will be typically dic- 
ta ted  by the  stability time-step of the  fluid sys- 
tem A t F  and not t he  time-step At, > .&F t h a t  
meets t h e  accuracy requirements of the  struc- 
tural  field. 

Using the  same time-step At in both fluid 
and  s t ructure  computational kernels presents 
only minor implementational advantages. O n  
the  other  hand,  subcycling the  fluid computa- 
t ions with a factor n S I F  = Ats/AtF can offer 
substantial  com pu t at ional advantages, i nclud- 
ing 

savings in the  overall simulation CPU 
time, because in t h a t  case the  s t ructural  
field will be advanced fewer times. 

savings in 1/0 transfers and/or  communi- 
cation costs when computing on a hetero- 
geneous platform, because in t h a t  case the  
fluid and s t ructure  kernels will exchange 
information fewer times. 

However, t he  computational advantages 
highlighted above are  effective only if subcy- 
cling does not restrict t he  stability region of t he  
staggered algorithm t o  values of the  coupling 
time-step At, t h a t  are  small enough t o  offset 
these advantages. In  [23], it  is shown t h a t  for 
the  linearized problem (105), t he  straightfor- 
ward conventional subcycling procedure - t h a t  
is, t he  scheme where a t  the  end of each n S / F  

fluid subcycles only the  interface pressure com- 
puted during the  last fluid subcycle is t ransmit-  
ted t o  the  s t ructure  - lowers the  stability limit 
of ALGO t o  a value t h a t  is less t han  the  critical 
time-step of the  fluid explicit time-integrator. 
O n  the  other hand,  i t  is also shown in [23] t h a t  
when solving Eqs. (105), t he  stability limit of 
ALGO can be preserved if 

the  deformation of t he  fluid mesh between 
tn  and tn+' is evenly distributed among 
the  n S I F  subcycles. 

at the  end of each n S / F  fluid subcycles, 
the  average of t he  interface pressure field 
h , s  computed during the  subcycles be- 

tween tn and t"+l is t ransmit ted t o  the  
s t ructure  ra ther  t h a n  the  last computed 
pressure. 

Hence, we propose the  following explicit/implicit 
fluid-subcycled parti t ioned procedure for solv- 

ing Eqs. (106). ~ 
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' r F / S  = o  

For s = 1, ..., n s / F  { 

Upda te  in stages t h e  dynamic fluid grid 

3. Adv. struc.  with midpoint rule 

In  t h e  sequel, we refer t o  t h e  explicit/implicit 
fluid-subcycled staggered solution procedure 
presented here as  ALG1. It is graphically de- 
picted in Fig. ll. Extensive numerical ex- 
periments have shown t h a t  for medium values 
of n S I F ,  t h e  stability limit of A L G l  is gov- 
erned by t h e  critical time-step of t h e  explicit 
flow solver. However, experience has also shown 
t h a t  there exists a maximum subcycling factor 
beyond which ALGl becomes numerically un- 
stable. 

From the  theory developed in [23] for the  
linearized Eqs. (105), it follows t h a t  A L G l  is 
first-order accurate, and  t h a t  as one would have 
expected, subcycling amplifies t h e  fluid errors 
by the  factor n S I F .  

Qn Qn+ 1 

Fig. 11. ALG1: subcycling 

3.2.3. A L G2-A L G3: inter- fie1 d para1 lelisrn 

ALGO and A L G l  are  inherently sequential. In  
both partitioned analysis procedures, the  fluid 
system must be updated before t h e  structural  
system can be advanced. Of course, ALGO 
and A L G l  allow intra-field parallelism (parallel 
computations within each discipline), 'but they 
inhibit inter-field parallelism. Advancing t h e  
fluid and  structural  systems simultaneously is 
appealing because i t  can reduce t h e  total  simu- 
lation time. 

A simple variant ALG2 of A L G l  - or 
ALGO if subcycling is not desired - t h a t  allows 
inter-field parallel processing is given next. 
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'rF/S = o  

For s = 1, ..., n s / F  { 

Update  in stages t h e  dynamic fluid grid 

('1 
- xn X n + l  ( a )  kn+q 1 ( a )  - 

- 
At 

2. Advance t h e  fluid system using RK3 

3. Adv. struc.  with midpoint rule 

i Clearly, the  fluid and  s t ructure  kernels can run 
in parallel during the  time-interval [ tn ,  tn+ns lF] .  

Inter-field communication or 1/0 transfer is 
needed only at t h e  beginning of each time- 
in t erval . 

T h e  basic steps of ALG2 are graphically 
depicted in Fig. 12. T h e  theory developed 
in [23] shows t h a t  for t h e  linearized Eqs. (105), 
ALG2 is first-order accurate, and  parallelism in 
ALG2 is achieved at t h e  expense of amplified 
errors in t h e  fluid and  s t ructure  responses. 

a Qn+ 1 

Fig. 12. ALG2: subcycling 
and  inter-field parallelism 

In order t o  improve t h e  accuracy of the  
basic parallel time-integrator ALG2, we pro- 
pose to  exchange correction type information 
between the  fluid and  s t ructure  kernels at half- 
step in the  following specific manner  (ALG3). 



8-3 1 

FrF/S = o  
1 n S / F  -- 

2 
For s = 1, ..., 

- . .n+1(*)  - . n+1(") + Kxn+1(4 . - n ( * )  

{ 

Solve Mx + Dx = K c q  
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Algorithm ALGS is illustrated in Fig. 13. 
T h e  first-half of t h e  computations is identical to  
t h a t  of ALG2, except t h a t  the  fluid system is 

subcycled only up  to t n + T ,  while the  struc- 
tu re  is advanced in one shot u p  t o  t n + n S I F .  

At  t n + T ,  t h e  fluid and  structure kernels 
exchange pressure, displacement and  velocity 
information. In the  second-half of the  com- 
putations,  t h e  fluid system is subcycled from 

t"++ to t n + " S I F  using t h e  new structural  
information, and  the  structural  behavior is re- 
computed in parallel using the  newly received 
pressure distribution. Note t h a t  the  first eval- 
uation of t h e  structural  s ta te  vector can be in- 
terpreted as a prediction step,  and  the  second 
as  a correction step. 

n S / F  

" S / F  

nS F 

It can be shown t h a t  when applied to  the  
linearized Eqs. (105), ALGS is first-order ac- 
curate  a n d  reduces t h e  errors of ALG2 by the  
factor n s / F ,  at the  expense of one additional 
communication s tep or 1/0 transfer during each 
coupled cycle (see [23] for a detailed error anal- 
ysis). 

Fig. 13. ALG3: subcycling, inter-field 
parallelism and  improved accuracy 

not only an  unconditionally stable implicit flow 
solver must be used, bu t  also an  interface cou- 
pling operator must be exchanged between t h e  
structure and  fluid field analyzers. For further 
details on this topic, we refer the  reader t o  [23]. 

3.4. Implementation of subcvclinq 

We have pointed out  in Section 3.2.2 t h a t  when 
subcycling is desired, t h e  deformation of the  
fluid mesh between t" and tn+l should not be 
entirely applied during t h e  first fluid subcy- 
cle, bu t  evenly distributed across all subcycling 
stages. There are many ways this can be ac- 
complished, including t h e  following one. 

At t h e  beginning of time-step tn+', t h e  
fluid code has access t o  t h e  component of t h e  
structural  s ta te  vector ( q " ,  qn ) r F / S  t h a t  re- 
lates t o  the  degrees of freedom located at t h e  
fluid/structure interface. T h e  objective of any 
mesh updating strategy is to exploit this infor- 
mation and  compute a fluid mesh displacement 
xn+l tha t  satisfies t h e  continuity Eqs. (23) 

We note t h a t  t h e  difference in t h e  super- 
scripts between t h e  left and  right hand sides 
of Eqs. (111) is due  to t h e  staggered nature  
of t h e  solution scheme, a n d  t h a t  t h e  second of 
Eqs. (111) should be enforced only if i t  does 
not violate t h e  GCL. Using Eqs. (111) as pre- 

ne scribed boundary values, t h e  pseudo-structural 
3.3. Implicit/implicit staggered algorithn13 

equations of motion of t h e  dynamic fluid grid 
Clearly, t h e  partitioned analysis procedures can be solved to obtain an  updated  fluid mesh 
ALGO, ALG1, ALG2 and  ALGS can be equally displacement xn+'. T h e  details of this  partic- 
employed with an  implicit flow solver. However, ular computation are discussed in Section 7. 
it is shown in [23] t h a t  in order for these parti- Then ,  at every subcycling stage, a new set of 
tioned procedures to be unconditionally stable, prescribed grid boundary displacements can be 
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generated for computing t h e  subcycled mesh 
position x n + l ( " )  as  follows 

r F / S  

(112) 
where I d  is an  interpolation scheme of order 
d = 0, 1 ,  2. More specifically, I d  is defined by 

n F / s  - s + 1 

In  summary, at each subcycle a new set 
of prescribed boundary displacements ,are com- 
puted for t h e  dynamic fluid grid, and  the  equa- 
t ions of motion of t h e  corresponding pseudo- 
structural  system are solved in order t o  update  
t h e  positions of t h e  remaining grid points. In  
practice, we have found t h a t  d = 1 is t h e  best 
choice for t h e  interpolation scheme. Among 
other  things, this choice does not require trans- 
mitt ing any structural  velocity information to 
t h e  fluid computational kernel. In  all cases, the  
fluid mesh velocity x must be computed via Eq. 
( 5 0 )  in order t o  satisfy t h e  GCL. 

4. THE FLOW SOLVER 146-491 

So far, no restriction has been imposed on the  
nonlinear flow solver technology, except for the  
requirement of satisfying t h e  GCL. Hence, flow 
solvers based. on an  A L E  finite volume/element 
discretization or a space-time finite element for- 
mulation can be equally employed within t h e  
computational framework presented in this pa- 
per for solving nonlinear transient aeroelastic 
problems. T h e  GCLs for all of these approx- 
imation methods have been presented in Sec- 
tion 2. 

In our case, we have opted for a mixed 
finite element/volume A L E  formulation based 
on unstructured triangular meshes in two- 
dimensional problems, and  unstructured tetra- 
hedra in three-dimensional ones. This  ap- 
proach combines a Galerkin centered approxi- 
mation for t h e  viscous terms, and  a Roe upwind 
scheme [50] for t h e  computation of t h e  convec- 
tive fluxes. Higher order accuracy is achieved 
through the  use of a piecewise linear interpo- 
lation method t h a t  follows t h e  principle of t h e  
MUSCL (Monotonic Upwind Scheme for Con- 
servative Laws) procedure [51-531. T h e  corre- 
sponding ALE flow solvers are  t h e  result of a 
collaboration with t h e  Projet  Sinus at INRIA 
Sophia-Antipolis and  are overviewed below. 

4.1. Spatial discretization 

T h e  conservative form of t h e  equations describ- 
ing viscous flows can be writ ten in ALE form 
as 

1 
It + JVz.Fc(W,~) = -VV,R(W) ai JW) 

at Re 
Fc(w,x) = F(W) -xw 

(114) 
where, R denotes t h e  diffusive fluxes, Re is t h e  
Reynolds number, and  as  for t h e  case of Euler 
flows and  Eqs. ( 2 5 ) ,  J = d e t ( d x / d [ )  is the  
jacobian of t h e  frame transformation [ + x, W 
denotes the  fluid conservative variables, Fc de- 
notes t h e  convective A L E  fluxes, and  x = 
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is t h e  ALE grid velocity t h a t  may be different 
from t h e  fluid velocity and  from zero. 

T h e  boundary r(t)  of the  flow domain 
is partitioned into a wall boundary r W ( t )  
corresponding to the  fluid/structure interface 
boundary I'F,S, and  an  infinity boundary I',(t) 

Let U, and  T, denote t h e  wall velocity and  
temperature.  On t h e  wall boundary rW(t) ,  a 
no-slip and  a temperature Dirichlet conditions 
are  imposed 

and  no boundary condition is specified for t h e  
density. Hence, t h e  total  energy per unit of 
volume and  t h e  pressure on t h e  wall are given 

by 

1 
p = (7 - l)&',Tw; E = &',Tw + s p  1 1  u w  / I 2  

For external flows around aircraft structures, 
t h e  viscous effects are  assumed t o  be negligible 
at infinity, and  therefore a uniform free-stream 
s ta te  vector W ,  is imposed on I',(t). 

(117) 

Following t h e  procedure described in de- 
tails in Section 2.1, Eqs. (114) can be trans- 
formed into 

Integrating Eq. (118) by par ts  leads to  

"J W d R ,  
dt ci ( t )  

where & is t h e  finite element shape function 
at vertex S; in element A (a triangle in two- 
dimensional problems, a tetrahedron in three- 
dimensional ones), and  w is t h e  specified value 
of W at t h e  boundaries. T h e  second term 
of Eq. (119) corresponds exactly t o  t h e  term 
F/(W,x,x) introduced in Section 2.1. Each 
component of this term can be written as 

While various upwind algorithms can be used 
for computing Q i j ,  Roe's scheme [50] is chosen 
here. Following t h e  MUSCL approach intro- 
duced by Van Leer [51], second-order accuracy 
is achieved by computing t h e  numerical fluxes 
at interpolated values of t h e  fluid s ta te  vector 
on the  interface between cells C; a n d  Cj as  fol- 
lows 

For three-dimensional problems, t h e  gradient of 
W a t  a vertex Si is computed from 

voZume(A) k = 4  
Wk .V+f 4 v,(VW); = 

A , s i € A  k = l  

(122) 

In practice, t h e  interpolation implied by Eqs. (121) 
is performed on t h e  physical instead of t h e  t h e  
conservative variables. Optional limiters are  
also implemented following t h e  approaches dis- 
cussed in [52,53]. 
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T h e  numerical viscous fluxes are  computed 
using a classical Galerkin method. 

4.2.  Temporal solution 

T h e  explicit kernel of our  two-dimensional flow 
solver uses the  3-step Runge-Kutta  algorithm 
discussed in Section 3.2. On  the  other  hand,  the  
explicit module of our  three-dimensional flow 
solver employs the  predictor-corrector scheme 
suggested by Hancock and  presented by Van 
Leer. This  scheme has a lower stability limit 
t han  t h e  3-step Runge-Kutta  algorithm but  is 
significantly more economical. 

T h e  implicit versions of our  two- and  
three-dimensional flow solvers employ a first- 
order accurate backward Euler time-integration 
scheme. To solve the  system of linearized equa- 
t ions arising at each time-step, we have recently 
developed a multilevel, overlapping domain de- 
composition preconditioned Krylov- Schwarz it- 
erative method [54]. Numerical experiments 
have shown t h a t  this and  other  members of t he  
family of Krylov-Schwarz algorithms are  highly 
scalable and  highly parallelizable. (The  concept 
of scalability is discussed in Section 5 ) .  More 
importantly,  t he  convergence of these methods 
does not  degenerate when the  linearized system 
becomes highly nonsymmetric and  possibly in- 
definite, which occurs, for example, in the  case 
of high-angle of a t tack and/or  high Mach num- 
ber. 

4.3. Parallelization 

T h e  mesh parti t ioning paradigm is used for 
parallelizing both two-dimensional and three- 
dimensional flow solvers. This  paradigm is dis- 
cussed in details in Section 8. 

5.  THE STRUCTURAL DYNAMICS 
ANALYZER [74,76,34,81,571 

There  is no  question t h a t  the  finite element 
method is t he  most popular method for solv- 
ing arbi t rary s t ructural  problems such as those 

governed by the  second of Eqs. (22). However, 
with the  advent of parallel processing, many 
of the  computational modules of this  powerful 
method are  being constantly revisited for im- 
provement in performance. 

Nonlinear transient finite element prob- 
lems in s t ructural  mechanics are  characterized 
by the  semi-discrete equations of dynamic equi- 
librium 

M q + f i n t ( q )  = f ez ‘  (123) 

where, as before, M is the  mass matrix,  q is 
the  vector of nodal displacements, a dot  su- 
perscript indicates a time derivative, fin‘ is the  
vector of internal nodal forces, and  f ez ‘  is the  
vector of external nodal forces. In  many low 
and medium frequency dynamics applications 
such as transient aeroelasticity, Eq. (123) is 
most efficiently solved using a n  implicit time- 
integration scheme. In  t h a t  case, a nonlinear 
algebraic system of equations is generated at 
each time-step. T h e  Newton-Raphson method 
and  its numerous variants collectively known as  
“Newton-like” methods are  the  most popular 
strategies for solving these nonlinear algebraic 
problems. All of these algorithms require the  
solution of a linear algebraic system of equa- 
tions of t he  form 

where the  subscript n refers t o  the  n- th  t ime 
s tep,  the  superscript k refers t o  the  k-th non- 
linear iteration within the  current t ime step, K* 
is a time-dependent symmetric positive approx- 
imate  tangent matrix t h a t  includes both mass 

r*(q(k)  n + l )  are  respectively the  vector of nodal 
displacement increments and  the  vector of ou t -  
of-balance nodal forces (dynamic residuals). 

and  stiffness contributions, and  Aqn+, ( k + l )  and 

With  the  advent of parallel processing, do- 
main decomposition (or substructure)  based di- 
rect and iterative algorithms have become in- 
creasingly popular for t he  solution of finite el- 
ement systems of equations of the  form given 
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in Eq. (123). Indeed, domain decomposition 
provides a higher level of concurrency than par- 
allel global algebraic paradigms, and  is simpler 
to implement on most parallel computational 
platforms [57]. In general, t h e  subdomain (or 
substructure) equations are solved using a di- 
rect skyline or sparse factorization based algo- 
ri thm, while both direct and  iterative schemes 
have been proposed for the  solution of the  inter- 
face problem [58-621. When the  reduced system 
of equations is solved directly, t h e  overall do- 
main decomposition algorithm becomes a direct 
frontal or multifrontal method [63,64], and  its  
success becomes contingent on finding a good 
mesh partition and /o r  reordered system tha t  
can achieve an  optimal balance between min- 
imizing fill-in and  increasing the  degree of par- 
allelism [65-681. When t h e  interface problem 
is solved iteratively - usually, via a precondi- 
tioned conjugate gradient (PCG) algorithm- 
t h e  overall domain decomposition method be- 
comes a genuine iterative solver whose success 
hinges on  two important  properties: numerical 
scalability, and  parallel scalability. A domain 

be numerically scalable if t h e  condition number 

“weakly” with t h e  ratio of the  subdomain size 
H and  t h e  mesh size h (Fig. 14),  t h a t  is 

’ 

I 
I decomposition based iterative method is said to  

K after preconditioning does not grow or grows 

~ 

, 

K = 0 ( l s l o g q ~  H >) 

with a small constant ,f3. Numerous authors 
have proved Eq. (125) with ,f3 = 2 for various 
.domain decomposition methods (see, for exam- 
ple, [62,69,70] and  references therein). 

Fig. 14. Subdmomain size N and  mesh size h 

It is well known t h a t  in order t o  achieve 
(125), a domain decomposition method must 

involve a coarse problem with a few d.0.f. per 
subdomain, t h a t  must be solved at each itera- 
tion t o  propagate the  error globally and  ,acceler- 
a t e  convergence. Parallel scalability character- 
izes the  ability of an  algorithm t o  deliver larger 
speedups for a larger number of processors. In  
particular, parallel scalability is necessary for 
massively parallel processing. 

T h e  practical implications of a condition 
number after preconditioning such as  t h a t  de- 
scribed in Eq. (125) are 

0 suppose t h a t  a given mesh is fixed, one 
processor is assigned to every subdomain, 
and  the  number of subdomains (which 
varies as 1/H) is increased in order t o  in- 
crease parallelism. In  t h a t  case, h is fixed 
and  H is decreased. From Eq. (125), it 
follows t h a t  t h e  bound on  t h e  condition 
number decreases a n d  therefore the num- 
ber of iterations fo r  convergence is  expected 
to  decrease with an  increasing number of 
subdomains. In particular, for a numeri- 
cally scalable domain decomposition algo- 
ri thm characterized by Eq. (125), increas- 
ing the  number of subdomains decreases 
t h e  amount  of work per processor and  per 
iteration, without increasing t h e  number 
of iterations for convergence. 

on most distributed memory parallel pro- 
cessors, t h e  total  amount  of available 
memory increases with the  number of pro- 
cessors. When solving a certain class of 
problems on such parallel hardware, it is 
customary t o  define in each processor a 
constant subproblem size, and  t o  increase 
the  total  problem size with t h e  number 
of processors. In t h a t  case, h and  H 
are decreased, but  t h e  ratio H / h  is kept 
constant. From Eq. (125), it follows 

0 
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t h a t  a numerically scalable domain decom- 
position algorithm can solve larger prob- 
lems with the  same number of iterations 
as  smaller ones, simply by increasing the  
number of subdomains.  However, the  pres- 
ence of t he  coarse problem may limit par- 
allel scalability for a large number of pro- 
cessors. 

When H / h  increases, t h a t  is, the  number 
of elements assigned to a subdomain in- 
creases, t he  condition number will increase 
only slightly. Wi thout  this property, the  
condition number may be too large t o  be 
practical for subdomains of a size tha t  we 
wish t o  work with.  If there are only a few 
substructures,  t he  conjugate gradient algo- 
r i thm might still converge quickly for some 
domain decomposition methods because of 
t he  presence of gaps in the  spectrum of 
the  preconditioned operator;  however, for 
large number of subdomains,  the  spectrum 
tends to fill in,  and the  number of itera- 
t ions tends t o  increase [32]. 

T h e  Fini te  Element Tearing and  Intercon- 
necting (FETI) method developed originally for 
t he  solution of self-adjoint elliptic partial dif- 
ferential equations is a numerically scalable do- 
main decomposition method [60,61,32]. This  
method was shown t o  outperform direct skyline 
solvers and  several popular iterative algorithms 
on both  sequential and  parallel computing plat- 
forms [60,73]. It has recently been extended 
for dynamics problems [74,33] and  biharmonic 
partial differential equations such as those en- 
countered in plate and  shell problems [75]. For 
s t ructural  mechanics problems, the  condition 
number of t he  unpreconditioned FETI interface 
problem is known to grow asymptotically as [32] 

0 

H 
h 

K. = O ( - )  

As was observed numerically in [32,57] and 
proved mathematically in [70,75], for elasticity 
problems discretized using plane stress/strain 

and/or  brick elements, t he  condition number 
of t he  FETI interface problem preconditioned 
with a subdomain based Dirichlet operator 
[32,57] varies as 

For shell and  plate problems, this condition 
number varies as [75] 

H 
K. = 0 ( 1 + l o g 2  (h )) 

T h e  conditioning results (126-128) highlight 
the  numerical scalability of t he  FETI method 
with respect t o  both the  mesh size h and the  
number of subdomains.  T h e  parallel scalabil- 
ity of this domain decomposition method - 
t h a t  is, its ability t o  achieve larger speedups for 
larger number of processors -- has also been 
demonstrated on current massively parallel pro- 
cessors for several realistic s t ructural  problems 
[57,71,72]. 

T h e  beauty of t he  FETI method resides 
in the  fact t h a t  it is much more than  an  alge- 
braic solver. Many complex s t ructural  systems 
such as airplanes are  constructed by assembling 
a set of substructures such as  the  wing, fuse- 
lage, spars and ribs, tail,  t h a t  are  designed by 
different teams of engineers. T h e  global be- 
havior of such structures is often predicted by 
“gluing” together t he  individual substructure  
analyses. In such cases, t he  submeshes asso- 
ciated with the  substructures may have non- 
conforming discrete interfaces, mainly because: 
(a) the  corresponding substructures can have 
different resolution requirements, (b)  the  sub- 
meshes are  often designed by different analysts,  
and  (c) these submeshes may be  designed using 
incompatible finite element models. Whether  
t he  substructure  interfaces are  matching or not ,  
the  FETI method provides a powerful means 
for solving such assembly problems [76-781. In  
essence, the  FETI method is a t  the  same time 
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a domain decomposition and  a domain integra- 
t ion method,  and  lends itself naturally t o  par- 
allelism. We overview it next in the  context of 
s t ructural  dynamics. 

5.1. The Transient FETI Method 

Let R denote the  volume of the  structure t o  
be analyzed, and  { 0 3 } ~ ~ ~  denote a partition- 
ing (tearing) of R into N3 non-overlapping sub- 
s t ructures  (Fig. 15). We denote by r; the  inter- 
face boundary of 0". We use an irreducible dis- 
placement formulation inside the  subdomains,  
and  independently defined Lagrange multipli- 
ers on the  substructure  interfaces t o  join them. 

U 

Fig. 15. Parti t ioning of a s t ructure  

For each substructure,  the  finite element 
nonlinear equations of dynamic equilibrium can' 
be writ ten as 

M s i s  + fints(q) = fez'' - B3*X (128) 

where B" is a boolean matrix with entries equal 
to -1, 0, +1 t h a t  extracts from a substruc- 
tu re  quant i ty  those components t h a t  are  related 
to t h e  interface boundary I'i, and X (not t o  
be confused with its previous use for the  dy- 
namic pressure in Section 1.1) is the  vector of 
Lagrange multipliers representing the  traction 
forces needed for enforcing on the  substructure 
interfaces the  continuity of the  displacement 
field 

3=N, 

BSqs = 0 (129) 
s=1 

Using the  notation of Eq.  (124), t he  lineariza- 
tion of Eqs. (128,129) around can be for- 
mulated as 

where K" denotes here the  subdomain tangent 

stiffness matrix. Eqs. (130) are  known as dif- 
ferential/algebraic equations (DAEs).  They are  
more difficult t o  solve t h a n  the  usual ordinary 
differential equations [79]. 

5.2. Implicit Time-Integration 

denote the- momentum increment at iteration 
k + 1 and at the  midpoint between steps n and 
n + 1, and let M = [ M1 ... MNa 1. We have 

In [76], it was shown t h a t  t he  following time- 
integration algorithm for solving the  DAEs (13) 
is second-order accurate and uncondit ional ly 

stable 
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1. Solve: 

s = 1, ..., N ,  

s=1 

2. Update:  

(132) 

T h e  computational cost of the  above im- 
plicit time-integration algorithm is dominated 
by t h e  cost incurred at each t ime step for t h e  
solution of a constrained system of t h e  form 

S T  K*'qs = g" - B X s = 1, ..., N ,  

B"q" = 0 
s=l 

(133) 
where a simplified notation has been used, and  
K*ll is given by 

After some algebraic manipulations, Eqs. (133) 
above can be rewritten as 

where Fr and  d are given by 

- 1  
s=N, 

-1 
s=N, 

F I  = B"K*' B"; d = BsK*8 g" 
s=1 s = 1  

(136) 
Note t h a t  t h e  FETI domain decomposition 
method transforms t h e  original primal prob- 
lem described in Eq. (124) into a dual inter- 
face problem. T h e  dual interface operator FI 
is in general symmetric positive semi-definite. 
I t  has interesting spectral properties [32,57,74] 
which induce a superconvergent behavior of a 
PCG algorithm applied to t h e  solution of Eq. 
(135). T h e  parallelization of a conjugate gra- 
dient scheme applied t o  t h e  solution of the  
dual interface problem is straight forward, be- 
cause FI is a sum of independent substructure 
operators. All CG related computations can 
be performed in parallel on  a substructure-by- 
substructure basis. 

5.3. The FETI PCG Parallel Alnorithm 

We have developed two preconditioners for 
the  FETI method: (1) a numerically optimal 
Dirichlet preconditioner t h a t  can be written as  

(137) 
where t h e  subscripts i and  b designate here in- 
ternal and  interface boundary unknowns, re- 
spectively, and  (2) a numerically efficient "lumped" 
preconditioner t h a t  lumps t h e  Dirichlet opera- 
tor on the  subdomain interface unknowns 

-D- 1 -L- 1 

Unlike FI , t h e  preconditioner FI is not 
mathematically optimal. However, it is more 

economical t han  FI , a n d  has often proved 
t o  be more efficient [32,57]. 

-D-1 
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- 
Let FY1 denote either t he  Dirichlet or 

lumped preconditioner, and let GI denote the  
matr ix  collecting the  traces on the  substructure 
interfaces of t he  the  rigid body modes Rs of the  
N j  floating substructures 0” -- t h a t  is, the  
substructures without enough boundary condi- 
tions t o  prevent t he  local tangent stiffness ma- 
trices Ks from being singular 

GI = [BIR1 ... BNfRNf]  (139) 

Using G I ,  we introduce the  projection operator 

p = I - G ~ ( G T F ~ G ~ ) - ~ G T F ~  (140) 

where I denotes the  identity matrix. In three- 
dimensional problems, each floating substruc- 
tu re  can have u p  t o  6 rigid body modes. There- 
fore, G T F ~ G ~  is a square matrix of size equal 
a t  most t o  6 x N j  5 6 x N ,  (6 unknowns per 
floating substructure).  

T h e  transient FETI PCG algorithm [33] 
for solving Eq. (135) goes as follows 

1. Initialize 

2. I terate  k = 1, 2, ... until convergence 

T k - 1  Project w k - l  = P r 

Precond. zk-’ = F;lw“-’ 
Project y“’ = P zk--l 

- 

k - l T W k - 1  k - Z T  k - 2  ck  = Y  Is’ w 
pk = yk-’  + c p 

x = x k - - l + v  p 

r = r  - v k ~ I p k  

k k - 1  

/pkTFrpk k k - l T  W k - l  

k k k  

U = y  

k k - 1  

(141 

T h e  application of the  projection operator 
P defined in (140) means t h a t  a coarse prob- 
lem of the  form ( G I ~ F I G I ) x  = b must be 
solved twice within each FETI iteration. I t  was 
shown in [32] t h a t  this coarse problem has the  
expected beneficial effect of coupling all sub- 
s t ructure  computations and  propagating the  er- 
ror globally, so t h a t  t he  condition number of 
the  preconditioned interface problem can be 
bounded as a function of H / h  and indepen- 
dently of t he  number of substructures,  which 
ensures the  numerical scalability of t he  FETI 
met hod. 

For shell and plate problems, the  definition 
of Rs is slightly modified t o  include not only 
the  substructure rigid body modes, bu t  also the  
substructure “corner” modes [75]. Otherwise, 
the  remainder of the  FETI algorithm remains 
essentially the  same. 

5.4. Optimization for Problems 
with Mult iple/Repeated R.H.S. 

One of the  many reasons why numerical scal- 
ability is desirable is t h a t  increasing the  num- 
ber of subdomains is t he  simplest means for in- 
creasing the  degree of parallelism of a domain 
decomposition based PCG algorithm. As illus- 
t ra ted in the  previous paragraph,  this optimal 
property is usually achieved via the  introduc- 
tion in a domain decomposition method of a 
coarse problem (or coarse grid, by analogy with 
multigrid methods) t h a t  relates to t h e  original 
problem and t h a t  must be solved at each global 
CG iteration. Direct methods are  often chosen 
for solving the  coarse problem despite the  fact 
t h a t  they are  difficult t o  implement on a mas- 
sively parallel processor and d o  not  parallelize 
as well as iterative schemes. Therefore in many 
cases, a numerically scalable domain decompo- 
sition method loses its appeal because of i ts  lack 
of parallel scalability. One  way to restore par- 
allel scalability is to solve iteratively the  coarse 
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Step 1. weproject theproblem (GTQ)x2 = b2 
onto S' and solve the trivial dia onal 
system S'T(GTQ)S'y20 = S' bZ. 
Then, we perform a matrix-vector 

In [34], it is argued that xZo is an 
optimal startup value for xz because: 
(a) it minimizes xT(GTQ)x/2-xTbZ 
over S', and (b) it is inexpensive 
to compute. Note that the n' non- 
zero entries of the diagonal matrix 
SIT (GTQ)S' are readily available 
from the CG solution of the previ- 
ous coarse problem (GTQ)x' = b . 
Therefore, these entries can be stored 
and need not be recomputed. 

9 

multiplication toobtainxZ0 = S 1 y 20 . 

1 

problem, for example using a CG scheme. How- 
ever, because the coarse problem is embedded 
in an outer iterative loop, this approach raises 
the question of how to solve iteratively and ef- 
ficiently a system with a constant matrix and 
repeated right-band sides. Finding an answer 
to  this question also extends the range of ap- 
plications of domain decomposition based iter- 
ative methods t o  design problems, eigenvalue 
problems, and several other applications where 
multiple and repeated right-hand sides always 
arise and challenge iterative solvers. Such ex- 
amples include nonlinear transient aeroelastic 
simulations where the structure is assumed to 
remain in the linear regime. In that case, the 
left hand side FI of Eq. (135) remains constant 
in time, but its right hand side (r.h.5.) d varies 
in time. 

The iterative solution of systems with 
multiple and/or repeated right-hand sides has 
been previously addressed in [80], and recently 
in [34,81]. Here, we overview the CG based 
methodology for solving such problems that 
uses the same data structures as those employed 
in domain decomposition methods without a 
coarse grid and which was first presented in 
[34,81]. The basic idea is related to that an- 
alyzed in [80]. However, the algorithm we have 
developed is different, simpler, and easier to  
parallelize than that described in [80]. 

Since GTFr appears twice in the expres- 
sion of the projector P (140), we first con- 
struct Q = FrGr. Suppose that the solu- 
tion of the first encountered coarse problem 
(GTQ)x1 = b1 has been obtained after n1 
CG iterations. Let S' denote the space of 
the (GTQ)-orthogonal search directions gen- 
erated during these n' CG iterations. If ex- 
plicit re-orthogonalization is implemented in 
the CG algorithm [57], SIT(GTQ)S1 is guar- 
anteed to  be a diagonal matrix. In order to  
compute the solution of the next coarse prob- 
lem (GTQ)x2 = b2, we proceed as follows 

Step 2. next, we apply the CG algorithm to 
the solution of (GTQ)x2 = ba af- 
ter it has been modified to: (a) accept 
xZo as a startup solution, and (b) per- 
form the explicit orthogonalization of 
the new search directions and S1 with 
respect to  ( G ~ Q ) .  

The solution of all subsequent coarse problems 
is carried out using the same two-step procedure 
outlined above. Essentially, the space of previ- 
ous search directions is constantly enriched with 
the most recently computed ones, and orthogo- 
nalization with respect to (GTQ) is always per- 
formed. The storage requirements associated 
with this methodology are minimal because it 
is applied to coarse and therefore small prob- 
lems (see [34] for further details). Because full 
precision is required for the solution of all coarse 
problems, the solution of the first one typically 
converges in a number of iterations equal to the 
size of the matrix (GTQ) - that is, the total 
number of substructure rigid body modes - 
and all subsequent coarse problems are solved 
in zero iteration, using only the optimal startup 
value. 

Clearly, the methodology outlined above 
€or solving iteratively and efficiently a system 



of equations with a constant matrix and re- 
peated right-hand sides is equally applicable to  
any (symmetric) system of the form Ax = b 
where A is of a relatively small size. In partic- 
ular, i t  is applicable to  Eq. (135) since the size 
of Fr is equal to  the number of interface d.o.f., 
and that number is usually less than 30% of 
the total number of structural d.0.f. Therefore, 
this methodology can be used for solving non- 
linear transient aeroelasticity problems where 
the structure remains in the linear regime. In 
that case, FI is the same at all time-steps, and 
d varies in time with the pressure associated 
with the unsteady flow. 

As an example, we apply the methodology 
described above to  the solution of the repeated 
systems arising from the linear transient analy- 
sis using an implicit timeintegration scheme of 
the three-dimensional stiffened wing of a High 
Speed Civil Transport (HSCT) aircraft (Fig. 
16). The structure is modeled with 6,204 tri- 
angular shell elements, 456 beam elements, and 
includes 18,900 d.0.f. The finite element mesh 
is partitioned into 32 subdomains with excel- 
lent aspect ratios using TOP/DOMDEC [82]. 
The size of the interface problem is 3,888 - 
that is, 20.57% of the size of the global prob- 
lem. The transient analysis is carried out on a 
32-processor iPSC-860 system. After all of the 
usual finite element storage requirements are al- 
located, there is enough memory left to  store 
a total number of 360 search directions. This 
number corresponds to  9.25 % of the size of the 
interface problem. 

Fig. 16. HSCT stiffened wing 

Using the transient FETI method, the sys- 
tem of equations arising at  the first time step is 
solved in 30 iterations and 7.75 seconds CPU. 
After 5 time steps, 89 search directions are ac- 
cumulated and only 10 iterations are needed 
for solving the fifth linear system of equations 
(Fig. 17). After 45 time steps, the total number 
of accumulated search directions is only 302 - 
that is, only 7.76% of the size of the interface 
problem, and superconvergence is triggered: all 
subsequent time steps are solved in 2 or 3 it- 
erations (Fig. 17) and in less than 0.78 second 
CPU (Fig. 18). 

When a parallel skyline direct solver is ap- 
plied to  the above problem, the factorization 
phase consumes 60.5 seconds CPU, and at  each 
time step the pair of forward/backward sub- 
stitutions requires 10.65 seconds on the same 
32 processor iPSC-860. Therefore, the solution 
methodology described herein is clearly an ex- 
cellent alternative to repeated forward/backward 
substitutions on distributed memory parallel 
processors. 
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6. NON-MATCHING INTERFACE 
BOUNDARIES 1351 

All four partitioned analysis procedures dis- 
cussed in Section 3 require exchanging interface- 
data only between the field analyzers. More 

precisely, the structure expects to  receive the 
values of the flow pressure and viscous stresses 
at the fluid/structure interface boundary IIF/S, 
and convert them into a structural load. Simi- 
larly, the fluid expects to  receive from the struc- 
ture the displacement and/or velocity of the in- 
terface boundary r F / S ,  and use them to update 
the position of the dynamic fluid mesh. This 
exchange is performed at every time-step, or as 
required by the subcycling algorithm. 

In general, the fluid and structure meshes 
have two independent representations of the 
physical fluid/structure interface. When these 
representations are identical - for example, 
when every fluid grid point on r F / S  is also a 
structural node and vice-versa - the evalua, 
tion of the pressure forces and the transfer of 
the structural motion to  the fluid mesh are triv- 
ial operations. However, analysts usually prefer 
to  

I use a fluid mesh and a structural model 
that have been independently designed 
and validated. 

refine each mesh independently from the 
other. 

Hence, most realistic aeroelastic simulations 
will involve handling fluid and structural meshes 
that are incompatible at their interface bound- 
aries (Fig. 19). In [35], we have addressed this 
issue and proposed a preprocessing “matching” 
procedure that does not introduce any other ap- 
proximation than those intrinsic to  the fluid and 
structure solution methods. This procedure can 
be summarized as follows. 



Fig. 19. Incompatible fluid and structure meshes 

The nodal forces induced by the fluid pres- 
sure on the “wet” surface of a structural ele- 
ment e can be written as: 

where ace) denotes the geometrical support of 
the wet surface of the structural element e, p 
is the pressure field, T is the tensor of viscous 
stresses, U is the unit normal to  0ce), fi is a 
tangent to  the plane of ace), and N, is the shape 
function associated with node i in  element e. 
Most if not all finite element structural analysis 
codes evaluate the integral in Eq. (142) via a 
quadrature rule 

s=ng 

f ~ ‘  = ~gNi(xg)(-p(xg)~+(~(x,)y)ii)  

(143) 
g=1 

where w, is the weight of the Gauss point X,. 
Hence, a structural analysis code needs to know 
only the values of the pressure field at the Gauss 
points of its wet surface. This information can 
be easily made available once every Gauss point 
of a wet structural element is paired with a 
fluid cell (Fig. 20). It should be noted that 
in Eq. (143), X ,  are not necessarily the same 

Gauss points as those used for stiffness evalua- 
tion. For example, if a high pressure gradient is 
anticipated over a certain wet area of the struc- 
ture, a larger number of Gauss points can be 
used for the evaluation of the pressure forces 
f,””‘ on that area. 

On the other hand, when the structure 
moves and/or deforms, the motion of the fluid 
grid points on rF/S can be prescribed via the 
regular finite element interpolation 

(144) 

where Sj, wne, X i ,  and q k  denote respectively 
a fluid grid point on rpIs, the number of wet 
nodes in its “nearest” structural element e, 
the natural coordinates of S, in ace), and the 
structural displacement at the k-th node of el- 
ement e. From Eq. (144), it follows that each 
fluid grid point on I’FIS must be matched with 
one wet structural element (Fig. 21). 

Fig. 20. Gauss-point-fluid cell pairing 
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16 subdomains, Matcher generated the desired 
fluid/structure pairing data structures in 327 
seconds CPU on a 32-processor iPSC-860 sys- 
tem [35]. 

7. THE MESH MOTION SOLVER 1441 

At the beginning of each step of the chosen stag- 
gered solution procedure, the dynamic fluid grid 
must be updated to  conform to the most re- 
cently computed configuration of the structure. 
In general, this is done in two steps 

Step 1. first, the points lying on the inter- 
face boundary r F / S  are adjusted to 
match (in the sense defined in Sec- 
tion 6) the newly computed or pre- 
dicted position of the surface of the 
structure. This defines a prescribed 
displacement vector x r F l s .  
next, the remainder of the fluid grid 
points are repositioned accordingly 
to the prescribed values of x r F l s .  
This completes the computation of 
the new mesh displacement vector x. 

Step 2. 

Fig. 21. Fluid grid point-wet structural 
element pairing 

Given a fluid grid, a structural analy- 
sis model, and a discrete description of the 
fluid/structure interface, the Matcher program 
described in [35] generates all the data struc- 
tures needed for evaluating the quantities de- 
scribed in Eqs. (143,144). If parallel data 
structures - for example, data structures as- 
sociated with mesh partitions of the fluid and 
structure grids (see Section 8) - are fed as in- 
put, Matcher outputs parallel data structures 
that allow a painless implementation of the 
interface-data exchange between the field an- 
alyzers and are fully compatible with the in- 
trinsic parallel data structures of the fluid and 
structural analysis programs. In general, the 
pairing of fluid and structure entities does not 
change in time. Therefore, Matcher is run as a 
preprocessor. The pairing data structures are 
generated only once, prior to any aeroelastic 
computation. 

Finally, we note that Matcher is written 
in a message-passing style. Therefore, this soft- 
ware is portable to any parallel computing plat- 
form that supports a PVM- or MPI-like com- 
munication library. Of course, it also runs on 
sequential computers. For a complete aircraft 
configuration where the fluid mesh contained 
439272 tetrahedra, 77279 vertices, and was par- 
titioned into 32 subdomains, and the struc- 
tural model contained 7520 triangular shell el- 
ements, 3841 nodes, and was partitioned into 

Several procedures have been proposed in 
the literature for implementing the above two 
steps. Most of them can be summarized as 
viewing the fluid domain or its grid as a pseudo- 
structural continuous or discrete system. For 
example, in the discrete approach, either or all 
of the following can be done (see Fig. 3) 

lumping a fictitious mass at each vertex of 
the fluid mesh. 

introducing a fictitious dashpot at  each 
edge connecting two vertices. 
attaching a fictitious spring on each edge 
connecting two vertices. 

Similarly, a pseudo-structural continuous sys- 
tem can be generated with fictitious distributed 
structural properties. In both cases, the motion 
of the constructed pseudo-structural system is 
governed by 
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where %, fi, and are the fictitious mass, 
damping, and stiffness matrices associated with 
the dynamic fluid mesh, and is the compo- 
nent of the fictitious stiffness matrix that repre- 
sents the coupling between the fluid points lying 
on I'F/S and the others. Eq. (126) above is in- 
tegrated in time until the steady-state equilib- 
rium displacement x is reached. This solution 
procedure can be speeded up by constructing 
% and 1?, as follows 

The grid points located on the upstream and 
downstream boundaries are held fixed. At each 
time-step t"+', the new position of the inte- 
rior grid points is determined from the solu- 
tion of Eq. (147) via a two-step iterative pro- 
cedure. First, the displacements of the inte- 
rior grid points are predicted by extrapolating 
the previous displacements at time-steps t" and 
t"-' in the following manner 

and selecting the two scalars a and b so that the 
governing equations Of motion (126) are 
cally damped. In that case, the equilibrium so- relaxations follows 
lution x is reached in a few time-steps. 

where p n X  = ,n+l - xn. Next, the predicted 
values are corrected with a few explicit Jacobi 

- 
Alternatively, M and 6 can be set to zero, 

and the new position of the dynamic fluid mesh 
can be computed via the solution of the static 
problem 

i i x  = k x r P l s  (147) 

This approach is often referred to  as Batina's 
network of edge-springs [15]. However, it should 
be noted that attaching a lineal spring on the 
edge connecting two vertices of a tetrahedron 
prevents these two vertices from colliding dur- 
ing the mesh deformation, but does not pre- 
vent a vertex from interpenetrating the facet 

Finally, the position of the fluid grid points at 
tn+' is computed from 

(151) X"+l = + A n + l X  

8. A UNIFIED PARALLELIZATION 
STRATEGY r w l  

of a tetrahedron. To prevent such a detrimen- 
tal interpenetration that is more likely to hap- 
pen when the structure undergoes large mo- 

8.1. The Mesh PartitioninP and 
Message-Passinrc Paradigms 

tions, torsional springs must also be added at 
the mesh vertices, and their stifFnesses must be 
carefully calibrated. 

In addition to  numerical efficiency and paral- 
le1 scalability, portability should be a major 
concern, especially for production codes. With 

In this work, the pseudo-structural system 
associated with the unstructured dynamic fluid 
mesh is constructed with lineal and torsional 
springs only (% = 6 = 0). Each fictitious lin- 
eal spring attached to  an each edge connecting 
two fluid grid points S, and SI is attributed the 
following stiffness 

the proliferation of computer architectures, it is 
essential to  adopt a programming model that 
does not require rewriting thousands of lines 
of code - or even worse, altering the archi- 
tectural foundations of a code - every time a 
new parallel processor is acquired. Here, we 
are neither referring to  differences between pro- 
gramming languages, nor to  differences between 
the multitude of parallel extensions to  a specific (148) 

1 
I I Sl si I I2  

k,, = 



programming language. We are more concerned 
abou t  t h e  impact of a given parallel hardware 
architecture on  t h e  finite element software de- 
sign, and  sometimes, on t h e  solution algorithm 
itself. For example, a d a t a  parallel code written 
for t h e  CM-2 or CM-5 machines would require 
major rehauling before i t  can be adapted t o  an  
iPSC computer.  A parallel-do-loop based code 
can be easily ported across different t rue shared 
memory multiprocessors, bu t  may require sub- 
stantial  modifications before it can run success- 
fully on  some distributed memory systems. 

Based on  our “hands on” experience with 
a dozen of different parallel processors, we can 
argue t h a t  t h e  mesh partitioning and  message- 
passing paradigms lead to t h e  most portable 
software design for parallel computational me- 
chanics. Essentially, t h e  underlying mesh is as- 
sumed to be partitioned into several submeshes, 
each defining a subdomain. T h e  same “old” 
serial code can be executed within every sub- 
domain. T h e  “gluing” or assembly of t h e  sub- 
domain results can be implemented in a sepa- 
ra te  software module. Clearly, this is an  object- 
oriented approach t h a t  is best programmed in 
C++, bu t  which can also be programmed in 
FORTRAN or any other language. This  ap- 
proach enforces d a t a  locality and  therefore is 
suitable for all parallel hardware architectures. 
Note t h a t  in this context, “message-passing” 
refers to t h e  assembly phase of t h e  subdomain 
results. However, it does not imply t h a t  mes- 
sages have to be explicitly exchanged between 
t h e  subdomains. For example, message-passing 
can be implemented on a shared memory multi- 
processor as  a simple access to a shared buffer, 
or as  a duplication of one buffer into another 
one. Moreover, t h e  message-passing program- 
ming model produces software modules t h a t  are 
easy to maintain,  because except for the  gluing 
procedures, t h e  subdomain code can be made 
identical to t h a t  of a workstation version. 

In  many cases, expensive parallel proces- 
sors are affordable because some simulations 
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can subst i tute  for experimental studies t h a t  
would take much longer and  cost much more t o  
carry out .  However, there are  also other cases 
where current parallel processors are  simply too 
expensive, so t h a t  a network of relatively inex- 
pensive workstations is preferred. Obviously, a 
message-passing based software can be quickly 
adapted t o  a cluster of workstations, for exam- 
ple, using a PVM-like communication tool. 

Therefore, all of our flow solvers, struc- 
tural  analyzers, and  mesh motion solvers are 
designed t o  work with mesh partitions, and  
are written. in a message-passing style. Conse- 
quently, their performance is not only machine 
dependent,  bu t  sometimes also mesh partition 
dependent. 

Research in mesh partitioning has focused 
so far on the  automatic  generation of sub- 
domains with minimum interface points. In  
this section, we address this issue and  em- 
phasize other aspects of t h e  partitioning prob- 
lem including the  fast generation of large-scale 
mesh decompositions on  conventional worksta- 
tions, the  optimization of initial decomposi- 
tions for specific kernels such as  parallel frontal 
solvers and  domain decomposition based iter- 
ative methods, More specifically, we overview 
a two-step partitioning paradigm for tailoring 
generated mesh partitions t o  specific applica- 
tions, and  a simple mesh contraction proce- 
dure for speeding u p  t h e  optimization of ini- 
tial mesh decompositions. We discuss what  de- 
fines a good mesh parti t ion for a given problem, 
and  show t h a t  t h e  methodology summarized 
here can produce better mesh partitions than  
the  well celebrated multilevel Recursive Spec- 
tral  Bisection algorithm, and  yet be an  order of 
magnitude faster. We illustrate t h e  combined 
two-step partitioning and  contraction method- 
ology with examples from structural  mechanics 
and  fluid dynamics problems, a n d  highlight its 
impact on  t h e  total  solution t ime of realistic ap-  
plications on current massively parallel proces- 
sors. In  particular, we show t h a t  t h e  minimum 
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interface size criteria does not have a significant 
impact on  a reasonably well parallelized appli- 
cation, and  highlight other criterion which can 
have a significant impact. 

8.2. T h e  Greedy  and  RSB Algorithms: 
Two Ext remes  

I t  is often argued and  demonstrated tha t  if 
unstructured computational mechanics prob- 
lems are  t o  be efficiently solved on distributed- 
memory parallel computers, their d a t a  struc- 
tures must be partitioned and  distributed across 
t h e  processors in a way t h a t  maximizes load bal- 
ance and  minimizes interprocessor communica- 
tion [46,83]. However, research in mesh parti- 
tioning algorithms has mostly focused on the  
second issue - t h a t  is, on minimizing interpro- 
cessor communication costs only, and  the  num- 
ber of interface points in a mesh partition, or 
t h e  number of edge cuts in i ts  corresponding 
graph,  has rapidly become the  main “accep- 
tance test” for a proposed mesh decomposer. 

While several mesh partitioning algorithms 
have already been presented and/or  discussed 
in t h e  l i terature [83-881, two radically different 
schemes have particularly attracted the  at ten-  
tion of t h e  user and  developer communities: the  
Greedy algorithm [57,84,85], and  the  Recursive 
Spectral Bisection algorithm [83,88,93]. 

T h e  Greedy (GR) mesh partitioning algo- 
ri thm was first proposed in [89] and  applied t o  
t h e  parallel solution of finite element structural  
equations on t h e  iPSC-1 system. This mesh de- 
composition scheme is referred to  as the Greedy 
algorithm because it essentially “bites” into the  
mesh‘ in order t o  construct the  subdomains. It 
exploits only the  mesh connectivity informa- 
t ion,  which makes it t h e  fastest partitioning al- 
gorithm we know about .  In general, the  GR al- 
gorithm tends t o  generate mesh partitions tha t  
are characterized by reasonable subdomain as- 
pect ratios and  a relatively small number of 
interface points. On  a few occasions, this al- 
gorithm has been misrepresented [go], perhaps, 

because one statement is unfortunately missing 
in the  Fortran code given in [84]. This  state- 
ment is t h e  one which forces every subdomain t o  
s tar t  with an  element attached t o  t h e  previously 
computed interface. T h e  G R  algorithm enjoys 
a relatively large user community because of i ts  
high performance/price ratio. For example, it  
is capable of partitioning a three-dimensional 
unstructured mesh containing 439272 tetrahe- 
d r a  and  77279 vertices into 64 subdomains with 
25906 interface points, in less t h a n  15  seconds 
on a Crimson Silicon Graphics workstation. Re- 
cently, some interesting variants of t h e  basic GR 
algorithm have been proposed [91,92]. 

T h e  Recursive Spectral Bisection (RSB) 
graph partitioning algorithm was first proposed 
in [88]. This scheme is at t h e  same time t h e  
least intuitive mesh decomposer, and  t h e  parti- 
tioning algorithm tha t  has most a t t racted t h e  
attention of the  parallel computing community. 
Unlike the  Greedy algorithm which is simple 
and  has no underlying theory, t h e  RSB scheme 
is sophisticated and  relies on  a relatively well 
understood graph theory. More specifically, t h e  
RSB algorithm is derived from a graph bisec- 
tion strategy based on  the  computation of t h e  
Fiedler vector - t h a t  is, t h e  second eigenvec- 
tor of the  Laplacian matrix of t h e  graph asso- 
ciated with the  given problem [88]. Thanks  t o  
the  multilevel strategy described in [93] for ex- 
tracting the  Fiedler vector, t h e  computational 
requirements of this partitioning scheme are no  
longer overwhelming, even on  a simple work- 
station. However, t h e  multilevel RSB algo- 
ri thm is still more expensive t h a n  most other 
partitioning schemes. For example, when ap-  
plied t o  t h e  decomposition into 64 subdomains 
of t h e  same three-dimensional mesh containing 
439272 te t rahedra and  77279 vertices, it con- 
sumes 707 seconds on  a Crimson Silicon Graph- 
ics workstation and  generates a mesh parti t ion 
with 21139 interface points. This  mesh parti- 
tion has 18.40% less interface points t han  the  
decomposition generated by t h e  Greedy algo- 
ri thm, but  costs 48.07 times more C P U  time to 
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uses a solution methodology whose perfor- 
mance is insensitive to  the characteristics 
of a mesh partition such as, for example, 
the subdomain aspect ratio or the subdo- 
main interconnectivity. 

It is our experience that when conditions 
a), b) and c) are met, the GR and RSB al- 
gorithms generate excellent mesh partitions for 
parallel processing. Therefore, we have consis- 
tently used both algorithms for the subset of 
our parallel applications that can be described 
by the above a), b) and c) points. 

c) generate. Depending on the target parallel ap- 
plication, such an improvement at such a price 
may or may not be interesting. Recently, a par- 
allel version of t h e  RSB algorithm has been im- 
plemented on the CM-5 [94]. This version has 
certainly improved the computational feasibil- 
ity of the RSB partitioner. 

REMARK 3: Throughout this section, RSB 
designates the multilevel Recursive Spectral Bi- 
section algorithm. In particular, all perfor- 
mance results reported for RSB applications 
correspond to  the fast multilevel scheme de- 
scribed in [93], and release 2.1 of the code as 
integrated in TOP/DOMDEC [82]. 

Minimizing interprocessor communication 
costs in general, and the number of interface 
points in a mesh partition in particular, is a 
reasonable objective to  “prioritize” when the 
target parallel application: 

a) involves communication essentially between 
neighboring subdomains. This is typi- 
cally the case for explicit timeintegration 
(or pseudo timeintegration) schemes, and 
some basic iterative solvers such as the 
conjugate gradient or Jacobi precondi- 
tioned conjugate gradient methods. 

has a computational complexity that can 
be simply related to  mesh entities such as, 
for example, nodes, and/or edges, and/or 
elements, and/or cells. In that  case, load 
balancing can be reasonably well achieved 
by requiring tha t  each subdomain contain 
the same number of such entities. In the 
event of heterogeneous meshes, a weight- 
ing factor can be attributed to each ba- 
sic entity and the number of mesh entities 
per subdomain can be modified accord- 
ingly. Most importantly, load balancing 
in that case does not significantly interfere 
neither with the minimum edge cut aspect 
of a graph partitioner, nor with the prac- 
tical implementation of the corresponding 
mesh decomposer. 

b) 

However, many important parallel appli- 
cations do not fit the profile implied by the 
a), b) and c) points. For example, frontal 
sparse solvers which are popular in finite ele- 
ments and structural mechanics [63-66,951 re- 
quire mesh partitions that do not significantly 
inflate the operation count of their sequential 
counterparts. This particular issue relates more 
to the subdomain local frontwidths than to  the 
subdomain interface sizes. Moreover, control- 
ling the load balance of these direct solvers is 
not in general as simple as distributing equally 
some basic mesh entities across the desired sub- 
domains. 

Optimal domain decomposition based it- 
erative solvers are another class of parallel ap- 
plications whose scalability is not governed by 
interprocessor communication costs only [57]. 
These solution algorithms are interesting on 
massively parallel processors when their num- 
ber of iterations for convergence does not grow 
(or grows weakly) with the number of sub- 
domains. Their effectiveness is determined 
by their convergence rate and not by their 
amount of communication. In particular, o p  
timal non-overlapping domain decomposition 
based iterative solvers require mesh partitions 
that have as perfect subdomain aspect ratios 
(close to  unity) as possible. Sometimes, fulfill- 
ing this requirement leads to  mesh partitions 
with larger interfaces than otherwise possible. 



This is well demonstrated below for the struc- 
tural High Speed Civil Transport wing finite el- 
ement model containing 3150 nodes. For this 
problem, the 32-subdomain mesh partition gen- 
erated by the RSB algorithm has 707 interface 
nodes and an average subdomain aspect ratio 
AR = 0.39 (Fig. 22). The 32-subdomain mesh 
partition generated by the methodology de- 
scribed in this section and shown in Fig. 23 has 
808 interface nodes, but an average subdomain 
aspect ratio AR = 0.62. When the FETI do- 
main decomposition based iterative solver pre- 
sented in Section 5 is applied to the structural 
wing problem, it converges in 47 iterations and 
11.93 seconds when using the RSB mesh parti- 
tion on a 32-processor iPSC-860. On the other 
hand, it converges in 30 iterations and 7.75 sec- 
onds when using the mesh partition with larger 
interface but improved subdomain aspect ratio 
[96]. Hence, one should question whether the 
minimum interface size is not after all an over- 
emphasized mesh partitioning criterion. 

Fig. 22. 32-subdomain mesh partition for 
an HSCT wing structural model (RSB) 

Fig. 23. 32-subdomain mesh partition 
(optimized subdomain aspect ratio) 

8.3. Nomenclature 

Throughout this section, the following nomen- 
clature is used: 
E set of edges of the dual graph of the 

mesh 
P partitioning vector: Pi = k means 

that the mesh entity i belongs to  sub- 
domain k .  

C cost function to be optimized 
LBF load balance factor 
L computational load of a given appli- 

cation 
NP number of processors 
N ,  number of subdomains 
Ne 
N ,  
Nd 

N k  

number of elements in the mesh 
number of nodes in the mesh 
number of degrees of freedom in the 
model 
number of some specific mesh entities 
in subdomain k (including its inter- 
face boundary) 
number of macro elements in a con- 
tracted mesh 
number of interface points of a mesh 
partition 
number of mesh entities in subdo- 
main k that yields an optimal load 
balance 

Nne 

NI 

Nbest,k 
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k = N ,  
Load imbalance: C2 = [ N k  - N b e s t i k I 2 .  d spatial  dimension of the  problem 

x i j k  i - th  coordinate of t h e  j - t h  node in k=l 

subdomain k 
i - th  coordinate of the  center of grav- 
ity of subdomain IC 

When a parallel application has a computa- 
tional complexity t h a t  can be simply related 
to  mesh entities such as, for example, nodes, 
and/or  edges, and /o r  elements, and /o r  cells, 

8.4. Two-step Partitioning and R e t r o f i t t i n g h e  computational load L can be easily esti- 

zi k 

For all our computational mechanics parallel 
applications, we have adopted t h e  two-step 
mesh.  partitioning paradigm tha t  was first in- 
troduced in [97,98], then refined in [99], and 
which consists in 

Step 1) generating a n  initial mesh decompo- 
sition via either a suboptimal bu t  fast 
partitioning algorithm, o r  a n  algo- 
ri thm t h a t  is known to produce mesh 
parti t ions t h a t  are reasonably well 
suited for the  target parallel applica- 
tion. 

formulating t h e  application specific 
requirements as  a cost function C ,  
a n d  optimizing it by readjusting t h e  
initial subdomain interfaces. This  
s tep can also be described as  a retrofittino 

Step 2) 

mated  and  N b e s t Y k  can be set prior t o  t h e  de- 
composition t o  N b e s t 7 k  = L / N , .  Otherwise, 

is unknown a priori. It can have a dif- 
ferent value in every subdomain I C ,  and  is adap-  
tively evaluated by t h e  optimization algorithm. 

Subdomain aspect ratio: 

N b e s t , k  

k=l i=l j=1 

function has been shown t o  play a pivotal role in 
the  convergence rate  of optimal domain decom- 
position based preconditioned conjugate gradi- 
ent methods [96]. 

In  practice, t h e  performance of a parallel 
application is often governed by several distinct 
factors. Therefore, one should consider in gen- 
eral the  following weighted cost function: 

procedure. 

T h e  Greedy algorithm is very fast because 
i ts  complexity grows as  0 ( N e  x N s ) .  More- 
over, it produces mesh partitions t h a t  are rea- 
sonably well-suited for most parallel computa- 
tional methods. Hence, t h e  GR algorithm is 
ideally suited for generating a n  initial decom- 
position in Step 1. 

In Step 2, a cost function representing the  
decomposition requirements of t h e  target par- 
allel application must first be formulated. A 
sample list of cost functions t o  optimize is given 
below: 

Interface size: C1 = il{(i,j) E E/Pi  # 
Pj}l. Here, t h e  size of t h e  interface is defined as 
t h e  number of edges in E whose vertices belong 
to two different subdomains. This  cost function 
may not govern all parallel applications bu t  is 
certainly helpful in all cases. 

where C; is a cost function representing one 
specific issue - for example, Ci could be any- 
one of the  cost functions listed above - and  
ai is t h e  weight a t t r ibuted to t h a t  issue. In  
t h a t  case, optimizing C corresponds t o  finding 
t h e  best possible “compromise” mesh partition. 
Unfortunately, we d o  not have yet an  automatic  
mechanism for selecting t h e  weight coefficients 
ai. For this task,  we rely on  our understanding 
of the  focus parallel application, and  experience 
with the  target parallel processor. 

After a cost function is formulated, the  de- 
composition is optimized by readjusting only 
the  subdomain interfaces. More specifically, 
only t h e  mesh entities t h a t  are  attached t o  t h e  
interface are examined for possible exchange be- 
tween t h e  subdomains. Therefore, t h e  compu- 
tational complexity of t h e  optimization process 
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is proportional t o  the  interface size and  not to  
t h e  number of elements in the  mesh. In  col- 
laboration with the  Universitd Catholique de 
Louvain, we have implemented three different 
schemes for optimizing a given cost function. 

Simulated Annealing (SA) [loo]. This al- 
gorithm uses a monotonically decreasing “tem- 
perature” as  control variable for the  outer it- 
erations. For a fixed temperature,  a number 
of mesh entities are proposed for transfer t o  a 
neighboring subdomain - in the  sequel, we re- 
fer t o  this s tep as  a “move”. T h e  acceptance 
of a move is dictated by a probabilistic decision 
which depends on  t h e  difference in cost between 
making t h e  move or ignoring it. T h e  optimiza- 
tion process ends when t h e  temperature is suffi- 
ciently low a n d  no  further moves are accepted. 
In  t h e  inner loop, moves are chosen randomly. 
T h e  probability of acceptance of bad moves de- 
creases with temperature.  

Tabu Search (TS) [ lo l l .  This scheme 
stores in a tabu list a specified number of re- 
cently accepted moves. In  the  inner loop, sev- 
eral moves outside t h e  t abu  list are proposed, 
and  t h e  move with t h e  highest positive or nega- 
tive gain is accepted. In  the  outer loop, the  last 
accepted move replaces the  oldest move in the  
t abu  list. Therefore, if this algorithm escapes a 
local minimum, i t  cannot use the  same path in 
t h e  solution space t o  reach this minimum again. 

Stochastic Evolution (SE) [loa]. T h e  main 
difference between this algorithm and  Simu- 
lated Annealing is in t h e  evolution of the  con- 
trol variable and  t h e  selection of t h e  moves. At 
each outer  i teration, all interface elements are 
proposed for a move in a predefined order. T h e  
temperature  decreases rapidly, thereby decreas- 
ing t h e  probability of accepting bad moves, un- 
til t h e  solution reaches a local minimum of the 
cost function. A t  this point, the  temperature is 
reset to i ts  initial value. In  general, this algo- 
ri thm behaves as a series of fast SA processes 
where t h e  solution jumps  from one local mini- 
mum t o  another.  

A quality/speed trade-off can be applied to each 
of the  above optimization schemes by “tuning” 
a few control parameters [98]. 

There is a t  least one compelling reason for 
having more t h a n  one optimization algorithm 
a t  hand. In some cases, t h e  initial mesh par- 
tition generated in Step 1 can get entrapped 
in a local minimum a t  the  first s tep of an  op- 
timization scheme, in which case Step 2 does 
not improve t h e  original decomposition. One  
can hope t h a t  switching t o  another optimiza- 
tion algorithm pulls t h e  solution out  of t h a t  lo- 
cal minimum. Everytime we have encountered 
this problem for SA, we were able t o  resolve it 
by switching t o  TS. 

In order to illustrate t h e  two-step method- 
ology described above and  highlight i ts  po- 
tential, we consider t h e  partitioning of two 
three-dimensional fluid dynamics unstructured 
meshes into 64 and  128 subdomains.  T h e  first 
mesh, FALC, is designed for t h e  simulation of 
external Euler flows around a Falcon aircraft. It 
contains 439272 te t rahedra a n d  77279 vertices. 
T h e  second mesh, MUFF,  is designed for t h e  
simulation of internal viscous flows inside a car 
muffler (Fig. 24). It contains 237963 tetrahe- 
d r a  and  43592 vertices. Here, we assume t h a t  
t h e  objective is to generate mesh parti t ions with 
equal number of te t rahedra a n d  minimum num- 
ber of interface points. Hence, t h e  load balance 
factor can be written in this case as  follows 

k 

(153) 
averagek Ne 

maxk Nk 
LBF = 

More complex objectives are discussed in Sec- 
tion 8.6. 
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Fig. 24. Three-dimensional discretization of 
the flow domain inside a car muffler 

First, the GR and multilevel RSB algo- 
rithms are used to  partition the FALC mesh 
into 64 subdomains, and the MUFF mesh into 
128 subdomains. Following the recommenda- 
tion given in [93], the computational size of the 
lowest level is set to  300 for the RSB scheme. 
Next, the two-step methodology is applied to  
generate similar mesh partitions. The GR al- 
gorithm is selected for Step l ,  and the SA op- 
timization scheme for Step 2. For both meshes, 
the cost function is defined as C = 0.5 x CI + 
0.5 x CZ, and the parameters N k  and N 
are set to  N k  = N." and Nbest*k  = N./N, .  The 

b e s t , k  

characteristics of the resulting mesh partitions 
are summarized in Tables 1 and 2. All com- 
putations are performed on a Crimson Silicon 
Graphics workstation. 

The results reported in Table 1 show that 
for the FALC mesh, RSB outperforms GR for 
the imposed objective. The mesh partition pro- 
duced by RSB has 18.40% less interface points 
than that delivered by GR, but costs 48.07 
times more CPU time to  generate. On the 
other hand, the two-step partitioning method- 
ology with GR as an initial decomposer outper- 
forms RSB €or the same objective. The mesh 
partition generated by GR and optimized by 
SA has 9.83% less interface points than that de- 
livered by RSB and costs 1.97 times less CPU 
time to produce. For the MUFF mesh, the re- 
sults reported in Table 2 show that GR out- 
performs RSB for the imposed objective. More 
specifically, GR produces a mesh partition with 
2.53% less interface points than RSB does and 
115.40 times faster. The two-step partitioning 
methodology with GR as an initial decomposer 
outperforms both RSB and GR, is significantly 
cheaper than RSB, but is also significantly more 
expensive than GR. 

Table 1 
Partitioning of the FALC mesh: N e  = 439272 - N ,  = 64 

SGI/Crimson 

Scheme Optimizer Nr LBF CPU CPU CPU 

C = 0.5 x Ci +0.5 x Cz 

Step 1 Step 2 Total 

RSB None 21 139 0.999 707.10 s. 0.00 s. 707.10 s. 

GR None 25 906 0.999 14.71 s. 0.00 S. 14.71 s. 
GR SA 19 060 0.999 14.71 s. 342.76 s. 357.47 s. 
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Table 2 
Parti t ioning of the MUFF mesh: Ne = 237963 ~ N ,  = 128 
C = 0.5 X CI $0.5 X Cz 
SGI/Crimson 

Scheme Optimizer N I  LBF C P U  C P U  C P U  
Step 1 Step 2 Total 

RSB None 17 810 0.999 791.69 s. 0.00 s. 791.69 s. 

G R  None 17  358 0.999 6.86 s. 0.00 s. 6.86 s. 
GR SA 14 934 0.996 6.86 s. 551.72 s. 558.58 s. 

For t h e  above two examples, we have used 
G R  as a n  initial decomposer in order to keep 
t h e  total  partitioning costs as  low as possible. 
However, if preprocessing costs are not an  is- 
sue, RSB can also be used in Step 1. For t h e  
M U F F  mesh, t h e  two-step method with RSB 
as a n  initial decomposer generates a mesh par- 
tition with 14252 interface points and consumes 
1212.49 s. C P U  (791.69 s. (Step 1) + 420.80 s. 
(Step 2)). This  particular example shows t h a t  
when an  initial mesh partition is slightly better 
t h a n  another  one,  its optimized version is not 
necessarily bet ter  t han  the optimized version of 
t h a t  other one. 

Also note t h a t  for t h e  above problems, all 
algorithms including t h e  two-step methodology 
deliver mesh partitions with perfect load bal- 
ance factors. 

We are  particularly interested in fast and 
good partitioning algorithms because we would 
like to be able to inspect - possibly interac- 
tively - a few mesh decompositions before se- 
lecting one for a target parallel application. T h e  
examples reported above highlight t h e  poten- 
tial of t h e  two-step methodology for generating 
excellent mesh partitions. However, the opti- 
mization s tep is not as fast as we would like it 
t o  be. Next, we present a contraction proce- 
dure for speeding u p  t h e  optimization process 
in Step 2. 

8.5. An Efflcient Contraction Procedure 

T h e  idea of contracting a mesh before parti- 
tioning i t  is not new. Apparently, it was first 
proposed in [93] for reducing t h e  costs of t h e  
RSB partitioning scheme, and  in [lo31 for stor- 
age optimization purposes. T h e  contraction ap- 
proach presented in [93] is based on t h e  con- 
cept of maximal independent sets. T h e  con- 
traction approach proposed herein is based on 
t h e  Greedy algorithm and  our  experience with 
this heuristic. Our main objective is to speed 
u p  t h e  optimization process in Step 2 of t h e  
partitioning methodology. Our main strategy 
goes as follows. 

First ,  t h e  mesh is recursively coarsened us- 
ing an  0 ( N e )  Greedy-based contraction pro- 
cedure until i ts  size reaches a user specified 
value, say N,. = 5000 macro-elements. An ini- 
tial decomposition is performed on t h e  coarse 
mesh using preferably a fast mesh partition- 
ing algorithm. This  decomposition is followed 
by a few smoothing iterations using one of the 
three optimization schemes introduced in Sec- 
tion 3. Next,  t h e  obtained coarse parti t ion is 
mapped onto t h e  original a n d  finer mesh, and  
another optimization is performed on t h e  fine 
level. When more than  one level of contrac- 
tions is needed t o  reach t h e  specified number 
of macro-elements Nme, coarse-to-fine mapping 
and optimization are performed at every inter- 
mediate level. 
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More specifically, the  contraction step is 
implemented as  follows. Given a start ing ele- 
ment,  a fixed-size cluster is constructed by ag- 
glomerating neighboring elements in a recur- 
sive manner.  This  cluster defines a macro- 
element in t h e  contracted mesh. At t h e  begin- 
ning, t h e  s tar t ing element is selected among t h e  
peripheral elements. Later,  it is selected among 
those elements which neighbor existing clusters. 
T h e  contraction ends when all elements are at- 
t r ibuted t o  a cluster. In  practice, we have found 

t h a t  5 elements is a good choice for the  size of 
a cluster. However, fewer or more elements can 
sometimes define a cluster for connexity pur- 
poses. 

T h e  impact of t h e  contraction procedure 
described above on  t h e  two-step partitioning 
methodology is highlighted in Tables 3 and  4 
for t h e  FALC and  MUFF meshes, respectively. 

Table 3 
Parti t ioning of t h e  FALC mesh: Ne = 439272 - N ,  = 64 
C = 0.5 x C1 + 0.5 x C2 
Effects of t h e  contraction procedure 
SGI/Crimson 

Scheme Optimizer N I  L B F  C P U  C P U  C P U  C P U  
Contr. Step 1 Step 2 Tot a1 

RSB None 21 139 0.999 0.00 s. 707.10 s. 0.00 s. 707.10 s. 
GR None 25 906 0.999 0.00 s. 14.71 s. 0.00 s. 14.71 s. 
GR SA 19 060 0.999 0.00 s. 14.71 s. 342.76 s. 357.47 s. 
Contr.  + GR Contr.+ SA 16 160 0.999 6.65 s. 0.08 s. 38.36 s. 45.09 s. 

Table 4 
Parti t ioning of t h e  M U F F  mesh: Ne = 237963 - N ,  = 128 
C = 0.5 x C1 + 0.5 x Cz 
Effects of t h e  contraction procedure 
SGI/Crimson 

Scheme Optimizer N I  LBF C P U  C P U  C P U  C P U  
Contr. Step 1 Step 2 Total 

RSB None 17 810 0.999 0.00 s. 791.69 s. 0.00 s. 791.69 s. 
GR None 17 358 0.999 0.00 s. 6.86 s. 0.00 s. 6.86 s. 
GR SA 14 934 0.996 0.00 s. 6.86 s. 551.72 s. 558.58 s. 

Contr.  + GR Contr.  + SA 12 792 0.999 3.02 s. 0.12 s. 143.70 s. 146.84 s. 

For t h e  FALC mesh and  64 subdomains, the  
contraction procedure is shown to  reduce the  
cost of Step 2 by a full order of magnitude. 
In  t h a t  case, t h e  two-step partitioning method 
with GR as an  initial decomposer produces a 

mesh partition with 23.55% less interface nodes 
than  t h a t  generated by RSB,  and  is 15.68 times 
faster t han  RSB. 
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For t h e  M U F F  mesh and  128 subdomains, 
t h e  two-step partitioning method with graph 
contraction a n d  GR as a n  initial decomposer 
produces a mesh parti t ion tha t  has 28.17% less 
interface nodes t h a n  the  RSB parti t ion,  and  is 
5.39 times faster t h a n  RSB. 

T h e  performance results reported in Ta- 
bles 3 and  4 also show t h a t  the  proposed con- 
traction procedure not only speeds up  the  two- 
s tep partitioning method, bu t  also results in 
better mesh decompositions. Indeed, the  con- 
tracted mesh represents t h e  structure of the  
original grid,  and  t h e  optimization of i ts  decom- 
position tends t o  improve the  global structure 
of t h e  desired mesh partition by moving sev- 
eral elements simultaneously. When t h e  mesh 
is not contracted, t h e  global structure of the  
mesh parti t ion remains identical t o  t h a t  of the  
initial decomposition because the  probability of 
transferring large amounts of elements between 
the  initial subdomains is usually low. 

As mentioned earlier, a quality/speed trade- 
off can be applied t o  each of t h e  three optimiza- 
tion schemes by “tuning” some of their control 

parameters. An example of such trade-off is il- 
lustrated in Table 5 for t h e  FALC mesh and  
various number of subdomains. From the  re- 
sults reported in this table,  it follows t h a t ,  for 
the  cost function C = 0.5 x CI + 0.5 x C2, 
the  two-step partitioning method with contrac- 
tion can generate even better mesh partitions 
when t h e  optimization algorithm is allowed t o  
run longer in Step 2. Note t h a t  even in t h a t  
case, the  two-step method is still significantly 
cheaper t h a n  the  multilevel RSB algorithm. For 
example, it can generate a 64-subdomain par- 
tition for the  FALC mesh with 14 613 interface 
points only in 161.04 seconds, whereas t h e  RSB 
scheme consumes 707.10 seconds to generate a 
64-subdomain mesh parti t ion with 21 139 inter- 
face points (see Table 3).  T h ’  is amounts  to an  
almost twice better mesh parti t ion at a quarter 
of the  price. T h e  performance results summa- 
rized in Table 5 also show t h a t  t h e  complexity 
of the  two-step partitioning method with con- 
traction is sublinear with t h e  number of subdo- 
mains. 

Table 5 
Parti t ioning of t h e  FALC mesh: N e  = 439272 - N ,  = 64 
C = 0.5 X C1 $0.5  X C2 
Two-step partitioning method with contraction 
Initial decomposer = GR - optimization scheme = SA 
Computational complexity of Step 2 - quality/speed trade-offs 
SGI / Crimson 

N ,  C P U  Step 1 N I  N I  C P U  Step 2 C P U  Step 2 
(QUALITY) (SPEED) (QUALITY) (SPEED)  

12.80 s. 6.19 s. 2 0.02 s. 1834 2371 
4 0.03 s. 4291 4853 32.90 s. 12.72 s. 

6903 51.19 s. 17.40 s. 8 0.03 s. 5997 
9413 94.09 s. 27.01 s. 16 0.04 s. 8240 
12682 124.40 s. 29.93 s. 32 0.06 s. 11414 
16160 161.04 s. 38.44 s. 64 0.08 s. 14613 

128 0.16 s. 18740 20520 207.30 s. 47.78 s. 

In  t h e  remainder of this  section, we use ex- 
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clusively GR for all initial decompositions. We 
show that in all cases, the two-step partition- 
ing methodology with the contraction proce- 
dure described herein is a cheaper and better 
alternative to  the multilevel RSB algorithm. 

8.6. Highlights 

The two-step decomposition methodology and 
the contraction procedure described in this sec- 
tion are available in the TOP/DOMDEC [82] 
interactive software package for mesh partition- 
ing and parallel processing. Here, we illustrate 
these two methodologies with examples from 
computational structural mechanics and fluid 
dynamics, and highlight their impact on the 
parallel solution time of these problems on an 
iPSC-860 multiprocessor and a Convex Meta 
Series system. 

Mesh partitioning algorithms are often 
evaluated and/or benchmarked by simply as- 
sessing and/or comparing the characteristics of 
the mesh partitions they generate (interface 
size, theoretical load balance factors, ...). Such 
an approach is at best incomplete. The ulti- 
mate goal of a mesh partitioning algorithm is 
to reduce, if possible, the parallet CPU time 
of the target parallel application. Hence, mesh 
partitioning algorithms should be benchmarked 
by comparing their impact on problem solving. 
Here, we consider three classes of applications: 
the solution of a set of semi-discrete differen- 
tial equations via an explicit time-integration 
scheme, the solution of a system of sparse linear 
equations via a domain decomposition based it- 
erative algorithm, and the solution of a system 
of sparse linear equations via a frontal method. 

8.6.1. Explicit Time-Marchinq 

(Fig. 25). The corresponding number of equa- 
tions is 233939. For this problem, the semi- 
discrete finite element equations of dynamic 
equilibrium are time-integrated using the ex- 
plicit central difference scheme. Four differ- 
ent mesh partitions are generated for parallel 
computations on a 64-processor iPSC-860 sys- 
tem. The characteristics of these decomposi- 
tions are summarized in Table 6 where N Y i n * k ,  
N I  avcrage,L, ~ ~ m o z , k  , and NI denote respectively 
the minimum, average, and maximum number 
of interface nodes per subdomain, and the to- 
tal number of interface nodes in the mesh par- 
tition. Given that the parallel performance 
of the central difference scheme - and most 
explicit time-integration algorithms - is gov- 
erned by load balancing and communication 
costs, the cost function C = 0.5 x CI +0.5 x Ca 

N k / N p  are used for this application. 

For the above problem and 64 subdomains, 
the interface size of the mesh partition gener- 
ated by the RSB scheme is 14 % smaller than 
that of the mesh partition produced by the GR 
algorithm. On the other hand, the two-step 
partitioning methodology without contraction 
reduces the interface size of the GR decompo- 
sition by 29%, and with contraction it reduces 
it by 36% (see Table 6). 

and the parameters N k  = N k  n and Nbest,' - - 
k=N.  

k = l  

First, we consider a stress wave propagation 
problem in a line-pinched plate with a cir- 
cular hole. The plate is discretized using 
47680 4-node shell elements and 48235 nodes 
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Table 6 
Partitioning of the plate mesh: N. = 47680 - N ,  = 48235 - Nd = 233939 - 
C = 0.5 x Ci +0.5 X Ca 

averoge ,k  N,maqt 
Scheme Optimizer Contraction NYinIk NI 

RSB None No 74 108 159 3433 1.14 
GR None No 56 124 286 3912 1.00 
GR SA No 53 101 149 3039 1.29 
GR SA Yes 52 98 144 2876 1.36 

The performance results on a 64processor 
iPSC-860 system of the transient analysis of the 
plate problem are reported in Table 7 for 2000 
integration time-steps, and the four generated 
64subdomain mesh partitions. Throughout 
the remainder of this section, T,,,, and T..I 
denote respectively the communication time, 
and the total solution time for the target par- 
allel application. 

Fig. 25. Finite element discretization of 
a plate with a circular hole 

Table 7 
Explicit central difference - 
Solution time for 2000 time-stem on an LiGGZd 

Scheme Optimizer Contraction T,,,, T..d % 
RSB None No 115.28 s. 706.91 s. 1.14 1.20 1.03 
GR None No 138.34 s. 728.12 s. 1.00 1.00 1.00 
GR SA NO 101.72 s. 693.45 s. 1.29 1.36 1.05 
GR SA Yes 98.81 s. 693.41 s. 1.36 1.40 1.05 

Clearly, the results reported in Table 7 show 
that the communication costs of the explicit 
central difference time-integration algorithm 
are directly related to the  number of interface 
nodes (for this problem, it turns out that all 

generated mesh partitions have a similar aver- 
age number of neighboring subdomains). How- 
ever, these results also indicate that  for this 
class of parallel applications, there is little to  
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gain by searching for the “perfect” mesh parti- 
tion with the least number of interface nodes. 
For example, the two-step mesh decomposition 
algorithm with contraction reduces the inter- 
face size and communication costs of the GR 
partition by factors equal to  1.36 and 1.40, re- 
spectively, but improves the total CPU time 
corresponding to the GR partition by 5% only. 
Hence, i t  would seem that the applications for 
which one has legitimate reasons t o  prioritize 
the minimization of the interface nodes are the 
least sensitive to the size of the subdomain in- 
terfaces. Of course, such a statement assumes 
that the given parallel processor is reasonably 
fast in communication, and that the size of the 
problem t o  be solved justifies the chosen num- 
ber of subdomains or processors. 

One could argue that the above con- 
clusions hold only for two-dimensional prob- 
lems where the subdomain interfaces are topo- 
logically one-dimensional, but not necessar- 
ily for three-dimensional problems where the 
subdomain interfaces are topologically two- 
dimensional, and the average number of neigh- 
bors for a given subdomain is higher. For this 
reason, we investigate next the parallel per- 
formance of the explicit central difference al- 
gorithm applied to the evaluation of the lin- 
ear transient response of a three-dimensional 

engine nozzle subjected to  a sudden pressure 
burst. The nozzle is discretized into 12800 8- 
node brick elements, 15579 nodes and 46701 
active degrees of freedom (Fig. 26). Four dif- 
ferent mesh partitions are generated for parallel 
computations on a 64-processor iPSC-860 sys- 
tem. The characteristics of these decomposi- 
tions are summarized in Table 8. As for the 
previous example, the cost function is set to  
C = 0 . 5 x C 1 + 0 . 5 x C z , N ~ i s s e t t o N ~ = N , k ,  

and NbesiVk = 
k=N.  

k = l  
Nk/Np is adopted. 

Fig. 26. Three-dimensional finite element 
discretization of a nozzle 

Table 8 
Partitioning of the nozzle mesh: N. = 12800 - N ,  = 15579 - N d  = 46701 - 
C = 0.5 x Ci +0 .5  X Cz 

NI Scheme Optimizer Contraction NF’n’k NI ouernge’k NFaz’k NI 

RSB None No 116 185 272 5401 1.12 
GR None No 129 212 316 6068 1.00 
GR TS No 134 191 259 5494 1.10 
GR TS Yes 120 177 220 5079 1.19 

For the nozzle problem and 64 subdomains, the 
mesh partition generated by the RSB scheme 
has 1.12 times less interface nodes than that produced by the GR algorithm. The two-step 
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partitioning methodology with contraction re- 
duces the interface size of the GR decomposi- 
tion by a factor equal to  1.19. Note that re- 
ducing the total number of interface nodes also 
seems to  improve the interface load balancing 
factor I Z B F  = ~ ; v e r a ~ e , t / ~ ; n n - , k .  F~~ exam- 

ILBF = 0.67 only for the 64-subdomain 
mesh partition generated by the GR algorithm, 

while lLBF = o,80 for that produced by the 
two-step decomposition methodology~ 

Table 9 reports the CPU time on a 64- 
Processor ipSc-860 system of a 2000 time-step 
transient analysis of the engine nozzle using the 
various 64-subdomain mesh partitions. 

Table 9 
Explicit central difference 
Nozzle mesh: N. = 12800 - N, = 15579 - Nd = 46701 - 

Solution time for 2000 time-steps on an iPSC-860/64 U 
Scheme Optimizer Contraction T,,,, Tsoi % % E $ % ?  
RSB None No 136.40 s. 338.00 s. 1.12 1.09 1.07 
GR None No 149.08 s. 362.00 s. 1.00 1.00 1.00 
GR TS No 139.46 s. 346.00 s. 1.10 1.07 1.05 
GR TS Yes 129.63 s. 335.00 s. 1.19 1.15 1.08 

Before commenting on the performance results 
summarized in Table 9, it is worthwhile noting 
that the iPSC-860 computer used for this appli- 
cation has only 8 Mbytes of memory per proces- 
sor. The smallest number of processors on this 
machine that is a power of two and can meet the 
storage requirements of this threedimensional 
dynamics application is 64. From Table 8, i t  
follows that 32% to 39% of the nodes of a 64- 
subdomain mesh partition of the nozzle mesh 
are interface nodes. Hence, the hardware con- 
figuration of this iPSC-860 and the memory re- 
quirements of the nozzle dynamics problem are 
such that the computational and communica- 
tion requirements of this target parallel appli- 
cation are not particularly well balanced. This 
is reflected in the performance results summa- 
rized in Table 9 which show that 38% to 41% 
of the total CPU time is spent in communi- 
cation. To some extent, this situation is typi- 
cal of three-dimensional finite element problems 

solved on small memory massively parallel pro- 
cessors. In Table 9, it is shown that RSB im- 
proves the communication time over GR by a 
factor equal to  1.09, and the two-step partition- 
ing methodology with contraction improves the 
communication time over GR by a factor equal 
to 1.15. These factors are consistent with those 
describing the reduction of the number of in- 
terface nodes. However, for the enhanced mesh 
partitions, the total CPU time is only 7% to 
8% better than that corresponding to  the GR 
partition, which is also consistent with the dis- 
tribution of the total simulation time between 
computation and communication. 

In summary, minimizing the number of 
interface nodes of a mesh partition does im- 
prove the total CPU time of this class of paral- 
lel applications, but not by impressive factors. 
Stated differently, unless communication costs 
are overwhelming - in which case parallel pro- 
cessing is not necessarily attractive - any rea- 
sonable mesh partition is suitable for this type 
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particular, note that for the above problem 
there is no correlation between NI and the com- 
munication costs per FETI iteration. This is 
essentially because the communication costs of 
this application are dominated by those associ- 
ated with global dot products and some other 
full matrix linear algebra on a coarse grid prob- 
lem. On the other hand, the results reported in 
Table 10 clearly demonstrate the importance of 
the subdomain aspect ratio for this class of ap- 
plications. The two-step mesh decomposition 
method with contraction improves the subdo- 
main aspect ratio of the mesh partitions gener- 
ated by GR and RSB by a factor equal to 1.7, 
which reduces the number of FETI iterations 
by a factor equal to 1.5, and the total solution 
time by a factor equal to 1.4. 

of parallel applications. This fact is rarely rec- 
ognized in the parallel processing literature. 

8.6.2. Domain Decomposition Based 
Iterative Solvers 

Here, we focus on the solution of the system 
of equations arising from the finite element 
static analysis of an elastic bearing under a 
distributed surface load. The finite element 
model of this three-dimensional structure con- 
tains 9600 8-node brick elements and 33075 de- 
grees of freedom (Fig. 27). The optimal domain 
decomposition based FETI iterative solver (see 
Section 5) is used for parallel computations on 
a 64-processor iPSC-860 system. Three 6 4  
subdomain mesh partitions are generated using 
RSB, GR, and the two-step mesh partitioning 
method with C = 0.5 X CZ $0.5 X C3, iVk = N." 
and NbeaSrk = N, /N, .  The characteristics of 
these mesh partitions and the corresponding 
performance results of the FETI solver are re- 
ported in Table 10 where AR and Nit ,  denote 
respectively the average subdomain aspect ratio 
and the number of FETI iterations for conver- 
gence. 

Fig. 27. Finite element discretization 
of an elastic bearing 

For this application, it is clear that the size 
of the interface problem does not control nei- 
ther the communication time nor the total CPU 
time of the domain decomposition solver. In  
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Table 10 
Optimal FETI solver 
Bearinc mesh: N .  = 9600 - Nd = 33075 - - - 
Effect of the subdomain aspect ratio 

Scheme Optimizer Contraction NI AR Tcomm/NitT Nit, Taor 

RSB None No 5 426 0.50 0.37 s. 45 36.09 s. 

GR None No 5 032 0.52 0.37 s. 43 35.17 s. 

GR SA Yes 4 430 0.84 0.40 s. 30 25.77 s. 

8.6.3. Parallel Frontal Solvers 

The problem of computing the steady-state flow 
of an incompressible Oldroyd fluid in a two- 
cam mixing apparatus arises in polymer pro- 
cessing applications. This problem is governed 
by a set of mixed elliptic/hyperbolic nonlinear 
partial differential equations. Here, we con- 
sider such a problem and the flow domain de- 
picted in Fig. 28. Its finite element discretiza- 
tion contains 1217 elements only, but generates 
26082 equations. At each Newton iteration, 
these equations are solved with the frontal di- 
rect solver described in [99]. 

Fig. 28. Discretization of the flow domain 
in a two-cam mixing apparatus 

Among all parallel applications, the frontal 
direct solver is perhaps the most challenging 
one for mesh partitioning. Ideally, this algo- 
rithm requires a mesh partition where: (a) each 
subdomain frontwidth is smaller or equal to  the 
frontwidth of the global problem, (b) the com- 
putational load is perfectly balanced, and (c) 

the subdomain interfaces have a minimum and 
equal number of nodes. Criterion (a) should 
be emphasized, because trading computational 
efficiency for parallelism is not always a win- 
ning strategy. Enforcing criterion (b) is a seri- 
ously difficult task, because the computational 
load per subdomain cannot be derived a pri- 
ori from the computational complexity of the 
global problem. Criterion (c) attempts at mini- 
mizing the communication and storage require- 
ments associated with the elimination of the in- 
terface unknowns. 

Here, four 8-subdomain mesh partitions 
are generated for parallel computations on an 
8-processor Convex Meta Series system, using 
GR, RSB, and the two-step mesh partitioning 
method with both GR and RSB as initial de- 
composers. For this application, the cost func- 
tion t o  be optimized is set to 0.5 x CI +0.5 X Cz. 

can- However, note that in this case N 
not be determined a priori. Let FE’ and 

denote respectively the variable sub- 
domain frontwidth and its maximum value. 
During the optimization (or retrofitting) pro- 

FRmoz,kZ is the same in all subdomains. 

b e s t , k  

cess, Nbest,k is computed so that Nbest” X 

The characteristics of all four mesh par- 
titions and the corresponding performances of 
the parallel frontal solver are reported in Ta- 
ble ll where EFRLBF = averagek(N.” X 

FR”)/maxk(N.k xFR”2) is the estimated com- 
putational load balance factor, Tkrernor is the 
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ternal renumbering scheme [32] is used in every parallel CPU time associated with t h e  &mina- 
tion of t h e  subdomain internal unknowns, and 
T,,I is t h e  total  parallel solution time. An in- 

subdomain for minimizing f i 1 1 - h  

Table 11 
Parallel frontal solver 
Polymer flow mesh: N e  = 1217 - Nd = 26082 - 
Effects of t h e  subdomain frontwidth and  load balancing 

T p ~ e v a g e , k  

E F R Z B F  $%y+ T s o ~  
Scheme O p t .  N I  ~ ~ a v e r a g e , k  

," lc7".3l  

RSB None 97 282.87 0.53 0.60 135.96 s. 
RSB SA 88 269.38 0.83 0.85 80.01 s. 
GR None 139 393.75 0.47 0.63 230.53 s. 
GR SA 85 252.50 0.67 0.66 102.48 s. 

T h e  ability of EFRZBF t o  predict t h e  com- 
putational load balance of t h e  parallel frontal 
solver is well illustrated in Table 11. Also, t h e  
suitability of t h e  selected cost function and  t h e  
effectiveness of t h e  optimization algorithm are 
well demonstrated.  For example, t h e  run-time 
load balance factor for the RSB mesh partition 
is equal to 0.53, while tha t  of t h e  optimized 
RSB parti t ion is equal t o  0.83. T h e  net result 
of t h e  optimization process is a speedup factor 
in t h e  solution t ime equal t o  1.69. For the GR 
parti t ion,  t h e  net result of t h e  retrofitting step 
is a speedup factor equal t o  2.25. Note also 
t h a t  for t h e  above problem, t h e  mesh parti t ion 
t h a t  leads t o  t h e  fastest parallel solution of t h e  
linearized equations is neither t h e  one with t h e  
minimum number of interface nodes, nor t h a t  
with t h e  minimum subdomain frontwidth, bu t  
the mesh parti t ion with t h e  best predicted load 
balance factor - and  it also turns  out  t o  be 
t h e  mesh parti t ion with t h e  best run-time load 
balance factor. 

10. APPLICATIONS AND 
PERFORMANCE RESULTS 

Here, we demonstrate t h e  aeroelastic cornpu- 
tational methodology described in t h e  previous 
sections with t h e  numerical investigation of t h e  

instability of flat panels with infinite aspect ra- 
tio in supersonic airstreams, a n d  t h e  solution 
of three-dimensional wing response problems in 
the transonic regime. All flow computations are  
performed using the Euler equations and  the 
explicit solver. 

10.1. Two-Dimensional Aeroelastic 
Supersonic Computations 

10.1.1. Problem Definition 

T h e  flat panel with infinite aspect ratio con- 
sidered here (Fig. 29) is assumed t o  have 
a length Z = 0.5m, a uniform thickness 
h = 1.35 x 10V3 m, a Young modulus 
E = 7.728 x 10" N/m2, a Poisson ratio 
p = 0.33, a density p = 2710 ICg/m3, and  
to be clamped at both ends. I t s  rectangular 
cross section is discretized into 1111 x 3 plane 
strain 4-node elements. This  fine discretization 
- which generates 3333 elements with perfect 
aspect ratios and  4448 nodes - is not needed 
for accuracy; we have designed this structural  
mesh only because we are  also interested in 
assessing some computational a n d  110 perfor- 
mance issues. 

T h e  two-dimensional flow domain above 
t h e  panel is discretized into 32568 triangles and  
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16512 vertices. A slip condition is imposed at 
the fluid/structure boundary. Because the fluid 
and structural meshes are not compatible at 
their interface (Fig. 30), the Matcher software 
[35] is used to  generate in a single preprocessing 
step the data structures required for transfer- 
ring the pressure load to  the structure, and the 
structural deformations at the upper surface of 
the panel to  the fluid. 

We consider several supersonic flows at dif- 
ferent Mach numbers and discuss the perfor- 
mances of the partitioned analysis procedures 
ALGO, ALG1, ALG2, and ALG3. Whenever 
subcycling is used, the 1’ interpolation scheme 
is used t o  prescribe the motion of the fluid grid 
points on r F / S .  

10.1.Z. Computational Platfown 

All computations are performed on an iPSC-860 
parallel processor using double precision arith- 
metic. The fluid and structure solvers are im- 
plemented as separate programs that commu- 
nicate via the intercube communication proce- 
dures described in [104]. 

10.1.3. Assessment of the Partitioned Procedures 

In order to  illustrate the relative merits of the 
partitioned procedures ALGO, ALG1, ALG2 
and ALG3, we consider first two different se- 
ries of transient aeroelastic simulations at Mach 
number M ,  = 1.90 that highlight 

the relative accuracy of these algorithms 
for a fixed subcycling factor n s l ~ .  

the relative speed of these algorithms for a 
fixed level of accuracy, on both sequential 
and parallel computational platforms. 

In all cases, 64 processors are allocated to  
the fluid system, and 2 processors are assigned 
to the structural solver. Initially, a steady-state 
flow is computed above the panel at M ,  = 1.90 
(Fig. 31), speed at which the panel described 
above is not supposed t o  flutter. Then, the 
aeroelastic response of the coupled system is 

triggered by a displacement perturbation of the 
panel along its first mode (Fig. 32). 

- - - - - - -  

Fig. 29. A flat panel with infinite aspect ratio 

~ .~ ....... 

Fig. 30. Mesh incompatibility 

Fig. 31. Pressure isovalues for the 
steady-state flow solution (Mm = 1.90) 
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Subcycling fador is Nsn - 30 
I 

Fig. 32. Initial perturbation of t h e  panel 
displacement field 

. ..._ 
0 0.W2 0.004 0.W 0.008 0.01 0.012 0.014 0.016 

Time (5 )  

Fig. 33. Lift coefficient history for n S I F  = 30 

Ix) precirh subcyclhg 
0.wof I 

\ First ,  t h e  subcycling factor is fixed t o  ! I 
n S I F  = 30, a n d  t h e  lift coefficient is computed 
using t h e  time-step At = 3 . 9 ~  correspond- 
ing to t h e  stability limit of t h e  explicit flow 
solver in t h e  absence of coupling with the  struc- 
ture.  T h e  obtained results are depicted in Fig. 
33 for t h e  first 4102 time-steps. For n S I F  = 30, 
A L G l  and  ALGS exhibit essentially the  same 
accuracy. In  t h e  long run,  their amplitude and  
phase errors are less important  t han  those of 
ALG2. Clearly, this highlights t h e  superiority 
of ALG3 which, despites i ts  inter-field paral- 
lelism a n d  unlike ALG2, is capable of delivering 
t h e  same accuracy as  t h e  sequential algorithm 
ALG1. 

Next, t h e  relative speed of t h e  focus parti- 
tioned solution procedures is assessed by com- 
paring their CPU performance for a certain 
level of accuracy dictated by ALGO. It turns  
o u t  t h a t  in order to meet the  accuracy re- 
quirements of ALGO, A L G l  and  ALGS can use 
a subcycling factor as  large as  n s / F  = 10, 
b u t  ALG2 can subcycle only up  to n S I F  = 5 
(Fig. 34). 

Fig. 34. Lift coefficient history 
for a fixed level of accuracy 

T h e  performance results measured on  t h e  
iPSC-860 are reported in Table 12 where ICC 
denotes t h e  intercube communication time. 
Note t h a t  ICC is measured in t h e  fluid kernel 
and  includes idle t ime when t h e  flow and  struc- 
tural  communications do not overlap. 
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Table 12. Performance results on the  iPSC-860 

Fluid: 64 processors Structure: 2 processors 

Elapsed time for 4102 fluid time-steps 
~~ 

Algorithm Fluid Structure Fluid-Wait+ICC Total CPU 
ALGO 2617.23 s. 1267.93 s. 1283.10 s. 3900.33 s. 
ALGl 2625.11 s. 126.67 s. 127.90 s. 2753.01 s. 

( n S / F  = 10) 
ALG2 2643.57 s. 253.34 s. 1.67 s. 2645.24 s. 

( n S / F  = 5) 
ALG3 2603.56 s. 253.23 s. 1.37 s. 2604.93 s. 

( n S / F  = 10) 

From t h e  results reported in Table 12, t h e  
following observations can be made 

a 

a 

t h e  fluid computations dominate the  sim- 
ulation time. This  is partly because the  
structural  model is simple in this case, and  
a linear elastic behavior is assumed for t h e  
panel. 

considering t h a t  t h e  iPSC-860 has 128 pro- 
cessors and  t h a t  only clusters of 2" proces- 
sors can be defined on this machine, allo- 
cating 64 processors t o  t h e  fluid and  2 pro- 
cessors t o  t h e  s t ructure  achieves the  mini- 
mum possible inter-field load imbalance for 
this coupled problem. 

t h e  effect of subcycling on intercube com- 
munication costs is clearly demonstrated. 
Because t h e  flow solution t ime is dominat- 
ing, t h e  effect of subcycling on the  total 
C P U  time is less important  for ALG2 and 
ALGS which feature inter-field parallelism 
in addition t o  intra-field multiprocessing, 
t h a n  for ALGl which features intra-field 
parallelism only (note t h a t  ALGl with 
n S / F  = 1 is identical to ALGO). 

ALG2 and  ALG3 allow a perfect overlap of 
inter-field communications, which reduces 
intercube communication and  idle t ime t o  
less t h a n  0.3% of t h e  amount  correspond- 
ing t o  ALGO. 

a T h e  superiority of ALGS over ALG2 is not 
clearly demonstrated for this problem be- 
cause of the  simplicity of t h e  structural  
model and  t h e  subsequent load imbalance 
between t h e  fluid and  s t ructure  computa- 
tions. 

10.1 .A. Panel Flutter 

T h e  classical and  analytical solution of t h e  in- 
stability problem of flat panels with infinite as- 
pect ratio in supersonic airstreams assumes a 
shallow shell theory for t h e  s t ructure  and  a lin- 
earized formulation for t h e  flow problem (piston 
theory). Within this analytical approach, the  
dynamics of t h e  focus coupled fluid/structure 
system are governed by a fourth-order partial 
differential equation [2, page 4191, and  t h e  flut- 
ter  condition is obtained by analyzing t h e  roots 
of the  corresponding characteristic equation. 
For t h e  panel described t h e  beginning of this 
section, the  classical linear theory predicts flut- 
ter at the  critical Mach number M g  = 1.98. 
T h e  objective of this Section is to validate the  
aeroelastic simulation capability presented in 
this paper by reproducing t h e  theoretical crit- 
ical Mach number for t h e  given panel. Note 
t h a t  in order to compare t h e  analytical and  fi- 
nite element approaches, t h e  coefficients of t h e  
shallow shell equation described in [2, page 4191 
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structure is shown t o  be equal to  that lost by 
the fluid, as it should be. 

must be computed t o  represent the same equa- 
tion as that corresponding to the finite element 

10.2. T hree-Dimensional Aeroelast ic 
Transonic Computations 

model used in this paper. 

Four different runs at M ,  = 2.0, 
M ,  = 2.05, M ,  = 2.095, and M ,  = 2.13 
are performed using ALG3. For each run, a 
steady-state flow is first computed. Then, a dis- 
placement perturbation of the panel along its 
first mode (Fig. 32) is imposed, and the aeroe 
lastic response of the coupled system is com- 
puted. The predicted time histories of the lift 
coefficient are depicted in Fig. 35 for all four 
cases. 

U l - U m W M -  
om,, 

From the results reported in Fig. 35, it fol- 
lows that the flutter speed predicted by our for- 
mulation verifies 2.05 < Mg < 2.095. Hence, 
this flutter speed is 4.5 % higher than that pre- 

6 0 " 8  x 0 8 ;  9: 

Fig. 36. Accumulated external energy 
( M ,  = 2.095) 

~ 

dieted by the piston theory. This is a rather 
good agreement, given that the piston the- 10..2.1. Problem. Defini t ion 

ory and the computational approach presented 
herein do not share exactly the same approxi- 
mations. 

Finally, we report in Fig. 36 the history 
of the accumulated external energy at Mm = 
2.095 for both the fluid and structural systems. 
At this speed, the panel is clearly shown to ex- 
tract energy from the fluid, and therefore to  
flutter. Note that Fig. 36 also highlights the 
quality of the matching performed by Matcher: 
the amount of external energy extracted by the 

Next, we consider transient aeroelastic reponse 
problems associated with a simple structural 
model of the ONERA M6 wing. 

The wing is represented by an equivalent 
plate model discretized in 1071 triangular plate 
elements, 582 nodes, and 6426 degrees of free- 
dom (Fig. 37). Four meshes M i -  -M4 are 
designed for the discretization of the three- 
dimensional flow domain around the wing. The 
characteristics of theses meshes are given in Ta- 
ble 13 where N,.,, N t e t ,  Nfae, and N,,, denote 
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respectively the number of vertices, tetrahedra, 
facets (edges), and fluid variables. A partial 
view of the discretization of the flow domain is 
shown in Fig. 38. 

respectively 16 (Ml), 32 (M2), 64 (M3), and 
12' processors (M4) Of a Paragon xp/s and 
a Cray T3D systems. In particular, the sizes 
of these meshes are such that the processors of 

Table 13 
Characteristics of meshes M1 - -M4 

Mesh Nvep N*.* Nfec  Nvar 

M1 15460 80424 99891 77300 
M 2  31513 161830 201479 157565 
M 3  63917 337604 415266 319585 
M4 115351 643392 774774 576755 

*T*Vr &;,. 
.I 

Fig. 37. Finite element plate model of the wing 

Fig. 38. Partial view of the fluid mesh M1 
on the skin of the ONERA M6 wing 

The sizes of the fluid meshes M1- -M4 
have been tailored for parallel computations on 

a Paragon XP/S machine with 32 Mbytes per 
node would not swap when solving the corre- 
sponding flow problems. 

Here again, the fluid and structural meshes 
are not compatible at their interface. Matcher [35] 
is used to generate in a single preprocessing step 
the data structures required for transferring the 
pressure load to  the structure, and the struc- 
tural deformations to the fluid. 

10.2.2. Computational Platforms 

All computations are performed on an iPSC - 
860, and/or a Paragon XP/S, and/or a 
Cray T3D, and/or an IBM SP2 computers us- 
ing double precision arithmetic. Message pass- 
ing is carried out via NX on the Paragon XP/S 
multiprocessor, PVM T3D on the Cray T3D 
system, and MPI on the IBM SP2 parallel pro- 
cessor. The fluid and structure solvers are im- 
plemented as separate programs that commu- 
nicate via the intercube communication proce- 
dures described in [104]. 

10.2.3. Pamllel Performance of the FlowSolver 

The performance of the parallel flow solver is 
assessed with the computation of the steady 
state of a flow around the given wing at  a 
Mach number M ,  = 0.84 and an angle of 
attack p = 3.06 degrees (Fig. 39) . The 
CFL number is set to  0.9. The four meshes 
M1- -M4 are decomposed in respectively 16, 
32, 64, and 128 overlapping subdomains using 
TOP/DOMDEC [82]. The motivations for em- 
ploying overlapping subdomains and the impact 
of this computational strategy on parallel per- 
formance are discussed in [49]. The CPU tim- 
ings in seconds are reported in Tables 14-16 for 
the first 100 iterations on a Paragon XP/S ma- 
chine (128 processors), a Cray T3D system (128 
processors), and an IBM SP2 computer (32 pro- 
cessors), respectively. In these tables, Np, N,,,, 
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impact on the unsteady computations that we 
perform in aeroelastic simulations such as those 
that are discussed next. The mflop rates re- 
ported in Tables 1416 are computed in a strict 
manner: they exclude all the redundant com- 
putations associated with the overlapping sub- 
domain regions. 

l O C  T,,,,, T$&, Tcompr Tt,t and rnflops denote 
respectively the number of processors, the num- 
ber of variables (unknowns) to be solved, the 
time elapsed in short range interprocessor com- 
munication between neighboring subdomains, 
the time elapsed in long range global interpro- 
cessor communication, the computational time, 
the total simulation time, and the computa- 
tional speed in millions of floating point op- 
erations per second. Typically, short range 
communication is needed for assembling various 
subdomain results such as fluxes at the subdo- 
main interfaces, and long range interprocessor 
communication is required for reduction opera- 
tions such as those occurring in the the evalu- 
ation of the stability time-steps and the norms 
of the nonlinear residuals. Because message- 
passing is also used for synchronization, the re- 
ported communication timings include any idle- 
time due to  load imbalance. We also note that 
we use the same fluid code for steady state and 
aeroelastic computations. Hence, even though 
we are benchmarking in Tables 14-16 a steady 
state computation with a local time stepping 
strategy, we are still timing the kernel that eval- 
uates the global time-step in order to reflect its 

r 
Fig. 39. Steady-state Mach lines 
(ONERA M6 wing - mesh M4) 

Table 14 
Performance of the parallel flow solver on the Paragon XP/S system (16-128 processors) 

100 iterations - CFL = 0.9 

Mesh N p  T k k  Ti%,,, Tcomp Tto< rnflops 

M1 16 2.0 s. 40.0 s. 96.0 s. 138.0 s. 84 
M 2  32 4.5 s. 57.0 s. 98.5 s. 160.0 s. 145 
M3 64 7.0 s. 90.0 s. 103.0 s. 200.0 s. 240 
M4 128 6.0 s. 105.0 s. 114.0 s. 225.0 s. 401 
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Table 15 
Performa f the p d e l  flow solve m th CI r T3D system (16-128 processors) 

100 iterations - CFL = 0.9 

Mesh Np Tkmm T % L  Tcomp Ttot  mflops 

M1 16 1.6 s. 2.1 s. 87.3 s. 91.0 s. 127 
M 2  32 2.5 s. 4.1 s. 101.4 s. 108.0 s. 215 
M3 64 3.5 s. 7.2 s. 100.3 s. 111.0 s. 433 
M4 128 3.0 s. 7.2 s. 85.3 s. 95.5 E .  945 

Table 16 
Performance of the parallel flow solver on the IBM SP2 system (4-32 processors) 

100 iterations - CFL = 0.9 

Ioc Tmmm ,910 Tcomp Ttot mflops Mesh Np Tcomm 
M1 4 0.8 s. 0.4 s. 70.8 s. 72.0 s. 160 
M 2  8 1.1 s. 0.6 s. 73.3 s. 75.0 s. 308 
M3 16 1.4 s. 0.7 s. 78.9 s. 81.0 s. 594 
A44 32 2.0 s. 1.0 s. 79.0 s. 82.0 s. 1102 

The reader can easily verify that the num- 
ber of processors assigned to each mesh is such 
that N,,,/Np is almost constant. This means 
that larger numbers of processors are attributed 
to larger meshes in order to keep each local 
problem within a processor at an almost con- 
stant size. For such a benchmarking strategy, 
parallel scalability of the flow solver on a target 
parallel processor implies that the total solution 
CPU time should be constant for all meshes and 
their corresponding number of processors. This 
is clearly not the case for the Paragon XP/S 
system. On this machine, short range commu- 
nication is shown to be inexpensive, but long 
range communication costs are reported to be 
important. This is certainly due to  the latency 
of the Paragon XP/S parallel processor which 
is an order of magnitude slower than that of the 
Cray T3D system. Another possible source of 
global communication time increase is the load 
imbalance between the processors since message 

passing is also used for synchronization. How- 
ever, this does not seem to be significant on the 
T3D and SP2 parallel processors. 

On the other hand, parallel scalability is 
well demonstrated for the Cray T3D and IBM 
SP2 systems. The results reported in Tables 
15 and 16 show that all computations using 
meshes Ml--M4 and the corresponding num- 
ber of processors consume almost the same to- 
tal amount of CPU time. For 128 processors, 
the Cray T3D system is shown to be more 
than twice faster than the Paragon XP/S ma- 
chine. The difference appears to  be strictly 
in long range communication as the computa- 
tional time is reported to  be almost the same 
on both machines. However, most impressive is 
the fact that an IBM SP2 with 32 processors 
only is shown to be three times faster than a 
128 - processor Paragon XP/S, and faster than 
a Cray T3D with 128 processors. 



8-71 

Fig. 40. Initial perturbation of the structure 

10.2.6. Performance of the Partitioned 

Analvsis Procedures 

As in the two-dimensional application, we con- 
sider first two different series of transient aeroe- 
lastic simulations at Mach number M ,  = 0.84 
that highlight 

a the relative accuracy of these coupled solu- 
tion algorithms for a fixed subcycling fac- 
tor n s l p  

the relative speed of these coupled solution 
algorithms for a fixed level of accuracy. 

a 

In all cases, mesh M2 is used for the flow 
computations, 32 processors of an iPSC-860 
system are allocated to  the fluid solver, and 
4 processors of the same machine are assigned 
to  the structural code. Initially, a steady- 
state flow is computed around the wing at 
M ,  - - 0.84, Mach number at which the 
wing described above is not supposed to  flut- 
ter. Then, the aeroelastic response of the cou- 
pled system is triggered by a displacement per- 
turbation of the wing along its first mode (Fig. 
40). 

Fig. 41. Lift history for the first half cycle 
( n S l F  = 10) 

First, the subcycling factor is fixed to  
n s l F  = 10 then to  n s / ~  = 30, and the lift is 
computed using a time-step corresponding to 
the stability limit of the explicit flow solver in 
the absence of coupling with the structure. The 
obtained results are depicted in Fig. 41 and 
Fig. 42 for the first half cycle. 

rig, 42, Lift history for the first half cycle 
( ~ S I F  = 30) 
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out that in order to meet the accuracy require- 
ments of ALGO, the solution algorithms ALGl 

The superiority of the parallel fluid-subcycled and ALG2 can subcycle only up to nslF = 5,  

while ALG3 can easily use a subcycling factor 
as large as nslp = 10. The performance results 
measured on an iPSC-860 system are reported 
in Table 17 for the first 50 coupled time-steps. 
In this table, ICWF and ICWS denote the inter- 
code communication timings measured respec- 

timings include idle and synchronization (wait) 
time when the fluid and structural communica- 
tions do not completely overlap. For Program- 
ming reasons, Icws is monitored together with 
the evaluation of the Pressure bad .  

ALG3 solution procedure is clearly demon- 
strated in Fig. 41 and Fig. 42. For ns/F = 10, 
ALG3 is shown to be the closest to  ALGO, 
which is supposed to  be the most accurate since 
it is sequential and non-subcycled. ALGl and 
ALG2 have comparable accuracies. However, 

more important phase error than ALG3, espe- 
cially for nslF = 30. 

both of these algorithms exhibit a tively in the fluid and structural kernels; these 

Next, the relative speed of the partitioned 
solution procedures is assessed by comparing 
their CPU time for a certain level of accuracy 
dictated by ALGO. For this problem, it turned 

Table 17. Performance results on the iPSC-860 
Fluid: 32 processors Structure: 4 processors 

Elapsed time for 50 fluid time-steps 

-45 Fluid Fluid Struc. ICWS ICWF Total 
Solver Motion Solver CPU 

ALGO 177.4 s .  71.2 s. 33.4 s. 219.0 s. 384.1 s. 632.7 s .  
ALGl 180.0 s. 71.2 s. 16.9 S. 216.9 s. 89.3 s. 340.5 s .  

ALG2 184.8 s. 71.2 s .  16.6 s. 114.0 s. 0.4 s. 256.4 s .  

ALG3 176.1 s. 71.2 s. 10.4 s. 112.3 s. 0.4 s. 247.7 s.  

From the results reported in Table 17, the 
following observations can be made: 

the fluid computations dominate the sim- 
ulation time. This is partly because the 
structural model is again simple in this 
case, and a linear elastic behavior is as- 
sumed. However, by allocating 32 proces- 
sors to  the fluid kernel and 4 processors to 
the structure code, a reasonable load bal- 
ance is shown to be achieved for ALGO. 

during the first 50 fluid time-steps, the 
CPU time corresponding to the structural 

solver does not decrease linearly with the 
subcycling factor nslF because of the ini- 
tial costs of the FETI reorthogonalization 
procedure designed for the efficient itera- 
tive solution of implicit systems with re- 
peated right hand sides (see Section 5 ) .  
the effect of subcycling on intercube com- 
munication costs is clearly demonstrated. 
The impact of this effect on the total CPU 
time is less important for ALG2 and ALG3 
which feature inter-field parallelism in ad- 
dition to  intra-field multiprocessing, than 



for A L G l  which features .intra-field paral- 
lelism only (note t h a t  A L G l  with n S / F  = 
1 is identical t o  ALGO), because the  flow 
solution t ime is dominating. 

ALG2 and  ALG3 allow a certain amount  
of overlap between inter-field communica- 
tions, which reduces intercube communi- 
cation a n d  idle t ime on  t h e  fluid side t o  less 
t h a n  0.001% of t h e  amount  corresponding 
to ALGO. 

0 

. 

Most importantly,  t h e  performance results 
reported in Table 17  demonstrate t h a t  subcy- 
cling and  inter-field parallelism are desirable 
for aeroelastic simulations even when the  flow 
computations dominate t h e  structural  ones, be- 
cause these features can significantly reduce the  
total simulation t ime by minimizing the  amount  
of inter-field communications and  overlapping 
them. For t h e  simple problem described herein, 
t h e  parallel fluid-subcycled ALG2 and  ALG3 
algorithms are  more t h a n  twice faster t h a n  the  
conventional staggered procedure ALGO. 

10. CONCLUSIONS 

In  this  paper,  we have highlighted some key 
elements of t h e  solution of large-scale three- 
dimensional nonlinear aeroelastic problems on 
high performance computational platforms. We 
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for t h e  solution of coupled aeroelastic prob- 
lems on heterogeneous and/or  parallel compu- 
tational platforms, and  illustrated it with two- 
and  three-dimensional applications on  a n  iPSC- 
860, a Paragon XP/S ,  and  a Cray T3D mas- 
sively parallel systems. We have shown t h a t  
even when t h e  flow computations dominate t h e  
total  CPU time of a coupled aeroelastic simula- 
tion, subcycling a n d  inter-field parallelism are  
desirable as they can significantly speedup the  
total  solution time. 
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