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Turbulence in Compressible Flows 
(AGARD R-819) 

Executive Summary 

This report is a compilation of the edited proceedings of the “Turbulence in Compressible Flows” 
course held at the von Khrmhn Institute for Fluid Dynamics (VU) in Rhode-Saint-Gen&se, Belgium, 
2-6 June 1997, and in Newport News, Virginia, USA, under the sponsorship of NASA Langley 
Research Center, 20-24 October 1997. 

Computational Fluid Dynamics is not an exact technology. While its basic framework consists of a 
well-established set of partial differential equations describing fluid motion, this framework is not self- 
contained and must be combined with approximate theoretical models describing the physical processes 
in question. Turbulence and the transition from laminar to turbulent flow are central phenomena, and a 
proper prediction of these phenomena is a prerequisite to accuracy improvements of any numerical 
method. 

This series of lectures, supported by the AGARD Fluid Dynamics Panel and the von Khrmhn Institute 
for Fluid Dynamics, reviewed the state of knowledge of turbulence in compressible flows, with specific 
focus on fundamental physical understanding, modeling and application to engineering systems. The 
following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free 
Shear Layers, Turbulent Combustion, DNSLES and RANS Simulations of Compressible Turbulent 
Flows, and Case Studies of Applications of Turbulence in Aerospace. 
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La turbulence dans les koulements compressibles 
(AGARD R-819) 

S ynthitse 

Ce rapport est un recueil des comptes rendus officiels du Cours sur la turbulence dans les Ccoulements 
compressibles, tenu B 1’Institut von KArmAn (VKI) B Rhodes-Saint-Genkse, en Belgique, du 2 au 6 juin 
1997, et B 1’Omni Hotel, Newport News Virginia, sous 1’Cgide du NASA Langley Research Center, du 
20 au 24 octobre 1997. 

L’aCrodynamique numtrique n’est pas une technologie exacte. Si les grandes lignes du domaine 
consistent en un systkme d’equations aux dCrivCes partielles bien dCfinies dCcrivant le comportement 
des fluides, ce cadre gCnCral n’est pas suffisant et doit &tre associC B la modClisation thCorique 
approchCe des processus physiques en question. La turbulence et la transition de 1’Ccoulement laminaire 
B 1’Ccoulement tourbillonnaire sont des phCnomknes essentiels et toute amClioration de la prCcision 
d’une mCthode numkrique quelconque passe par la prevision correcte de ces phhomknes. 

Ce cycle de confkrences, prCsentC sous 1’Cgide du Panel AGARD de la dynamique des fluides et de 
1’Institut von KArmAn, a fait le point de 1’Ctat actuel des connaissances dans le domaine de la turbulence 
dans les Ccoulements compressibles, en privilkgiant les aspects physiques fondamentaux, la 
modClisation et les applications aux systkmes opkrationnels. 

Les sujets suivants ont CtC abordCs : 

Les couches limites tourbillonnaires compressibles, les zones de melange tourbillonnaires 
compressibles, la combustion tourbillonnaire, les simulations DNSLES et RANS des Ccoulements 
tourbillonnaires compressibles et des cas d’essai d’applications de la turbulence dans le domaine 
aCrospatial. 
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Compressible Turbulent Boundary Layers 

A.J. Smits 
Department of Mechanical and Aerospace Engineering 

Princeton University, Princeton, NJ 08544-0710 

Abstract 

These notes review what is currently known about the 
structure of zero-pressure-gradient, flat-plate turbulent 
boundary layers. The behavior of boundary layers in sub- 
sonic and supersonic flows is discussed, with a particular 
emphasis on scaling laws with respect to Reynolds num- 
ber and Mach number. 

1 Introduction 

The most important parameter in the description of in- 
compressible turbulent boundary layer behavior is, of 
course, the Reynolds number. Engineering applications 
cover an extremely wide range and values based on the 
streamwise distance can vary from 10' to 10'. Most lab- 
oratory experiments are performed at the lower end of 
this range, and to be able to predict the behavior at very 
high Reynolds numbers, as found in the flow over aircraft 
and ships, i t  is therefore important to understand how 
turbulent boundary layers scale with Reynolds number. 

For compressible flows, the Mach number becomes an ad- 
ditional scaling parameter. Because of the no-slip con- 
dition, however, a subsonic region persists near the wall, 
although the sonic line is located very close to the wall 
at high Mach number. Furthermore, a significant tem- 
perature gradient develops across the boundary layer at 
supersonic speeds due to the high levels of viscous dissipa- 
tion near the wall. In fact, the static-temperature varia- 
tion can be very large even in an adiabatic flow, resulting 
in a low-density, high-viscosity region near the wall. In 
turn, this leads to a skewed mass-flux profile, a thicker 
boundary layer, and a region in which viscous effects are 
somewhat more important than at an equivalent Reynolds 
number in subsonic flow. 

Figure 1 shows two sets of air boundary layer profiles at 
about the same Reynolds number, one set measured on an 
adiabatic wall, the other measured on an isothermal wall. 
The momentum thickness Reynolds number & is approx- 
imately 2200 when based on the freestream velocity U,, 
and the kinematic viscosity evaluated at the freestream 
temperature v,, in accord with usual practice. That is, 
Re = Ouc/ve. The temperature of the air increases near 
the wall, even for the adiabatic wall case, since the dissi- 
pation of kinetic energy by friction is an important source 
of heat in supersonic shear layers. Somewhat surprisingly, 

the velocity, temperature and mess-flux profiles for these 
two flows appear very much the same, even though the 
boundary conditions, Mach numbers and heat transfer pa- 
rameters differ considerably. The velocity profiles in the 
outer region, in fact, follow a 1/7th power law distribu- 
tion quite well, just as a subsonic velocity profile would 
at this Reynolds number. With increasing Mach num- 
ber, however, the elevated temperature near the the wall 
means that the bulk of the maw flux is increasingly found 
toward the outer edge of the boundary layer. This effect 
is strongly evident in the boundary-layer profiles shown in 
figure 2, where the freestream Mach number was 10 for a 
helium flow on an adiabatic wall. For this case, the tem- 
perature ratio between the wall and the boundary layer 
edge was about 30. 

If the total temperature To was constant across the layer, 
then from the definition of the total temperature, To = 
T+CJa/2Cp,  we see that there is a very simple relationship 
between the temperature T and the velocity U. Since 
there is never an exact balance between frictional heating 
and conduction (unless the Prandtl number equals one), 
the total temperature is not quite C O M t a n t ,  even in an 
adiabatic flow, and the wall temperature depends on the 
recovery factor r .  Hence: 

where M is the Mach number, the subscript w denotes 
conditions at the wall, and the subscript e denotes con- 
ditions at the edge of the boundary layer, that is, in the 
local freestream. Since r x 0.9 for a turbulent boundary 
layer, the temperature at the wall in an adiabatic flow 
is nearly equal to the freestream total temperature. For 
example, at a freestream Mach number of 3, the ratio 
",/To = 0.93. 

As a result of these large variations of temperature 
through the layer, the fluid properties are far from con- 
stant. To the boundary layer approximation, the static 
pressure variation across the layer is constant, as in sub- 
sonic flow, and therefore for the examples shown in fig- 
ure 1 the density varies by about a factor of 5. The vis- 
cosity varies by somewhat less than that: if we assume 
some form of Sutherland's law to express the temperature 
dependence of viscosity, for instance (p/pe)  = (T/Tc)" 
where w = 0.765, then the viscosity varies by a factor 
of 3.4. Since the density increases and the viscosity de- 
creases with distance from the wall, the kinematic vis- 
cosity decreases by a factor of about 17 across the layer. 

Paper presented at the AGARD FDP Special Course on "Turbulence in Compressible Flows", held at the 
von Kdrmdn Institute for Fluid Dynamics (VKI) in Rhode-Saint-Gendse, Belgium, 2-6 June 1997, 

and in Newport News, Virginia, USA, 20-24 October 1997, and published in R-819. 
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Figure 1: Turbulent boundary layer profiles in air ( T b  = Te). From Fernholz & Finley (1980), where catalog numbers 
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Figure 2: Turbulent boundary layer profiles in helium (Tb = Te). Figure from Fernholz & Finley (1980), where catalog 
numbers are referenced. Original data from Watson et al. (1973). 
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2.9 (air)’ 3 0.33 1.4 4.2 
4.5 (air)” 5 0.2 2.9 14 
10.3 (He)’ 33 0.03 9.6 320 

Spina & Srnits 1987. 
’Mabcy et al 1974. 
‘ Warron e l  al 1973. 

Table 1: The ratio of fluid properties across three bound- 
ary layers in supersonic flow on adiabatic walls. Table 
from Spina et al. (1994). 

Typical wall-to-freestream ratios of some flow properties 
are provided in table 1 for three different Mach numbers. 

It is therefore difficult to assign a single Reynolds number 
to describe the state of the boundary layer. Of course, 
even in a subsonic boundary layer the Reynolds num- 
ber varies through the layer since the length scale de- 
pends (in a general sense) on the distance from the wall. 
But here the variation is more complex in that the non- 
dimensionalizing fluid properties also change with wall 
distance. One consequence is that the relative thickness 
of the viscous sublayer depends not only on the Reynolds 
number, but also on the Mach number and heat transfer 
rate since these will influence the distribution of the fluid 
properties. At very high Mach numbers, most of the layer 
may become viscousdominated. Now the boundary lay- 
ers a t  the lower Mach numbers shown in figure 1 are cer- 
tainly turbulent, but the Mach 10 boundary layer shown 
in figure 2 may well be transitional. For that case, the 
Reynolds number based on freestream fluid properties (for 
example, & = peUeO/pe suggests a fully turbulent flow, 
but when the Reynolds number is based on fluid proper- 
ties evaluated at the wall temperature ( &  = peUeO/puI) 
it suggests a laminar flow. The difference between Res 
and Raa increases steadily with Mach number and heat 
transfer, and can become very significant at high Mach 
number (for a full discussion, see Fernholz & Finley, 1976). 

We can see that any comparisons we try to make between 
subsonic and supersonic boundary layers must take into 
account the variations in fluid properties, which may be 
strong enough to lead to unexpected physical phenom- 
ena, as well as the gradients in Mach number. Intuitively, 
one would expect to see significant dynamical differences 
between subsonic and supersonic boundary layers. How- 
ever, it  appears that many of these differences can be ex- 
plained by simply accounting for the fluid-property varia- 
tions that accompany the temperature variation, as would 
be the case in a heated incompressible boundary layer. 
This suggests a rather passive role for the density differ- 
ences in these flows, most clearly expressed by Morkovin’s 
hypothesis (Morkovin, 1962): the dynamics of a com- 
pressible boundary layer follow the incompressible pattern 
closely, as long as the Mach number associated with the 
fluctuations remains small. That is, the fluctuating Mach 
number, M’, must remain small, where M’ is the r.m.8. 
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Figure 3: Fluctuating Mach number distributions. Flow 
1: Me = 2.32, Res = 4,700, adiabatic wall (ElCna & 
Lacharme, 1988); Flow 2: Me = 2.87, Res = 80,000, adi- 
abatic wall (Spina & Smits, 1987); Flow 3: Me = 7.2, 
Reo = 7,100, T,/T, = 0.2 (Owen & Horstman, 1972); 

derman & Demetriades, 1974). Figure from Spina et al. 
(1994). 

Flow 4: Me = 9.4, Res = 40,000, TWIT, = 0.4 (La- 

perturbation of the instantaneous Mach number from its 
mean value, taking into account the variations in velocity 
and sound speed with time. If M’ approaches unity at any 
point, we would expect direct compressibility effects such 
w local “shocklets” and pressure fluctuations to become 
important. If we take M’ = 0.3 as the point where com- 
pressibility effects become important for the turbulence 
behavior, we find that for zero-pressure-gradient adiabatic 
boundary layers at moderately high Reynolds numbers 
this point will be reached with a freestream Mach num- 
ber of about 4 or 5 (see figure 3). 

Recently, some measurements in moderately supersonic 
boundary layers ( M ,  < 5) have indicated subtle differ- 
ences in the instantaneous behavior of certain quantities 
and parameters as compared to subsonic flow. Them dif- 
ferences do not seem to be due simply to fluid-property 
variations. In particular, differences in turbulence length 
and velocity scales, the intermittency of the outer layer, 
and the structure of the large-scale shear-stress containing 
motions may indicate that the turbulence dynamics are 
affected at a lower fluctuating Mach number than pre- 
viously believed. It is also possible that some of them 
changes in the turbulence structure are due to Reynolds 
number effects. As pointed out earlier, the characteris- 
tic Reynolds numbers encountered in high-speed flow can 
cover a very large range, extending well beyond values of 
the Reynolds number typically found in the laboratory. 
Furthermore, the temperature gradients which are found 
in the boundary layer in supersonic flow lead to variations 
in Reynolds number across the layer which must be con- 
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sidered along with the usual variations in the streamwise 
direction. 

We begin these notes by reviewing the boundary layer 
equations in section 2. In section 3, we discuss the struc- 
ture of boundary layers in supersonic flow, and in sec- 
tion 4 we consider their behavior in flows with pressure 
gradient and wall curvature. Shock-wave boundary layer 
interactions are reviewed in section 5, and a brief sum- 
mary is given in section 6. These notes are based largely 
on the recent AGARDograph by Dussauge et al. (1996) 
and the monograph by Smits & Dussauge (1996), supple- 
mented by more recent data obtained at Princeton and 
elsewhere. 

2 Boundary-Layer Equations 

Detailed derivations of the equations for compressible 
turbulent boundary layers have been provided in kine- 
matic variables by van Driest (1951), Schubauer & Tchen 
(1959), Cebeci & Smith (1974) and Fernholz & Finley 
(1980). While it is well-known that the inclusion of den- 
sity as an instantaneous variable is to add terms other 
than -pm to the Reynolds-averaged boundary layer 
equations, the interpretation of these terms and their 
significance is not universally agreed upon. One of the 
reasons is that these terms do not appear in the mass- 
averaged (Favre-averaged) equations, as shown by, for ex- 
ample, Morkovin (1962), Favre (1965), and Rubesin & 
Rose (1973). A critical review of the equations of com- 
pressible turbulent flow and a discussion of the relative 
merits of the mass-averaged form is given by Lele (1994). 

2.1 Continuity 

The Reynolds-averaged, stationary, two-dimensional con- 
tinuity equation for compressible flow is: 

The additional terms in this equation, -&(p”) and 
%(=), act as apparent sources/sinks to the mean flow 
(Schubauer & Tchen, 1959). To the boundary-layer ap- 
proximation, &@?) is negligible, and a simple mixing- 
length argument indicates that p” is negative. The abso- 
lute magnitudes of p’ and U’ increase with y near the wall 
before decreasing with y in the outer part of the boundary 
layer, and therefore &@) acts as a mass-flux source in 
the inner layer and as a sink in the outer region of the 
boundary layer. The presence of a source term in the 
continuity equation indicates that the physics of the flow- 
field are not well represented (see also Smits & Dussauge, 
1996). 

An alternative approach uses “Favre-averaging” , where 
the instantaneous variable is decomposed into the sum of 
a mass-weighted average, 6, and a fluctuation, a” (Favre, 
1965). The use of mass-averaged variables leaves the 
continuity equation devoid of turbulent mass transport 
terms: 

a a - ,& ( p 4  + -(pig = 0. ay 

2.2 Momentum 

For two-dimensional compressible flow, the y-component 
(wall-normal) momentum equation contains many terms 
associated with density and velocity fluctuations. For 
zero-pressuregradient boundary layers in a steady su- 
personic flow, however, the usual order-of-magnitude ar- 
guments show that the pressure across the layer can be 
taken as constant, as for subsonic flows. The pressure is 
then a function only of streamwise distance, so that @/aZ 
may be replaced by dp/dz in the s-momentum equation. 
Hence, the mean pressure is considered to be “imposed” 
on the boundary layer in that it appears as a boundary 
condition rather than as an independent variable. 

If the continuity equation is multiplied by the stream- 
wise velocity, added to the boundary-layer approximation 
of the s-momentum equation, and the resulting equation 
Reynolds-averaged, we obtain: 

a a a au -- 
f3X ay dx & ay 
-@Ua)  + -(pUV) = 22 + -(p- - p ‘ u ’  

- up” - vp” - p”.’). (3) 
Equation 3 is the most general form of the compressible 
boundary layer equation. The triple-product term may 
be neglected since it is one order of magnitude smaller 
than the other terms, and Vp” can be neglected since 
it is smaller than U p  (p” and p” are assumed to be 
the same order and V << U). The resulting equation is: 

(4) 
Alternatively, the boundary-layer form of the compress- 
ible x-momentum equation can be written: 

where = pV +p”, and p” can 
usually be neglected. When the Favre-averaged form of 
the s-momentum equation is considered, that is, 

= iXJ +p” and 

it is clear that three different forms of the equation ex- 
ist, and some physical insight regarding the differences is 
necessary. 

In equation 4 the traditional Reynolds stress and another 
“apparent” stress, - U p ,  comprise the turbulent shear 
stress. Now, Up” is not a “true” Reynolds stress, but 
simply a consequence of the type of averaging used. Nev- 
ertheless, i ts  contribution to the total stress cannot be dis- 
counted. The correlations -7 and U p  are both nega- 
tive (as evident from a mixing-length argument), and thus 
U r n  acts in addition to the “incompressible” Reynolds 
shear stress. Assuming small pressure fluctuations and 
using the Strong Reynolds Analogy (SRA) (Morkovin, 
1962) (e section 2.3), it is a simple matter to express 
the ratio of U- to -7 as (7 - l )Ma ((see, for ex- 
ample, Spina et al., 1991a). Of course, this expression is 
subject to the inaccuracies inherent in the SRA (see be- 
low), but it is a good approximation to at least M = 5, 
and provides an order-of-magnitude comparison even at 
higher Mach numbers. This relation indicates how quickly 
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U p  becomes important in the boundary layer. For a 
Mach 3 adiabatic-wallboundary layer with R e o  = 80, OOO, 
(7 - 1)M' rises to a value of 1.0 at approximately 0.056 
(- 50Oy+), and asymptotes to a value of 3.5 at the bound- 
ary layer edge (Spina, 1988). Since the Mach number is 
small across much of the constant-stress layer, Schubauer 
& Tchen (1959) neglected the "second-order term" when 
developing a skin-fiiction theory, but this should not be 
considered a general result. 

The correlation Uw also appears in the turbulent ki- 
netic energy (TKE) equation for a compressible boundary 
layer. This equation is much more complex than the in- 
compressible TKE equation, with eight production terms, 
including one due to the Reynolds shear stress, -@-E, 
and one due to the "fictitious" stress, - U r n % .  A com- 
parison between these two terms indicates that the pro- 
duction of turbulent kinetic energy due to the Reynolds 
shear stress is two orders-of-magnitude greater than that 
due to the term in question (in fact, there are three 
other terms that are an order-of-magnitude larger than 
-UP%). This indicates that U r n  is less important 
than the other terms in determining the energy flow in a 
compressible boundary layer because it interacts with a 
considerably smaller mean strain. 

If the convective terms are written as the product of 
the average instantaneous mass flux and a strain (as in 
equation 5), the only additional term (in addition to 
those found in laminar flow) is the traditional Reynolds 
stress, @T. This form of the equation was advocated 
by Morkovin (1962) to isolate the turbulent momentum 
transport, and the new parts of the convective terms rep- 
resent the fact that there is no mean mass transfer be- 
tween mean streamlines. Since U p  may be thought of 
as a turbulent mass-transport term, it is not surprising 
that this form of the equation is free from this term, and 
the interpretation of the equation is physically and intu- 
itively attractive. 

The major drawback to writing the s-momentum equa- 
tion in Favre-averaged variables (equation 6) is that Tvz 
is more complex than for incompressible boundary layers 
(Rubesin & Rose, 1973). Expressing the instantaneous 
stress tensor in mass-weighted variables, expanding, and 
time-averaging results in: 

where Sij = [(ui,j +uj,i) - $6ijUk,k]. This expression con- 
tains additional terms that are not amenable to a simple 
physical interpretation, but the similarity of the Favre- 
averaged representation of the compressible momentum 
equation to that of the incompressible equation makes its 
use nevertheless attractive, especially in computations. 

2.3 Energy and the Strong Reynolds 
Analogy 

The mean energy equation was developed in terms of 
the stagnation enthalpy by Young (1951) (see Howarth, 
1953, Gaviglio, 1987) in the forms corresponding to the 
Reynolds-averaged and Favre-averaged variables, respec- 
tively. In Reynolds-averaged variables, the boundary- 

layer approximation for the equation is: 

+ P  ( 1 - 5  ')"(%)-.ZF], & (7) 

where, neglecting higher-order terms, 'iT = + +Uz , 
and HI = h' + U d  . As in the development of the 
mean 2-momentum equation (equation 5), there are no 
additional t e r n  beyond those found in incompressible 
flow, although the convective terms are slightly altered, 
as noted by Morkovin. 

A useful relation for the reduction of experimental data 
and the comparison of compressible to incompressible re- 
sults is the Strong Reynolds Analogy [first identified as 
such by Morkovin (1962), but primarily due to Young 
(1951)]. This analogy, leading to simplified solutions of 
the energy equation, is based upon the similarity between 
equations 5 and 7 when Pr = 1 (or when molecular effects 
are negligible compared to turbulent processes) and the 
similarity of the boundary conditions for and U, and 
TA and U'. For zero-pressure-gradient flow of a perfect gas 
with heat transfer, the equations admit the solutions: 

(9) 
v cpG = +ut, 
rw 

where the heat-transfer rate and shear stress at the wall 
enter through the boundary conditions. For adiabatic 
flows, it follows that 

T'o = 0, 

and &T = -1. (12) 

The solution given by TO = Tw and equation 10 satisfies 
the energy equation independently, and therefore may be 
applied for any pressure gradient (Gaviglio, 1987). 

Gaviglio notes that these relations (equations 8 - 12) are 
so strict (that is, they apply in an instantaneous sense) 
that they cannot be expected to hold exactly. Morkovin 
(1962) gives a "milder" form of the SRA that relates the 
r.m.8. of the static temperature fluctuations to that of 
the velocity fluctuations (also see Spina et al., 1991a)). 
Morkovin (1962) and Gaviglio (1987) tested the time- 
averaged form of the SRA and found that &T is not 
-1.0 but is closer to -0.8 or -0.9. Still, this high corre- 
lation level indicates that large-scale eddies moving away 
from the wall in a supersonic flow almost always con- 
tain warmer, lower-speed fluid than the average values 
found at that distance from the wall. As for the instanta- 
neous form of the SRA (equation lo), Morkovin & Phin- 
ney (1958), Kistler (1959), Dussauge & Gaviglio (1987), 
and Smith & Smits (1993a) have shown that is not 
negligible, but that the results derived from such an as- 
sumption still represent very good approximations. The 
instantaneous form of the SRA has been validated to a 
freestream Mach number of 3 (Smith & Smits, 1993a), but 
the only limit to its first-order approximation at  higher 
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Mach number may be the increasing importance of low- 
Reynolds-number effects near the wall at higher hyper- 
sonic Mach numbers (Morkovin, 1962). There is also the 
fact that T‘/p is bounded, which means there exists an 
upper Mach number limit on the SRA unless u’ /o  ap- 
proaches very small values at the same time. 

3 Flat Plate Boundary Layers 

At supersonic Mach numbers, viscous energy dissipation 
makes a significant contribution to the energy budget. As 
a result, the temperature rises and significant tempera- 
ture gradients occur within the boundary layer. In a tur- 
bulent boundary layer in supersonic flow, therefore, the 
mean temperature and velocity vary, and significant tem- 
perature and velocity fluctuations occur. Pressure fluc- 
tuations are usually small at supersonic speeds but may 
become important at Mach numbers exceeding 5. 

3.1 Stagnation-temperature distribu- 
t ion 

The stagnation-temperature profile must be known to cal- 
culate the velocity distribution. Measurements and the- 
ory often seem to conflict, however, and a truly represen- 
tative stagnation-temperature profile is difficult to define, 
particularly at high Mach number. The measurement dif- 
ficulty stems from the compromise that must be made 
between spatial resolution and accuracy when selecting 
a stagnation-temperature probe (see, for example, Fern- 
holz & Finley, 1980). Since approximately one-half of the 
decrease in to the wall-recovery value occurs in the in- 
ner layer of near-unity Prandtl-number gases (Morkovin, 
1962), this compromise leads to a kind of uncertainty prin- 
ciple on the accuracy of the data. 

As for theoretical stagnation-temperature distributions, 
Fernholz & Finley (1980) present and discuss many of 
the energy-equation solutions commonly applied to su- 
personic turbulent boundary layers. They note that many 
of the relations are applied beyond their range of valid- 
ity when used to benchmark experimental data. The two 
most widely discussed stagnation-temperature distribu- 
tions in the literature are the “linear” and “quadratic” 
solutions. It has been commonly assumed that (TO - 
T,)/(To, - T,) 3 8 = U/U, is the proper distribu- 
tion for flat-plate flows, while 8 = (U/U,)’ is the appro- 
priate tunnel/nozzle wall solution. It has been claimed 
that the quadratic nature of the measurements along 
tunnel walls is due to the upstream history of the flow 
(significant d T / d x  and d p l d x )  and the resultant local 
non-equilibrium. While Feller (1973), Bushnell et al. 
(1969), and Beckwith (1970) offer convincing arguments 
for flow-history effects, there is little experimental evi- 
dence that the linear profile is the equilibrium stagnation- 
temperature distribution in supersonic, turbulent bound- 
ary layers. 

The classic (linear) Crocco solution, Q = U / U e ,  is derived 
from the energy and momentum equations for laminar 
flow with Pr = 1, zero pressure gradient, and an isother- 
mal wall. The Crocco solution is extended to turbulent 

flows under the same conditions with the additional as- 
sumption of unity turbulent Prandtl number (Prt) .  How- 
ever, it has been shown that Prt is less than 1.0 across the 
outer layer for both near-adiabatic walls (Meier & Rotta, 
1971) and cold walls (Owen et al., 1975). Fernholz & Fin- 
ley (1980) show that the origins of a quadratic profile for 
turbulent flow lie in a solution by Walz (1966): 

where /3 = (ToW-Tw)/(To, -T,). The assumptions inher- 
ent in this solution are zero pressure gradient, isothermal 
wall, and a constant ”mixed” Prandtl number, PrM I 
cp(p + p t ) / ( k  + kt) between 0.7 and 1.0. The linear pro- 
file therefore holds only for p = 1, that is, TO, = To,, and 
the purely quadratic profile holds only for a zerepreasure- 
gradient flow, with constrained PrM, and an isothermal 
(also adiabatic) wall (p = 0). The range of validity of the 
quadratic relation is often extended improperly to flows 
with pressure gradients because of the similarity of the 
equation to one that is valid for laminar and turbulent adi- 
abatic flows with pressure gradients. Perhaps due to the 
relaxed constraint on the Prandtl number (as compared to 
the linear solution), much of the stagnation-temperature 
data appears to be characterized by a quadratic trend 
(Bushnell et al., 1969, Bertram & Neal, 1965, Wallace, 
1969, Hopkins & Keener, 1972). 

A critical shortcoming is the dearth of near-wall To mea- 
surements, which are critical for determination of the wall 
heat-transfer rate. The lack of data makea it impossi- 
ble to determine whether these temperature-velocity re- 
lations, or even those provided by Bradshaw (1977) to 
represent the inner layer, accurately describe the near- 
wall behavior of the stagnation temperature. For flows 
with non-isothermal walls and significant pressure gradi- 
ents the situation is much worse, however, as no th- 
retical temperature-velocity relations exist for these con- 
ditions. Much of the confusion surrounding stagnation- 
temperature distributions is due to comparison between 
data taken under these conditions and theoretical rela- 
tions that are applied beyond their range of validity. 

3.2 Mean-velocity scaling 

When the mean velocity in a supersonic boundary layer 
is plotted as U/Ue vs. y/6, the profile appears quahta- 
tively similar to that of an incompressible flow. When 
the velocity is replotted in classic inner- or outer-layer 
coordinates, however, the velocity does not follow the fa- 
miliar incompressible scaling laws for these regions. But 
a modified scaling that accounts for the fluid-property 
variations correlates much of the existing compressible 
mean-velocity data with the “universal” incompressible 
distribution. This velocity scaling was first employed in 
the viscous sublayer and the logarithmic region by van 
Driest (1951), was extended to the wake region and to 
velocity-defect scaling by Maise & McDonald (1968), and 
to Coles’ universal wall-wake scaling by Mathews et d. 
(1970). The following outline of the scaling arguments 
for supersonic turbulent boundary layers is based largely 
on the discussion given by Fernholz & Finley (1980). 



The usual derivation of the velocity distribution in the 
inner region is based on the assumptions: 

(1) that the convective term a/& in the equation of 
motion is small compared with the viscous term, 

(2) that the pressure gradient term can be ignored 80 as 
to simplify the discussion, and 

(3) that the total stress m = p (a6/ay) - ,%- is con- 
stant in the inner region and equals 7,. 

(4) Morkovin’s hypothesis holds, in that the structure 
of the turbulence does not change significantly due 
to compressibility effects up to about a freeatream 
Mach number of about 5. 

“The dominating factor in the compressible 
turbulent-boundary layer problem is apparently 
then the effect of high temperature on the ve- 
locity profile near the wall and therefore on 
the shear stress. This latter observation was 
first advanced by von K k m i n  in 1935 but has 
been somewhat neglected in favour of interpola- 
tion formulae or of elaborate generalizations of 
the mixing length hypothesis” (Part I of Coles, 
1953). 

The increased dissipation rate in the viscous sublayer has 
the effect that at a fixed Reynolds number the sublayer 
thickness increases with increasing Mach number. The 
same effect is of course responsible for the observed in- 
crease in the thickness of the laminar boundary layer at 
high Mach numbers (see, for example, van Driest, 1951). 

If one wumes  that in the viscous sublayer the molec- 
ular shear stress p (d6/L+y) is large compared with the 
Reynolds shear stress -mT and equal to the skin friction 
T,, then one obtains for the velocity gradient 

in which the variation of the viscosity with temperature 
is taken to be given by 

(15) 

Using equation 13 for the temperature distribution (valid 
under the assumptions d p / d z  = 0 and T, = constant), 
equation 14 yields: 

where the transformed mean velocity in the sublayers 
is defined by 

U - 
= 1 (z> wdU. 

0 

Hence, with w = 1: 

in which 
7 - 1  
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(19) 

We see that the transformed velocity has a linear dit+ 
tribution similar to the linear velocity distribution in the 
viscous sublayer of an incompressible turbulent boundary 
layer, and to which it reduces for T = T, and Me = 0. 

Between the viscous sublayer and the outer layer there 
exist a region, defined by y+ >> 1 and T,I << 1, where 
the Reynolds shear stress -mT is dominant and is a p  
proximately equal to the skin friction 7,. If it is as- 
sumed that Prandtl’s mixing length theory is also valid 
for compressible turbulent boundary layers, then from 
7, = -pu’u’ = pi?’ (av/L+y)a we obtain: 

- 

a6 * ICY 
-=- 

where n is von Kirmh’s  constant and i? is Prandtl’s mix- 
ing length (assumed to be equal to ny, as in subsonic 
flows). This result is independent of Mach number. Since 
the pressure is constant in the wall-normal direction, we 
have, for a perfect gas: 

We can again use equation 13 to substitute for the tem- 
perature ratio in equation 17 and obtain (Fernholz, 1969): 

- 
U* 1 yu, _ -  - -In- +C’ 
Ur 6 UW 

where 

and 

where a and b are given by equations 19 and 20, and the 
suffix 1 denotes a boundary condition at the lower end of 
the validity range of the log-law (which can in principle 
only be found by experiment). 

For an adiabatic wall, T, becomes the recovery temper- 
ature T,, and a = 0. In this case experiments show that 

1 U, lies in the range 0.3 5 K / U ,  5 0.6. With a value 
for U l / U ,  = 0.5 one can show that arcsin can be replaced 
by ita argument for Mach numbers up to 8 with a relative 
error of -4% or less. Then C’ reduces to 

- 
uL 
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that is, the same value as for the incompressible case. 
This result was also confirmed by the measurements dis- 
cussed by Fernholz & Finley (1980) and by general com- 
putational experience (Bushnell et al., 1976). 

Fernholz & Finley (1980) concluded that, velocity pro- 
files in compressible turbulent boundary layers are well 
represented by equation 23 within the limits set by the 
assumptions. A comparison between measurements in 
transformed and un-transformed coordinates is given in 
figure 4. 

The first approach to this type of transformation was 
suggested by van Driest (1951) who derived a relation- 
ship similar to equation 23 also using the mixing length 
concept. He assumed Prandtl number unity and so a re- 
covery factor equal to one and determined the constant 
C so that for the limit Me -+ 0 and (T,/T‘) -+ 1 the 
well-established relationship for the incompressible case 
should result. Van Driest’s equation for the logarithmic 
law then reads the same as equation 23, except that r = 1 
in the definitions of a and b. 

The differences likely to appear if the alternative trans- 
formation is used can be seen in figure 5. Here three sets 
of profile data are plotted using firstly equation 25 with 
r = 0.896 and secondly equation 25 with r = 1.0 which 
then reduces to van Driest’s transformation. The differ- 
ences, although systematic, are small when compared to 
experimental error, particularly in the determination of 
Cf. Given the uncertainties in the transformation ap- 
proach, and the experimental difficulties in obtaining ac- 
curate values for Cf, there is little that can be said for any 
given set of log-law constants and their possible variation 
with Reynolds number or Mach number. It is equally dif- 
ficult to say anything meaningful regarding the existence 
of power law similarity, rather than log-law similarity, as 
discussed in Dussauge et al. (1996). 

The empirical validity of Morkovin’s hypothesis offers 
some support for the concept behind the van Driest 
transform (and similarly that by Fernholz & Finley) by 
suggesting that multi-layer scaling holds in compressible 
boundary layers. And despite the assumptions inherent to 
the mixing-length hypothesis, the underlying dimensional 
argument is sound as long as the length-scale distributions 
in supersonic boundary layers follow the same behavior as 
in subsonic flows. In fact, experimental data taken over a 
wide Mach-number range, with various wall-heating con- 
ditions and modest pressure gradients, and transformed 
via van Driest show good agreement with incompressible 
data correlations (for example, Kemp & Owen, 1972, La- 
derman & Demetriades, 1974, Owen et al., 1975, Watson, 
1977). The systematic discussion given by Fernholz & 
Finley (1980) is particularly persuasive. 

It is important to note what the limits of applicability 
appear to be, however. Other than strong pressure gradi- 
ents, the primary constraint is imposed by the dependence 
of similarity on large values of the Reynolds number, 
implying universality and independence from upstream 
history. Fernholz & Finley (1980) observe that the low- 
Reynolds-number region that begins to dominate the in- 
ner layer at high Mach number may eventually cause the 
failure of the velocity scaling laws that the transformed 
data follow. H o p k i ~  et al. (1972) attribute the poor per- 
formance of van Driest at Me = 7.7 to the low Reynolds 

number of the flow, R e o  5,000. This can be compared 
to a successful application of van Driest at Me = 9.4 and 
Reo = 37,000 by Laderman & Demetriades. It seems 
reasonable, however,that the transformation suggested by 
Fernholz & Finley offers a slightly more accurate variation 
of van Driest, since the temperature distribution is based 
on a Prandtl number assumption (0.7 5 PrM 5 1.0) 
that is more realistic than van Driest’s assumption of 
Prt = Pr = 1. 

In the outer region, the similarity of the velocity pro- 
file can be verified by plotting the velocity defect 
(U: - F ) / u ,  versus y/6’ where the transformation of 
the velocities U:, and the characteristic length 6’ have 
yet to be determined. Since the mean velocity approaches 
the velocity U, asymptotically the boundary layer thick- 
ness is an ill-defined quantity, and it is sensible to use in- 
stead an integral length A as suggested by Rotta (1950) 
for incompressible boundary layers, where 

00 

A=/%$ dy = 6 . 6 .  (27) 
0 

The only difficulty in using the reference length A is that 
both the velocity profile and the skin friction must be 
known which, unfortunately, is not always the case for the 
published measurements. If both are available then the 
velocity defect distribution and the integral length scale 
can be transformed and applied to compressible turbulent 
boundary layers. It is then hoped that the dimensionless 
velocity defect will be described by a function 

(for zero pressure gradients), where 

There is no justification for the simple relationship of 
equation 28 other than verification by experiment. How- 
ever, an evaluation of a large number of experiments in 
zero-pressure gradient boundary layers, mainly along adi- 
abatic walls appears to support this particular scaling 
scheme. The data suggest the following semi-empirical 
relation (Fernholz , 19 71) : 

with M = 4.70 and N = 6.74 (1.5 x lo3 5 Rm 5 4 x lo4). 

More elaborate semi-empirical relationships of the type: 

were suggested by Coles (1953), by Stalmach (1958) and 
by Maise & McDonald (1968), the latter two authors U& 
ing van Driest’s velocity transformation, that is, with 
Prandtl number one. Due to the different methods a p  
plied in specifying the boundary layer thickness 6, the 
authors of the semiempirical relations mentioned above 
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Figure 4: Log-linear plots of the velocity profile for a compressible turbulent boundary layer. Natural and transformed 
velocities (U’). From Fernholz & Finley (1980), where catalog numbers are referenced. 
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Figure 5: Comparison of velocity profiles transformed by using recovery factors of 1 and 0.896 (Mabey et al., 1974, 
Horstman & Owen, 1972). From Fernholz & Finley (1980), where catalog numbers are referenced. 
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Figure 6: Mean velocity profiles in outer-layer scaling for zero pressure gradient compressible turbulent boundary 
layers . Rom Fernholz & Finley (1980). The key to the data is given in Fernholz (1969). 

do not agree with each other nor do they agree with mea- 
surements if these are plotted using values as given by the 
experimentalists. 

Figure 6 shows this comparison. Since the figure is meant 
only to illustrate the problem, the reader is referred to 
Fernholz (1969) for the identification of the experimental 
data. 

Finally, it should be pointed out that the similarity scal- 
ing of the compressible boundary layer mean velocity pro- 
file is most usefully expressed in terms of the scaling for 
the mean velocity gradient aU/&. That is, aU/dy in 
the near-wall region scales with a length scale vw/u, and 
a velocity scale u ~ ( T ~ / T ) ~ ’ ~ .  In the outer region the 

length scale is 6, and the velocity scale is u , d m .  
In the overlap region, the length scale becomes y, but the 

velocity scale is still u T d m .  So we see that the 
mean velocity profile in a compressible boundary layer 
scales with the same length scales used in scaling incom- 
pressible flows, but the velocity scale is modified by the 
variation in mean temperature. 

3.3 Skin friction 

Skin-friction measurements are more difficult to make and 
to interpret in supersonic flows (Fernholz & Finley, 1980, 
Smith et al., 1992). Floating-element gauges are suscep- 
tible to inaccuracies stemming from leakage, local varia- 
tions in heat transfer, flushness, and moments applied by 
streamwise pressure gradients. Preston-tube data can be 
analyzed using a variety of calibration schemes, leading to 
considerable uncertainty in the results. Most schemes for 
reducing Preston-tube data rely on boundary-layer edge 
conditions (for example, Hopkins & Keener, 1966), and 
this can introduce additional errors, particularly in per- 
turbed flows where the edge properties are often unrelated 
to the flow behavior near the wall. As Finley (1994) points 
out, calibration equations which involve an empirical “in- 
termediate temperature”, and/or freestream properties 

are functionally incorrect, since the Preston tube pres- 
sure should depend on wall variables only. He adds that 
as long as they are used in flows with small or negligible 
normal pressure gradients, this is not crucial. However, 
in many compressible flows there are significant normal 
pressure gradients and the calibration equations should 
be expressed in terms of wall variables. The only cali- 
bration which does 80 is that by Bradshaw & Unsworth 
(1974). Here, for adiabatic flows and for u,d/vw > 100: 

- 1 0 4 ~ :  [ - 2.01 (32) 

which reduces to a very good fit to the calibration data 
of Pate1 (1965) for incompressible flows as M, -+ 0. 

Allen (1977) suggested that the constants used by Brad- 
shaw & Unsworth were incorrect and proposed that the 
last term should read: 

However, Finley (1994) concluded that these corrections 
were based on unreliable balance data, and on the basis 
of a detailed analysis of the available data recommended 
that the original constants as given in equation 32 are 
more accurate than those given by Allen (1977). It should 
also be noted that Finley introduced a reduction proce- 
dure originally due to Gaudet (1993, private communica- 
tion), in wall variables, which depends on the van Driest 
(1951) transformation, and not directly on balance mea- 
surements. 

The Clauser method (Clauser, 1954) can also be used as 
long as a logarithmic region can be found, but the re- 
sults obviously depend on the validity of the particular 
compressibility transformation used. In perturbed-flows, 
the compressibility transformation of Carvin et al. (1988) 
should be more reliable than that of van Driest because 
it does not have the additional requirement of a self- 
preserving boundary layer. In practice, for a wide variety 
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of flows, including flows with strong pressure gradients 
and shock wave boundary layer interactions, the differ- 
ences between the Clauser-chart results obtained using 
the two transformations seem to be within about *15% 
of the Preston-tube results (Smith et al., 1992). The laser 
interferometer skin friction meter (LISF) is a promising 
new technique that does not require assumptions about 
the character of the wall region to deduce the wall shear 
stress, and can thus provide direct measurement of the 
skin friction in a perturbed flow. Kim et al. (1991) com- 
pared LISF results to Preston tube measurements in a 
three-dimensional shock-wave boundary-layer interaction 
and found encouraging agreement. 

As a result of the increased viscous dissipation in com- 
pressible boundary layers is a decrease in the skin-friction 
coefficient with increasing Mach number (at fixed Re). 
The low density of the fluid near the wall indirectly results 
in a decrease in the slope of the non-dimensionalized ve- 
locity profile relative to that for an equivalent-Reynolds- 
number incompressible boundary layer. Since density 
has a stronger dependence on temperature than viscos- 
ity does, the skin-friction coefficient decreases with Mach 
number (although the dimensional wall shear increases 
due to the increase in velocity). The general trends for 
hot and cold walls can be predicted from these considera- 
tions, with heated walls leading to lower Cf (Hinze, 1975, 
Fernholz, 1971, Fernholz & Finley, 1980). 

In fact, a variety of experimental correlations, trans- 
formations, and finite-difference solutions exist. Brad- 
shaw (1977) critically reviewed the most widely-used skin- 
friction formulas and found that a variation of "van Driest 
11" (van Driest, 1956) exhibited the best agreement with 
reliable zero-pressure-gradient data, with less than 10% 
error for 0.2 5 Tw/T,, 5 1. Of course, the success of van 
Driest I1 is mainly due to the fact that for air the molec- 
ular and turbulent Prandtl numbers are close to unity. 

3.4 Scales for turbulent transport 

In the analysis of the mean velocity distributions in su- 
personic boundary layers it was assumed that the mix- 
ing length distribution was the same as in subsonic flows. 
This comprises essentially a variable fluid property as- 
sumption, that is, the mechanisms governing turbulent 
transport are the same as at low speed, and the varia- 
tions of density are taken in account by scaling the local 
stress. This hypothesis is quite successful, since, as we 
have seen, experimental evidence supports that the log 
law is observed on the van Driest transformed velocity, 
with the same constant as in at low speed. Therefore it 
may be expected that the typical size of the energetic ed- 
dies producing turbulent transport obeys the same laws 
as in subsonic flows. Note that this scale is built on the 
shear stress -?E, and that it is a scale related to turbulent 
diffusion. 

The following discussion has been adapted from the re- 
cent work by Dussauge & Smits (1995). consider the 
characteristic time scales of the turbulent and mean mo- 
tions. The turbulent time scale tt can be expressed as a 
function of mean time scale, flow parameters such as the 
Reynolds and Mach numbers R and M ,  the position y 

and the length scale L .  That is: 

It = g ( t r n , R , M , ~ , L , . . . . ) .  

We know that the energetic structures and the mean mo- 
tion have characteristic scales of the same order. This 
suggests that the previous relationship can be rewritten 
as 

tt = trng ( R ,  M , Y ,  L ,  ....) (33) 

where the function g is of order 1. If we assume 
Morkovin's hypothesis, then for weak compressibility ef- 
fects, for example in boundary layers at moderate Mach 
numbers, the relation between the scales is the same 88 
at low speeds. Equation 33 reduces to: 

tt = t r n g ( R , y ,  L ,  ....) . (34) 

The turbulent time scale is defined as usual by k/E. The 
mean time scale is chosen as (aU/*)-', the turnover 
time of the mean motion, as in low speed flows. This 
choice can be justified as follows. The main role of the 
mean inhomogeneity is to amplify turbulence through lin- 
ear mechanisms described, for example, by rapid distor- 
tion theories. In general, a fluctuation subjected to mean 
shear obeys an equation of the form: 

D~~ au 
a y  f. - Dt + U ' -  = 

In this equation, f represents the pressure, non-linear and 
viscous terms. It appears from the linear left hand side 
that the amplification of U' by linear mechanisms occurs 
with a time constant of order of (aU/ay)- '  (for incom- 
pressible turbulence, the role of the pressure terms in f is 
to reduce u'aU/ay,  but the order of magnitude remains 
unchanged). The mean time scale can therefore be inter- 
preted as a response time of fluctuations to mean homo- 
geneity, and it must therefore be of order (aU/ay ) - ' .  If 
we evaluate f in the zone where the shear is constant, and 
where production and dissipation are equal: 

Moreover, in this region, we m u m e  that similarity of the 
profile is achieved by using either a viscous length scale, or 
an external length scale. We denote L the scale, whatever 
the choice. Equation 34 can then be rewritten as: 

- Pk = g ( ; , R  ,.....) 
p w d  (35) 

We recognize in equation 35 the scaling proposed by 
Morkovin for the similarity of the Reynolds stresses: simi- 
larity is achieved if the local velocity scale in the constant 
stress region is now , / m u r  instead of us. we can 
now define a length scale in the particular case when pro- 
duction is balanced by dissipation. The turbulent time 
scale is defined as h/u', where U' is a characteristic scale 
for velocity fluctuations, for example 4. Equating this 
time to k/E,  and setting E equal to production gives the 
relation: 
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or, according to equation 35, 

From equation 36, it can be deduced that the length 
scale is the same in subsonic and supersonic flows when 
the ratio u'/(dU/&) is unchanged. This implies that 
the scaling for density effects should be the same for U' 

and aU/ay. We know from experiment (and from equa- 
tion 35) that in supersonic layers, U' varies like p-' Ia.  
We also know that aU/dy  varies as p-' la since the van 
Driest transformed velocity obeys the same log-law as in 
subsonic flows. Therefore the characteristic length scales 
governing turbulent transport should not change in the 
supersonic regime. 

To conclude these scaling considerations on turbulent 
transport, it should be emphasized that the presence of a 
logarithmic region in the mean velocity profile is a neces- 
sary condition, and that we have only considered a single 
velocity scale and a single length scale. This was ap- 
plied to turbulent stresses, which are represented by a 
tensor. Therefore, it is likely that the results we obtained 
are related mainly to a single component or to the tur- 
bulent kinetic energy, but not to all of the components. 
Finally, equations 33 and 35 may give some insight into 
the influence of compressible turbulence on the high speed 
boundary layers, and indicate some possible ways to in- 
vestigate departures from Morkovin's hypothesis in these 
flows. In equation 33, an acoustic time scale (or a Mach 
number) may be introduced, while the equilibrium condi- 
tion should be modified by balancing the dissipation rate 
by the sum of production and pressure divergence terms, 
and by modifying equation 35. 

3.5 Mean turbulence behavior 

Sandborn (1974) and Fernholz & Finley (1981) both crit- 
ically reviewed turbulence measurements in supersonic 
boundary layers. While many data sets were acquired 
in the period between the two reviews, their conclusions 
were similar and they continue to be relevant. In particu- 
lar, accurate, repeatable measurements of the Reynolds- 
stress tensor are still needed over a wide Mach-number 
range. The most well-documented component is the lon- 
gitudinal normal stress, which has been widely measured 
and properly scaled. But there have been so few system- 
atic investigations of the effects of hynolds number and 
wall heat transfer in supersonic flow that their influence 
on the turbulence field is not well known. The reason 
for the scarcity of measurements and their generally poor 
quality is simple: the measurement of turbulence quanti- 
ties in supersonic boundary layers is exceedingly difficult, 
with the level of difficulty increasing with flow complexity 
and Mach number. But furthermore, there are significant 
measurement and data-reduction errors associated with 
every technique designed to measure fluctuating veloci- 
ties in supersonic flow: thermal anemometry (see Smits 
& Dussauge, 1989), laser-Doppler velocimetry (Johnson, 
1989), and advanced laser-based techniques such as laser- 
induced fluorescence (Logan, 1987, Miles & Nosenchuck, 
1989). 

Figure 7: Distribution of turbulent velocity fluctuations 
in boundary layers. Measurements are from Kistler (1959) 
and Klebanoff (1955). Figure from Schlichting (1979). 

Despite these uncertainties in the measurements, certain 
trends can be distinguished. For example, when the longi- 
tudinal velocity fluctuations are normalized by the shear 
velocity, ?/U:, there is a clear decrease in fluctuation 
level with increasing Mach number (see Kistler, 1959, 
Fernholz & Finley, 1981). This is shown in figure 7. 
However, when the streamwise normal stress is normal- 
ized by the wall shear stress, the data exhibit some de- 
gree of similarity (as suggested in section 3.4), particu- 
larly in the outer layer (see figure 8). This formulation 
of the velocity fluctuations indicates the success of the 
scaling suggested by Morkovin (1962) to account for the 
mean-density variation, and provides some support for 
the discussion given in section 3.4. In fairness, it should 
be mentioned that Fernholz & Finley (1981), in consider- 
ing an earlier set of data, concluded that the streamwise 
Reynolds stress did not show a similar behavior in the 
outer region, no matter which velocity scale was used in 
the non-dimensionalization. It appears that the later data 
shown in figure 8 displays a more regular behavior. The 
streamwise normal stress distribution for supersonic flows 
is in fair agreement with the incompressible results of 
Klebanoff (1955), except near the wall where reduced ac- 
curacy affects the supersonic measurements. Morkovin's 
scaling appears to be appropriate to at least Mach 5. Mea- 
surements by Owen et al. (1975) at Me = 6.7 and Lader- 
man & Demetriades (1974) at Me = 9.4 exhibit damped 
turbulent fluctuations, particularly near the wall. Since 
both of the hypersonic data sets are for cold-wall condi- 
tions, this may simply indicate the stabilizing effect of 
cooling. 

Cross-wire measurements of both streamwise and wall- 
normal components of velocity have suggested additional 
apparent differences between Mach 3 and incompressible 
boundary-layer structure (Smits et al., 1989). Measure- 
ments of 7 and w'2 are less common than those of u'9, 
the data exhibit more scatter, and the conclusions are 
therefore less certain. In contrast to the streamwise tur- 
bulence intensity, both distributions appear to incream 
slightly with increasing Mach number (Fernholz & Fin- 
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Figure 8: Velocity fluctuation intensity in supersonic 
boundary layers: t ,  Dussauge & Gaviglio (1987); , 
M = 1.72; 0, M = 3.56; 0, M = 4.67, Kistler (1959); 
A, hot wire; 0, laser, M = 2.9, Johnson & Rose (1975); 

, M = 2.9, Smits et al. (1989); ., M = 2.32, E l h a  
& Lacharme (1988); 0, M = 2.3, Debihve (1983); , 
M = 2.32, E l h a  & Gaviglio (1993); 0, M = 3, Yanta 
& Crapo (1976). Figure taken from Dussauge & Gaviglio 
(1987). 

ley, 1981). In this case, Morkovin's scaling does not col- 
lapse the data, and @/rW and mx/rw show no real 
trend toward similarity. Konrad (1993) using hot-wire 
anemometry found that w'1 and 7 in a Mach 2.9 bound- 
ary layer were approximately equal throughout the layer 
(see figure 9). In contrast, the measurements by E l h a  
& Lacharme (1988) in a Mach 2.3 boundary layer us- 
ing laser Doppler anemometry indicate that the behav- 
ior of is almost identical to that found in subsonic 
flows (see figure 10). The behavior of the anisotropy 
parameter is therefore not clear: the measurements by 
E l h a  & Lacharme (1988) indicate that fl/e is al- 
most the same as in subsonic flows, whereas the hot-wire 
measurements by Fernando & Smits (1990) and Konrad 
(1993) indicate that this ratio increases with Mach num- 
ber (Reynolds number effects were shown to be negligibly 
small in Dussauge et al. (1996)). The limited nature of 
the data precludes any conclusions regarding the effects 
of compressibility on this structure parameter. 

Sandborn (1974) reviewed direct measurements and in- 
direct evaluations of the zero-pressure-gradient Reynolds 
shear stress, -mT (a later, more comprehensive study 
was provided by Fernholz & Finley, 1981). Sandborn 
constructed a 'best fit' of normalized shear stress pro- 
files ( T / T ~ )  from integrated mean-flow data taken by a 
variety of researchers over a wide Mach-number range, 
2.5 < M ,  < 7.2 (extended to Mach 10 by Watson (1978) 
for adiabatic and cold walls). The data indicate a near- 
universal shear-stress profile that agrees well with the in- 
compressible measurements of Klebanoff (1955) (see fig- 
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Figure 9: Turbulence distributions in a Mach 2.9 
boundary layer, measured using hot-wire probes (&e = 
65,000). Adapted from Konrad (1993). 
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Figure 10: Turbulence distributions in a Mach 2.3 
boundary layer, measured using LDV (Reo = 5,650). 
Figure from E l h a  & Lacharme (1988). 

ure 11). As Sandborn pointed out, the universality of 
T/T, over such a wide Mach-number range is not surpris- 
ing in light of the fixed constraints on the values of the 
shear stress at the wall and in the freestream. Even so, the 
only Reynolds shear stress measurements to agree with 
the 'best fit' in 1974, and then only in the outer layer, 
were the LDV data of Rose & Johnson (1975). Subse- 
quent Reynolds shear stress measurements by Mikulla & 
Horstman (1975), Kuasoy et al. (1978), Robinson (1983), 
Smits & Muck (1984), and Donovan et al. (1994) (all us- 
ing hot wires except Robinson) have exhibited modest 
agreement with Sandborn's best fit and the incompress- 
ible distribution. The agreement is limited to the outer 
layer, with great scatter in the inner layer and most pro- 
files not tending toward T/T, = 1 near the wall. The data 
in the inner layer do not scale with yu,/v,, almost cer- 
tainly because of the difficulties with the measurements. 

The behavior of the shear correlation coefficient &,, is 
affected strongly by the level of y'2. In the measurements 
by, for example, Fernando & Smits (1990) at Mach 2.9, 
&,, decreases significantly with distance from the wall, 
from a value of about 0.45 near the wall to about 0.2 
near the boundary layer edge (see figure 12). This is in 
contrast to most subsonic flows where the correlation co- 
efficient is nearly constant at a value of about 0.45 in the 
region between 0.16 and 0.86. As can be seen in the fig- 
ure, the data by E l h a  & Lacharme (1988) at Mach 2.3 
follow the subsonic distribution closely, and it is difficult 
to say what the effect of compressibility is on the level of 
k,, without further experiments. However, the subsonic 
data showed that the maximum value of y'2 increases sig- 
nificantly with Reynolds number (Dussauge et al., 1996), 
and considering that there is about a factor of 15 dif- 
ference in the Reynolds numbers between the results of 
Fernando & Smits (1990) and E l h a  & Lacharme (1988), 
the differences Seen in the distribution of &" may well 
indicate the effects of Reynolds number. Joint probabil- 
ity density distributions of the two velocity (or mass-flux) 
components may also be somewhat different between sub- 
sonic and supersonic flows, with the supersonic case fa- 

I 'Best estimate' m;., 

Measurements 
Klebanoff (M,, = O )  

0 
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Figure 11: Distribution of turbulence shear stress in 
boundary layers at supersonic speed. Figure from Sand- 
born (1974). 
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Figure 12: Distribution of &" in subsonic and super- 
sonic boundary layer: (a) Data from E l h a  & Lacharme 
(1988): the dotted line corresponds to the subsonic data 
of Klebanoff (1955). (b) Data from Fernando & Smits 
(1990): the filled-in symbols are subject to errors due to 
transonic effects. 
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Figure 14: Distribution of &T in boundary layers. 
Curve 1: Me = 2.32, R e o  = 5,650, from Debibve (1983). 
Curves 2 and 3: Me = 1.73, Reo = 5,700, from Dussauge 
(1981). Curve 4: Me << 1, R e o  = 5,000, from Nachier 
(1972). Figure from E l h a  & Gaviglio (1993). 
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Figure 13: Test of the Strong Reynolds Analogy in a 
supersonic boundary layer (Me  = 2.32, Reo = 5,650). 
Data from Debihve (1983). 

voring vertical fluctuations in the mid-layer slightly more 
than the subsonic case (for further details see Fernando 
& Smits, 1990), but again the evidence is not conclusive. 

In section 2.3 the Strong Reynolds Analogy was discussed. 
Some measurements designed to test the validity of this 
analogy in adiabatic flows are presented in figures 13 and 
14. The results indicate that the SRA is closely fol- 
lowed in supersonic boundary layers, and the correlation 
coefficient &T is close to the value of 0.8 throughout 
the layer (note that for y/6 > 0.8, the assumptions used 
in the data reduction are probably invalid). This value 
is considerably higher than that found in slightly heated 
subsonic flows, as seen in figure 14, and the reason is not 
entirely clear. However, the SRA can be a very useful tool 
in describing the behavior of supersonic turbulent bound- 
ary layers, especially in formulating turbulence models. 
The SRA can also be extended to non-adiabatic flows, as 
discussed by Gaviglio (1987). 

At hypersonic Mach numbers, it is possible that the triple 
correlation may become comparable to the 'in- 
compressible' Reynolds shear stress, W T ,  since p' f i  - 
Mau'/U. Owen (1990) evaluated the various contribu- 
tions to the 'compressible' Reynolds shear stress at Mach 
6 through simultaneous use of twocomponent LDV and a 
normal hot wire. His results indicate that 411" is negligi- 
ble compared to -7. Even though density fluctuations 
increase with the square of the Mach number, it should be 
remembered that the main contribution to the Reynolds 
shear stress occurs in the region where the local Mach 
number is small compared to the freestream value, so this 
'hypersonic effect' should only be important at very high 
freestream Mach number. 

The stagnation-temperature fluctuation must be known 
to evaluate the turbulent heat-flux correlation, -c,jTm. 

Kistler (1959) observed that G7,,,, /z increased with 
Mach number, with maxima of 0.02 at M ,  = 1.72 and 
0.048 at M, = 4.67. If Kistler's data is alternately non- 
dimensionalized by either T, (Fernholz & Finley, 1981) or 
T, - T, (Sandborn, 1974), the Mach-number dependence 
appears to be eliminated, but similarity of the stagnation- 
temperature distributions is not achieved. Similar con- 
clusions are reached from measurements by Morkovin & 
Phinney (1958) and Horstman & Owen (1972). The maxi- 
mum level of stagnation-temperature fluctuations is about 
6% (for M < 7). Further analysis of these data shows that 
T&.m, scales according to either TO, - T, or To, - Tr. The 
fluctuations in total temperature appear to be produced 
by the difference in stagnation temperature between the 
wall and the freestream, and not, for example, by the 
unsteadiness in pressure, through the term Dp/& in the 
total enthalpy equation. In these experiments, the max- 
imum of Tor,,,,/(ToC - T,) is about 0.5, regardless of the 
Mach number, a rather satisfactory result since it shows 
that the total temperature fluctuations are of the order of 
(but less than) the total temperature difference across the 
boundary layer. Finally, G-,,,, is less than that of U',, 
and T:,,, but not low enough to satisfy the strict Strong 
Reynolds Analogy (see Gaviglio, 1987). In fact, the SRA 
can be used to estimate that TArm, is about 60% of Ti,,,# 
at Mach 3 (Smits & Dussauge, 1989). 

3.5.1 Outer-layer structure 

There is also considerable controversy regarding the na- 
ture of the outer-layer structure. Nevertheless, a general 
picture has emerged. A specific characteristic component 
of the outer layer is believed to be the large scale turbulent 
"bulge", also referred to as a "large scale motion" (LSM). 
The large scale motions evolve and decay slowly as they 
convect downstream, and, on average, they are inclined 
to the wall at an acute angle, leaning in the downstream 
direction. Between neighboring bulges, the flow is irrota- 
tional, resulting in the intermittent character of the outer 
layer. Figure 15 shows several LSM's. The structures 
are seen to vary greatly in size and inclination angle. The 
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Figure 15: Flow visualization by Falco (1977), of a boundary layer at R e o  M 4,000, obtained by d i n g  the flow with 
a fog of oil droplets, and illuminating the flow with a planar laser sheet. Flow is kom left to right. Figure from Van 
Dyke (1982). 

properties of the large scale motions, such as length scales, 
time scales, convection velocity, and stucture angle, as 
well their internal structure, such as velocity, vorticity, 
and pressure fields, remain the subject of controversy and 
active research. Furthermore, the Reynolds number and 
Mach number dependence of the LSM’s, if any, is not well 
understood. 

Part of the difficulty in experimental studies of the outer- 

ture, is finding an unambiguous criterion for ensemble- 

8 

7 

6 

layer structure, as it is in studies of the inner-layer struc- 

averaging. One method is based on discriminating be- 
tween “turbulent” and “non-turbulent” fluid, and using 
the intermittency function (a box-car logic function) to 
sort the data. The most basic output is the intermit- 
tency itself, y, which is the fraction of the time the flow 
is judged to be turbulent. One definition of y is 3 / F ,  
where the flatness F = p/m. The distribution of F 

3‘ 
w 

I 
is shown in figure 16 for a number of different freestream 
Mach numbers. The results imply that the intermittency 
in the outer part of the layer decreases with Mach num- 
ber. Another method uses the VITA technique originally 
developed by Blackwelder & Kaplan (1976) for studies 
of the near-wall bursting process. A variety of similar 
techniques have been developed (for example, VISA by 
Kim & Spalart (1987), WAG by Antonia et al. (1990a), 
Antonia et al. (1990b)), but they are all subject to am- 
biguities related to the uncertainties in setting threshold 
levels. Nevertheless, they may still give useful insights if 
carefully used. 

Another useful method for investigating the large scale 
structure is multiple-point measurements of one or more 
flow variables, typically velocity, density, wall pressure, 
and wall shear stress. The data are then analysed in the 
context of space-time correlations. The correlation of two 
variables measured at two points in the flow field is given 
bY 
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Figure 16: Comparison of flatness distributions: 0, 
Owen et al. (1975) ( R e o  = 8,500, M = 7), based on 
mass flu; 0, Robinson (1986) (Reo = 15,000, M = 3.0, 
based on mass flow; A, Klebanoff (1955) (Reo = 7,100, 
M = 0), baaed on velocity. Figure from Robinson (1986). 
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where a and b are the two flow variables being correlated, 
E % ,  &,, and are the separations between the two points 
in the three coordinate directions z, y, and z ,  respectively, 
and 7 is the time delay applied to the signal of variable 
b. For the case when both a and b are velocities, R,b is 
typically denoted by R,,, where i and j are the indices of 
the velocity components (R11 = &,, Rla = &”, etc.. . ). 
when any of are nonzero in equation 37, R,b is called a 
space-time correlation. Space-time correlations generally 
have a single well-defined peak, which occurs at T = T , , , ~ ~ ,  

the optimum time delay, which may be nonzero. 

3.6 Boundary-layer structure 

The eddy-structure and internal dynamics of compressible 
turbulent boundary layers play an important role in many 
aerospace engineering applications. These include turbu- 
lent mixing for high-speed propulsion systems, tripping of 
hypersonic laminar boundary layers (for inlet efficiency), 
acoustic noise generation and propagation from high- 
speed engines, surface heat-transfer on high-speed vehi- 
cles, performance optimization for low-observable config- 
urations, and unsteadiness in shock/turbulent boundary 
layer interactions. The following review was adapted from 
the paper by Spina et al. , where further details may be 
found. 

The current state of knowledge concerning compressible 
boundary layer structure is limited to large-scale motions 
in the outer-region, and is derived largely from recent 
studies by Spina et al. (1991a), Spina et al. (1991b), Smits 
et al. (1989), Spina & Smits (1987), Fernando & Smits 
(1990), Donovan et al. (1994), and Fbbinson (1986) of 
flat-plate layers with free-stream Mach numbers of ap- 
proximately 3.0. These studies were preceded by a pio- 
neering investigation by Owen & Horstman (1972), who 
made extensive two-point cross-correlation measurements 
with hot-wires in a Mach 7.2 boundary layer. Most of the 
results available in the literature were obtained using hot- 
wire anemometry (with its attendant limitations), with 
some degree of corroboration by high-speed flow visual- 
ization techniques (Cogne et al., 1993, Smith & Smits, 
1988). 

For moderate Mach numbers, the outer region of the 
boundary layer (beyond the logarithmic region) is domi- 
nated by the entrainment process rather than by turbu- 
lence production. Thus the available studies of supersonic 
turbulent boundary layer structure are primarily relevant 
to the processes by which the boundary layer grows. In 
contrast, for subsonic turbulent boundary layers, most of 
the attention has focused upon the near-wall turbulence 
production processes. In addition, while most structure 
measurements in supersonic flow have been conducted at 
very high Reynolds number, the majority of studies in 
subsonic flow has been at quite low Reynolds number. 
These mismatches in emphases between subsonic and su- 
personic investigations sometimes make comparisons in- 
conclusive, a t  least for isolating effects of compressibility 
on turbulence physics. To avoid the additional uncer- 
tainties due to measurement difficulties, it seems best to 

Figure 17: Rayleigh scattering image of a turbulent 
boundary layer in a Mach 8 flow at Reo = 3,200. Flow is 
from left to right. Figure from Baumgartner et al. (1997). 

study quantities which are largely independent of calibra- 
tion and measurement errors, such as the intermittency, 
ratios of Reynolds stresses, space-time correlations and 
structure angles. 

The intermittency is one measure of the wallward ex- 
tent of the entrainment process. The intermittency pro- 
file is often estimated with measurements of U’ flatness. 
The measured flatness profile displays an apparent Mach- 
number dependence (see figure 16), wherein the onset of 
intermittency (corresponding to the rise in flatness fac- 
tor) occurs nearer the boundary-layer edge as the Mach 
number increases. Since the cone of influence of a flow dis- 
turbance is inversely proportional to Mach number, the 
intermittent zone could become thinner as the Mach num- 
ber increases. This interpretation is not fully supported 
by high-speed flow visualizations, however, so the data re- 
main provocative. For example, Rayleigh-scattering flow 
visualization by Baumgartner et al. (1997) show deep po- 
tential incursions into the turbulent eddies of a Mach 8 
boundary layer (figure 17) in patterns that are strikingly 
similar to visualizations of low-speed boundary layers. Es- 
timates of the intermittency distribution from such im- 
ages indicate very good agreement with the subsonic data 
by Klebanoff (1955), suggesting that the earlier results 
may be flawed in some way. 

For both incompressible low Reynolds number boundary 
layers, and compressible high Reynolds number boundary 
layers, the most identifiable feature of the outer-region is 
a downstream-sloping shear-layer interface between u p  
stream high-speed fluid and downstream low-speed fluid. 
(Unfortunately, these structures have been labeled both 
“fronts” and “backs” in the literature.) These interfaces 
are three-dimensional shear layers which are believed to 
form the upstream side of the largest of the boundary- 
layer eddies, and remain coherent long enough to convect 
several boundary-layer thicknesses downstream. They are 
not inert, however, since Spina et al. (1991a) have shown 
that 40% of the outer-layer Reynolds shear stress can 
be found in the neighborhood of these sloping interfaces 
(causality is not implied.) The intense turbulence produc- 
tion processes near the wall in the Mach 3 layer have not 
been investigated, but incompressible experience suggests 
that the large-scale sloping interfaces are not closely mi- 
ated with near-wall regions of high Reynolds shear stress. 

Sloping interfaces are easily detected with dual hot-wires 
separated in y, using either traditional space-time corre- 
lations, or a variety of conditional sampling techniques. 
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For Mach 3 turbulent boundary layers, the effect of com- 
pressibility on the large-scale outer structures has been 
found to be generally small, which may be expected since 
the fluctuating Mach number in the outer regions is un- 
likely to approach unity (figure 3). However, differences 
between subsonic and supersonic large-scale motions have 
been observed, and some of these results were mentioned 
in earlier sections. The main results can be summarized 
as follows. 

The average "structure angle" at which delta-scale in- 
terfaces lean downstream in a Mach 3 turbulent bound- 
ary layer ranges from 45" to 60" (standard deviation 
M 20") across most of the boundary layer, with a de- 
crease near the wall and an increase near the boundary 
layer edge. The measured value of the structure angle is 
strongly dependent on measurement technique, although 
one method in current favor employs two hot-wires, sep- 
arated by a fixed distance in y of 0.16 to 0.36, with both 
traversed across the layer. Structure angles measured us- 
ing this technique in subsonic, low-Reynolds-number tur- 
bulent boundary layers are somewhat lower than those 
for Mach 3, high-Reynolds-number layers (Alving et al., 
1990b). As indicated in section 3.7, it seems likely that 
increasing Reynolds number decreases the structure an- 
gle, while increasing Mach number increases the structure 
angle. 

Hot-wire and flow visualizations show that the sloping 
delta-scale structures convect downstream at approxi- 
mately 90% of the freestream velocity (slightly greater 
than for similar structures in low Reynolds number, in- 
compressible turbulent boundary layers) I and persist for 
at least 4 boundary-layer thicknesses (and probably much 
farther) downstream (Spina et al., 1991b). 

Space-time correlation measurements by Smith (1994) at 
Reynolds numbers in the range 4,600 5 R e o  5 13,200 
showed that the broad-band convection velocity and the 
decay of the large scales with increasing time delay scaled 
on outer-layer variables (specifically Ue and 6) were only 
weakly dependent on Reynolds number. However, iso- 
correlation contours indicated that the streamwise length 
scales increased with Reynolds number, in agreement with 
the results by Liu et aL in a fullydeveloped channel flow. 
Furthermore, space-time correlations in the wall-normal 
direction revealed that the broadband structure angle de- 
creased by about 10" over the same range in R e o .  

Isocorrelation contour maps (figures 18 and 19) showed an 
increase of between 30 and 60% in the streamwise length 
scale over the same Reynolds number range, and this be- 
havior may be related to the decrease in the structure 
angle. The spanwise length scale showed comparatively 
little variation. 

These subsonic results provide an interesting contrast to 
the results obtained by Spina et al. (1991a) in a Mach 3 
boundary layer with Reo = 80,000 (see figures 20 and 21). 
In the supersonic flow, the streamwise length scales were 

two to three times smaller than in the subsonic flow, and 
the structure angles were about 10" larger. The span- 
wise scales were almost independent of the Mach num- 
ber. Now, the smaller streamwise scales correlate well 
with the increased structure angle, but the trend with 
Reynolds number seen in the subsonic data does not seem 
to hold for the supersonic flow. Therefore it seems that 
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Figure 18: Isocorrelation contour m a p  in the z-y plane 
in a turbulent boundary layer at Reo = 4,981 (top) and 
13,052 (bottom) using different wall-normal probe sepa- 
rations: a) tV/6 M 0.1. Figure from Smith (1994). 

Figure 18 (cont.) b) tV/6  M 0.2. 
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Figure 19 (cont.) (b) R e o  = 13,200. 

the streamwise length scale and the structure angle de- 
pend on the Mach number and the Reynolds number. 
These observations have important implications for de- 
veloping turbulence models for high speed flows, where it 
is commonly assumed that length scales follow the same 
scaling as in subsonic flow, and only fluid proerty varia- 
tions are important. The fact that some characteristics of 
the turbulence depend on Mach number in a more subtle 
way, even at supersonic speeds where these assumptions 
work reasonably well, indicate that at higher Mach num- 
bers the scaling will need to include compressibility effects 
directly. 

3.7 Spectral data 

Experimentally, the integral scales are deduced mainly 
from one point hot-wire measurements, 80 that the spa, 
tial scales are deduced using Taylor's hypothesis. Even 
when measurements of two-point correlations are avail- 
able (see, for example, Spina & Smits, 1987, Robinson, 
1986), it is often difficult to determine integral scales from 
the data. The types of data which are available also de- 
pend on the measurement technique. For instance, when 
constant current anemometers (CCA) are used, time his- 
tories are generally not measured. Spectral data for U' 
and T' can be obtained directly by processing the signal 
with the fluctuation diagram technique to separate' the 
contributions of U' and T' (see Machier, 1972, Bestion, 
1982, Debihve, 1982, Debihve, 1983, Bestion et al., 1983, 
Audiffren, 1993). Bestion (1982), and Audiffren (1993) 
showed that for an adiabatic flat-plate boundary layer at 
a Mach numbers of 2.3 the shapes of the spectra of (p.)' 
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Figure 20: Isocorrelation contour maps in the x-y plane 
in a turbulent boundary layer at RQ = 81,000 and 
M = 2.9 using different wall-normal probe separations: 
a) &,/6 = 0.09; b) &,/6 = 0.30; c) &,/6 = 0.51. Figure 
from Spina (1988). 
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Figure 21: Isocorrelation contour maps in the 2-2 plane 
in a turbulent boundary layer at &e = 81, OOO and M = 
2.9 at three positions in the boundary layer: a) y/6 = 
0.20; b) y/6 = 0.51; c) y/6 = 0.82. Figure from Spina 
(1988). 
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and U‘ are practically the same, but differ considerably 
from the spectrum of total temperature Ti. Therefore, 
when anemometers are operated with a single overheat, a 
sufficiently high value of the resistance should be chosen 
to minimize the contribution of TA and to obtain a signal 
practically proportional to (p)’. When constant temper- 
ature hot-wire anemometers (CTA) are used at a high 
overheat ratio, the measured signal is practically propor- 
tional to (pu)‘, which in turn gives spectral information 
on U’. Such data can be inaccurate at low wave num- 
bers. The spectral measurements of velocity and temper- 
ature performed with a CCA in adiabatic boundary lay- 
ers by Morkovin (1962), Bestion (1982), Audiffren (1993) 
show that the ratio (u’/U)/(T’/T)  at low frequencies is 
not a constant, and that the spectral correlation coeffi- 
cient R.,,T (f) increases to unity at zero frequency. This 
may be the cause for the differences in the shapes of the 
spectra for U’ and (pu)’ at low frequencies, depending 
on the Mach number. For higher frequencies, the ratio 
(u‘/U)/(T’/T) and the correlation coefficient are approx- 
imately constant, and the spectra are nearly proportional 
to each other. 

Now, the classical integral scale can be determined from 
one-point measurements by integrating the autocorrela- 
tion coefficient of U’. It is then necessary to define the 
domain of integration, since the autocorrelation can be- 
come negative. When using hot-wire anemometry in su- 
personic flows, this question can be complicated by possi- 
ble “strain-gauge” effects. These effects can cause peaks 
in the spectrum, which may be acceptable for measure- 
ments of the overall stress or the turbulence energy, but 
which can cause spurious oscillations in the autocorrela- 
tions, and make the estimates of the integral scale inac- 
curate. 

To avoid this effect, the integral scale can be determined 
by finding the value of the energy spectrum at zero fre- 
quency. However, since the signal is usually filtered with 
a high-pass filter, it has zero mean and its spectrum has a 
zero value at zero frequency. The integral scale must then 
be found by extrapolating the spectrum to zero frequency. 
In practice, the value at a frequency slightly larger than 
the limit of the high-pass filter is taken as the best esti- 
mate. Moreover, it may be difficult to measure the low 
frequencies, because they can be affected by noise of the 
power supply, and by the peculiarities of each wind tunnel 
such as acoustic resonances. For CTA measurements, it 
has also been shown that, the spectra of U’ and of (pu)‘ 
may be different at very low frequencies. 

For these reasons, an additional scale has also been used. 
Since we expect that the spectra have a region of IC,’ 
dependence in the logarithmic zone, E ( k l )  varies as k:’, 
and k l E ( k 1 )  is constant or presents a maximum. Here 
we have chosen the wave number for which this maximum 
occurs as the (inverse of the) characteristic space scale. 

This probably has a clearer physical meaning than the 
integral scale, since for the incompressible part of the 
fluctuating motion it characterizes the eddies extracting 
energy from the mean field. As indicated earlier, exper- 
imentalists usually measure frequency spectra, so that a 
characteristic frequency is measured, and then a length 
scale is deduced using Taylor’s hypothesis. There is usu- 
ally a considerable amount of scatter because the loca- 

Table 2: Sources for spectral data. Table from Dussauge 
& Smits (1995). 

tion of the maximum is not always well defined. For the 
data considered here, a maximum was generally found in 
the external layer, but in the logarithmic zone of the sub- 
sonic boundary layer the spectra were frequently “double- 
humped”and the maximum was difficult to determine. 
Such shapes were also mentioned by Perry et al. (1986) 
who interpreted them to mean that Taylor’s hypothe- 
sis failed for low frequencies. Uddin (1994) noted that 
the bump at low wavenumber became more prominent at 
higher Reynolds numbers (see also Smith, 1994). These 
double-humped profiles led to some difficulty in determin- 
ing the length scale, and it was necessary to discard some 
points in the log-law region of the subsonic boundary layer 
data. However, the typical situation was that the higher 
frequency bump corresponds to scales comparable to the 
scales of the outer layer, and the other maximum occurs 
at frequencies an order of magnitude lower, correspond- 
ing to length scales five to ten times larger than the outer 
layer scales. 

For supersonic boundary layers, there is another source of 
uncertainty. Generally, the point where the slope is -1 oc- 
curs at frequencies beyond the natural cut-off of the wire; 
this means that it occurs in a range where the shape of 
the spectrum depends on the system used to extend the 
system frequency response beyond the wire thermal lag (a 
feed-back loop is used for the CTA, and a compensation 
circuit is used for the CCA). In such conditions, it can be 
misleading to rely on one series of experiments. The data 
from supersonic flows, however, were obtained in different 
laboratories using different techniques (CTA and CCA). 
In the CCA data, two different generations of anemome- 
ters were used, where the compensation of the wire was 
performed in completely different ways. With such sets of 
independent measurements, it is believed that firm con- 
clusions can be drawn from the results. 

The characteristics of the boundary layers considered in 
the analysis of spectra are given in table 2. As noted in the 
Introduction, R e g  and R62 are Reynolds numbers based 
on momentum thickness. R e g  is defined in the usual way 
(&I = pcUcO/pc), whereas R6a = p.U&/p,. 
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Figure 23: Production scales in turbulent boundary layers. Symbols as in figure 22. Figure from Dussauge & Smits 
(1995). 
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The results on the integral scale A are given in figure 22. 
The outer-layer scaling was used, since most of the data 
were obtained outside the inner layer. Plotting the data in 
inner-layer variables does not alter the conclusions. The 
data points from Smits & Dussauge (1989) were deduced 
from autocorrelations in a way which may underestimate 
the integral scale, due to a lack of experimental points for 
large time delays. The results in figure 22 were obtained 
by defining the boundary-layer thickness from the profiles 
of total pressure. This was recommended by Fernholz & 
Finley (1980) since the usual definition based on the ve- 
locity is probably not appropriate at high Mach numbers 
because variations of velocity near the edge of the layer are 
weak whereas the temperature or Mach number still vary 
significantly. Choosing a boundary-layer thickness based 
on 0.99Ue would make some difference in the magnitude 
of A/6 at Mach 3: in this experiment, the integral scale 
would be a little closer to its subsonic value. It would also 
significantly increase A/6 for the hypersonic experiment 
by McGinley et al. (1994), but in this case, the mean pro- 
files indicate that the traditional choice based on 0.99Ue 
would be rather unphysical. In any case, a first result 
appears very clearly: the subsonic data indicate that in 
the external layer, A is about 0.56 in subsonic flows, but 
is only about half that value in supersonic layers. The 
hypersonic data of McGinley et al. (1994) indicate a very 
low value, about 0.26, for = 1,115, but larger values 
at the lower Reynolds number. In this case, the spectra at 
low frequency reveal peaks and bumps which precludes an 
accurate estimate of the integral scale. The uncertainty 
on A has been evaluated and is indicated in figure 22 by 
error bars. In fact, the lower limit of the error bar over- 
laps the other high speed data. This could be due to 
the remnants of transition, as speculated formerly. In the 
data by Spina & Smits, the point at at y/6 = 0.1 has 
an integral scale nearly equal to the subsonic value. This 
is due to the significant slope in the spectrum, observed 
at low frequency, where the spectra of U' and (pu)' are 
perhaps not proportional, as discussed above. In spite of 
this trend, the integral scales at Mach 2.9 in the middle 
of the layer are significantly below the subsonic results. 
Note that Demetriades & Martindale (1983) in a bound- 
ary layer on a flat plate at Mach 3 report measuring an 
integral scale of 0.286, also considerably smaller than that 
found in subsonic flows. Within the experimental accu- 
racy the results are independent of Reynolds number. 

The production scales L are given in figure 23. The 
Reynolds numbers in the subsonic and supersonic cases 
cover comparable ranges, except perhaps for the hyper- 
sonic data. It is clear that the production range is shifted 
to higher frequencies in supersonic flows. It should be em- 
phasized that the limited spatial resolution of the wires 
probably precludes any accurate determination of the 
-513 law in the supersonic data, and it tends to shift the 
maximum of f E (f) to lower frequencies, and therefore if 
such systematic errors are significant the values measured 
in high-speed flows are probably overestimated, reinforc- 
ing the notion that the scales are reduced with increasing 
Mach number. 

It appears that the production scale L follows the same 
trends as A, and L sz 2A. That is, L is about 26 for low 
speed boundary layers, and about 6 in high speed bound- 
ary layers. Note that the measurements of Morkovin 

& Phinney, quoted in Morkovin (1962) and not shown 
here, suggested the same trend for the production scales. 
Again, plotting these data in inner layer variables does 
not change the differences between the subsonic and su- 
personic data. The only discrepancy is found in the Mach 
11 boundary layer, but several reasons can be found for 
this departure. First, the boundary layer is probably not 
fully turbulent, at least at the lower Reynolds number. 
Second, it is not clear that the velocity and mass flux 
spectra are proportional to each other at this Mach num- 
ber. Third, the conclusions drawn from the power law 
analysis are probably not valid if strong compressibility 
effects are present. Fourth, the change in the shape of 
the spectra may indicate a modification of the turbulence 
structure. In hypersonic boundary layers, most of the 
ma88 flux occurs near the external edge of the layer, and 
the mean mass flux profiles have an inflexion point. This 
suggests that the external layer can behave more like a 
mixing layer than like a classical boundary layer. Such 
free shear flows are known for containing turbulent stm- 
ture of large spatial extent, with production scales several 
layer thicknesses in size. This would be consistent with 
the surprisingly high level of energy observed at low fre- 
quencies in the present Mach 11 experiments. 

So it seems that the apparent size of the energetic eddies 
in the longitudinal direction, deduced from U' or (pu)' 
measurements in zero pressure gradient boundary layers, 
decreases with increasing Mach number, whatever the ex- 
perimental method. This trend can also be illustrated 
by using another representation. If we m u m e  that the 
friction Mach number can be used to characterize com- 
pressibility in turbulent boundary layers is the friction 
Mach number M,. Since M," = CtMj/2, this parame- 
ter depends on Mach and Reynolds number. The average 
value of L/6 in the outer layer is shown as a function 
of M, in figure 24. The results obtained for Me = 2 
by Bestion, DebiBve, Dussauge and Audiffren have prac- 
tically the same values of M, and L/6, and the results 
obtained by Smits et al. , although at Me = 2.89, have a 
comparable value of M,. All these results agree on the 
average value of L/6 in supersonic flows. The hypersonic 
results by McGinley et al. have a value of M, only a little 
larger than 0.1, but they indicate a further decrease in 
the production scale. 

This change in typical frequencies or time scales can be 
attributed either to variations in the convection veloc- 
ity or variations in the spatial scales. Measurements of 
convection velocity by Spina & Smits (1987) in a high 
Reynolds number boundary layer at Mach 2.9 showed that 
this quantity is not very sensitive to compressibility. This 
implies that smaller space scales are found in supersonic 
flows. In contrast, the transverse scales related to turbu- 
lent diffusion remain unchanged, while the longitudinal 
scales determined from U' decrease. Now Spina & Smits 
(1987) showed that the direction of the maximum space- 
time correlation in their boundary layer at Mach 2.9 is 
steeper than at low speeds (see figure 25). If the bound- 
ary layer is thought of as a forest of hairpin vortices, it 
can be imagined that the cross-section of the vortices is 
unchanged, but their inclination is changed. In fact, Ud- 
din (1994) suggested that at high Reynolds numbers, the 
cross-section of the vortices reduces. This purely geomet- 
ric explanation is not sufficient to explain all the evolution 
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of the friction Mach number. Symbols as in figure 23. 
Figure from Dussauge & Smits (1995). 

observed seen in figure 24 since it would not be consistent 
either with the rather high values of U’ measured in the 
same boundary layer. 

It is expected that the observed modifications in the flow 
structure and scales are due to compressibility. Therefore, 
a possible interpretation can be found in the changes in 
the potential field induced in the external flow by the 
boundary layer, and in the generation of acoustic noise 
by supersonic boundary layers. Can they create smaller 
scales, and modify the orientation of the lines of maxi- 
mum correlations? The variation of the angle has been 
interpreted in the previous paragraph EIS a change in the 
direction of vortical structures. In fact, the two-point 
measurements by Spina & Smits did not use conditional 
statistics, and therefore did not discriminate between the 
vortical and potential contributions in the intermittent 
zone. In supersonic flows, the induced pressure field can 
depend on local condition (the pressure perturbation in- 
duced by a large scale structure, for instance), but also 
by the noise radiated by Mach waves (see for example, 
Laufer, 1961). These waves can have low levels of (p.)’, 
but they are generally more conservative than ordinary 
turbulence, and could modify the space-time correlations 
for large separation distances. The formation of these 
Mach waves necessitates the velocity difference between 
the sources and the external flow to be supersonic. In a 
boundary-layer, this condition is always fulfilled, but at 
moderate supersonic Mach numbers the part of the layer 
able to radiate Mach waves is very thin and generally 
confined to the viscous sublayer or the logarithmic zone. 
In this case, the behaviour will be Reynolds and Mach 
number dependent. The orientation of the Mach waves 
will depend on this Mach number difference. For ex- 
ample, transonic perturbations would be very steep, and 

would contribute to make the maximum space-time cor- 
relation locus more vertical. Another element, EIS noted 
by Laufer (1961), is an increase of the radiated field near 
Mach 3, which could be interpreted as follows. If the con- 
vection velocity of the large eddies in the external layer 
is typically 0.8Ue, as at low speeds, the velocity differ- 
ence with respect to the external flow is O.2Ue. Now, it 
may be expected that these large eddies will start forming 
eddy shocklets when this relative Mach number is larger 
than, say, 0.6. This corresponds to an external Mach 
number of 3, and this criterion would be independent of 
the Reynolds number since the convection velocity of the 
large structurea appears to be independent of Reynolds 
number. The measurements taken at a Mach number 
of 2.9 would then be at the onset of a new regime, and 
represent the first manifestation, in boundary layers, of 
compressible turbulence phenomena as observed in mix- 
ing layers. Of course, the previous interpretation is very 
approximate, because it depends critically on the value 
of the instantaneous convection velocities which are not 
known very accurately, 80 that the value of the Mach num- 
ber for which such effects are important remains poorly 
determined. Such an interpretation, although specula- 
tive in many respects, is tempting because it can explain 
changes in the structure of U’, EIS long as the radiated noise 
does not affect significantly the shear stress. To conclude, 
the spectral data show that there are modifications to the 
motions which contribute to the energy scales but not to 
the turbulent transport. This implies that the primary 
action of compressibility is to alter inactive motions. As 
these motions are related to the irrotational part of the 
fluctuations and to the pressure fluctuations induced by 
the layer, this explanation may be correct, but a full as- 
sessment would require a more complete knowledge of the 
two-point correlations, and of conditional statistics of tur- 
bulence in these flows. 

3.8 Overview of structural features 

Outer-region space-time correlations and spectral data 
suggest that the average spanwise extent of the largest 
eddies in the Mach 3 turbulent boundary layer is sim- 
ilar to that of subsonic turbulent boundary layers: a p  
proximately 1/26 in the outer layer, decreasing near the 
wall. (Although mean and instantaneous results for the 
sloping interface structure are in good agreement, the av- 
erage croas-correlations used to deduce spanwise extent 
probably suffer from ‘jitter’ averaging, and the instanta- 
neous extents may be larger.) The average streamwise 
scales of the largest eddies in the high Reynolds num- 
ber, Mach 3 turbulent boundary layer are about two to 
three times those of low Reynolds number, subsonic tur- 
bulent boundary layers (see figures 18, 19, 20 and 21). 
This seems to be the moat significant structural differ- 
ence between the two flows yet found, and as indicated 
earlier Reynolds number and compressibility appear to be 
important. Increasing Reynolds number will increase the 
streamwise scales, whereas increasing Mach number will 
decrease them. Otherwise, the structural model for the 
large-scale motions in a supersonic is very similar to that 
derived from studies of subsonic flows, EIS can be seen from 
figure 26. 

Since the iduence of compressibility on the large-scale 
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Figure 26: Ensemble-averaged view of the large-scale motions in a Mach 2.9 boundary layer. Figure from Spina et al. 
(1 991s). 

turbulent boundary layer motions seems to be subtle, ex- 
planations for the observed differences between low- and 
high-speed boundary layer structure are mostly specula- 
tive. Density-gradient effects are known to play a signif- 
icant role in turbulent shear layers, but these effects are 
most likely to influence the near-wall region of the wall- 
layer, out of reach of standard measurement techniques. 
Parallels have also been drawn between the 45-degree 
slope of the interfacial structures in supersonic boundary 
layers and that of the hairpin-vortex structure observed 
in incompressible boundary layers. Insufficient evidence 
exists to support either side of this comparison, however. 
More conclusive results concerning compressibility effects 
on large-scale structure require higher Mach number in- 
vestigations. 

For boundary layers with freestream Mach numbers above 
5, the near-wall region is more likely to show significant 
departures from known incompressible structure. The vis- 
cous sublayer for hypersonic boundary layers is likely to 
be much more quiescent than for incompressible flows (al- 
though pressure fluctuations will be imposed from above), 
and may not display the familar streaky structure. Since 
the mass-flux near the wall is very low for high Mach 
numbers, the buffer region may not be the dominant re- 
gion for turbulence production, as in subsonic boundary 
layers (note that hypersonic laminar boundary layers un- 
dergo transition by disturbances spreading inward from 
the outer layer). Further investigation will depend on the 
development and application of non-intrusive measure- 
ment techniques to the near-wall regions of hypersonic 
boundary layers. 

Finally, we note that the rate of decay of the large scale 
motions, as measured by the rate at which the peak in 
the space-time correlation decays with distance, appears 
to decrease significantly with Mach number. For exam- 
ple, the distance over which the peak decreased to half 
its original level differs by an order of magnitude in the 
experiments by Favre e2 al. (1957), Favre et al. (1958) 
at Mach 0.04 and Owen & Horstman (1972) at Mach 7 

when scaled by 6. A better scaling for the rate of de- 
cay may be the time scale of the energy-containing ed- 
dies, A/u'. A and U' both decrease with Mach number, 
so that their ratio seems to remain approximately con- 
stant. This result may in turn suggest that the decrease 
in the streamwise length scales with Mach number simply 
reflects the fact that the time scale of the large eddies re- 
mains constant as the absolute fluctuation level decreases. 
The more complex scaling arguments presented by Smith 
& Smits (1991)b to explain the experimental observations 
may therefore not be necessary. 

4 Perturbed Boundary Layers 

So far we have considered boundary layers on a smooth 
flat plate. These studies help to improve our fundamen- 
tal understanding, but such flows are rarely encountered 
in practice. For the aerodynamic design of high-speed 
vehicles, for example, it is necessary to understand the 
behavior of turbulence in more complex geometries, and 
it is not surprising that a considerable amount of exper- 
imental work has been performed to study the effects of 
perturbations or distortions on the behavior of turbulent 
boundary layers in supersonic flows, including the effects 
of pressure gradients, extra strain-rates such as stream- 
line curvature, divergence and dilatation, and the inter- 
action with shock waves. Reviews of this work were given 
by Fernholz & Finley (1980), Fernholz & Finley (1981), 
Smits & Wood (1985), Fernholz et al. (1989) and Spina 
et al. (1994). The general features of the mean flow be- 
havior have been documented in detail, but there are only 
a few studies where extensive turbulence measurements 
have been made, most of them quite recently. As we in- 
dicated earlier, reliable and accurate turbulence measure- 
ments are difficult to make in any supersonic flow, and 
the difficulties are usually more extreme in the presence 
of flow distortions. For example, hot-wire measurements 
can suffer from many errors in flows with strong pres 
sure gradients. In adverse pressure gradients, transonic 
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effects may become important in large regions of the flow 
and the flow may separate, whereas in favorable pressure- 
gradients the signal-tcmoise ratio degrades because the 
turbulence intensities are greatly reduced. In a shock- 
wave boundary-layer interaction, the unsteady shock mo- 
tion can impose severe loadings on the probe body, greatly 
increasing the possibility of breaking the hot-wire. In all 
cases, particular care must be exercised to produce re- 
peatable and reliable measurements, and (as usual) the 
measurement errors must be taken into account when in- 
terpreting the results. 

The experiments have covered a broad range of model 
geometries and flow conditions. To help understand the 
implications of the results it is useful to classify the ex- 
isting work according to the particular perturbation or 
set of multiple perturbations that were applied to the 
flow. One of the major contributions made by Brad- 
shaw (1973) in this area was to provide a classification 
scheme for the effects of different kinds of &m strain- 
rates e, that is, strain rates additional to the principal 
shear aCJ/ay. By identifying the particular extra strain- 
rates associated with streamline curvature ( a V / a x ) ,  con- 
vergence and divergence (aW/az) ,  and compression and 
dilatation (V . V), he formulated a general framework for 
the understanding of such complex flows. Bradshaw in- 
cluded pressure gradients in this classification scheme, in 
the sense that dp/dx is simply related to dU,/dx for in- 
compressible thin shear-layers. 

Smits & Wood (1985) and Spina et al. (1994) extended 
this concept to include a wider variety of flows. One of 
the complications encountered in classifying compressible 
flows is that it becomes difficult to uncouple the effects 
due to pressure gradient, streamline curvature and bulk 
dilatation. This coupling occurs in all flows, but in a 
subsonic flow with streamline curvature, for example, di- 
latational effects are negligible by definition, and mean 
radial pressure gradients simply balance the centripetal 
acceleration, without straining fluid elements. In flows 
with streamwise pressure gradients there will always be 
a measure of streamline curvature as well, but for two- 
dimensional subsonic flows the ratio of a V / a x  to a U / a x  
will be of order V / U ,  and therefore it is always small. In a 
supersonic flow, a coupling also exists between streamline 
curvature (that is, radial pressure gradient) and longitudi- 
nal pressure gradient, and the degree of coupling depends 
on the geometry. In simple wave flows, as in the flow 
over a compression surface, the streamline curvature and 
pressure gradient are directly coupled through the angle of 
turn and the Mach number. In reflected wave flows, where 
the pressure gradients are imposed on the boundary layer 
by an external wave generator, the streamline curvature is 
(approximately) coupled to the streamwise pressure gra- 
dient. This is similar to the case in subsonic flows, but 
for a given pressure rise the degree of curvature will de- 
pend on the decrease in streamtube area, which increases 
with Mach number. Curvature effects, pressure gradients 
and mean dilatational effects are always strongly coupled, 
regardless of how the pressure gradient is applied. 

As seen in section 3, many of the differences observed 
between boundary layers on adiabatic walls in subsonic 
and supersonic flow can be explained in terms of the 
fluid property variations that occur as a result of the 
cross-stream temperature gradients that exist at super- 

sonic Mach numbers. We will see that this approach 
continues to hold when the wall temperature suddenly 
increases. However, perturbations such as the sudden im- 
position of a pressure gradient, or longitudinal streamline 
curvature, or the interaction with a shock wave, produce a 
boundary layer response that does not have an equivalent 
subsonic counterpart, and which cannot be explained in 
terms of fluid-property variations. Vorticity can be pro- 
duced through baroclinic torques. Longitudinal pressure 
gradients will lead to the compression or dilatation of vor- 
tex tubes, enhancing or reducing turbulent velocity and 
pressure fluctuations. Separation can occur when shock 
waves are present, if the shock is strong enough (a phe- 
nomenon that can be understood from subsonic experi- 
ence), but even in the absence of separation there exists 
a strong coupling between the shock and the turbulence, 
which leads to unsteady shock motion and distortions of 
the shock sheet. Understanding the shock motion and 
the resultant unsteady heat-transfer and pressure-loading 
is of great importance in many aerodynamic flows. Since 
the shock motion seems closely connected with the in- 
coming turbulence field and the separation unsteadiness, 
there is a clear need to understand the nature of the or- 
ganized motions in the incoming boundary layer, particu- 
larly the large scales. Unfortunately, studies of the instan- 
taneous or ensemble-averaged turbulent motions in super- 
sonic flows are uncommon, and very few studies have been 
made in perturbed supersonic flows to try to describe the 
distortion of the large-scale structure. 

The perturbation may originate in a number of differ- 
ent ways. It may be the result of a step change in the 
flow conditions where, for instance, the wall curvature 
changes suddenly. Alternatively, the distortion may be 
produced by an impulsive change, where the impulse con- 
sists of two step-changes of opposite character, separated 
by a short streamwise distance. An example of this case 
would be the flow which develop on a flat plate, passes 
over a short region of concave curvature, and then relaxes 
further downstream over a second flat surface. At  some 
point away from the wall, the compression waves gener- 
ated by the concave surface curvature will form a shock. 
For large radii of curvature, the shock will form outside 
the boundary layer, but for small radii it forms inside the 
layer. For compression comers, where the radius of curva- 
ture is essentially zero, a shock forms immediately outside 
the sonic layer, and multiple shocks form when the flow 
separates. The perturbations may also occur successively, 
as in the case where the surface curvature or the pressure 
gradient changes sign in the streamwise direction. For ex- 
ample, as the flow passes over a forward-facing step the 
surface curvature changes sign from concave to convex, 
and the pressure first rises and then falls. 

Here we will try to use the extra strain-rate classification 
as a basis for discussing the response of a supersonic tur- 
bulent boundary layer to a sudden change in wall temper- 
ature, pressure gradient, streamline curvature or bulk di- 
latation, despite the anticipated difficulties. Flows where 
an additional degree of complexity is introduced by the 
application of successive perturbations will also be con- 
sidered. At some points in this treatment, it will be useful 
to compare the response to these kinds of perturbations 
to the strong perturbations produced when a turbulent 
boundary layer interacts with a shock wave, although a 
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fuller discussion will be given in section 5. 

4.1 Perturbation strength 

The strength of a perturbation can be difficult to define in 
supersonic boundary layer flows. The simplest cases may 
be where the wall boundary condition is changing. For 
instance, when the wall-roughness changes suddenly, the 
ratio of the upstream and downstream equivalent rough- 
ness heights is a reasonably obvious parameter to charac- 
terize the strength of the perturbation (Smits & Wood, 
1985). For a flow where the wall-temperature changes 
suddenly, the ratio of the wall temperatures upstream 
and downstream serves a similar function (Debitwe et al., 
1996). The strength of a perturbation in pressure gra- 
dient is more difficult to define. In subsonic flows the 
strength of a pressure gradient distortion may be defined 
in terms of the parameter, E 6'/r,dp/dx, as suggested 
by Clauser (1954). In a supersonic flow where stream- 
wise pressure gradients can be accompanied by significant 
pressure gradients normal to the wall, additional param- 
eters will be necessary to define the perturbation fully. 
For instance, it is possible to obtain the same boundary 
layer wall-pressure distribution in two different ways: one 
by using a curved wall 80 that the curvature generates 
the pressure gradient, the other on a flat plate by using 
a contoured ceiling to generate a reflected wave system 
(see figure 27). Clearly, the gradients normal to the wall 
in these two flows will be different. To make this more 
quantitative, at least for disturbances which are approxi- 
mately isentropic such as simple wave flows, the ratio of 
the normal and streamwise pressure-gradients is given ap- 
proximately by l /( tanaM), where a~ is the local Mach 
angle. This ratio is equal to 1.7 at Mach 2, and 5.9 at 
Mach 6, so that the effects of the cross-stream pressure 
gradient increase quickly at higher Mach numbers. For re- 
flected wave flows, the analysis is more complicated, but 
the the normal gradients take their maximum values in 
simple flow regions (in the non-simple region, where the 
incident wave system crosses the reflected system, the nor- 
mal pressure gradients are generally small), so that the 
simple-wave estimate can be taken as an upper bound. 
This issue is discussed more fully by Finley (1977) and 
Fernholz & Finley (1980). 

As indicated earlier, differences between simple and re- 
flected wave-systems also appear in the resulting stream- 
line curvature. For a simple wave-system, the curvature 
can be convex or concave, and for a given overall stream- 
line deflection the pressure rise is fixed by the incoming 
Mach number. A linearized analysis gives: 

In terms of the radius of curvature R, and the initial 
boundary layer thickness 60, 

Consequently it is not usually possible to discriminate 
between the individual contributions due to curvature, 
compression and pressure gradient to the distortion of 
the boundary layer without performing the same exper- 
iment over a range of Mach numbers, which can in turn 

introduce additional effects. However, for a reflected wave 
system with a rising pressure, the curvature is initially 
convex and then concave, and the overall streamline de- 
flection and pressure rise are independent. For example, 
in a reflected wave flow such as that shown in figure 27 
the overall streamline deflection is zero even though the 
overall pressure rise is not. 

To help resolve these issues of discrimination, and to de- 
termine the strength of the disturbance in a complex su- 
personic flow, all perturbations need to be quantified eep 
arately, and their interactions need to be determined. For 
flows where extra strain-rates are important, one useful 
measure is the ratio of each extra strain-rate, e, to the 
principal strain-rate, aU/+ (Bradshaw, 1973, 1974). A 
distortion is generally classified as weak if e/(aU/l3y) = 
0.01, and strong if e/(aU/ay) = 0.1. The final response 
of some structure parameter to the prolonged application 
of a constant, small extra strain-rate e can be expressed 
in a linearized and dimensionless form by an amplifictb 
tion factor 1 + a,eL/ (aU/+) ,  where a0 is an empirical 
constant of order 10 for several types of extra strain-rate, 
and (aU/ay) can be taken as a measure of the typical 
m eddy strain-rate (following Bradshaw, a better esti- 
mate may be given by - / L E ,  where LE is the dis- 
sipation length-scale). This amplification factor depends 
only on the local rate of strain rather than the rate-of- 
strain history. If the extra strain-rate is applied over a 
time comparable to the eddy lifetime, then it might be 
better to replace aoe with an "effective" value I, given by 
the integral of the extra strain-rate over the time which 
it is applied (= Ied t ) .  For example, a measure of the 
strength of the impulsive perturbation due to a short re- 
gion of bulk compression ( I p )  is given by (1/7) log(p3/pi) 
(Hayakawa et al., 1983), where palpi is the pressure ratio 
across the compression, and for an impulse in curvature 
the strength (Io) is given by the angle through which the 
flow has been turned (Smits et al., 1979b). It is implied 
that for an impulsive perturbation the overall distortion is 
the more important parameter, and not the rate at which 
it is applied. 

In the assessment of perturbation strength, it is implic- 
itly assumed that the perturbations are sufficiently small 
for a linear analysis to be meaningful. That is, the re- 
sponse of the boundary layer can be described in terms 
of a simple first-order lag equation. When more than one 
strain-rate acts, as in the case of a deflected supersonic 
flow where streamline curvature and bulk compression act 
in addition to longitudinal and normal pressure gradients, 
the linear addition of different perturbation strengths to 
arrive at some overall measure is unlikely to hold in any 
quantitative sense. Nevertheless, the linear analysis can 
still serve as a crude guide for making comparisons among 
different flow cases, as we hope to show here. For stronger 
perturbations, we know that Rapid Distortion Approxi- 
mations (RDA) can give quantitatively useful results. For 
concavely-curved flows this was shown by Jayaram et al. 
(1989) and Donovan (1989), but the analysis will be valid 
only for times short compared to the (local) eddy response 
time. 
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Figure 27: Boundary layer flow distortions. Left: adverse 
From Smith & Smits (1994). I 

4.2 A step change in wall temperature 

The response of turbulent boundary layers to step changes 
in boundary conditions has been widely studied in sub- 
sonic flows (for a review see Smits & Wood, 1985). 
The step change may be caused by a sudden change 

suction/blowing, or heat transfer. The response to the 
change depends on how the step change is applied, but 
if the step is caused by a change in the wall boundary- 
condition, such as a sudden change in wall-temperature, 
the boundary layer adjusts to the new boundary condition 
first at the wall, and then progressively further from the 
wall as turbulent diffusion begins to affect the rest of the 
flow. From a fundamental viewpoint, the initial response 

new boundary conditions provides useful information on 
the time and length scales of turbulent diffusion. 

The relaxation process downstream of the step change 
is often described in terms of the growth of an internal 
boundary layer, which is the region near the wall where 
the flow scales with variables based upon the new wall 
condition (for example, the friction velocity and temper- 

rest of the boundary layer continues to scale on the vari- 
ables based upon the wall conditions that apply in the 
flow upstream of the step change. Typically, the inter- 
nal layer grows at a rate similar to that of an undisturbed 
turbulent boundary layer, that is, at a rate approximately 
proportional to z’.~. The relaxation rate, therefore, de- 
creases with downstream distance, and in some instances 
the asymptotic state may not be reached for distances of 
the order of 100 initial boundary layer thicknesses (60), if 
at all (see, for example, the slow relaxation downstream of 
a prolonged region of convex curvature studied by Alving 
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et al., 1990b). 

The response of boundary layers in supersonic flow to step 
changes in boundary conditions has not been studied so 
extensively, but a number of interesting experiments have 
been performed. For example, Kubota & Berg (1977) 
studied the effects of sudden changes in wall roughness 
(smooth-to-rough and rough-to-smooth) in a Mach 6 tur- 
bulent boundary layer. For a step change from smooth-to- 
rough, the boundary layer attained a self-preserving state 
in the mean flow at a distance of about 206,, and in the 
fluctuation profiles at about 306,. The relaxation follow- 
ing a step change from rough-to-smooth was somewhat 
slower with the mean flow relaxing over 286, and the tur- 
bulent field over 40-506,. In essence, their results were 
not significantly different from similar work in subsonic 
flow (Antonia & Luxton, 1971, 1972). 

Another interesting case is the boundary layer response 
to sudden changes in heat transfer. Despite the prac- 
tical significance of such flows, the extensive reviews by 
Fernholz & Finley (1980, 1981) list only a few experi- 
ments where heat transfer was important, and these casea 
were confined to uniformly cooled walls (Voisinet & Lee, 
1972, Laderman & Demetriades, 1974). However, Debibve 
et al. (1996) studied a Mach 2.3 fully-developed turbu- 
lent boundary layer experiencing different step increasea 
in wall temperature, and we will consider this experiment 
in some detail. The ratio of wall temperature to recovery 
temperature, T,/T,, varied from 1.0, to 1.5, to 2.0. To 
capture the relaxation process, the response was studied 
over a distance of approximately 506,, and many detailed 
mean flow and turbulence measurements were made. 

We expect the step change in heat transfer to be some- 
what different to a step change in wall roughness. First, 
two internal layers will form: one for the temperature 
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field, and the other for the velocity field (since we expect 
the friction velocity to be affected by the heating). The 
two internal layers are not coincident since the Prandtl 
number is not unity. Second, the step change is applied 
in the temperature field, and we expect to see, at least 
initially, some differences appearing in the usual relation- 
ships between temperature and velocity, that is, Crocco's 
relation for the mean field, and the Strong Reynolds Anal- 
ogy for the fluctuations. 

In section 3.1, we showed that in a self-preserving flow 
a relationship between velocity and temperature may be 
derived under the conditions that the mixed Prandtl 
number, P,  [E (rah/ay)/(qaU/ay)], is constant and 
0.7 < P, < 1.0 (van Driest, 1955, Walz, 1959). The result 
is known as the modified Crocco relationship, or some- 
times Wdz's solution (equation 13). If we consider only 
the flow in the region where molecular transport processes 
can be neglected (y >> y,,) and where the stress is con- 
stant, dimensional analysis or mixing length arguments 
give, for zero pressure gradient (Rotta, 1960, Bradshaw, 
1977): 

If the temperature variation is known, either by mea- 
surement or by assuming the validity of Crocco's Law, 
the integral in equation 38 may be evaluated. Further- 
more, since the appropriate velocity scale for the inner 
and outer regions of the boundary layer is ( r W / p ) ' l 2 ,  we 
expect from previous considerations that the mean (and 
fluctuating) velocities scale with this variable if the flow is 
self-preserving. For an adiabatic, zero pressure-gradient 
boundary layer, the variation in density is due to the 
Mach number gradient. For a heated wall, the density 
variation is also affected by the level of heating. 

The time scale for the adjustment of the velocity field to 
a given perturbation varies approximately as the turbu- 
lent kinetic energy divided by the rate of its production 
(Townsend, 1976). That is, the relaxation time varies 
approximately as (aU/ay)-'. The flow near the wall, 
therefore, adjusts relatively quickly, and a limited region 
of self-preserving Row may occur (it is assumed here that, 
since Pt is close to one, an approximately self-preserving 
state can occur). A similar argument can be made for the 
relaxation rate of the temperature field', bearing in mind 
that the Prandtl number is not unity so that the physi- 
cal extents of the velocity and temperature layers are not 
identical. Within this self-preserving part of the bound- 
ary layer (the internal layer) the velocity and temperature 
fields may display a logarithmic variation, and the total 
stress is then expected to be approximately constant over 
the same region. 

When the mixed Prandtl number is constant, it  is poasible 
to obtain for y < ye, where ys lies in the constant stress 
region, a temperature-velocity relationship for perturbed 
Rows of the form: 

'For the velocity field, TU = 7/( -u"aU/ay), and by anal- - 
ogy for t h e  temperature field, q = T"/(-,'T'aT/ay). 

where Ma = We/-, and: 

(for details, see Carvin et al., 1988). Equation 39 can be 
applied to perturbed flows that display a constant-streas 
region. Furthermore, in the region where molecular trans- 
port processes can be neglected (y > yv) and where the 
stress is constant, equation 38 still applies as long as the 
scaling is based on the local wall values Equations 38 and 
39 then completely define the mean velocity and temper- 
ature fields for yw < y < ye. 

If we assume that the presence of a logarithmic veloc- 
ity profile indicates the presence of a constant stress re- 
gion (this does not necessarily follow, but for the present 
purpose it may be a reasonable approximation), then 
equation 39 may be used to determine the heat trans- 
fer at the wall by fitting it to the data in the region 
y,, << y < ys. This method for finding the friction temper- 
ature T,(r  qw/purCpuT) is similar to the Clauser method 
for finding the friction velocity from the measured veloc- 
ity profile. The skin-friction and heat-transfer coefficients 
can then be found from the experimental profiles by an 
iterative solution of equations 38 and 39. In principle, it 
should also be possible to find P, using this procedure 
but the estimates of T, and c h  are rather insensitive to 
the value of P,, and it difficult to find P, accurately 
from the data. 

To express the temperature profile in a similar logarithmic 
form, we note that equation 39 may be rewritten using a 
turbulent total tempemtum, Ti. This leads to 

where T,+ = -Ti / (TTPm),  and CT depends on the inner 
limits of the logarithmic region. It will also depend on the 
Prandtl number and the ratio of the wall temperature to 
the recovery temperature TWITr (Carvin et al., 1988). 

Some results from the experiments by Debihve et al. 
(1996) are shown in figures 28-30. Fkom figure 28 we see 
that the internal thermal layer grows relatively rapidly: 
at x = 8cm it  fills about half the boundary layer, and 
by x = 46cm the temperature and the velocity layers 
are almost coincident. A comparison with Crocco's rela- 
tion (equation 39) indicated that the boundary layer at 
x = 8cm is strongly perturbed by the heating, and by 
x = 4 6 n  has not yet reached equilibrium. In contrast, 
the velocity profiles demonstrate that the temperature 
field has only a mild effect on the velocity distribution 
far from the wall. 

To find the variations of wall friction and heat trans- 
fer along the plate, the experimental data were fitted to 
the logarithmic relationships 38 and 41. Figures 29 and 
30 show the transformed velocity and static temperature 
data in logarithmic form. In these transformed coordi- 
nates, there appears to be little effect of heating. In other 
words, the variation in density due to the combined effect 
of compressibility and heating simply alters the velocity 
scale for the velocity profile without introducing any ex- 
plicit effects due to the strong heating. The relaxation of 
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Figure 28: Total temperature profiles for step change in wall temperature. Left: z = 8 n; Right: z = 46 n (z is 
the distance measured from the beginning of the heated wall; the boundary layer thickness at z = &m is 10mm). *, 
Tw/Tr = 1.0; A, Tw/Tr = 1.5; 0, Tw/Tr = 2.0. From Debihve et al. (1996). 
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Figure 29: Semi-logarithmic representation of trans- 
formed velocity profiles at z = 32cm for step change in 
wall-temperature, with ur adjusted to give the best fit 
to equation 38. Symbols as in figure 28. Figure from 
Debikve et al. (1996). 
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Figure 30: Semi-logarithmic representation of tempera- 
ture profiles z = 3 2 n  for step change in wall tempera- 
ture, with T, adjusted to give the best fit to equation 41. 
Symbols as in figure 28. From Debihve et al. (1996). 
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the temperature profile and the large extent of the loga- 
rithmic region are clearly evident in figure 30. For this 
flow, the constant CT is approximately equal to 3.0, which 
is a little lower than the value of 3.6 found by Michel et al. 
(1969). 

The coefficients of skin friction, Cj  (= 2~,,,/p~U:), and 
heat transfer, c h  (= qw/peUeCp(Tr - T, ) )  are shown in 
figure 31. Although the accuracy of these data is difficult 
to judge in the absence of an independent measure of rUl 
and q,,,, the effect of heating appears to reduce the skin- 
friction and heat-transfer coefficients significantly, regard- 
less of the streamwise location. If we assume that the 
skin-friction coefficient follows the same relation as that 
found for adiabatic flows, provided that the density and 
viscosity are evaluated at the wall conditions, we find that 
most of the differences in Cj observed due to heating are 
due simply to the change in fluid properties. The ar- 
gument is similar to that advanced by Hinze (1975) to 
explain the decrease in Cj with Mach number for adia- 
batic flows. A corresponding argument can also be made 
for the heat transfer coefficient. However, we can see that 
the Reynolds Analogy factor s (= 2 c h / c j )  appears to be 
strongly out of equilibrium, approaching a value of about 
1.5 near the end of the test section, still well above its 
equilibrium value of about 1.24. 

As for the longitudinal turbulence intensity, Debihve et al. 
(1996) found that Morkovin's representation appears to 
take into account the effects of wall heating. That is, the 
data can be collapsed using a scaling based solely on fluid 
property variations (within the experimental error). Not 
unexpectedly the intensity of the total temperature fluc- 
tuations increases with heating. For the turbulent heat 
transfer, we are more interested in the behavior of the 
transverse heat flux (pv)'T'. This is a difficult quantity to 
measure directly, but some indication can be given by ex- 
amining the behavior of the longitudinal heat flux (pu))TI. 
Debihve et al. (1996) found that the correlation coefficient 
-&,T is not significantly affected by the heating, and it 
remains almost unchanged from its adiabatic value in a 
supersonic flow of 0.8 - 0.9 (a typical value in a heated 
subsonic flow is 0.4 - 0.5). This high degree of correlation 
between the velocity and temperature (even though the 
flow is heated) suggests that the instantaneous scales of U' 
and T' are connected by a relationship such as T' = f(u'). 
In an adiabatic flow, we have the Strong Reynolds Anal- 
ogy, but in heated flows where the total temperature fluc- 
tuations are significant an alternative analysis is required. 

When the distributions T(y) and g(y) are known, a lin- 
earization for small fluctuations can obtained with the 
aid of a mixing-length argument, 0 = l"ag/ay and 

@ = 1Tm/*, or by a direct linearization of the mean 
relationship T = g(v). In the case of lu(y/6) = 1~(y /6) ,  
that is to say when the Prandtl number defined in terms 
of uta and T'a is equal to unity, the two methods lead to 
the same result - the SRA (Gaviglio, 1987). For a direct 
linearization of the mean relationship T = g(?l), similar 
mixing-length arguments are necessary. 

- 

To evaluate the influence of wall heating on the SRA, 
Debihve et al. (1996) linearized Walz's temperature- 
velocity relationship (equation ??) which explicitly in- 

cludes the heating parameter, Tw/Tr: 

= - [ r +  
(7 - 1)MS U'/U 

T ' / T  

(a similar approach was followed by Cebeci & Smith, 
1974, who assumed r = 1). Here, the second term on 
the right-hand side introduces the influence of heating. 
This term also depends on y/6 through the velocity prc+ 
file, U / U e ,  which depends only slightly on the heating. 
In adiabatic flows, the factor in the square brackets re- 
duces to the recovery factor, r = 0.89. In the case where 
Tw/Tr  = 2, we can expect that, for a point located in the 
middle of the layer, the right-hand side of equation 42 
will be reduced by a factor of about two with respect to 
the adiabatic value. The data given by Debibve et d. 
(1996) show this decrease from the adiabatic value, but 
their data are probably not accurate enough to verify the 
exact form of equation 42. 

To summarize, we see the growth of an internal layer in 
the temperature profile, but the transformed velocity field 
is relatively unaffected by the wall heating. Near the wall, 
that is, in the internal layer, logarithmic variations in the 
mean velocity and temperature profiles were found when 
the scaling arguments took into account the new values 
of density and friction velocity. Similarly, the change in 
fluid properties at the heated wall can explain the ob- 
served decrease in the skin-friction and wall heat-transfer 
coefficients. As for the turbulence, Morkovin's scaling 
collapses the streamwise Reynolds stress profiles, and the 
correlation between velocity and temperature fluctuations 
appeared unaffected by the heating at the wall. How- 
ever, the relationship between the temperature and ve- 
locity fluctuations in the SRA is strongly affected by the 
heating. 

In general, the observed changes in the boundary layer 
due to the heating can be explained in terms of variations 
in fluid properties and the new boundary conditions at 
the wall. 

4.3 Adverse pressure gradients 

The extra strain-rate due to streamline curvature, 
(aV/az) has a profound effect on the turbulence in in- 
compressible flows. When the sense of curvature is con- 
cave, the effect on the turbulence in the boundary layer is 
destabilizing, leading to an increase in wall-friction, heat- 
transfer, and the Reynolds stresses. In addition, Taylor- 
Gortler-like vortices have often been observed to form on 
concavely-curved walls. Convex curvature is stabilizing, 
and the wall-friction, heat-transfer, and Reynolds stresses 
all decrease, and the Taylor-Gortler instability is absent. 
Von K k m h  (1934) considered the equilibrium of a fluid 
element moving along a curved streamline, and demon- 
strated that a boundary layer over a curved wall WM un- 
stable if the curvature was concave, and stable if it was 
convex. When the flow is compressible, the stability argu- 
ment must take into account the effects of density gradi- 
ents, and the analysis by Bradshaw (1973) suggests that 
for an adiabatic wall the density gradient will enhance 
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Figure 31: Distribution of skin-friction coefficienb (left), and heat-transfer coefficients (right) for step change in 
wall-temperature. Symbols as in figure 28. From Debihve et al. (1996). 

the effect of curvature. In a strongly cooled flow, how- 
ever, the density gradient changes sign near the wall, and 
it is possible, at least in principle, for a boundary layer to 
be unstable in the outer layer and unstable in the inner 
layer, and vice versa. 

These arguments provide qualitative descriptions of the 
flow stability, but experiment shows that the effects on the 
properties of the flow are at least an order-of-magnitude 
greater than the analysis would indicate. As may be ex- 
pected, the effects of streamline curvature in compress- 
ible flow are more difficult to determine because, as we 
discussed earlier, curvature in a supersonic flow is always 
accompanied by pressure gradients and either compres- 
sion or expansion, and the significance of each individual 
perturbation can only be found by comparing different 
experiments where the balance between these effects is 
changing. 

A group of such experiments for impulsive perturbations 
were performed by Jayaram et al. (1987), Smits & Muck 
(1987) and Donovan et al. (1994). Two different angles 
of turning were investigated, 8" (Group One) and 16' 
(Group Two), and the non-dimensional radius of curva- 
ture, R,/60, varied from 0, to 10 - 12 (Models I and I V ) ,  
to 50 (Model 11). The incoming Mach number was fixed 
at a value of about 2.9. The flow configurations are shown 
schematically in figure 27, and the estimated strengths of 
the corresponding impulses of extra strain-rates are given 
in tables 3 and 4. Here, 60 is the boundary layer thickness 
of the flow just upstream of the start of the disturbance, 
and the length of the impulse is Li. 

4.4 Flow over concavely-curved walls 

The experiment by Donovan et al. (1994) illustrates many 
aspects of flows over concavely-curved walls in supersonic 
flow. The flow conditions are summarized in table 4, un- 
der Model IV, Curved Wall. The total turning angle was 
20". As the flow passed through the region of surface 

Mach number decreased from 2.86 to 2.10, the density 
increased by a factor of 2.1 and the velocity decreased 
by a factor of 0.88. At the same time, the absolute wall 
shear-stress increased by about 125 percent, and the skin 
friction coefficient increased by about 77 percent. This in- 
crease is counter to that observed in subsonic flows, where 
an adverse-pressure gradient causea the wall shear-stress 
to decrease. Another example of this phenomenon is the 
Fernando & Smits experiment shown in figure 27. In these 
flows the sonic layers are very thin, and as the preasure 
rises the boundary layer thickness decreases. Since the 
turbulent mixing is strong, the net effect of a thinner layer 
is to increase the wall stress. The skin friction continued 
to increase well after the region of wall curvature had 
ended, and continued to increase even after the pressure 
gradient had ended. 

Figure 32 shows the mean velocity profiles in inner-layer 
scaling. The undisturbed boundary-layer profile exhibits 
an extensive logarithmic region (the discrepancies near 
the wall are due to uncertainties in probe position). By 
the end of the curved region, the profile begins to dip be- 
low the logarithmic law near the point where y+ = 2000. 
The dip grows in size and extends farther into the loga- 
rithmic region with increasing streamwise distance. A dip 
in the logarithmic region is a common feature of flows with 
concave curvature, and it may indicate that the length- 
scales of the turbulence increase faster with distance from 
the wall than in the unperturbed boundary layer (Brad- 
shaw, 1973, Smits et al., 1979b, Jayaram et al., 1987, 
Smits et al., 1989). The dip does not become signifi- 
cant until after the curved region ends, suggesting that 
the inner region of the boundary layer is either exhibiting 
a delayed response to the curvature, or it is responding 
relatively quickly to the removal of curvature. 

In these measurements, a constant-temperature hot-wire 
anemometer was operated at high overheat ratio to mea- 
sure the local mass-flux fluctuations, (pU)''/pa8'. The 

curvature, the wall pressure rose by a factor of 2.9, the streamwise stress was obtained by using the SRA, accord- 
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Group One 
Srnits & Muck I Jayararn et al. I Fernando & Srnits 

Model I Model I1 
Compression Comer Curved Wall Curved Wall Flat wall 

Kussoy et al. 

Flat wall 

Table 3: Impulses in adverse pressure-gradient cases, Group One. The "Flat Wall" C M  are reflected wave flows. 
Adapted kom Smith & Smits (1994). 

I .I 

Group Two 

Model IV 
Srnits & Muck Donovan et  al. Smith & Smib (1991) 

Compression Corner Curved Wall Flat wall 
n n  n n  n n  

R. 
L8 
l e  
I p  

~~~ 

0 126, 00 
0 3.56. 3.560 

0.28 0.28 < 0.09 
0.76 0.78 0.78 

Table 4: Impulses in adverse pressure-gradient cases, Group Two. The "Flat Wall" casea are reflected wave flows. 
Adapted from Smith & Smits (1994). 
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Figure 32: van Driest-transformed mean velocity profiles for the Model IV curved-wall impulse experiment (see table 4). 
The vertical line near 10,000 indicates the boundary layer edge. The z/60 values are indicated to the right of the profiles, 
where 60 is the boundary layer thickness for the incoming boundary layer, and z is measured from the start of the 
curved wall (the curvature finishes at z = 3.560). From Donovan et al. (1994). 
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ing to: 

That is, 9 = ( p U ) " / p  (1 + (7 - 1) M')'(43) 

The overall increase in the local mass-flux fluctuations 
through the perturbation is only about 60 percent, but 
the level of the Reynolds streamwise-stress increases con- 
siderably more through the perturbation: for instance, 
at y/6 = 0.4 the level increases by a maximum factor of 
6.8. From equation 43, it is clear that the difference in 
the amplification levels is primarily due to the strong role 
played by the mean density in the definition of the stress 
term. The first signs of amplification occur at points close 
to the wall, where the time-scales are small. By the last 
streamwise station, at x = 9.160, the relaxation process 
had begun at points below 0.66, but the fluctuations were 
still growing in the outer 20 percent of the layer. 

As the boundary layer exits from the,curved region, the 
profile of the angular momentum, p(aU/ay ) ,  develops 
an inflection point away from the wall. A generalized 
inflection point is defined by two conditions: 

In a laminar boundary layer, a generalized inflection 
point can make the layer unstable to small disturbances 
(Morkovin, 1992). In the present case, the inflection point 
is first seen at x = 4.5460, where it is located at about 
y = 0.26. Downstream, it becomes more exaggerated, and 
its position moves slowly away from the wall so that at 
x = 8.1660, it is at about y = 0.36. The Mach numbers at 
these locations satisfy the second condition, and it seems 
possible that instabilities aasociated with the inflectional 
angular-momentum profile contribute to the turbulence 
amplification downstream of the curved wall region. 

The Reynolds shear-stress distributions are shown in fig- 
ure 33. The amplification of the shear stress is largest 
at y = 0.46, where the level has increased by a factor of 
5.3, although the shear streas relaxes considerably faster 
than the streamwise stress. ,The normal component of 
the stress, g, also increased significantly, by a maxi- 
mum factor of 6.0 in the middle of the layer. Somewhat 
surprisingly, the anisotropy ratio u,.ms/vrma showed little 
change through the distortion, but the correlation coeffi- 
cient &, increased by more than GO percent, suggesting 
that the organized motions have been altered significantly. 

Two-point hot-wire measurements were also made to 
study the behavior of the large-scale motions directly. 
The convection velocity had decreased by about 5 percent 
relative to the local mean velocity at x = 5.460, and the 
mean structure angle had increased by about 5". Further 
downstream, the structure angle continued to increase, so 
that at x = 9.160 it had increased to about 10" over the 
undisturbed value. 

The schlieren visualization of the boundary layer indicates 
that the density fronts rapidly change their inclination in 
the region of curvature (see figure 34). In the beginning 
stages of the compression, the inclination is considerably 
less than the upstream value (which is about 50" in the 
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Figure 33: Streamwise variation of the Reynolds shear- 
stress profiles for the Model IV curved-wall impulse ex- 
periment (see table 4). The values plotted at y = 0 cor- 
respond to T ~ .  From Donovan et al. (1994). 

middle of the layer, see figure 25b), but the angles quickly 
increase 80 that at x = 8.960 they had increased to about 
15" over the undisturbed value, in reasonable agreement 
with the hot-wire data. Donovan et al. suggested that this 
behavior may be explained by considering the effect of the 
compression on the vorticity contained by the large-scale 
motions. We should note that the distortion is approxi- 
mately isentropic, at least as far as the initial response is 
concerned, and baroclinic torques will therefore not gen- 
erate significant levels of vorticity. A simple calculation 
based on the magnitude of the compression in the plane 
of curvature (assuming the perturbation to be rapid) sug- 
gests that the angle should decrease, not increase. If we 
assume the incoming large-scale motions have a vertical 
scale given by 6, and the overall streamwise extent is given 
by ~ 6 ,  then 7 = 1.1 for most of the central part of the u p  
stream layer since the structure angle is about 50" (see 
figure 25). Furthermore, if we assume that the vertical 
scale downstream is still given by the local boundary- 
layer thickness, then the downstream value of 6 can be 
found from the velocity ratio across the compression, as 
long as the viscous terms are negligible for this short time. 
This would imply that the downstream angle is close to 
20", primarily because of the reduction in boundary-layer 
thickness. If the organized motion were some type of vor- 
tical structure, then considerable stretching would be re- 
quired to rotate it to an angle of 20" and still have it span 
the boundary layer (this leads to an increase in length of 
about 90 percent). If the structure is assumed to be a 
large-scale horseshoe vortex, then stretching would cause 
the legs of the vortex to move closer while their circuls 
tion remains constant (primarily because of the influence 
of the image vortex). Using a Biot-Savart-type argument 
(assuming the gradients of the sound speed are not large 
in the outer 80 percent of the boundary layer), the in- 
duced velocity will increase, tending to increase the an- 
gle of inclination. The schlieren photographs suggest an 



1-36 

Figure 34: Schlieren photograph of a Mach 2.9 boundary layer passing over a short region of concave surface-curvature 
(Model IV in table 4). The flow is from right to left. The first pointer marks the end of curvature and the second marks 
the z = 5.460 location. The dark band at the edge of the boundary layer is the compression fan/shock structure. Note 
the change in the inclination angle of the large-scale structures. From Donovan et al. (1994). 

over-recovery of the structure angle in the region after 
curvature. 

In incompressible flows, some investigators (for example, 
Head & Bandyopadhyay, 1981) have discussed the pos- 
sibility that the angles of inclination of hairpin vortices 
and bulge interfaces are related to the principal axis of 
the rate-of-strain tensor. In any zero pressure-gradient 
boundary layer the inclination of the principal axis is very 
close to 45'. Donovan (1989) used a rotational method 
of characteristics to calculate the variation of the rate- 
of-strain tensor on Model IV. This procedure is valid for 
rapidly distorted flows where the turbulence has a neg- 
ligible effect on the mean flow, a condition satisfied rea- 
sonably well by the flow for z = 5.460. The smallest in- 
clination of the principal axis was calculated to be about 
40' before relaxing back to its upstream value, which to 
some extent reflects the behavior observed in the schlieren 
visualization. However, the causal relation between the 
principal axis of the mean strain rate and the inclination 
of the organized motions remains unclear. 

Further information on the spatial extent of the outer- 
layer structures was found using two vertically-separated 
wires. By shifting the peak in the space-time correlations 
along a line corresponding to the mean structure-angle, 
the qualitative picture shown in figure 35 was obtained. 
This view may be compared to the similar view shown 
in figure 20s (&,/6 = 0.09) for the undisturbed bound- 
ary layer. Both plots illustrate the spatial nature of the 
organized motions in side-view when the horizontal axis 
is taken as the streamwise direction (using Taylor's Hy- 
pothesis). The increase in structure angle a t  x = 5.460 is 
evident, as well as the stretched length of the large scales, 
and the increase in the streamwise correlation length- 
scale. This last observation is somewhat unexpected, but 
it may indicate that the compression enhances the corre- 
lated motions more than the uncorrelated parts. 

Finally, by conditionally sampling the fluctuating stream- 
wise and normal velocity signals simultaneously, an ap- 
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Figure 35: Model IV curved-wall impulse experiment 
(see table 4): correlation contours from hot wires sepa- 
rated by 0.16 in a direction normal to the wall at a p 
sition z = 5.460 downstream of the start of curvature. 
This view may be compared with the corresponding view 
of the undisturbed boundary layer shown in figure 20a. 
From Donovan et al. (1994). 
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Figure 36: Model IV curved-wall impulse experiment (see table 4): average flow field in the region of instantaneous 
positive mass-flux gradient as seen in a reference frame moving at the convection velocity of the large-scale motions 
at 2 = 5.460 downstream of the start of curvature. This view may be compared with the corresponding view of the 
undisturbed boundary layer shown in figure 26. From Donovan et al. (1994). 

proximate view of the average large-scale motion can be 
derived. The VITA technique developed by Blackwelder 
& Kaplan (1976) was used to identify positive mass-flux 
fronts, and the ensemble-averaged flowfields around these 
fronts are shown in figure 36 (the corresponding view for 
the upstream boundary layer was shown in figure 26). The 
clockwise rotation within the large scales is clearly seen, 
as is the counter-clockwise rotation in the region behind 
the mass-flux front (that is, the back of the large-scale 
structure), and the presence of a stagnation point on the 
mass-flux front itself. Downstream, the rotating motion 
of the fluid downstream of the back of the structure is not 
as well defined, and the upward velocity just in front of 
the back is much larger than in the upstream boundary 
layer. Throughout the flow, the steeper angle of most of 
the velocity vectors reflect the amplification of the normal 
velocity component by the perturbation. 

Having described the results of one particular study in 
some detail, we can now summarize the overall behavior 
of the curved-wall flows listed in tables 3 and 4. In all 
cases, the Reynolds stresses were found to be amplified 
downstream of the curvature. The level of amplification 
depended on the pressure gradient, and the largest am- 
plification was observed in the compression-corner flows 
where the strongest pressure gradients are found. That 
is, the more rapid the perturbation, the greater the am- 
plification of the turbulence. Changes in the turbulence 
structure seem to depend therefore on the strength and 
the rate of application of the perturbation. For the weak- 
est distortion (&/bo = 50) no changes in the structure 
were observed indicating that the boundary layer was near 
equilibrium throughout the distortion. For the more rapid 
distortions at 8" of turning (R,/6, = 0 and lo), weak 
changes in the turbulence structure parameters were ob- 
served. 

In compression ramp interactions, Debieve (1983), Ardon- 

ceau (1984), Kuntz et ol. (1987), Smits & Muck (1987) 
and Selig et al. (1989) found that the amplification of the 
turbulence increased with the ramp angle, that is, the 
shock strength. Ardonceau observed that the Reynolds 
shear-stress responded more quickly to the distortions 
than the streamwise and normal components. For the flow 
downstream of the interaction, he suggested that the tur- 
bulent motions begin to lose their coherence before begin- 
ning to dissipate energy. In the experiments by Smits & 
Muck, the turning of the flow was the same as the turning 
in the curved wall studies of Models Z, ZZand ZV. A greater 
amplification of the streamwise Reynolds stress wa8 found 
when a shock wave was present, but the same trend was 
not observed in the shear stress, and in the case of an 8" 
ramp, the boundary layer response was the same with or 
without the shock wave. As the strength of the pertur- 
bation increased from 8" to 16", the shock wave began 
to have an influence. For instance, Smits & Muck (1987) 
found a change in the anisotropy ratio downstream of a 
16" shock wave interaction, but as we saw above, there 
is little change in the anisotropy ratio in the flow over a 
16" curved wall. Initially, it was believed that there was 
a coupling between the unsteady shock motion and the 
turbulence which served to amplify the turbulence inten- 
sity without directly affecting the shear stress. However, 
the measurements made by Selig et al. using conditional 
sampling demonstrated that the shock motion had little 
effect on the amplification of the turbulence intensity. In 
contrast, there appears to be a strong link between the 
large-scale motions in the incoming boundary layer and 
the unsteady motion of the shock wave, at least for at- 
tached flows (Gramann & Dolling, 1992, C o p e  et ol., 
1993). 
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4.5 Reflected-wave flows 

To study the effects of adverse pressure-gradients in the 
boundary layer with a minimum amount of distortion 
due to curvature, the pressure gradient can be imposed 
through a system of reflected waves (see figure 27). The 
response of the turbulence to this type of perturbation 
was studied by Kussoy et al. (1978) at Mach 2.3, and 
by Fernando & Smits (1990) and Smith & Smits  (1996) 
at Mach 2.9. In the first two studies, the rise in pres- 
sure was approximately equal (in other words, the re- 
spective impulses due pressure changes were nearly the 
same); however, the pressure gradient occurred over a 
shorter distance in the first study (1.56,) than in the 
second (76,). The strengths of the perturbations were 
weaker than the perturbation imposed by Smith & Smits 
in the third study, where the distortion was stronger and 
more rapid (see tables 3 and 4), but in all three flows the 
Reynolds stresses were strongly amplified. Fernando & 
Smits found that the turbulence stress ratios varied less 
than the stresses themselves, indicating that the structure 
of the turbulence remained largely unchanged in their 
flow. This conclusion w w  confirmed by measurements 
of the space-time correlations which were essentially un- 
changed from the correlations in the undisturbed bound- 
ary layer. These observations were not unexpected since 
the distortion was comparatively weak and relatively slow. 
However, a frequency shift was observed in the energy 
spectra of the turbulence, suggesting an increase in the 
turbulence length-scale. This change was more obvious 
in the velocity profiles which exhibited the dip below the 
logarithmic law characteristic of subsonic flows experi- 
encing concave streamline curvature, and it may indicate 
the effect of the small but perhaps significant amount of 
streamline curvature found in the reflected wave flows of 
Fernando & Smits (and Smith & Smits). Of course, if 
we assume that the concept of an impulsive perturbation 
holds in this case, Io = 0 since the incoming and out- 
going flow directions are the same. However, the region 
over which the pressure rises is rather long (of the order 
of the large-eddy turnover-distance x 1060) and the ap- 
pearance of curvature-related effects may signal the limit 
of the impulse approximation. In that case, the approx- 
imation will also break down for the flow over Model 11 
where R, = 5060. 

The pressure gradients in the flat plate studies by Fer- 
nando & Smits and Smith & Smits were designed to match 
the pressure gradients on curved walls with 8' and 16' of 
turning, respectively, where the nondimensional radius of 
curvature was R,/6, = 50, and 10 - 12 (Jayaram et al., 
1987, Donovan et al., 1994). For 8' of turning, the pres- 
ence of curvature was found to enhance the increase in 
the streamwise Reynolds stress, and although it did not 
change the total amplification in the shear stress, the rate 
at which the shear stress changed was faster for the flow 
with curvature. For 16' of turning, a similar behavior in 
the streamwise stress was observed. Structural changes 
in the turbulence appear to be directly linked to the pres- 
ence of substantial amounts of streamline curvature and 
the rate at which the perturbation is applied. For ex- 
ample, changes in the turbulence structure were noted 
by Jayaram et al. on an 8" curved wall, but Fernando & 
Smits found no structural changes in a flow with the same 
adverse pressure-gradient on a flat wall. The more rapid 

the distortion, the greater the change observed in the tur- 
bulence structure, suggesting that these changes may be 
described using the total strain-rate while the slower dis- 
tortions should be described using local strain-rates. 

4.6 Taylor-Gortler vortices 

In subsonic turbulent boundary layers, concave curva- 
ture in the streamwise direction introduces longitudinal 
vortices according to a mechanism similar to that re- 
sponsible for producing Taylor-Gortler vortices in lami- 
nar flows (Tani, 1962). These longitudinal roll-cells tend 
to be spaced in the spanwise direction with a reason- 
ably regular spacing of one to two boundary layer thick- 
nesses, and once established they are very stable in lo- 
cation and strength. Although they are generally weak, 
in that their tangential velocity is at least an order-of- 
magnitude smaller than the freestream velocity, they can 
have strong effects on the turbulence. For example, Smita 
et al. (1979b) found that downstream of an impulse in 
concave curvature the shear stress differed by up to a fac- 
tor of two in the spanwise direction, where the low level 
was found in the region where the secondary flow was 
towards the wall (that is, a "crest" in the spanwise Cf 
distribution), and the high level was found where it was 
away from the wall (a "trough" in the Cf distribution). 
The corresponding Cf values differed by about 20 percent 
from the crest to the trough. 

In some particular flows with concave curvature, Taylor- 
Gortler vortices have not been observed. In the study by 
Smits et al. (1979a), where the flow developed on a cylin- 
drical forebody before diverging on a cone, the boundary 
layer experienced the combined effects of concave curva- 
ture and divergence. Steady vortices were not detected. 
It is possible that unsteady vortices were formed, without 
a preferred spanwise position, or that the vortices orig- 
inated intermittently at different spatial locations. The 
measurements were not designed to detect such unsteady 
motions, and so we can only speculate. It is also possible 
that the roll-cells did not form at all because of a nonlin- 
ear interaction between concave curvature (which ampli- 
fies longitudinal vorticity) and divergence (which ampli- 
fies spanwise vorticity). 

In separated supersonic flows, surface oil flow visualiza- 
tions in the region of reattachment suggest that steady 
Taylor-Gortler vortices also occur in compressible flows 
(Roshko & Thomke, 1966). Visualizations of the separa- 
tion and reattachment lines in compression-corner flows 
similarly suggest the existence of longitudinal vortices, 
with a spanwise spacing similar to that seen in incom- 
pressible flows (see figure 37), and Selig et al. (1989) sug- 
gested that longitudinal vortices could be the cause for 
a bimodal pdf in the mass-flux fluctuations downstream 
of a 24' compression corner, since they are an effective 
mechanism for sweeping low-momentum fluid up from the 
near-wall regions. 

However, no evidence of steady Taylor-Gortler-like vor- 
tices was found in any of the attached flows listed in ta- 
bles 3 - 5.  It is again possible that nonlinear effects may 
have prevented their appearance. For example, it was sug- 
gested by Green (see Bradshaw, 1973, Smita et al., 1979a) 
that bulk compression acts in many respects similarly to 
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Figure 37: Surface streak patterns for compression-corner flows at Mach 2.9 (the line S indicates the mean separation 
line, line R the mean reattachment line and line C the position of the corner). The flow is from top to bottom, and the 
incoming boundary layer thickness is shown for comparison. From Settles et al. (1979a). 

lateral divergence. If it is true that Taylor-Gortler vor- 
tices do not form in subsonic boundary layer flows when 
concave curvature and divergence act together, then by 
extension i t  may not be surprising that when concave 
curvature and dilatation occur together, Taylor-Gortler 
vortices again appear to be absent. 

A criterion for the onset of steady Taylor-Gortler vor- 
tices in compressible flows with concave curvature may 
be developed 88 follows. According to Schlichting (1979), 
Taylor-Gortler vortices first appear in a laminar,. incom- 
pressible boundary layer on a concavely-curved wall when 
the characteristic parameter, the Gortler number GT,  

exceeds a certain value. Stability calculations give the 
neutral curve as a function of Gortler number and non- 
dimensional wavelength. 

Tani (1962) suggested that this criterion could be applied 
to turbulent flows by using the same characteristic length 
scale, 0, and simply replacing the molecular viscosity by 
the eddy viscosity. If we assume that the eddy viscosity 
in the outer layer is given by 

vt = 0.018Ue6' (44) 

(Clauser, 1956), then 

e JE GT=w R' (45) 

which indicates that the appearance of longitudinal vor- 
tices in a turbulent flow is a weak function of Reynolds 
number since the shape factor varies somewhat with 
Reynolds number (Coles, 1962). Bradshaw (1973) pointed 
out that the direct use of the neutral curve for the Blasius 
profile is not realistic, but Tani's measurements agreed 

reasonably well with this simple, proposal. Note that the 
Gortler number for turbulent flow can also be written as 

We can extend the analysis to compressible flow by assum- 
ing that the length scale remains unchanged and that the 
eddy viscosity is still given by equation 44. In other words, 
the Gortler number for a compressible turbulent flow is 
given by equation 46, where we recognize that the momen- 
tum and displacement thicknesses are a strong function 
of Mach number (Smits & Dwauge,  1996). Some typical 
values may then be found for the lower limit on 6/R where 
we expect to find longitudinal vortices, corresponding to 
the neutral curve calculated by Smith (1955) and a fixed 
wavelength of 26. For the present purpose, we will ignore 
the weak dependence of the Gortler number on Reynolds 
number. As the freeatream Mach number increases from 
0, to 1, to 3, to 5, we find (6/R), increases from 0.003, 
to 0.005, to 0.03, to 0.11. That is, the analysis predicts 
a strong increase in stability with increasing Mach num- 
ber. Most of the Mach 3 curved-wall cases listed in ta- 
bles 3 and 4 exceed this rather crude criterion, but not 
by very much, and it seems likely that the absence of 
Taylor-Gortler vortices in these attached flows is at least 
partly due to the stabilizing influence of Mach number. 
For the separated flows, the distortion of the mean veloc- 
ity profile will influence the stability calculation, and the 
appearance of an inflection point will obviously make the 
layer more unstable in every sense. 

4.7 Favorable pressure gradients 

When the sense of the curvature is convex, the effect on 
the boundary layer turbulence is stabilizing, and the wall- 
friction, heat-transfer and the Reynolds stresses are ex- 
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Group Three 
Dussauge & Gaviglio I Smith & Smits (1991) 1 Johnson 

Expansion corner I E xpansion corner I E xpansion corner I Curved Wall 

~ 

Table 5: Impulses in favorable pressure-gradient cases, Group Three. Adapted from Smith & Smits (1994). 

pected to decrease. If the flow is supersonic, then the con- 
vex curvature will generally be accompanied by a favor- 
able pressure-gradient which will enhance the stabilizing 
effect. With the exception of Morkovin (1955) and John- 
son (1993), all of the studies in supersonic flows of con- 
vex curvature effects have been made in expansion-comer 
flows (R, = 0) where the curvature and pressure gradient 
are stabilizing (see figure 27). Turbulence measurements 
in expansion corners by Dussauge & Gaviglio (1987) at 
Mach 1.76, and Smith & Smits (1991)a at Mach 2.9, show 
a substantial reduction in the streamwise Reynolds stress 
downstream of the corner (see Group Three, table 5). 

The usefulness of RDA for rapidly expanded flows was 
indicated in section 4.1. The strong stabilizing influence 
of expansion can be seen in figure 38. The good agree- 
ment between the measured and calculated stress profiles 
suggests that the evolution of the mean flow field was es- 
sentially independent of the turbulence field, and that the 
turbulence field evolved in direct response to the changes 
in the mean velocity gradients. Smith & Smits also found 
that 90 percent of the reduction in the streamwise stress 
was due to the effect of bulk dilatation, that is, the change 
in mean density. Curvature appeared to play a very small 
role even though the flow was turned through a relatively 
large angle of 20". 

If the favorable pressure gradient is strong enough, it 
seema possible that the boundary layer will relaminariz, 
as in subsonic flow, although it might be more accurate 
to say that pressure forces can become large enough to 
dominate the nearly frozen Reynolds stresses, and over 
a large part of the boundary layer the Reynolds stresses 
then have little influence on the mean flow. That is, the 
turbulent fluctuations may not be absent, but they no 
longer contribute appreciably to the momentum or en- 
ergy transport. Johnson (1993) made turbulence mea- 
surements downstream of a convex wall to study the pos- 
sibilities for relaminarization. In his experiments, the 
non-dimensional radius of curvature of the wall, &/bo,  
was varied from 0 to 15 while the overall turning angle 
remained at 15" (see table 5). The incoming flow was re- 
covering from the distortion presented by a 10" concavely- 
curved wall placed some distance upstream, but the in- 
coming flow was the same for each case so that the ef- 
fect of varying R, could still be determined to some de- 
gree. Johnson found a strong suppression of the longi- 
tudinal velocity fluctuations with the suppression being 
remarkably similar in all four cases, suggesting that in 
his flow the dominating influence was the overall pressure 
rise (or, equivalently, the total turning angle) rather than 
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Figure 38: Velocity fluctuations in a 12" expansion cor- 
ner at Mach 1.76. 0, upstream profile; A, along the last 
Mach wave in the expansion; - - - -, dilatation effect; 
shaded zone, dissipation effect. Arrows indicate stream- 
line correspondence. From Dussauge & Gaviglio (1987). 
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Group Four 

omp. Corner I Exp. Corner I Comp. Corner I Exp. Corner I Curved Camp. I Curved Exp. Zheltovodov et d. I Smith & Smits (1993b) 

Table 6:  Impulses in successive-distortion cases, Group Four. Here, 60 is the boundary layer thickness of the flow just 
upstream of the start of the disturbance. Adapted from Smith & Smits (1994). 

the strength of the pressure gradient. Here again, the dis- 
tortions were rapid, with the slowest distortion occurring 
over 46,. 

Unfortunately, the limitations of wind tunnel testing usu- 
ally prevent the study of the full relaxation behavior in 
expansion-corner flows, simply because it is difficult to 
follow the flow far downstream in a wind tunnel of fixed 
geometry. For example, the measurement region down- 
stream of the expansion corner in the study by Dussauge 
& Gaviglio was 116, long, and in the experiment by Smith 
& Smits it was only just over 56, in length. Since these 
flows have large and rapid decreases in pressure, it is clear 
that only the initial response of the boundary layer to the 
pressure distortion could be observed before the end of 
the measurement section was reached. 

4.8 Successive distortions 

Studies of boundary layers experiencing successive distor- 
tions can give new insight into the relaxation of a distorted 
boundary layer. In the investigations by Zheltovodov 
et al. (1990) and Smith & Smits (1993b), the boundary 
layer experienced successive impulses in curvature of op- 
posite sign such that the direction of the flow upstream 
and downstream of the curved-wall regions was the same 
(see figure 39, and Group Four, table 6). In a study by 
Zheltovodov et al. the flow passed over a 25' forward fac- 
ing step, and a remarkable relaxation behavior was found 
in the streamwise turbulence intensity. After the second 
impulse, that is, on the flat plate downstream of the step, 
the turbulence intensity levels initially returned to the up- 
stream levels, but further downstream the stress levels in 
the middle of the boundary layer continued to decrease. 
Unfortunately, the limited spatial resolution of the probes 
in this experiment makes it difficult to gauge the response 
quantitatively. 

In the study by Smith (1993) and Smith & Smita (1993b), 
two different flows over forward-facing ramps were stud- 
ied, each with 20' of turning. In the first case (Model 
A),  the turning was produced by sharp corners as in 
the Zheltovodov flow, but in the second case (Model B) 
the turning was produced by curved walls. As the flow 
passed over these steps, the boundary layer was subjected 
first to an adverse pressure gradient combined with con- 
cave streamline-curvature and bulk compression, followed 
by a favorable pressure gradient combined with convex 
streamline-curvature and bulk dilatation. On Model A ,  
the initial turning at the compression corner resulted in 

a shock-wave boundary-layer interaction, and the subse- 
quent expansion occurred through a centered expansion 
fan. On Model B, the concave and convex streamline- 
curvatures were distributed over longer streamwise dis- 
tances than on Model A, and therefore the pressure gra- 
dients were less severe. In particular, the shock associated 
with the concave curvature did not form until well outside 
the boundary layer, and within the boundary layer the 
compression occurred through a compression fan rather 
than a shock-wave boundary-layer interaction. On MO& 
e h  A and B, however, there was no net change in flow di- 
rection across the successive distortions and therefore the 
upstream and downstream freestream-conditions were ef- 
fectively the same except for a small shock loss on Model 
A. 

The overall response corresponded closely to that seen 
by Zheltovodov. The streamwise Reynolds stress profiles 
first show a strong amplification downstream of the com- 
pression surface (a factor of 10 for Model A) ,  followed by a 
large decrease just downstream of the expansion (see fig- 
ure 40: the large, initial amplification downstream of the 
compression corner is not shown in this figure, only the 
relaxation behavior on the flat plate downstream of the 
expansion). In the profiles further downstream, this re- 
gion of reduced stress grows in size and the shape of the 
stress profile suggests the presence of an internal layer. 
There is no detectable relaxation toward a self-preserving 
state, in agreement with the results obtained by Johnson 
(1993) in a similar flow configuration at  Mach 2.45. 

Over most of the boundary layer immediately downstream 
of the distortions, the shear stress appeared to change 
sign. A subsequent recovery of the shear stress was ob- 
served in the lower 60 percent of the boundary layer, but 
in the remaining part of the layer the shear stress re- 
mained at very low values. 

Despite the differences between Model3 A and B - differ- 
ent distortion lengths, and the presence of a shock wave 
in the first case compared to an isentropic compression in 
the second case - the general response of the boundary 
layer was very similar. In both c-, the distortions oc- 
curred rapidly, suggesting that the perturbation rate was 
not important and that the distortion can be described 
qualitatively using the appropriate impulse levels (see ta- 
ble 6) .  However, it is not suggested that the overall re- 
sponse of the boundary layer can be described as a linear 
sum of the two successive impulses: this would indicate 
that the overall perturbation is zero (assuming that a0 is 
the same for all perturbations). Remarkably, the stress 
levels at the exit from the second perturbation were al- 
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Figure 

Zbeltovodov et ai (1990) 
Smith & Smltc (1994b) 
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39: Successive distortion flow geometries. From Smith & Smits 
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Figure 40: Longitudinal Reynolds stress profiles for the flow over a cornpression corner followed by an expansion corner 
(Model A in table 6). The distance z is measured from the start of the compression ramp, and the ramp is 149mm 
long (about 460). Only the profiles upstream of the compression corner and downstream of the expansion corner are 
shown. F'rom Smith & Smits (1993b). 
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most unchanged from their upstream values, but further 
downstream the undershoot in the turbulence levels sug- 
gests a secondader response of an underdamped system. 
The turbulence is strongly out of equilibrium, and the pro- 
duction, dissipation and anisotropy are out of balance. 

An RDA Reynolds stress calculation similar to the ones 
discussed earlier was used to help understand the response 
of the turbulence over Model A. In the expansion, es- 
timates of the production terms in the Reynolds stress 
equations revealed that negative production can occur 
and this may be largely responsible for the change of sign 
in the shear stress, and the complex nature of the re- 
laxation process. Not unexpectedly, this indicates that 
the conventional eddy viscosity approaches to turbulence 
modeling have severe limitations for these strongly per- 
turbed flows. A number of factors combined to inhibit the 
turbulence production mechanisms in the relaxing bound- 
ary layer. These factors included a fuller velocity profile, 
a decay of the streamwise stress, and a collapse of the 
shear stress in the expansion fan. As a result, a long re- 
covery period may be expected. Qualitatively, it appeared 
that the streamline curvature in the second impulse com- 
bined with the amplified streamwise Reynolds stress on 
the ramp to exaggerate the stabilizing effect of the expan- 
sion corner. In the flows over a simple expansion corner 
(Group Three), the dominant effect is that of bulk dilata- 
tion; while in the flows where a compression precedes the 
expansion (Group Four), curvature plays a more impor- 
tant role within the expansion. 

The shape of the streamwise Reynolds stress profiles sug- 
gested three zones of response: a recovery region near 
the wall where the turbulence recovered quickly from the 
perturbations; a zone of strong response in the middle of 
the boundary layer where the turbulence eventually un- 
dershot the equilibrium distribution sharply in response 
to the combined effects of the perturbations (second- 
order response); and a zone of advection near the edge 
of the boundary layer where the turbulence appeared un- 
affected by the overall effects of the perturbations (linear 
response). This latter observation further supported the 
conclusion of Selig & Smits (1991) that at this Mach num- 
ber shock-wave oscillation does not contribute apprecia- 
bly to turbulence amplification in shock-wave boundary- 
layer interactions. 

4.9 Overview of response to distor- 
t ions 

For the casea with both adverse pressure-gradients and 
concave streamline-curvature, the changes in the tur- 
bulence structure (as inferred from the trends in the 
Reynolds shear-stress) appear to be strongly tied to the 
magnitude of the impulses due to curvature. This holds 
true for the weak and strong distortions considered here. 
If the radius of curvature of the turning was small enough, 
a shock wave forms in the boundary layer, and the stream- 
wise stress increased with increasing shock strength. If 
the pressure gradients were not strong enough to separate 
the layer, the shock wave seemed to exert no additional 
effect on the shear stress over and above the changes that 
could be attributed to streamline curvature (or the equiv- 
alent compression). 

In the flows with rapid, favorable pressure-gradients and 
convex curvature, it appears that the initial response of 
the boundary layer turbulence is dominated by the effects 
of the bulk dilatation, and the effects of convex curvature 
are always small. That is, the turbulence initially changes 
in response to the pressure gradient as would be expected 
using the conservation of circulation (we can largely ig- 
nore the effects of compressibility on relative motions be- 
cause the Mach number gradients in the outer layer are 
usually small). The effect of bulk dilatation on the turbu- 
lence (expressed as an impulse.) is not a strong function 
of the pressure gradient, indicating that it is the overall 
pressure change which is important. In contrast, the re- 
laxation behavior appeared to be largely controlled by the 
streamline curvature history. However, these observations 
were made in a boundary layer downstream of two succe& 
sive distortions where the effect of curvature appeared to 
be greatly augmented by the amplification of the stresses 
downstream of the first distortion. The relaxation behav- 
ior is similar to the second-order response seen by Smits 
et al. (1979b) in an incompressible turbulent boundary 
layer downstream of an impulse of curvature. In addi- 
tion, the behavior of the shear stress was similar to that 
observed by So & Mellor (1973) in a boundary layer de- 
veloping over a surface with prolonged surface curvature 
in incompressible flow. What has not been explained is 
the observation that in the outermost part of the bound- 
ary layer there was no change in the streamwise stress 
from its undisturbed profile even though it is in this re- 
gion where the principal strain-rate aU/ay is small and 
that the effect of the extra strain-rates should be felt most 
strongly. 

Overall, it appears'that the boundary layer response to 
curvature in a supersonic flow is similar to the response in 
subsonic flow, even to the appearance of a dip below the 
log-law in the mean velocity profile as a response to any 
significant amount of concave streamline curvature. More 
specifically, in the case of a single impulse of curvature, 
we expect to observe the same counter-intuitive trends in 
the Reynolds stress behavior as observed by Smita et d. 
in subsonic flow, where a stabilizing distortion (an im- 
pulse in convex curvature) caused an increase in turbu- 
lence activity and a destabilizing distortion (an impulse 
in concave curvature) caused a decrease. 

Compressibility effects on the turbulence appear to be 
small, a t  least at supersonic speeds. In flows with con- 
cave or convex streamline curvature, Reynolds stress cal- 
culations using subsonic turbulence models by Degani & 
Smits (1990) were found to give reasonable predictions of 
Reynolds stress behavior, at least for distortions where 
the boundary layer did not depart too far from equilib 
rium. For these flows, the limitations of the calculation 
are probably due to the turbulence modeling, rather than 
any specific influence of compressibility, and the observs 
tions tend to support the turbulence structure similarity 
suggested by Morkovin's Hypothesis. For strong distor- 
tions, our predictive capability is confined to the initial 
response where linear theories such as RDA become u8e- 
ful. 
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Figure 41: Typical interactions between shock waves and boundary layers: (a) incident oblique shock (b) compreasion- 
corner interaction. From Adamson & Messiter (1980). 

5 Shock Wave Boundary Layer 
Inter act ions 

Shock-turbulence interactions are a common occurrence 
in supersonic flow since compression and flow deflection 
are almost always accompanied by the formation of a 
shock. The characteristics of the interaction depend on 
the Mach number, the scale and frequency content of the 
turbulence, the nature of the incoming flow, the shock 
angle, the source of the shock, and the flow geometry. 
The shock may interact with freeatream turbulence, with 
a free shear layer, or with a boundary layer (figure 41). 
The earliest experiments concentrated on transonic inter- 
actions, to make possible flight at supersonic speeds (Liep- 
mann, 1946, Ackeret et al., 1946, Liepmann et al., 1951). 
Once the sound barrier was broken, attention shifted to 
supersonic and hypersonic interactions, and to date a 
large number of experiments have been performed. Green 
(1970), Stanewski (1973), Sirieix (1975), Adamson & 
Messiter (1980), DBlery (1985) and Viswanath (1988) give 
detailed surveys of interactions which are two-dimensional 
in the mean, and Green (1970), Korkegi (1971), Peake & 
Tobak (1980), Settles & Dolling (1990), Dolling (1990), 
Settles & Dolling (1992) and Dolling (1993) provide a 
similarly comprehensive treatment for three-dimensional 
interactions. Rather than attempting to summarize these 
reviews, we will instead focus on some of the salient fea- 
tures of shock-wave turbulence interactions, with an em- 
phasis on the underlying mechanisms controlling the scal- 
ing of the interaction, the possibility of flowfield separa- 
tion, modifications to the incoming turbulence, and the 
unsteadiness of the shock. 

Shock-wave interactions are usually classified according 
to how the shock is generated. For shock-wave boundary- 
layer interactions, the shock may impinge on the layer 
from an external source (an incident shock intemction), 
or the shock may be generated by the same surface that 
generated the boundary layer (a compression surface or 
compression-corner intemction). In most practical flows 
the interaction is three-dimensional, in that the shock 
sheet is swept at some angle to the boundary layer (which 
in itself may be two- or three-dimensional). Some of 
the more common configurations used to study two- and 
three-dimensional shock wave boundary layer interactions 
in the laboratory are illustrated in figure 42. In three- 
dimensional interactions, the shock may be generated by 

Figure 42: Examples of two- and three-dimensional 
shock-wave boundary-layer interaction geometries stud- 
ied in the laboratory. From fian (1987). 

a sharp fin placed at an angle-of-attack to the incom- 
ing flow, by a blunt fin where the leading edge has a fi- 
nite radius of curvature, or by a cone or other protrusion 
rising from the surface. The fins may also be swept in 
the streamwise direction, so that the shock sheet in the 
freestream is angled in two directions with respect to the 
upstream flow. The geometries of these interactions have 
many degrees of freedom, and they can become quite com- 
plex. In addition, the Mach number plays a crucial role 
in governing the inviscid flow field. For example, as the 
Mach number increases for a given shock generator con- 
figuration, the inviscid shock may change from being d e  
tached to being attached, producing large changes in the 
near-field. Even if the inviscid shock is attached, the re- 
duced Mach number within the boundary layer may cause 
detachment at some point, and this can change the en- 
tire flow pattern. Variations in hynolds  number will also 
play a role, but for fully-turbulent flows ita influence ap- 
pears to be relatively minor since most interactions are 
pressuredominated. 
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We consider only compression-corner flows, and not con- 
sider incident-shock interactions in detail. Incident- 
shock interactions for supersonic flows were studied 
by (see, Law, 1975, DBlery, 1992, Audiffren, 1993, 
Deleuze & E l h a ,  1995), but the data base is much 
smaller than for compression-corner flows. Fortunately, 
most of the generic effects of compressibility in two- 
dimensional interactions can be understood from an ex- 
amination of compression-corner flows. Although shock- 
wave boundary-layer interactions are more complicated 
than interactions away from the wall, the boundary con- 
ditions are better defined. Three-dimensional interactions 
and more complicated flows produced by multiple shock 
interactions will not be considered here, and the reader 
is referred to the references given earlier, and the mono- 
graph by Smits & Dussauge (1996). 

Two-dimensional compression ramp flows have been ex- 
tensively studied (Settles et al., 1979a, Debitwe, 1983, Ar- 
donceau, 1984, Smits & Muck, 1987, Dolling & Murphy, 
1983, Selig et al., 1989, Evans & Smits, 1996). The exper- 
iments a t  Mach 2.9 by Settles et al. and Smits & Muck 
are particularly revealing since they cover a wide range 
of turning angles, and detailed mean flow and turbulence 
data are available. As an illustration, we consider the 24" 
case (see figure 43). In this flow, the incoming boundary 
layer is turbulent. The 24" corner produces a shock wave 
with an initial turning of about 10". The rest of the de- 
flection is produced more gradually downstream through 
a series of unsteady compression waves. The pressure rise 
is strong enough to separate the layer, and there is a con- 
siderable increase in the turbulence level across the inter- 
action. The velocity fluctuations are amplified by pawing 
through the shock, and vorticity is generated by interac- 
tion between entropy spots and the shock, in agreement 
with the second-order modes theory d i s c t d  by Kovasz- 
nay (1953). 

The whole flow is unsteady: the shock moves over a sig- 
nificant distance, its motion is three-dimensional and it 
occurs at low frequencies. It seems that the shock un- 
steadiness by itself makes a negligible contribution to the 
turbulence amplification (Selig & Smits, 1991). However, 
the separated zone is the source of large-scale fluctuations 
which are convected downstream, and them large-scale 
structures are probably related to low-frequency mecha- 
nisms. If the flow over the separated zone has features in 
common with mixing layers, we can expect this part of 
the flow to be very sensitive to compressibility effects, as 
free shear flows are. These aspects of the flow properties 
can be at the heart of couplings in the interaction, since 
they impose unsteady outlet conditions on the shock and 
can make it move. Since the incoming turbulence imposes 
an unsteady inlet condition, coupling with the incoming 
flow can also occur. 

In terms of an extra strain rate terminology, the boundary 
layer experiences the combined effects of an adverse pres- 
sure gradient, concave streamline curvature, bulk com- 
pression, shock unsteadiness, and if the pressure rise is 
strong enough, flow separation. The wall stress typically 
decreases sharply near the start of the interaction, but 
quickly recovers as the boundary layer thins in response to 
the overall compression, overshooting the upstream level 
before eventually recovering to its undisturbed level ap- 
propriate to the new Reynolds number on the ramp. At 

the same time, the turbulence levels increase dramatically 
through the interaction and appear to relax only slowly. 
The shear stress is generally affected leas than the normal 
stresses, and as a result structure parameters, such a9 
a1 E -uW/qa, are strongly distorted. Because the flow 
responds to the combined effects of many distortions, it is 
difficult to conclude from the available data what the spe- 
cific contributions are of, say, concave s t r e d i n e  curva- 
ture and bulk compression. It waa apparent from section 4 
that when the flow is compressed rapidly on a curved wall 
with a short radius of curvature, the boundary layer tur- 
bulence is amplified to a significantly larger degree than 
when the compression occurs more slowly, regardless of 
the curvature of the surface. 

In the following discussion, we will try to infer the phe- 
nomena controlling the evolution of turbulence in shock- 
wave boundary-layer interactions by reviewing these dif- 
ferent elements. 

- 

5.1 Skin friction distribution 

For the compressioncorner interaction shown in figure 43, 
the mean pressure distributions begin to develop a plateau 
region for turning angles greater than 16", which indicates 
the onset of mean flow separation: the condition at 16" 
is called incipient separation (Settles et al., 1979a). The 
terms weak and strong are sometimes used to describe at- 
tached and separated interactions, respectively, but these 
terms can mean different things in different contexts, and 
they will be avoided here. The instantaneous flow will 
show signs of reversal at smaller turning angles, but at 
16" the mean skin ftiction becomes zero at some point 
(see figure 44). Both the 20" and 24" corners exhibit re- 
gions of separated flow. We noted earlier (section 4.4) 
that adverse pressure gradients in a compressible bound- 
ary layer flow can cause the skin friction to increase be- 
cause of the thinning of the layer. Here we see that if 
the pressure gradients are strong enough, the skin friction 
can decrease suddenly, and the flow can separate. Down- 
stream, however, the overall increase in pressure can still 
cause the skin friction to rise above its usual value at the 
same Reynolds number, again because of the thinning of 
the layer. 

5.2 Separation 

An important aspect of shock-wave boundary-layer inter- 
actions is the prediction of the onset of separation. We 
need to distinguish between mean flow separation, and 
instantaneous flow separation, eSpecially for these inher- 
ently unsteady flows. There is evidence to indicate that 
the motion of the instantaneous separation point is closely 
tied to the instantaneous position of the shock (Gramann 
& Dolling, 1988), 80 that the probability that the flow is 
separated at any position is similar to the probability that 
the shock is located upstream of that location. Mean flow 
separation can then be defined as the point where the flow 
is separated for 50 percent of the time Simpson (1981). 
This location is often found using surface flow visualiza- 
tion such as the kerosene-graphite technique (Settles & 
Teng, 1984), but it should be noted that the line of ac- 
cumulation seen in the visualization is located typically 
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Figure 43: Sketch of the Mach 2.9, 24' compression ramp flow. From Dussauge et al. (1989). 
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Figure 44: Distributions of Cf in compression-corner interactions at Mach 2.9. The wall stress is non-dimensionalized 
using "effective" edge conditions based on tunnel stagnation and local static pressures. Figure adapted from Smits & 
Muck (1987), showing data by Settles et al. (1979a). 
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well ahead of the average shock position, and it is this 
unsteady motion that is primarily responsible for the up 
stream inauence seen in the wall pressure distributiw. 
The mechanism is illustrated in figun 45. Within the 
region of nhock motion, the wall pnsnve signal is inter- 
mittent, as seen in the figure. The values of pressure up 
stream and downstresm of the shock are consistent with 
the pressure rise through the mean shock at ita foot. The 
local mean wall pressure at a given location is nimply the 

by the time the shock is upstream of that location. 
result of the pressure rise acrom the shock foot, weighted 

downstream of the line of separation, since the mixture 
&xum&ten by the action of the wall shear-stress which 
is higher upetream of the instantaneous separation point 
than it is downstream, so that the flow visualization re- 
d t a  are hissed toward a position downstream of the mean 
separation location (Gremann & Dolling, 1988). 

Chapman et OL (1957) used order-of-magnitude argu- 
menta to describe the aimiladty of the mean pressure dis- 
tribution for separated flaws. Elom an extensive series of 
experimenta in laminar and turbulent flow, they argued 
that if the separated zone is large enough, the interaction 
in the vicinity of separation was local, independent of the 
underlying c a m  of separation. That is, the pressure rise 
to the point of separation, for example, should he simi- 
lar for compression ramps and forward-facing step, and 
it should scale with the Mach number and the inwm- 
ing boundary layer characteristics. This free-intmretion 
concept 8eem8 to hold well for laminar flows, hut for tur- 
hnlent flowa the collapse of the data is not impressive, 
indicating a more significant dependence of the premure 
distribution on the downstream boundary conditions. A 
mean flow concept such as free interaction theory dws 
not take into account the unsteady motion of the shock. 
However, since the pressure distribution is a result of the 
averaging due to the unsteady shock motion, the break- 
down of this criterion can he taken further evidence 
to indicate that the unsteadiness depends to some extent 
on the downstream flow conditione, at least for separated 
flows. 

5.3 Upstream influence 

Figure 17 demonstrate that the wall pressure does not 
rise sharply m the region of separation. Instead, it rises 
gradnaUy, levela off somewhat in the ~y-separateed wne 
(the "premure plateau"), and then starta to rise again in 
the region of reattachment, eventnally reaching ita maxi- 
mum value some distance downstream of the mean reat- 
tachment line. The region of upstream influem is de- 
lined as the distance from the comer to the point where a 
straight line drawn to fit the slope of the initial pressure 
rise intersects the pressure level corresponding to the in- 
coming boundary layer. Now, even in a perfectly steady 
(laminar) interaction, we expect there to be an upstream 
inliuence. The pressure rise generated by the flow deflec- 
tion can propagate upstream through the m h n i e  part 
of the flow near the wall. This will cause the Streamtubee 
below the sonic line to thicken, and cause a flow deflection 
upstream of the comer. However, the upstream propaga- 
tion distance depends on the t h i c k  of the subsonic 
layer (Schneider, 1974), and the sonic line rapidly ap 
proaches the wall as the Mach number increases For the 
case shown in Sgure 44, the sonic line for the incoming 
boundary layer is located at a distance less than 0.016 
from the wall, and the steady upstream propagation din- 
tance is expected to be very short. Indeed, measurements 
of the instantaneous wall p m e  show that the shock 
a p m  as a very rapid rise in the pressure signature: 
there is no sign of an instantaneous upstream propagk 
tion of pressure. However, the unsteady motion of the 
shock o c c m  over a much greater distance than the steady 
upstream propagation distance. The unsteady motion of 
the shock canem the mean pressure pW to rise at points 

5.4 Shock motion 

Shadowgraphs of the instantaneom flowfields show q& 
tatively that the turbulent mixing appears to be consider- 
ably enhaneed acrom the shock and the trend is more p m  
nounced as the shoeL strength increases (Smita & Muelr, 
1987). The distortion of the ahock h n t  is alm clearly 
evident. Viaahzations using Rayleigh scattering in a 24" 
compression ramp flow at M = 3 nm6nned that lergs 
scale edd~es are energetic enongh to distort the shock 
(Snuth et d., 1989). Recent double-pulsed Rayleigh im- 
ages show how the large-scale motions in the boundsry 
layer interact with the shock, and how they are s n b  
quently distorted by the compression (figure 46). A de- 
tailed deemption of the shock motion near the wall w 
obtained from wall-pressure fluctuation measurements in 
compression ramp flown by Dolling & Murphy (1983), 
Muck et d. (1988), Bonnet (1968) and Selig et d. (19aS) 
(for a review, see Dolling & Dussauge, 1989). Around the 
mean pasition of the shock, bw frequency wdl pressure 
fluctnatione of large amplitude are present. The spatial 
extent of these oscillations is a function of the strength 
of the shock, as shown in figure 47. Muck et d (1986) 
and Debibve & Lacherme (1985) used these obaervstions 
to p r o p  a reasonable approximation for the maximum 
rmd value of the p-e fluctuation level -an 00 

ciUat i i  shock from simple intermittency conaideratiom: 
the maximum level in obtained when the intermittency 
coefficient is 0.5, and the maximm rn pressure # is 
given by the simple relation d/Ap = 0.5, where Ap is 
the mean pressure rise through the shock. T h i ~  relation 
works well when the upstream and downstream levels of 

At Mach 2.9, the incipient separation occm for a ramp 
angle a of 16'. For Iomr valw of the wall Meetion, the 
part of the flow involved by shwk willation in limited and 
varies very slowly mth a. In this case, it may he Inferred 
that the shock m o w  mainly under the action of incoming 
turhnlence. There in a significant increase when a > 16", 
suggesting that the wall pressure fluctuations are now in- 
fluenced by the unsteadiness of the separation bubble. It 
IE clear that the shock motion m tlua flow case has an 
amphtnde of the order of the boundary layer thicknem, 
hut ita mean fresueney is an order-of-magnitude below 
the characteristic frequency of the boundary layer VI/& 
This indicates that the average value of the shock Bpeed 

When a hock  pafsea over a t r a n s d m  it detecta a rapid 
pressure rise, corresponding to sharp h n t a  in the pressure 
signal. The sign& obtained mimultaneously using a span- 
wise row of preesure t r aduce r s  revealed that the shock 

p r w m  fluctnations are not too high. 

U: is given by u:/u, FJ 0.1. 
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Figure 4 5  (a) Wall-pressure timehistorim, and (b) m wall pressure levels, in a 24' compression ramp at Mach 
3. The lines of mean separation and reattachment are marked by S and R, respectively. The preasurea were non- 
dimenaionalized using the upstream mean wall pressure, GO; up in the m a  wall-pressure level. From Dolling & Murphy 
(1983). 
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Figure 46: Double-pulsed Rayleigh images of a 16" Mach 
2.9 compression-corner interaction. The time delay is 
4 0 p  between the top and the bottom images. Note the 
large-scale motion (outlined) passing through the shock. 
The flow in from lei% to right. Rom Forkey et d. (1993). 

has spanwise ripples, since mme perturhationa were not 
mmured by all the transducers. This thredimensional 
structure shows that the shoek not only translates back 
and forth, but ale0 experiences large-scale spanwise pcr- 
turbations. 

5.5 Turbulence amplification 

Rose (1973) and Kussoy & Horstman (1975) were the first 
to measure the strong amplification of turbulence levels 
in shock-wave boundary-layer interactions. Both in- 
tigations were pehrmed in incident shock interactions. 
Compression corner studies confirmed that interactions 
produce a large increase in turbulence activity: for a 20' 
deAection at Mach 2.9, Smita k Muck (1987) found that 
the maximum level of ;"i increaeed hy a factor of about 
12. The unsteady shock motion smears the region over 
which the amplification occurs, and it sometimes producas 
a local peak in the intensity profiles. The d t a  given in 
figure 48 show thin behavior clearly. It appears that the 
region directly &ted hy the shock has a thickness of 
about 0.16 for the 8' case, and 0.26 for the 16' cam. The 
extent of the unsteady shock motion at the wall mean- 
approximately 0.156 and 0.36 for these two c-, r e a p  
tively, aa indicated in figure 47. Clearly, the shock motion 
extends throughout the layer, and the amplitude of the 
motion is approximately constant with distance from the 
Wall. 

The level of turbulence intensity in the separated wne 
takes a maximum away from the wall, near the edge 
of the separation bubble. Wig et d. found that this 
level matcbm the &h levels of turbulence found in mix- 
ing layers. Therefore, it 8eem8 possible that the sepk 
rated zone can produce large-scale perturbations which 
are convected downstream. Such structures have been 
found from computations in laminar flows at low and 
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F i e  47: Distributions of (p)' in 18" compressioncomer interaction, in the region near the corner. From Snits k 
Muck (1987). 
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W r e  4 8  Range and amplitude of t b  shock millation for the Mach 2.9 compreesion-comer interactions examined 
by Dolling k Murphy (1983). From Selig et aL (1989). 
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high spee (Daghwtsni, 1993, Ripley & Pauley, 1993), 
and have mme features in common with the p e r t u r b  
tions seen in mixing layers. In particular, they involve 
low frequencies, or at least frequencies much lower than 
the characteristic frequency of a boundary layer of the 
same thicknw. Other experimental evidence favorn this 
picture also. For example, measurements of turbulence 
doamstream of the reattachment have show a strongly 
perturbed outer-layer intermittency, and schlieren images 
triggered hy a bot wire detecting the occnrrence sharp 
fmnts in the massflux signal very clearly showed the pres- 
ence of radiation hy Mach wawa (Smith, 1989). Again, 
these visualizations are perhaps among the few which sng- 
gest the emission of shocklets in a distorted boundary 
layer at supersonic 8peeda. In recent unpublished work 
at Princeton, shoeklets have been seen emanating from 
the largpscale mtim in a Mach 8 boundary layer, but 
the evidence for their presence in wall-bounded flows at 
lower Mach numbers is scarce. Since the space-time char- 
acterhtiee of equilibrium boundary layers indicate that 
the l m a l e  structures in thin flow prcdnce only weak 
Mach waves at supersonic speeds, we have to suppose that 
there are eddies with large velocity fluctuations which are 
convected at a speed that is supersonic with respect to 
the external flow. This is consistent with the conjecture 
that large-scale perturbations are produced in the mixing 
zone over the separated bubble (nee also Selig & Smits, 
1991). The low frequency unsteadiness which they pro- 
duce is the downstream condition imposed on the shock 
and thereby maken it move. This could explain why the 
shock motion occun at frequencies typically an order- 
of-magnitude helow the characteristic frequency of the 
boundary layer. Selig & Smita have also supposed that 
TaylorGrtler vortices produced by the concave stream- 
line contribute to the perturbation. Unalmis k Dolling 
(1996) in aMach 5 hlunt4n interaction found a significant 
level of correlation between the shock foot position and 
the ensemble-averaged total pressure well upstream of the 
interaction. The freqnency of these events was lower than 
the typical frequency content of the large-scale motions, 
and suggest mme long-term variations in the incoming 
boundary layer. They proposed that these variations are 
consistent with the preaence of unsteady Taylor-Gortler 
vortices, paesibly produced by the concave curvature in 
the noule, since the measurements were made in the noz- 
zle wall boundary layer. The last conclusion is that the 
return to equilihrium of the bonndary layer downstream 
of reattachment probably depends on the way that the 
perturbations shed by the separated bubble into the wall 
layer lose their identity, thmngh the process by which they 
lone energy through acoustic losses and interact with the 
new structures generated near the wall. 

To study the reattachment region more closely, Settles 
et d. (1982), Hayekriwa et d (1984), Poggie et d. (19B2), 
Shen et d. (1993) and Poggie (1995) conducted exper- 
iments in a backward-facing step flow where the sepa- 
ration point w88 Exed, and a relatively large recircula- 
tion zone was formed. The freestream Mach nunher was 
2.9. The reattachment occurred on a 20' ramp, and the 
ramp was adjusted 80 that the upstream boundary layer 
separated without deflection. The preseure fluctuations 
on the ramp reached very high levek, and a peak value 
equal to about 11 percent of the local mean wall pres- 
sure was found just downstream of the mean reattach- 

ment line. Multiple shocks were observed in thin region, 
interacting in complex patterne. Shoclrs typically formed 
at the upstream edgea of the largescale stmnrea in the 
reattaching shear layer and redeveloping boundary layer. 
Doublepulsed Rayleigh scattering imagm s h o d  the for- 
mation and progrrsaiw strengthening of them abocks YI 

the structures conwcted through the reattschmsnt zom 
(figure 49). The spectra of the wall-pressure did mt 
display the low-frequency peak commonly obssrvad in 
c o m p d o n a m e r  i n t e ~ a c t i ~ ~ ,  supporting the notion 
that it is the expawion and contraction of the kp.ration 
bubble that is responsible for lowaequemcy shock motion 
in those flows. In the c w  of the resttaching sbesr lam, 
it is the incoming turbnlence that Is the primary c a m  
for the shock motion and the intenne levels of fluctuating 
premnre that oceur mar the mean nattschment line. 

Finally, me~~uremmtn of the heat transfer in a 16' 
compressionamer interaction at Mach 2.84 demonstrate 
that the Reynolds analogy factor a, the ratio of the Stan- 
ton number to the skin friction mefficient, strongly dsvc 
s t a  from a conntant d u e  in the region down&- of 
the interaction. Evens & Smits (1996) found that hi- 
t i d y  i n d  by a factor of about three, relaxed quickly 
to a value equal to twice its upstream value at a distance 
360 from of the corner, and then s h o w e d  no obviow signs 
of further relaxation further downstream. 

6 Summary 

These have attempted to Summarize the C U r r e n t  

literature on turbulent boundary-layer behavior at super- 
sonic speed. The emphasis has heen on Reynoldn-number 
effects and Mach-number effects. A major drawback of 
the current understanding of these effecte is that the data 
have been collected from meay different flows, using dif- 
ferent data acquisition and analysin pmcedures. These 
differencen have resulted in large variations among the 
published results. Neverthelw, some definite conclwbns 
can be made. 

Ftom the review of flat plate turbulent boundary layem 
in supersonic flows with moderate Mach number, it sp 
peam that the direct effects of comprawibility on wdl 
turhulence are ratber small: the mcet notable dilFerences 
between subsonic and supersonic boundary layers may he 
attributed to the variation in fluid properties 8~1088 the 
layer. Under the assumption that the length scales are 
not &ted by compressibility, the mean velocity profile 
can be transformed into an "eqnivalent' incompreesible 
profile, and the agreement with the incompressible scal- 
ing appears to hold over very wide Reynolds number and 
Machnumher ranges. Fhrthermore, the turbnlent st- 
in the outer region scale on the wall @tress, as first mg- 
gested by Morkovin (1962), as far as we can tell from the 
available data This result is not surprising in -me waya 
since the fluctuating Mach number (M' = M - for 
moderately supersonic flows is considerably less than one, 
as illustrated in figure 3. However, a more detailed inspec- 
tion of the turbulence properties reveals certain character- 
istics that cannot be colla@ hy a simple deneity scaling. 
For example, there are suggestions that the shear c o d  
tion coefficient R,.* decreases with distance from the wall 
instead of remaining approximately constant an in the 
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Figure 49: Rayleigh scattering flow visualization of a reattaching shear layer. The incoming flow is a free shear layer 
formed by a backward-facing step, with a freeatream Mach number of 2.9. The visualization is just downstream of 
attachment which takes place on a 20' ramp. The flow is along the ramp, from left to right. The shocklets are visible 
as bright. fronts, shrouding the darker large-scale features in the boundary layer. From Poggie (1995). 

subsonic case. There are other results, however, which 
indicate that Q, follows the incompressible trend, and 
there is the possibility that the differences may be caused 
by a Reynoldsnnmber rather than a Mach-number de- 
pendence. Similarly, earlier data indicated a Mach num- 
ber dependence of the intermittency distribution but re- 
cent measurements by Baumgartner et d. (1997) based on 
Rayleigh scattering images of a Mach 8 boundary layer ( 
as shown in iigure 17) indicate very good agreement with 
the subsonic intermittency distribution measured by Kle- 
banoff (1955), suggesting that the earlier results may be 
flawed in some way. Unfortunately the data baae is very 
sparse, and considerable effort needs to be spent before 
these issues can be laid to reat. 

With respect to the streamwise and spanwise length scales 
of the largwcale motions, and their average inclination 
to the wall, there exists strong evidence to indicate the 
effect of Mach number. The streamwise length scales are 
redud significantly by increasing Mach number, and the 
angle of inclination is increased, although in coming to 
these conclusions we have implicitly assumed that Mach 
and Reynolds number effects are independent. It is neces- 
sary to make this assumption since the data do not over- 
lap to any significant extent, and we are forced to compare 
experiments in supersonic flow with the results obtained 
in subsonic flow, usually at a different Reynolds num- 
ber. In fact, the actual Reynolds number to be used in 
such a comparison is controversial, since the temperature 
varies significantly Scrm the layer, and there is usually 
a major difference between the values of R e o  and &. 
Finally, there is an order-of-magnitude decrease in the 
rate of decay of the large-scale motions 88 the Mach num- 
ber increases from low-eubsonic to high supersonic values 

(Smits et al., 1989). Even if we account for the change 
in time scale of the energy-containing &ea A/d, we 
see that the lateral correlations are almmt unaffected by 
changea in Mach and Reynolds number. 

For the casea with both adverse pressure-gradients and 
concave streamlinecurvature, the changes in the tur- 
bulence structure (aa inferred from the trends in the 
Reynolds shear-stress) appear to be strongly tied to the 
magnitude of the impulses due to curvature. This holds 
true for the weak and strong distortions considered here. 
If the radius of curvature of the turning was d enough, 
a shock wave formn in the boundary layer, and the streem- 
wise stress increased with increasing shock strength. If 
the pressure gradients were not strong enough to separate 
the layer, the shock wave Beemed to exert no additional 
effect on the shear strew over and above the changes that 
could be attributed to streamline curvature (or the eqniv- 
alent compression). 

In the flows with rapid, favorable pressumgradients and 
convex curvature, it  appears that the initial rmponee of 
the boundary layer turbulence is dominated by the effects 
of the bulk dilatation, and the effects of convex curvature 
are always small. That is, the turbulenee initially changen 
in reaponse to the pressure gradient an would be expected 
using the conservation of circulation (we can largely ig- 
nore the effects of compressibility on relative m o t h  be- 
c a w  the Mach number gradients in the outer layer are 
usually mall). The effect of bulk dilatation on the turbu- 
lence (expressed as an impulse) is not a strong funetion 
of the pressure gradient, indicating that it is the overall 
pressure change which is important. In contrast, the r e  
laxation behavior appeared to he largely controlled by the 
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streamline curvature history. However, these observations 
were made in a boundary layer downstream of two sncces- 
sive distortions where the effect of Curvature appeared to 
he greatly augmented by the amplification of the stresea 
downstream of the fir& distortion. The relaxation behav- 
ior is similar to the second-order response seen by Smits 
d al. (1979b) in an incompressible turbulent boundary 
layer downstream of an impulse of curvature. In addi- 
tion, the behavior of the shear stress was similar to that 
observed by So & Mellor (1973) in a boundary layer de- 
veloping over a surface with prolonged surface c m t u r e  
in incompressible flow, What bas not been explained is 
the observation that in the outermost part of the bound- 
ary layer there was no change in the streamwise stresll 
from its undisturbed profile even though it is in this re- 
gion where the principal strain-rate aUlt3y is d and 
that the effect of the extra strain-rates should be felt most 
strongly. 

Overall, it appears that the boundary layer response to 
curvature in a supersonic flow is similar to the response in 
subsonic flow, even to the appearance of a dip helow the 
log-law in the mean velocity profile as a response to any 
significant amount of concave streamline curvature. More 
specifically, in the case of a single impulse of curvature, 
we expect to observe the same counter-intuitive trends in 
the Reynolds stress behavior as observed hy Smita et al. 
in subsonic Row, where a stabilizing distortion (an im- 
pulse in convex curvature) caused an increase in turbu- 
lence activity and a destabilizing distortion (an impulse 
in concave curvature) c a d  a decrease. 

Compressibility effects on the turbulence appear to he 
small, at least at supersonic speeds. In flows with con- 
cave or convex streamline curvature, Reynolds stress cal- 
culations using subsonic turbulence models by Degani & 
Smits (1990) were found to give reasonable predictions of 
Reynolds stress behavior, at least for distortions where 
the boundary layer did not depart too far from eqnilih- 
rium. For these flows, the limitations of the calculation 
are probably due to the turbulence modeling, rather than 
any specific influence of compressibility, and the observa- 
tions tend to support the turbulence structure similarity 
suggested by Morkovin’s Hypothesis. For strong distor- 
tions, our predictive capability is conlined to the initial 
response where linear theories such as RDA become we- 
M. 

For compression corner interactions we noted the un- 
steady shock motion, the appearance of separated flow 
regions, the presence of strong wall-pressure fluctuations, 
and strongly amplified turbulence levels. 

By way of a final comment, we can make some remarks on 
the mechanism of the flowfreld unsteadiness. As discussed 
earlier, the largegcale motions in the incoming boundary 
layer provide an unsteady upstream boundary condition 
on the separation shock. Conversely, the unsteady sep- 
arated flow provides an unsteady downstream boundary 
condition. The wall pressure signal bas low- and high- 
frequency content. As  suggested by Brusniak & Dolling 
(1994), the incoming turbulence appears to be responsible 
for shock distortion and some small flapping motion, but 
it is not on a large wale. Ita effect is most clearly seen 
in the wall-prenaure signals and the instantaneous Row 
visualizations of unseparated compression-corner flows. 

When the Row is separated, the separation ibble un- 
steadiness can lead to larger excursions in the shock v i -  
tion, and the extent of the upstream imluence Been in the 
mean pressure distribution grows considerably. There is 
still some question regarding the mechanism that driven 
the unsteadinw of the bubble. The free shear layer form- 
ing the edge of the huhhle is undoubtedly very sensitive 
to external disturbances. These disturbancen could come 
from, for instance, outer-layer turbulence which may pro- 
vide a trigger for a Row-field instability similar to that 
seen in the supersonic Row over a spiked body. It may 
also he pmsihle that the low-frequency millations of the 
separation bubble are tunnel-apecific, in that they are m 
lated to meandering Taylor-Gortler-like vortices formed 
in the the upstream Row, convecting into the interaction, 
as suggested by Unalmia & Dolling (1996). W b e r  work 
will he necessary before more U t e  proposals can he 
made. 
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1 .  ABSTRACT 
Recent experimental work in the area of compressible 
turbulent free shear layers is reviewed. Results for the 
canonical two-stream, constant-pressure shear layer are 
given first. Emphasis is placed on growth rate, 
turbulence statistical quantities, large-scale turbulent 
structure, and growth rate enhancement. Compressible 
free shear layers present in high-speed separated flows 
are also considered. Here, results on mean flow, 
turbulence statistics, and large turhulent structures are 
discussed. Additional effects in these separated flows, 
such as the expansion that may occur at separation and 
the bulk compression, streamline curvature, and lateral 
streamline convergence that may occur at reattachment, 
are discussed. In order to develop a sound physical 
understanding of these compressible turbulent flows, 
particular attention is given to single-frame and multi- 
frame planar imaging studies. 

2 .  INTRODUCTION AND MOTIVATION 
Compressible free shear layers occur in a number of 
practical physical devices ranging from supersonic 
ejectors to gas dynamic and chemical lasers to the high- 
speed jets that are used for deposition of thermal spray 
coatings. However, the primary motivation for 
studying this flow in the last 10 years or so has been its 
importance for mixing the gaseous fuel and oxidant 
streams in supersonic combustors. Indeed, the major 
source of research funding for this problem in the U.S., 
especially during the mid- to late-l980s, was motivated 
by the desire to develop a scramjet-powered, single 
stage-to-orbit vehicle, such as the National Aerospace 
Plane (NASP). However, since the demise of the 
NASP program, the volume of work addressing 
problems in this area has declined precipitously (at least 
in the U.S.). The timing of this AGARDNKI Special 
Course on "Turbulence in Compressible Flows" 
therefore seems quite appropriate, as a review of 
progress made during the recent period of intense 
activity. 

Compressible shear layers, although seemingly 
simple flows, are subject to quite complex fluid 
physics. The complications are partially due to the 
large Reynolds numbers, and consequent wide range of 
turbulent scales, that generally occur for gas flows under 

high-speed conditions. In addition, as will be shown 
abundantly below, compressibility itself has 
fundamental effects on turbulence that are not observed 
in low-speed flows. Nevertheless, considerable progress 
has been made in understanding compressible free shear 
layers in recent years. This progress has been facilitated 
both by the availability of vastly improved 
computational resources for numerical investigations 
and also by the development of non-intrusive laser-based 
diagnostic techniques for detailed experimental studies of 
this fundamental flow. 

As might be expected, it would be impossible to 
thoroughly discuss all the recent accomplishments in 
the area of compressible free shear layers within the 
length constraints of this paper. Therefore, our primary 
objective is to review the physical understanding that 
has been developed through recent experimental studies 
of the fluid dynamic aspects of compressible shear 
layers. Reviews of numerical studies and topics such as 
scalar transport, mixing, and combustion are the 
subjects of other lectures in this Special Course. See 
also the recent review of Lele (1994) for a discussion of 
compressibility effects on turbulence with emphasis on 
analytical considerations and numerical results. The 
material presented here is certainly biased by our 
interests and experience at the University of Illinois in 
this general area. Therefore, we apologize in advance to 
any who might feel that their work has in any way been 
slighted or overlooked. Any errors of omission or 
commission are wholly the responsibility of the author. 

3 .  CONSTANT-PRESSURE, TWO- 
STREAM, COMPRESSIBLE FREE 
SHEAR LAYERS 

3.1 Dimensionless Parameters 
Figure l(a) is a schematic of a planar, matched-pressure, 
two-stream shear layer that is formed at the trailing edge 
of a splitter plate that separates the two streams. The 
subscript "1" will be used throughout to denote 
conditions of the higher speed stream, while subscript 
"2" refers to the lower speed stream. Thus, in the 
laboratory coordinates shown, the velocities of the 
freestreams are U1 and U2. their densities are pi and p2, 
their speeds of sound are a1 and a2. their specific heat 
ratios are y i  and y ~ ,  and the static pressures at 

Paper presented at the ACARI) FDP Special Course on "Turbulence in Compressible Flows", held a1 the 
yon K 6 d n  lnstinrle for Fluid LJymics  (VKI) in Rhode-Saint-Genh?, Belgium, 2-6 June 1997, 

and in Newpor? News, Virginia, USA, 20-24 Oclaber 1997, and published in R-819. 
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separation from the splitter plate are equal, PI = P2.  In 
the large body of work on incompressible mixing layers 
(e .g . ,  Brown and Roshko, 1974; Brown, 1978), it has 
been shown that the structure and behavior of the layer 
depend primarily on the freestream velocity ratio, 
r = U2/U1 [or, equivalently, the velocity parameter, 
h = (1 - r)/(l + r)], and the freestream density ratio, 

To quantify the effects of compressibilitj on shear 
layers, Bogdanoff (1983) and Papamoschou and Roshko 
(1988) introduced the convective Mach number, M,, 
which is the Mach number of the two freestreams 
relative to the large-scale structures in the mixing layer. 
To derive an expression for Mc, the layer is viewed in 
the reference frame that convects with the structures, 
Fig. I(b). Assuming that the static pressures of the 
two streams are equal and that their (isentropically 
determined) total pressures are also equal at the 
stagnation point between structures in this frame, the 
following expression may he solved for the large- 
structure convection velocity, U, 

s = P d P I  ' 

If yl = y2, as is often the case in experimental studies, 
U, is then given by 

(2) 

Using the definition of the convective Mach numbers of 
the two streams as their relative velocities with respect 
to the large structures divided by their speeds of sound 
gives 

U, = a2"1+ alU2 
a1 +a2  

MC1 and M,z' u c  -U2 (3) 
a1 a2 

If yl = y2, the two convective Mach numbers are equal 
and can he written as 

M, = U1 -U2 
a1 +a2  

(4) 

As mentioned above, this is the parameter that has 
been used overwhelmingly to quantify the effects of 
compressibility in mixing layers. It is often tacitly 
assumed that all the effects of compressibility are 
embodied in the magnitude of the convective Mach 
number. However, we must mention that there is 
evidence (e.g., Sandham and Reynolds, 1989; Viegas 

U, - U, 

Fig. 1 Schematic of a two-stream mixing 
layer in (a) laboratory frame and 
(h) convective frame 

and Rubesin. 1991) that the convective Mach number 
may be only a first-order measure of compressibility, 
i .e. that the effects of velocity ratio, density ratio, 
andlor other parameters may be different for 
compressible shear layers as compared to the 
incompressible case. In addition to r, s, and Mc, other 
"secondary" parameters that may influence the behavior 
of compressible mixing layers include: Reynolds 
number, state of the initial boundary layers, freestream 
turbulence, pressure gradients, and the compression and 
expansion waves that are virtually unavoidable in 
supersonic flow experiments. 

3.2 Growth Rate 
Perhaps the most well-known effect of compressibility 
on shear layers is the reduced growth rate that occurs as 
compared to that of incompressible mixing layers at the 
same velocity and density ratios. This is also an 
extremely important result in many applications, as 
mass entrainment from the freestreams into the layer, 
which results in its growth, is the first step in mixing 
the two streams (eventually at the molecular level so 
that chemical reactions can occur). Originally, the 
reduced growth rate effect was thought to be due to the 
density difference between the streams that occurs under 
compressible (versus incompressible) flow conditions. 
However, in their classic work on the subject, Brown 
and Roshko (1974) showed that the density effect was 
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small and that the growth rate reduction must be due to 
a separate and stronger compressibility effect. 

In determining the growth rate of a shear layer, it is 
important that it be found only from thefullydeveloped 
or self-similar region. Goebel and Dutton (1991) 
studied the development of compressible mixing layers 
using the definition of Mehta and Westphal (1986) for 
fully-developed conditions: (1) linear growth rate with 
respect to downstream distance; (2) similarity of the 
mean velocity profiles when scaled by the local layer 
thickness; and (3) similarity of all turbulence quantity 
profiles when scaled by the local thickness, with peak 
turbulence quantities constant. Goebel and Dutton 
(1991) found that the mean velocity profiles required the 
least streamwise distance to become self-similar, 
followed by the streamwise turbulence intensity, 
transverse turbulence intensity, and Reynolds shear 
stress. By transforming Bradsbaw's (1966) criterion for 
fullydeveloped single-stream shear layers to a criterion 
appropriate for two-stream layers, and by examining 
their experimental results for seven compressible 
mixing layer cases, Goebel and Dutton (1991) concluded 
that the following approximate local Reynolds number 
requirement must be met for full development 

"disturbed," high freestream turbulence conditions, D kawaand Kubota (1975) 
CI C l u m  et al. (1986) 
o Papamoschou and Roshko (1988) which lead to an expected large growth rate. The low 

normalized growth rates reported by Hall et al. (1993) at d Messersmith el al. (1988) 
+ ELLiotl and S m y  (1990) 
m Fourgucttc el al. (1991) 
x GocklandDultan(1991) . clmm and (1992) poorly understood effects of very low density ratios . Halletal.(1993) coupled with a supersonic high-speed stream. In fact, 

G~kr .%al . (1993)  the density ratios of these latter cases are lower than for 

low Mc are speculated by these authors to be due to 

where AU=UI-U~ is the freestream velocity difference, 
b is the mixing layer thickness (defined below), and p 
and ji are the average freestream density and viscosity, 
respectively. Note that Karasso and Mungal (1996) 
have recently found that the value of a "pairing 
parameter" better describes the development state of 
liquid plane shear layers, as compared to the local 
Reynolds number, although this result has not yet been 
extended to the compressible case.. 

3 0.6 

0.4 

0.2 

3 

Figure 2 (from Gruber, 1992) shows the 
compressible mixing layer growth rate normalized by 
the incompressible growth rate at the same velocity and 
density ratios from some of the many studies that report 
this quantity. The incompressible growth rate for each 
case is d e t d n e d  from 

3 
x m .  any in the incompressible shear layer database, so that 

: 0 . % U 0  - Eq. 6 may not accurately predict the growth rate used for 
s . x e  normalization of these cases. 

0 e -  : 0 .  
0 

, . 

(1 - r)( 1 + 8 2 )  (E)i =0.165hS =0.165 (6) 
2( I + rs'I2) 

where the constant has been suggested by Birch and 
Eggers (1972). It must be noted that many different 
definitions of the shear layer thickness are used in the 
literature. These include the 1O%AU thickness, the 
vorticity thickness, the visual thickness, and the pitot 
thickness. We will usually use the 1O%AU thickness, 
b, which is defined as the distance between transverse 
(y) locations where U=U1 -O.l(AU) and 
U=U2 +O.l(AU), see Fig. 1. All data presented in 
Fig. 2 have been transformed (assuming an error 
function mean velocity profile) to this common 
thickness definition. 

As can be seen in Fig. 2, the normalized shear layer 
growth rate is indeed reduced as the compressibility of 
the layer, quantified by the convective Mach number, 
increases. In addition, these normalized data collapse 
moderately well when plotted against Mc. Possible 
reasons for the scatter in the data include differences in 
experimental techniques used to determine growth rate, 
lack of achievement of fully-developed conditions, 
differences in the thickness definition used and/or 
uncertainty in transforming to the " b  definition. and 
the possibility mentioned above that Mc provides only 
a first-order measure of compressibility. A few of the 
anomalous points in the figure deserve special mention. 
For example the high normalized mowth rate reuorted at 

0 ~ " " ' ' ' ' ' ~ ~ ' ~ " ~ " ' ~  3.3 Turbulence Statistics 
0.0 0.50 I .o 1.5 2.0 

Because of the difficulties involved with making 
accurate, instantaneous velocity measurements in 
supersonic flows. few investigators have obtained 

Mc 

Fig. 2 Normalized growth rates of 
compressible mising Layers (from 
Gruber, 1992) 
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turbulence measurements in compressible shear layers. 
Elliott and Samimy (1990) studied three cases, Goebel 
and Dutton (1991) investigated seven cases, and Gruber 
et al. (1993) reported results for a single case. All of 
these measurements were obtained using laser Doppler 
velocimehy (LDV), where Elliott and Samimy (1990) 
and Goebel and Dutton (1991) presented two-component 
data and Gruber et al. (1993) obtained three-component 
results. Barre et al. (1994) have also presented one- 
component hot-wire anemometry (HWA) measurements 
for a compressible shear layer at Mc=0.62. 

As discussed above in regard to the growth rate 
determination, it is critical that the turbulence 
measurements be reported from the fully-developed 
region, as the development of the layer immediately 
after separation from the splitter plate can depend 
strongly on the freestream and initial boundary layer 
conditions. This is especially true for the turbulence 
quantities, which have been found to develop more 
slowly than the mean velocity. 

Figures 3-5 show averaged profiles from the fully- 
developed regions for five of the cases investigated by 
Goebel and Dutton (1991). The quantities plotted are 
the streamwise turbulence intensity, ou/AU, the 
transverse turbulence intensity, a,/AU, and the 
normalized kinematic Reynolds shear stress, 
<u'v'>/(AU)~, respectively. (The symbol a is used 
throughout to denote the rms fluctuation of the 
subscripted velocity component, and the angled brackets 
are used for ensemble-averaged quantities.) As expected, 
these turbulence quantities peak near the center of the 
shear layer and fall off to small values in the 
freestreams. I n  examining the effects of 
compressibility, increasing convective Mach number is 
seen to have a strong effect on reducing the magnitude 
of the transverse turbulence intensity and the Reynolds 
shear stress. We should note that the lowest 
compressibility case shown, Mc=0.20, may not have 
been fully developed, so that its profiles may be high in 
each case. With this caveat, the data shown in Fig. 3 
indicate little effect of compressibility on streamwise 
turbulence intensity. Taken together, the trends for au 
and a v ,  as measured by Goebel and Dutton 1991). 

increases with increasing compressibility. 
The effects of compressibility on the turbulence 

statistical quantities are more easily seen in Figs. 6-8, 
where the peak turbulence quantities from each of the 
four studies mentioned above have been plotted as a 
function of convective Mach number. In each case, the 
turbulence quantities have been normalized with respect 
to typical values measured for incompressible shear 
layers: (au/AU)i=O. 18, (ov/AU)i=O. 13, and 

suggest that the normal stress anisotropy,  IS,/^,, $ 2  
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Fig. 3 Similarity profiles of streamwise 
turbulence intensity (from Goebel and 
Dutton, 1991) 
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(-<u'~'>/(AU)~)i=O.013. The trends just mentioned 
from Goebel and Dutton (1991) are apparent: strongly 
reduced ov/AU and -c~ 'v '>l(AU)~ and approximate 
constancy of ou/AU with increasing M,. In addition, 
the data from all investigators for the peak transverse 
turbulence intensity and Reynolds shear stress collapse 
extremely well when plotted against convective Mach 
number. However, the data from Elliott and Samimy 
(1990) and Goebel and Dutton (1991) show some 
disagreement in the trends for the streamwise turbulence 
intensity. Instead of relatively constant values of 
au/AU with increasing M,, Elliott and Samimy (1990) 
found that this quantity also decreased, leading to a 
relatively constant normal stress anisotropy. In 
addition, these investigators found that the lateral 
(transverse direction) extent of the turbulence 
fluctuations within the shear layer is reduced as 
compressibility increases. Goebel and Dutton (1991). 
on the other hand, found no apparent reduction of the 
lateral extent of the turbulence fluctuations. 

Gruber et d. (1993) reported three-component 
turbulence measurements for Mc=0.80. Their results 
for the streamwise and transverse turbulence intensities 
are in close agreement with Goebel and Dutton's (1991), 
which were obtained in the same facility. Gruber et QL 
(1993) found that the lateral extent of the turbulence 
profiles was reduced only on the high-speed side of the 
shear layer and that the peak spanwise turbulence 
intensity, o,/AU, was about the same as for the 
incompressible case. Taken together with the reduced 
transverse turbulence intensity, the latter result implies 
that an effect of compressibility on the mixing layer is 
a tendency toward a more three-dimensional structure 
with enhanced spanwise, as compared to transverse, 
velocity fluctuations. 

All three of the LDV studies consistently show that 
the shear stress correlation coefficient, -<u'v'>/(oUav), 
is approximately constant, at a value between 0.4 and 
0.5, both spatially within the shear layer and as a 
function of compressibility. This result provides an 
interesting turbulence model closure idea, which indeed 
has been utilized by Bum (1991). In addition, all of the 
LDV studies have shown that higher-order velocity 
moments, such as triple products, skewness, and 
flatness factors, are strongly reduced with increasing 
compressibility at the shear layer edges. This suggests 
that intermittency at the edges, due to excursions of 
large turbulent structures into the freestreams and, 
conversely, intrusions of inviscid freestream fluid into 
the shear layer, is also reduced. 

We must emphasize that the discrepancies noted 
above for the streamwise turbulence intensity and lateral 
extent of the velocity fluctuations could be due to any 
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of the secondary factors listed earlier or because the 
convective Mach number is not a complete descriptor of 
compressibility effects. Additional turbulence data, 
particularly at convective Mach numbers above about 
0.8, are needed to clarify these issues. It is clear from 
the data presented that a primary effect of 
compressibility is a strong reduction of transverse 
velocity fluctuatlons and a trend toward a more three- 
dimensional turbulence structure, effects that will be 
reinforced by planar visualizations to be presented in the 
next section. In addition, inspection of Figs. 6-8 as a 
whole suggests better collapse of the normalized peak 
turbulence quantities when plotted against convective 
Mach number than for the normalized growth rate, 
Fig. 2, which is a surprising result. 

3.4 Large-Scale Torhoient Stroctores 
3.4.1 Incompressible Shear Luyer Structure 
As a prelude to discussing the large-scale organization 
of compressible shear layers, it is useful to fust briefly 
review the structure of incompressible mixing layers. 
One of the landmark studies in this regard is that of 
Brown and Roshko (1974). In addition to investigating 
density ratio effects on shear layer growth rate, the 
shadowgraph visualizations of these authors clearly 
showed the dominant spanwise-oriented structures that 
exist in low-speed mixing layers, Fig. 9. These rolled- 
up structures develop from the fundamental Kelvin- 
Helmholtz instability of the flow. Since the time of 
Brown and Roshko's (1974) work, large-scale structures 
in turbulent shear flows have been the subject of a great 
deal of research. It has been found that these structures 
may pair, tear, and that they are stable, dominant 
features of low-speed shear layers even at high Reynolds 
numbers or in the presence of highly exothermic 
chemical reactions or other severe disturbances (Winant 
and Browand, 1974; Dimotakis and Brown, 1976; 
Wygnanski er al., 1979). These structures have also 
been shown to be critically important in entrainment of 
the freestream fluids into the shear layer and to the 
cascade of turbulent scales that eventually results in 
mixing of the fluids at the molecular level (Dimotakis, 
1986; Broadwell and Breidenthal. 1982; Broadwell and 
Mungal, 1988). 

In addition to these spanwise structures, 
streamwise-oriented counter-rotating vortex pairs have 
been found to develop fmm the strain field induced by 
the spanwise rollers (Bema1 and Roshko, 1986). These 
streamwise vortices, or ribs. are found in the brad 
region between the rollers with their ends wrapping 
around successive spanwise vortices; see Fig. IO for an 
idealized schematic. The streamwise counter-rotating 

vortices induce fluid motion between them, either up or 
down, thus creating mushroom-shaped structures when 
viewed from the end (y-z plane, Fig. 1). The circulation 
of the streamwise ribs is found to be of the same order 
of magnitude as that of the spanwise rollers, suggesting 
that the interaction of the streamwise and spanwise 
vortices convolutes the layer interface and is responsible 
for signifcant entrainment and mixing between the two 
streams (Jimenez er al., 1985). 

3.4.2 Schlieren and Shadowgraph Studies 
Against this backdrop for incompressible shear layers, it 
was only natural that early compressible mixing layer 
studies used schlieren and shadowgraph methods to 
investigate the existence of similar large-scale 
organization. This was done by several workers, e.g. 
Papamoschou and Roshko (1988), Elliott and Samimy 
(1990), Goebel and Dutton (1991). Clemens and 
Mungal (1992). and Hall et al. (1993). Figure 11 
shows an example composite schlieren photograph of a 
compressible mixing layer at Mc=0.75 from the 
experiments of Messersmith (1992). As has been 
generally found in all other schlieredshadowgraph 
studies, this figure shows, at best, only a slight hint of 
braided structure toward the downstream end. but 
certainly not the dominant, rounded, large-scale 
structures seen under incompressible conditions, Fig. 9. 
However, in drawing conclusions from these flow 
visualizations, we must remember that the schlieren and 
shadowgraph methcds integrate effects along the line-of- 
sight, so that three-dimensionality (in the spanwise 
direction) of the turbulence structure will be smeared in 
the resultlng photos. 

3.4.3 Probe-Based Structure Studies 
Time-series analyses of fluctuating pressure and 

hot-wire measurements have been used to investigate 
the structure and organization of compressible shear 
layers. Samimy et al. (1992) studied mixing layers at 
M,=0.51 and 0.86 using fast-response pressure 
transducers. At the lower compressibility level, the 
measurements suggested that the large structures were 
similar to the incompressible case, with a 
predominantly two-dimensional spanwise orientation, 
although their spatial organization was poorer than for 
low-speed shear layers. At the higher compressibility, 
the structures were found to be highly three-dimensional 
in nature, with good spatial, but poor temporal 
organization. Figure 12, taken from this work, shows 
how much more strongly the streamwise coherence of 
the pressure fluctuations is reduced with increasing 
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Fig. 9 Large-scale structure in an incompressible shear layer (from Brown and Roshko, 
1974; as reproduced in Van Dyke, 1982) 

Fig. 10 Schematic of large-scale structure in 
an incompressible mixing layer: 
spanwise rollers and streamwise ribs 
(from Gruber, 1992) 

.. .. . . 
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Fig. 11 Schlieren photograph of a compressible shear layer at M,=0.75 (from Messersmith, 
1 9 9 2 )  



normalized probe separation distance, dx/& (where 
60=b), for Mp0 .86  than for Mc=0.51. This 
demonstrates a very strong effect of compressibility on 
the streamwise evolution of the structures. Spanwise 
correlation measurements were also suggestive of the 
existence of horseshoe-type vortices for the Mc=0.86 
case. 

Shau et al. (1993) and Petullo and Dolling (1993) 
used pressure fluctuation and dual normal hot-wire 
measurements, respectively, to investigate an Mc=0.28 
shear layer formed between a Mach 5 and a Mach 3 
stream. These measurements showed that the shear 
layer large structures were better organized than in the 
upstream boundary layer and that their organization 
increased with downstream distance, a finding that is in 
agreement with results of Samimy et al. (1992). Large- 
structure inclination angles of 35" to 5.5' to the 
streamwise direction were measured. All of the probe- 
based studies discussed here measured a broad range of 
structure angles for a given case, which is in agreement 
with the instantaneous planar images to be discussed 
below. 

3.4.4 Single-Frame Planar Imaging Results 
With the advent of laser diagnostic techniques, the line- 
of-sight integration limitation of the schlieren and 
shadowgraph methods could be removed, since thin laser 
sheets, generally of the order of a few hundred microns 
thickness, could be used to illuminate the flow. 
Techniques including Mie or Rayleigh scattering and 
planar laser-induced fluorescence (PLIF) were used in 
several studies of the turbulence structure of 
compressible shear layers (Clemens and Mungal, 1992, 
1995; Elliott et a[., 1992; Bonnet et al.. 1993; 
Messersmith and Dutton, 1996; Poggie and Smits, 
1996). Since pulsed lasers are used for these methods, 
the temporal resolution is also excellent, typically on 
the order of IO ns, so that essentially "frozen" or 
"instantaneous" visualizations are obtained. 

Example side-view (x-y plane, Fig. 1) Mie 
scattering images from the work of Clemens and 
Mungal(1995) are shown in Fig. 13 for a shear layer at 
Mc=0.28. These images utilize "product formation" 
seeding, in  which ethanol vapor that is carried in the 
low-speed stream condenses into droplets only when 
molecularly mixed with cold fluid from the high-speed 
stream. This Mie scattering method therefore 
emphasizes large-structure cores where molecular 
mixing is expected to be most complete. The low 
compressibility case in Fig. 13 shows the existence of 
Brown-Roshko roller-like structures with connecting 

br; The large ~ ictures and are mo! - Y 
seen in the downstream region of the images. Smaller- 
scale turbulence riding on the large-scale structures is 
also apparent, as might be expected for the large 
Reynolds number of this flow. Plan views (x-z plane, 
Fig. I)  of this same case are shown in Fig. 14. Here, 
the large structures are seen to be predominantly 
oriented in the spanwise direction and often span the 
entire field-of-view. However, skewing and bending 
with respect to the spanwise direction also occur 
frequently. Smaller streamwise-oriented structures 
connecting the spanwise rollers can also be observed. 

Figures 15 and 16 show similar side and plan views 
of a compressible shear layer at Mc=0.62. The large 
structures visualized in the side view appear less well 
organized and are more jagged and irregularly spaced 
than those at lower compressibility. Clearly 
identifiable braids between large structures also appear 
to occur less frequently. The plan views show greatly 
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Fig. 12 Streamwise coherence for various probe 
separation distances for compressible 
shear layers at (a) M,=0.51 and 
( b )  Mp0.86 (from Samimy et al., 
1992)  



Fig. 13 Side-view planar images of a 
compressible shear layer at M,= 0.2 8 
(from Clemens and Mnngal, 1995) 

Fig. 14 Plan-view planar images of a 
compressible shear layer at M,=0.28 
(from Clemens and Mungal, 1995) 

reduced spanwise organization of the large structures, 
although obliquely-oriented structures are sometimes 
seen to span the field-of-view, particularly in the 
upstream region. 

Side- and plan-view product formation images are 
shown in Fig. 17 for an Mc=0.79 mixing layer. The 
jagged large structures seen in the side view are 
generally similar to those at Mc=0.62, although, 
perhaps, the large structures and intervening braids are 
even less easily identified here than at the lower 
compressibility. The structures shown in the plan 
views are now highly three-dmensional in nature with 
no apparent preferred orientation in the spanwise or 
streamwise directions. 

Although not shown here, end views (y-z plane, 
Fig. 1) from Clemens and Mungal's (1995) study 
demonstrate that with increasing compressibility, the 
instantaneous shear layer cross-section becomes more 
convoluted with more realizations of "mushroom- 
shaped structures. This is suggestive of the increased 
dominance of obliquely- and/or streamwise-oriented 
vortex structures at higher convective Mach number, as 
was noted in the plan views. 
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Fig. 15 Side-view planar images of a 
compressible shear layer at M,=0.62 
(from Clemens and Mungal, 1995) 

Fig. 16 Plan-view planar images of a 
compressible shear layer at M p 0 . 6 2  
(from Clemens and Mungal, 1995) 

Messersmith and Dutton (1996) used a Mie 
scattering method similar to Clemens and Mungal's 
(1995). hut obtained and statistically analyzed large 
image ensembles (256 images) for each of three 
compressibility levels. Since a broad range of structural 
features are observed in the images of a given ensemble, 
the statistical analysis was done to quantify, in an 
objective manner, the influence of compressibility on 
the characteristic features of the large structures. 
Figure 18 shows a comparison of instantaneous images 
obtained for an Mc=0.32 shear layer and ensemble- 
averaged spatial covariance fields, where the contour 
lines are drawn in increments of 0.125 about the central 
peak, which is normalized to unity. Side views are 
shown at the left, while oblique, quasi-end views are 
shown on the right. The images utilize "passive scalar'' 
seeding for which ethanol vapor was seeded into the 
high-speed stream that condensed into droplets upon 
expansion to supersonic conditions. The ensemble- 
averaged covariance fields are not expected to reproduce 
exactly the features of the structures in any given 
instantaneous image, but rather they give the features of 
the "average" structure for that condition. Nevertheless, 
the similarity between the visualizations and spatial 

1 
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covariances in Fig. 18 is unmistakable. In 
Messersmith and Dutton's (1996) work, the 0.5 
covariance contour was used to define the normalized 
structure size (ratio of major axis-to-local layer 
thickness), eccentricity (unity minus the ratio of major- 
to-minor axes). and angular orientation of the major 
axis to the horizontal flow direction. 

Similar spatial covariance fields for the side and 
quasi-end views are shown in Figs. 19 and 20 for 
Mc=0.49 and 0.75, respectively. Table 1 presents the 
results of the statistical analysis performed to determine 
the large suucture characteristic features for each view 
and convective Mach number. From the analysis of the 
side views, it is clear that the large structures increase in 
dimensionless size with increasing compressibility, and 
that their angular orientation decreases substantially 
from about 26' at the two lower compressibility levels 
to 16' at Mc=0.75. Note that these structure angles are 
smaller than those found in the probe-based studies of 
Sbau er al. (1993) and Petullo and Dolling (1993) at 
lower compressibility. The flattened, more downward- 
tilted nature of the structures at the highest 
compressibility investigated by Messersmith and 
Dutton (1996) results in a dimensionless structure size 
greater than unity. The downward rotation and 
lengthening of the structures also seem quite consistent 
with the LDV measurements discussed earlier, which 
showed a strong reduction in the transverse turbulence 
intensity with increasing compressibility. Less mass 
induction area between structures is available for this 
tilted, elongated configuration, which is also in 
agreement with the decreased normalized layer growth 
rate for increased convective Mach number. The 
eccentricity of the structures seen in the side views 
shows no strong trend, remaining relatively constant at 
about 0.5 as M, increases. Clemens and Mungal 
(1995) noted that the large structures visualized in their 
side views underwent a shape change from rounded or 
elliptical at low compressibility to a squarer or more 
polygonal shape at high compressibility. The side-view 
spatial covariance fields of Figs. 18-20 show definite 
rounded, elliptical shapes at the two lower convective 
Mach numbers with, perhaps, a hint of a more 
polygonal shape in the outer covariance contours at the 
highest compressibility. 

The effects of compressibility on the large structure 
characteristics visualized in the oblique, quasi-end views 
are given in the lower portion of Table 1. The results 
show that, for the lowest compressibility, the 
dimensionless structure size is approximately 0.5, while 
for the two more compressible cases, the normalized 
size increases substantially to about 0.75. The 
eccentricity of the obliquely-viewed structures is also 

I 
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Fig. 17 Side-view and plan-view planar 
images of a compressible shear layer 
at Mp0.79 (from Clernens and 
Mungal, 199.5) 

strongly reduced with increasing compressibility. This 
finding results from the increased three-dimensionality 
of the turbulence structure at higher convective Mach 
number, which causes a greater randomness in the 
orientation and size of the structures viewed in this 
plane. Comparing the dimensionless size and 
eccentricity of the structures in the side and oblique 
views at the same compressibility level shows that the 
oblique plane structures are always smaller and less 
eccentric than their side-view counterparts. These 
results from the statistical analysis are all quite 
consistent with instantaneous images obtained by 
Elliott et al. (1992), Clemens and Mungal (1992, 
1995), and others. 

These trends of a transition from a predominantly 
two-dimensional spanwise orientation of rollers at low 
compressibility, to obliquely-oriented spanwise 
structures at intermediate convective Mach numbers, 
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Fig. IS  Side-view and oblique-view planar 
images and spatial covariance fields for 
a compressible shear layer at M p O . 3 2 ;  
dimensions given in mm (from 
Messersmith and Dntton, 1996) 
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Fig. 19 Side-view and oblique-view spatial 
covariance fields for a compressible 
shear layer a t  M,=0.49; dimensions 
given in mm (from Messersmith and 
Dntton, 1996) 

Fig. 20 Side-view and oblique-view spatial 
covariance fields for a compressible 
shear layer a t  M,=0.75; dimensions 
given in mm (from Messersmith and 
Dutton, 1996) 
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Table 1 Large-structure features from the two-dimensional spatial covariance fields of Messersmith and Dutton 
(1996) 

View Mc Normalized Size Eccentncity Angular Orientatlon 
Side 0 32 0.69 0 52 26" 
Side 0.49 0.85 0.45 25' 
Side 0.75 1.03 0.58 16' 

Oblique 0.49 0.77 0.14 ____ 
Oblique 0.75 0.71 0.10 ___ 

_ _ _ _  Oblique 0.32 0.48 0.30 

and, finally, to a breakdown to a highly three- 
dimensional turbulence structure at large Mc are in 
good qualitative agreement with linear stability analyses 
of compressible mixing layers (Ragab and Wu, 1989; 
Sandham and Reynolds, 1990, 1991). These analyses 
show the stability of the compressible mixing layer to 
he characterized by three regimes: ( I )  0<Mc<0.6. in 
which the two-dimensional, spanwise instability is the 
most rapidly amplified; (2) 0.6<Mc<1.0, for which the 
oblique wave is the most amplified, although the two- 
dimensional wave is still amplified and may have an 
effect; and (3) Mc>l.O, in which the two-dimensional 
wave is considerably less amplified than the most 
unstable oblique wave. 

3.4.5 Multi-Frame Planar I m g i n g  Results 
Time-correlated image pairs or sequences have also 
been obtained to investigate the large-structure temporal 
evolution and convection velocity. McIntyre and 
Settles (1991) used high-speed schlieren 
cinematography and optical deflectometry to investigate 
axisymmebic shear layers at convective Mach numbers 
ranging from 0.08 to 1.5. They found that the large- 
scale structures were poorly organized for the more 
compressible cases and that they evolved rapidly as 
they convected downstream. Two-point spatial 
correlation data gave no indication of a consistent 
wavelength for the structures. implying that they were 
irregularly spaced. Mahadevan and Loth (1994) used 
high-speed schlieren and laser sheet cinematography to 
study a shear layer at Mp0.76. Four-frame (or more in 
some cases) sequences were obtained that showed the 
dominant evolution characteristic to be stretching and 
tilting of the large structures down toward the 
streamwise direction as they convect; see feature B in 
Fig. 21. Recently, Poggie and Smits (1996) performed 
double-pulsed Rayleigh scattering experiments for a 
mixing layer at M,=l.l. These visualizations clearly 
show the growth of small-scale structures on the 
periphery of large structures, which is a mechanism also 
observed in compressible turbulent boundary layers. 

Elliott er al. (1995) obtained double-pulsed 
Rayleigh scattering images of compressible shear layers 
at convective Mach numbers of 0.51 and 0.86. In the 
near-field close to the splitter plate, the smctures for 
the lower compressibility case were seen to roll up from 
instability waves of the Kelvin-Helmholtz type, 
Fig. 22(a). (Note that the flow direction in Figs. 22-24 
is from right-to-left.) Little evidence of this roll-up 
mechanism was found for Mc=0.86, Fig. 22(b), 
however. In the fully-developed far-field region for 
Mc=0.51, eddy evolution mechanisms typical of 
incompressible shear layers, including pairing, were 
observed; see features 7 b  and 7b" in Fig. 23. At 

Fig. 21 Four-frame planar imaging sequence of a 
compressible shear layer at M,=0.76 (from 
Mahadevan and Loth, 1994) 
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Fig. 22 Double-pulsed planar images in the developing region of a compressible 
shear layer at (a) M,=0.51 and (b) M,=0.86 (from Elliott etaL, 1995) 

I 

Fig. 23 Donble-pulsed planar images in the My-developed region of a 
compressible shear layer at M,=0.51 (from Elliott et aL, 1995) 
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Fig. 24 Doublepulsed planar images in the Idly- 

developed region of a compressible shear layer 
at M,=0.86 (from Elliott et ul., 1995) 

Mc=0.86 stretching or tearing of structures was 
commonly seen, as shown by features 8a' and 8b' in Fig. 
24. However, pairing was not observed. The 
cinematography results of Mahadevan and Loth (1994) 
suggest a modified merging mechanism in compressible 
shear layers called "slapping" in which the two 
structures coalesce with little transverse displacement 
and rotation of the structures about each other, as occur 
in the incompressible case (Winant and Browand, 
1974). 

The multi-frame imaging techniques described 
above have also been used to determine the convection 
velocity of the large structures in compressible mixing 
layers. This quantity is of importance, fnst, because it 
enters the definition of the convective Mach number, 
Eq. 3, which is the fundamental parameter used to 
quantify the level of compressibility of a shear layer. 
Secondly, the convective velocity is used in many 
phenomenological models of entrainment and mixing. 
e.g. Dimotakis' (1986) entrainment model for low-speed 
shear layers. 

The convective velocity measurements for 
compressible mixing layers have produced quite 
striking results. For low convective Mach numbers, the 
measured convective velocity has been found to agree 
closely with the isentropic theoretical value given in 

Eq. 2. However, for higher levels of compressibility 
(Mc>0.3), the structures' velocity has generally been 
found to be closer to that of one or the other of the 
freestreams, depending on whether both streams are 
supersonic or one is supersonic and the other is 
subsonic (Papamoschou, 1989, 1991; McIntyre and 
Settles, 1991; Bunyajitradulya and Papamoscbou, 1994; 
Mahadevan and Loth, 1994; Papamoschou and 
Bunyajitradulya, 1995; Poggie and Smits, 1996). This 
"stream selection rule" (Dimotakis, 1991) states that U, 
is closer to the velocity of the high-speed stream for 
supersoniclsubsonic freestream combinations and is 
closer to that of the low-speed stream for 
supersoniclsupersonic shear layers. Exceptions can be 
found, e.g. one of Papamoschou's (1989) and Elliott et 
al.'s (1995) two cases, but this "rule" is indeed followed 
in most circumstances. Figure 25 shows a plot of Mcl 
vs. Mc2 from the work of Papamoscbou (1991), where 
the filled-in symbols use the experimentally measured 
values of the convective velocity in the expressions for 
Mcl  and Mc2, Eq. 3, and the open circles use the 
isentropic theoretical value, Eq. 2. The deviation 
between Mcl and Mc2 (and, therefore, of the measured 
versus theoretical convective velocity) under highly 
compressible conditions is apparent. 

A ramification of this disagreement between the 
theoretical and measured values of the large-structure 
convection velocity is that use of the convective Mach 
number as a measure of compressibility may not be 
well founded. This has led some investigators (e.g., 
Goebel and Dutton, 1991; Gruber et al., 1993; 
Messersmith and Dutton, 1996) to characterize 
compressibility level with the relative Mach number, 
M,. This parameter is defined as the relative velocity of 
the high-speed stream with respect to the low-speed 
stream normalized by the average speed of sound, 

(7) 

and, therefore, does not use the large-structure 
convection velocity. However, for the case in which 
the two streams have equal specific heat ratios, the 
relative and convective Mach number definitions differ 
by just a constant factor of two (compare Eqs. 4 and 7). 
Thus, the convective Mach number may be an effective 
compressibility correlation parameter even though the 
model of flow stagnation in the braid region between 
well-organized, spanwise two-dimensional, large 
structures, Fig. l(b), is phenomenologically incorrect 
under highly compressible conditions. 

M, = 2 P 1  -U21 
a1 +a2 
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Fig. 25 Experimental and theoretical results for 
M,1 and M,, for severalcompressible 
shear layers (from Papamoaehou, 1991) 

Some disagreement about the transverse variation 
of the convective velocity also exists. Bunyajitradulya 
and Papamoschou (1994). Papamoschou and 
Bunyajitradulya (1995), and Poggie and Smits (1996) 
found U, to be constant or to vary only mildly across 
the layer. Samimy er al. (1992). using fluctuating 
pressure measurements, and Elliott et al. (1993, on the 
other hand, found the convective velocity to be equal to 
the isentropic theoretical value at the center of the layer, 
but higher toward the high-speed side and lower tdward 
the low-speed side. It appears, therefore, that the use of 
different measurement methods by various investigators 
may be responsible for the lack of consistency in the 
convective velocity data. Also, note that the pressure 
probe measurements of Samimy er al. (1992) indicated 
a wide range of measured structure convective 
velocities in compressible shear layers at I+O.51 and 
0.86. 

One possibility that has been proposed for the 
disagreement between the measured and theoretical 
values of the large-structure convection velocity for 
highly compressible mixing layers is the asymmetric 
occurrence of shocklets on the stnctures. The presence 
of these shocklets, in turn, would cause asymmetric and 
non-isentropic deceleration of the two freestreams at the 
stagnation point between structures, thereby altering the 
convective velocity from the value predicted by Eq. 2. 
Two recent convective velocity models have been 
proposed (Dimotakis, 1991; Barre, 1994) that 
incorporate the dissipative effects of shocklets and have 
been found to effectively predict U, for compressible 
shear layers. Two-dimensional numerical simulations 
show the existence of shocklets starting at about 

Mc=0.7 (e.g., Lele, 1989; Burr. 1991). However, since 
it is known that oblique instability modes are dominant 
at this level of compressibility, two-dimensional 
simulations are not appropriate here. Three- 
dimensional simulations do M I  show strong evidence of 
eddy shocklets under highly-compressible conditions, at 
least up to Mc=1.2, presumably due to the swept and/or 
three-dimensional nature of the large structures 
(Sandham and Reynolds, 1990, 1991; Leep et al.. 
1993). Experimental evidence of the existence of eddy 
shocklets is also sparse. The most convincing data on 
this point appear to be the schlieren and shadowgraph 
photos of Hall (1991) for two convective Mach 
numbers near unity. Mach waves are clearly observed 
in the subsonic sveam for these cases, Fig. 26, which 
can only he due to the supersonic convection of 
structures in the shear layer with respect to this stream. 
However, because of the line-of-sight integrating nature 
of these visualization methods, the origination of the 
waves at specific structures in the layer was not 
irrefutably shown. Also note that Papamoschou (1995) 
has reported the occurrence of shocklets in an M e 2 . 0  
couoterflow shear layer, although the question of 
whether impingement of the two streams occurs in this 
counterflow arrangement, thereby causing the 
shocklets, is problematic. 

3.5 Growth Rate Enhancement 
The well-known reduction in growth rate of 
compressible mixing layers with respect to their 
incompressible counterparts has led to many attempts at 
enhancing growth by various means. The motivation 
for this. of course, is that the performance of most 
devices that contain compressible shear layers as 
important flow features can be improved if the 
entrainment of the freestream fluids into the layer can 
be increased. The bnef discussion here will be limited 
to growth rate enhancement of planar compressible 
mixing layers and will exclude the large body of work 
on round jets and other more complex gwmeties that 
have been studied as means to achieve improved mixing 
under supersonic conditions. The recent review article 
of Gutmark er al. (1995) provides a thorough review of 
these and related topics. 

A widely studied method for achieving growth rate 
enhancement involves mounting various devices on the 
upstream splitter plate. The purpose of these devices is 
to perturb the stable structure of the compressible 
mixing layer, for example by introducing increased 
streamwise vorticity. Papamoschou (1989) investigated 
triangular vortex generators, slanted trip wires, and 
sawtooth extensions attached at the splitter plate trailing 
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Fie. 26 Schlieren photoeraph of a compressible shear layer at Mvi=0.96 showing Mach waves in 
I 

the subsonic s t r i m  (from Hall, 1991) 

edge for an Mc=0.65 shear layer. However, none of the 
devices enhanced the growth rate by more than 5%. 
Dolling et al. (1992) placed cylindrical and wedge- 
shaped (corrugated plate) vortex generators in the 
turbulent boundary layer upstream of the splitter plate 
tip of an Mc=0.38 mixing layer. While both generators 
produced thicker layers at a given downstream location 
relative to the undisturbed case, this result was 
primarily due to a thicker boundary layer at separation 
and not to an enhanced shear layer growth rate. In fact, 
the corrugated plate generator showed no effect or even 
decreased the growth rate, Fig. 27(a). The cylindrical 
generators did provide an enhanced growth rate, 
Fig. 27(b), but the effect was relatively small (about 
30%) and was obtained at the expense of substantial 
total pressure losses. Island et al. (1997) recently 
performed a parametric study of the effects of shape, 
spacing, and thickness of geometric disturbances placed 
within the supersonic side boundary layer of an 
Mc=0.63 shear layer. The disturbances in this case 
were quite thin, being from 5 to 50% of the local 
boundary layer thickness. In agreement with the results 
of Dolling et al. (1992). Island et al. (1997) found that 
the far-field growth rate was unaffected by the 
disturbances and that the enhanced thickness at a given 
streamwise location was due to alterations in the initial 
conditions. These investigators further found that 
triangular-shaped disturbances placed at the splitter Up, 
and not upstream, were the most effective and that, for 
equivalent flow area blockage, these discrete three- 
dimensional geometries were more effective than two- 
dimensional disturbances (i.e.. spanwise strips). 

Fernando and Menon (1993) studied growth rate 
enhancement using a tapered sawtooth geometry at the 
trailing edge of the splitter plate. Two mixing layer 
conditions at Mc=0.29 and 0.47 were investigated. 
Unlike the studies discussed above, the results showed a 
significant effect on growth rate, with a 380% increase, 

and a doubling of the actual thickness at a given 
streamwise location in the optimum case. In addition, 
most of the increased thickness occurred on the low- 
speed side of the layer. The authors speculated that 
their results may have been affected by the recirculation 
region enclosed below the low-speed stream in their 
experiments. 

The use of shock waves has also been studied as a 
method for achieving growth rate enhancement. Shau 
and Dolling (1989) impinged an oblique shock 
generated by a 10' wedge both on the upstream 
boundary layer and on a shear layer at Mc=0.32. The 
results showed that, when the shock was incident on the 
shear layer, no measurable effect on the local thickness 
or growth rate was detected. However, when the shock 
was impinged on the boundary layer, a large increase in 
the near-field spreading rate was measured, although it 
rapidly returned to the undisturbed value further 
downstream. Samimy et al. (1989) immersed round 
and square cylinders in compressible mixing layers at 
Mc=0.51 and 0.86 in order to generate bow shock 
interactions with the layers. For the Mc=0.51 case, the 
bow shock interaction was not found to affect the 
growth rate appreciably. However, at Mc=0.86 some 
enhancement of the growth rate was achieved, 
particularly when the cylinders were placed in the near- 
field developing region of the shear layer. 

Both Hall et al. (1993) and Ramaswamy et al. 
(1996) investigated the effects of mismatching the static 
pressure of the two freestreams at the splitter plate tip. 
This generates compression or expansion waves that are 
reflected from the test section walls (and from the shear 
layer for a subsonic low-speed stream) and interact with 
the mixing layer. Neither of these studies found a 
significant effect of the waves on the layer growth rate, 
although Hall et al. (1993) noted increased large- 
structure organization in some cases for pressure- 
mismatched conditions. 
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Fig. 27 Growth rates of a compressible shear layer at 
M,=0.38 with (a) corrugated plate vortex 
generators and (b) cyundriepl vortex 
generators (from Dolling et al, 1992) 

Martens et al. (1994, 1996) excited low Reynolds 
number mixing layers at Mc=0.50 and 0.64 using a 
glow discharge system. Spanwise two-dimensional 
forcing and oblique forcing at various angles to the 
spanwise direction were studied. At both convective 
Mach numbers, two-dimensional excitation resulted in 
instability waves that remained two-dimensional. On 
the other hand, three-dimensional forcing resulted in 
oblique instability waves that assumed the angle of the 
preferred mode, regardless of the excitation angle or 
value of &. For both levels of compressibility, the 
shear layer thickness in the near-field transitional region 
was increased compared to the undisturbed case. 
However, downstream in the fully-turbulent region, the 
growth rates of the excited shear layers returned to 
those of the natural cases. 

Martens and McLaughlin (1995) also studied the 
effects of spanwise two-dimensional hemispherical arc 

disturbances attached to the upper and lower walls for 
the same two compressibility levels just discussed. 
These disturbances caused impingement of spatially 
periodic Mach waves on the shear layers. The 
additional effects of temporal excitation of the two- 
dimensional Kelvin-Helmholtz mode were also 
investigated using glow discharge excitation. The 
results showed little effect of the disturbances on 
growth rate for the more compressible case. However, 
at Mc=0.50 the optimized wall disturbance geometry 
showed a 50% increase in the growth rate and, when 
glow discharge forcing at 20 lcHz was added, the 
growth rate enhancement was 100%; see Fig. 28. 

Ramaswamy and Loth (1996) used passive acoustic 
excitation to enhance the growth rate of a confined, 
single-stream ( ~ 0 )  shear layer at M 4 7 4 .  This study 
showed that two acoustically reflective surfaces were 
required to achieve this resonance excitation: one 
below and one downstream of the shear layer. In 
addition, an upstream reflective surface further 
enhanced the growth rate; note that none of the surfaces 
was inserted directly into the shear layer. In the 
optimum case, a growth rate enhancement of 
approximately 100% was achieved, Fig. 29. The 
authors concluded that a combination of streamwise and 
transverse modes may be responsible for the excitation. 

The number of these enhancement studies that have 
achieved either no or only modest improvements in the 
growth rate attest to the inherent stability of 
compressible mixing layers. However, the recent 
studies of Martens and McLaughlin (1995) and 
Ramaswamy and Loth (1996). for which significant 
enhancement was achieved, offer hope that increased 
growth rates are, in fact, possible. It is likely, however, 
that to effect substantial growth enhancement will 
require that the instability modes and turbulent shucture 
of compressible mixing layers be more clearly 
understood, including the influences of velocity ratio, 
density ratio, compressibility, wall confinement, 
Reynolds number, upstream history, and the like. 

4. COMPRESSIBLE FREE SHEAR LAYERS IN 

4.1 Flowfield Structure 
Figure 30 presents a schematic diagram of a generic 
separated flow region embedded in a high-speed stream. 
For the case shown, a supersonic freestream and its 
associated boundary layer approach the sharp base 
corner of an axisymmetric or planar symmetric body 
where they separate geometrically through a centered 
expansion. A free shear layer is formed that encloses a 
recirculating region whose pressure is lower tban that of 

HIGH-SPEED SEPARATED FLOWS 
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Fig. 28 Growth rates of a compressible shear layer at 
M,=O.SO with wall distorbancea (Mach 
waves) urd glow discbarge excitation (20 kHz) 
(from Martens and McLaugblin, 1995) 
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Fig. 30 Schematic diagram of the separated Bow region 
doaastrenrn of a body in supersonic Bow (from 
Eerrin, 1993) 

and, hence, its development. In addition, only the 
initial two-thirds or so of the shear layer near the base is 
at approximately constant pressure before encountering 
the adverse pressure gradient caused by the 
recompression waves near the reattachment point. The 
enclosed recirculating region also imposes an energetic 
and nonuniform reverse velocity at the inner edge of the 
shear layer. Finally, near the rear stagnation point the 
effects of streamline curvature and, for the 
axisymmteric case, lateral streamline convergence also 
play a role in the structure of the shear layer and on the 
initial development of the trailing wake. 

The effects of these additional factors on 
compressible free shears layer present in high-speed 
separated flows will be described in the following 
sections. 

0 
0 20 40 6 0  80  100 

x: disxmca fmm ~plltter tip (mm) 

Fig. 29 Growtb rafes of a compressible shear layer at 
M,=0.74 with and without passive acoustic 
excitation (from Ramssaamy and Loth, 1996) 

the approaching stream. The shear layer and freeseeam 
are then recompressed through an oblique shock system 
as they are constrained to turn along the axis of 
symmetry near the rear stagnation (or reattachment) 
point. Development of the trailing wake then occurs in 
the downstream reaon. 

The free shear layer is the key component in this 
separated flow, since it controls the entrainment and 
mixing of hestream and recirculating region fluids, 
whtch, in turn, determine important parameters such as 
the base pressure. However, the development of this 
shear layer is influenced by factors not present for the 
two-stream, constant-pressure layer described at length 
above. One such factor is the centered expansion that 
occurs at separation. This expansion alters the initial 
mean flow and turbulence structure of the mixing layer 

4.2 
4.2.1 
Herrin (1993) and Herrin and Dutton (1994a.b) have 
made detailed three-component LDV measurements of 
the mean velocity and turbulence fields in the near- 
wakes of both cylindrical and boattailed afterbodies 
immersed in a Mach 2.5 hestream flow; see Fig. 30. 
The boattail consisted of a conical 5" convergence of 
the afterbody over the last 0.5 caliber (i.e., diameter) of 
its length. The approach boundary layer on the 
boattailed afterbody (Case 1 below) separated through a 
relatively weak centered expansion, with a mean 
turning angle of about 2". The rapid expansion at the 
corner of the cylindrical afterbody (Case 2) was 
considerably stronger, with a mean turning angle of 
approximately 9". Henin and Dutton (1995a) utilized 
these two flows to analyze the effects of expansion 
strength on the initial structure of the developing free 
shear layer. For the velocity statistics presented below, 
the data have been rotated such that the mean U and V 
components are, respectively, parallel and 
perpendicular to the average shear layer direction. 
While the flows investigated here are axisymmetric, the 

Mean Flow and Turbulence Statistics 

Effecb of Erpanswn at Sepmation 
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ratio ( : boundary layer thickness to the afterbody 
radius in the neighborhood of separation is of the order 
of only 10%. so that the results below should also apply 
to the planar case. 

Figure 3 1 presents the nondimensional mean 
streamwise velocity, UN], immediately adjacent to the 
separation point, where U1 is the mean freestream 
velocity approaching separation for each case. The 
axial and radial coordinates have been 
nondimensionalized by the radius of the base at 
separation, %. The magnitude of the plotted variable is 
shown by the scale at the upper left of the figure. In 
addition, dotted lines denoting the approximate inner 
and outer edges of the shear layer are shown. The 
transition from a turbulent boundary layer velocity 
proffie upstream of separation to an error function-type 
shear layer profile just downstream occurs smoothly 
and rapidly for the mildly expanded Case 1. However, 
immediately downstream of separation for the strong 
expansion of Case 2, the velocity profile develops a 
"kink with an essentially piecewise linear profile and a 
discontinuity in velocity gradient at point A. This 
discontinuity is similar to that found in rapidly 
expanded boundary layers in supersonic flow (Hampton 
and White, 1986; Dussauge and Gaviglio, 1987) and 
likely represents the interface between two layers: an 
overexpanded viscous sublayer and an outer boundary 
layer remnant that has reduced turbulence activity due 
to the rapid expansion (see below). 

Profiles of the streamwise Reynolds normal stress, 
ot/U:, adjacent to the separation point for both cases 
are shown in Fig. 32. One effect of the separation 
process, which is more obvious for the stronger 
expansion of Case 2, is the decrease in the streamwise 
velocity fluctuations over the middle portion of the 
shear layer relative to that of the upstream boundary 
layer. Recent work on rapidly expanded boundary 
layers (Dussauge and Gaviglio, 1987; Smith and Smits, 
1991) suggests that this Reynolds stress reduction is 
due to the bulk dilatation and stabilizing convex 
streamline curvature associated with the expansion. A 
second, even more noticeable effect of separation 
shown in Fig. 32 is the large increase in turbulence 
level at the inner edge of the shear layer. This increased 
turbulence is most likely due to the impingement of 
recirculating region fluid on the shear layer as it is 
entrained by turbulent structures along the inner edge of 
the layer. The mean velocity vector field presented in 
Fig. 33 shows this entrainment of recirculation region 
fluid into the shear layer near the separation point for 
Case 1. In Fig. 32 note that the majority of the 
streamwise evolution of the normal stress profile occurs 
in the sharply-peaked region with the turbulence in the 
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Fig. 31 Mean shepmaise velocity protiles near 
separation, U/U,, for (a) Case 1 and (b) Cage 2 
(from Eerrin and htton, 1995a) 

outer portion of the profile simply convecting in a 
frozen manner. The sharp peak in the longitudinal 
normal stress profile is in sharp contrast to similar 
measurements for rapidly expanded boundary layers, 
which show a reduction in normal stress across the 
entire thickness (Dussauge and Gaviglio, 1987; Smith 
and Smits, 1991). However, t h ~ s  difference is easily 
explained by the compliant fluid dynamic boundary and 
mass entrainment that occur along the inner edge of the 
expanded free shear layer as contrasted to the solid wall 
present for an expanded boundary layer. 

Similar profiles of the transverse normal stress, 
o:/U: (not presented) also show a decrease in 
magnitude in the middle portion of the shear layer as 
compared to the upstream boundary layer. A peak in 
the transverse stress occurs near the inner shear layer 
edge as for the streamwise stress, although its 
magnitude is similar to that in the upstream boundary 
layer. This suggests that the expansion is on a short 
enough time scale that redistribution of turbulence 
energy from the streamwise component (primary 
extractor of turbulence energy from the mean flow) to 
the transverse component does not occur. The relative 
constancy of the peak transverse stress through the 
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Fig. 32 Streamwise Reynolds normal stress profiles near 
separation, (ou/Ul) ,for (a) Case 1 and 
@) Case 2 (from Herrin and Dutton, 199%) 
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expansion and the increase in the peak streamwise 
stress shown in Fig. 32 imply that the normal stress 
anisotropy, a:/+, increases both across the 
expansion and with expansion strength. These results 
clearly show the nonequilibrium nature of the post- 
expansion turbulence field and its dependence on the 
strength of the expansion. 

Profiles of the normalized Reynolds shear stress, 
-(U' v')/U?, (also not shown) are similar to those for 
the streamwise normal stress plotted in Fig. 32, with a 
reduction in magnitude over the outer portion of the 
mixing layer and with a strong peak near the inner edge 
that increases with increasing expansion strength. A 
difference, however, is that the shear stress in the outer 
part of the expanded boundary layer is not only 
reduced, but essentially vanishes. This implies that 
there is essentially no turbulence production and that 
the large-scale structures are frozen in the outer part of 
the expanded boundary layer. The shear stress peak at 
the inner edge of the layer, on the other hand, implies 
the existence of large turbulent structures that actively 
entrain low-speed fluid, with this effect being enhanced 
with increased expansion strength. This increased mass 
entrainment from the separated region for the more 
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Fig. 33 Mean velocity vector field near separation for 
Case 1 (from Herrin, 1993) 

strongly expanded cylindrical afterbody case is 
consistent with its lower base pressure as compared to 
the more weakly expanded boattailed afterbody. The 
location of the shear stress peak approximately 
corresponds to that of the peak mean velocity gradient 
shown in Fig. 31, so that the production of turbulent 
kinetic energy (proportional to the product of the two) 
is maximized in this region. In addition, the peak shear 
stress magnitude is also enhanced with increased 
strength of the expansion. As a result, higher 
downstream turbulence levels will occur for the more 
strongly expanded Case 2. 

To further analyze the structure of the turbulence 
field in the neighborhood of separation, Herrin and 
Dutton (1995a) performed a quadrant decomposition of 
the instantaneous velocity realizations at each spatial 
location. The instantaneous U' and v' fluctuations, 
normalized by the local streamwise rms velocity 
fluctuation a,,, are plotted against each other in Fig. 34 
at three locations: upstream of separation for Case 1 
(Case 2 results are similar) and immediately 
downstream of separation for Cases 1 and 2. The radial 
locations for each plot correspond to those of the peak 
shear stress at the given streamwise station. The 
quadrant decomposition in the upstream boundary 
layer, Fig. 34(a), displays a wide array of velocity 
fluctuations, with a slight preference for quadrant 2 and 
4 events, hut with no strongly preferred orientation. In 
contrast, the quadrant decomposition plots immediately 
downstream of separation for Cases 1 and 2, Figs. 34@) 
and (c), show that the velocity fluctuations are more 
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follows from these. results that the large structures in the 
initial portion of the shear layer are better organized 
than those in the approaching boundary layer. This 
result is in agreement with the fluctuating pressure 
probe and hot-wire studies of Shau et al. (1993) and 
Petullo and Dolling (1993), respectively, discussed 
above for matched-pressure, two-stream shear layers. 
Arnette et al. (1993) and Dawson and Samimy (1994) 
also found that rapid expansions increase large-structure 
organization for attached boundary layers in supersonic 
flow. Comparing the results for Cases 1 and 2, 
Figs. 34(b) and (c), shows that increasing the strength 
of the expansion causes a slight increase in the structure 
organization, although the separation process itself, and 
the consequent formation of the free shear layer, 
appears to be the more dominant factor. 

Hemin and Dutton (1995a) further investigated the 
effects of expansion on shear layer turbulence structure 
by computing the instantaneous shear angle, 
yr=tan-*(v'/u*), for each velocity realization and sorting 
the ensembles into histograms (probability density 
functions). Note that velocity fluctuations in quadrants 
1 and 3 will have PO, while quadrant 2 and 4 events 
will have yr<O. The histograms generated in tbis 
manner for the three data locations of Fig. 34 are given 
in Fig. 35. The velocity fluctuations in the approach 
boundary layer, Fig. 35(a), show no strongly dominant 
shear stress orientation, although realizations in 
quadrants 2 and 4 (yr<O) occur somewhat more 
frequently than in the other quadrants. Immediately 
downstream of separation for the more weakly 
expanded Case 1, Fig. 35(b), the shear stress has a 
strong preferential orientation about an angle of 
approximately -12' from the mean flow direction. This 
provides additional quantitative evidence of the 
increased orgamzation of the turbulent structures in the 
separated free shear layer as compared to the upstream 
boundary layer. As the expansion strength is increased 
to Case 2, Fig. 35(c). the magnitude of the preferred 
shear stress angle increases slightly to -16', although 
the general shape of the shear angle distribution is 
relatively unchanged from that of Case 1. The increase 
in the preferred shear angle with increased expansion 
strength may result from an increase in the average 
large-structure orientation angle with respect to the 
mean flow direction. The results of Arnette et al. 
(1993) for rapidly expanded, attached, supersonic 
boundary layers provide some support for this 
hypothesis. 

We should note that we are unaware of any 
previous comparable work on the effects of separation 
through compression waves, although the current 
efforts of Palko (1997) are addressing this issue. 
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Fig. 34 Velocity fluctuation quadrant decomposition 
near separation for (a) approach boundary 
layer of Case 1; &I) downstream of separation 
for Case 1; and (e) downdream of separation 
for Case 2 (from Herrin and Dolton, 199511) 

organized and strongly aligned along a preferred stress 
direction in quadrants 2 and 4. Since large-scale 
turbulent structures are the most signifcant contributor 
to the Reynolds shear stress (i.e., <uV> correlation), it 
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4.2.2 Shear Layer Development 
Herrin (1993) and Hemn and Dutton (1995a) have also 
analyzed the development of the free shear layers 
contained in the near-wake regions of the boattailed and 
cylindrical afterbodies, Cases 1 and 2, discussed above 
(Fig. 30). The velocity data shown here are again 
rotated such that the U and V mean components are, 
respectively, parallel and perpendicular to the average 
shear layer direction. Data are presented from the 
xlRo=O base plane to about x&=2.5, just before the 
rear stagnation point. The initial portion of this domain 
is at approximately constant pressure. However, the 
effects of the adverse pressure gradient caused by the 
recompression waves (see Fig. 30) are experienced by 
the shear layers over the last one-third or so of this 
region. In addition, as these shear layers approach the 
centerline, their thicknesses and radial locations relative 
to the axis will be of the same order of magnitude, so 
that the effects of axisymmetry will become important. 

1 

Fig. 35 Histograms of instantaneous shear angle for 
(a) approach boundary layer of Case 1; 
(b) downstream of separation for Case 1; and 
(e) downstream of separation for Case 2 (from 
Herrin and Dutton, 199Sa) 

As a result, it is expected that the results presented 
below will be qualitatively similar to planar symmetric 
separated flows, although precise quantitative 
magnitudes may differ between the two geometries. 

Although the freestream velocities on either side of 
the shear layers contained in these separated flows vary 
somewhat with distance from the base corner, an 
average convective Mach number can be estimated (see 
Eq. 4). The result for both the boattailed and cylindrical 
afterbodies (Cases 1 and 2, respectively) is, Mp1.3 ,  
which indicates that these mixing layers are strongly 
affected by compressibility. 

Figure 36 is a plot of the mean streamwise velocity 
profiles of the shear layers for Cases 1 and 2 in 
similarity coordinates (rmid is the radial midpoint 
between the 10% and 90%AU locations and U2 is the 
local mean velocity at the inner edge of the mixing 
layer). The two profiles plotted for each case are 
relatively far from separation, and the good collapse of 
the data demonstrates that the mean velocity field has 
become self-similar in this region. In addition, the 
agreement of the profiles for the two cases suggests that 
the stronger expansion that occurs at separation for 
Case 2, which distorted the initial mean velocity profile, 
Fig. 31(h), has little effect on the velocity profile farther 
downstream. All four profiles shown in Fig. 36 also 
have a relatively sharper corner at the outer, high-speed 
edge, which may be due to the reduced intermittency 
and altered large-scale structure in this region, as 
compared to that at the inner edge. Similar results have 
been obtained for matched-pressure, two-stream, 
compressible mixing layers (e.g. ,  Gruber e t  al.. 1993). 
although the rounding effect on the low-speed side may 
he accentuated for the current cases due to the nature of 
the recirculating flow on the shear layer inner edge. 

In order to examine the growth of the shear layer in 
this separated flow, the loci of the 10%. SO%, and 
90%AU lines for Case 1 are plotted in Fig. 37. It can be 
seen that the growth rate is initially very rapid with an 
overwhelming majority of it occurring on the inner 
edge, as shown by the divergence of the IO% and 50% 
velocity lines. As previously noted, this is the location 
where mass entrainment from the recirculation region is 
large. This result also clearly shows the importance of 
the initial shear layer development region on the overall 
mixing layer growth. Further downstream in Fig. 37, a 
region of reduced growth rate can be observed that 
extends to the rear stagnation point (marked with an 
"S").  

To further investigate the growth rate 
characteristics of the shear layers, the dimensionless 
velocity thicknesses for both cases are plotted against 
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Fig. 36 Menn streamwise velodty profiles of the 
compressible shear layers for Cases 1 and 2 in 
simUarity cwrdinntes (from Herrin and Dutton, 
1995a) 

distance from the separation point in Fig. 38. In both 
instances two regions of distinctly different growth 
rates (as just discussed) are apparent: a region of rapid 
linear growth almost immediately downstream of 
separation and a second region of reduced linear growth 
after the shear layer mean velocity profile becomes self- 
similar. By fitting least-squares lines to the thickness 
data of Fig. 38, the growth rates in the self-similar 
regions are found to be db/dx=0.032 and 0.090 for 
Cases 1 and 2, respectively. Since the convective Mach 
numbers for the two shear layers are essentially 
identical, the near tripling of the asymptotic growth rate 
of Case 2 relative to Case 1 cannot be a compressibility 
effect and is clear evidence of the sensitivity of this 
feature of shear layer behavior to initial conditions (i.e., 
expansion strength at separation). The larger growth 
rate of Case 2 is also consistent with the higher levels of 
turbulence in this shear layer, both initially after 
separation (Fig. 32). and further downstream, as 
discussed next. 

Using the Mehta and Westphal(l986) definition of 
afully-developed shear layer discussed previously, not 
only must the growth rate be linear and the mean 
velocity profiles be self-similar, but the profiles of all 
turbulence quantities must also be self-similar with 
constant peak values. As an example of the approach of 
the shear layers in the current separated flows toward 
fully-developed conditions, Fig. 39 shows streamwise 
Reynolds normal stress profiles at several axial 
locations for Case 2. The comparable peak values 
shown for the last two measurement stations, -1.57 
and 1.89, suggest that this quantity is approaching self- 
similarity, although additional distance is needed for 
complete development. Comparable profiles of the 
transverse Reynolds normal stress and the Reynolds 

d 

Fig. 37 Shear layer development for Case 1 (from 
Herrin, 1993) 

shear stress for Case 2 show an even slower approach 
toward self-similar conditions for these quantities. 
Plots of the same turbulent stress profiles for the more 
weakly expanded Case 1 demonstrate the same 
qualitative behavior with respect to attainment of the 
fully-developed state. However, in each case, the peak 
turbulent stress magnitudes for Case 1 are lower than 
those for Case 2. Thus, the far-field effect of increasing 
expansion strength at the shear layer origin is enhanced 
overall turbulence levels further downstream, with a 
concomitant increased growth rate. 

Figure 40 further emphasizes this latter effect by 
plotting the peak streamwise and transverse normal 
stresses along the length of the shear layers for Cases 1 
and 2. The peak streamwise normal stress distributions 
for the two cases, Fig. 40(a), are very comparable in 
shape, with a maximum immediately after separation, 
followed by a decrease to a local minimum, and then an 
increase to the end of the shear layer. However, the 
magnitudes for Case 2 everywhere exceed those for 
Case 1, especially near boundary layer separation, 
where the effects of expansion strength are dominant. 
Likewise, the peak transverse normal stress 
distributions for the two cases, Fig. 40(b), start with 
relatively small and comparable magnitudes 
immediately after separation, but then increase 
monotonically with increasing distance from the shear 
layer origin. In the downstream region, the peak stress 
values for the more strongly expanded Case 2 again are 
larger than those for Case 1. Comparing the two peak 
stress distributions, it appears that the far-field 
turbulence structure, in terms of the distribution of 
turbulence energy among the Reynolds stress 
components, is relatively unaffected by the strength of 
the initial expansion. However, the magnitudes of the 
individual stress components themselves increase with 
increasing expansion smngth. 
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Fig. 38 Shear layer growth rates for (a) Case 1 and 
(b) Case 2 (from Hemn, 1993) 

Fig. 39 Streamwise Reynolds normal stress profiles of 
the comnressible shear laver for Case 2 in 

. 
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Fig. 40 Comparison of peak Reynolds n o d  stress 
diutributions for Cases 1 and 2: (a) streamwise 
n o d  stress and (b) trpnsverse n o d  stress 
(from Hemin and Dutton, 199%) 

43.3 
Herrin and Dutton (1995b) have studied the behavior of 
a compressible shear layer in a separated flow as it 
recompresses and reattaches near the rear stagnation 
point, see Fig. 30. The velocity measurements 
presented and discussed here are. in standard cylindrical 
coordinate form, such that U and V are the axial and 
radial mean velocity components, respectively. 
Furthermore, axial distances from the base plane are 
nondimensionalized with respect to the reattachment 
length, XR. where xR&2.81 for the Case 1 (boattailed 
afterbody) measurements shown. The location of the 
onset of the adverse pressure gradient associated with 
the recompression waves has been estimated from the 
sidewall pressure data of Amatucci (1990) and is 
marked with the symbol "xp" on the results plots. In 
each case at least one profile is shown upstream of 
recompression so that the properties of the highly 
compressible free shear layer (Mp1.3) are documented 

Effects of Recompression and Reattachment 

prior to the beginning of the adverse pressure gradient 
~~Ordinaw (from and httoq and reattachment processes. With the shear layer 

immediately adjacent to the centerline during 
recompression and reattachment, the effects of 

199%) 
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axisymmetry are strong, and fundamental differences 

axisymmetric flows in this region, as will be discussed 
below. 

Profiles of the axial Reynolds normal stress 
through the reattachment region are shown in Fig. 41. 

are found between the behavior of planar and 1.2 ~ : ~ ~ l  
~ 

~ 

The sharp peak in the first profile (upstream of 
recompression) is characteristic of compressible free 0.4 1 
shear layers, see Fig. 3. As the shear layer approaches 

g' Od 

~ 

0.2 ; 
the rear stagnation point, the peak values away from 
the axis decrease in magnitude while the centerline 0.6 0.1 1.0 1.2 I 1.6 

values reach a local maximum due to turbulence 
interaction effects across the axis. The net result is a 
less peaked, more radiallv uniform normal stress Fig. 41 Axial Reynolds n o d  proffles IIW 

0.0 i 
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profile. Also, as the flow proceeds into the wake 
development region, the general level of the turbulent 
stresses is reduced because of the decreased mean 
strain rates in the wake as compared to those in the 
approaching shear layer. Qualitatively, the behavior of 
the radial Reynolds normal stress and primary shear 
stress profiles (not shown) through this region is 
similar. The transition from a sharply peaked, shear 
layer-type profile to a more rounded profile of reduced 
magnitude in the developing wake is, perhaps, most 
pronounced for the shear stress, since this quantity 
vanishes along the centerline by symmetry. 

Figure 42 presents the peak magnitudes of the three 
Reynolds normal stresses and the primary shear stress 
as a function of axial distance near the rear stagnation 
point. All four of these peak turbulent stresses 
generally decrease in magnitude throughout the 
reattachment and initial wake development regions. 
The reduction in the peak magnitudes of the axial 
normal stress and the primary shear stress begin 
essentially immediately at the onset of recompression, 
while the decrease in the radial and tangential normal 
stresses is somewhat delayed. This delay is most likely 
due to the finite time required to redistribute turbulence 
energy from the axial normal stress, which extracts 
energy from the mean flow, to the radial and tangential 
components. 

To explain the behavior of the turbulent stresses in 
this region, it is helpful to consider the "extra rates of 
strain" that are present in addition to the simple shear 
strain rate, aU/& (Bradsbaw, 1974; Smits et al., 
1979a,b). In this regard, bulk compression due to the 
recompression waves and concave streamline curvature 
resulting from realignment of the flow along the axis 
should act to destabilize (increase) the Reynolds 
stresses in the reattaching shear layer. On the other 
band, the effect of lateral streamline convergence as this 
axisymmetric shear layer approaches the centerline and 
reattaches on itself should stabilize (decrease) the 

reattachment, ( G ~ / V ~ ) ~  for case 1 (from 
Elerrin and Dutton, 199%) 

Reynolds stress magnitudes. Thus, the overall decrease 
in the level of the turbulent stresses through 
recompression and reattachment indicates the dominant 
influence of the lateral streamline convergence effect 
for this axisymmetric flow. In a similar vein, the 
turbulence measurements of Amatucci et al. (1992) 
show that, for a similar two-dimensional compliant 
boundary reattachment, the axial and radial turbulence 
intensities and the shear stress increase through 
recompression and peak at or just downstream of the 
reattachment point, Fig. 43. Since lateral convergence 
effects are not present in this two-dunensional flow, the 
increases in the Reynolds stresses up to the 
reattachment point can be explained by the destabilizing 
influences of bulk compression and concave stfeamline 
curvature. For both the axisymmetric and two- 
dimensional cases, as the shear layer realignment 
process is gradually completed, all of the extra strain 
rates vanish. Consequently, the turbulent stress 
magnitudes are reduced in the developing wake as the 
shear strain rate decreases. 

In addition to investigating the magnitudes of the 
Reynolds stresses in the reattachment region, it is also 
instructive to examine the turbulence structural changes 
that result from application and removal of the extra 
strain rates. One such structure parameter is the 
anisotropy of the Reynolds normal stresses. Figure 44 
presents a primary-to-secondary normal stress ratio, 
(O,/U,)~, and a secondary-to-secondary stress ratio, 
( O ~ / U ~ ) ~ ,  plotted at the peak shear stress location 
through the reattachment region. During the early 
stages of recompression and reattachment, a significant 
shift in the relative magnitudes of the normal stresses is 
indicated by the decreasing value of (au/uv)z, This 
decay in normal stress arusotropy continues up to 
reattachment, where it appears to reach a new 
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Fig. 42 Peak Reynolds stress distributions through 
reattachment for Case 1 (from Herrin and 
Dotton, 199%) 

Fig. 43 Peak torbolenee intensity and Reynolds shear 
stress distributiona through reattachment for a 

(from Anmtaed et al., 1992) 
tno-dimensiolul, w p ~ r s ~ n i ~ ,  sepnrnted now 

equilibrium state with only small variations in the 
developing wake. Throughout the entire reattachment 
region, the (o,/o,)~ secondary-to-secondary normal 
stress ratio remains approximately constant at a value of 
unity. This suggests little effect of the extra strain rates 
on the distribution of turbulence energy among these 
secondary normal stress components. Therefore, the 
recompression and reattachment processes generally 
increase the isotropy of the turbulence field as 
compared to that of the incoming shear layer, although 
the axial normal stress is st i l l  clearly the dominant 
component. 

Hemn and Dutton (1995b) also investigated the 
behavior of two turbulence structure parameters: 
-cu'v'>ik and the shear stress correlation coefficient, 
RUV, in the shear layer reattachment region. Both 
parameters were found to decrease monotonically 

Fig. 44 N o d  sbess anisntropy ratios through 
reattachment for Case 1 (from Eerrin and 
Dotton, 199%) 

through the region and to approach values (0.3 and 0.4- 
0.5, respectively) that are often used in turbulence 
closures. The decrease in the shear stress correlation 
coefficient is also indicative of a loss in organization of 
the large-scale turbulent structures as they negotiate the 
recompression and reattachment processes. This effect 
will be discussed M e r  below. 

Probability density functions of the instantaneous 
shear angle, yr=tan-'(v'/u'). also discussed above in 
regard to the effects of expansion at separation, are 
presented in Fig. 45. The histograms correspond to 
three locations in the reattachment region: in the free 
shear layer just upstream of the start of recompression, 
very near the mean reattachment point, and downstream 
in the developing wake. The shear angle pdf in the 
approaching free shear layer exhibits a well-defined 
peak at a negative value of yr. which indicates the 
predominance of quadrant 2 (U'&, VIS) and quadrant 4 
(U'S, v'<O) events. The organization of the shear layer 
turbulence field approaching reattachment is consistent 
with previous visualmations of large-scale turbulent 
structures in compressible mixing layers (e.g., 
Messersmith and Dutton, 1996), and also is in  
agreement with shear angle pdfs constructed near the 
shear layer origin in the preseat flowfield, Fig. 35. The 
histograms shown here at reattachment and in the initial 
part of the wake retain the same general shape as that 
for the incoming mixing layer, although the peak at 
negative angles is no longer as dominant. This result 
suggests that, while quadrant 2 and 4 events are still the 
most frequent, the organization of the turbulence field 
decreases through reattachment. This reduction in 
large-structure organization is also consistent with the 
decrease in the magnitudes of the Reynolds shear stress 
and shear stress correlation coefficient in this region. It 
therefore appears that the large-scale structures 
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base comer. The upper stream boundary layer just 
before separation is about 2.3 times thicker than that of 
the lower stream (intentional mismatch to model a 
power-on missile flow). Since both flows originate 
from the same stagnation conditions, the static pressure 
of the lower-speed stream at separation is higher than 
that of the upper stream, Pz/P1=2.14. Also, because 
both flows separate and expand to a common base 
pressure, the Mach 2.0 stream experiences a much 
stronger expansion and turning angle, 21.6', as 
compared to the Mach 2.5 stream, which turns about 
10.7". After the separation and acceleration processes, 
the freestream flows adjacent to the recirculation region 
are both at approximately Mach 3.0. The two free shear 
layers that form after separation are recompressed and 
realigned to a common flow direction near the rear 
stagnation point. Since the lower stream static pressure 
at separation exceeds that of the upper stream, the flow 
direction of the developing wake is inclined upward at 
an angle of approximately 11.2O. 

Figure 46(b) presents a global Mie scattering image 
of the entire near-wake region. Vaporized ethanol that 
is seeded into both flows far upstream of the test section 
condenses when expanded to supersonic velocities. The 
relatively lower-speed, and therefore warmer, fluid in 
the reclrculation region promotes re-evaporation of the 
ethanol. Thus, the high-intensity regions in the image 
are in the supersonic freestreams, the low-intensity 
regions delineate recirculating region fluid, and the 
boundary between the two marks the turbulent structure 
of the shear layers and developing wake. Inspection of 
t h s  global image suggests the existence of stringy 
large-scale structures in the shear layers that are 
particularly noticeable as the rear stagnation point is 
approached and also in the wake. Individual weak 
oblique shock waves that coalesce into the main 
recompression shocks are also easily visualized since 
the number density of the scattering droplets increases 
across the shocks. Other features are difficult to discern 
in this low-magnification view. 

To examine in detail the smcture of this separated 
flow, large ensembles of high-magnification images 
were obtained at each of the ten locations sketched in 
Fig. 46(a). Both side-view and end-view images were 
acquired and analyzed at each position. The choice of 
these locations was made based on the pressure gradient 
environment in the near-wake, as determined from the 
mean pressure measurements of Amatucci (1990). 
Positions A and B are in the constant-pressure, initial 
shear layer formation region. Position C is centered in 
the adverse pressure gradient (i.e.. recompression) 
region approaching the rear stagnation point. Position 

I,' 
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Fig. 45 Aistogrpms of instantaneous shear nngle though 
reattachment for Case 1: (a) x/xR d.56; 
(b) x/x,=l.Ol; and (e) x/xR=1.46 (from Hemin 
and Dntton, 199%) 

contained in the incoming shear layer can successfully 
negotiate the adverse pressure gradient and 
reattachment processes. but that they lose strength and 
organization as they do so. More evidence of this will 
be given below in discussions of planar visualizations 
of compressible separated flows. 

4 3  Large-scale Turbulent Structure 
43.1 Singk-Frame Planar Imaging Results 
Smith (1996) and Smith and Dutton (1996) have 
conducted planar imaging studies in the same two- 
dimensional, supersonic, separated flow for which 
Amatucci er al. (1992) reported mean flow and 
turbulence measurements. Figure 46(a) presents a 
schematic of th is  flow, including the imaging locations 
that will be discussed below. The upper stream 
approaches the 25.4 mm thick base at M1=2.5, while 
the lower stream is at M2=2.0 before separating at the 
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Fig. 46 Two-dimensional, supersonic, separated now 
of Smith and Dutton (19%): (a) imaging 
locations and (b) global planar image of entire 
near-wake region 

D is centered on the mean reattachment point, while 
Position E is located in the initial portion of the trailing 
wake. In each case the camera field-of-view was 
rotated so that the mean flow direction is horizontal and 
left-to-right across the images. Table 2 gives the 
imaging locatlons, inclination angles, and shear layer 
thicknesses at the five image positions in the upper 
shear layer, which will he discussed in detail below. 
Also included in Table 2 is an estimate of the 
convective Mach number at each location that was 
developed using the velocity data of Amatucci et al. 
(1992). For the first three positions before 
reattachment, the convective Mach number is fairly 
constant at a value of ahout 1.3. This value is similar to 
that of the shear layers in the axisymmetric separated 
flows analyzed by Hemn and Dutton (1995a,h) and 
indicates substantial compressihility effects. However, 
at reattachment, and especially as the trailing wake 
develops, the level of compressibility drops markedly. 

The characteristics of the turbulent structures 
visualized at Positions Atop and Btop in the constant- 
pressure shear layer region are qualitatively similar, so 
that results only at the latter location will be shown. 

Figure 47 presents four time-uncorrelated instantaneous 
images from Position Btop. The mean thickness and 
location of the shear layer are indicated adjacent to the 
images. Large turbulent structures are clearly visible at 
this location, which, together with those visualized at 
Position At,,,, demonstrate that such large structures 
exist even at this very early stage of shear layer 
development. However, the structures are not rounded, 
Brown-Roshko (1974) rollers, but rather are more 
elliptical in shape and inclined to the mean flow 
direction, with long filament-like braids connecting 
highly-strained structure cores. The structures 
sometimes exhibit a polygonal shape, which is similar 
to the observation made by Clemens and Mungal(l995) 
for two-stream compressible shear layers at high 
compressibility. The coherence and spatial periodicity 
of the structures at these locations are greatly reduced 
as compared to those of shear layers at low convective 
Mach number (e.g., Fig. 9). This result can be 
attributed to the dominance of three-dimensional 
instability modes under the highly compressible 
conditions of this shear layer (Ragab and Wu, 1989; 
Sandham and Reynolds, 1990, 1991). The lower right 
image of Fig. 47 shows an excellent example of 
recirculation region fluid that has been surrounded by 
freestream fluid by means of some type of vortical 
motion. This engulfment-type of mass entrainment will 
act to reduce the base pressure and is the first step in 
mixing the recirculation region and freestream fluids at 
the molecular level (Broadwell and Breidenthal, 1982; 
Broadwell and Mungal, 1988). 

Four instantaneous images from position Ct,,,, in 
the adverse pressure gradient region, are shown in 
Fig. 48. At this location the eddies exhibit a greater 
diversity in size and shape than at the two earlier 
stations. For example, the upper right image has little 
well-&fined large shucture, while there are at least two 
distinct large structures and an intervening braid in the 
lower right image. Small-scale structures residing on 
larger structures are often observed at this location. as 
in the upper left image. A similar observation of small 
structures has been made for constant-pressure, two- 
stream, compressible mixing layers by Elliott et al. 
(1992). The compression waves that form the base of 
the main recompression shock are also sometimes seen 
in the images at this position (upper right image). 

Figure 49 presents instantaneous images at the 
mean reattachment location, Dtop. The large-scale 
structures that were seen at earlier locations have now 
grown and become dominant features of the flowfield; 
see also the global view, Fig. 46(b). Freestream fluid 
often makes deep excursions into the recirculation 
region and vice versa. The size and orientation of the 
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Table 2 Imaging locations and flowfield parameters for top shear layer (from Smith and Dutton, 1996) 

Distance from base Field-of-view Convective Mach Shear layer width, 
Imaging comer along shear inclination,a number, Glocal. 
position layer, mm deg MC mm 

*too 7.5 -10.7 1.27 1.65 
Btop 15.0 -9.6 
CtOP 30.0 -5.6 
Dtoo 35.0 0.0 

1.37 
1.25 
1.12 

1.95 
2.35 
2.77 

Et,, 50.0 11.2 0.74 3.9Eb 
a Measured with respect to test section floor. Positive angles denote an upward inclination. 

An estimate for the half-wake width is used. 

local 

Fig. 47 Side-view planar images at Position Btop 
(from Smith and Dutton, 1996) 

I- 
Fig. 48 

ocal 

Side-view planar images at Position Ctop 
(from Smith and Dutton, 1%) 

structures vary from image to image (compare the two 
images on the left), but nearly every one contains some 
degree of easily identifiable large-scale organization. 
Weak shock waves that emanate from within the shear 
layer are observed even more frequently than at the 
previous location in the adverse pressure gradient 
region. These shocks appear to originate from the lee 
side of large structures. However, whether or not the 
shocks are caused by the interference of large smctures 
with the supersonic outer flow and, therefore, move 
with the structures, cannot be determined from these 
single-frame images. This subject will be addressed 
further in the discussion below of double-pulsed 
imaging results. 

Images taken at Position Etop in the trailing wake 
are shown in Fig. 50. A variety of large and small 
structures is evident at this location. In some instances, 
the structure spacing is nearly periodic, as in the upper 
left image, while in other cases it appears to be random, 
as in the lower left image. At this location the 
structures appear to be a bit more rounded and less 
jagged than at earlier positions. Clear visualizations of 
shock origination from large structures are quite 
common, as is coalescence of these individual shocks 
into the global recompression shock. 

Figure 51 presents two instantaneous end-view 
images at each of the four positions, Btop-Etop, at which 
side-view images were just shown and discussed. 
Compared to the side view, the quality and spatial 
resolution of the end-view images are somewhat 
reduced, since an oblique viewing angle was required in 
the latter case. Nevertheless, the major structural 
characteristics in this plane are readily discernible. The 
most common features at all four positions are rounded 
smchues of freestream fluid projecting downward into 
the recirculation region and vice versa. Consequently, 
the shear layer has a corrugated appearance in the end 
views. It IS expected that streamwise or obliquely- 
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Fig. 49 Side-view planar images at Position D,, 
(from Smith and Duttan, 1996) 

T y 

Fig. 50 Side-view planar images at Position E,, 
(barn Smith and Dutton, 19%) 

oriented vorticity is responsible for this trough-like 
structure and that this vorticity would participate 
strongly in  entraining mass into the shear layer. 
Clemens and Mungal (1995) and Messersmith and 
Dutton (1996) have observed similar evidence of cross- 
stream fluid ejections in end-view images of two- 
stream, compressible shear layers. The general tilting 
of the rounded structures away from the vertical in 
Fig. 51 is also suggestive of obliquely-oriented large 
structures. This observation is consistent with the 
dominance of oblique instability modes at the large 
convective Mach number of this shear layer. Another 
less obvious feature that is commonly observed at the 

recompression, reattachment, and initial wake positions 
(Ctop-Etop) is a high intensity "halo" that surrounds 
projections of recirculation region fluid into the shear 
layer. This may be due to shock waves that are caused 
by blockage of the supersonic outer flow by the 
structures. 

In addition to obtaining time-resolved images, 
Smith and Dutton (1996) have computed spatial 
correlatlon fields for the image ensembles at each 
location Atop-Etop. This was done in order to analyze 
the large structure features in a statistically objective 
manner, much as was done by Messersmith and Dutton 
(1996) for two-stream, compressible mixing layers 
(Figs. 18-20). The ensemble-averaged spatial 
correlation fields for the side views at all five positions 
are shown in Fig. 52. In all cases the local mean flow 
direction corresponds to horizontal in the figure. In 
addition, the central correlation peak has a value of 
unity by definition, and the contours are drawn in 
increments of 0.1. The structure size and inclination are 
determined at the 0.5 correlation contour. The 
ensemble-averaged dimensionless size, eccentricity. and 
angular orientation at each position are summarized in 
Table 3. 

Inspection of Fig. 52 shows that, on average, the 
structures at each of the five locations are elliptical in 
shape. As the shear layer progresses from Position Amp 
to Btop in the constant-pressure region, the structures 
seem to evolve only by growing, with little change in 
eccentricity or angular inclination (Table 3). The 
structure angles of approximately 40' at these two 
locations are larger than those measured by 
Messersmith and Dutton (1996) for two-stream, 
constant-pressure mixing layers at lower 
compressibility. In the current separated flow, 
however, the shear layer has been strongly expanded at 
its origin and a recirculating flow exists on its inner 
edge. These factors may account for the differences in 
structure angle between the two studies. In the 
recompression and reattachment regions, Ctap and DtaP 
the dimensionless size increases substantially. the 
inclination angle is significantly decreased, while the 
eccentricity is increased modestly. As a result, the 
average structure at reattachment is highly elongated 
and tilted down toward the streamwise direction, 
Fig. 52. At position EtOp in the initial wake, the 
normalized structure size IS significantly reduced, the 
structure angle increases slightly, and the eccentricity 
decreases substantially with respect to the values at 
reattachment. The latter result is consistent with the 
more rounded structures visualized at this location, 
Fig. 50, and is most likely due to the reduced 
convective Mach number here. 
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Fig. 51 End-view planar images at Position 
B,, -Ebp (from Smith and Dutton, 1996) 

Messersmith and Dutton (1996) found that the 
structure inclination angle decreased with increasing 
compressibility for two-stream shear layers, Table 1. 
However, in the separated flow studied by Smith and 
Dutton (1996). the structure angle decreases from the 
values in the constant-pressure region as the 
recompression and reattachment processes are 
negotiated, even though the convective Mach number is 
roughly constant. Thus, the downward tilting in the 
latter case most likely results from the structures' 
response to the adverse pressure gradient and shear 
layer realignment processes. This hypothesis is 
supported by the two-point fluctuating pitot pressure 
measurements of Shau et al. (1993). When these 
investigators impinged a shear layer at M 4 . 2 8  with an 
oblique shock wave, the large structures were found to 
react by tilting downward. In the separated flow of 
Smith and Dutton (1996), the adverse pressure gradient 
in the recompression and reattachment regions is 
qualitatively similar to that caused by a shock. 
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A careful examination of the correlation contours at 
Positions Ctop and Dt in the recompression and 
reattachment regions, Fig. 52, shows that they are not 
all aligned along a common axis as they are in the 
constant-pressure region at Positions Atop and Btop. 
This contour rotation is especially pronounced at the 
reattachment location. where the orientations of the 0.9 
and 0.5 contours differ by approximately 25". The 
central contours at levels from 0.7-0.9 do, however, 
maintain a consistent orientation from Positions Atop to 
Dtop. These results suggest that the large-sbucture 
cores maintain their coherence, while the structure 
peripheries are more susceptible to the effects of the 
adverse pressure gradient and other localized influences 
(extra strain rates) in the neighborhood of the rear 
stagnation point. The recompression and reattachment 
processes therefore appear to degrade the spatial 
coherence of the large-scale structures present in the 
incoming shear layer. This conclusion is in agreement 
with the velocity measurements of Herrin and Dutton 
(1995b), made for an axisymmetric reattaching shear 
layer. Note that the contours for Position Etop in the 
initial wake are better aligned than at the two preceding 
locations, perhaps due to the reduced convective Mach 
number and strain rates at this position. 

The end-view spatial correlation fields (not shown) 
at all five locations are qualitatively similar to each 
other and consist, essentially, of concentric circles. The 
spanwise symmetry of these correlations confirms that 
the mean flowfield is nominally two-dimensional. 
Table 4 presents the relevant statistical results. Since 
the correlation contours are nearly circular in thk view, 
the eccentricity is very small, particularly at the later 
stations. The nondimensional structure size increases 
through the constant-pressure and recompression 
regions, before decreasing at reattachment and in the 
wake. The last column in Table 4 gives the ratio of the 
end-view major axis to the side-view major axis. At the 
first two locations, in the constant-pressure region, the 
large structures are slightly longer in the spanwise 
direction than in the streamwise. However, in the 
recompression region, a crossover occurs such that at 
the last three stations the structures exhibit a greater 
coherence in the streamwise direction. The large shear 
strain rate experienced by the layer may he responsible 
for stretching the structures in the streamwise direction, 
while the large convective Mach number is responsible 
for the onset of oblique instability modes that act to 
reduce the spanwise correlation length. 

PP 
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Time-resolved imaging and spatial correlation 
analyses have also been performed at the five locations 
in the bottom shear layer sketched in Fig. 46(a). In 
general, the results for this shear layer are quite similar 
to those just discussed for the upper layer. However, 
some distinct differences were also observed, which are 
thought to be due primarily to the differing expansion 
strengths experienced at the separation points. A 
detailed companson of the top and bottom shear layer 
single-pulse imaging results can be found in Smith 
(1996). 

43.2 Dual-Frame P b  Imaging Results 
In addition to the single-frame planar imaging 
experiments described above, Smith (1996) also 
obtained double-pulsed images for the same high-speed 
separated flow shown in Fig. 46. These experiments 
allowed the temporal evolution and convective velocity 
of the turbulent structures to be examined. To 
accomplish this, large side-view image ensembles were 
obtained at Positions B-E in both the upper and lower 
shear layers. The cameras in this two-laser, two-camera 
technique were again rotated so that the horizontal 
direction in the images corresponds to the local 
streamwise direction. 

Four different bme delays were used at each 
location to investigate structure evolution over 
increasing pulse separations. The magnitude of these 
delays, 7.  was chosen based on consideration of the 
dimensionless delay parameter, Z = UC.r I s l d ,  which 
relates the time delay to the local shear layer integral 
scales. Note that when Z equals unity, a structure will 
convect a streamwise distance equal to one shear layer 
thickness. The four time delays for the imaging 
experiments at each location correspond to 7 values of 
approximately 0.5. 1.0, 1.5, and 2.0. 

Since the structure evolution characteristics in the 
upper and lower shear layers at comparable locations 
are similar, dual-frame images will be presented only 
for the upper layer. At Position Btop in the constant- 
pressure region, image pairs at the shortest time delay, 
~ = 0 . 4 3 ,  show that the inclined, elliptical (or 
sometimes polygonal) structures convect in a frozen 
manner with little rotation or deformation. Features in 
the initial images are easily detected in the delayed 
images, indicating that the structures retain their spatial 
coherence over this short time interval. In contrast, 
Fig. 53 shows two image pairs with Z = 0.81. In this 
case, the dominant evolution characteristic is rotation in 
a clockwise sense with an accompanying increase in 
size and eccentricity; see the marked structure core in 
Fig. 53(b). This elongation and rotation down toward 

- 

the seeamwise direction are consistent with other multi- 
frame imaging studies of two-stream compressible 
mixing layers (Mahadevan and Loth, 1994; Elliott er 
al., 1995; Ramaswamy et ab, 1996). While clockwise 
rotation was observed most often, occasionally 
structures imaged at this location rotated counter- 
clockwise, thereby increasing their structure angle with 
respect to the local mean flow duectlon. 

Side-view image pairs obtained at Position BtOp 
and dimensionless time delays of ?=1.21 and 1.61 
show the limited temporal coherence of the structures 
under these conditions. In many cases, structures 
identified in the initial image are not easily seen in the 
second image. For example, the braid indicated in the 
delayed image of Fig. 54 at 7 = 1.61 does not appear to 
be present in the initial image. This rapid breakdown 
with increasing time delay indicates that the structures 
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Fig. 52 Side-view spatial emrelation Bel& for 
top shear layer (fmm Smith and 
Duttnq 1596) 
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Table 3 Side-view codation results for top shear layer (from Smith and Dotton, 1996) 

Major axis Nondimensional 
dimension, structure Structure 

%de? size? Eccentricity,a angle? 
Position mm aside%ocal E=l-bsid&side deg 

At00 0.71 0.43 0.50 41.2 
Btop 1.24 0.64 0.54 
Ctop 3.96 1.69 0.61 
Dtoo 5.56 2.01 0.65 

40.1 
24.6 
17.4 

Etop 4.57 1.15 0.46 19.8 
a See Fig. 52 for definition of as& and bside 

Measured with respect to local mean streamwise direction. 

Table 4 End-view correlation results for top shear layer (from Smith and Dotton, 1996) 

Major axis Nondimensional 
dimension, structure Eccentricity, 

Position %nd. mm size, %nd/~local E=l-bmd/%nd aend /aside. 
AtOD 0.90 0.55 0.08 1.27 
Btop 1.45 0.75 0.02 
Ctop 2.30 0.98 0.01 
DtOP 2.30 0.83 0.00 

1.17 
0.58 
0.41 

at this location have a temporal coherence of order 
GlocalIUc (i.e., ? = I ) .  
imaging technique, Elliott et aZ. (1995) found greatly 
reduced temporal coherence of structures in their two- 
stream shear layer experiments when the 
compressibility was increased from Mc=0.51 to 0.86. 
Thus, the current results, which show rapid structural 
breakdown for the highly compressible conditions at 
Btop (Mc=1.3), are not surprising. 

At this early stage of shear layer development 
(Position Btop). no evidence of structure formation from 
the roll-up of instability waves was seen. As discussed 
earlier, this is similar to Elliott et al.’s (1995) results for 
a two-stream layer at Mc=0.86, but differs from their 
results at lower compressibility, Mc=0.5 1, where 
structure roll-up from Kelvin-Helmholtz waves was 
observed. Also, in the current separated flow, no 
instances of rotational pairing, as occur at small Mc, 
were observed for any time delay at Position BtO9, or at 
any other position. The lack of pairing events in  the 
shear layers of the present study is most likely related to 
their high compressibility level, M, -1.3. 
Papamoschou (1990) has suggested that a supersonic 

Using a similar two-frame 
convective Mach number environment should severely 
limit the ability of a trailing structure to communicate 
with or interact with a leading structure, which would 
reduce the likelihood of pairing. However, it may be 
that other structure interactions, which are either 
complex or difficult to visualize, are present in the 
current high-speed separated flow. 

Moving to Position Ctop in the recompression 
region, image pairs obtained at a short time delay, 
T = 0.42, are characterized primarily by convection of 
large-scale structures without appreciable deformation. 
Small-scale structures that are observed at the edges of 
the large structures do exhibit significant temporal 
evolution at this short delay, however. Two image pairs 
at this location at a larger pulse separation, 7 =0.96, 
are shown in Fig. 55. In this case, a pronounced 
clockwise rotation of the marked structure in the upper 
pair can be seen. In addition, this structure flattens 
noticeably and appears to lose organization during the 
pulse interval. In contrast, the large structures in 
Fig. 55(b) seem to simply convect with little alteration, 
although the associated smaller-scale structure is seen 
to evolve considerably. 

- 
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Figure 56 presents image pairs obtained at the 
mean reattachment point, Position Dtop. at the short 
temporal separation of 'i = 0.49. As at earlier stations, 
the dominant mechanism here is large-structure 
translation, although the smaller structure on the left 
side of Fig. 56(b) does appear to rotate and elongate. In 
addition, the thin braid that separates this structure from 
the larger structure just to its right appears to degrade 
during the pulse interval. This may be a realization of 
the "slapping" structure interaction discussed above for 
compressible shear layers (Mahadevan and Loth, 1994). 
At a longer time delay of ?=1.03, the previously 
observed large-structure evolution history of translation 
with a significant amount of rotation and elongation is 
again found. Substantial growth of smaller-scale 
sfructures along the peripheries of structure cores and 
braids is also seen. 

Additional interesting features in hoth image pairs 
of Fig. 56 are the bright regions seen on the upstream 
sides of the large structures. Ifthese regions are caused 
by the weak shocks that were seen emanating from 
within the shear layers in the single-frame images (see 
Fig. 49). then the fact that these regions maintain their 
position on the windward side of the large structures 
suggests that the shocks move with the structures. This, 
in turn, suggests that these shocklets are indeed caused 

7 = 1.61 (from Smith, 1996) 

by the structures' interference with the outer supersonic 
flow and are not simply stationary waves resulting from 
the mean recompression of the flow near the rear 
stagnation point. Although not absolutely conclusive, 
these image pairs at least suggest the existence of eddy 
shocklets (Dimotakis, 1991; Papamoschou, 1995) in 
this highly-compressible separated flow. 

Two-frame time-correlated images in the initial 
wake region, Position Etop. differ quite substantially 
from those at the upstream locations. In this case, 
image pairs obtained not only at the shortest time delay, 
? = 0.41, but also at the increased delay of 7 = 0.87, 
Fig. 57, are characterized essentially exclusively by 
large-structure translation with little temporal evolution. 
Even at 7 = 1.30, Fig. 58, simple structure convection 
seems to prevail, although some degree of rotation and 
elongation can be observed. In contrast, time delays of 
this magnitude at the upstream positions resulted in 
considerable structural evolution and, in some cases, an 
almost complete loss of temporal coherence. This 
result at Etop may be partially due to the wake-like 
nature of the flowfield at this location, which makes 
estimates of the convection velocity and local layer 
thickness difficult. Thus, the values of 7 given here 
may not be perfectly consistent with those given at the 
earlier stations. However, a more likely explanation for 
the persistence of structure identity at this location is 
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that its compressibility is significantly reduced, 
M4.74 (Table 2). as compared to that at the upstream 
locations, Mc- I .3. This observation of increased 
temporal coherence with reduced compressibility is in 
agreement with the fluctuating pitot pressure 
measurements of Samimy et al. (1992) and the double- 
pulsed planar imaging study of Elliott et al. (1995) for 
two-stream compressible shear layers. 

Smith (1996) has used these ensembles of time- 
correlated, dual-frame images to compute structure 
convection velocities in this separated flow. As 
discussed earlier in regard to two-stream shear layers, 
the convection velocity is an important parameter for 
estimating growth rates, entrainment ratios, mixing 
rates, and noise characteristics. Smith (1996) obtained 
results at Positions Btop-Etop to characterize structure 
velocities in the constant-pressure, recompression, 
reattachment, and initial wake development regions, 
respectively. Convection velocities were also 
determined at Positions Bbottom and Cbottom to study 
the effects of the differing expansion strengths in the 
initial portions of the two shear layers. 

Table 5 presents the convection velocity results for 
the six imaging positions. The subscript "i" is used to 
denote the isentropic theoretical values for the 
convection velocity (Eq. 2) and convective Mach 

Fig. 56 Double-puked planar images at Position Dtop; 
7= 0.49 (from Smith, 1996) 

number (Eq. 4), while the "exp" subscript indicates 
experimental measurements of the same parameters. In 
the upper shear layer, the experimentally determined 
convection velocity decreases substantially as the 
smctures leave the constant-pressure region (Btop) and 
enter the adverse pressure gradient (Ctop) and 
reattachment (Dtop) regions. Then, as the mean flow 
accelerates in the initial wake region (Etop), the 
structure convection velocity also increases 
significantly. The bottom shear layer measurements 
show a similar but smaller decrease in structure 
convection velocity from the constant-pressure 
(Bbottom) to the recompression (Cbottom) regions. 
Considering the mean pressure and velocity fields in the 
entire near-wake region, these general trends for the 
large-structure convection velocity are physically 
reasonable. 

The measurements of U, at the initial constant- 
pressure shear layer locations, Btop and Bbottom. are 
nearly identical. Therefore, the structure translation 
rate appears to be unaffected by the strength of the 
initial expansion at the shear layer origin. This result 
may not be surprising, though, since the velocity of the 
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Fig. 57 Double-pulsed planar images at 
Pmition Etep; ? = 0.87 (from Smith, 
19%) 

freestreams immediately adjacent to the two shear 
layers are identical (M=3.0). In contrast, as the 
structures enter the adverse pressure gradient region 
(C), those in the upper layer decelerate significantly 
more than in the lower layer. This result may again be 
explained by consideration of the mean pressure field, 
since the top shear layer experiences an adverse 
pressure gradient that is approximately 25% stronger 
than that of the bottom layer (Amatucci, 1990). 

Another point that is clear from an examination of 
Table 5 is that the standard deviation of the U, 
measurement ensembles, aUc,exp. is quite large. As 
was also found for two-stream compressible shear 
layers, a wide range of convection velocities is 
therefore experienced at each of these locations. The 
reduced value of aUc,exp in the initial wake region, 
Position Etop, may be another manifestation of the 
better spatial and temporal coherence of the large 
structures for the lower convective Mach number 
conditions here. 

Fig. 58 Double-pulsed planar images at 
Position EtOp; 7 = 1.30 (from Smith, 
1996) 

Comparison of the convection velocity 
measurements with the isentropic theoretical values in 
Table 5 shows that at Positions Btop and Bhttom. in the 
constant-pressure portions of the shear layers, the 
measured values exceed the theoretical estimates. This 
trend is in agreement with the "stream selection rule" 
(Dimotakis, 1991) discussed earlier in regard to two- 
stream compressible mixing layers. This rule states that 
for supersoniclsubsonic shear layers (which is the case 
at all positions i n  the current separated flow), the 
structure convection velocity will tend toward the 
velocity of the supersonic stream. As a result, the value 
of M,2 will exceed that of M,1 under these conditions. 
This result is emphasized in the Mcl-Mc2 plot of 
Fig. 59, where the convection velocity data from other 
supersoniclsubsonic. two-stream, constant-pressure 
shear layer investigations are included. For all cases 
(including Btop and Bbottom). except for the two cases 
of Elliott et al. (1995). McpMcl, in agreement with the 
selection rule. However, as the shear layer progresses 



Table 5 Isentropic predictions and experimental resalts for convection velocity (from Smith, 1N) 

U 
Imaging u c i  k e x p  "cmp Mcj Mcl,exp Mc2,exp _ _  
Position d S  d S  d S  

BtoP 335 399 112 1.37 1.06 1.55 
ctop 360 334 120 1.25 1.37 1.17 
Dtoo 387 298 123 1.12 1.55 0.86 
Etop 466 

Bbonom 335 

352 

392 

93 0.74 

135 1.37 

1.29 

1.10 

0.40 

1.53 

4.0 

0 ::: f 0 
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Fig. 59 Experimental results for MC1 and M,, for 
several two-stream compressible shear layers 
and the separated flow of Smith (1996) 

into the recompression (Ctop), reattachment (Dmp), and 
wake development (Etop) regions, the measured value 
of U, drops below, in some cases quite significantly, 
the theoretical value; see Table 5. As a result, Mc2 is 
less than Mcl at these positions, Fig. 59. However, this 
should not be considered a violation of the stream 
selection rule, since these four positions involve non- 
zero pressure gradients. As a result, the selection rule is 
not expected to be a good predictor of convection 
velocity at these locations. Note that at Position 
Cbottom the experimental and theoretical values of U, 
are approximately equal so that the values of Mcl and 
Mc2 are nearly equal here. This is most likely due to 
the fortuitous cancellation of the usual M c p M c 1  
behavior by the effects of the adverse pressure gradient. 

Another point of interest in Table 5 is the large 
value of Mcl measured at Position Dtop This value, 
Mc1=1.55, indicates that the outer flow moves 
supersonically with respect to the shear layer large 
structures, indicating the possibility of eddy shocklets at 
this location. Evidence of the existence of eddy 

shocklets at Dtop was presented and discussed in 
relation to Fig. 56. 

5. SUMMARY 
Recent expenmental efforts aimed at achieving a better 
understanding of the physical flow mechanisms in 
compressible turbulent free shear layers have been 
reviewed. Both two-stream, constant-pressure layers, 
as well as the shear layers that occur in high-speed 
separated flows, have been considered. While it is 
difficult, and perhaps a bit presumptuous, to attempt a 
concise summary of a broad area of research, the 
following observations are offered. 

5.1 Two-Stream, Constant-Pressure Shear Layers 
Compressible shear layer growth rate is reduced 
compared to that of an incompressible layer at the 
same velocity and density ratios. The convective 
Mach number (M,) correlates the growth rate data 
moderately well. 

* The peak transverse Reynolds normal stress and 
Reynolds shear stress are strongly reduced with 
increasing Mc, while the peak spanwise normal stress 
is approximately constant. There is some 
disagreement about the trend of the streamwise 
normal stress and, therefore, the normal stress 
anisotropy. In general, the reduction of peak 
turbulence quantities with increasing compressibility 
is well correlated by &. 
A shift in the large-scale turbulent structure occurs 
from spanwise rollers to obliquely-oriented structures 
to a highly three-dimensional turbulence structure as 
Mc increases. 
Although the large structures of compressible shear 
layers are generally poorly organized, they are better 
organized than in the approach boundary layer, and 
this organization increases with downstream distance. 
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As Mc increases, the large structures (side view) 
become more jagged and/or polygonal. The 
normalized size increases and the structure 
inclination angle decreases with increasing 
compressibility. End views show a more convoluted 
interface at large Mc. 
The large structures of compressible shear layers 
have limited temporal coherence. The dominant 
evolution characteristics are elongation, rotation 
down toward the stteamwise direction, with attendant 
gmwth of small-scale structures. 
There is no evidence of structure roll-up from 
instability waves at large M,, nor has rotational 
pairing been observed. A modified merging 
mechanism, termed "slapping," has been reported. 

* At large Mc the structures do not convect at the 
isentropic theoretical convection velocity, but rather 
at a velocity closer to that of one freestream or the 
other ("stream selection rule"). 
There is only lunited experimental evidence of eddy 
shocklets for shear layers at large &. - Efforts at growth rate enhancement have generally 
met with limited success. However, periohc Mach 
wave, glow discharge, and passive acoustic excitation 
methods have achieved significantly increased 
growth. 

5.2 Compressible Shear Layers in High-Speed 
Separated Flows 

* Io the neighborhood of separation and expansion, 
compressible shear layers exhibit a two-layer 
character with a kink in the mean velocity profile. In 
the outer layer, turbulence levels are reduced, while 
in the inner layer, they are greatly enhanced. These 
effects are magnified with increasing expansion 
strength. 
Large structures in the initial portion of the shear 
layer are better organized than in the upstream 
boundary layer. Increasing expansion strength 
increases organization slightly. 
Shear layer growth occurs in two distinct regions: 
rapid initial growth immediately after separation, 
which is predominantly on the inner edge, and slower 
growth further downstream as the mean velocity 
profile becomes self-similar. Growth rates and 
turbulence levels are higher for increasing expansion 
strength. - For two-dimensional reattaching shear layers, 
turbulence quantities peak at orjust downstream from 
reattachment due to concave streamline curvature and 

bulk compression. For the uxisymmefric case, these 
quantities decrease through the recompression and 
reattachment regions because of the dominant 
influence of lateral streamline convergence. 
The large structures in a highly compressible 
separated shear layer are elliptical or polygonal (side 
view) with long braids and lllghly strained cores. The 
structure dimensionless size increases, the inclination 
angle decreases, and the eccentricity increases 
moderately between the separation and reattachment 
points. End views in this region show a cormgated 
interface with flud projections up and down into the 
shear layer. 
In the initial wake the normalized structure size is 
reduced, the inclination increases slightly, and the 
eccentricity decreases substantially compared to 
locations upstream. These observations are 
consistent with the lower Mc at this location. 
The recompression and reattachment processes cause 
a degradation in the spatial organization of the large 
structures, which results in increased turbulence 
isotropy. 
In the constant-pressure, recompression, and 
reattachment regions, the large structures have a 
limited temporal coherence of order 6/Uc. In the 
wake the temporal coherence is increased due to the 
lower convective Mach number in this region. 
The dominant temporal behavior of large structures is 
similar to that for two-stream layers: elongation, 
rotation toward the streamwise direction, and growth 
of small-scale turbulence. No instances of rotational 
pairing have been observed. Time-correlated images 
suggest the existence of eddy shocklets in the 
reattachment zone. 
In the constant-pressure shear layer region, the 
structure convective velocities follow the stream 
selection rule with the experimental value exceeding 
the theoretical. In the recompression, reattachment, 
and initial wake regions, the measured convective 
velocity is (in some cases significantly) less than the 
theoretical value. This is expected given the mean 
velocity and pressure fields in these regions. 
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ABSTRAC T 

This review is concerned with turbulent 
combustion in high speed flows. Its aim 
is to assess the current state of knowl- 
edge incorporated in theoretical models 
and, as with most turbulent flows, these 
models necessarily involve averaging. Be- 
cause high speed turbulent combustion in- 
volves additional phenomena which are 
not well understood we begin by consid- 
ering combustion at low Mach numbers 
where a substantial body of theory ex- 
ists. Our purpose is to identify the key 
role played by the low Mach number as- 
sumption and hence to defhe the particu- 
lar challenge posed by high Mach number 
reactive flows. 

Experiments concerning high speed tur- 
bulent combustion in jet flames, high 
speed turbulent deflagration and transi- 
tion to detonation are reviewed. Finally, 
problems involved in modelling and pre- 
diction of high speed turbulent combus- 
tion are identified and discussed. It is con- 
cluded that convincing theoretical models 
are currently not available. 

SYMBOLS 

Ko 
LK 

LT 
Lei 

MO 
Mt 
N 
P 
P 

R 
ReT 

R. 
S 
t 

reaction progress variable 
specific heat of species i 
mean specific heat 
diffusion coefficient; 

also dilatation 
Damkohler number 
specific enthalpy 
turbulence kinetic energy 
forward and backward 

rate coefficients 
Karlovitz number 
Kolmogorov length scale 
thickness of laminar flame 
turbulence length scale 
Lewis number of species i 
Mach number 
turbulence Mach number 
number of species 
pressure 
probability density 

number of reactions 
turbulence Reynolds 

universal gas constant 
see Equation (7.3) 
time 

function 

number 
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Subscripts 

laminar flame time 
turbulence time 
temperature 
turbulent bunting velocity 
velocity component 
mass rate of production 
of species i 
per unit volume 

molecular weight of 

spatial coordinate 
mass fraction of species i 
mixture traction 

species i 

Zel'dovich number 
ratio of specific heats 
enthalpy of formation 
of species i 
viscous dissipation 
thermal conductivity 
kinematic viscosity 
stoichiometric coefficients 
density 
h n e  surface density 

Reynolds mean 
Favre mean 
Reynolds fluctuation 
Favre fluctuation 

i, j chemical species, reaction 
k, 4 m Cartesian components 

1. INTRODUCTION 

Combustion processes in high speed tur- 
bulent flows are of technological inter- 
est because of applications in the field 
of propulsion, including ramjet engines 
(Refs. 1-4), rocket engine exhaust plumes 
(Refs. 5-7) and ram accelerators (Refs. 8- 
10). Another important application is to 
the assessment and mitigation of explosion 
hazards due to detonation (Refs. 11-14) 
and to high speed turbulent deflagration 
in the presence of obstacles (Refs. 15-18). 
In this Introduction we first provide a brief 
review of some literature concerning these 
applications. The Section ends with a de- 
scription of the organisation of the remain- 
der of the work. Some of this material is 
based on an earlier review of high speed 
turbulent combustion (Ref. 19). 

In the 1960's there was considerable 
interest in turbulent combustion in high 
speed flows motivated by ramjet propul- 
sion for hypersonic fight, i.e., by the 
scramjet, the acronym for supersonic com- 
bustion ramjet. The basic elements of 
such a propulsion system, Figure 1, are 
an inlet which compresses the free stream 
air from a hypersonic Mach number to 
roughly one third that value, a combus- 
tor within which the air mixes and reacts 
with the fuel, generally gaseous hydrogen, 
and an exhaust nozzle which expands the 
combustion products back to free stream 
presure. Because of the length scales, flow 
rates and pressures of practical interest 
in this device the mixing of the fuel and 
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air and the combustion of the mixture in- low hypersonic Mach numbers where the 
volves turbulent flow. static temperatures in the combustor may 

be so low as to require oblique or normal 
fuel injection to insure ignition. 

0 
SutiDn 

4 5 0 The flow in a combustion chamber can 
involve a wide range of flow conditions 
as a hypersonic vehicle follows a sched- 

im ' crmbumr d e  of flight Mach numbers and altitudes. 
An indication of conditions of interest is 
given by Ferri (Ref. 1) in a comparison 
of ramjets with subsonic versus supersonic 
combustion. For a fight Mach number 
of 12 at an altitude of 30.5 km the de- 

- 
1101d. ~ a u m n u l k ~ r n ~  

Figure l 
Scramjet engine 

Although simply described, each of the sign Ferri considers representative of such 
components of such an engine gives rise to rmjets calls for an inlet which results in 
serious technical problems whose resolu- a static pressure in the combustion cham- 
tion is restricted by the basic requirement ber of 2.7 atmospheres, a static temper- 
that net thrust be produced by the engine. ature of 1250 K and a Mach number in 
Fundamentally, we must view the inlet as the airstream of 4.85. The velocity in 
leading to a large drag and the exhaust the airstream within the combustor un- 
nozzle to a large thrust with the difference der these conditions is 3700 m/s. Since 
in these two forces being the net thrust, hydrogen is used to cool various airfiame 
i.e., the s m a l l  difference of two large quan- and engine components prior to being in- 
tities, necessary to overcome the drag of jected into the combustion chamber, its 
the entire vehicle. Thus s m a l l  changes stagnation temperature is typically 1100 
in the flow in each component, in par- K and its Mach number in the range from 
ticular a change leading to a small mo- one to two. These conditions are consid- 
mentum loss, can have a profound infiu- ered to be representative for the purpose 
ence on engine performance. In particular of our discussion but others corresponding 
shockwaves and flow separation resulting to lower flight Mach numbers at lower alti- 
in losses in total head must be avoided if tudes and higher Mach numbers at higher 
at all possible with the consequence that altitudes may be of interest. A significant 
downstream injection of the fuel is pre- design challenge is to mix and burn the 
ferred despite the reduced rates of mixing fuel within the limited length of the com- 
and reduced combustion efficiencies that bustion chamber while minimising shock 
may thereby be incurred. One circum- losses. The chamber shape must be chosen 
stance necessitating such losses arises at so that part of the chemical energy is con- 



verted into directed kinetic energy in order 
to avoid excessive static temperatures and 
associated dissociation losses. 

An example of the early experimen- 
tal and theoretical research on supersonic 
combustion is provided by Ferri (Ref. 
1). In addition Libby (Ref. 2) presents 
an early theoretical analysis of turbulent 
combustion of hydrogen with equilibrium 
chemistry. Although widespread inter- 
est in high speed turbulent combustion 
waned during the decades of the 1970’s 
and most of the 1980’s, groups at the 
Applied Physics Laboratory of the John 
Hopkins University and at the Langley 
Research Center of NASA continued thin 
early research on supersonic combustion 
for over two decades (cf. Billig, Ref. 3). A 
review of this work and an extensive bib- 
liography is provided by Waltrup (Ref. 4) 
who inter dialists research areas requiring 
attention for scramjet development. More 
recent information is contained in Ref. 20. 
Since, as noted earlier, it is generally con- 
sidered essential to use the fuel to cool 
the vehicle, current research is concerned 
mainly with gaseous combustion and not 
with problems related to the combustion 
of liquid fuels in high speed flows (Wal- 
trup, Ref. 4). 

Because rocleet engines often develop 
maximum thrust when operating fuel-rich, 
secondary combustion can occur in the ex- 
haust plume. In typical rocket exhaust 
flames (Ref. 5), fuel-rich gases from a sin- 
gle nozzle or a series of nozzles at tempera- 

tures between 700 K and 2500 K xnix tur- 
bulently with a moving stream of cooler 
air. Shock waves may occur in the flow 
and external combustion can take place 
as the excess carbon monoxide and hydro- 
gen mix with the ambient air. A region 
of recirculating flow may exist behind the 
base wall of the rocket. Global features of 
these high speed reacting jet flows, such as 
Mkared radiation emission intensity and 
microwave attenuation, are studied erper- 
imentally and theoretically (Refs. 6, 7). 
Such properties demand a detailed under- 
standing of chemical kinetic processes and 
rates as intluenced by turbulent mixing 
and flow. 

The ram accelerator is a device proposed 
by Hertzberg et al. (Ref. 8) to accelerate a 
body flying in a tube at supersonic speed. 
The flying body or projectile is stabilised 
in the tube either by fins or by rails run- 
ning along the length of the tube, Fig. 2. 
Acceleration is achieved by filling the 
launching tube with a combustible gas 
mixture. Shock waves attached to the fly- 
ing body heat the combustible mixture 
and combustion is stabilized behind its 
bluffbase. The body is continuously accel- 
erated by the resulting high base pressure. 
Two alternative modes of combustion can 
occur, Figs. 3 and 4, depending on the 
flight speed relative to the CJ detonation 
speed. The flowfield is extremely complex. 
An essential parameter (Ref. 10) appears 
to be the specific heat release of the mix- 
ture. Below a minimum heat release, com- 
bustion decouples downstream of the pro- 
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Figure 2 
Schematic of a ram accelerator 
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Figure 3 
Flow around the projectile in the subdetonative case 
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Flow around the projectile in the superdetonative case 
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jectile whereas beyond an upper limit, a 
detonation wave gets in front of the pro- 
jectile (so-called “unstart”). Speeds up to 
2600 m/s are reported (Ref. 9). 

The damaging consequences of acciden- 
tal ezploaions provide another motivation 
for the study of high speed combustion 
processes. The presence of obstacles such 
as pipes, storage tanks and other equip- 
ment can have a significant influence on 
the development and strength of an explo- 
sion following an accidental leakage and 
ignition of combustible materials in an in- 
dustrial environment. Offshore oil and gas 
drilling operations provide examples of sit- 
uations where assessments must be made 
of hazards due to obstructed explosions 
(Ref. 21). The sequence of events leading 
to the development and intensification of 
an explosion following a leakage of gaseous 
fuel in a space which contains obstructions 
may be described as follows. Mixing of 
fuel and air to produce a combustible mix- 
ture will occur at a rate which is deter- 
mined by air motion due to ambient con- 
ditions or arising as a result of the leakage 
of fuel. Ignition may be caused for ex- 
ample by a spark, a hot surface or a pre- 
existing flame. The initial rate at which 
the flame spreads from this ignition source 
will probably be close to the laminar rate 
unless ambient conditions or the release of 
fuel has generated sigdicant turbulence. 

However, a strong feedback mechanism 
(Refs. 15-17) can convert this slowly prop- 
agating flame into a powerful explosion. 

Expansion of the hot products of combus- 
tion drives the unburned mixture ahead of 
the spreading flame. The unburned gas 
flows past obstacles and becomes turbu- 
lent. The flame then engulfs this turbulent 
gas mixture and is wrinkled by the turbu- 
lence so that its surface area and burn- 
ing rate are increased. The accelerating 
flame drives the unburned mixture past 
other obstacles at higher speed generat- 
ing more intense turbulence and when this 
turbulence is engulfed it causes further ac- 
celeration of the flame. If the flame speed 
becomes sufficiently high shock waves and 
other compressibility effects can influence 
the development of the explosion (Ref. 22) 
and it is even possible for detonation to oc- 
cur (Ref. 15, 23). An illustration of the 
physical mechanisms involved in a tran- 
sition from deflagration to detonation is 
given (Ref. 12) by use of stroboscopic laser 
Schlieren photography. In particular, the 
importance of turbulence on the onset of 
detonation is pointed out. Significant con- 
tributions to the study of transition, both 
experimental and numerical, can  be found 
in the work of Oppenheim (Refs. 13, 14). 
Recent numerical work may be found in 
Refs. 24, 25. 

The adverse effects of an obstructed ex- 
plosion can often be reduced by the pro- 
vision of appropriate venting to allow the 
hot combustion products to escape from 
the obstructed area. However, unsuitable 
venting can lead to the generation of ex- 
cessive turbulence in the path of the flame 
and to an even more damaging explosion 
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outside the vented area (Ref. 26). In these 
circumstances improved theoretical mod- 
els are required (Refs. 27, 28) to predict 
explosion hazards and to aid the design 
of safer industrial plants. Practical ques- 
tions which should be addressed by these 
models include prediction of the maximum 
overpressure produced in a given event 
and the influence on this overpressure of 
factors such aa the nature of the fuel, 
the manner in which the obstacles are ar- 
ranged or the size and location of venting. 

AU of these practical high speed com- 
bustion problems, both in propulsion and 
in the field of industrial safety, require a 
deep understanding of the complex pro- 
cesses which control the rate of heat re- 
lease through interactions between com- 
bustion and flow. Such understanding 
is accumulated through both theory and 
experiment and the resulting experience 
must guide the development of theoreti- 
cal models. Reviews of relevant material 
may be found in Refs. 19, 20, 29-31. 

Combustion flows may be characterized 
in many ways: laminar or turbulent, high 
or low Mach number, single or multiple 
phase. In this review we are mainly con- 
cerned with turbulent, high Mach number, 
single phase (gaseous) combustion. An- 
other important distinction is between sit- 
uations where fuel and oxidiser are f d y  
premixed before they begin to bum and 
cases where fuel and oxidiser enter the 
combustion zone separately so that they 
mix as they burn. Most high Mach 
number propulsion systems involve non- 

premixed combustion but the detonation 
engine (Ref. 20) requires premixing of fuel 
and air. Also studies of accidental explo- 
sions (Refs. 11-18) generally assume pre- 
mixing. 

The structure of the paper is aa fol- 
lows. Section 2 briefly reviews relevant 
fundamentals of combustion thermochem- 
istry. Although direct numerical simula- 
tion of turbulent combustion (DNS, Ref. 
32) provides unique and valuable infor- 
mation, its application is restricted to 
low Reynolds numbers, idealised boundary 
conditions and greatly simplified chemi- 
cal kinetic models. Prediction by DNS of 
practical engineering problems with real- 
istic Reynolds numbers and a detailed de- 
scription of hydrocarbon oxidation kinet- 
ics is not yet on the horizon. For the fore- 
seeable future such problems wil l  have to 
be addressed in terms of time or ensem- 
ble averaged equations. Averaging of the 
highly nonlinear chemical source terms in 
the transport equations poses a particu- 
larly challenging task. A formulation is 
presented in §3. 

Because of the complexity of the in- 
teractions between combustion and high 
Mach number turbulent flows we con- 
tinue, in §4, with a review of impor- 
tant processes and models for combus- 
tion at lower speeds. Chemical reaction 
occurs at m0lecula.r scale and is often 
closely coupled to molecular diffusion pro- 
cesses with the result that descriptions 
of mean reaction rates are strongly in- 
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fluenced by assumptions concerning the [A;] /Wi kg/ms where W; is its molecular 
small-scale structure of a turbulent flame. weight and its mass fraction is yi = p ; / p  
Two relatively simple limiting cases have where p = Xgl p;  is the mass density 
been identified. If combustion chemistry of the mixture. Assuming that ideal gas 
is sufIiciently fast in comparison with time laws are applicable the thermal equation 
scales of the turbulent flow burning takes of state for the mixture is 

34), which retain the deterministic struc- = p & ~ C x / ~ i  = p - ~  

vected and distorted by the turbulent flow. 
where p is the pressure, T is the tempera- At the other extreme where chemical time 

scales are sufIidently long in comparison ture, R, is the universal gas conetant and 
W is the mean molecular weight for the time scales of the flow, probability density 

The calorific equation of state function @df, Refs. 35,36) approaches as- mixture. 
for the mixture is sume a more random small scale structure. 

Section 4 describes these theories and re- 
views information from DNS and from ex- 

R, 
place in thin laminar flamelets (Refs. 33, N 

ture of a laminar fiame, while being con- i=l w (2.1) 

N 
h = cyik 

periment . i=l (2.2) 

where h is the specific enthalpy and 

T 
The limited amount of useful published 

h i = /  +d!l'$Ai turbulent combustion in jet flames, with 
application to propulsion problems, is re- 
viewed in $5. Experimental data describ- with Ai representing the enthalpy of for- 
ing high speed turbulent deflagration and mation of A; at temperature Tr& The 
transition to detonation is described in $6. specific heats + may be approximated as 
Finally 57 turns to the theoretical descrip- polynomial functions of temperature. Al- 
tion of high speed turbulent reacting flows. ternatively, if the cpi can be assumed to be 

constant, a mean specific heat is 

experimental data concerning high speed 

TIef (2.3) 

2. THERMOCHEMISTRY 
(Refs. 11, 30, 31, 37) 

and the temperature can be expressed ex- 
plidtly as 

Consider a reactive mixture of gaseous 
The chemical species A ; ( i =  1 , 2 . . . N )  . 

N 1 concentration of substance i in the mix- 
ture is denoted by [A i lkg  mol/m3. T = h - x x A i  
Then its mass concentration is p; = e, [ i=l 1 (2.5) 



In a reactive gas mixture (Ref. 37) 
the equations of fluid flow must be 
supplemented by the following continu- 
ity equations for the individual species 
A;(i= 1 , 2 . . - N ) :  

Here Vk is the velocity component in the 
direction of the Cartesian spatial coordi- 
nate z k .  A summation convention is em- 
ployed for subscripts &, 1 and m which are 
associated with these coordinates. How- 
ever subscripts i and j are reserved for 
chemical species and reactions for which 
no summation is implied. Assuming Fick's 
law the diffusion flux J i k  is 

where D; is a diffusion coefficient. The fi- 
nal term in Equation (2.6) is the chemical 
source term zit; : the net mass rate of cre- 
ation of species i per unit volume due to 
chemical reactions. 

It is sometimes convenient to in- 
troduce local element mass fractions 
6 ( g , t ) ( q =  1 , 2 . . . Q )  which are defined 
by 

i=l 
where p~ is the mass of element q in unit 
mass of species i. Since elements are con- 
served in chemical reactions we have 

N 

and it follows that the conservation equa- 
tion for element q is 

which obviously contains no chemical 
source term. If the diffusivities Di of all 
species i have the s a m e  value, D, these 
equations are compatible with linear rela- 
tionships between the element mass frac- 
tions. For nonpremixed combustion prob- 
lem we may then define a local mixture 
fraction Z (E, t )  as the local element mass 
fraction of an element contained in the 
fuel, divided by the mass fraction of the 
same element in pure undiluted fuel. The 
mixture fraction satisfies an equation sim- 
ilar to Equation (2.9) namely 

(2.10) 

and all the element mass fractions 
& ( q =  1,2. . .Q)arelinearlyrelatedtoZ . 

If there are R elementary chemical re- 
actions j = 1 , 2 . . . R  then the chemical 
source term in Equation (2.6) is 

R w. - 
t - w i j  

j=1  (2.11) 

where w i j  is the rate of creation of A i  in 
reaction j .  This reaction may be repre- 
sented symbolically by 

i= l  
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where the following definitions are used 

N N 
I/ 

m f j  x u : j  ; m b j  uij; 
i=l i=l 

N 
wj = cv;jwi The process from left to right is the for- 

ward reaction, and is associated with the 
forward rate co&cient, k f j ,  while the 
backward process from right to left is 88- 

sociated with the backward rate coeffi- 
dent k b j .  The quantities vij and vi: are 
the stoichiometric coefficients for the for- 
ward and backward reactions of reaction where B ~ ~ ,  a f j  and 

i=l 

The rate coefficients k f j  and k b j  are usu- 
ally expressed in the form 

k f j  = B f j T P f j e z p  

(2.14) 

me 
j respectively. They are positive If the temperature, pressure and &emi- 
integers. A set Of Equations (2.12) for cal composition are such that reaction j is 
j = 1,2.. . N together with d the U i j ,  U:, in chemical the bracket 
k f j  and k b j  constitutes a complete reac- term in Equation (2.13) must be zero. 
tion rate mechanism for a given gas mix- This that 
ture (Refs. 40, 41). A detailed descrip- 
tion of the combustion of hydrogen in air 
(Ref. 42) takes into account the eight k f  j 

Ha02 and twenty one elementary 

can involve very large numbers of species 
and up to thousands of elementary reac- 
tions. 

_ -  
(2.15) kbj - K j ( T )  

species H Z ,  O2r E 2 ° , 0 ~  E, OH, H 0 2  and where K j  ( T )  is the 

tions. 

constant 

40) functions of temperature done, Equation 
reac- for reaction j .  Since k f j  and k b j  are 

(2.15) applies also when chemical equilib- 
r i m  does not prevail and may be used to 
calculate k b j .  

To complete the chemical kinetic for- 
mulation the net chemical source term for 
species i in reaction j is (Ref. 37) 

Recalling that zcl yi = we have 
independent to describe 

the mixture composition. With 3 velocity 
components V k  ( k  = 1,2,3) and 4 thermo- 
dynamic variables (p, p, T and h) a total of 
(7 + N) dependent variables have been in- 
troduced. If the tb; source terms are eval- 
uated using Equations (2.11) and (2.13) 

(2.13) there are N independent species equations 

”!, 
~ i j  = (vi; - v i j )  k f j p m f j -  n! r = l  y. I ‘1 

Wi 
W j  

*=1 ( P y ) ( m b i - m f j )  I 
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of the form of Equation (2.6). The re- where integration must extend over all 
maining 7 equations are the two equations possible values of the (N + 2) stochastic 
of state (Equations 2.1 and 2.2) plus the thermochemical variables appearing as ar- 
equations of fluid mechanics: continuity, guments of the pdf p. If this pdf is 
energy and three equations of motion. simply a delta function in the multidi- 

mensional composition space then &; = 
3. MEAN REACTION RATES I wi (@,ply;. 1 .  .). On the other hand a 
PROBLEM STATEMENT broad pdf implies that &i is not a function 

of the mean thermochemical state alone. 
As stated earlier, combustion DNS is 

not a feasible option for practical enpi- This probability distribution depends in 
neering problems involving high Reynolds a complex way on the transport of energy, 
numbers and detailed chemical kinetic mass and chemical species in and out of 
processes. Under these conditions it is an infinitesimal control volume, by con- 
necessary to invoke averaged flow equa- vection and molecular diffusion, and on 
tions in which some of the information the progress of chemical reactions inside 
destroyed in the averaging process is re- the control volume. Molecular diffusion 
placed in the form of turbulence models. and chemical reaction interact strongly. If 
The chemical source terms summarized in chemical reactions are fast the rate of con- 
Equations (2.13 - 2.15) are highly no&- version into products is determined by the 
ear and the evaluation of average values rates at which dii€usion can transport re- 
presents a particular problem. A time av- actants to the reaction zone and products 
erage may be defined in the usual way 89 away from it. We shall return to this topic 

later. - 1 t+At 
w i ( L ) = z l  wi((4rt)dt 

(3.1) As will be explained later, two routes 
are available for estimating the unknown 

where ziri (+ , t )  = ziri ( P , T , ~  (i = 1,2 ’ .  . function P .  The first (Refs. 35, 36) in- 
N - 1)). However it is not helpful to de- volves modelling and solution of a pdf 
compose PiT etc. into mean and fiUctu- transport equation while the second more 
sting comPon~ts -  Instead the mean is empirical approach (Refs. 43 - 45) replaces 
expressed (Ref. 37) in terms of the joint j j  by a simple “presumed pdf expres- 
probability density function (Pdf) of these sion such as a Gaussian or a beta func- 
thermochemical variables so that tion. However both of these approaches 

become impracticable unless the number 
of arguments of the joint pdf is small. Ap- 
plications of these methods in the litera- 

(3.2) ture generally involvepdf’s which are fimc- 

- 
zir; (E)  = J J . . . J Tili (p ,  T, y j  . . .) 

(PrT9 % ’ ’ ’ ; g) dpdTd? ’ . ‘ 
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tions of a single stochastic variable while riri (p, h, Y1). The corresponding joint pdf 
the largest feasible number of such vari- is P (p, h, Y1; E). 
ables is probably around four. 

The other way to reduce the number 
For example consider a presumed pdf of independent variables is to simplify 

which is to be represented in terma of four the thermodynamics, as will be explained 
stochastic variables: a, b, c and d. A sim- 
ple pdf, such as a Gaussian or a beta h c -  
tion, can be evaluated in terms of its first 
and second moments. Here we have 4 
lint moments (ii,J,E and 4, 4 variances 
(z,@,? and 8 ) and six covariances 

next. 

IN LOW 
MACH NUMBER FLOWS 

Because the physics of turbulent com- 
(a%', a'c', a'd', b'd, b'd' and c'd') - a total bustion at high Ma& numbers is not well 
Of 14 quantities - requiring Closure and 80- understood we begin by considering low 
htion of 14 ReYnOlh aVer%ed t rmPmt  Mach numbers where a substantial body 
equations. of theory does exist (Refs. 30 - 39). Our 

aim is to identify the key role played by the 
It is therefore essential to express the in- low Mach assmPtion and hence 

stantaneous rate wi in terms of the small- to define the P w t i d w  challenge Posed by 
est possible number of independent ther- high Mach number reactive flows. Note 
mo&emic- variables. One way to do that the terms compressible flow and in- 
this is by simplifying the chemical h e t -  compressible flow can lead to confusion 
its. This can be done in a rational m e r  when applied to combustion where heat 
(Ref. 41) by assuming that some reactions release Can lead to density changes Of a 
are suffidently fast to &t& quasi- factor of six or more while the Mach num- 
equilibrium and/or that some species ex- ber remains small. 
ist in sufliciently small concentrations so 
that a steady state appro-tion can be The Section begins with the thermo- 
employed. The furthest this process can chemical simplifications arising from the 
be taken while some info-- IOW Mach number assumption. Regimes 
tion about finite rates of reaction is to of low Mach number turbulent combustion 
reduce the whole chemic- h e t i c  mech- are then described and theoretical models 
h s m  to a single global reaction. Then are described. Finally $4.4 contabs com- 

-_--- - 

N = 1 and ,i,i = wi (P,T,Yl) where y1 ments on experimental validation of theo- 
is the only remaining independent mass retical m~&ls- 
fraction. Using the equations of state we 
can rewrite this functional relationship as 
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4.1 Low Mach Number Flow 
Assumption 

Introduce characteristic quantities: 

reduces to 

v , p , p ,  h and a = ( 7 p / p ) t  to represent typ- 

(4.3) 

ical values of flow velocity, pressure, den- 
sity, specific enthalpy and speed of sound 

+,-(z-l A N  1 
1=1 

in a given reactive flow. 

change v may be estimated as 

The change 
in pressure b associated With velodty where radiative heat loss is neglected, 

is the thermal conductivity of the mixture 

where = is the flow Mach num- is the Lewis number of species i. In statis- 
her. Thus, when << 1, pres- tically stationary flow at low Mach num- 
Sure changes within the flow become VerY ber the term ap/& is negligibly s d .  If 
small. In these h-tances, local pres- additionally we as-e Lewis numbers L.; 
Sure k a t i o -  within the flow have a neg- to be sufficiently &se to unity so that the 
ligible effect on chemical reaction rates. 
h evaluating the thermochemical state f indy  becomes 
for this purpose we may replace the in- 

last be neglected Equation (2.20) 

a z k  a Gazk ah )(4.5) 
stantaneous pressure p ( g , t )  by its mean a a -ph + -pv& = - -- value jj (E, ) which is a deterministic rather at a z k  
than a stochastic variable. Thus the pdf ' ( P I  h, y1 ; 2, ) is Ieduced to ' (h  ; Sl) ' Consider combustion fist. E 

the flow is adiabatic Equation (4.5) allows 
to be constant everywhere. The pdf  

to the desired monovariate form (X;g). 
In the nonpremixed case with unity Lewis 

3.2 1 number Equations (2.10) and (4.5) are the 
- -  - - (7- l )MZ same showing that h is a linear function 

of the mixture fraction 2. If in addition, 
showing that, when Ma << 1, the ki- the mass fractions yi can be expressed as 
netic energy of the flow makes a negligi- functions U, (2) then the pdf reduces to 
ble contribution to the total energy bal- p ( 2 ; ~ )  as required. Both of these cases 
ance. Then the specific enthalpy equation will be explained further in $4.3. First we 

To seek further simplification we note 

of kinetic energy per unit mass to specific 
enthalpy is 

that the Order Of -etude Of the ratio is then further reduced frorn p ( h , q ; g )  

h 2 ( 4 4  
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consider the validity of the so-called lam- turbulence Reynolds number may be de- 
inar flamelet approximation in which the fined as 
small-scale structure of reaction zones in 
turbulent reacting flow is represented by 
the structure of a laminar flame. 

where Y is the kinematic viscosity. The 
4.2 Turbulent Combustion Regimes scales, associated with ~ ~ 1 -  

In this Section we deiine key dimension- 
less parameters in terma of which various 
Merent regimes of low speed turbulent 
combustion may be defined. It is to be ex- 
pected that successful models will involve 
such parameters and will show appropri- 
ate behaviour in the various combustion 
regimes. An important aim is to identify 
circumstances in which laminar flamelet 
models are valid. Confining attention to 
gaseous systems we first consider premixed 
combustion. This is the more complex 
situation because unlike a diffusion flame 
a premixed flame can propagate and so 
avoid some regions of the turbulence field. 

mogorov, are 

so that 

(4.9) 

Ratios of these scales may be used to de- 
h e  dimensionless parameters and to iden- 
tify combustion regimes. Key parameters 
are the turbulent Damkohler number 

and the turbulent Karlovitz number 
I 

t t  - f t € T  If fuel and oxidiser are fully premixed 

characteristic chemical length and time 
scales which we denote by f t  and t t  where 
ft / t t  = ut is the laminar burning veloc- 
ity. Characteristic length and time scales 
of the turbulent flow may be defined in 
terms of a characteristic turbulence kinetic 
energy k and its dissipation E .  Then we 
have time and length scales 

K a = - - -  1 

Equations (4.10) and (4.11) compare the 
laminar flame time t t  with the large and 
small characteristic times of the turbu- 
lence, t~ and t ~ ,  respectively. Note that 
Ka is the reciprocal of a Damkohler num- 
ber. The three parameters D a ,  K a  and 
the turbulence Reynolds number R,T al- 
low us to identify regimes of premixed tur- 

(4.6) bulent combustion. Note however that 

the unstretched laminar flame provides tK t$?,vT (4.11) 

t~ = k/E ; !T = k 3 ” / e  

which are associated with the most ener- 
getic scales of the turbulence spectrum. A 

1 

Ka = R:T/Da 
(4.12) 



3-15 

so only two parameters are independent. where V; is the Fick’s Law diffusion co- 
It is sometimes convenient to replace &T, efficient for species i; ci has dimen- 
D a  and K a  by the velocity and length ra- sion (time)-l and provides a character- 
tios istic time for the important small scale 

mixing process. An instantaneous quan- 
k f  1 ’  1T 1 1  1 tity closely related to ~i is 2D; ( a X / a Z k ) ’  

U; 4 - = a2R~TT/Dai  ; - = uiRtTDai ; which is the reciprocal of a local diffusion 

time. High activation energy analysis of 
both laminar premixed flames and lami- 
nar diffusion flames shows that this &- 
sion time, evaluated at the reaction sur- (4.13) 

i face, is equal to the local chemical time 
scale of the reaction surface. We shall see 

where a is the order-unity coefficient in 

later that both turbulent premixed flames 
(4.14) and turbulent diffusion ilames behave in 

an analogous manner in the fast-chemistry 
Consider the so-called eddy break-up b i t .  In both cases the mean reaction rate 

limit, Da + 00, where chemical reac- is proportional to the mean scalar dissipa- 
tions are very fast and the rate of conver- tion. 
sion of reactants is limited by a finite rate 
of small-scale mixing so that “mixed-is- 
burned”. In mixing and combustion prob- In 1940 Damkohler(Ref. 46) argued 
lems we are interested in scalar variables that if f; << LK turbulence has the ef- 
such as the mass fraction (2, t) of species fect of wrinkling the laminar flame in- 
i(i = 1,2, ..-If) whose Favre mean and creasing its area and hence the burn- 
variance are ing rate. Locally in the laminar flame 

reaction and molecular diffusion are in 
balance. However at the other extreme 
where !; >> LT it is turbulent trans- 

(4.15) port which must balance the rate of re- 
action. In further development of these 

are reduced by molecular diffusion is de- may be displayed &agammatically with 
scribed by the mean scalar dissipation either D~ and R ~ ~ ( R ~ ~ .  47) or kfjU; and 
function !T/li(Ref. 48, 49) as independent vari- 

ables. The second of these options is cho- 
sen in Figure 5. The following regimes 

v = a u i l ;  

I - g = p X / P ;  yi”’ = p ( K 4 q 2 / P  

The rate at which fluctuations in K (4, t )  ideas the following combustion regimes 

ax a y  2 

p a z k  a z k  (4.16) may be identified (Ref. 39): 
zii = 1 pD;- - 
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of laminar flamelet burning may also 
survive as discussed later. 

Figure 5 
Turbulent burning regimes 

Da < 1 , & ~  > 1 . This is the well 
stirred reactor regime in which t; is 
greater than the largest turbulence 
time scale so chemistry is relatively 
slow. 

The situation is less clear in cases where 
fuel and oxidiser are not premixed. Some 
authors(Ref. 49, 50) argue that, since the 
laminar diffusion flame does not possess 
a unique thickness or propagation speed, 
the stoichiometric premixed laminar flame 

&T < 1 . Essentially laminar flow be- provides the most appropriate chemical 
scales. It may then be concluded that the 
four regimes identified above are also ap- 

laminar flamelet combustion in which pre-d al- 
the laminar flame time scale 'z is ternative perspective(Ref. 34) identifies 

than the shortest time scale the flamelet regime for nonpremixed com- 
t K  Of the turbulent 'Ow* Burning bustion in terms of the mixture fraction 
is expected to occur in thin 'ami- z (z,t). ~n a two-stream combustion pro- 

curved by the turbulent flow, but equal Z (2, t )  is the mass fraction of all ma- 
chemical reaction fast and terial at (z,t) which originated in the fuel 

terms of the laminar flame reaction zone inar flames. 
thickness AZL in mizture fraction space: 
separated laminar flamelets can exist if 

scale turbulent motions can domi- AZL < (ZKd) ' ,  otherwise connected re- 
nate the flame structure quenching action zones will occur. A second require- 
laminar flamelets and producing dis- ment for the laminar flamelets is that a 
tributed reaction zones. However, be- time scale ratio tg / t ,  must be greater 
cause of the intermittency of intense than unity where t K  is the Kolmogorov 
small scale motion in high Reynolds time and t ,  is a characteristic chemical 
number turbulent flow, local regions time for the laminar diffusion flame. This 

haviour is to be expected. 

K a  < 11 &T > 1 . This is the regime Of plicable to all types of n o n p r d e d  and 

nar flames, which are Stretched cess with d species diffusivities assumed 

turbulence C-Ot extinguish the lam- stream. B - ~  regimes are described in 

K a >  1 , D a >  I , & >  1 . Intbisinter- 
mediate regime t~ < tz < t~ so small 

- 1  
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is defined as t ,  = l / a q  where ap is the 
strain rate which is just sufficiently large 
to extinguish the laminar flame. Note 
that t x / t .  is the reciprocal of a turbulent 
Karlovitz number so the flamelet criterion 
t K / t .  > 1 is simila~ to the requirement 
K,, < 1. 

The question of the validity of these 
criteria for laminar flamelet combustion 
has received much attention. It is im- 
portant to recognise that the arguments 
summarized above are concerned with or- 
ders of magnitude and describe aaymp- 
totic behaviour. The transition between 
laminar flamelets and well stirred reac- 
tor combustion may be sudden or gradual 
and is likely to be influenced by other fac- 
tors in addition to these which have been 
identified. Significant uncertainties are as- 
sociated with the choice of characteristic 
quantities such as U which is a strong func- 
tion of temperature. 

The classical criterion Ka < 1 for 
laminar flamelet combustion requires the 
chemical time t t  to be smaller than the 
Kolmogorov time scale t~ which is as- 
sociated with the smallest dissipative ed- 
dies. In these circumstances burning is 
supposed to occur exclusively in laminar 
reaction zones. However, numerical cal- 
culations by Poinsot et al.(Ref. 51), who 
studied the two-dimensional interaction 
between a laminar premixed flame and a 
vortex pair, show that these small eddies 
decay before they can have a strong in- 
fluence on the flame. Eddies of interme- 

diate scale are found to be much more 
important. Experiments by Roberts and 
Driscoll(Ref. 52) support these findings. 
Applying their results to a turbulent spec- 
trum of eddy scales Poinsot et al.(Ref. 51) 
conclude that the laminar flamelet regime, 
defined in terms of the absence of local 
!lame quenching rather than as the pree- 
ence of a laminar reaction zone, extends 
about an order of magnitude beyond the 
limit Ka = 1 as shownin Figure 5 i f K a  
is calculated in terms of conditions in un- 
burned reactants. 

Despite these observations the Kol- 
mogorov time remains an important char- 
acteristic time scale in turbulent reac- 
tive flows. Results from combustion DNS 
show(Ref. 53) that the mean tangential 
strain on the flame surface due to turbu- 
lence is correlated by B / t K  where B = 
0.28 in the limit where ul << L K / t K  while 
B = 0 if U; >> L K / t K .  Also the ex- 
perimentally observed extinction of turbu- 
lent flames near stagnation points can be 
correlated with laminar flame extinction 
data, for both premixed(Ref. 54) and non- 
premixed(Ref. 55) flames, by modelling 
the turbulent flame stretch as the s u m  of 
the bulk strain and the reciprocal of the 
Kolmogorov time. 

In the case of premixed combustion re- 
sults of DNS with one-step chemistry (see 
review by Poinsot et al.(Ref. 32) and ref- 
erences cited there) clearly show the abil- 
ity of thin reaction zones with structures 
similar to that of a laminar flame to sur- 
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vive when Ka > 1. However the instant& dimensional computational domain. 
neous propagation speeds of these struc- 
tures do not correlate well with those of 
steady strained laminar flames. Curvature zo 

effects are also found to be important. On oo - 
the average the central portions of local re- -LO 'omiiH m - y c  
action zones are found (Ref. 56) to be in- 49 

flames in terms of magnitude of gradient, 
reaction rate and da t ive  velocity of iso- 00  02 0 4  06 0 1  IQ OQ 02 U 06 01 1Q 

surface. At the edges of the reaction zones 
all these conditional mean properties devi- 
ate from the properties of an unstretched 
laminar flame due, presumable, both to 
the combined effects of flame curvature '' c' 

and strain and to the influence of s m a l l  
eddies whichcan enter therelatively thick oooD O t  o, o6 o1 on oo o1  o, o, I o  

preheat zone of the laminar flame. The de- 

distinguishable from unstretched laminar do 04 

-IQ U :  

.IM ao ':rd;m 
IO 

..J 
-1I.r 

viations from laminar flame distributions Figure 8 
do not appear large as may be seen from Data from DNS of premixed 
Figure 6. However these out-of-flamekt turbulent combut ion  compared 
regions have a much larger probability of with laminar flame profiles 
occurrence in the turbulent flame than the (Ref. 56). 
thin laminar flame structures, so they can 
make an important contribution to mean Such c&&tions do however allow differ- 
properties(Ref. 44). This contribution, ential diffusion effects to be stu&d(Rtef. 
which involves the characteristic scales Of 57). Because of their large diffusivities H 
the turbulent flow rather than those of the and H2 =e strongly i&lenced by flamelet 
laminar flame, is Present even in the limit curvature whereas CO which reacts slowly 
Da >> 1. We conclude that the transi- is more sensitive to tangential strain. This 
tion from flamelets to distributed complex behaviour is not easily described 
reaction zones is gradual and sensitive to in t e r n  of a simple 1-a fl- speed. 
definitions. Calculations with detailed chemistry(Ref. 

58) also show an enhanced sensitivity of 
the reaction surface to strain. Direct ex- 

Computational costs currently limit perimental determination of any deviation 
predictions from DNS with even simpli- from laminar flamelet behaviour is difficult 
fied multi-step reaction schemes to a two- because of the three-dimensionality of the 
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thin wrinkled surface which must be stud- 
ied. However measurements(Refs. 59, 60) 
do confirm the existence of such a surface 
at large Karlovitz numbers while indicat- 
ing local variations in its thickness. 

We now turn to nonpremixed turbu- 
lent combustion. At high enough val- 
ues of D a  instantaneous point measure- 
ments of say temperature and mixture 
fraction lie close to a single theoretical 
curve for a weakly strained laminar dif- 
fusion flame.(Ref. 58) At smaller values of 
D a  experiments provide scatter plots(Ref. 
58) in which the data is more widely dis- 
persed. If local extinction and reignition 
occur these scatter plots are sdiciently 
widely distributed to include points which 
correspond to nonreactive mixing between 
fuel and air and others which represent 
combustion going to completion(Ref. 61). 
Three dimensional DNS by Mahalingam 
et al.(Ref. 62) employ both a single- 
step global reaction model and a two-step 
model to provide data which is compared 
with predictions for a steady laminar dif- 
fusion flame. At Damkohler numbers of 
order unity the DNS data is widely dis- 
persed and does not correspond well to 
the laminar flame prediction. Burning is 
observed to occur in the turbulent flow 
under conditions which completely extin- 
guish the steady laminar flame. Time- 
dependent strain rates in the turbulent 
flow may provide an explanation(Refs. 62 
, 63). More recent two-dimensional DNS 
by Chen et al.(Ref. 64) also identify a 
strong infiuence of iso-surface curvature in 

nonpremixed combustion. If partial pre- 
mixing is allowed DNS(Ref. 65) predicts 
that triple flames(&$. 66) can play a sig- 
nificant role during autoignition. 

We must conclude &om both DNS and 
experimental evidence that conditions of 
interest exist innonpremixed and partially 
premixed combustion where a steady lami- 
nar flamelet assumption is not valid. How- 
ever this data does yet not appear to al- 
low a clear judgement to be made as to 
whether laminar flamelet burning wil l  oc- 
cur in circumstances corresponding to the 
flamelet regimes defined by Borghi(Ref. 
49) or by Bray and Peters(Ref. 34). 

4.3 Theoretical Models 

The set of equations, to be found in 
Libby and Williams (Ref. 37), comprises 
the equations of continuity, motion, en- 
ergy and species balance, supplemented by 
equations of state, chemical kinetic data 
and molecular transport models. These 
low Mach number flow equations are to 
be averaged either in the form of a time 
average, Equation (3.1), or as an ensem- 
ble average. In combustion flows, where 
large changes in density occur as a result of 
heat release, it is usual to employ a mass- 
weighted or Favre average. For any vari- 
able 4 ( I ,  t )  we have a Favre mean 

(4.17) 

and Favre fluctuation 



Reactive turbulent flow models in a l l  these 
categories may be found in the literature. 
However it is necessary to review and re- 
vise the nonreactive flow closures in each (4.18) 

TL- notation greatly simplifies the aver- of these models to take into account the 
aged equations by suppressing many den- possibility of interactions between com- 
sity fluctuation terms which occur in the bustion and flow, Figure 7. 

4"(Z,t) = 4(2, t )  - $ ( E )  . 

mean equations if they are averaged with- 
out mass weighting. For example 

(4.19) 

It is often assumed that, because the 
mass weighted average converts the flow 
equations into a form similar to that of 
constant density flow, it somehow captures 
all the additional physics associated with 
large changes in density. Thus constant 
density models of turbulent transport are 
widely used with little or no modification 
to allow for effects of combustion. This 
assumption is naive and can sometimes be 
grossly in error (Ref. 39). The starting 
point for development of mean flow mod- 
els must be the hierarchy of nonreactive 
flow models (Ref. 39): 

large eddy simulation (LES), 

probability density function (pdf ) 
models, 

second moment or Reynolds stress 
models, 

k - 6 models. 

A A  

W 
Figure 7 

Interaction between turbulent flow 
and combustion (Ref. 39). 

Some relevant phenomena may be iden- 
tified (Ref. 39) as follows: 

Instabilities of the laminar flame can 
modify the flow field and introduce 
additional length and time scales 
which are unrelated to turbulence 
scales ahead of the flame (Ref. 67). 

Both large and small scale features of 
the flow are modified as a result of 
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dilatation due to heat release. Di- The accurate prediction of mean re- 
latation dissipation (Refs. 68-70) is action rates represents the central prob- 
a contribution to the viscous &si- lem and challenge of turbulent combus- 
pation of turbulence energy which is tion modelling. The instantaneous reac- 
proportional to the mean square di- tion rate is influenced by local molecular 
latation. It can be important in re- diffusion fluxes linked to s m a l l  scale mix- 
active flows (Refs. 69,70) as in high ing. Indeed in the eddy break-up limit 
speed flows (Ref. 68). when chemistry is fast it is these fluxes 

which control the net rate of reaction. 
The combination of a press*e field Consequently mean reaction rate predic- 

density field tions can be strongly infiuenced by under- 

TWO different startkg 

transport (Ref. 71) and turbu- proaches to these problems. The first is a 

and a 'patidy 
leads to vorticity generation due to 
b - o m c  torque (Ref. 38) a d  d o  flame stmeturea 

assumptions concerning 

to Elated phenomena Of pressure pa- points may be identified in theoretical ap- 

lace generation 71). According probabilistic approach, typically involving 
to One study 72) the use of stochastic mod& to describe 
pressure gradient leads to -g. Simple mod& of-- 

turbulent Of ing as a random process become suspect 
at large Damkohler numbers where lami- 
nar flamelet burning implies the existence 
of deterministic mixing rate expressions. 

(4*20) The alternative starting point, restricted 
to situations where Da >> 1 so that reac- 

where (1 + r)  is the ratio of adiabatic tion is restricted to sheets of vanishingly 

small thickness, is introduced later. Much 

ing the gap between these two approaches 
pressure fluctuation t- are known whose origins lie at opposite ends of the 
(Ref. 
flow turbulence models with closure 
at Reynolds stress or equivalent pdf The starting point for pdf models is the 
level. Turbulent combustion provides exact but unclosed transport equation for 
a strong monopole acoustic source so the joint pdf of the relevant set of scalar 
the use of nonreactive flow models variables (Refs. 74-76). As explained ear- 
to predict pressure fluctuation terms lier, low Mach number assumptions are 
in combustion flows must be viewed used to reduce as far as possible the num- 
with suspicion (Ref. 38). ber of independent thermochemical vari- 

combustion products if 

rut NB - > 1  
2au' - 

temperature to ambient 
peratwe and a is a function Of effort is directed to the problem of bridg- 
See Figure 5. 

73) to play a key role in D d O u e r n m b e r r W 5 e .  
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ables. It - possible to add the velocity to 
this list of variables (Ref. 74) but we il- 
lustrate the pdf approach by considering 
only scalar variables 4; (m, t) (i = 1,2 . . a) 
for which the equation is 

B 1 @  
4% 2 a d p j  

-p- [wi ($0) P] - -p  

where cp = p ; ( i = 1 , 2 . . . )  is a set of 
independent variables corresponding to 
the physical variables 4; (E, t )  ( i  = 1,2 . .) 
and P = P((cp;:,t) is the Favre joint 
p d f .  This is related to the conventional 
joint pdf p ( c p ; ~ , t )  by = pp(cp)//s 
where p(cp) is the density evaluated at 
the state p;, (i = 1 , 2 . .  .). The notation 
< yj I 4 (E, t) = cp > represents the con- 
ditional mean of e;j (L., t) subject to the 
constraint cj~ (2, t) = cp where 

(4.22) 

is an instantaneous scalar dissipa n, the 
inverse of a diffusion time, evaluated with 
the assumption of equal mass difFusivities 
for all species. Equation (4.21) is valid at 
high Reynolds numbers and the summa- 
tion convention applies not only to spa- 
tial coordinates z& (k = 1,2,3) but also in 
composition space p; (i = 1 ,2 . .  .). From 

left to right terms in Equation (4.21) rep- 
resent, respectively, accumulation of prob- 
ability, its advection in physical space by 
the mean velocity, i ik ,  its turbulent trans- 
port in physical space, transport of proba- 
bility in composition space by chemical re- 
action rate w; and its transport in compo- 
sition space by molecular diffusion. Equa- 
tions of state and other information must 
be used to reduce as far as possible the 
number of independent scalar variables ‘pi 

which might for example represent tem- 
perature and several species mass frac- 
tions. The pdf equation must be closed 
and then solved in conjunction with a tur- 
bulent flow model which provides all nec- 
essary information about the mean veloc- 
ity and turbulence. Mean values of the 
scalar variables are found by integration 
of the pdf in the scalar space. 

An important advantage is that the re- 
action rate term in Equation (4.21) is au- 
tomatically closed because the rate cji is 
expressed in terms of the chosen set of 
scalars. Two types of model are however 
required in order to close the equation. 
These are deterministic and/or stochastic 
models which are selected with the aim of 
causing the pdf to evolve in a desired man- 
ner. The first is a model of the transport 
of probability in physical space due to tur- 
bulent motion. A gradient transport ap- 
proximation is sometimes introduced (Ref. 
76) such as 
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gain must be paid for in terms of greater 
computational complexity and the need to 

s -C,-U” 1’ - model unknown and combustion-sensitive 
pressure fluctuation terms. 

i - aP 
< U: ] 4 = (o > C kU“8~, 

(4.23) 

where C. is a model constant. On the The second type of model provides an 
other hand the premixed combustion DNS approximation to the conditional dissipa- 
(Itefs. 56, 72, 77) show that if Da >> 1 tion term in Equation (4.21). Thia im- 
the conditional mean velocity on the iso- portant term describes transport of prob- 
surface c (E, t )  = C* varies linearly with c’ ability in the space of the scalar variables 
(see Figure 6) so that through molecular diffusion idheneed by 

small-scale turbulent mixing. Experimen- 
tal measurements have been reported of 
the conditional dissipation or of closely 

14.24) related quantities (Refs. 79, 80). Bale- 
vant DNS data is also available (Refs. 56, 
81) together with reviews of models (Refs. 
7476) It is ofien represented by stochas- 
tic models which cause the pdf to evolve 
towards a Gaussian shape and which do 
not allow for deterministic correlations be- 
tween scalars and their gradients. Differ- 
ential diffusion effects are not represented. 

(4*25) Equation (4.21), supplemented by these 
where c (E, t )  is the progress variable come- h h d e n t  transport and md-scale mix- 
sponding to +(g, t) in Equation (4.21) and ing modeh is generally solved by means 
C* is the isosurface value corresponding to of a Monte car10 simulation (Ref. 74). 
’p. The first version of Equation (4.25) At this level of description the mean t u -  
comesponds precisely to the ‘‘hear mean- bulent flow equations must be solved sep- 
square estimate” model of Dopazo[ll5]. In arately by conventional means. The two 
general Equations (4.23) and (4.25) pre- CalC~Mions are Coded though the mean 
diet qualitatively Merent behaviour in- density Which is &en by 
dicating that the gradient transport ex- 
pression, Equation (4.23), is inappropriate - - - ,(,)P(P;z,t)*. 

(4.26) when Da >> 1. The necessity to model p ( Z l t )  

this turbulent transport term is avoided if 
pis defmed as the joint pdf of velocity and In the limit Da >> 1 chemical reaction 
scalar variables (Ref. 78). However this is fast in comparison with convection in 

< Uk I C(2,t) = C* > 

= %k (E) + C* [%k (%) - %k (.) 

It can be shown (Ref. 39) that 
- 

< uk / I  I c = c* >= (c* - E )  U p 1  E (1 - E )  

h‘g 
fW+ 1 I = (c* - E) Tu; - 2au - - - 1 

1 ‘ 1 -  
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physical space so the reaction rate term sider the joint pdf  of a scalar c and its 
in Equation (4.21) must essentially be gradient IVcl. However a price must be 
balanced by the small-scale mixing term. paid in terms of new closure assumptions 
This is the pdf version of the eddy break- and in the solution of an equation with a 
up limit where “mixed-is-burned”. How- larger number of independent variables. 
ever as we have noted laminar flame struc- 
tures are often to be expected in these cir- 
cumstances. In a laminar flame scalar gra- 
dients are deterministically related to each 
other and to scalar variables so existing 
models of the small-scale mixing term are 
not applicable. This question - how to take 
into account the influence of fast chemical 
reactions on the small scale mixing term 
- raises a fundamental issue which must 
be solved if pdf methods are to be uni- 
versally applicable. One relatively simple 
approach (Ref. 78) is to represent it as the 
sum of two independent terms. The first 
of these is derived &om the known scalar 
gradient in a premixed laminar flame and 
so requires no modelling. The second term 
is a stochastic model representing nonre- 
active small-scale mixing due to turbu- 
lence. With Da >> 1 it is small in com- 
parison with the first term except near 
C* = 0,l where the laminar flame scalar 
gradient approaches zero, see Figure 6, so 
that turbulent mixing controls the rate of 
entry to the fast flamelet combustion pro- 
cess (Ref. 82). Data from DNS (Ref. 
56) tends to confirm this picture with the 
conditional mean gradient agreeing well 
with the flamelet value everywhere ex- 
cept near the edges of the flamelet where 
turbulent mixing predominates. A more 
rigourous way to deal with this problem 
in the framework of a pdf model is to con- 
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Figure 8 
Jet diffusion flame experiments 
(Ref. 84) and pdf calculations 

(Ref. 83). 

The scatter plots reproduced in Figure 
8 illustrate what can be achieved by the 
transported pdf method. The calculations 
which are shown on the right are by Taing 
et al. (Ref. 83). They compute the joint 
pdf for velocity and four scalar variables 
using a reduced kinetic mechanism whose 
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rates are stored in a look-up table. The inert. Equation (2.6) for Yi (+,t) is similar 
predictions are compared with measure- in form to Equation (2.10) for Z (2, t )  and 
ments by Masri et al. 84) in a so yi varies linearly with 2. The relation- 
pilot-stabilised Ez/COz/ air jet diffusion ship is illustrated in Figure 9 where 

(Ref. 

flame. Agreement is seen to be reason- 
ably good. Deviations in flames close to 
extinction are attributed to finite rate ki- 
netic effects and the blow-off limit is un- 
derpredicted by about 20 %. 

Presumed pdf methods (Refs. 44, 45, 
48, 85) provide a more simple and em- 
pirical way to estimate the shape of the 
scalar p d f .  Equation (4.21) is replaced by 
a pdf of assumed form, typically a beta 
function, clipped Gaussian or other sim- 
ple shape which can be specified in terms 
of its f i s t  two moments. 

Figure 9 
Flame sheet approximation 

(Ref. 31). 

it may be seen that discontinuities of 
we take nonPre&ed t d d e n t ,  COm- shape occur at the stoichiometric mixture 

bustion as an example. At low Mach num- fraction where Z = 2,. Fuel and oxidiser 
bers the pressure is thermochemically con- concentrations are zero at this point. 
stant as explained earlier. Assuming a sin- 
gle diffusion coefficient and a Lewis num- This simple the-mochemicd model is 
ber of unity we define a mixture fraction averaged using a beta function for the pre- 
Z such that sumed Favre pdf p (2' ; 2) which is re- 

lated to P (2' ;a) by h -  hz CF - CFZ - z =  - 
hl - hZ CF1 - CFZ (4.27) P ( 4  - P(Z*;z) = - ('*; c) (4.28) 

where subscripts 1 and 2 refer to fuel and P ( E )  

oxidiser streams respectively and (F is the For the beta function we have 
mass fraction of an element in the fuel. 
Hence 0 5 Z 5 1 with Z = 0 in the 
oxidiser stream and Z = 1 in fuel. It 
is further assumed that the combustion 
chemistry is infinitely fast so D. 00 

and the reaction zone shrinks to a flame 
sheet. Outside this sheet the mixture is by 

p - 1  (1 - Z*).-l 

J; 2-1 (1 - Z)'--1 dZ p~((Z*;z) = 
(4.29) 

where the exponents r and s are related to 
the fist and second Favre moments of 2 
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i (1 - i) I 

--+ -1) 
fi (a!) = J.  qcq (2') P/3 (2'; a!) d2' 

(4.35) 
(4.30) 

a=- 1-i r 

and 2'" = p2" f p .  It follows from Equa- 
tions (4.29), (4.30) and (4.31) that 

The subscript ep attached to Y& (2') in- 
i (4-31) dicates that these are the linear functions 

which are appropriate for our equilibrium 
thermochemical model with D,, + 00. 

- -  

If D. is large but k i t e  the flame sheet 
at 2 = 2, is replaced by a reaction zone 

(4.32) of small but finite thickness centred on 
& (2';~) = (2'; 2 (a!) ,% (g)) 

2 = 2,. As explained in $4.2 this has 
the structure of a strained laminar &- 
sion flame. Neglecting unsteady effects a 
laminar diffusion flame satisfies the equa- 
tion (Ref. 34) 

so the pdf can be evaluated in terms of its 
first two moments. 

Because 2 is related to elemental mass 
fractions Equation (2.10) has no trouble- 

1 a a q L  
wi = PCZz- azz 

some chemical source terms to be aver- 
aged. Its first and second moments satisfy 

dissipation. Choosing a typical value 
a - ai of this in a given turbulent flow Equa- 

tion (4.37) may be solved to give & = 
Y ~ , L  (Z'). The presumed pdf model, as 
described above, may then be employed 
(Refs. 33, 34, 43,48, 86) with these lami- 
nar flame properties replacing pen (2') and 

(2'). The mean reaction rate, ob- 
tained from Equation (4.26), may be ap- 
proximated as 

-p&zrn = 2 m -  
a z k  a z k  

a II 112 - -- 
- - p v k z  pczz (4.34) a z k  

At this level of description the flow and 
the thermochemistry inhence each other 
only through the mean density p (E). 

In order to solve Equations (4.33) and 
(4.34) we must determine p (E)  from Equa- 1 -- a 2 q L  

liv - -PEZZ (-) b ( Z , )  
a 

tion (4.26). Other mean properties are ' -  2 
also obtainable from the pdf, for example (4.37) 
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where subscript s denotes stoichiometric 
conditions. The mean rate is predicted to 
be proportional to the scalar dissipation 
and to the probability of a stoichiometric 
mixture. 

Similar mean reaction rate models are 
available for premixed turbulent combus- 
tion. Here it is convenient to define a reac- 
tion progress variable c (4,t) an the m a s s  
fraction of a major combustion product 
species divided by the value of this mass 
fraction in fully burned products. Then 
0 5 c 5 1 with c = 0 in reactants and 
c = 1 in fully burned products. See Ref. 
78 for a transported pdf model and Refs. 
44, 45, 85 for presumed pdf models. The 
transport equation for the Favre mean of 
c (4, t )  in high Reynolds number flow is 

sufficiently fast reaction zones become thin 
sheet-like regions which separate pockets 
of reactant frompockets of product. Then 
the reaction zone probability is 7 (4, t )  = 
O(l/D.) << 1. The pdf F(c*;z,t)  is 
strongly bimodal with spikes at e* = 0 and 
C* = 1 representing reactants and prod- 
ucts, respectively. Mean properties de- 
rived from this pdf  are a weighted average 
of reactant and product properties plus a 
s m a l l ,  0(7), contribution from the reac- 
tion zone. 

At these high Damkohler numbers the 
reaction zone approaches a thin wrinkled 
sheet. The area per unit volume or surface 
density of this flame sheet is denoted by 
g(z). It is related (Ref. 87) to P(c*;E) 
by 

%(E)  = 
< pc1 I c(z , t )  = c* > P(c*;g) 

(4.40) 
If D, >> 1, reaction zones are thin, 

and the pdf of this progress variable may and the mean chemical source term in 
be partitioned into contributions from un- Equation (4.38) is related to E (2) by 
burned mixture, fully burned product and - - 
mixture undergoing reaction, so that we = pou;Iox (4.41) 

p((e*;g , t )  = a(z,t)b(c*) 

t P  (z,t) 6 (1 - c*) t T ( L , ~ )  FF ( c * ; ~ , t )  
(4.39) 

where a (E, t ) ,  P (4, t ) ,  and 7 (E, 4, are, re- 
spectively, the probabilities of observing 
unburned mixture, fully burned products 
and partially reacted mixture at (z,t), 
while &(c*g,t), is the pdf of this par- 
tially reacted mixture. If the chemistry is 

The factor p,uO,Io is the rate of creation of 
reaction products per unit flame area: pr 
is the reactant density, uO, is the burning 
velocity of an unstretched laminar flame 
and Io = t i ~ / u i  is a factor to allow for 
the influence of flame stretch. Both trans- 
port equation models (Refs. 88, 89) and 
algebraic models (Ref. 90) have been pro- 
posed for the prediction of (c). For ex- 
ample Bray (Ref. 91) suggests the eddy 
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break-up expression point flame (Refs. 95-98) combines this 
(1+7)t(l-t) z simplicity with the ability to control par- 

ticular features of the flow, namely: tur- 
(4.42) bulent shear, turbulence intensity and res- 

Descriptions of other modeh m y  be idence t h e ,  respectively, in these three 
found in Refs. 34, 37,39 and 44. examples. An ideal experimental config- 

uration can be addressed, with Merent 
4.4 Comments on Experimental SbPUYhg assmptions, by theory, by av- 
Validation eraged flow models, by LES and by DNS. 

It allows unobstructed access for optical 

plex processes. The theoretical models de- ary conditions are accurately determined. 
scribe above necessarily incorporate many Important Parameters such as ReYnOlh 
restrictive assumptions about turbulent numbers and time Scale ratios Should be 
flow, co&ustion &&try and the inter- varied over a wide range. This ideal spec- 
actions between them. these &-- ification is of course difficult to meet in 
stances it is essential that model predic- every respect. 
tions must be tested by comparison with 
experimental data. For such comparisons 
in low Mach number combustion see for experiment? 

z = 12.2 - 
(1 + 7 E ) Z  uo& 

TUtbdent reactive flows involve corn- measurements and all initial and bound- 

What should be measured in an ideal 
The most important re- 

example Ref. 37. quirement is that the data should be suf- 
ficiently complete to define experimen- 

The conclusions to be drawn from a tal conditions so that quantitative inter- 
comparison between model predictions pretation and numerical simulation can 
and experiment depend on the purpose be performed without ambiguity. Tur- 
of the predictions. If only global proper- bulent combustion models are concerned 
ties such as flame length are of interest a with correlations so simultaneous mea- 
simple experiment allows straightforward surements are particularly valuable, e.g.: 
conclusions to be drawn. In contrast to several scalars at the same point in space 
industrially orientated experiments which, and time (Ref. 84), joint velocity-scalar 
for example, d o w  predictions of the per- measurements (Refs. 99, loo), field mea- 
formance and pollutant emissions of en- surements of one or more variables (Refs. 
gines and furnaces to be tested, fundamen- 52, 101, 102). Such measurements are 
tal model development needs experiments possible only because of developments in 
in simple flow configurations. A generic the use of lasers (Ref. 103). Data will 
flow geometry such as, for example, the be useful only if valid average values can 
jet flame (Refs. 59, 92), expanding spher- be formed from it. The present review 
ical flame (Refs. 93, 94) or stagnation emphasizes the importance of small-scale 
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turbulent flazne structure. Measurements experiment in detail at the end of this Sec- 
of s d  scale flame strncture (Ref. 79), tion. 
instantaneous reaction zone thicknesses 
(Refs. 59, 60,104) and flame surface den- 
sity (Refs. 104, 105-107) are urgently re- 
quired but pose problems in terms of re- 
quirements for space-time resolution and 
the three-dimensional nature of the phe- 
nomena. 

Sections 5 and 6 review experimental 
data in high speed turbulent combustion 
where, as we shall see, such detailed infor- 
mation is very scarce. 

5. EXPERIMENTS ON 
SUPERSONIC JET FLAME S 

These experiments can be separated 
into two categories. The first is concerned 
with jet flames in ducted supersonic flows 
which aim to simulate combustion in a 
particular high enthalpy propulsion sys- 
tem such as the scramjet. Global prop- 
erties including wall static pressure dis- 
tribution and scramjet nozzle thrust are 
measured; see, for example, a review by 
Billig (Ref. 108). In the second category 
may be found more generic experiments 
on high speed jet flames whose primary 
aim is to study the controlling physical 
and chemical processes, but which do not 
simulate the high enthalpies of hypersonic 
flight. A good example is provided by the 
experiments of Cheng et al. (Ref. 109) 
who used laser techniques to explore mix- 
ing and chemical reaction in a supersonic 
hydrogen jet flame. We shall review this 

Mach number 
static pressure, atm. 
static temperature, K 
stagnation 
pressure, atm 

stagnation 
temperature, K 

- 
air 

4.85 
2.7 

1250 

1200 

- 

- 

7140 - 

fael 
1 - 2  
2.7 

916-811 

5.1 - 23.1 

1100 K 

Table 5.1 Estimated air and fuel com- 
bustor entry flow conditione for a Mach 
12 scramjet at an altitude of 30.5 km. 

A fundamental problem, which is partic- 
ularly serious for experiments attempting 
to represent specific propulsion systems, 
but is also relevant to more generic experi- 
ments, is that hypersonic flight conditions 
are very difficult to simulate in the labora- 
tory. Taking as an example the represen- 
tative suamjet flow (Ferri, Ref. 1) quoted 
in $1, with a flight Mach number of 12 
at an altitude of 30.5 km, combustor air 
and hydrogen entry stagnation pressures 
and temperatures may be estimated from 
ideal gas equations, as shown in Table 5.1. 
It is clear that the air supply stagnation 
conditions are very difficult to achieve. 

Short duration shock tunnel or expan- 
sion tube facilities are required to generate 
the necessary high enthalpy flow. Free pis- 
ton driven, reflected shock tunnels exist in 
the U.S.A. at the Graduate Aeronautical 
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Laboratories, California Institute of Tech- 112) so the test gas is not fully represen- 
nology (GALCIT, Ref. 110) and at the tative of flight conditions. 
Arnold Engineering Development Center 
(AEDC, Ref. 111). This problem is less serious in expan- 

sion tubes such as the NASA HYPULSE 
facility at General Applied Science Labo- 
ratory (GASL) Inc. (Ref. 113). This uses 
an unsteady expansion in a constant-area 
tube to generate high enthalpy, high veloc- 
ity flow with a lower level of dissociation 
than in a shock tunnel. However, the test 
time is s m a l l  ( N 0.5 111s: Ref. 112), so 
only short models can be tested. 

'4"d 

-I- 

Figure 10 
Free piston shock tunnel It appears to be impossible to fully sim- 

ulate in the laboratory the scramjet com- 
In these facilities (Figure 10) compressed bustor air entry properties and combus- 
air drives a free piston which compresses tion processes which will occur over the 
and heats the helium driver gas of the full range of a plausible flight Mach num- 
shock tunnel, breaking the main di- ber and altitude corridor. Reliance must 
aphragm. A normal shock wave then com- be placed on theoretical models to fill in 
presses the air which forms the test gas the gaps where experiment is not possi- 
in the driven tube. On reflection from ble. Models must be validated by compar- 
the closed end of the driven tube the ison with experiment. However, if used 
shock wave brings the test gas to rest injudiciously, experiments conducted un- 
and further heats it while causing a sec- der near-ambient conditions can poten- 
ondary diaphragm to burst. The test gas tially be misleading, because they may 
then expands and accelerates through a study a combustion regime which is not 
convergent-divergent nozzle into the test representative of conditions in flight. 
section. Test times of 1-2 ms are obtained. 
The T5 Tunnel at GALCIT reaches a stag- Krishnamurthy et al. (Ref. 112) report 
nation temperature of nearly 9000 K and results of a comparison between experi- 
a stagnation pressure of 700 atm. (Ref. ments in the high enthalpy GALCIT T5 
110). Under such conditions the air up- shock tunnel facility and predictions from 
stream of the expansion nozzle is partly the NASA GASP code (Ref. 114). Pre- 
dissociated and the expansion process is dicted (Ref. 112) wall static pressure dis- 
too rapid to allow atomic recombination to tributions agree well with the experimen- 
reach equilibrium in the test section (Ref. tal data. 



In the experiments air at a Mach num- 
ber of 5.17, stagnation temperature 8100 
K, stagnation pressure 85 ma, flows into 
a combustion chamber of constant cross- 
section with a velocity of 4805 m/s. Hy- 
drogen fuel is injected from one wall into 
the chamber at an angle of 15" to the 
chamber axis. Its injection velocity is 3980 
m/s, stagnation temperature 1500 I(. The 
disturbance caused by this fuel injection 
leads to the formation of an oblique bow 
shock wave which reflects back from the 
opposite wall of the combustor. In com- 
parison with inert flow tests, combustion 
causes the bow shock wave to move fur- 
ther upstream. However, the wall pressure 
distribution is generally similar for cases 
with and without combustion. It is con- 
cluded (Ref. 112) that, because of the high 
static temperature (2340 K) of the air in 
these tests, dissociation predominates over 
formation of combustion products. Di- 
rect heat release due to combustionis then 
s m a l l .  To generate thrust dissociation en- 
ergy must be recovered due to atomic re- 
combination as the hot gases are acceler- 
ated and cooled in an expansion nozzle. 

Other experiments referenced here do 
not achieve the high enthalpies which are 
required for simulation of high Mach num- 
ber propulsion devices. Early scramjet ex- 
periments are reviewed in Refs. 1, 3 and 
4 and also by Libby (Ref. 115). Reviews 
of more recent work may be found in Ref. 
20. 

Evans et al. (Ref. 116) studied com- 
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bustion of a supersonic hydrogen jet dis- 
charged co-axially with a supersonic air 
flow and used sampling techniques to de- 
termine mean composition profiles of sta- 
ble species. 

Mixing between fuel and air strongly 
influences the length of a jet flame be- 
cause combustion cannot begin until a 
nearly stoichiometric mixture has been 
produced. Driscoll et al. (Ref. 117) 
studied the visible lengths of hydrogen jet 
flames in co-flowing subsonic and super- 
sonic air streams. The supersonic flames 
were found to be significantly shorter than 
corresponding subsonic flames (typically 
half as long), providing that both the ve- 
locity and density ratio are matched for 
the two cases. The authors suggest that 
the merenee may be due to transverse 
velocities caused by compression and ex- 
pansion waves in the supersonic flow. The 
supersonic air flow Mach number was 2.2. 
Increasing the air stagnation temperature 
from 294 K to 600 K caused a substantial 
further reduction in the length of the su- 
personic flames. 

In a related series of experiments Huh 
and Driscoll (Ref. 118) studied the influ- 
ence of shock waves on jet mixing and the 
length of supersonic hydrogen jet flames. 
The air flow Mach number was 2.5 and 
the oblique shock waves were generated by 
two loo wedges which were placed down- 
stream of the fuel injector. The shock 
waves were found to have a strong effect 
on the flame shape. Under optimum con- 
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ditions the flame length was reduced by 30 
% by shock wave interactions. X 

Sat0 et al. (Ref. 119) report results of 
experiments to establish conditions for au- 
toignition of hydrogen injected into high 
speed air flows. Srikrishnan et al. (Ref. 
120) and Anil and Damodaran (Ref. 121) 
explore the use of lobed nozzles to enhance 
the rates of mixing and combustion when 
a high speed jet discharges axially in a su- 
personic air flow. Substantial effects are 
observed. 

Finally, an important paper by Cheng 
et al. (Ref. 109) gives the first quanti- 
tative indication of the extent of incom- 
plete mixing in a supersonic jet flame. 
In their laser spectroscopic experiments 
a sonic jet of hydrogen is discharged co- 
axially with an annular Mach 2 jet of viti- 
ated air and an unconfined, lifted, super- 
sonic hydrogen-air diffusion flame is sta- 
bilised above the jet exit. The vitiated 
air is produced by burning hydrogen with 
oxygen-enriched air in a pre-chamber. Its 
stagnation pressure and temperature at 
0.107 MF'a and 1250 K. The apparatus 
(Figure 11) is s m a l l :  air nozzle internal 
diameter 17.78 mm, fuel nozzle internal 
diameter 2.36 mm. The flame generates 
a noise level in excess of 135 db. A lifted 
flame sits at about 25 fuel nozzle diame- 
ters downstream of the nozzle exit and the 
authors speculate that it may be stabilised 
on a weak shock wave. 

H z t  iT Water out 

Figure 11 
Supersonic jet flame burner of 

Cheng et al. (Ref. 109). 

Point measurements are made (Ref. 
109) using ultraviolet spontaneous vibra- 
tional Raman scattering and laser-induced 
predissociative fluorescence from a pulsed 
excimer laser. Temperature is obtained by 
vibrational Raman scattering of nitrogen 
assuming nitrogen molecules to be vibra- 
tionally equilibrated. Simultaneous con- 
centration measurements of major species 
Ea, 02, N2 and H2O are also obtained from 
the Raman spectra. The OH concentra- 
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tion is found from laser-induced predisso- 
ciative fluorescence and is insensitive to 
collisional quenching. 

Questions of spatial and temporal res- 
olution are discussed in detail by Cheng 
et al. (Ref. 109). Typical Kolmogorov 
time and length scales in the flame are es- 
timated to be of order 0.7 pa and 0.02 
mm respectively. The laser pulse dura- 
tion is very short, 20 p, but vibrational 
relaxation of nitrogen is identified as b e  
ing important for the temperature mea- 
surements. In the presence of €720 a re- 
laxation time of 1.7 ps is estimated and 
is judged to be sutficiently close to Kol- 
mogorov time. Spatial resolution is less 
satisfactory. The laser probe volume is 
0.75 mm long and 0.25 mm in diameter 
and 0.4 mm of this volume is viewed by the 
spectrometer. Although these dimensions 
are larger than the Kolmogorov length of 
0.02 mm the authors conclude that their 
measurements will capture at least 90 % 
of the scalar variance in this flow. 

Figure 12 shows typical results (Ref. 
109) in the form of scatter plots. Lines 
representing adiabatic equilibrium and 
nonreactive mixing are also shown. The 
authors conclude that this supersonic 
flame has higher levels of fluctuation of 
temperature and species concentrations in 
comparison with subsonic flames. Note 
that, if incomplete spatial resolution does 
influence this data, the true level of fluc- 
tuations wil l  be even higher. 
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Figure 12 
Scatter plots from experiments of 

Cheng et al. (Ref. 109). 

The following conclusions are drawn 
from this review of experimental data. 

1. In view of the immense difiiculty 
of simulating the high specific en- 
thalpies typical of combustion in 
high Mach number propulsion sys- 
tems we should not be surprised at 
the shortage of detailed measure- 
ments in such flames. There are 
no detailed measurements at s&- 
dently high combustor Mach num- 
bers for compressibility effects to be- 
come dominant. 

2. Even without realistic high enthalpy 
simulation s m a l l  spatial scales iwe 
difficult to resolve and incom- 
plete resolution can lead to under- 
estimation of scalar fluctuation lev- 
els. 

3. If the high scalar fluctuation levels 
measured by Cheng et al. (Ref. 109) 
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are typical of real systems then the the Hugoniot curve (states satisfying con- 
neglect of these fluctuations in cal- servation of momentum and energy) and a 
culations of mean reaction rates will Rayleigh line (a straight line, of negative 
lead to gross errors. The evaluation slope, on which conservation of mass and - 

of these rates in terms of a pdf (see 
Equation 3.2) must be recognised as 
essential. 

4. Shock waves play a major role in 
many of these flames: the bow 
shock and its reflection in the GAL- 
CIT shock tunnel experiments (Ref. 
112), the observedreduction inflame 
length due to imposed oblique shock 
waves (Ref. 118) and the possi- 
ble stabilisation of the Cheng et 
al. lifted flame (Ref. 109) by a 
weak shock wave. The incorpora- 
tion of shock wave processes in high 
speed turbulent combustion models 
presents an additional challenge. 

8. EXPERIMENTS ON 
DEFLAGRATION AND 
TRAN SITION TO DETONATION 

In contrast to §5 the experiments re- 
viewed here concern situations where the 
gaseous fuel and oxidiser are f d y  pre- 
mixed. The distinction between deflagra- 
tion and detonation waves may be under- 
stood by referring to Figure 13 (Williams, 
Ref. 31), which is a plot of fmal pres- 
sures, p ,  and specific volumes, v ,  in com- 
bustion waves. The initial state, ahead of 
the wave, is represented by the point (1, 
1). In Figure 13, the locus of all possi- 
ble final states is an intersection between 
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Figure 13 
Hugoniot curve in terms of presure 

and specific volume (Ref. 31). 

momentum is satisfied). At the so-called 
Chapman-Jouget (C J) points the burned 
gas velocity is sonic. Detonation waves in- 
volve an increase in pressure which is usu- 
ally large. Propagation speeds are mea- 
sured in km / s. The pressure falls in a 
deflagration wave. Although a laminar de- 
flagration propagates at around l m/s and 
is almost isobaric, high speed deflagrations 
also occur and, as we shall see, turbulence 
plays an essential role. 

In the case of a transient phenomenon 
such as an explosion, the averaged tur- 
bulent flow equations must be generated 



curate ensemble averages to be formed. 

3-35 

from an ensemble averaging process rather In the absence of strong confinement 
than from the more familiar time aver- spark-ignited, turbulent hydrocarbon-air 
sge. Apart &om the addition of a time- mixtures burn in relatively low speed de- 
derivative term, the resulting equations flagrations. The burning veloc- 

agation into a stationary unburned mix- by time averaging. However their mean- 
ture, is usually of the same order of magni- ing is not necessarily the same. Consider tude as the rmd turbulence velocity U’. If 
the burned gas is brought to rest then vol- various velocities g(g,t), all observed at 

are identical in form to those obtained ity, UTI defined as the mean speed of Prop- 

a fixed location and e h s e d  t ,  - erpansion due to heat release ensures 
but in differat redsations Of the e x p b  that the unburned gas is hiven ahead of 
sion. Variations within this set of instan- the flame then travels, typically, 
tmeous velocities arise P b b  from the ex- about six times faster. In both cases these 
istence at (E, t ) ,  of the vortical motions, velocities are usually very s m a l l  in corn- 
which are characteristic of turbulence, but parison with the speed of sound. Figure 
&o partly from other CameS. For ex- 14 shows a correlation of turbulent burn- 
ample g(g,t), may be infiuenced by the ing velocity data of Bradley et al. (Refe. 
initial rate of flame spread fiom the ig- 85, 93, 125)- 
nition source which can vary from one 

As explained in $1, a deflagration wave realisation to another. Similar processes 
travelling past obstacles tends to accel- can cause the ensemble-averaged turbu- erate as a result of a positive feedback 

lent flame brush thickness to be greater mechanism. Unburned gas, ahead of the 
than the ‘patially thick- flame, is forced to flow past these obsta- 
ness in a single realisation. It is unlikely cles and becomes tubdent. men the 
that the non-turbulent property fluctu- flame cat&es up with and burns this tur- 
ations associated with these phenomena b&nt mixture, it accelerates, a d  causes 
will be well described by conventional tur- the remaining unburned mixture to flow 
bulent flow models. Similar difficulties more rapidly past further obstacles, gener- 
arise in describing turbulence a d  corn- ating more intense turbulence. This pro- 
bution in reciprocating engines, where up cess has been studied in a spherical geom- 
to about one half of the observed velocity etry (Ref. 126) but most laboratory 
variation may be attributable (Refs. 122, periments involve straight tubes or chan- 

nels with repeated bafaes or other obsta- 123) to cycle-to-cycle variability rather 
cles (Refs. 16, 17, 22, 127-130). Measure- than to turbulence. Also the ensemble- ments include static pressure, as a func- 

averaged flame brush thickness is observed tion of position and time, flame position 
(Ref. 124) to be several times greater than as a of time and, in some cases, 
its thickness in a single cycle. It is rare for flame photographs 
sufficient data to be available to allow ac- 
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Figure 14 
Correlation of turbulent burning velocities (Ref. 125). 
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Figure 15 
Flame acceleration by obstacles: experiment of Chan et al. 

(Ref. 129). 
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Figure 16 
Effect of confinement on flame speed (Chan et al., Ref. 129). 
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Figure 17 Steady state propagation velocity as a function of mixture 
sensitivity (Teodorcayk et al. Ref. 131). 
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Figure 15 is a sketch of the rectangular gree of confinement, through more rows 
explosion channel used in one such series of obstacles or with obstacles presenting 
of tests by Chan et al. (Ref. 129). It is a higher percentage blockage of the chan- 
1.22 m in length and 127 mm by 203 mm nel. Turbulent flame speeds of the order 
in cross section with glass sides and a set of of 1000 m/s are obtainable (Teodorczyk et 
removable top plates of difFerent opening al., Refs. 22, 131), before a sudden tran- 
areas to confine the explosion. A solid top sition occurs to a quasi-detonation, whose 
plate provides complete confinement and velocity is significantly less than the CJ 
tests without any top plate are regarded as velocity, as illustrated in Figure 17. Both 
unconfined. A set of vertical baffle plates modes of propagation are accompanied by 
act as obstacles within the explosion chan- shock waves travelling laterally as well as 
nel. The stoichiometric methane-air mix- axially, see Figure 18. In the case of 
ture is spark-ignited at the closed left hand the high speed turbulent flame the leading 
end of the channel. The right hand end is shock wave is well separated from the reac- 
then open. High speed Schlieren movies tion zone whereas in the quasi-detonation 
show that pockets of unburned gas, in the it is not. 
cavities between pairs of obstacles, burn 
rapidly in the turbulent flame and cause 
the process to accelerate. 

The phenomenon of transition to deto- 
nation is often seen to be triggered by a 
so-called explosion within an explosion: a 

An important conclusion &om this ex- sudden, highly localised release of energy 
periment (Ref. 129) is that the flame ac- which generates a strong shock wave out 
celeration is very sensitive to the degree of which the detonation quickly develops. 
of confinement from the top plate of the In suiliciently reactive mixtures the tran- 
explosion channel as illustrated in Figure sition will occur in a smooth tube with- 
16. The highest flame speeds (up to 110 out obstacles and the explosion within an 
m/s in this case) occur in the fully con- explosion can then be identified as shown 
fined channel with a solid roof. But if the by Meyer et al. (Ref. 132) whose pho- 
confinement is reduced to 77 % (top plate tographs are reproduced in Figure 19. The 
with 23 % open area) the flame barely ac- process involves a localised spatial gradi- 
celerates at d. ent of induction time in the unburned mix- 

ture (Ref. 25). Under these conditions the 
Higher flame speeds, and hence stronger flow structure appears to be dominated 

explosions, are favoured by a more by gas dynamic waves and their interac- 
strongly reactive mixture (e.g. by raising tions with combustion. Molecular difFu- 
the initial pressure and/or by use of oxy- sion processes cannot make a large contri- 
gen in place of air) and by stronger tur- bution and inviscid reactive flow calcula- 
bulence generation through a higher de- tions (Ref. 133) provide a good descrip- 
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Figure 18 Propagation of quasi-detonation (left) and high speed 
turbulent flame (right) from (Teodorczyk et al. Ref. 131). 
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Figure 19 Stroboscopic laser-schlieren images of transition to detonation 
(Meyer et al. Ref. 132). 
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turbulent combustion. Is the vari- 
ance of, say, temperature fluctua- 
tions negligibly s m a l l  so that turbu- 
lent fluctuations can be neglected in 
calculations of mean reaction rates? 
Or is this variance large as in, for ex- 
ample, laminar flamelet models for 
D, >> l? Are molecular &ion 
processes important in a given flow? 

7. MODELS FOR HIGH SPEED 
TURBULENT REACTIVE FLOWS 

We begin this Section by identifying 
some features of high speed reactive flows 
which make them particularly difficult to 
describe in terms of averaged flow equa- 
tions. In contrast to the low speed flows 
described in $4 their kinetic energy per 
unit mass is no longer negligible in com- 
parison with their specific enthalpy. Fluc- 

tion. A recent theory for the transition 
to detonation in unconfined flames is pre- 
sented in Ref. 134. 

Very recent experiments by Thomas et 
al. (Ref. 135) illustrate the important role 
of shock waves. A spherical laminar flame 
is created by spark ignition in a shock 
tube. The flame bubble is toroidally dis- 
torted and convected by a weak incident 
shock wave which then reflects from the 
end wall and meets the flame bubble for 
a second time. The flame now becomes 
intensely turbulent and couples with the 
initially weak reflected shock which accel- 
erates rapidly. It achieves detonation just 
beyond the viewing window, having tre- 
bled its velocity in a distance of only 150 
mm. No explanation for this rapid accel- 
eration has yet been confirmed. 

The following conclusions are drawn: 
tuations in velocity now lead directly to 
fluctuations in specific enthalpy because 
of coupling between the equations of mo- 
tion and energy. Consequently, localised 
changes in thermodynamic state due, for 

1. Many of these transient flows are ge- 
ometrically complex with regions of 
separated flow and trapped pockets 
of unburned reactants. 

2. Pressure waves play an increasingly example, to intense viscous dissipation or 
important role as flame speeds in- the presence of an eddy shocklet, must be 
crease. taken into account when evaluating the 

local rates of reaction. The number of 
3. Available experimental data either stochastic variables in a pdf description 

as flame of the mean reaction rate, Equation (3.2), 
in should be increased to allow for these pro- 

give 
speed and pressure Or 

the form of photographs describing cesses. 
shock wave and flame geometries. 

quantities 

4. No experimental information has Numerical simulations of autoignition 
been found concerning regimes of in supersonic laminar mixing layers (De- 
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shaies et al., Ref. 136, Nishioka and Law, 
Ref. 137) show that accurate predictions 
must take into account the influence of 
temperature-dependent transport proper- 
ties on viscous heating. Detailed chemical 
kinetic information is also required and, 
in many cases, the distance to autoigni- 
tion becomes impracticably large. It is 
likely that many industrially relevant high 
Mach number turbulent combustion flows 
will also be sensitive to details of combus- 
tion chemistry. 

Under conditions of locally supersonic 
flow the pressure fluctuations at a given 
spatial location depend on the velocity 
field in the forward Mach cone from that 
point, i.e., on a limited portion of the 
flow, while in low speed cases that de- 
pendence results from the velocity field 
over the entire fluid space. As a conse- 
quence of these fundamental differences 
the modelling of the important pressure- 
velocity and pressure-rate-of-strain terms 
in the second moment equations of turbu- 
lence must be expected to require alter- 
ation in high speed flows without and with 
combustion. Density inhomogeneities due 
to heat release exist in both high and low 

the influence of combustion on the flow be- 
comes less important as that Mach num- 
ber increases. 

The experiments reviewed in $5 and 56 
led us to conclude that shock waves of- 
ten occur in high speed reactive flows of 
practical interest and that their presence 
can have a strong influence on the develop- 
ment of the flame. Numerical codes based 
on combustion and flow models for such 
applications must therefore be capable of 
“capturing” shock waves and of predict- 
ing their location and strength. Numerical 
simulations of interactions between shock 
waves and isolated vortices (Guichard et 
al., Ref. 138), shock waves and homo- 
geneous turbulent mixing (Rkveillon and 
Vervisch, Ref. 139) and shock waves with 
two-dimensional turbulent mixing layers 
(Stoukov, Ref. 140) all illustrate the com- 
plex nature of these interactions. !Cur- 
bulence and mixing rates are modiiied 
by the presence of the shock wave. Lo- 
calised, transient hot spots are formed due 
to shock wave curvature. Models are re- 
quired to incorporate these processes in 
averaged turbulent flow equations. 

- 
speed combustion while those due to com- 7.1 Parameters and Regimes of 
pressibility arise only in high speed flows. High Speed Turbulent Combustion 
However, it is worth noting that as the (Ref. 19) 
speed of the flow increases the mean ki- 
netic energy per unit mass u 2 / 2  dominates Our exposition is facilitated if we con- 
the static enthalpy per unit mass h so that sider a premixed system although the con- 
heat release due to combustion adds rel- cepts apply without significant modifica- 
atively smaller amounts of energy as the tion for all other systems. As noted above, 
mean Mach number increases. Therefore the essential difference between low and 



343  

high speed combustion relates to the rela- tative speed of sound c lref .  The obvious 
tive magnitudes of the kinetic energy per definition - U  M=- unit mass and the chemical energy assod- 
ated with the adiabatic temperature rise %cf (7.1) 
in the chemical conversion from reactants becomes when the two 
to products. In low speed flows the ki- titites therein are known. F~~ 
ne& energy is negligible so that flUCtua- erample, in low speed flows a 
tions in velocity do not alter chemical E- mean velocity is relevant for in 
netic behaviour. As the velocity of rem- other situations the square root of the 
ctants increases their kinetic energy b e  turbulent kinetic energy is most impor- 
comes increasingly significant relative to tant. simirarlp., in ex-g ignition phe- 
their chemical that in due nomena a relatively low initial tempera- 

this limit fluctuations in velocity result in in ex-g other phenomena the 

thus in chemical kinetic rates although is 
the absence or presence of chemical re- 
action has a s m a l l  influence on the state To advance our ~ s c u s s ~ o n  in the light 
of the gas. we know from compressible of our observations about the im- 

which characterizes the relative magnitude netic and chemical ener@es to define a we 

Course the latter becomes negligible. In ture may provide the most relevant TFef 

large changes static temperature and mu& higher adiabatic flame temperature 

flow theory that it is the Mach number portance of the relative magnitudes of E- 

Of the kinetic enera  and the internal en- 
erW Of a gas. 

select a mean velocity and a mean static 
temperature, both memured in a 1abora- Therefore, it is to be 

pected that our discussion of compressibil- tory frame of reference, inem, with respect 

ity centres On a mean number to coordinates fixed, e.g., on the walls of 
fi considered to be representative in the the com~ustor. a a is typic.y 
sense that it can be explicitly related to about ten times the Machnum- 
all other Mach numbers. ber Mt = (2k)i / U  if &+/U is l O - l ,  area- 

sonable value for purposes of estimation. 
The nondimensional parameters, e.g., 

of turbulent Reynolds and Damkohler a one-step approximation to the ki- 
numbers, discussed in $4.2 delineate the netics of the chemical system under con- 
regimes of low speed turbulent combus- sideration the sensitivity of the reaction 
tion, remain relevant for high speed flows rate to temperature is measured by the 
but must now be augmented by M. TO Zel'dovich number 
define A? it is necessary to select a repre- 
sentative velocity U and a reference static 
temperature T,.f which defmes a represen- 

AT' Ta 
P = q G  
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where T. is the activation temperature 
and AT, the temperature rise in the adia- 
batic combustion of the reactants at con- 
stant pressure, a rise as noted earlier asso- 
ciated with the chemical energy. The typ- 
ical values of p >> 1 lead to the special 
features of low speed turbulent combus- 
tion in the reaction sheet regime, features 
which are expected to persist in high speed 
flows, until the kinetic energy is compara- 
ble with ATc. It is therefore relevant (Ref. 
19) to introduce the parameter 

AT' SE- 
AT' (7.3) 

chemical kinetic behaviour thus become an 
important feature of turbulent combustion 
when a exceeds a critical value dependent 
on this temperature ratio. 

These observations suggest that the 
p h e  of the Damkohler number D, and 
Reynolds number R.T of Figure 5 be ex- 
tended in a third dimension having S as 
its coordinate. For S << 1 the regimes 
of turbulent combustion are as described 
in j4.2 but for S >> 1 chemical be- 
haviour becomes dominated by compress- 
ibility effects and the previous identifica- 
tion of reaction-sheet and distributed re- 
action limits, although perhaps applicable, 
become less well founded. Both flamelets 
and shocklets may occur at sdliciently 
large values of D, and S. 

where AT, is a measure of the tempera- 
ture rise associated with kinetic energy, a 
rise we take equal to the stagnation tem- 
perature of a chemically frozen stream, i.e. 

1 The manner in which velocity fluctua- 
(7.4) tions influence chemical kinetic behaviour 

at high enough values of may be de- 
duced from Equation (2.14). Since T,/Tc 

1 - 2  T re f  is large in combustion applications, small 
changes in T - T, influence greatly the 
rates of chemical reaction. Thus the ar- 

It may be seen that in low Mach number gument of the exponential function in 
flows S << 1 and the kinetic energy is Equation (2.14) indicating the tempera- 
negligible compared withthe chemical en- ture changes produced by velocity changes 
ergy. When S x 1 the two energies are produced by velocity changes becomes PS. 
about equal but when S >> 1, the kinetic This result shows that if PS << 1, veloc- 
energy in the reactants dominates. Since ity changes have only a small influence on 
ATc/TFef lies typically between one and chemical reaction rates but that if this in- 
ten in applications, Equation (7.5) indi- equality is not satisfied, there is coupling 
cates that S exceeds unity when a ex- between velocity fluctuations and those 
ceeds a value ranging from two to ten. rates. Compressiblity may thus begin to 
The coupling between compressibility and influence such rates well before the regime 

AT, G 5 (7 - 1) M2T,.f 

We thus have 

S = - ( y - l ) M  - 
2 AT, (7.5) 
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S x 1 is reached. Rather it is necessary 
only that S > p-' for that infiuence to be- 
come significant. Compressibility effects 
may thus dominate ignition and extinction 
in high speed turbulent flows. 

From these results it is possible to sum- 
marize the effects of compressibility on 
turbulent reacting flows by considering 
Merent Mach number ranges: 

1. a << [2/ (7 - l)(Tref/Ta)]i : 
Temperature changes from com- 
pressibility have negligible effect on 
chemical kinetic behaviour because 
ps << 1. 

2. [2/(7-1)(Tref/Ta)]' < AI < 1 
: Temperature changes from com- 
pressibility may influence chemical 
kinetic behaviour but shocklets do 
not occur. 

3. 1 < M < [2/(7 - 1)(AT. Tref)]i 
: Shocklets and expansion waves 
form when flow deflections occur but 
the temperature changes and there- 
fore reaction rate changes produced 
by compressibility remain less than 
those resulting from heat release. 

4. [2/ (7 - l)(AT,/T,.f)]i < A2 < 
0.6&f/Mt : Temperature changes 
associated with compressibility are 
larger than those stemming from 
heat release and eddy shocklets 
are relatively unimportant because 
Mt < 0.6. 

5. A2 > 0.6AI/Mt : Eddy shock- 
lets become increasingly important 

in influencing mean viscous dissipa- 
tion while compressibility remains 
the largest contributor to tempera- 
ture changes. 

Although involving restrictions on 
7,T,,/T,.f and ATc/Tref and thus quanti- 
tative uncertainties the sequence of Mach 
number regimes described here appears to 
be representative of the most realistic situ- 
ations and suggests the variety of phenom- 
ena arising in turbulent combustion as the 
Mach number increases. 

7.2 Direct Numerical Simulations 

In contrast to subsonic flows, turbulence 
can readily be convected into the compu- 
tational domain of a numerical simulation 
for supersonic flow (van Kalmthout et al., 
Refs. 141, 142), paving the way for quasi- 
steady high speed reactive DNS. The two 
simulations reviewed here are both two- 
dimensional. 

In the work of van Kalmthout et al. 
(Refs. 141, 142) the injected turbulence 
is homogeneous and isotropic, the Mach 
number is 1.3 and the two-dimensional 
fuel-air mixing layer is set up without 
shear. Acoustic waves and flow compress- 
ibility are fully accounted for but heat re- 
lease due to combustion is set to zero. The 
aim of the calculations is to derive statis- 
tical data in order to develop a theoretical 
model of nonpremixed turbulent combus- 
tion: in this case, a flame surface density 
model. The benefit of combustion DNS for 
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this purpose is dearly demonstrated, (Ref. upstream conditions. Figure 23 presents 
141). scatter plots illustrating the wide range 

of instantaneous conditions occurring in 
Stoukov (Ref. 140) b o  considers a two- the established flame. Recall that, in a 

dimensional SUPerSOniC miring b r .  En- steady 1-m flame, e& of these plots 
conditions shown in 7*1* reduce to a single data point. The 

computed fluctuation level is clearly very 
high. Finally the interaction between are- 
active shear layer and the shock wave gen- 
erated by a 5' wedge is illustrated in Fig- 

1780 2.94 1.05 x 10' ure 24. Very strong reaction behind the 
shock wave causes the shock wave to move 

Flow Velocity Mach No. Reynolds 

1.6 104 &I 
7.1 conditions 140) during the t h e  intervalbetween 

These entry conditions are perturbed in these two sets of 
such a way that transition to turbulent 
flow is A detailed hydrogen-& These simulations illustrate the com- 
reaction is used including 37 ele- plexity of the interaction between turbu- 
-tarY reactions and g chemical species. lent mixing, chemical reaction, supersonic 
F~~ types of flow are calc.ated inert flow and shock waves. Although it is not 
and reactive mg layers, with and with- yet possible to carry out three dimensional 
out oblique shock waves. A shock wave is DNS with detailed the results 
generated by placing a wedge at the bot- Provide Val~~able insight as Well unique 
tom of the computational domain. statistical information for model develop- 

ment. 

7.3 Selection of a Model 
Figure 20 illustrates the regular vortical 

stmcture ,,f the inert mixing layer with- 
out a shock wave (Ref. 140). Regions 
of high pressure occur in the braids be- It is first necessary to identify the pur- 
tween these vortices and are associated pose of a model Calculation. 1s the aim to 
with a local temperature rise of 20K. The estimate global trends O r  are detailed and 
convective Mach number is 0.416. me accurate flow field and combustion predic- 
corresponding inert mixing layer, with a tions required? The purpose of the work 

wave generated by a 50 wedge, is often dictates features of the model which 
shorn in Figure 21. The shod is win- is selected. For example, ifdistances to au- 
kled and large fluctuations in pressure and toi@ion are to be Predicted, the model 
temperature occur behind it. In a reactive must be Capable OfincluCk sufficient de- 
flow, Figure 22, the location of autoigni- tail of the i d t i o n  chemistry. 
tion fluctuates in response to the varying 
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Figure 20 
Inert mixing (lines) and pressure field (shades of grey) in 2D mixin- layer 

(Stoukov Ref. 140). 

Figure 21 
Effect of shock wave on inert mixing (lines) and pressure (shades of grey), 

Stoukov (Ref. 140). 
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Figure 22 
Autoignition in a mixing layer, Stoukov (Ref. 140). 
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Figure 23 
Reactive &ing layer, scatter plots (Ref. 140). 
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Figure 24 
Effect of shock wave on reactive mixing layer. Grey scales represent 

temperature (upper 5gure.) and Mach number (lower figure). Stoukov 
(Ref. 140). 
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Figure 25 
Flames passing obstacles: Simulation (Ref. 143) of experiment (Ref. 129). 
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Important decisions must then be made 
about the expected combustion and flow 
regimes. Are large fluctuations of thermo- 
chemical state to be expected? Can it be 
assumed that burning takes place in the 
laminar flamelet regime? Will Mach num- 
bers be so high that fluctuations in pres- 
sure and enthalpy due to compressibility 
cannot be neglected? Will shock waves oc- 
cur? 

In the light of these decisions, three 
types of model must be selected: 

Turbulence : The choice is likely to be 
between a k - c model and a second 
moment (Reynolds stress, Reynolds 
flux) model. In either case closure of 
each term must be reviewed to allow 
for effects due to both compressibil- 
ity and combustion (Refs. 38, 39, 
44)- 

Chemistry : Is a detailed reaction 
scheme essential or wil l  either a re- 
duced scheme (Refs. 40, 41) or a 
global scheme be adequate? 

Mean reaction rates : Assuming that 
scalar fluctuations are not negligi- 
bly s m a l l  the choice here is between 
transported pdf (Refs. 35, 36), pre- 
sumed pdf (Refs. 43-45) and lami- 
nar flamelet models (Refs. 33, 34, 
69). Application of these models 
to high Mach number of flows, even 
with simple chemistry, presents se- 
vere problems. 

If Mach numbers are not too high, 
so that thermochemical state fluctuations 
can be neglected, and shock waves do not 
occur, these choices can be made in terms 
of conventional models. We now iden- 
tify a few examples of cases where such 
assumptions are made. Barsanti et al. 
(Refs. 18,143) use a second moment, lam- 
inar flamelet model to calculate the devel- 
opment of confined explosions and com- 
pare their predictions with available ex- 
perimental data, see Figures 25 and 26. 
A feature of this work is that the 

Figure 26 
Speed of flame passing obstacles: 

Simulation (Ref. 143) and 
experiment (Ref. 129). 

validity of the laminar flamelet combus- 
tion model in which high Mach number 
effects are neglected is checked a poste- 
riori by calculating characteristic values 
of the Karlovitz number, Equation 4.11, 
and the Mach number. It is noteworthy 
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that agreement with experiment is not ob- lution of a transport equation for a suit- 
tained (Ref. 143) in cases where this test ably chosen single point, joint probabil- 
is failed. ity density function ( j p d f )  possess the im- 

portant property that the chemical source 
Model calculations by Baurle et al. term which in moment methods leads to 

(Ref, 144) predict the high speed jet grave difficulties appears in closed form. 
flame experiments of Cheng et al. (W. This section explores the extension of pdf 
109). They employ a one-equation turbu- methods to nonpremixed turbulent com- 
lence model, solve Favre averaged mean bustion in high speed flows. As elsewhere 
flow equations and represent hydrogen- in this chapter uncertainties and unre- 
q g e n  chemistry through seven reactions solved difficulties are identified. 
between six reactive species plus inert ni- 
trogen. A presumed joint pdf of temper- The first step in the derivation of a pdf 
ature and mass fractions is modelled by model is to choose the set of stochastic 
assuming that temperature and composi- variables which together with the spatial 
tion fluctuations are uncorrelated. The location form the independent variables 
temperature pdf  is a Gaussian and the in the ( j p d f )  transport equation. Estab- 
mass fractions are represented as a mul- lished methods (Pope Ref. 35), Koll- 
tivariate beta function. Comparison with mann Ref. 75) allow this equation to 
the experiments is only qualitative be- be derived &om the time dependent con- 
cause Favre means are predicted while servation equations for the selected vari- 
Reynolds means are obtained &om the ex- ables. Some of the terms in the result- 
perkents. However it is clear that the ing transport equation are unclosed and 
predicted scalar variances become far too the next step is to devise suitable closure 
s m a l l  because of the large negative value expressions. There are strong incentives 
of the chemical source term in the vari- to keep the number of independent vari- 
ance transport equation. This may either ables as s m a l l  as possible within the con- 
be because the shape of the presumed pdf straint of respecting physical reality both 
is inappropriate - for example, the lack of to limit the extent of this modelling and 
correlation between temperature and eom- also to minimize the complexity and com- 
position fluctuations seems counter intu- putational cost of the numerical solutions. 
itive - or for some other reason. Finally, the resulting equation must be 

solved by appropriate numerical means. 
7.4 Methods Based on  the 
Probability Density Function 
(Ref. 19). 

In flows involving high speed turbu- 
lent combustion inhomogeneities of den- 
sity arise from the heat release due to com- 

As described in 54 methods based on so- bustion and from both viscous heating and 
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l o c ~  compressions and expansions associ- be neglected; under these circumstances 
ated with the high speeds. The quantity the dilatation is due only to heat release. 
which distinguishes these flows from the However, in high speed combustion all of 
constant density turbulence treated exten- these influences play a role. 
sively for a century is the dilatation 

Following Kollman (Ref. 146), we first 
discuss the high speed turbulent flow of 

(7.6) a single component nonreactive gas. TWO 

variables are required to specify the ther- 
modynamic state of such a gas but as in- 
dicated at several points in our discussion 
in high speed flows it is no longer possi- 
ble to neglect changes in static pressure 
and enthalpy with the consequence that 
an extended definition of state is required. 
The mechanical and thermodynamic state 
of the gas is completely specified, for ex- 
ample, by the instantaneous values of the 
velocity 2, the density p and the internal 
energy e. However, there are considerable 
advantages of adding to this list the di- 
latation 2, as discussed in connection with 
Equation (7.7) (Kollmaun Ref. 146 and 

a a Eifler and Kollman Ref. 145). In particu- 
at a z k  lar the pressure-work term which appears 

in the energy equation written in terms 
of the internal energy is closed. Closure 
of the dilatation equation and the dilata- 

a 1 aP tion terms in the transport equation for 
the solenoidal dissipation, Z= is straight- + [- ( - P h f k  + n k ) ]  - - 
forward. Finally and perhaps most impor- 

If the dilatation is identically zero and tantly, inclusion of the inverse time scale 
hence the density is constant, this becomes associated with 2) in the list of stochas- 
the Poisson equation for the calculation of tic variables results in a conventional evo- 
the pressure given the velocity field at a lution equation for the jpdf in place of 
particular time. In low speed turbulent the hyperbolic equation which would oth- 
combustion the iduence of the pressure erwise results (Kollman Ref. 146). 
and the velocity held on the dilatation can 

a u k  DE- 
a z k  

which from conservation of mass can be 
seen to be directly related to the change in 
density. Although not explicitly incorpo- 
rated in the current phenomenology of low 
speed turbulent combustion, it has been 
proposed by Eifler and Kollman (Ref. 145) 
as a primary variable describing the me- 
chanical and thermochemical state of the 
gas in high speed turbulent combustion. 
Clearly such a proposal is physically ap- 
pealing. The time resolved equation for 
the dilatation is obtained by appropriate 
differentiation and addition of the momen- 
t u n  equation. There results 

-pz) + - p u k 2 )  

auk - a2P + a%;k _ -  
arkark  azkaz l  - ' K G  

a r k  p az, (7 .7)  
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Similar arguments apply to high speed tion proceeds in a flow in chemical equi- 
reactive flows but it is now necessary to librium is determined by transport in the 
augment the list of independent stochas- space of the conserved scalar. This term 
tic variables to account for the more com- appears in the application of pdf meth- 
plex thermochemical state of the gas. The ods to simple low speed, nonreactive flows 
simplest case is one with fast chemical ki- and as a consequence has been studied for 
netics so that chemical equilibrium pre- many years. Various models therefore are 
vails everywhere. If in addition all chemi- available (see 94, Pope Ref. 35 and Koll- 
cal species are assumed to have a common man Ref. 146) but unfortunately these fail 
molecular diffusivity, as assumption &e- in the laminar flamelet limit, i.e., as reac- 
quently used in studies of turbulent eom- tion is confined to thin sheets (Pope Ref. 
bustion, then the conserved scalar 2 ( z , t )  147). Models are also available to describe 
again provides all the necessary t h e m  transport in velocity space due to viscous 
chemical information. Thus 2 is added to stresses and pressure gradient fluctuations 
our earlier set of defining variables. (Pope Ref. 35). However, the need to de- 

scribe transport in the spaces of the inter- 
With the set of variables identified ear- nal energy and dilatation raises new prob- 

lier application of the jpdf equation to a lems. 
three dimensional, unsteady flow involves 
11 independent variables: three from the The work of Kollman (Ref. 146) and 
space coordinates, three from the velocity Eifler and Kollmann (Ref. 145) represents 
components, one each from time, density, the most comprehensive treatment of high 
internal energy, dilatation and conserved speed flows involving chemical reaction to 
scalar. date. Their formulation encompasses im- 

portant features of the interaction among 
Phenomena which are described by such turbulence, compressibility and combus- 

an equation without further assumptions tion. The present restrictive assumption 
or modelling include turbulent transport of chemical equilibrium can be removed 
in physical space (Pope Ref. 35) and in by the addition of one or more additional 
velocity space by body forces such as grav- scalar variables contributing to the deter- 
ity and by mean pressure gradients. The mination of the thermochemical state of 
coupling between the velocity field and the gas. It is here that reduced chem- 
the thermochemical state of the mixture is ical kinetic mechanisms (Ref. 41) may 
fully taken into account in this approach. beneficially impact on these pdf meth- 
However, the equation contains unknown ods. Relative diffusion, e.g. of highly mo- 
terms which must be modelled and which bile molecules such as hydrogen, cannot 
present severe challenges. As a result of presently be taken into account without 
molecular diffusion the rate at which reac- significant increases in the dimensions of 
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the set of stochastic variables. discrete, which the particles can experi- 
ence in turbulent flow. There results an 

Formidable problems remain to be approlimate treatment of the behaviour 
solved and numerical predictions have yet of notional particles in the turbulent field. 
to be reported using this d y e i s  for either This behaviour in a collective sense is 
nonreactive or reactive high speed flows. equivalent to solving the jpdf  transport 
However, Eifler and K o a  (Ref. 145) equation. Details of this procedure are 
present numerical solutions to a simpler beyond the scope of our discussion. The 
problem in which the jpdf transport equa- contributions of Pope (Ref. 35) and Eifler 
tion sketched earlier is integrated over the and Kollman (Ref. 145) should be con- 
three velocity components 80 as to yield sulted for details. Several of the models 
a transport equation for four scalar &- introduced in the implementation of these 
ables: the density p ,  the internal energy e, ideas, including those describing the ran- 
the &tation 2) and the conserved scalar dom processes, must be regarded as tenta- 
2. This procedure requires that the sta- tive. 
tistical properties of the velocity field be 
determined separately, e.g. by a second Eifler and Kollmann (Ref. 145) use their 
moment theory. The mean density is the model to predict the development of a su- 
variable coupling the two calculations to- personic nonpremied flame burning hydro- 
gether. With the velocity component ex- gen and air. They compare their results 
cluded from the list of stochastic variables with the experimental data of Evans et al. 
additional empiricism must be incorpo- (Ref. 116), the same data used by Zheng 
rated to achieve closure in the pdf trans- and Bray (Refs. 70, 148,149) for the pur- 
port equation. pose of evaluating their presumed pdf the- 

ory. Both sets of authors conclude that the 
As shown by Pope (Ref. 35) single point experimental data is too limited for firm 

pdf equations can be simulated under cer- conclusions to be drawn. However, despite 
t& conditions by an ensemble of notional the inconclusiveness of the existing evalu- 
particles whose behaviour is described by ation the generality of the jpdf  transport 
stochastic differential equations. Eifler approach and its potential to encompass 
and (Ref. 145) adopt this ap- a variety of the processes arising in high 
proad in which the jpdf  transport equa- speed combustion argue for continued de- 
tion is replaced by a suitably large num- velopment. 
ber of mixed Eulerian-Lagrangian equa- 
tions obtained from the basic conservation 7.5 Presumed pdf Methods 
equations. To these deterministic equa- (Ref. 19, 70, 148, 149). 
tions are added terms characterizing the 
random processes, both continuous and Because, as suggested earlier, there is 



coupling between the temperature and v e  note that an approximate form of Equa- 
locity in high speed flows, the presumed tion (7.8) is 
pdf analysis of 84 can no longer be used 
to relate the enthalpy and thus the tem- 
perature to 2, so that the calculation of at ark a% ark (7.9) 

a a ah. a -ph, + -pukh, = -@- 

the kportant -able fi  (z) I which is r e  Comp&sa of this f- with that for the 
Womible for the interaction between the t- resolved equation for z (2, t ) ,  Equa 

the flow, for a further set of sweeping deed &st a connection h, = h, (2). The 
mSumPtions. kPortant difference be- assumptiom necessary to achieve Equa- 
tween the treatment Of low and hi@ 'peed tion (7.9) are as follows. Firstly, the Lewis 
flows relates to the desirability of express- based on the single diffusion coef- 
ing the conservation of energy in terms of fieient 2) and the mixture Prandtl num- 
the stagnation enthalpy ber are both set to unity. In connection 

with the combustion of hydrogen the mo- 
h, = h + -VkVk bility of the atoms and molecules of this 

fuel makes the validity of this assump- 
rather than the static enthalpy h or inter- tion suspect. Secondly, the pressure term 
nal energy e. For high speed reactive flows &/at is neglected, an assumption which 
h, obeys the following equation as discussed earlier is inappropriate in high 

speed flows. 

fluid mechanical and Of tion (2.10), indicates that there does in- 

l 
2 

a a a P  Eph .  + -pvkh, = - 
a z k  at With these serious assumptions adopted 

a +- 
a z k  

and with various restrictions concerning 
--+ X ah, Fc X (- 1 - 1) hi- ax the initial and boundary conditions we are 
G a Z k  '% i=l L e i  a z k  led to the h e a r  relation 

where PR = gp/A  is the Prandtl number. 
The question arises as to the availabil- 
ity of an algebraic relationship between 
the stagnation enthalpy and the conserved 
scalar, 2, i.e., a relation analogous to that 
of Equation (4.27). We now show that 
with some serious assumptions such a con- 
nection does exist. To proceed we first 

where h.1 and h,z are the stagnation en- 
thalpies of the fuel and oxidizer streams 
respectively. Because Equation (7.10) is 
linear it provides a simple connection be- 
tween the mean stagnation enthalpy k. (2) 

and the mean z ( z )  and between the inten- 
sities phta and pZffz. Thus the restrictions 
in this approach result in the simplifica- 
tion permitting the energy equation to be 

- - 
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replace- -y the algebraic equation Equa- 
tion (7.10). Accordingly, provided we can 
calculate the mean density p ( 4 )  standard 
second moment methods can be applied 
to calculate the mean velocities, the mean 
and the intensity of the conserved scalar, 
the various Reynolds stresses and fluxes 
which arise in these equations and finally 
the mean viscous dissipation. The equa- 
tion for the latter variable should include 
the effects associated withhigh speed, e.g., 
the contribution of dilatation, (Ref. 70). 

We now turn our attention to the eval- 
uation of the mean density. Our anal- 
ysis (Bray et al., Ref. 19) is based on 
the presumed pdf method discussed in $4. 
The most convenient form for P (2; 2) is 
the beta function with its exponents de- 
termined by i ( ~ )  and ( p z ” / p )  ( E )  but 
other forms dependent on these two vari- 
ables can be adopted. The precise form 
of the pdf need not be prescribed within 
the context of our discussion. For low 
speed flows in chemical equilibrium a CN- 

cial function needed in the pdf analysis is 
p ( Z ) ,  i.e., the density as a function of the 
conserved scalar independent of the spa- 
tial location. However, in high speed flows 
the coupling between the velocity and en- 
ergy implies the corresponding function 
must be thought of as p ( 2 ; ~ )  i.e., the in- 
stantaneous density depends on the con- 
served scalar and on space. Given this 
situation we must think in terms of ap- 
proximation methods such that an initial 
estimate for p (2; E )  can be improved sys- 
tematically, an estimate which permits the 

mean density p ( ~ )  and thus all of the 
other dependent variables .ir, ( E )  , i  (E) et 
al. to be calculated &om appropriate con- 
servation equations. 

The starting point is provided by the 
equations of state 

N 

(7.11) 

Here N = 4 corresponding to fuel, oxi- 
dizer, product and a diluent, generally ni- 
trogen. These two equations plus the con- 
nection between the two enthalpies can be 
rearranged into 

(7.12) 

where 5 and R are the mixture coeffi- 
cient of specific heat at constant pressure 
and the mixture gas constant respectively. 
In Equation (7.12) the quantities h , ,  x, 4 
and & are known functions of the con- 
served scalar Z but vk and p are func- 
tions of space and time. If they were 
known, then Equation (7.12) would yield 
p (2; g, t ) .  In a statistically stationary 
flow this would lead to the desired quan- 
tity p ( Z ; g ) .  This equation exposes the 
connection between the velocity and state 
fields emphasized in this review. 

In order to progress it is clearly now 
necessary to make further assumptions, 
in particular that pressure fluctuations 
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are thermochemically unimportant, an as- In this simulation, with maximum mesh 
sumption consistent with our earlier ne- 
glect of the aplat-term in Equation (7.9) 
and as in the earlier instance progressively 
less defensible as the Mach number of the 
flow increases. With that assumption p (E) 
in Equation (7.12) is replaced by @(z) and 
we obtain (Ref. ) by averaging 

where is the Favre averaged turbulent 
kinetic energy and where P (2; E) is the 
probability distribution function for the 
conserved scalar. 

Now suppose, as suggested earlier, an 
estimate for 
p ( ~ )  is available. Then the Favre aver- 
aged continuity equation and equations of 
motion with Equation (7.10) and supple- 
mented appropriately are solved inter alia 
f o r k  (E) I P (E) , (E) , k (E) $ 2  (E) and 
pZ"z/p(g). The final two variables per- 
mit the parameters for the pdf P ( 2 ; ~ )  to 
be determined. These results when substi- 
tuted into Equation (7.13) enable an im- 
proved estimate of p(.) to be made. 

The proposed linear relationship be- 
tweenmixture fraction 2 (., t) and stagna- 
tion enthalpy h, (.,t), namely, Equation 
(?'.lo), has been tested in a nonreactive, 
supersonic DNS by Luo et al. (Ref. 150). 

Ilr, 

Y .. 6' ,o 
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Figure 27 
(a) Joint pdf of stagnation enthalpy 

and mixture fraction (b) mean 
stagnation enthalpy vs. mixture 

fraction (Ref. 150). 

size 96 x 301 x 96, the initial condition 
is a laminar mixing layer of two streams, 
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each of Mach number 1.2, moving in op- 
posite directions (convective Mach num- 
ber 1.2). The initial flow field is seeded 
with disturbances deduced from linear sta- 
bility analysis. The Lewis and Prandtl 
numbers are both unity and the Reynolds 
number based on vorticity thickness and 
fuel stream velocity reaches 1000 at the 
end of the simulation. Figure 27, which 
shows the joint pdf of h, and 2 and the 
conditional mesh of h, versun 2, is consis- 
tent with the proposed linear relationship. 
This implies that the &/at term in Equa- 
tion (7.8) has a negligible effect under the 
conditions of this simulation. 

Zheng and Bray (Refs. 70,148,149) re- 
port results of presumed pdf calculations 
of supersonic jet flames in which they as- 
sume the validity of this linear relationship 
between 2 and h,. A laminar flamelet ap- 
proach is adopted, analogous to that de- 
scribed in $4, and use is made of a 'libary" 
of strained laminar hydrogen-air diffusion 
flame solutions compiled by Balakrishnan 
(Ref. 151). Research by Balakrishnan and 
Williams (Ref. 152) indicates that laminar 
flamelet models are applicable to a signif- 
icant portion of the anticipated flight tra- 
jectory of proposed scramjet engines. 

The Balakrishnan laminar flame solu- 
tions (Ref. 151), which are based on de- 
tailed chemical kinetics, specify fuel and 
oxidiser mass fractions and static temper- 
ature as functions of mixture fraction Z 
and strain rate a, as shown in Figure 28. 
Zheng and Bray (Refs. 70, 148, 149) as- 
s u m e  that 2 and a are statistically inde- 
pendent. They represent the pdf P (2) 
M a beta function, Equation (4.29), and 
P ( a )  as a Gaussian. In order to calm- 
late the mean density p(g) they apply an 
adjustment to the temperature T(') (2, a)  
in this data set from Ref. (151) which is 
referred to as Library I. The adjusted tem- 
perature is 

i i 2  T (z, a, ii) = T(') (z, U) - - 
2 4  

(7.14) 
The fluid flow model used by Zheng and 

Bray (Refs. 70, 148, 149) involves Favre 
averaged equations of continuity, fluid mo- where ii is the local axial mean velocity, 
tion and chemical species together with subscripts f, o and p correspond to fuel, 
an algebraic stress turbulence model for oxidiser and product, respectively, the sto- 
Reynolds stress and Reynolds flux compo- ichiometric mass ratio of the reaction is s 
nents. and superscript (1) denotes Library I. 
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Figure 28 
Flamelet Library I: Hz/air laminar 

dif€usion flames at strain rates of 60 

(Ref. 140 from Ref. 151). 

Sabel'nikov et al. (Ref. 153) propose 
a more detailed description of the inter- 
action between scalar and velocity fields. 
They compare their predicted static tem- 
peratures with Equation (7.14) and find 
similar results. 

to 210815 8-' 

Zheng and Bray (Refs. 70, 148, 
149) compare their predictions with the 
hydrogen-air jet flame experiments of 
Evans et al. (Ref. 116) in which the initial 
velocities of the kel and oxidiser streams, 
which appear in Equation (7.14) are 

uf = 2432m/s and U. = 151Qm/s , 
respectively. Figure 29 (Ref. 148) 

0.1 T------ 

Figure 29 
Composition profiles from 

experiment (Ref. 116) and from 
model predictions (Ref. 148). The 
long dashed curves are predictions 

from model based on strained 
laminar flamelets. 

compares radial composition profiles from 
these experiments (symbol X ) with 
four Merent predictions from the model. 
Cases 1, 2 and 3 are for D, + 00 when 
the laminar flamelet reduces to a flame 
sheet. Case 1 uses the basic model. Case 
2 includes a model for dilatation dissi- 
pation due to both compressibility and 
heat release (Ref. 70). Case 3 uses this 
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model plus a representation of the cor- 
relation between fluctuations in pressure 
and dilatation (Ref. 70). It will be seen 
from Figure 29 that these three versions 
all give similar predictions. Case 4, the 
long dashed lines in Figure 29, uses the 
adjusted flamelet library &om Equation 
(7.14) as well as the models for dilatation 
dissipation and pressure-dilatation corre- 
lation. Agreement with experiment is im- 
proved. It is concluded that finite reaction 
rate effects, aa contained in the flamelet 
library, play a significant role under the 
conditions of this experiment. However 
the Mach number of this flow is too low 
to provide a challenging test of high Mach 
number combustion models. 

8. CONCLUSIONS 

1. The most serious hindrance to a 
fuller understanding of turbulent 
combustion in supersonic flows is the 
lack of suitable experimental data. 
Detailed, well characterised exper- 
iments are needed, particularly at 
sufficiently high Mach numbers for 
compressibility effects to be signifi- 
cant and with good space and time 
resolution so that small scale mixing 
can be studied. 

2. Direct numerical simulation (DNS) 
is beginning to contribute both to 
understanding of supersonic reactive 
flows and to the development of av- 
eraged flow models. This trend can 
be expected to continue and DNS 

must be used to fill the gaps in 
knowledge where experiment is im- 
practicable or where models are not 
available. Examples include small 
scale mixing in high Mach number 
reactive turbulent flows and reac- 
tive turbulent flows containing shock 
waves. 

3. There is scope for large eddy simu- 
lation (LES) of supersonic reactive 
turbulent flows. 

4. A need wil l  remain for averaged 
models of high speed turbulent flow 
with combustion. The present re- 
view leads to the conclusion that 
convincing theoretical models are 
currently not available. The spec& 
cation for such a model includes the 
ability to incorporate effects of 

a a detailed description of the 
chemical kinetic mechanism 
and rates, 

a molecular transport processes 
characterised by Lewis and 
Prandtl numbers Merent from 
unity, 

a incomplete s m a l l  scale mixing 

a coupling between the local 
thermochemical state and the 
mean and fluctuating kinetic 
energy of the flow, 

a the presence of shock waves in 
the reactive turbulent flow. 
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Large-Eddy Simulations of Compressible Turbulent Flows 
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ABSTRACT the structure of turbulence in the neighbourhood of 
HERMES space shuttle’s rear Bap at Mach 2.5 will 
be examined 

In the first lecture, we describe the general framework 
of large-eddy simulations (LES) applied to incom- 
pressible flows, with Smugorinsky’s model [l]. Af- 
terwards we concentrate on LES from a spectral- 
space point of view. We introduce Kraichnan’s spec- 
tral eddy-viscosity[2], and how it can be handled 
for LES purposes in isotropic turbulence, in terms 
of the plateau-cusp model. We generalize the spec- 
tral eddy viscosity to a spectral eddy diffusivity. 
Using the nonlocal interaction theory, we discuss 
the backscatter issue, and present a generalization 
of spectral eddy coefficients allowing to account for 
non-developed turbulence in the subgridscales, the 
spectral-dynamic model. Applications of this model 
to a channel flow will be given, with comparisons with 
DNS, experiments, and the classical dynamic model. 
The latter will be presented and discussed. 

The second lecture will be devoted to the action of 
compressibility upon free-shear and separated flows. 
We will work in physical space. We will first present 
the struclure-function model (SSF), the filtered SSF, 
and the selective SSF, as well as a version of the 
spectral-dynamic model in physical space, in terms 
of a combination of the structurefunction model and 
a hyperviscosity. Afterwards, we will justify the use 
of an essentially incompressible subgrid-modelling for 
LES of compressible turbulence. Then, we will look 
at the effects of compressihility upon coherent vor- 
tices in mixing layers, and see in particular how heli- 
cal pairing is inhibited above a convective Mach num- 
ber of 0.7. We will consider also a round jet, and 
finally a separated flow in a configuration related to 
ARIANE V solid-propergol boosters. 

In the third lecture, we will concentrate on LES of 
compressible boundary layers. First, we will look at a 
weakly compressible boundary layer ( M ,  = 0.5) spa- 
tially developing upon an adiabatic flat plate. After- 
wards, we will consider a temporal boundary layer at 
Mach 4.5, and show bow LES allow to describe the 
whole process of transition to turbulence. Finally, 
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Chapter I: 
LES formalism in physical 
and spectral space 

1 MODELS, DNS AND LES 

A direct-numerical simulation (DNS) of a turbulent 
flow has to take into account explicitly all scales of 
motion, from the largest, imposed by the existence of 
boundaries or the periodicities, to the smallest. The 
latter may be for instance the Kolmogorov dissipa- 
tive scale (c /u3 ) - ’ I 4  in three-dimensional isotropic 
turbulence, or the viscous thickness 6, = ufu,  in a 
t,urbulent boundary layer. Around a wing or a fuse- 
lage for instance, and if one wants to simulate three- 
dimensionally all motions ranging from 6, % 10W6 m 
to to 10 m, it would be necessary to put 10” modes 
on the computer. Right now, the calculations done to 
the expense of not excessive computing times on the 
biggest machines take about 2. lo7 grid points, which 
is very far from the above estimation. Even with the 
unprecedented improvement of scientific computers, 
it may take several tenths of years (if it becomes ever 
possible) before DNS permit to simulate situations at 
Reynolds numbers comparable to those encountered 
in natural conditions. 

In front of such a situation, there are several atti- 
tudes. The first one consists in trying to develop sta- 
tistical models. This is compulsory from an industrial 
point of view, but it is well known that models which 
have been validated for agiveu situation fail when ex- 
ternal conditions change, under the effect for instance 
of pressure gradients, separation, compressibility or 
rotation The second one is to work in very sim- 
ple geometries at low Reynolds number and develop 
DNS which, as already stressed, are costly but may 
be very useful to  study transition for instance. The 
third attitude consists in trying to simulate determin- 
istically only the large scales of the flow, which, from 
an engineering point of view, are responsible for an 
important part of turbulent transfers of momentum 
or heat for example. This is the large-eddy siniula- 
rion (LES) point of view, where the small scales are 
filtered out, but influence statistically the large-scale 
motions. 

The problem of LES is a very difficult one, which 
poses a lot of unsolved problems and has several in- 
consistencies. But it is the only way to obtain spatic- 
temporal informations upon flows at high Reynolds. 
As will he seen, LES are extremely useful in particu- 
lar to understand the dynamics of coherent vortices 
and structures in turbulence. 

2 THE FORMALISM OF LES 
IN PHYSICAL SPACE 

2.1 Filtering 

In the first of these three lectures, we present the 
LES formalism for incompressible turbulence. This is 
valid for constant-density flows, and also for variable- 
density flows in the framework of Boussinesq approx- 
imation. In the second lecture, we will defend the 
point of view that, in compressible turbulence and 
away from the shocks, compressibility effects decrease 
with t,he scale, so that a compressible large-eddy sim- 
ulation using incompressible suhgrid models may be 
justified if the filtering scale is chosen small enough. 

We mention that parts of this text will follow closely 
the lines of [3][4]. 

To begin with, let us consider a simulation of Navier- 
Stokes equations carried out in physical space, us- 
ing finite-difference or finitevolume methods. We 
assume first for sake of simplification that the spa- 
tial discretization is orthogonal and cubic, Ax being 
the grid mesh. To the fields defined in the continu- 
ous space I, one will associate filtered fields obtained 
through the convolution with a filter CA,, chosen so 
as to eliminate fluctuations in the motions of wave- 
length smaller than Ax. The filtered velocity and 
temperature fields are: 

and more generally for any quantity f (scalar or vec- 
torial) 

One can easily check that such a filter commutes 
with temporal and spatial derivatives, so that the 
continuity equation for the filtered field holds. Let d 
and T’ be the fluctuations of the actual fields with 
respect to the filtered fields 

t i=f i+d;  T = T + T ’  (4) 
and more generally f = f + f’. The fields “prime” 
concern fluctuations at scales smaller than Ax (the 
“grid scale”), and will then be referred to as subgrid- 
scale fields. 

Let us  write Navier-Stokes equations as 

dui a 
at axj  - i -(U;Uj) = 

( 5 )  1 ap  a 
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After applying the filter, one gets 

at 8 

i a ~  a r  

(7) T. .  - - - ’] - uiuj - uiuj 

is the subgridscale tensor. The filtered fields do not 
need to be resolved at  scales smaller than Ax, since 
they do not contain fluctuations under this scale. 
Therefore, they can be properly represented by the 
computer, provided proper numerical schemes are 
used. The main problem lies in the subgridscale ten- 
sor: let us first express it in terms of fluctuations with 
respect to the filtered field, as 

- - -  T . .  ‘] - - 6.6, , ] - - vivj - (6iU’. + 6%‘) - u!u’. 
1 l i  I ) ’  

Here, 6iCj - Uiuj is called ‘Ldonard term”. It is 
explicit since it is expressed in t e r m  of the filtered 
field, and may give some indications as to model the 
action of the subgridscales (see the _ _  section on the dy- 
namic model below). The term - (Gil l ;  +Ujui) is the 
“cross term”, and -U:.; is the “Reynoldw,tress like 
term”, following the terminology given in [5]. These 
two terms are unknown. The equations of motion 
for the filtered field have analogies with Reynolds 
equations for the mean flow in non-homogeneous - tur- 
bulence, but other terms than -uiu; arise in the 
LES. Another difference is tbat LES deal with fields 
which are rapidly varying in space and time, whereas 
Reynolds equations are generally time-independant, 
and the fields vary slowly in space. In the LES, we 
have to solve Navier-Stokes equations for the filtered 
field (large scales) modified by supplementary sub- 
gridscale terms which we do not know. 

The same analysis may be held for a scalar T (not 
necessarily passive) of molecular diffusivity IC con- 
vected and diffused by the flow. It satisfies 

_ 

ar a 

If the low-pass filter Gar is applied to this equation. 
one finds 

(9) 
Here again, the question of modelling the subgrid 
scalar fluxes is posed. 

2.2 &om micro to macro... 

The problem of the subgridscale modelling is a par- 
ticular case of the passage from “micro” to “macro”, 
where the laws governing a medium are known at 

a certain microscopic level, and one seeks evolution 
laws at a macroscopic level. Navier-Stokes is already 
the result of such a passage: the micro corresponds 
here to Boltzmann equations for the molecules, and 
the macro to the continuous medium approximation, 
where the molecular viscous and conductive coef- 
ficients model the momentum and heat exchanges 
across the surface of the fluid parcels, due to molec- 
ular fluctuations. In LES of turbulence, the micro 
corresponds to the individual fluid parcel obeying 
Navier-Stokes equations, and the macro is the filtered 
field. 

Such problems of passage from micro to macro can 
be solved when a separation between large and small 
scales exists. This is in particular the case for Navier- 
Stokes equations, valid as far as the dissipative scales 
are large in front of the molecular scales, which is 
true except in hypersonic conditions at  Mach num- 
bers larger than 15. One of the main problems of LES 
of turbulence is the fact tbat there is in general a con- 
tinuous spectrum of energy between the resolved and 
subgridscales. We will see below how the spectral- 
eddy viscosity concept allows to solve this problem 
at an energetic level. 

2.3 LES and unpredictability growth 

From a mathematical viewpoint, the LES problem 
is not very well posed. Indeed, let us consider the 
time evolution of the fluid as the motion of a point 
in a sort of phase space of extremely large dimen- 
sion (e.g. - 10” around a wing, as seen above). At 
some initial instant, the flow computed with LES will 
differ from the actual flow, due to the uncertainty 
contained in the subgridscales. This initial differ- 
ence between the actual and the computed flow will 
grow, due to nonlinear effects, as in a dynamical sys- 
tem having a chaotic behaviour. Therefore, the two 
points will separate in phase space, and, as time goes 
on, the LES will depart from reality. However, as will 
be seen below, LES permit to predict the statistical 
characteristics of turbulence, as well as the dynamics 
of coherent vortices and structures. 

Note that chaos in dynamical systems with a low 
number of degrees of freedom is generally character- 
ized by a positive Lyapounov exponent, with expo- 
nential growth of the distance between two points 
initially very close in phase space. In isotropic tur- 
bulence, one introduces for predictability studies the 
error spectrum EA(k,t) ,  characterizing the spatial- 
frequency distribution associated to the energy of the 
difference between two random fields and 5% with 
same statistical properties: 



the energy spectrum E(k,  t )  being such that 

- 1 <i;:>= - 1 <i;z>- - l + m E ( k , t )  dk . (11) 
2 

The error rate 

is zero when the two fields are completely correlated, 
and one when they are totally uncorrelated. In pre- 
dictability studies, one takes generally an initial state 
such that complete unpredictability ( E ( k )  =  EA(^)) 
holds above k ~ ( 0 ) ,  while Ea(k)  is 0 for k < k ~ ( 0 ) .  
Twc-point closures of the EDQNM type (see be- 
low for details) show (in three or two dimensions) 
an inverse cascade of error, where the wavenumber 
kE(t) characterizing the error front decreases (see 
[6]). Thus, the error rate can be approximated by 

We assume that the turbulence is forced by external 
forces, so that the kinetic energy arising at  the de- 
nominator of Eq. (12) is f ied .  In three-dimensional 
turbulence, and if a kK5I3 spectrum is assumed for 
k > kE,  the error rate will he proportional to k&2'3. 
In fact, closures (see [6][3]) show that kE1 follows 
a Richardson's law (k;' a t31a), so that the er- 
ror rate grows linearly with time. This is in fact a 
slow invease compared with the exponential growth 
of chaotic dynamical systems, and quite encourag- 
ing concerning the potentialities of large-eddy simula- 
tions for three-dimensional turbulent flows. Remark 
that the same result (r(t) 0: t )  has been obtained in 
Ref. [7], on the basis of numerical data correspond- 
ing to atmospheric wheatber forecast models. On 
the other hand, the above analysis carried in a k-3 
enstrophy cascade of two-dimensional isotropic tur- 
bulence yields an exponential growth of the error (see 
[6][3]). It seems, quite surprisingly since large-scale 
atmospheric motions are quasi two-dimensional, that 
the atmosphere behaves more as a three-dimensional 
turbulence. This is confirmed by the k-'13 kinetic 
energy spectra measured in the atmosphere for scales 
comprised between a few and 500 kilometers. 

2.4 Eddy-viscosity and diffusivity 

In a similar way to what was done when considering 
a Newtonian fluid, we are going to make an eddy- 
viscosity and eddy-diffusivity assumption, in order to 
model the subgrid terms. More specifically, we write 

(13) 
1 
3 Zj = 2Ut s i j  + -Ti, &j , 

where 

is the deformation tensor of the filtered field. The 
LES momentum equation becomes 

(15) 
P = p- (1/ .3)pofir being a modified pressure, deter- 
mined with the help of the filtered continuity equa- 
tion (still valid on a regular mesh). If the grid is no 
more regular, one has to consider Eq. (13) as a model 
for all subgrid terms, in particular those arising from 
the irregular-grid effects. 

For the scalar, one introduces an eddy diffu sivity E, ,  

such that 
Tii, -Tu, = w- 
- 

(16) 
- aT 

ax, 
to yield 

-+fj.-=L aT aT " }  . (17) at lax, axj 
The eddy diffusivity is related to the eddy viscosity 
by the relation 

(18) 

Pi*)) being a turbulent Prandtl number which will 
be specified below. 

The question is now to determine the eddy viscosity 
ut(?, t ) ,  as well as the turbulent Prandtl number. Nc- 
tice that this eddy-viscosity assumption in physical 
space is rather questionable since, as stressed already, 
there is no spectral gap between the large and small 
scales. One expects, however, that the informations 
about the physics of turbulence derived using this 
unperfect concept may help to improve it. 

2.5 Smagorinsky's model 

The most widely used eddy-viscosity model was prc- 
posed by Smagorinsky[l]. As a meteorologist, he 
was studying quasi-geostrophic models of the atmc- 
sphere, and was looking for an eddy-viscosity sim- 
ulating some sort of three-dimensional Kolmogorov 
energy cascade in the subgridscalm A local mixing- 
length assumption is made, in which the eddy vis- 
cosity is assumed to be proportional to the subgrid- 
scale characteristic length Ax, and to a characteristic 
turbulent velocity U A ~  = AXIS[. Here 131 is typical 
velocity gradient at Ax, determined with the aid of 
the second invariant of the filtered-field deformation 
tensor S,, defined in Eq. (14). Smagorinsky's eddy 
viscosity writes 

with 

(19) 

IS1 = J2SijSij . 



4-5 

If one assumes that k c  = r/Ax, the cutoff wavenum- 
ber in Fourier space, lies within a k - 5 / 3  Kolmogorov 
cascade, one can adjust the constant CS so that the 
ensemble averaged subgrid kinetic-energy dissipation 
is identical to the kinetic-energy flux in the cascade 
t. It  is found: 

This yields C, M 0.18 for a Kolmogorov constant 
CK = 1.4. In fact, the dynamic-model ideas (see 
[8]) will consist in adjusting locally Cs with the aid 
of a double filtering, basically to reduce the eddy- 
viscosity in places where turbulence is not totally de- 
veloped, or during transition. 

We are now going to present a different point of view 
of LES when working in Fourier space. 

3 LES IN SPECTRAL SPACE 

3.1 Spectral eddy viscosity and diffu- 
sivity 

The formalism of spectral eddy viscosity is due to 
Krachnan ([Z], see also [9] [3]) in the case of a Kol- 
mogorov suhgridscale spectrum. The spectral eddy- 
diffusivity was introduced in [lo]. Here, we will ex- 
tend these results to spectra which may not follow 
Kolmogorov law at the cutoff. 

We assume that Navier-Stokes is written in Fourier 
space (which requires periodicity in the three spatial 
directions). Let 

+ 
rl i (k ,b)  = d(.(t,t)di (21) 

and 

be the spatial Fourier transforms of the yelocity and 
scalar fields. The spectral tensor 6’ij(k, t), Fourier 
transform of the velocity correlation tensor 

U,,(?,,) =< u,(2’ , t )u,( . ’+?, t )  > , 

< iL , (P , t ) r l j (E , t )  >= o , j ( E , t ) 6 ( E + P )  

is such that 

For isotropic turbulence, the kinetic energy spectrum 
verifies 

E ( k , t )  = 21rk2Ut,(Z,t) . (23) 
The scalar spectrum is such that 

We consider the cutoff wave number kc = shz-’ 
already envisaged above when discussing Smagorin- 
sky’s model. We define a sharp low-pass filter by 
setting equal to zero the velocity and scalar ampli- 
tudes at  wave vectors whose modulus is larger than 
k c .  Let us first consider the kinetic-energy spectrum 
evolution equations given by the EDQNM theory’ 
([111[31): 

(g + 2 v k 2 )  E ( k , t )  = /L, dp dy B k p q ( t )  

k ( 2 5 )  
--b(k,p, Y ) E ( Y , t ) [ k Z E ( p ,  t )  - p 2 E ( k 9 t ) l  . 
PY 

where the integration is carried out in the domain A k  

of the ( p ,  q )  plane such that ( k , p , q )  can be the sides 
of a triangle. The non-dimensional coefficient 

is defined in terms of the cosines ( z , y , z )  of the 
interior angles of the triangle ( k , p , q ) .  The angle 
B X p q ( t )  characterizes the nonlinear relaxation of ve- 
locity triple-correlation. It is given by 

1 - e-bkr.+~(t~+P’+4~)It 
1 (26) = P k p q  + v ( k Z  + p z  + q 2 )  

with 

and 
P k p q  = Pk + P p  + Pv 

P X  = a1 [lk p Z E ( p ,  t )dp ]  ‘I2 . (27) 

The ronstant a1 is adjusted in such a way that the 
kinetic-energy flux is equal to E in a Kolmogorov cas- 
cade. One finds ([11][3]) 

(28) =0.218CK 312 . 

The EDQNM evolution equation for the passive 
scalar spectrum Eq-(k . t )  is 

‘ K r a i b a n  [2] considered the Test-Field Model (TFM) in- 
stead of the Eddy-Damped Quari -Nomd Markovian theory 
(EDQNM), hut the transfers are  the same in s. Kolmogorov 
inertial range. 
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The choice of the new adjustable constants (12 and u3 
is not simple. I t  was shown in Ref. [12] that a given 
value of the Corrsin-Oboukhov constant arising in 
the inertial-convective range of the scalar spectrum 
(here taken equal to 0.67 from experimental measure 
ments of Ref. [13]) imposes a certain one to one cor- 
respondence between (12 and u3. The last condition, 
allowing to determine u2 and (13, comes from consid- 
erations on the turbulent Prandtl number, in spectral 
space, defined below and equal to ( u ~ + u ~ ) / ~ u I  . It 
is then possible to express this number in function of 
u 2 / ~ 3  only, in such a way that the Corrsin-Oboukhov 
constant should be fixed to the value given above. 
This leads to a turbulent Prandtl number decreasing 
continuously from 0.6 to 0.325 for u2/u3 going from 
zero to infinity. Since the values of turbulent Prandtl 
numbers found experimentally in the boundary layer 
are in tbe range 0.6 FV 0.8, this could lead to the 
choice u2 = 0 (and hence u3 = 1.3, as determined 
in Ref. [12]). One could object that the analogy 
between both theoretical and experimental turbulent 
Prandtl numbers is not obvious. Nevertheless the 
choice u2 = 0 has the further advantage of allowing 
analytical resolutions of the EDQNM temperature 
spectral equation. It has to be stressed that the sim- 
pler choice (12 = u3 = ul gives the same Corrsin- 
Oboukhov constant and a turbulent Prandtl number 
of 0.35. 

We come back to the subgridscale modelling problem, 
and assume first k << k c ,  both modes being larger 
than k i ,  the kinetic-energy peak. Then one can write 
the spectral evolution equations for the supergrid- 
scale velocity, E ( k , t ) ,  and scalar, E T ( k , t )  spectra 
as 

B 
( % + 2 v k 2 ) E ( k , t )  = T < b , ( k , t ) + T . , ( k , t )  (30) 

a 
( % + 2 n k 2 ) E ~ ( k , t )  = T T ' , ( k , t ) + T z ( k , t )  . (31) 

Expansions in powers of the small parameter k l k c  
yield to the lowest order' 

Tag(k , t )  = -2vp" kz E ( k , t )  

T ' ( k , t )  = -2~7 k2 & ( k , t )  (34) 

The supergrid-scale transfers T<kc(k ,  t )  and 
c k c ( k , t )  correspond to triad interactions whose 
wave numbers lie in the supergrid range, and hence 

2the relaxation times are not expanded 

do not need any modelling, since they can be calcu- 
lated exactly in the large-eddy simulation. 

Let ue start by assuming a k - 5 / 3  inertial range at 
wave numbers greater than k c .  We obtain: 

E ( k c )  vp" = 0.441 C K - ~ "  [r] 
(37) 

(38) 

If one wumes  for instance a Kolmogorov constant 
of 1 4 in the energy cascade, the constant in front of 
Eq. (36) will be 0.267. 

When k is close to k c ,  the above concept of spee- 
tral eddy viscosity and eddy diffusivity can be gen- 
eralized for a k - 5 / 3  inertial range extending over 
wave numbers larger than k c .  It  is possible, with 
the aid of the EDQNM approximation, to calculate 
the suhgridscale transfers, corresponding to triadic 
interactions where at  least one of the wave numbers 
p and q is greater than k c .  This allows us to define 
two functions v l ( k l k c )  and K t ( k l k c )  , respectively 
the eddy viscosity in spectral space ([2] and the eddy 
diffusivity in spectral space ([lo]), such that 

T , , ( k , t )  = - 2 ~ t ( k l k c )  k2 E ( k , l )  

T z ( k , t )  = -Znt (k lkc)  k' E ( k , t )  . 

(39) 

(40) 
The functions v t ( k l k c )  and K t ( k l k c )  are such that 

v t ( k l k c )  = K ( k / k c ) v p "  (41) 

n t ( k l k c )  = C ( k / k ) K F  (42) 
where vp" and K? are the asymptotic values given by 
Eqs (36), (37) and (38). As shown by Kraichnan[2], 
K ( z )  is approximately constant and equal to  1,  ex- 
cept in €he vicinity of k l k c  = 1 where it dis- 
plays a strong overshoot (cusp-behaviour), due to 
the predominance of semi-local transfers across k c .  
It was shown in [lo] that C(z) behaves qualita- 
tively as K ( z )  (plateau at 1 and positive cusp), 
and that the spectral turbulent Prandtl number 
v t ( k l k c ) / n l ( k l k c )  is approximately constant (and 
thus equal to 0.6 if one takes u2 = 0). These three 
quantities (eddy-viscosity, eddy-diffusivity and tur- 
bulent Prandtl number), taken from [lo], are shown 
on Figure 1, in function of k l k c .  
the eddy coefficients are normalized 
with CK = 1.4. 

In fact, the function K ( z )  can be put under the form 

K ( z )  = 1 + v y "  , (43) 
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with 2n w 3.7 ([Q][lO]). We propose to determine vi 
by considering the energy balance between explicit 
and subgridscale transfers. This yields: 

kc 
2 u t k 2 E ( k , t ) d k  = t , 

which, in an infinite Kolmogorov inertial range, leads 
to 

CI L 

321 + 1 + (;n/2) v' - - 3 x 0.441 ' 
(44) 

We will come back to this expression below, when 
working in physical space in terms of generalized hy- 
perviscosities. 

Let us mention that the use of the eddy viscosities 
and eddy diffusivities given by Eqs (41) and (42) al- 
low one to solve numerically the EDQNM kinetic en- 
ergy and passive scalar evolution equations at zero 
molecular viscosity and diffusivity in the self-similar 
decaying regime (for k 5 k c ) ,  as shown by [9][10]. 

3.2 LES of isotropic turbulence 

Let us now come back to the evolution equations (in 
spectral space) of the instantaneous filtered fields (for 
1 i 1  < k c  ) 

The explicit supergrid transfers are calculated by a 
truncation for k , p ,  q 5 k c  of the nonlinear terms in- 
volved in Navier-Stokes and transported scalar equa 

'7 

k- 

'7 

Fsgure 2: 3D ~ ~ ~ t r o p i c  decaying turbulence, resolution 3Z3; 
decay of kinetic-energy (a )  a*d porriuc-scalar ( b )  spcetm. col- 
culnted from the LES of [lo] trrtng the apectml-cusp eddy vts- 
COSltY 

tions in Fourier space (see 131): 

- 
t & ( k , t )  = -ik2 

G j ( $ , t ) T ( c , f ) d $  . (48) l++d=g ,IA,lfl<kc 
We propose to model the unknown subgridscale 
transfers with the aid of u t ( k l k c )  and n t ( k l k c )  
introduced above, namely 

(49) - 
t y g ( k , t )  = -K t ( k ) k c ) k ' ? ( i , t )  . (50)  

This subgridscale modelling is justified at the ener- 
getic transfer level, in the sense that, when one writes 
the exact evolution equations for the spectra of and 
T a8 they arise from Eqs (49) and (50), one obtains 
the EDQNM subgridscale transfers. However, the 
assumption of real eddy coefficients is constraining, 
and discards the possible phase effects arising in the 
neighbourhood of k c .  

As already mentioned, the cusp part of the spectral- 
cusp eddy viscosity takes into account the non- 
existence of a spectral gap at k c ,  and this is a great 
advantage with respect to eddy-viscosities in physical 
space. 

The results of the spectral-cusp eddy viscosity ap- 
plied to LES of decaying three-dimensional isotropic 
turbulence are satisfactory. The first calculations of 
this type at a very low resolution (323) were done by 
[9][10] respectively for the momentum equation and 
the passive scalar. Figures 2-a and 2-b show the de- 
caying kinetic-energy and passive scalar spectra ob- 
tained in these LES, with formation of approximate 
k-5 /3  inertial and inertial-convective ranges. Al- 
though we were not aware of this fact at the moment 
this computation was done, it is clear on the figure 

- 
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Figure 3: J D  isotropic decaying turbulrnce, resohiion lZS3; 
decay of  kinetic-energy (a) and passiue-scalar (b) rpeelro. eal- 
culaled from the LES of 1141 w i n g  the spectral-cusp eddy vis- 
cosity 

that the temperature spectrum decays much faster 
t,han the kinetic energy. Figure 3 is an analogous 
LES a t  a resolution of 12B3 Fourier modes carried 
out by [14] (see also [15]) .  The initial velocity and 
scalar spectra are analogous, with a Gaussian ultra- 
violet behaviour and a k8 infrared spectrum. It can 
be checked that Kolmogorov and Corrsin-Oboukhov 
k - 5 / 3  cascades establish. Afterwards, the kinetic- 
energy spectrum decays self-similarly, with a slope 
comprised between -513 and -2. The scalar spec- 
trum seems to have a very short inertial-convective 
range close to the cutoff, and a very wide range 
shallower than k-' in the large scales. Here also 
the scalar decays much faster than the tempera- 
bure. This anomalous range was explained by [16] 
as due to the quasi two-dimensional character of the 
scalar diffusion in the large scales, leading to large- 
scale intermittency of the scalar. In these LES, a 
direct determination of the eddy-viscosity and the 
eddy-diffusivity was done, by evaluating the trans- 
fers across a fictitious cutoff k& = k c / 2 .  The eddy 
viscosity thus determined has the plateau-cusp be- 
haviour predicted by the closures. However, the eddy 
diffusivity is anomalous with respect to the EDQNM 
prediction, with a logarithmic decrease in the plateau 
region. This is presented on Figure 4, where only the 
explicit transfers involving the range [k&,  k c ]  are in- 
dicated. 

It was shown in Ref. [16] that the anomaly disappears 
when the temperature is no more passive and coupled 
with the velocity within the frame of Boussinesq ap- 
proximation. It is possible that the same holds for 
compressible t,urhulence, which would legitimate the 
use of the plateau-cusp eddy diffusivity in this case. 

3.3 The spectral backscatter 

Let us look now at the infrared ( k  - 0) spectra 
obtained in Figures 3-a and 3-b. The initial slope 
is k8,  as already stressed, and one sees k 4  spectra 
which form. These spectra had been predicted with 
the aid of two-point closures such as EDQNM3 (see 

3This is also valid for TFM. DIA (Direct-Interaction Ap- 
proximation) and even Quasi-Normal theories. 
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Figur.e 4:  3D i ~ o l r a p i e  decaying turbulence. ~ e a o l u l i o n  lZS3; 
eddy-tliscosily and diflwiuily calculated from Ihr LES of  o f  
[I 81 

[17]) many years before they could be observed in the 
LES of [14] [15] .  The derivation is the following: let 
ki and k r  be respectively the peaks of the kinetic- 
energy and scalar spectra. The nonlocal interactions 
theory, where the nonlocal transfers are calculated 
t,o the leading order in terms of expansions in powers 
of the small parameters kJki (resp. k l k ? )  permits 
to show that nonlocal transfers are dominant in this 
infrared range, and respectively equal to 

for the velocity and the scalar. These transfers, which 
arise in the rhs of the evolution equations for the 
spectra 

( z + 2 v k z ) E ( k , ' 1 )  = T ( k , t )  a 

( z + 2 " k 2 ) E ~ ( k , ' ) = T T ( k , l )  a I 

inject a k4 spectrum in low wave numbers, through 
some kind of nonlinear resonant interaction between 
two modes % IC,. This spectral backscatter is respon- 
sible for the sudden appearance of k4 infrared spectra 
when the initial spectra are sharply peaked, or sim- 
ply a k s  with s > 4 .  This spectral backscatter phe- 
nomenon is important, since energy is thus injected in 
very low wave numbers, and, to our knowledge, twc- 
point closure theories are the only ones which permit 
to predict it analytically4. Violent backscatter phe- 
nomena occur also in the statistical unpredictability 
theory both in two and three dimensions, as shown 
by [GI. 

(=e PI) 
'In two-dimensional turbulence. a k3 backscatter also arises 
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Notice finally that, if turbulence is fed by some forc- 
ing concentrated around k,, a stationary solution 
will imply an infrared balance between the backseat 
ter and the eddy-viscous transfers, yielding a k2 
equipartition spectrum. A last remark is that the k4 
backscatter is negligible in LES where the cutoff kc 
lies in the middle of a Kolmogorov range. Backscat- 
ter effects exist, which send back energy from the 
filtered to the subgridscales. But, from an energetic 
point of view, they are contained in the cusp-part of 
the plateau-cusp eddy viscosity considered above. 

4 SPECTRAL DYNAMIC 
MODEL 

We will present below a local generalization of the 
plateau-cusp spectral eddy viscosity to the physical 
space (structure-function model), which gives bet- 
ter results for isotropic turbulence as far as the Kol- 
mogorov cascade is concerned. But let us show now 
an adaptation of the spectral-cusp model to kinetic- 
energy spectra a k-m fork > k c ,  when the exponent 
m is not necessarily equal to 5/3. The eddy viscosity 
given by Eq. (33) is now 

for m 5 3. The constant 1/(15al) is equal to 
0.31 CK-~”. This expression, derived by [16], was 
used by Lamballak ([18] [NI) for LES of a plane chan- 
nel (see below). The associated eddy diffusivity is 

and the turbulent Prandtl number 

(54) 

(55) 

Taking the value of a3 necessary to recover Pp)  = 0.6 
for m = 513, one finds finally 

P:) = 0.18 (5 - m) . (56) 
For m > 3, this scaling is no more valid, and the 
eddy-viscosity and diffusivity coefficients will be set 
equal to zero. In the spectral dynamic model, the 
exponent m is determined through the LES with the 
aid of least-squares fits of the kinetic-energy spec- 
trum close to the cutoff. The asymptotic eddy vis- 
cosity of Eq. (53) is multiplied by the plateau-cusp 
function K ( k / k c )  defined above. 

4.1 Incompressible plane channel 

We show now how the spectral dynamic model may 
be applied to an incompressible turbulent Poiseuille 

flow between two infinite parallel flat plates. The 
channel bas a width 2h, and we define the macr+ 
scopic Reynolds number by R. = 2hU,,,/u, where 
U, is the bulk velocity. We w u m e  periodicity in the 
streamwise and spanwise directions Calculations are 
carried out at constant U,,,. They are initiated by a 
parabolic laminar profile perturbed by a small three- 
dimensional random noise, and pursued up to com- 
plete statistical stationarity. When turbulence bas 
developed, we define a microscopic Reynolds number 
h+ = v,h/u, bared on the friction velocity. We use a 
numerical code combining pseudo-spectral methods 
in the streamwise and spanwise directions, and com- 
pact finite-difference schemes of sixth order in the 
transverse direction (see [IS]), whith grid refinement 
close to the walls. This is a very precise code of 
accuracy comparable to a spectral method at equiv- 
alent resolution, for the DNS presented on Figure 5 
at h+ = 162. It is compared with a DNS carried out 
in Ref [20] using spectral methods at h+ = 150). 
These DNS, which use very precise numerical meth- 
ods, turn out to be in very good agreement with the 
experiments. We see on Figure 5-a that the logarith- 
mic range begins at  yt = 30. We show on Figure 
5-b the r.m.s. velocity-fluctuations profile in terms 
of y. It is clear that there is a strong production of 
U’ at the wall, with a peak at yf = 12. This cor- 
responds in fact to the low- and high-speed streaks. 
Figure 5-e shows the Reynolds stresses, whose peak 
is higher (at the bottom of the logarithmic layer), 
which is the signature of ejections of vorticity from 
the wall. The same peak is observed for the pressure 
fluctuations (Figure 5-d), which is certainly due to 
low pressure associated to high vorticity at  the tip 
of the ejected hairpin (see below). Finally Figure 5- 
f shows the r m.6. vorticity fluctuations, a quantity 
very difficult to measure precisely experimentally, It 
indicates that the maximum vorticity produced is 
spanwise and at the wall, In fact under the high-speed 
streaks (see below). The vorticity perpendicular to 
the wall is about 40% higher than the longitudinal 
vorticity in the region 5 < yt < 30, which indicates 
only a weak longitudinal vorticity stretching by the 
ambient shear. We will present two LES using the 
spectral-dynamic model, at R, = 6666 (h+ = 204, 
case A) and Re = 14000 (ht = 389, case B). They 
are respectively subcritical and supercritical with re- 
spect to the linear-stability analysis of the Poisedle 
profile. In the two simulations there is a grid refine- 
ment close to the wall, in order to simulate accurately 
the viscous sublayer. The kinetic-energy spectrum al- 
lowing to determine the eddy-viscosity is calculated 
in each plane parallel to the walls. In fact, the orig- 
inal formula for the spectral-eddy viscosity consid- 
ered a three-dimensional spectrum. It is possible, 
in the isotropic case and when spectra decrease as a 
power law, to relate the two-dimensional to the three 
dimensional spectrum. LES of the channel seem to 
he insensitive to the particular spectrum chosen. 
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loeify pmjlr (sohd hne) v c r d i i  Piomclli's [21] dynemic-model 
simulations (symbols) 

Figure 6 shows for case A the exponent m arising in 
the energy spectrum at the cutoff, as a function of the 
distance to the wall y+. Regions where m > 3 cor- 
respond to a zero eddy viscosity and hence a direct- 
numerical simulation. This is the case in particular 
close to the wall, up to y+ ES 12 where we know 
that longitudinal velocity fluctuations are very in- 
tense, due to the low- and high-speed streaks. There- 
fore, and since the first point is very close to the wall 
(g+ = l), our LES has the interesting property of 
becoming a DNS in the vicinity of the wall, which en- 
ables us to capture events which occur in this region. 
Figure 7 shows the mean velocity profile in case A, 
compared with the LES of Piomelli [21] using the dy- 
namic model of [SI. The latter is known to agree very 
well with experimenb at these low Reynolds num- 
bers. Our simulation coincides, with the right value 
for the Karman constant. On the other hand, a LES 
carried out with the classical spectral-cusp model 
with m = 513 gives an error of 20% for the Karman 
constant. Figure 8 shows for case A the rm8 veloc- 
ity fluctuations, compared with the dynamie-model 
predictions of [XI. The. agreement is still very good, 
with a correct prediction of the longitudinal velocity 
fluctuations peak. Concerning the supercritical case, 
the LES of case B are in very good agreement with 
a DNS at hf = 395 carried out by [B], both for the 
mean velocity and the rms velocity components. The 
latter are shown on Figure 9. Notice that the LES 
allows to reduce the computational cost by a factor 
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FISUT~ 8: Same (UI Frgure 7, but for the rms velocity fluettr- 
afionr, from top to boftom longitudinal, spanwulss and trona- 
verse 

Frgure 9: Twbulenl channel f low,  comportsoas of the spcctml- 
dynamic model (solid linea, h+ = 389) wtth the DNS of Ktm 
([ZZ], ayrnbals, h+ = 395); a) meen uelocity, b )  rms oeloeify 
compoarnts 

of the order of 100, which is huge. 

We present finally on Figure 10 a map of the vorticity 
modulus at the same threshold for cases A and B. The 
flow goes from left to right. 

5 DYNAMIC MODEL 

We have already noted for Kraichnan’s spectral eddy 
viscosity that the parameters defining it could be 
computed from it LES with a cutoff k c ,  by defining 
a fictitious cutoff k& = k c / 2 ,  and explicitly calculat- 
ing the transfers acrosa k& (see Refs [14][16]). This is 
the underlying philosophy of the dynamic model in 
physical space [8]. The method relies on a LES using 
a “base” subgrid-scale model such as Smagorinsky’s 
model5, with a grid mesh Az. The computed fields f 
are filtered by a “test filter” 7 of larger width aAz (for 
instance a = Z), to yield the field f. If one applies the 
double filter to the Navier-Stokes equation (with con- 
stant density), the subgrid-scale tensor of the field : 
is readily obtained from with the replacement of the 
filter “bar” by the double filter “bar-tilde”, that is: 

- 

(57) 
- 7.-=-=- ’, - uiuj - U%U$ - . 

We consider now the following resolved turbulent 
strew corresponding to the test-filter applied to the 
field ii: 

(58) L..-“ - 
‘f - uiuj - . 

Finally we apply the filter ’tilde” to Eq. (7), to yield 

TsJ = C,U, -u,uj . (59) 

13, =‘7;1 - Z j  I (60) 

- - -  
Adding Eqs (58) and (59), using (57) 

I 

SBnt it may be used with other subgrid models. 
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Figwe ID: Tur6ulent plane channel, ooriicity modulus; 0)  

DNS ( h t  = 165), b )  LES uaing the spec tddynomie  madel 
( h i  = 389), horn [le] 

called Germano’s identity. In this expression, Z3 and 
have to be modelled, while Ci, can be explicitly 

calculated by applying the test filter to the base LES 
results. Using Smagorinsky’s model, we have 

Still using Smagorinsky, we have 

- 
IS( and Si,  are the quantities analogous to IS1 and S,J 
built with the doubly-filtered field 6. Suhstracting 
Eq. (61) from Eq. (62) yields with the aid of Eq. 
(BO) 

- 1 
3 C,j - -CII 6ij = 2&jC - 2dijC . 

In order to obtain C ,  many people remove it from 
the filtering as if it  were constant, leading to 

with - 
M,j = s,j -/ti, . 

Now, all the terms of Eq. (63) can be determined 
with the aid of U. There are however five independent 
equations for only one variable C, and the problem 
is overdetermined. 

Two alternatives have been proposed to deal with 
this undeterminacy. A first solution (Ref. [E]) is to 
contract Eq. (63) by S,j to obtain 

since, due to incompressibility, SiJ is traceless. This 
permits in principle to “dynamically” determine the 
“constant” C as a function of space and time, to be 
used in the LES of the base field 3. In tests U% 
ing channel flow data obtained from direct numerical 
simulations, it wa8 however shown in [E] that the de- 
nominator in Eq. (64) could locally vanish or become 
sufficiently small to yield computational instabilities. 
To get rid of this problem, Lilly [23] chose to deter- 
mine the value of C which “best satisfies” the system 
Eq. (63) by minimizing the error using a least squares 
approach. It yields 

This removes the undeterminacy of Eq. (63). 

The analysis of DNS data revealed, however, that the 
C field predicted by the models (64) or (65) varies 
strongly in space and contains a significant fraction 
of negative values, with a variance which may be ten 
times higher than the square mean. So, the removal 
of C from the filtering operation is not really justified 
and the model exhibits some mathematical inconsie 
tencies. The possibility of negative C is an advan- 
tage of the model since it allows a sort of backscatter 
in physical space, hut very large negative values of 
the eddy viscosity is a destabilizing process in a nu- 
merical simulation, yielding a non-physical growth of 
the resolved scale energy. The cure which is often 
adopted to avoid excessively large values of C con- 
sists in averaging the numerators and denominators 
of (64) and (65) over space and/or time, thereby lo& 
ing some of the conceptual advantages of the “dy- 
namic” local formulation. Averaging over direction 
of flow homogeneity has been a popular choice, and 
good results have been obtained in [SI and 1211, who 
took averages in planes parallel to the walls in their 
channel flow simulation. Remark that the same thing 
has been done, with success, when averaging the dy- 
namic spectral eddy viscosity in the channel-flow LES 
presented above. It can be shown that the dynamic 
model gives a zero subgrid-scale stress at the wall, 
where L,, vanishes, which is a great advantage with 
respect to the original Smagorinsky model; it  gives 
also the proper asymptotic behavior near the wall. 
Notice again that the use of Smagorinsky’s model 
as a base for the dynamic procedure is not compul- 
sory, and any of the models described in the present 
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paper can be a candidate. As an example, Ref. [24] 
have applied the dynamic procedure to the structure- 
function model (see below) applied to a compressible 
boundary layer above a long cylinder. 
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Chapter 11: 
Compressible free-shear 
and separated flows 

6 STRUCTURE-FUNCTION 
MODELS 

Now, let us consider the EDQNM eddy viscosity (still 
scaling on d m )  with no cusp, and adjust 
the constant as proposed by [25], by balancing in 
the inertial range the subgridscale flux with the ki- 
netic energy flux E in the energy spectrum evolution 
equation? This yields 

The problem with such an eddy-viscosity (if the en- 
ergy spectrum may be computed) is that it is uniform 
in space when used in physical space. Obviously, 
the eddy viscosity should take into account the in- 
termittency of turbulence: there is no need for any 
subgridscale modelling in regions of space where the 
Row is laminar or transitional. On the other hand, 
it is essential to dissipate in the subgridscales the lo- 
cal bursts of turbulence if they become too intense. 
Considering also that turbulence in the small scales 
may not be too far from isotropy, it was proposed 
by [16] to come back to the classical formulation in 
the physical space, where the eddy viscosity is deter- 
mined with the aid of (66). E(kc,Z) is now a local 
kinetic energy spectrum, calculated in terms of the 
local second-order velocity structure function of the 
filtered field 

Fa(Z’,Az) = (llz(Z,t) - z ( Z +  F,t)112)11q1=,, (67) 

as if the turbulence is threedimensionally isotropic, 
with Batchelor’s formula 

E(k) (1 - sin(kAz)) kAx dk , 

( 6 8 )  
In fact, the original formula involves a k integral from 
0 to CO. But the filtered field has no energy at modes 
larger than k c ,  which explains Eq. (68). This yields 
for a Kolmogorov spectrum 

v f F ( Z ,  Az) = 0.105 Ci3“ Ax [Fz(Z,AZ)]’/~ . (69) 

F2 is calculated with a local statistical average of 
square velocity differences between 3 and the six clos- 
est points surrounding Z on the computational grid. 
In some cases, the average may be taken over four 
points parallel to a given plane; in a channel, for 

‘The same was done in oder to obtain (44). 

instance, the plane is parallel to the boundaries. No- 
tice also that if the computational grid is not regu- 
lar (hut still orthogonal), interpolations of (69) have 
been proposed by [4]. Let Ac = ( A Z ~ A X ~ A Q ) ’ / ~  
be a (geometric) mean mesh in the three spatial di- 
rections. Remembering Kolmogorov’s (1941) law in 
physical space, which states that the second-order ve- 
locity structurefunction scales like ( E P ) ~ / ~ ,  one can 
in Eq. (69) replace Az by Ac, with (in the six-point 
formulation) 

with 
Fii )  = [lltl(Z) - 3(Z+ Az;Z,)l12 

+lltl(Z) - tl(Z - Azi.7)11’] , 

where .7 is the unit vector in direction +; 
One can also look at the relation of Smagorinsky’s 
and the structure-function models when the differ- 
ences in the structurefunction are replaced (within 
a first-order approximation!) by spatial derivatives. 
It is found for the six-point formulation, in the limit 
of Ax - 0: 

where 
CS is Smagorinsky’s constant defined by Eq. (20). 

The structure-function model (SF) works very well 
for decaying isotropic turbulence, where it yields a 
fairly good Kolmogorov spectrum ([16]), better than 
Smagormsky’s model (with CS = 0.2) and Kraich- 
nan’s spectral-cusp model. 

The SF model gives also good results for free-shear 
flows, where it is able to stretch secondary thin lon- 
gitudinal hairpin vortices between primary vortices 
(see [4]). However, selective or filtered versions of it 
work better in this case (see below in this chapter). 
The SF model permits also to go beyond transition 
in a temporal7 compressible boundary layer upon an 
adiabatic wall at Mach 4.5 (see Chapter 111). But it 
does not work for transition in a boundary layer at 
low Mach (or incompressible) where, like Smagorin- 
sky, it is too dissipative and prevents TS waves to de- 
generate into turbulence (see next chapters ). This is 
still true within the four-point formulation in planes 
parallel to the wall, which eliminates the effect of the 
mean shear at the wall on the eddy viscosity. In fact, 
the spectrum E*(kc) determined by the isotropic for- 
mula Eq. (68) is too sensitive to the inhomogeneous 
low-frequency oscillations caused by the TS waves. 

is the vorticity of the filtered field, whereas 

‘periodic in the Bow direction 



4-15 

6.1 Selective and filtered SF models 

To overcome the difficulty of dissipating too much 
the large quasi tw*dimensional vortices or tran- 
sitional waves, two improved versions of the SF 
model have been developed: the selective structure- 
funclron model (SSF), and the filtered structure- 
function model (FSF). The dynamic model in phys 
ical space (see [8]) is another way of adapting the 
eddy viscosity to the local conditions of the flow 

The SSF model was developed by [27]. The 
idea is to switch off the eddy viscosity when the 
flow is not three-dimensional enough The three- 
dimensionalization criterion is the following: one 
measures the angle between the vorticity at a given 
grid point and the average vorticity at the six clos- 
est neighbouring points (or the four closest points 
in the four-point formulation). If this angle exceeds 
20°, the most probable value according to simulations 
of isotropic turbulence at a resolution of 323 - 643, 
the eddy viscosity is turned on. Otherwise, only the 
molecular dissipation is active. The constant arising 
in (69) is changed, and determined with the aid of 
LES of freely-decaying isotropic turbulence: one re- 
quires that the eddy viscosity averaged over the com- 
putational domain should be the same in a selective 
structure-function model and a SF model simulation. 
I t  is found that the constant in (69) has to be multi- 
plied by 1.56. 

The SSF model works very well for isotropic turbu- 
lence and free-shear flows, as well as for a compres- 
sion ramp at Mach 2.5 (see [27] and next chapter). 
We have used it also with success in LES of a flow 
above a backward-facing step. The SSF model de- 
pends however upon the most probable angle of the 
next neighbours average vorticity, chosen above equal 
to 20°. In fact, this angle is a function of the reso- 
lution of the simulation, since it should go to zero 
with Ax, and may he with the type of flow consid- 
ered. Progresses in this model should he made by 
adjustment of this angle to the local grid. 

The FSF model was developed by Ducros ([ZE]) and 
applied to a boundary layer at  Mach 0.5 ([29] and 
next chapter). Here, the filtered field U, is submit- 
ted to a high-pass filter in order to get rid of low- 
frequency oscillations which affect El(kc)  in the SF 
model. The high-pass filter is a Laplacian discretized 
by second-order centered finite differences and iter- 
ated three times. It was shown by Ducros that, for 
some 3D random or turbulent isotropic test fields, 
the spectrum of the high-pass filtered field is 

9 

This is different from the (k4)3 law one should ex- 
pect from an iterated Laplacian, the loss being due 

to the finite-difference scheme* . On the other hand, 
the second-order velocity structure function of the 
filtered field satisfies an equation analogous to (68): 

k2(Z, AX) = 4 ibc E ( k )  (1 - sin(kAx)) kAx dk . 

(71) 
I ,  

Substituting (70) into (71), and replacing E(k)  by a 
Kolmogorov spectrum, one can determine $2(?, Az) 
in terms of a spectrum E(kc) which is no more sensi- 
tive to the low wavenumber fluctuations, which yields 

v[~’(Z,A~) = 0.0014 Ci3/’ Ax [$*(Z, Az)]’/’ . 

This model will be applied below with good results 
to a spatially-growing incompressible mixing layer, 
and in the next chapter to transition in a spatially- 
developing boundary layer at Mach 0.5. 

(72) 

6.2 Generalized hyperviscosities 

One of the common drawbacks of the different ver- 
sions of the SF model is the absence of cusp near 
kc. We go hack to (43), where we take n = 2, which 
yields 272 = 4, not far from the EDQNM 3.7 value. 
Then Eq. (44) yields v; = 2.044, so that an equiv- 
alent of the spectral-cusp eddy viscosity in physical 
space is for the subgridscale dissipative operator in 
the filtered Navier-Stokes equation: 

B 
2-[0.661 ~:~Sjj] + 1.351 

8Xj 
173) 
I ,  

where usF has been given above. Notice that an 
analogous model (with Smagorinsky’s model replac- 
ing the structure-function model) had been proposed 
in [31]. This model9 was used by [30] in LES of a 
rotating stratified jet submitted to haroclinic insta- 
bility. They could show developments of primary and 
secondary instabilities of the thermal fronts very sim- 
ilar to what is observed in the atmosphere. 

If one wants to have now in physical space a model 
equivalent to the spectral-dynamic model, the dis- 
sipative operator (73) has to be multiplied by the 
constant: 

- JTZ 5 - m  - ,  A I -  - 
5 m + l  (74) 

where m is the slope of the kinetic-energy spectrum 
at the cutoff, which has to be obtained dynamically 
in some way. This might be possible if one periodicity 
direction exists at least in the flow. For a scalar, the 
corresponding turbulent Prandtl number is given by 
Eq. (56). 

BThis shows that finite-difference methods up to the fourth 

gwith an equivalent formulation for the density and a tur- 
order cannot deal with high-order Lapla*an operators. 

bulent Prandtl number of 0.6 



Such a spectral-dynamic generalized hyperviscosity 
model should be tested on various shear flows, such 
as those presented below. 

7 INCOMPRESSIBLE 
MIXING LAYERS 

We will first examine in details what DNS and LES 
can tell about the dynamics of incompressible mix- 
ing layers, in particular for primary and secondary 
coherent vortices. Later on, we will look at the com- 
presaibility effects upon these flows. 

We show now three-dimensional results of the filtered 
structure function model applied to a plane mixing 
layer, respectively in the temporal and spatial cases. 

7.1 Temporal mixing layer 

We consider in a fluid of constant density a mixing 
layer periodic in the streamwise and spanwise direc- 
tions, initiated by a hyperbolic-tangent velocity pro- 
file, to which is superposed a small random pertur- 
bation. We take free-slip boundary conditions on the 
upper and lower boundary, and use pseudo-spectral 
methods in the three dimensions of space. LES using 
the FSF model show the following results. If the per- 
turbation is quasi two-dimensional, the mixing layer 
evolves into a set of big quasi two-dimensional vor- 
tices which both undergo pairing and stretch intense 
longitudinal hairpin vortices in the stagnation regions 
between them. Such a pattern is shown on Figure 11, 
taken from [32], and presenting a map of the vortic- 
ity modulus. This stretching of longitudinal vortices, 
observed experimentally for a long time (see e.g. [33] 
and [34]), may be explained as follows: let us consider 
the vorticity equation, written for a perfect fluid of 
uniform density as 

- D 3  - - 1 - _ -  - v7?: Lj = s : 3+ -3 x 3= s : 3 
Dt 2 

- 
, (75) 

where D/Dt is the substancial derivative following 
the flow motion, and 7 the deformation tensor, 
already introduced in (14) for the filtered field. If 
one supposes that the vorticity in the stagnation re- 
gion between the vortices is weak, one can assume 
(at least initially) that the deformation tensor will 
not vary while the vorticity is stretched. Since the 
deformation tensor is real and symmetric, it admits 
eigenvectors (principal axes of deformation) which 
are orthogonal and can form a basis. Let si, sa,  s3 
be the three eigenvalues. Due to incompressibility, 
their s u m  is zero, so that one at least is positive (the 
largest positive is called here 81) and another one at 
least is negative. Let sa be the smallest eigenvalue, 
always negative. Working in the orthonormal frame 

F i g w e  11: Vorticiiy field obtained in the LES of a temporal 
mieing layer farced pvaai two-dimensionally 

formed by the eigenvectors f, s' respectively associ- 
ated to 61, sa, s3, the vorticity components wl,w~,wB 
satisfy the following equations 

and the vorticity will be stretched in the direction of 
the first principal axis, and compressed in the direc- 
tion of the second. Generally, S is not far from a pure 
deformation in the stagnation region, so that, ap- 
proximately, I will be inclined 45" with respect to the 
mean flow, s' will he spanwise, s3 = 0 and 8 2  = -81. 

Such a derivation unifies explanations given by [36] 
and [37]. Intense longitudinal hairpins had also been 
found by [38] in temporal mixing-layer LES using the 
spectral-cusp eddy viscosity. An interesting feature 
of these simultions is to show that longitudinal vortic- 
ity stretched between the primary Kelvin-Helmholtz 
vortices is rolled up within the cores of the big vor- 
tices, thus producing intense longitudinal vorticity 
fluctuations in the cores themselves. In Figure 11, 
the maximum longitudinal vorticity stretched is of 
the order of h i ,  which might be larger than the ef- 
fective values reached experimentally. Actually, the 
efficiency of the longitudinal Stretching could depend 
upon the amplitude of the initial perturbation and 
the Reynolds number. 

Experiments in a developed mixing layer ([34]) show 
that the spanwise wavelength of the longitudinal vor- 
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tices is of the order of two third of the longitudi- 
nal wavelength of the primary Kelvin-Helmholtz vor- 
tices between which they are stretched. This is pre- 
cisely the most-amplified spanwise wavelength within 
a secondary-instability analysis of Stuart’s vortices, 
as shown by Piwrehumbert and Widnall [36]. This 
instability, called the translative instability, corre- 
sponds in fact to a global in-phase oscillation of the 
big billows in the spanwise direction, and cannot ex- 
plain the formation of the thin longitudinal hairpins. 
A plausible explanation could be that they do form 
according to the mechanisms just explained above, 
but with a preferred spanwise wavelength imposed by 
the translative instability. Numerical simulations in 
the temporal or spatial cases need larger domains in 
the spanwise direction in order to validate the value 
of the preferred spanwise wavelength. 

- / - - - I  _/--- 

In fact, the numerical resolution of the three- 
dimensional Orr-Sommerfeld equation at large 
Reynolds show that the most-amplified mode in the 
3D temporal mixing layer is indeed twodimensional. 
By a naive application of this result, one might have 
believed that twwdimensional Kelvin-Helmholtz vor- 
tices would emerge from a weak three-dimensional 
random isotropic perturbation superposed upon the 
basic shear. But this is not at  all what happens nu- 
merically, Instead, comte et d. ([39][40]), 
DNS with pseudo-spectral methods at  a resolution 

Figure ts: Vorticity field obtained in the LES of a temporal 
miring layer Imdergdng helical pairing 

of 1283 Fourier wave vectors and a Reynolds num- 
ber ZJ6i/u = 100, displayed the evidence for helical 
pairing, where vortex filaments oscillate out-of-phase 
in the spanwise direction, and reconnect, yielding a 
vortex-lattice structure. We have recovered the same 
dislocated pattern in LES (using the FSF model) 
with the same forcing. Figure 12 shows the vortic- 
ity modulus obtained in such a simulation. Figure 
13 shows the low-pressure field from an analogous 
LES using the spectral-cusp eddy viscosity. It con- 
f i r m  that low pressure is a very good indicator of 
big or intense vortices. Notice that at the end of the 
FSF-based LES corresponding to Figure 12, the sta- 
tistical data concerning velocity, rms velocity fluctu- 
ations and Reynolds stresses, are in very good agree- 
ment with the experiments of unforced mixing layers. 
The simulation with a quasi twwdimensional forcing 
is less good from this standpoint. 

The term “helical pairing” was first proposed by [41], 
concerning highly three-dimensional pairings in a 
mixing-layer experiment. Afterwards, helical pairing 
was documented in the experiments of Browand and 
coworkers [42], In the secondary-instability analysis 
of [35], the subharmonic instability found is identified 
with the previously observed helical pairing. Sur- 
prisingly, its amplification rate is three times lower 
than its translative-instability counterpart. Looking 
at DNS or LES of helical-pairing, it turns out that 
this is not exactly a “secondary instability”: one does 
not observe first the roll up of primary billows fol- 

F,gum 13: Low.pnsrllm 
tn the helical-pa,nng 

obtair red in a spectml-map LES 
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lowed by a staggered deformation. Instead, oblique 
waves are seen to grow quickly, yielding directly the 
lattice structure of dislocated billows. 

Finally, it may be interesting to look at what can be 
said from the point of view of a scalar gradient when 
a scalar is transported passively by the flow. This 
may be very important if the two currents in the 
mixing layer react chemically, such as in combustion 
for instance. If the scalar U satisfies Du/Dt = 0, its 
gradient follows the equation 

(77) 

If we are in a stagnation region between two 
vortices", and assume that the vorticity is small in 
front of the deformation, (77) may be approximated 
by 

which yields for the three components of ?U in the 
principal axes of deformation 

au D au au __ - - D au - 82- 3 
__-_  

~t an an - S I X  I Dt a1 
ab D au 

~t as as - 83- . __ - - 
This shows that the scalar gradient is compressed 
along the first principal axis of deformation, and 
stretched in the transverse direction, so that scalar 
gradients across the mixing-layer interface will 
steepen. In case of chemical reaction between the 
two layers, this will enhance the molecular exchanges 
at  the interface, and favour the reaction. 

7.2 Spatial mixing layers 

The temporal approximation is only a crude approx- 
imation of a mixing layer spatially developing, where 
one works in a frame traveling with the average veloc- 
ity between the two layers. We present now LES us- 
ing the FSF model of a spatial mixing layer, initiated 
upstrem by a hyperbolic-tangent velocity profile su- 
perposed on the average flow, plus a weak random 
forcing regenerated at each time step. 

Free-slip conditions are still imposed upon the upper 
and lower boundaries. The outflow boundary con- 
dition is of the Orlanski's type [43]. With an u p  
stream forcing consisting in a quasi two-dimensional 
random perturbation, intense longitudinal hairpins 
stretched between quasi 2D Kelvin-Helmholtz vor- 
tices are found again (Figure 14). An interesting 
feature found is that longitudinal vortices of same 
sign may come close together and merge, contribut- 
ing thus to the global self-similarity of the mixing 

'%ituation where longitudinal hairpin vortices M likely to 
form 

Figure I d :  LES of an  incompressible miring lnyer forced up- 
atrcam b y  n quasi two-dimensional random perturbation; ihe 
vorticity mod&., is shown at a thmahsld ( 2 / 3 ) w ,  

Figum 15: Same as Figam 14, but wiih a three-dimensional 
upstream white-noise forring, low-pressure field 

layer. When the forcing is a three-dimensional ran- 
dom white noise, helical pairing occurs upstream, 
as indicated by the low-pressure maps of Figure 
15. But none of these simulations has reached self- 
similarity, since the kinetic-energy spectra in the 
downstream region are steeper than P i 3 ,  and rms 
velocity fluctuations have a departure of about 20% 
with respect to the experiments. Thus calculations in 
longer domains are necessary, in order in particular 
to know in the helical-pairing case whether quasi two- 
dimensionality might not be restored further down- 
stream. 

8 COMPRESSIBLE 
FORMALISM 

L.E.S. 

In Cartesian cc-ordinates, the compressible Navier- 
Stokes equations can be cast in the so-called fast- 
conservation form 

au aFl aFz aF8 
at ax ,  ax, ax3 - + - + - + - = O  , (78) 

with 
U =  T(p,pui,puz,pu3,pe) , (79) 

pe being the total energy defined by, for an ideal gas, 

pe = P C, T+ ;p(uf + U; + us) . (80) 
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The fluxes Fi read, V i  E {1,2,3}, 

PUi 

PUiUl  - ai1 

PUiU3  - ui3 

k = ~C,K being the thermal conductivity (and K the 
thermal diffusivity). 

The components uij of the stress tensor are given by 
the Newton law 

(82) - -p 6.. + Ps.. 
11 - $1 U ? 

in which 

denotes the deviatoric part of the strain-rate ten- 
sor. Bulk viscosity is neglected (Stokes hypothesis), 
as commonly accepted except in extreme thermody- 
namical situations. This yields 

p ~ v i  + P 6i1- psi1 
puiua + P 6iz - pSia 

(pe  +p)u; - pujS;j - k- 
P W U ~  + P 6i3 - @Si3 aT 

axi 

Fi = 

The Sutherland empirical law 

' I 2  1 + S/273.15 p(T) = ~(273.15)  ~ (27zl5) 1 + SIT 
with ~(273.15)  = 1.711 lO-'P[ 
and S = 110.41C , 

(85) 
and its extension to temperatures lower than 120 K : 

p(T) = ~ ( 1 2 0 )  T/120 V T < 120 , (86) 

are prescribed for molecular viscosity. Conductiv- 
ity k(T) is obtained assuming the molecular Prandtl 
number Pr = C,p(T)/k(T) constant and equal to 
0.7, as in air at ambiant temperature. The equation 
of state 

p = R p T  (87) 
closes the system, with R = C, - C, = 
287.06 Jkg-'K-' for air. 

- 
M -  

8.1 compressible filtering procedure 

As in the incompressible regime, and whatever the 
numerical method used, the discretization of the 
above equations introduces a cut-off scale Ax which 
is by hypothesis larger than the Kolmogorov scale. 
We still account for this by a low-pass filter of width 
Ax, characterized by the convolution - in space with 
a function Gas(.'). The operator commutes with 

the space and time derivatives in the case of uniform 
cubic meshes of side AT. Convolution of the above 
equations therefore yields 

= o  , (88) aii  aFl aF2 a~~ 
at ax, ax2 ax3 -+-+-+- 

with 

and 

At this level, it is convenient to - introduce the density- 
weighted (or Favre [45]) filter defined, for a given 

- variable 4, by 
- P4 4 = =  

P 
We then have 

and the resolved total energy 
- - pe = @ = p  C. T +  i p ( v t  + U; + vi)  

The resolved fluxes E read 

with the filtered equation of state 
- 

p=pRT . 

(93) 

I (94) 

(95) 

8.2 The simplest possible closure 

- 
The usual subgrid-stress tensor of components 

is introduced and split into its isotropic and devia- 
toric parts, the latter being noted F: 

1 1 
3 3 

Zj = Zj - -T16ij +-T16;j - 
'Tij 

Equations (94) and (93) then read 

(97) 



and 

There are two options for the treatment of the un- 
computable term ZI: 

simply neglect it, arguing as in [46] that it can be 
re-written as = 7Migsp, in which the subgrid 
Mach number Msgs can be expected to be small 
when M ,  is small. 

model it, as proposed by Yoshizawa [47], in a 
way which is consistent with the model chosen 
for F (see c y .  [48]). Note that this was the 
initial choice of Erlebacher et al. [49]. 

We will here choose the first option, as in [50], bring- 
ing another argument: the incompressible LES for- 
malism (see above in Chapter I), often introduces the 
macro-pressure 

(100) 
1 w = p - - 7  if . 

It thus seems a good idea to rewrite equation (99) 
as 

and introduce a macro-iernperature 

computable out of 
filtered equation of state (95) then reads 

thanks to equation (101). The 

Ti . (103) 

Thus, for monoatomic gases like argon or helium (for 
which 7 % 5/3), the contribution of ZI to equation 
(103) is quite negligible whatever the Mach number, 
which makes w computable in all cases. It is ex- 
tremely tempting to generalize this to air (for which 
7 w 1.4) by assuming 

37 - 5 = p R d +  7 

W Y T R ~  . (104) 

In other words, the first option amounts to assume 
[(37- 5)/6] 7MigS << 1 in the equation of state only, 
which sounds slightly less stringent than assuming 
7Migs << 1 everywhere. 

Considering from now on w computable, it is sensible 
to involve it in the definition of a subgrid heat-flux 
vector, noted Q, of components 

Q, = -(pe +P)u, + (F+ w ) G  . (105) 

- 
Provided acceptable models are proposed for 
Q,  the resolved f lu tes  already look more tractable: 

and 

. .  
The remaining non-computable terms are viscous 
terms, which can be considered of less importance 
when the Reynolds number is sufficiently large. We 
therefore simply replace (106) by 

_- 

1 ,  - jl: - a B  

- 
puiui + w Si1 - rii - psi1 
p ~ i u z  + w 6iz - T ~ Z  - ps i2  

p ~ i ~  + w 6i3 - ~ i 3  - ps i3  
(F+ a ) Z i  

- 
Fi Y 

- 
- Qi - p S . . G  - k- 

ax (107) 
in which p and k are linked to 29 through the Sutber- 
land relation (85) and the constant Prandtl number 
assumption Pr = CPp(d)/k(9) = 0.7. 

The system is finally closed with the aid of variable- 
density eddy-viscosity and diffusivity models, in the 
form 

IJ  3 

- 
(108) 

(109) 

- 
Tij Y pvtsij 

a d  
Prt azi Qi Y p - -  , 

expressions for vt(6) and P n  used in the follow- 
ing compressible simulations correspond to the in- 
compressible structure-function model and its filtered 
and selective extensions, with a constant turbulent 
Prandtl number 0.6. 

9 EXTENSION TO CURVI- 
LINEAR CO-ORDINATES 

When the domain is no longer cubic or parallelepi- 
pedic, it is still convenient to use body-fitted CD 

ordinates, that is, cwordinates (G ,<z ,  (3) such that 
each boundary of the domain corresponds either to 
constant <,, t2 or €3. An appropriate grid gener- 
ator can provide a set of vectors which are the 
co-ordinates of the cell vertices or centres. Assume 
that the domain (hereafter refered to as "physical 
domain") can be remapped onto a cubic domain 
(called "computational") meshed with a uniform grid 
of spacing A as in the above sections. Let z be the 
co-ordinates of the cell vertices or centres of these cu- 
bic meshes. There exists a mapping function h such 
that 

€ = h ( z )  ; z=h- ' (c )  , (110) 
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and characterized by its Jacohian 

J = d e t  - - -  ai2 at2 ai2 I all ax2 ax3 ( -  ai3 - ai3 - ai3 
axl axa ax3 

which satisfies 

To each nodal variable d(z) of the “computational” 
(i.e. cubic) domain corresponds a nodal variable $(e) 
of “physical” domain, - such that $(() = 4(z). Af- 
terwards, the filter is applied onto - 4 It can then 
be proved that this new operator , defined in 
the “physical” domain, commutes with the partial 
derivatives with respect to & up to second order (see 
e.g. Ghmal and Moin [51], who coinded the expres 
sion Second-Order Commuting Filter). 

Straightforward application of the chain rule 

(113) a - a ail +--++- a aiz a ai3 
axi ail ax; ai2 axi ais axi 

to (88) yields, after some manipulations ([53], see also 
[54] or [55] for details), 

air a F  ai: a f i  
at ai1 8i2 ac3 -+-+-+-=O , (114) 

with 

The chain rule has to he used again to express all 
the derivatives which arise in the fluxes F, G and # 
(see section below). Note also that vector is still a 
function of the Cartesian co-ordinates xi and time 2. 

10 NUMERICS 

The system (114) is solved on this grid by means 
of a (2,4) extension of the fully-explicit MeCormadr 
scheme devised by Gottlieh and Turkel [52], in the 

form 

-+I 
‘ i , j , k  

As mentioned in [56] and recalled in [54], the rnetrics 
&,/ax, which arise in the fluxes and Jacobians above 
have to he discretized in such 8. way that unwanted 
crossterms cancel out, otherwise the scheme is not 
consistent. 

Fiistly, they have to he expressed as analytic func- 
tions of the rnetrics axt/a{,,, of the inverse trans- 
form la - ’ ,  in order to eliminate all derivatives with 
respect to the xi ’s .  Secondly, the inverse metrics are 
discretized, the only 3-point stencil which works In 
the present case is 

(2) = 

- xt,+,,,,x + 8 Q,+,, , ,k - 7 2‘t ,,,, k 
6 Ai1 

in the predictor step (116a), and 

7 x c  ,,,, b - 8 x t  ,-,.,, * + + c . - 2 , , , b  
6 A h  

in the corrector step (116b) 
(117) 

This 1s only first-order accurate, and acceptable only 
when the grid is quasi-orthogonal (i.e. axt/aim FJ 
sirn almost everywhere). Otherwise, &point stencils 
at least have to be used. 

In the same way, the chain rule (113) has to he ap- 
plied to eliminate all derivatives with respect to X I ,  
5 2  and x3 from the fluxes F,. This introduces metrics 
to be evaluated as said ahove, together with deriva- 
tives of velocity and temperature with respect to [I, 
6 2  and&. Consistency then determines the way these 
derivatives should be discretized. 
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10.1 boundary conditions 

The boundary conditions are based on a decompo- 
sition into characteristics, in the spirit of Thompson 
([571, [58]) and Poinsot and Lele ([59]). The Riemann 
invariants of outgoing characteritics are extrapolated, 
whereas the incoming ones are either prescribed (e.g. 
at the inflow boundary) or set to zero (non-reflectwe 
or open boundary condition). For example, going 
back to Cartesian co-ordinates for the sake of sim- 
plicity, in the case of a boundary perpendicular to 
the direction x i ,  the Euler equations are recast in 
their quasi-linear form 

av av 
at ax,  -+A- = 0 ,  with V =  T ( p , p ~ l , p ~ 2 , p ~ 3 , p )  . 

(118) 
The matrix A is, as per usual, diagonalized in the 
form A = L-lAL. Assuming L to be locally constant 
and introducing the vector W = LV,  system (118) 
decouples into 5 equations of the form 

(119) 
aw aw 
- + A -  = o  , 
at axl 

to be solved at  the boundary point N through the 
semi-implicit scheme 

A% + lA%l [wN n t 1  axl - w"tl N-11 
+ 

wn+l - w; 
+ 2  

N 
At 

(120) 
For the outgoing characteristics (A% > 0), the values 
of w;tl are obtained from that of A%, w;t and w;Ll1, 
which are supposed to be known. For the incoming 
characteristics (A; < 0), it is necessary to prescribe 
wntl in order to pull out .I;+;+'. This is done by con- 
sidering the nature of the boundary condition (adher- 
ence, free slip, periodicity, prescribed flow rate, non- 
reflectivity, inter-blodt matching.. .). V{+' is finally 
deduced from WEt' assuming simply L;+' = L" N '  

N t 1  

11 COMPRESSIBLE 
MIXING LAYERS 

We quote here excerps of Ref. [3], with the permis- 
sion of Kluwer academic publishers: 

Beginning of quotation: 

Hypersonic-planes development have boosted re- 
search on free-shear or wall turbulent flows in super- 
sonic or hypersonic conditions. Some of these stud- 
ies might be easier numerically than experimentally. 
Since one-point closure modelling have some difficul- 
ties to capture the effects of Mach number on tur- 

bulence, these works should be done using direct or 
large-eddy numerical simulations(...). 

In compressible mixing layers between two flows of 
parallel velocities U1 and U2 in unbounded domains, 
the relevant Mach numbers are the convective Mach 
numbers Mii) and ML2), built with the velocity dif- 
ference of each layer with respect to U., the velocity 
of the large vortices [60], and respectively c1 and ca, 
the sound velocities in the two external flows. It can 
be shown, by assuming isentropy in the stagnation 
regions between the vortices, that 

Then, within this assumption, the convective Mach 
numbers 

are both equal to 

where 2U is the velocity difference, and t an average 
speed of sound between the two layers. Note that Eq. 
(123) writes also as 

This expression allows to recover the value Uc = 
(U1 + U2)/2 in the incompressible uniform-density 
case. It may also be useful in an incompressible mix- 
ing layer with density differences, since it takes into 
account density effects which are not of gravitational 
type. 

Returning to compressible miKing layers, laboratory 
experiments of [61] show that this hypothesis (iden- 
tity of the two convective Mach numbers) is valid 
up to M, i~ 0.6. Experiments show also a dramatic 
decrease of the spreading rate of the mixing layer, 
with respect to the incompressible value (...) between 
M ,  w 0.5 and Me = 1 . What we call MO is now the 
highest of the two convective Mach numbers. Above, 
it saturates at about 40% of the incompressible case 
(see Figure 16). 

The inviscid linear-stability analysis of the comprese 
ible mixing layer in the temporal case was performed 
by [62][63] and [64]. The stability diagram found by 
the latter (for y = 1.4 ) shows that the maximum 
amplification rate is a decreasing function of the ini- 
tial Mach number M?) = U/E, with a drastic change 
in the slope at ,442' = 0.6. Twwdimensional DNS of 
[65] show an inhibition of Kelvin-Helmholtz instabil- 
ity for Mi')  > 0.6: there is hardly any roll-up of the 
vortices, which remain extremely flat and merge "lon- 
gitudinally", without turning around each other. On 



4-23 

Figrrc 16: ezperimenial growlh mie of the compressible mis- 
ing b y o r  (nomafired by the incomprersible value) in terms of 
the l o ~ c s t  convective Mach number (from Popamorehos and 
Roahko, 1988, courtrry J .  Fluid Me&.) 

the contrary, for M p )  5 0.6, the r o h p  and pairing 
occur qualitatively in the same fashion as in the in- 
compressible case, although they are delayed by fac- 
tors corresponding exactly to the amplification rates 
predicted by [64]. Another interesting characteristic 
feature in two dimensions is the occurrence of shock 
lets on the edge of the vortices at M?) w 0.7 - 0.8. 
(...) They are visible as discontinuities in the pres- 
sure field, and leave weak traces (may be of numerical 
origine) on the vorticity. They are exactly analogous 
to shocks arising on a transonic wing, and due to 
the fact that the flow is accelerated on the side of 
the vortex and becomes locally supersonic. Similar 
results were found hy [66][67] and [68]. This occurs 
both in the temporally and spatially-growing cases. 
I t  was however checked by [69] that at higher con- 
vective Mach number (still in ZD), these shocklets 
disappear, due to the very elongated character of the 
vortices. 

A three-dimensional linear-stability analysis of the 
compressible temporal mixing layer was carried out 
by [70]. It turned out that oblique waves are more 
amplified than 2D waves when M t )  exceeds 0.6. An- 
other result shown with the aid of DNS by 1691 is 
that the helical pairing found in the incompressible 
case (with a 3D random forcing) is inhibitted above 
M p )  = 0.6 w 0.7. The vortex structure of the mixing 
layer is then made of staggered A vortices, as shown 
in Figure 17-a, where the basic flow in the upper 
layer goes from top to bottom". The corresponding 
pressure is displayed on Figure 17-b. I t  indicates a 
longitudinal reconnexion of pressure into tubes fol- 
lowing the legs of the A's. This is an example where 
low pressure ceases to follow the coherent vortices. 

Spatially-growing DNS of compressible mixing lay- 
ers were also performed by [69]. Eelical pairings was 
observed when the compressibility is low (upstream 

"The same structure was also found in the DNS of ([71]) 
with a q-i 2D initial for&&. 

Figure 17: t o p  view of vortee lines (d) and presswe ( b )  in the 
DNS of +z eomprcssiblr fempoml mising layer at conveciivc 
Mach number 1 (from In#]) 
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Me = 0.31, as in the incompressible simulations pre- 
sented above. At upstream Mc = 0.7on the contrary, 
a pattern of very elongated staggered A vortices is 
obtained. The same pattern was found by [72] in 
a supersonic mixing layer confined between parallel 
planes. Notice that, to our knowledge, no compress- 
ible three-dimensional free mixing-layer simulation 
has ever shown shocklets at high convective Mach 
numbers. 

The saturation in the spreading rates observed exper- 
imentally when M, exceeds 0.6 might be due to two 
causes. The first one is the reflexion of Mach waves 
on the walls of the facility. The second is the inhibi- 
tion of the Kelvin-Helmholtz instability at this cross- 
over convective Mach number 0.6. Such an inhibition 
may be physically explained as follows. We first con- 
sider an incompressible mixing-layer, where the vor- 
tex cores correspond to pressure troughs, while pres- 
sure highs are located in the stagnation regions. We 
assume now that compressibility is present, but is not 
too high so that the same type of pressure distribu- 
tion is preserved. We suppose also that the fluid is a 
barotropic ideal gas, where p / p r  is conserved with the 
motion. Therefore, fluid particles travelling from low 
to high pressures (...) will see their density increase 
when arriving at the stagnation points (which means 
convergence, that is, Dp/Dt > 0 and 3.a < 0). 
Afterwards they will expand ( , Dp/Dt < 0 and 
3 . C  > 0). Let us now consider the vorticity equa- 
tion (...), which reduces, in this compressible twc- 
dimensional case, to 

[68] and [69] have verified in their numerical simula- 
tions that the baroclinic and the viscous terms are 
negligible, so that the vorticity dynamics reduces to 
the conservation of the “potential vorticity” w I p  . 
Thus, the convergence and divergence zones will be 
respectively a source and a sink of vorticity. This 
will work against Kelvin-Helmholtz instability, which 
tends to diminish the vorticity at  the stagnation 
points, and increase it in the low-pressure regions (...) 

Round jet: 

We first recall the DNS of a weakly compressible p e  
riodic (in the flow direction) round jet done by [Sa] 
(see also[73]). The jet is initiated from a top-hat pr- 
file characteristic of the potential cone immediately 
downstream of the orifice. The initial Mach numher 
based on the maximumvelocity is 0.6, so that, from a 
mixing-layer point of view (...), the convective Mach 
number is approximately 0.3 and the flow is quasi- 
incompressible. A weak 3D random white-noise per- 
turbation is superposed to the initial velocity. The 
computational grid is a rectangular mesh of resolu- 
tion 64 x 32 x 32. The initial Reynolds numher based 
on the maximum velocity at the centre U, and the 

half-velocity radius R is of 2000. 

The evolution of the simulation at  various times 
is shown on Figure 18. One sees is-surfaces of 
density1a (core of the vortex) and low-pressure. At 
t = 15R/U1, the instability is still not visible on the 
isopycnic surface. The isobaric surfaces are made of 
portions of tori of axis slightly inclined with respect 
to the streamwise direction. They reveal the emer- 
gence of an axisymmetrie mode of vortex rings. This 
is compatible with the linear-stability theory which 
predicts that the axisymmetric mode is the most am- 
plified in the potential cone ([74]), in good agree- 
ment with experiments ([75]). As time proceeds, the 
jet spreads out, and its shape factor decreases, the 
velocity profile becoming quasi-Gaussian. Then the 
low-pressure tori (or vortex rings) incline each other 
with respect to the axis in an alternate way, corre 
spondiug to the growth of oblique (or helical) modes 
in the linear-stability theory ([74]). Afterwards the 
tori reconnect (see Figure 18), giving rise to a double- 
helix structure, as one can check in particular at  t = 
35R/U1. This is obviously the equivalent of helical 
pairings observed in the plane mixing layer. Then the 
jet breaks down very abruptly into turbulence, and 
one can check that the longitudinal kinetic-energy 
spectrum is close to the k-’I3 Kolmogorov’s law. 
However, the double-helii shaped coherent vortices 
persist. As in the mixinglayer, this scenario of transi- 
tion is reminiscent of the Ruelle-Takens route to tur- 
bulence, with emergence of a fundamental mode and 
growth of a subharmonic. Other DNS of the incom- 
pressible temporal round jet, where the white-noise 
perturbation is replaced by a deterministic sine oscil- 
lation in the azimuthal direction, show the formation 
of vortex rings, which stretch longitudinal hairpin 
vortex filaments between theml5. These filaments 
have been very nicely visualized in laboratory exper- 
iments performed by [76]. Let us mention also the 
numerical simulations using vortex-filament methods 
done by [77][78], both in the case of azimuthal and 
helical perturbations. Three-dimensional LES of the 
incompressible spatially-growing round jet have been 
carried out by [79], using finite-difference volumes 
methods. The jet is forced upstream by a tophat 
profile to which is superposed a weak 3D white noise 
(“natural forcing”). The Reynolds number is 2000. 
Figure 19 indicates the development of the same type 
of double-helix structure as in the above temporal 
case. It seems then that the preferred topology of 
the turbulent round jet forced “naturally” upstream 
is this double-helix, resulting from a sort of helical 
pairing of vortex rings. 

End of quotation 

compressible. 

quasi tro-.dimensional perturbation 

l2Here, demity is not a passive scdar, since the Bow is 

‘SThis is exactly like in a plane mixins lay- forced by a 
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Figwe IS: DNS of t r o n a i t ~ ~ ~ .  tudrlenec in a weakly- 
compressible temporal round j e t ;  time euolation at 15,  20, 25, 
SO, 35. 4 0  and 45 initial charoclcriatic times RfU, 

Figurc 19: LES of (m iacornprcssible spatially-developing 
round j e t  forced naturally; IOW-pmssurc field (from 1791) 

Figure 20: Erperimental mean velocity profile of the ineam- 
pressible round j e t  corresponding lo fig;. 21 ond 22. Noticc the 
C0.A.W. 

Using the same code as for the spatially-developing 
mixing layer presented in Chapter 11, we have also 
carried out the LES of an incompressible round jet, 
in Cartesian co-ordinates with the selective structure 
function model (72). Visualizations of two calcula- 
tions are presented below: for Figures 21 and 22, the 
mean and fluctuation velocity profiles are taken from 
experimental results at Re = 21000 [ E O ] .  The fluctu- 
ations, which correspond to a fully-developed turbu- 
lent pipe flow of turbulent intensity 15%, are modeled 
by stochastic perturbations. Figures 23 and 24 carre 
spond to a similar calculation, with upstream condi- 
tions akin to the “natural forcing” case in [79] which 
was presented earlier (p. 25). In both cases, double 
helices are observed, together with intense longitudi- 
nal vortices. 

When the Mach number increases, it was found in 
the DNS of [69] that the jet rings hecome more and 
more elongated in the flow direction, and that com- 
pressibility delays strongly the various instabilities. 
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Figure 21: Incompressible round jet. Iaoswfoce 11311 = w ; / 3 .  
The kloct arrfoce ahowna ihe outlct of the computational do- 
main. 

Figure 22: Isobaric sw'fece ( low presswe) carreaponding to  
21. 

F i g w e  29: Wcokly-pertarbed counierpari of Figa.21 and 22. 
Isosurface 11311 = w ; / 2 .  

I 

Figure 24: Isobaric surface (low pressure) corresponding t o  
23. 

12 TOWARD INDUS- 
TFUAL APPLICATIONS : 
THE VORTEX SHED- 
DING INSIDE A SIM- 
PLIFIED SOLID ROCKET 
ENGINE 

We are participating in an operation set up by CNES 
and ONERA concerning the control of the vibra- 
tions induced by vortex shedding within the solid- 
propellant boosters of the European launcher ARI- 
ANE V. We show below preliminary simulations per- 
formed with the code described above, in a simplified 
planar test case, with the grid shown below (Fig. 25). 

Figure 25: Ged of the C1 tcal case (length L = 0.47m. mdius 
H = 0.045m, resolution 318 x 31 pointa 

The step is made of burning propellant, at  a flame 
temperature of 3387 K and a mass flow rate, normal 
to the walls, of 21.2 kg/m2/s. Pressure p = 4.66 bar 
is prescribed at the upstream end. The outlet is a 
nozzle and the outflow boundary conditions are su- 
personic. The burnt gases are characterized by the 
following parameters: y = 1.14, R = 299.53 J / k g / K ,  
pmo, = 9. 1 0 - ~  PI et Pr = 1. 

With such values, 2D simulations are not possible 
without flux limiters or artificial viscosities. With a 
viscosity 8 times as large, they become possible with- 
out such limiters, and Figure 26 shows the resulting 
vortices, in time evolution. In such a case, the code 
gives approximately the same results as the second- 



Figure 26: Contorr maps of eniropy at 5 equally apaeed in- 
stants, in a low-Rcynolda number 2D DNS. 

order Mc Cormack code SIERRA of ONERA [81]. 

In 3D at the true viscosity and with the filtered 
structure function model described above, the ad- 
vantages of the (2,4) scheme become evident. The 
following figures correspond to a LES at a spanwise 
resolution of 90 points equally spaced over the span 
L, = T H w 0.141 m, with periodic boundary con- 
ditions. The initial condition consists of the 2D flow 
shown above, taken at a given instant of the steady 
regime, with low-amplitude white noise (of amplitude 
10W4 the speed of sound at the surface of the propel- 
lant) on all the components of 6‘. Without this per- 
turbation, the flow would have remained ZD, which 
proves that the code is not “noisy”. After having 
reached the steady regime, which took 50 hours of 
Cray 90 a t  450 Mflops (corresponding to Erns of real 
time), time series are recorded for 5ms. Figure 27 
shows an animation of an isosurface of the magni- 
tude of the vorticity vector. Streamwise vortices are 
not only visible inbetween the large Kelvin-Helmholz 
billows, but also at the wall of the nozzle. These 
are likely to result from a Dean-Gortler instability 
of the detached boundary layer, which re-attaches in 
the convergent part of the nozzle (Fig. 28). 

The statistics are in global agreement with the ex- 
perimental data. In particular, we found kinetic en- 
ergy and pressure spectra which exhibit a fundamen- 
tal peak around 2500Hz, and its successive harmon- 
ics. More precisely, Figure 29 shows a comparison 
between the present LES and the 2D calculation just 
above. In the 3D case, the spectra are more devel- 
oped, in particular in the low frequency, and the fun- 
damental frequency is lower (2300Hz versus 2670). 
This proves that the streamwise vortices which pe- 
riodically impinge the nozzle (as seen in Figure 27 
affect and lower the shedding frequency of the quasi- 
2D Kelvin-Helmholtz billows. Although the reasons 
for this are not yet clear to us, this is of crucial im- 
portance for the design of the anti-vibration protec- 
tions of the rocket’s control systems, and illustrates 
the importance of taking threedimensionality into 
account, even when the largest vortices are expected 
to be twc-dimensional. 

1 

4 _.- 

Figwe 27: One period of the ~ortez shedding acgucnce in LES, 
in o a  “olmoaf industrial” configurdon. 



Figwe 28: Mapa of the entropy f i e l d .  The top view ahowa 
a c i o m  section of the Gbriler vorticr., the bottom one the 
atrcnmwiar uortices which connect the KH billowr. 

F i p n  89: Temporal kinetic encwv tpmtra wordad 11) the 
middle sf the boater .  The tolid line coweapond, t o  the LES 
and the dashed linr to  the $D DNS. 
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Chapter 111: 
Wall flows 

13 COMPRESSIBLE 
BOUNDARY LAYERS ON 
AFLATPLATE 

13.1 LES of a spatially-developing 
boundary layer at Mach 0.5 

A LES using the SSF model was carried out (see 
[29]) in a weakly-compressible case at  M ,  = 0.5, 
for an adiabatic plate. The flow upstream is the 
superposition of the laminar profile at this Mach, 
a twwdimensional pertuhation forcing the most- 
amplified Tollmien-Schlichting mode, and a three- 
dimensional white noise of same amplitude. The up- 
stream Reynolds number baaed on the displacement 
thickness is 1000. The resolution is 650 x 32 x 20 in 
the streamwise, transverse and spanwise directions. 
It is seen how the TS wave generated upstream prop- 

I I I X 
150  I I253 I I350 I 1450 

Figure 80: FSF atmetwe-fsnetion based LES of a weakly- 
compressible spofiolly-developing boandsry layer; iaosurfacu 
of pnsturc (p = 0.999p,, grey) and Iongifudinnl vorticity 
(U, = fO.lU,&, dmk) an rhown 

agates downstream. First, quasi twedimensional 
billows of relatively low pressure and high vorticity 
form, and travel with the wave velocity. A top view 
of the low presaure and longitudinal vorticity in the 
transitional region is shown on Figure 30: just be- 
fore the transition, TS waves give rise to straight 
lower pressure quasi twc-dimensional rolls. During 
the transition, these rolls evolve into a staggered pat- 
tern which breaks down into turbulence. Meanwhile, 
the longitudinal velocity seems to develop a longi- 
tudinal mode close to the wall, aa shown on Figure 
31. The existence of this mode might be related to 
the low and high-speed streaks existing in the devel- 
oped region. We show now on Figure 32 an enlarged 
view of a hairpin ejected away from the wall above a 
low-speed streak, just after transition. Such hairpins 
have a longitudinal vorticity which is low in front 
of the spanwise vorticities attained at  the wall un- 
der the high-speed streaks, where most of the drag 
comes from. Another remark is that we could never 
find in these calculations coherent alternate longitu- 
dinal vortices at the wall. On the contrary, there are 
several hairpins ejected above one single low-speed 
streak. 

Figure 31: same calcvlation ad Figure 30; iaorurfacer of the 
longitudinol velocity fluctuations (U: = 0.024U,, grey) 

Figure 32; LES of the spatial boundary loycr at Mach 0.5; 
uortcr  linea and low presswe characterizing n hoirpin wrier 
ejected from the wall at the m d  of transition 

Although it gives interesting informations as far as 
the structure of turbulence” is concerned, the FSF 
model is however not “perfect” for the prediction of 
average quantities. It overestimates in particular of 
about 15% the mean velocity in the logarithmic pro- 
file. 

13.2 Temporal boundary layer at 
Mach 4.5 

In odrer to advocate the straightforward closure of 
the compressible LES equations presented in sec- 
tion 8, we herefter present a temporal simulation of 
the transition to turbulence of a high-Mach number 
boundary layer over an adiabatic flat plate. The 
Mach and Reynolds numbers are M ,  = 4.5 and 
Rea, = 10000 (6i denotes the initial displacement 
thickness), which matches a case which haa been 
extensively investigated at ICASE (see e.g. Ng and 
Erlebacher [82]). For such a Mach number, the 
dominant instability is inviscid and twc-dimensional 
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Figutr 33: vorfieitq map Dftcr the growih of the second mode 
(the t o p  pori of the domain is no; rhown). The prodscrim of 
vorticity of both aignr at the wall trrulti fmm bmoelinic efleeta 
induced by the trfiezion of ocorrtie W B Y C I .  

(Mack's second mode [83]), because the solution to 
the laminar similarity equations exhibit a general- 
ized inflection point, i.e. a distance vs to the wall 
where the local angular momentum pw = pdu/dy 
ia maximum (in magnitude). Consequently, Kelvin- 
Helmholtz-lie vortices of period A. = 2.8 4 form 
around ys = 1.05 Si,  as shown below aa the result 
of a 2D simulation initialized by the laminar simi- 
larity solution for a wall temperature T, = 180K, 
perturbed by small-amplitude white noise. The do- 
main's size is L, = 4 A. = ll S i  and & = 20 61 
for a resolution 40 x 70 x 36, most of the points are 
concentrated between the wall and ys, the first mesh 
line away from the wall is at y = 0.024 61. 

A 3D DNS and a LES with the structurefunction 
model in its four-neighbour formulation (see again [4] 
or [3]) are now performed, in a smaller domain L, = 
2 A. = 5.5 6,, L, = 7.15 6i and L, = 6.28 Si (the 
preferential wavelength of the subharmonic mode of 
secondary instability found in [82]), with the resolu- 
tion40x70x36. Bothrunsstart fromthesameinitial 
conditions: the fluctuations at the same timestep as 
for figure 33 are resealed to an amplitude A = 8% of 
U, and sprinkled with 3D white noise of amplitude 
10-4 U,. The DNS blows up at t = 390 &/U,,  
but the LES continues further. We stopped it at 
t = 450 6i/U,, after transition is completed. Fig- 
ure 34 shows the time evolution of the prominent 
modes. Mack's second mode then appears aa (2,O) 
and the oblique subharmonic of [82] aa (1,l). No- 
tice in particular that both the DNS and the LES 
give about the same growth rate for this mode, viz., 
FJ 1.7 10-2U,/6i, which is in acceptable agreement 
with Ng and Er l ebde r  [82] who find 2.5 lO-W/6, 
for A = 6%. However, the most interesting fact is the 
resonance of the z-independent (i.e. purely spanwise) 
mode (0,2), which shoots up as from 2006,/U,. 

Untilt FJ 350 &/U,  (the timeoriginis the beginning 
of the 3D calculations), this resonance appears essen- 
tially in the form of streks of weak vorticity normal 
to the wall (uy FJ f0.03Um/6,, see Figure 6 of [26]), 
which supports its interpretation in terms of Squire 
modes. The vortical structure of the flow remains 
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Figure 34: EnenJy of the pmminent modrr for the DNS ( t o p )  
ond the LES (boitom). 

Figure 36: top: Vorfcr linea of t = 350 S</V,, with the iao- 
surface8 wI = 0.1Vm/6i in clear and U= = -O.lV,/Si in 
dark. 
bottom: Iwrvrfizcr of rpanwirc vorticity wI = -U,/&, alill 
at t = 350 6i/V,. In order lo incrrnra the mscmblnnec with 
Fig. 11 of [ad], the domain is inatmced twice thanks to  span- 
wire periodicity. 



dominated by Kelvin-Helmholtz-like vortices at ys, 
slowly going threedimensional as mixing layers at 
Me FJ 1 ([71], [73], [69]), in the form of A-vortices 
facing each other; The left plot of figure 35 shows the 
most intense vortex lines together with isosurfaces 
of streamwise vorticity w2. Another representation 
of the flow at the same instant is given in the right 
plot: from isosurfaces of spanwise vorticity (or vor- 
ticity norm), one can make out staggered A-vortices 
stretched into Y-layers, as proposed by Adams and 
Kleiser [84] (see also [85]). Both views show the DNS 
results, but the LES ones are almost identical. 

This is only the beginning of the transition process: 
at  t = 390 & / U w ,  when the DNS blows up because 
of the onset of small-scale turbulence, the LES shows 
the skin-friction coefficient lifting off (from 0.5 
up to 3.8 while the shape factor H l z  decreases 
from 14.5 down to 9.5, as expected from the empirical 
formula proposed in [86] 

1 (124) 
Tw - Tad 

Tw 
Hi2 = Hine + 0.4 MZ + 1.222 

in which H,,, = 1.4 denotes the incompressible coun- 
terpart of Hlz and Tad the adiabatic recovery tem- 
perature at the wall, equal to the wall temperature 
T, = l8OK in our case. 

After transition, the flow pattern is too messy to ren- 
der properly with vortex lines in black and white. 
However, just at the beginning of it, i.e. t w 
400 6i/Uw, a fairly well organized streaky pattern 
is observed at  the wall (figure 36), which can be in- 
terpreted as the result of the temporary emergence of 
mode (0,2). Later on, some of this organization per- 
sists, with a striking resemblence with incompressible 
boundary layers (see e.g. [29]). In particular, the ve- 
locity profile after transition exhibits a logarithmic 
zone which is not very different from its incompress- 
ible counterpart (not shown here). 

Finally, figure 37 shows the instantaneous Reynolds 
stress profiles (p)(u‘u’)(y,t)  and (p) (u ‘v ‘ ) (y , t )  nor- 
malized by pmU&, in which () denotes the stream- 
wise and spanwise average over the box. (p)(u’u’) re- 
mains about 4 times as large as (p)(u‘u’).  During the 
laminar stage (i.e. up to 1 FJ 370 6i/Uw), the curves 
grow almost self-similarly with a peak around ys. Be- 
tween 360 and 420 &/Um, the peak of (p)(u‘u‘) gets 
more and more acute. Meanwhile, it shifts towards 
the wall and settles down at about y FJ 0.2 Si k 10 
wallunits. In contrast, the profile of (p)(u‘u’) flattens 
in time with no visible shift towards the wall. 

4-31 

Fsgurc $8: top: Voriez lines at t = 390 6,lU,. bottom: 
Cormrponding iioswfaces of varitcit)r noma1 t o  the w d I w y  = 
0.7 U-/& tn clear and wu = -0.7CJm/6, in dark. 
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Figwe 38: Twnruerac section of the 220 x 140 x 25 - poini 
grid w e d  for the rimuhtion of the tmnsiiion 0% a ihe curved 
ramp (angle 20“). The e2cs .we greded in metrer, counted 
from ihe nose of lhc full-size sh%ttic. The spanwise r im of 1he 
domain ir 4.5 lhc dirplaccmeni thieherr 4 of ihe boundorv 
loycr prescribed et the upsireom boundary. 

14 GORTLER VOR- 
TICES OVER A CURVED 
COMPRESSION RAMP 

The simulation presented above can be considered 
as a validation of our numerics and SGS model. It 
showed in particular the ability of the code to reprc- 
duce the d e c t  ofstrong heating on Reynolds stresses. 
It thus can be considered aa a suitable tool for predic- 
tion of heat fluxes in situations for which experimen- 
tal data are absent or sparse. We therefore present 
a preliminary simulation of the detached boundary 
layer over a curved compression ramp at  Mach 2.5 
modelling the wind-side region of the body-flap of 
HERMES during its projected re-entry. The exter- 
nal Mach number relevant to the shuttle is about 
10 (altitude 50 km, incidence 30°, flap extension an- 
gle a. = ZOO). The whole computational domain 
is contained within the bow shock. The grid used 
is shown, upside down, in 38. The resolution is 
220 x 140 x 25 = 770 000 grid points. The first part 
of the boundary (up to 13.6m away from the nose) is 
curved. It corresponds to the wind side of the body. 
The ramp corresponds to the body flap, assumed to 
be flat. For computational reasons, it is prolonged 
by a fictitious horizontal surface introducing a cut- 
off with the lee-side of the flap and the after-body. 
This enables the prescription of well-posed boundary 
conditions at the exit of the domain. 

By constrast with the wedge simulation presented be- 
fore, the present simulation requires knowledge of the 
density, temperature and velocity profilea at  the u p  
stream boundary of the domain. Since these are not 
available for in-flight conditions, we simulate a well- 
documented 1/90 experiment performed at ONERA 
in the wind tunnel R3CH. Our upstream condition 
results from the experimental profiles plotted in Fig. 
39, with white noise of amplitude 2 lo-’ U, super- 
imposed onto the 3 components of the velocity at 
each time step. 

On the model, the wall temperature is T, = 290K 
and the Nexternd’’ (outside of the boundary layer, 
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F ~ g w c  39: Profilea pnacn'bed ai  ihc vprircnm boundsrg (Mach 
ntmmber and normalued densrig pfpm on top, aiwamwiac and 
tranrvme normalized vclaeity cornponeni. ufU,, v /Um,  and 
nomol imd  iempcraiuw TIT, ai  the boffom). For d l  plois, 
ihe veriicol co-ordinate 18 &I&. For the 1 /90  czprrimeni, 
pm = 7.685 10-akg/m3, Um = 1089m/s and Tm = 460.3K. 

but inside the bow shock) temperature is T,  = 
460K. The adiabatic recovery temperature, dehed  
bY 

is Tad = 1047K, yielding T,/T.d = 0.277. The ramp 
is therefore very cool with respect to the fluid, which 
models the radiative balance of the true shuttle dur- 
ing its re-entry. 

The upstream displacement thidtness of the bound- 
ary layer measured is 61 = 0.21 lO-'m, yielding a 
Reynolds number Rea, = 727. This is too much for 
the code described here14 The simulation is therefore 
performed at the maximal Reynolds number permit- 
ted by our resolution, that is Res, = 280. For this 
reason, the results presented below have to be con- 
sidered as qualitative only. One also have to bear 
in mind that the similitude between the experiment 
and the in-flight conditions cannot be exact (if the 
Mach and Stanton numbers are in similitude, it is 
extremely unlikely that the Reynolds numbers also 
are.) 

Fig. 40 shows the detachment of the boundary layer 
and its reattachment onto the flap obtained from 
a preliminary 2D simulation. One sees clearly the 
multiplelegged A-shock focalizing outside the d- 
main. Its position fluctuates in time, due to the large 
vortices in the recirculation zone around the hinge. 

However, the most interesting feature of the flow is 

"Limiter. have mcently been implemented into this code. 
They se- to have solved the problem. 

Figure 40:  Inrtoninneour icrnpcmitln map obtained from 
a preliminarV 2D iimulaiion of the flow OYCP ihe curved 
mmp. Here again, the mes coweapond i o  ihe fu//-aiie shuffle, 
whcrcor it  ia the 1/90 ezpan'meni which i s  aciuoll9 airnulaicd. 

not reproduced in this 2D simulation: between its 
detachment and re-attachment, the boundary layer 
undergoes a certain curvature, whose radius R can 
be roughly estimated from Fig. 40. This yields a 
Gortler number 

G = R e a . & = 2 - 3  , (126) 

high enough to give rise to centrifugal instability, ac- 
cording to the linear stability theory (see Ref. [87] 
for a review). 

Experimental evidence of (streamwise counter- 
rotating) Gortler vortices in a similar case was 
brought in particular by [88], but the consequence of 
these vortices on the wall heat flux has remained an 
open question. Fig. 41 shows such Gortler vortices, 
obtained from a 3D simulation performed with the se- 
lective structure-function model in a domain of span- 
wise extension equal to  4.5 6,. One clearly seea two 
large structures, crosscuts of which (Fig. 42) show 
that each of them corresponds to a pair of counter- 
rotating Gortler vortices. 

The extreme values of the temperature fluctuations 
plotted in Fig. 42 are k90K. They are found close 
to the wall, which is at  Tw = 290K. These 30% of 
temperature fluctuations induce huge fluctuations of 
the Stanton number (Fig. 43), between 2 lo-' and 
14 lo-', with an average of about 6 lo-'. The r.m.s. 
of the Stanton-number fluctuations is thus 133%. 
The same trend is observed for the skin-friction coeffi- 
cient Cj , which remains approximately proportional 
to St as predicted by the strong Reynolds analogy. 
An analogy factor i = St/2C, = 2.9 can be (quite 
roughly) estimated from the mean values of St and 
C,. More precisely, The minima of C, and St are 
located at  .$a = 0.1 0.5 (owing to spanwise pe- 
riodicity), with a secondary minimum at 0.3m (cw 
ordinates relevant to the full-size shuttle. They have 
to be divided by 90 to correspond to what is actu- 
ally simulated, :.e. the model.). These minima are 
associated to the uplift of slow and cold fluid from 
the boundary which occurs in between each pair of 
couter-rotating vortices (as sketched in Fig. 44). 

Conversely, maximal values of C, and St are found 
at E3 = 0.2 and 0.4m, that is half-way in between the 

_ _  
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Figure 41: Ramp flow. Zoom on the  hinge and body-flop re. 
gion ahowing an isosurfacc of the vorticity magnitude. This 
vxvlace ia calovred b y  temperoturc. Thia showa clearly tha t  hol 
Paid in the outer  per1 of Ihe boundary layer i s  being down- 
washed t o  the  wall, which brings about wall-heal-fEuz jluclua- 
tions. 

......... 2.05 

2 

1.95 

0 0.2 0.4 0.6 

Fig*m 42: Romp flow. Spanwiae d i c e  of indontoneour tem- 
pcraturc fluetuoiiona (wiih rupeci t o  the time-overage). T h e  
d i c e  ia rcpeated twice i n  the  apenwisc directions, which i a  per- 
mitted by the periodic boundary condition3 and maker the  VDT- 

fer  a t rvc iure  easier to undersland. Here ogain, the gradua- 
tions arc relevant l o  the ful l -size shuttle. 

0 . 0 Z t ,  , , , I , I , I , , , I I , 

0 0.2 0.4 0.0 0.8 

Figure 43: Ins tan taneous  profiles of S t a n t o n  number St (top) 
a n d  akin-friction coeficient CJ (bottom), t o  be correlated with 
Fig. 42. 

0.2 0.4 0.6 

Figure 44: Sketch of the  vertical mot ion  induced b y  the Go'rtlcr 
vortices a n d  ita C O W ~ ~ L E ~ C ~ ~  on Sf a n d  CJ, symbols mean- 
ing high S t  and CJ bceauae of downwnahing of hot j lu id .  Sym- 
bols e represent low St and CI because of upfilt of cool  fluid. 

F i g w e  45: Romp simulolion. Inalontoneoaa contour3 (wiih 
devotion) of i h r  S tonton  n a m b e r  St showing the  streomwise 
alignmenl of the rztrcma. This picture i a  very stable in time, 
beeovae the  Go'rtler uortices are phase-locked. 

Heat Flux at the wall I 

Figure 46: Counterpa i t  of Fig. 45 for  the  akin-friction 
cient Cf. 

two pairs, where the downwash of hot (and fast) fluid 
from the outer part of the layer is maximal. If one 
tries to work out analogy factors associated to the 
peak and valleys of C, and St ,  one finds s,,,,,~ = 1.1 
and #,,,in - 00 respectively (because C, goes to 
zero). This clearly shows that the strong Reynolds 
analogy, although globally satisfied, cannot be relied 
upon to deduce local Stanton numbers out of local 
values of the skin-friction coefficient. Finally, the el- 
evated contour-maps of C, and St shown in Figs. 45 
and 46 prove that the values above - recorded from an 
instantaneous cross-section of the flow ~ are almost 
independent of the streamwise co-ordinate < I ,  Time- 
averaged plots (not shown here) also prove that the 
Gortler vortices are, in this simulation, fairly stable 
in time. This is likely to enhance considerably their 
destructive effects on the material of the body flap. 

15 CONCLUSION 

We have presented the general framework of large- 
eddy simulations (LES), where subgridscale motions 
are filtered out, their effect being represented by 
eddy-viscosity and eddy-diffusivity coefficients in the 
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supergrid-scale motions. We have discussed the un- 
predictability issue associated to the LES formal- 
ism, and shown that, in three dimensions, one could 
expect a linear growth of the error, instead of the 
exponential growth obtained in dynamical systems 
with a low number of degrees of freedom. We have 
described Smagorinsky’s model, which is the most- 
widely used for engineering applications. Afterwards, 
we have considered a different point of view, where 
the filtering is a sharp low-pass filter in Fourier space. 
We have presented Kraichnan’s spectral eddy viscos- 
ity, which permits to avoid the assumption of sep- 
aration of scales done in physical space in order to 
justify the eddy viscosity concept. We have intro- 
duced also the spectral eddy diffusivity. We have 
demonstrated, using the nonlocal interaction theory 
applied to a stochastic model of isotropic turbulence, 
how a k4 backscatter arises in three dimensions, with 
a kS equivalent in two dimensions. We have con- 
firmed the existence of such a spectral backscatter in 
large-eddy simulations. We have also presented the 
spectral-dynamic model, which is a generalization of 
the spectral eddy coefficients allowing to deal with 
laminar and transitional situations, and more gen- 
erally when the kinetic energy spectrum at the cut- 
off decays faster than Kolmogorov law. Returning to 
physical space, we have reinterpreted these models in 
terms of velocity-structure functions and generalized 
hyperviscosity models. 

We have applied the spectral-dynamic model to the 
turbulent channel flow at a subcritical (h+ = 204) 
and supercritical (h+ = 389) wall Reynolds number. 
In the two cases, the results are in excellent agree 
ment with experiments and direct-numerical simula- 
tions. Compared with the latter at same Reynolds 
number, the LES reduces the computational cost by 
a factor of the order of hundred. 

We have applied the selective structurefunction 
model to a temporal and spatially-growing mixing 
layer. Depending upon the quasi two-dimensional or 
three-dimensional character of the initial or upstream 
weak perturbation, whe have shown how the flow 
could bifurcate from a quasi two-dimensional state 
(where longitudinal hairpins are stretched between 
the Kelvin-Helmholtz vortices) to a helical-pairing 
configuration of dislocated vortices. In the former 
case, consideration of the vorticity equation permits 
to show how the vorticity isstretched in the direction 
of the first principal axis of deformation. A convected 
scalar gradient, on the contrary, is reduced in this di- 
rection, and intensified across the interface. Return- 
ing to the hairpin stretching, we have found in the 
spatially-growing case that two longitudinal vortices 
may merge. 

We have extended the LES formalism to compress- 
ible flows in Cartesian and curvilinear co-ordinates. 
Despite the evident crudity of some approximations 

made, informative results have been obtained both 
in academic an applied situations. We have looked 
at compressible mixing layers, and shown that the 
helical pairing disappears above a convective Mach 
number of 0.6 rn 0.7. For a weakly compressible rem- 
poral jet, one recovers the equivalent of the helical 
pairing, in the form of alternate pairings of vortices. 
The same phenomenon is found for an incompressible 
spatially-developing jet. In the more applied situa- 
tion of a transonic mixing layer forced by acoustic 
modes (the case of the planar model booster), LES 
have contributed to the improvement of the under- 
standing of the mechanism of vortex shedding. We 
have shown in particular that quasi two-dimensional 
Kelvin-Helmholtz vortices stretch intense longitudi- 
nal alternate vortices. The latter seem to be ampli- 
fied by Gortler instability before impinging the noz- 
zle. This bas important consequences on the pressure 
(and thrust) fluctuation spectra, with a lowering of 
the dominant spatial mode. 

We have also simulated the complete transition to 
turbulence of a boundary layer developing above a 
flat plate at Mach 0.5. Interesting informations were 
obtained concerning the physics of high and low- 
speed streaks at the wall, and weak hairpin vortices 
ejected above the latter. Here, compressibility ef- 
fects do not seem to be very important. Afterwards, 
we have simulated the transition to turbulence in a 
temporal boundary layer above a flat plate at Mach 
4.5. Results are in good agreement with experimental 
and numerical linear stability analyses in the linear 
regime (growth rate and phase speed of the second 
mode and the dominant mode of secondary instabil- 
ity) and experimental results in the turbulent regime 
(shape factor, log law, Reynolds stresses). LES are 
here an economic way to go beyond transition. We 
have shown how the end of the transition period is 
dominated by the growth of the (0,Z) mode at the 
wall. Later on, the turbulence collapes on the wall, 
and the structure of the resulting boundary layer is 
not much different from an incompressible one. 

Finally, numerical evidence of pbase-locked Gortler 
vortices on the body flap of a model HERMES has 
been obtained, with drastic consequences on the ther- 
mal erosion of the surface. Although the conditions 
of the re-entry are no€ fully accounted for in the 
simulation, it is shown that LES are able to repro- 
duce satisfactorily, at  least at  a qualitative level, such 
complex phenomena as the interaction between an 
oblique shock, a recirculation zone and intense three- 
dimensional vortices. 
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Abstract 

The paper assesses the capability for numerical 
simulation of compressible turbulent flows us- 
ing the Reynolds-averaged Navier-Stokes equa- 
tions. The governing Favre-averaged equations 
are derived, and the various levels of turbulence 
models defined. Examples of zero, one-equation, 
two-equation and Reynolds Stress Equation tur- 
bulence models are presented. Spe&c results 
are discussed for boundary layer and free shear 
flows. Conclusions regarding future work are 
presented. 

1 NOMENCLATURE 

ROMAN 

CP 
e" 
D 

e 
E 
kt 
b 
L 
Mt 
n 

P 
Pr 
Pvt 
Pi 
Qi 
R 

specific heat at constant pressure 
specific heat at constant volume 
Van Driest damping factor; 
damping term in q-w model 
total energy per unit mass 
molecular thermal conductivity 
turbulent thermal conductivity 
turbulence kinetic energy 
length scale of turbulence 
turbulence Mach number, &%/a 
normal distance to boundary 
static pressure 
molecular Prandtl number, pcJE 
turbulent Prandtl number, b c p / &  
laminar heat flux vector 
total heat flux vector 
gas constant 

RANS Reynolds-averaged Navier-Stokes 
equations 

d 

T 
TO 
zj 
ui 
U. 

si 
GREEK 

7 

6 

6; 
6' 
6ij 
A 

rl 

x 
P 
Pf 

P 
7, 

Tij 

n 

r 

c 

Id 

U 

V 

W 

entropy per unit mass 
static temperature 
total temperature 
total stress tensor 
Cartesian velocity component 
shear velocity, ,&& 
Cartesian coordinate 

ratio of spec& heats 
KlebanoiT intermittency factor 
boundary layer thickness; 
mixing layer thickness 
incompressible displacement thickness 
compressible displacement thickness 
Kronecker delta 
dilatation 
rate of decay of turbulence kinetic energy 
Kolmogorov scale 
vou Karman's constmt 
second coefficient of molecular viscosity 
molecular dynamic viscosity 
turbulent dynamic viscosity 
molecular kinematic viscosity 
density 
wall shear stress 
molecular stress 
velocity scale of turbulence 
magnitude of mean vorticity 
fiequency scale of turbulence 

SUBSCRIPTS AND SUPERSCRIPTS 

e evaluated at edge of boundary layer 
matching location (for algebraic eddy 
viscosity) 

w evaluated at wall 

m 

0 st agnation conditions 

Paper presented at !he A G m  FDP Special Course on "Turbulence in Compressible Flows". held at the 
von K d h  Institufe for Fluid D y m i c s  (VKI) in Rho&-Saint-Gen6se, Belgium, 2-6 June 1997. 

and in Newpan News, Virginia, USA, 20-24 October 1997, and published in R-819. 
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2 INTRODUCTION 

The accurate prediction of compressible turbu- 
lent flow is an essential element of modern en- 
gineering design in many disciplines including, 
for example, propulsion and aerodynamics. Re- 
cent advances in the physical understanding and 
modeling of compressible turbulent flows, and 
the continued rapid rate of growth of computer 
performance, has enabled more accurate simu- 
lation. 

The objective of this paper is to introduce 
the concepts and methods of prediction using 
the Reynolds-averaged Navier-Stokes (FLANS) 
equations.' Our scope must necessarily be lim- 
ited, and therefore we focus on homogeneous 
compressible turbulent flows without chemical 
reaction or real gas effects. Additionally, we 
consider fully turbulent flows only, and omit 
any discussion of transition to turbulence. The 
general outline of the paper is as follows. In 
Section 3, the compressible Navier-Stokes equa- 
tions are presented. The Reynolds-averaged 
Navier-Stokes equations are derived in Section 4. 
The Reynolds-averaged equations for the Rey- 
nolds stress, turbulence kinetic energy and rate 
of dissipation of turbulence kinetic energy are 
described in Sections 5, 6 and 7, respectively. 
The nature of fluctuations in turbulent flow and 
Morkovin's hypothesis are described in Sections 
8 and 9. The notation is simplified in Sec- 
tion 10. In Section 11, the concept of turbu- 
lent eddy viscosity is presented. A taxonomy 
of turbulence models developed by Reynolds [l] 
is described in Section 12. A selection of zero, 
one-equation, two-equation and Reynolds Stress 
Equation models are presented in Section 13. A 
derivation of the compressible Law of the Wall 
for the k - c  turbulence model is given in Section 
14. Results for a variety of bounded and free 
turbulent shear flows are presented in Section 
15. Section 16 offers conclusions and proposals 
for future work. 

There are many excellent reviews on Reynolds- 
averaged Navier-Stokes models for incompress- 
ible and compressible turbulent flows which 

'Oftentimes, a subset of the Reynolds-averaged 
Navier-Stakes equations, e.g., the Reynolds-averaged 
boundary layer equations, may be sufficient. We shall 
u ~ e  the term Reynolds-averaged Navier-Stokes equations 
to denote both the full equations and any appropriate 
subset. 

should be consulted for additional information. 
Examples include Lakshminarayana [2], Speziale 
[3] and Marvin[4]. Additionally, there are sev- 
eral experimental databases of compressible tur- 
bulent flows which provide excellent cases for 
evaluation of turbulence models. Examples in- 
clude Fernholz and Finley [5] and Settles and 
Dodson [6]. 

3 COMPRESSIBLE NAVIER- 
STOKES EQUATIONS 

The governing equations for compressible vis- 
cous flow of a perfect gas are [7] 

p = pRT (4) 

where p is the density, ui are the components 
( I L ~ , u ~ , u Q )  of the velocity along the Cartesian 
coordinate directions (XI, x2, xg), p is the static 
pressure and the Einstein summation convention 
is employed.' The laminar stress tensor is 

(5) 

where S;j  is the Kronecker delta, X = - $ p  ac- 
cording to Stokes Law, and the molecular viscos- 
ity p is  typically a function of static temperature 
alone. For air, 

~ 3 / 2  
Nt-sec/m2 (6) 

T + 110.3 
p = 1.456 X lo-' 

'The Einstein summation convention employs the a p  
pearance of a repeated index to imply summation over 
all values of the index. Thus, 

j = 3  

% indicates azj  
j = ,  

B Z j  
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with T is "K. The total energy per unit mass e 
is 

e = c,T + 5 U;% (7) 

where e, is the specific heat at constant volume 
(e,  = 717.5 J/kg"K for air). The ratio of specific 
heats 7 = e,/% is assumed constant (7 = 1.4 
for air) where cp is the specific heat at constant 
pressure, and the gas constant R = cp - e,. The 
laminar heat flux is 

and the molecular Prandtl number Pr = pcp/k 
is assumed constant. Eqs (1) to (4) are the 
Navier-St okes equations. 

Compressible turbulent flows are characterized 
by an extraordinary large range of spatial and 
temporal scales. Consider an F-15C fighter air- 
craft [8] operating at maximum cruise (Mach 
2.24) at 14,600 m altitude. The boundary 
layer thickness at the aft end of the 19.4m 
aircraft fuselage is roughly3 6 x 0.20 m. 
The largest scale of the turbulence within the 
boundary layer is the energy-containing eddies 
whose size is approximately 6. The smallest 
scale of the turbulence is the Kolmogorov scale 
r) = (v3/e)'/' where v is  thekinematicmolecular 
viscosity and 6 is the rate of decay of turbulence 
kinetic energy per unit mass [9], At this scale 
the turbulence energy is dissipated into heat. 
The energy dissipated at the Kolmogorov scale 
is supplied by the nonlinear interactions of the 
large scales through the turbulent energy cas- 
cade [9] and thus e x k3/'/6 where k is the 
turbulence kinetic energy. From Dussauge et 
al [lo], k x 5 (r, , , /p) in a flat plate supersonic 
turbulent boundary layer, where r, is the wall 
shear stress. Thus, the ratio of the two scales is 

This would imply a prohibitively large num- 
ber of mesh points for complete resolution 
(Direct Numerical Simuhtion) of the flowfield: 

'The estimate is obtained assuming a flat plate and 
using the k-c turbulence model. 

'For example, to fully resolve a region of siee 6 x 6 x 6 
requires roughly (5 x IO3)' = 1.25 x 10" grid points 

and hence approsimate methods are needed 
based on simplified models of (1) to (4). These 
models, which are categorized in Section 12, are 
based on averaging of the Navier-Stokes equa- 
tions. 

4 REYNOLDS-AVERAGED 
EQUATIONS 

The ensemble average of a function f(z;,t) is 
defined by 

1 =n 
(10) f(z;,t) = lim - f'"' 

n+m n 
"=l 

where f(") are the individual realizations of 
f(z;,t). The d e e t  of ensemble averaging 
is to remove the high frequency (i.e., s m a l l  
scale) fluctuations, thereby reducing the range 
of scales in f compared to f. The ensemble av- 
erage f in general remains a function of both 
z; and t ,  although the focus of this paper will 
be on turbulent flows where the f i s  independent 
oft (stationary turbulent flows). For further dis- 
cussion on ensemble averages of non-stationary 
turbulent flows, see, for example, Antonia [12]. 

For stationary turbulent flows, the ensemble av- 
erage may be replaced by the conventional time 
average 

under certain conditions [13]. This is the typical 
method employed in experiment. 

The function f can be decomposed as 

where f and f' represent the conventional mean 
and conventional fluctuating parts of the turbu- 
lent motion 

The ensemble average (10) can be applied to 
the Navier-Stokes equations (1) to (4). Since 

(125 bdlron grid points) in this cme. Resolution of the 
entire boundary layer on the full aircraft would require 
substantially more [ll] grid points. Note, however, that 
there are engineering problems wherein the Reynolds 
numbers are substantially lower (e.g., flow in the high 
temperature section of a gas turbine) and hence Direct 
Numerical Simulation may be feasible. 
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all of the flow variables (i.e., p ,  s, e, p and 2') 
have mean and fluctuating components accord- 
ing to (12), the resultant equations become very 
lengthy [14, 151. Consequently, the Favre aver- 
age (density-weighted average) [16], defined by 

is typically employed, since it yields a more com- 
pact form of the averaged equations. Using the 
Favre average, the function f can be decom- 
posed as 

f = f + f "  

where f and f" are the Favre mean and F a m  
fluctuating parts of the turbulent motion. The 
Favre average also yields the following 

- 
It - is important to note that pf" = 0 while 
f" + 0. Conversely, # + s e  7 = 0. AISO, 
in (la), the density p in pf"g" is the instanta- 
neous density, not p.  
The conventional and Favre means and fluctua- 
tions are related by 

P'f' I =  f t  T 
P 
- 

' P'f' f" = f - T 
P 

The ensemble average (10) satisfies the Reynolds 
Conditions [13]. For arbitrary functions f (z ; , t )  
and g(z; , t)  and arbitrary scalar constant a, 

where a = z i  or t .  

Application of the ensemble average (10) to the 
conservation of mass (1) yields 

-~ 
- B p + -  = 0 using (21) 
a t  azj 
ap apuj -+- - - 0 using (24) 
a t  axj 
-+2 ap  ap i .  - 

a t  a z j  
- 0 using (13) 

Similarly, application of the ensemble average to 
the conservation of momentum in conjunction 
with the Reynolds' Conditions yields 

ap aTij apui apuiuj - 
at a2 j azi axj t- -_ -t- - 

a p  aFij -+L - - _ _  apci 
azi azj at a2 j 

t- 

From (la), the term puizlj is expanded 

- _- - I, I ,  pquj = pquj t pui U3 

The final form of the ensemble-averaged momen- 
tum equation is 

- ,, I ,  . where -puiuj is the Reynolds Stress.' Note 
that the density p in the Reynolds Stress is the 
instantaneous density, not p.  
Similarly, application of the ensemble average to 
the conservation of energy yields, 



The term pi! may be expressed as 

where k is the turbulence kinetic energ$ per unit 
mass [15] 
- 

1 ,, I ,  p k = -  Z P i  u u  i 

Thus 

Now 

pTuj = p ( F t  T") (iij t u ; )  
-- -- 

= 

= pTiij + pT"u; 

p F i i j  + p h i  t pT"iij t pT"u; 
- 

- - 
since puli( = 0 and pT" = 0. By a similar analy- 
sis, 

Thus 

(pe + p )  uj = c, (pFii j  t t 
I - - - -  Z P U i  U.U.  I 3  + pkiij + 
__ 

,I I t  - pui u p ;  t f pUi"Upu3j" 

= p ( c $ ' +  f G& t k) iij f 
cppT"u; f pu; uj ~i + 
-- 

I #  I ,  - 

'Note that this is not the incompressible definition of 
turbulence kinetic energy, i.e. 

- 
k = iu!u! 

2 . *  

using the ensemble average of the equation of 
state 

Writing 

(34) 

The ensemble averaged energy equation thus be- 
comes 

ape a (p.Z t P) iij - 
at 
-t a2 j - 

The last term is generally neghgible7 and thus 
the ensemble averaged energy equation becomes 

ape a ( F E  t a) iij - 
at a2j 
-t - 

" ' I  ) (37) - ( - c p G  - qj  
a 

a2j 

Defining the total stwss tensor zj and tot0l heat 
flue vector &i by 

tl 

Q; = cp-t qj  

ensemble averaged Navit 
may be summarized as 

(38) 

Stokes equations 

(39) 

'Compared to the first term on the right side of (36). 



p = TRT (42) 

Eqs (39) to (41) are the Reynolds-aweraged 
Nauier-Stokes Equations (RANS). 

The mean molecular viscous stress 7;j is typi- 
cally approximated by 

where f i  is taken to be p ( T ) .  
molecular heat flux is 

Similarly, the 

(44) 

The closure of the system of equations (39) 
to (42) requires the specification of the Rey- 
nolds stress -pu;u; and the Reynolds heat flux 
-c,pT u j .  This is the turbulence modeling 
problem which has been addressed at various 
levels of complexity as described in subsequent 
sections. 

- 
- 

I, U 

5 REYNOLDS STRESS EQUATION 

- 
An equation for the Reynolds stress -puyua can 
be obtained from the conservation of momentum 
and m a s s  by 

I, U 
U: [momtIj + U;  [momt]; - U; u j  [mass] 

where [momt], indicates the ith component of the 
conservation of momentum. The exact equation 
i s  

where 

The conventional description for each of the 
terms on the right side of (45) is given in Table 1. 
It should be noted that the grouping in (45) 
is not unique: and furthermore that p ,  p and 
r;j appearing in (47), (48) and (49) are the in- 
stantaneow values, respectively. The fast term 
A;j represents the production of Reynolds stress 
by action of the mean velocity gradients. The 
second term B;j is diffusive in character, since 
its volume integral is zerog for an unbounded 
flow in which the turbulence vanishes at infin- 
ity. The third term represents the correlation 
between the pressure and rate-of-strain''' based 
on the Favre fluctuating velocity. The fourth 
term is quadratic in the velocity gradients and 
represents dissipation. 

Table 1: Terms in Reynolds Stress Equation 

Term Description 
A;j  Production 
B;j Diffusion 
C;j Pressure Rate-of-Strain 
D;j Dissipation 

The Reynolds Stress Equation (45) is actu- 
ally siz e q u e  for the six independent ele- 
ments of -pu:uli). It is evident from (46) to 
(49) that the Reynolds Stress Equation intro- 
duces additional turbulent correlations which do 
not appear in the Reynolds-averaged Navier- 

Additional equations could be derived for these 
correlations; however, such equations would in- 

'For different, but equivalent, forms of (45 )  to (49) ,  
see, for example, Lee et ol [IT] and Speriale and Sarlrar 
[la]. 

'By the Divergence Theorem. 
"Actually, twice the rate-of-strain. 



troduce even more correlations. Thus, the sys- 
tem of equations cannot be closed by taking av- 
erages of different moments of the Navier-Stokes 
equations, and therefore it is necessary to intro- 
duce model equations. 

It is similarly possible to derive an equation for 
the turbulent heat flux -c&?'ui ,  which w a i n -  
troduce higher order correlations as well. * 
interests of brevity, the equation for -cppT"ui 
is omitted. 

6 TURBULENCE KINETIC 
ENERGY 

An equation for the turbulence kinetic energy 
can be obtained from (45) to (49) by summation 
over the indices. The result is" 

apk apkG 
at azi - + - = A + B t C - D  

where 

- aiii 
3 a z j  

A = - p i u . -  

- ,, ,, ,, ,, a 
aZ B = -{-+ pu;u;'zlj +u;T;i 

- 
-pu;} 

The conventional description for each of the 
t e r n  on the right side of (50) are given in Ta- 
ble 2. The production A and diffusion B terms 
are the contracted version of their counterparts 
for the Reynolds Stress equation (45). The 
pressure-dilatation C is unique to compressible 
turbulent flowl2. Sarkar et al [20] showed that 

"A different, though equivalent, form is presented by 

"For incompressible turbulence, U, = U ,  and the en- 
I, I 

Rubesin [19]. 

semble average of the conservation of mass yields 

Bu,=o 
azi 

for high Reynolds number homogeneous turbu- 
lence the rate of dissipation of turbulence kinetic 
energy D can be approximated by 

(55) 

where wi is the fluctuating vorticity and d' is 
the fluctuating divergence of the velocity. Thus, 
the dissipation of turbulence kinetic energy has 
both vortical and dilatational contributions. A 
number of models of the effect of dilatational 
dissipation have been developed, e.g., Sarkar et 
al [ZO], Zeman (211, Wilcox [15]. and Ristor- 
celli [22]. 

Table 2: Terms in Turbulence Kinetic Energy 
Equation 

T e n  Description 
A Production 
B Diffusion 
C Pressure-Dilatation 
D Dissipation 

7 DISSIPATION EQUATION 

The rate of dissipation of turbulence kinetic en- 
ergy by viscosity D (54) is oftentimes used as 
a variable in turbulence model equations. It is 
possible to derive an equation for D from the 
Navier-Stokes equations, however in its full com- 
pressible form it is rather complex. In the inter- 
ests of brevity, we present the equivalent equa- 
tion [3] for the incompressible dissipation t de- 
lined byI3 

I3For incompressible flow, the terms 
-- 

BUYrij au; 
azj azj  - - r i j -  

may be written as 

and hence C = 0. 

, .. ., pz 1231. 



which satisfies 

(57) 

The terms on right side of (57) can be identi- 
fied as production, diffusion and destruction of 
t ;  however, these terms are modeled instead us- 
ing the mean flow quantities. 

8 ON THE NATURE OF 
FLUCTUATIONS IN 
COMPRESSIBLE FLOW 

Kovassnay [24] examined the nature of fluc- 
tuations in a compressible flow, and demon- 
strated on the basis of the unsteady compres- 
sible Navier-Stokes equations that there are 
three different types of disturbances: acous- 
tic, entropy and vorticity. His analysis iden- 
tified the effect of these different disturbances 
on the velocity, pressure and temperature fields. 
For small disturbances, the modes are indepen- 
dent, and can be analyzed separately (Table 3). 
The velocity fluctuations can be separated into 
solenoidal and dilatational  component^.'^ The 
solenoidal fluctuations constitute the vortic- 
ity mode, while the irrotational fluctuations 
contribute to the acoustic mode. The static 
pressure fluctuations contribute to the acous- 
tic mode. The density and static temperature 
fluctuations can be separated into isentropic 
and nonisentropic parts, which contribute to the 
acoustic and entropy fluctuations, respectively. 

"This is a general consequence of the Helmholtz [25] 
decomposition. 

Table 3: Turbulent fluctuations 

Mode U* ud P Pi Pn Ti Tn 
acoustic . * .  . 
entropy . . 
vorticity 

LEGEND 
U. solenoidal velocity 
U d  dilatational velocity 
p static pressure 
p;  isentropic density 
pn nonisentropic density 
Ti isentropic static temperature 
Tn nonisentropic static temperature 

Compressible fluctuations may be equivalently 
categorized into acoustic, total temperature and 
vorticity disturbances. The total temperature 
To is defined as 

For a perfect gas 

dT dp 
d s = c  - -RR-  

P T  P 
(59) 

where s is the entropy per unit mass. Thus, 

(7 - 1) dP 
7 P  

where U = 
Mach number. 

and M = U / m  is the 

9 MORKOVIN'S HYPOTHESIS 

A fundamental concept in development of turbu- 
lence models for the Reynolds-averaged Navier- 
Stokes Equations is Morkovin's Hypothesis [26]. 
It states that the effect of density fluctuations 
p' on the turbulence structure are unimportant 
if the root-mean-square density fluctuations are 
small compared to the mean density, i.e., 
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For a 2-D turbulent boundary layer, U' N U' 

where U is the velocity component parallel to the 
surface. From (70), the correlation coefficient 
RT,,, defined by 

This is generally valid for non-hypersonic (i .e. ,  
M < 5) boundary layers at conventional rates 
of heat transfer and non-hypersonic wakes, and 
for free shear layers (e.g., jets, mixing layers) at 
Machnumbers less than approximately one [27]. 

Morkovin [26] demonstrated on the basis of ex- 
perimental data that, for non-hypersonic turbu- 
lent boundary layers at adiabatic or near adia- 
batic conditions, the acoustic and total temper- 
ature modes are negligible. From the equation 
of state (4), 

- 
T'u' 

R T ~ =  
'2 '2 

is RT" = -1. Kistler [28] showed that RT" N 
-0.6 to -0.8 for flat plate zero pressure gradient 
supersonic boundary layers. 

Equations (66) and (70) are useful in compar- 
ing -pui uj with -pu:ui a8 discussed in Ap- 
pendix B. 

~ - ,, I ,  logp = logp t logR +logT 

and thus 

dp dp dT 
P P  
_ -  --+y 

Morkovin's Hypothesis provides a plausible jus- 
tification for extending incompressible RANS 
turbulence models to compressible flow by sim- 
ply allowing for a variable density p. Indeed, 
most compressible RANS turbulence models 
have been principally developed in this man- 
ner, notwithstanding additional modifications to 
specifically account for compressibility effects. 

and hence to a first approximation, 

p' p' T' 
-7- P (64) 

Morkovin's conclusion that the acoustic mode is 
negligible implies 10 SIMPLIFYING THE NOTATION 

We hereafter15 drop the overbar - and tilde - in 
the interests of simplicity of notation. For refer- 
ence, the governing Reynolds-averaged Navier- 
Stokes equations are 

and thus 

{ T' -_ - 
P T 

From the definition of total temperature (58), 

cpdTo = cpdT + UdU 
(73) 

where U = m. Thus, to a first approxima- 
tion, 

(74) 
cpTi N cpT' + CUI 

p = pRT (75) Morkovin's conclusion that the total tempera- 
ture mode is negligible implies 

cpTi < c,T' and cpTL < UU' 
(77) 

lbExcept in those instances where the overbar and tilde 
are essential for interpretation. 

and thus 

cpT' N -UU' 
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11 THE CONCEPT OF 
EDDY VISCOSITY 

( 7 9 )  

The earliest model for the Reynolds Stress'' is 
due to Boussinesq [ 2 9 ] .  By analogy with the 
Newtonian description of viscous stresses in a 
laminarflow (5), the Reynolds Stress is assumed 
to be proportional to the rate-of-strain tensor 

-= ,, ,, - - pt [z;%-$ %6ij) -- 
(80) - i? k6. .  - 

111 

3 P 51 

Term I (together with pt) constitutes the Boussi- 
nesq hypothesis, where is the turbulent eddy 
viscosity which must be defined. Terms IT and 
III provide the proper trace of the Reynolds 
Stress, i.e., 

which is (30) using 6;i = 3. Oftentimes, (80) is 
expressed as 

, I  ,, -= = 2pt  (S;j - 5 A6;j) - $ pk6ij (82) 

where S;j is the mean rate-of-strain tensor 

aui aui s.. - 1. -+- 
$3 - 2 ( azj  a.;) 

and A is the dilatation 

(83) 

(84) 

"Although developed in the context of incompressible 
turbulent flow, the concept is extendible to compressible 
flow. Here we present the concept in its compressible 
form. 

The turbulent eddy viscosity b has the units 

b N density x velocity x length (85) 

Morkovin's hypothesis suggests that the density 
can be taken to be the local mean density p ( r i ,  t) 
provided that (61) is applicable. This is typi- 
cally assumed. Thus, the eddy viscosity is ex- 
pressed as 

pt = PV.! 

where U and .! are the velocity and length scales 
associated with the turbulence. By analogy with 
kinetic theory [30], the functions U and .! rep- 
resent the rms fluctuating velocity and typical 
size, respectively, of the turbulent eddies respon- 
sible for momentum transport. These de&- 
tions are qualitative, yet nonetheless provide an 
understanding of the physical  concept^.'^ 
Similarly, the Boussinesq model for the turbu- 
lent heat flux, in analogy with the laminar heat 
flux (a), is 

where kt is the turbulent thermal conductivity 
and must be defined. Typically, kt is written as 

where Prt is the turbulent Pmndtl number. For 
boundary layers, experimental data [7, 15, 311 
indicates that Prt R 0 . 9 ,  while for free shear 
layers Prt GZ 0.5 is more appropriate [15]. 

If the Boussinesq concept of a turbulent eddy 
viscosity pt and the additional assumption of a 
constant turbulent Prandtl number Prt are ac- 
cepted, then the closure of the system of equa- 
tions (72) to (75) is reduced18 to determining pt. 
Turbulence models developed in this manner are 
denoted eddy viscosity models. 

It should be emphasized that (80) and (87) are 
assumptions which have been found valid in 

"Note that U and f are arbitrary to the extent of a 
constant, %.e., p,  = pvf = p ( v / Z ) ( Z L ) ,  etc. Thus, no 
unique definition of v or f can be given. 

"This statement is not rigorously correct, although in 
some practical applications it suilices. This is discussed 
in Appendix A. 
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some (but not all) turbulent flows. Moreover, 
in principle, (80) does not give an unambiguous 
d e f i n i t i o n h t .  In general, the Reynolds stress 
tensor -puyu;( has six independent components. 
Since -pui uj  , U,, p and k are in principle mea- 
surable quantities, then (80) represents six equa- 
tions for one variable b. This fundamental lim- 
itation can be overcome by the introduction of 
a tensor eddy viscosity at the cost of substantial 
added complexity [23]. 

- 
I ,  ,I 

12 TAXONOMY OF 
TURBULENCE MODELS 

Closure of the Reynolds-averaged Navier-Stokes 
equations requires additional equations for the 
turbulent stresses -puyui and turbulent heat 
flux -cppT"uY, collectively denoted as turbu- 
lent correlations. One reasonable categorization 
is between eddy viscosity and non-eddy viscos- 
ity models. For compressible turbulent flow, the 
number of turbulence models and their applica- 
tions in the former category is far more numer- 
ous, although more recent work has emphasized 
the non-eddy viscosity approach. 

- 

12.1 Eddy Viscosity Models 

Eddy viscosity models assume the forms (80) 
and (87) for the Reynolds Stress and turbulent 
heat flux, respectively. Typically, the turbulent 
Prandtl number is assumed c~nstant. '~ Follow- 
ing Reynolds [l], a taxonomy of eddy viscosity 
turbulence closure models can be defined. 

12.1.1 Zero Equation 

The turbulent correlations are expressed in 
terms of an eddy viscosity which is obtained 
fromthemeanfield (i .e. ,  theveloutyuk, density 
p and temperature T)  and a prescribed physical 
length scale which depends on the specific ge- 

"Shang [32] studied the effect of variable f i t  on a hy- 
personic flat plate turbulent boundary layer. He found 
that the computed mean velocity and static temperature 
were insensitive to the upper and lower limits of the ex- 
perimental envelope of the Prr data of Simpson et  a1 [33], 
and accurately predicted by the constant d u e  fit = 0.9. 

ometry of the problem. No additional partial 
differential equations are employed (hence the 
name "zero-equation'' ). 

12.1.2 One Equation 

One additional partial differential equation is 
specified for a turbulence quantity (e.g., k ) .  An 
eddy viscosity is typically employed for the tur- 
bulent correlations. A length scale is also pre- 
scribed which is geometry dependent. 

12.1.3 Two Equation 

Two additional partial differential equations are 
specified for two turbulence quantities (e.g., k 
and the rate of dissipationof k). An eddy viscos- 
ity is typically employed for the turbulent cor- 
relations. No additional length scale is needed. 

12.2 Reynolds Stress Equation 

Reynolds Stress Equation models employ par- 
tial differential equations for the components of 
the Reynolds stress -puyui. The turbulent heat 
flux -$pT"ui may be similarly modeled using 
a partial differential equation, or modeled us- 
ing an turbulent eddy viscosity.z0 No additional 
length scale is needed. These models are known 
as Reynolds Stress Equation or Second Moment 
Closure models. 

A simplified subset of the Reynolds Stress Equa- 
tion model is the Algebraic Stress Equation 
model wherein the partial differential equations 
for the Reynolds stress and turbulent heat flux 
are replaced by algebraic equations obtained un- 
der the assumption of near equilibrium turbu- 
lence. 

- 

12.3 Other Models 

In addition to models employing the Reynolds- 
averaged Navier Stokes equations, two ad- 
ditional categories need to be mentioned. 
Large Eddy Simulation (LES) employs a time- 

"In the latter caae, the Reynolds Stress Equation 
model would not be strictly non-eddy-viscosity, of course. 
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dependent, three-dimensional computation of 
the large-eddy structure and a model for the 
small-scale turbulent motions. Direct Numeri- 
cal Simulation (DNS) involves the computation 
of all scales in a turbulent flow. DNS calcu- 
lations are currently feasible only for low Rey- 
nolds numbers due to limitations on computer 
resources. These approaches are discussed in a 
companion paper in this Special Course. 

13 SPECIFIC TURBULENCE 
MODELS 

This section presents examples of turbulence 
models from the taxonomy of Section 12. The 
presentation is not exhaustive for any specific 
type of model. For example, there are numer- 
ous variations of zero-equation turbulence mod- 
els; however, due to limitations of space we 
present two commonly used models - Cebeci- 
Smith and Baldwin-Lomax. Moreover, the pre- 
sentation is not exhaustive for the different types 
of models. We focus on zero-, one-equation, two- 
equation and Reynolds Stress Equation models 
which have been applied to compressible turbu- 
lent flows. There are additional models, e.g., 
Algebraic Stress Equation models (see, for ex- 
ample, Pope [34], Gatski and Speziale [35], Abid 
et a1 [36]) and RNG-based models (see, for ex- 
ample, Yakhot and Orszag [37], Martin& and 
Yakhot [38], Yakhot et ~l [39]), however, which 
are not covered here and the reader is encour- 
aged to consult the references listed for further 
information. 

In presentation of the turbulence models, the 
notation of the authors has been used wherever 
possible to facilitate cross reference. The con- 
stants in the turbulence models are typically de- 
termined by comparison with experimental data 
for simple flows. The values of the constants 
are cited here, and the reader is referred to the 
primary references for further information. All 
turbulence models require boundary conditions. 
An adequate description of the boundary condi- 
tions is beyond the scope of this paper, and the 
reader is referred to the references herein. 

13.1 Zero Equation 

The nomenclature “zero equation” turbulence 
model implies that no additional partial dif- 
ferential equations are introduced to define the 
eddy viscosity p t .  Instead, algebraic equations 
are employed. In the following sections, we 
present two popular zero equation models in 
their original form. The variations to these mod- 
els are too numerous to classify here. 

13.1.1 Cebeci-Smith 

The Cebeci-Smith model [40, 41, 421 is a two- 
layer algebraic eddy viscosity model for boun- 
dary layer flows. 

p(k1nD)’R for n n,,, 

pkzue6zr for n 2 n,  (89) 

The fmt expression is the inner eddy viscos- 
ity, where n is the n o d  distance to the 
boundary:’ D is the Van Driest damping fac- 
tor, R is the mean vorticity and kl = 0.40 is a 
constant. Oftentimes, kl is written instead as K 
to sigmfy that it represents von Karman’s con- 
stant. The Van Driest damping factor is 

D = 1 - exp(-nu./Av,) 

where U. is the friction velocity 

where 7, is the local wall shear stress, U, is 
the local wall kinematic molecular viscosity, and 
A = 26 is a constant.2a 

The second expression in (89) is the outer eddy 
viscosity where kz = 0.0168 is a constant, U, 

“The normal distance R to the boundary is not always 
uniquely defined, e.g., in the vicinity of a sharp corner. 
The Buleev length scale [43] is a generalization of the 
concept of normal distance and is commonly used. 

‘*Variations in (89) and (90) abound. For example, 
the original model was developed for 2-D or adsymme- 
tric boundary layers, and the velocity derivative &/an 
ww employed instead of $2. It is possible to use the con- 
traction of the mean rate of strain - instead of 
$2 = V x 1. Also, the molecular viscosity v, in (90) 
may be evaluated locally. For simple boundary layers, 
snch changes have little effect; however, for complex flows 
(e.g., separation) there may be a significant, although lo- 
calized. effect. 
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is the velocity a t  the local edge of the boundary 
layer, 6,’ is the local incompressible displacement 
thickness 

6; = J,” (1 - t) d n  

and r is the Klebanoff intermittency factor 

(93) 

where 6 is the local boundary layer thickness. 
The constants are summarized in Table 4. 

Table 4: Cebeci-Smith Model 

Constant Value 
A 26.0 
ki 0.40 
kz 0.0168 

The physical basis for the velocity scale ‘v and 
length scale L in the inner eddy viscosity is the 
mixing length argument of Prandtl. Outside of 
the viscous and transition regions of the boun- 
dary layer, (i.e., nu,/u, > loo),  the VanDri- 
est damping factor D 1. Considering a 2-D 
turbulent boundary layer with y denoting the 
normal distance to  the wall, the inner pt is ap- 
proximately 

(94) 

which is recognizable as the Prandtl  mixing 
length model with ‘v = ~ y a u / a y  and L = K Y ,  

r e ~ p e c t i v e l y . ~ ~  

In the outer eddy viscosity, the velocity scale 
is proportional to  the velocity a t  the edge of 
the boundary layer 2) 0: U,, and the length 
scale L 0: 6;. The intermittency factor r forces 
the eddy viscosity to  zero outside the boundary 
layer. 

The matching distance n, is defined as the 
smallest value of n such that ptimncr = ptom,e,. 
Since ptimm,, = 0 at  the wall and pton,c, > 0 

2 3 ~  . s indicated previously, the functions ZI and t. cannot 
be defined uniquely in a strict Sense. However, for the 
mixing length model, v = tau/By.r and thus L = ny. 

there, the matching point will occur away from 
the boundary. 

The Cebeci-Smith model has two disadvantages. 
First, the Van Driest factor D requires the defi- 
nition of the local wall shear stress r,. This may 
be ambiguous in certain geometries, similar to  
the definition of the normal distance n, requir- 
ing the imposition of an ad hoc definition. Sec- 
ond, the outer eddy viscosity requires the def- 
inition of the local edge of the boundary layer 
(for determining U, and 6). In both 2-D and 
3-D simulations, this may prove problematic. A 
typical definition (e .g . ,  U = 0 . 9 9 5 ~ ~  at  n = 6) 
may yield inaccurate and non-smooth values of 
6 due to  small numerical Moreover, 
in complex flows (e.g., flows which shodt wave- 
turbulent boundary layer interactions) the pre- 
cise definition of the edge of the boundary layer 
may be difficult due to the non-uniformity of the 
inviscid region. 

13.1.2 Baldwin-Lomax Model 

The Baldwin-Lomax model [44] is a two-layer al- 
gebraic model for boundary layer and free shear 
flows. It was developed principally as an alter- 
native to  the Cebeci-Smith model with the ob- 
jective of avoiding the requirement for determin- 
ing the local edge of the boundary layer. 

p ( K ~ D ) ’  R for n 5 n, 

pKC,F,&J for n 2 n, (95) 

The inner eddy viscosity (first expression) is 
identical to the inner eddy viscosity in (89). The 
function F,A~ is 

where bx is the location of the maximum of 
the function 

F = nRD (97) 

and F,, = max F .  The velocity scale u&fi is 

m x  min 

“This is particularly troublesome for Navier-Stokes 
simulations since the velocity gradient may be very small 
in the outer portion of the boundary layer, and small 08- 

cillations may be present in the numerical solution. It is 
not typically a problem with boundary layer codes. 

U&ff = I. ahear 1.y.r 161 - i m  8Lr.r layer (98) 
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where /U'/ is the magnitude of the velocity. The 
Klebanoff intermittency factor is 

The constants25 are listed in Table 5. The 
matching distance is delined in the same fashion 
as Cebeci-Smith, i .e.,  n ,  is the smallest value 
of n such that kne, = k,.. . 

Table 5: Baldwin-Lomax Model 

Constant Value 
A 26.0 
c, 1.6 

CKleb 0.3 
cwk  0.25 
n 0.4 
K 0.0168 

The physical model for the inner eddy viscosity 
is Prandtl's mixing length. In the outer eddy 
viscosity, the function Fnde represents w l  (mod- 
ulo the constant KC,). The fist  d a t i o n  of 
FWde is typically employed in boundary layers.26 
For boundary layers in mild pressure gradients, 
the function F displays a peak in the outer re- 
gion of the boundary layer,27 thereby defining a 
length scale l which is appropriately" O(8). 

The Baldwin-Lomax model exhibits the first dis- 
advantage of the Cebeci-Smith model, namely, 
the requirement of defining the local wall shear 
stress T, in the Van Driest factor D. It does 
not require the definition of the local boundary 
layer thickness, however, in contrast to Cebeci- 
Smith. However, the definition of wL using (97) 
is not unique in all cases; in particular, F can 
exhibit two (or more) local maxima within (or 
near) the boundary layer [49], thereby requiring 
ad hoc modifications (e.g., [49, 50, 511). 

~ 

"Fo? additional discussion regarding the d u e s  of the 
constants, ~ e e  [as]. 
"In some boundary layer computations, the second 

expression for Fw.ke has been ignored, e.g., [46]. 
"For an incompressible Bat plate zero pressure gradi- 

ent turbulent boundary layer, it is straightforward [47] 
to show that taro.. = 0.6466 and F = ~ ~ ( 1  + 1.82JI)/n 
where II F;: 0.55 in the wake strength parameter [48]. 
'"The symbol O(6) means "on thc order of 6". 

13.2 One Equation 

A fundamental limitation of zero equation mod- 
els is the assumption that the Reynolds stress 
-pu:u; and heat flux -cppT"u~ can be directly 
related to the local mean flow variables (e.g., 
U ; ,  p). It is well known that turbulence does 
not respond instantly to changes in the mean 
flow,2' but rather adjusts (relaxes) over a time 
scale associated with the turbulence structure. 
An example of an abrupt change is the embed- 
ded shock which may appear on the lifting side 
of a transonic airfoil. Although the mean flow 
(e.g., mean pressure and velocity) responds vir- 
tually immediately to the shock (e.g., on a time 
scale equal to the time interval between molec- 
ular collisions), the turbulence reacts on a finite 
time scale (e.g., on a time scale equal to the eddy 
turnover time which can be estimated as l / w . )  

One equation30 models attempt to incorporate 
this "history" effect by postulating a single par- 
tial differential equation which, combined with 
an explicit expression for the length scale l ,  de- 
lines the eddy viscosity pwl. A detailed his- 
tory of one-equation models is presented in 
Wilcox [15]. For compressible turbulent flows, 
the one equation models of Baldwin-Barth [63], 
Johnson-King [54] and Spalart-Allmaras [55] are 
commonly employed. In this section, we present 
the Johnson-King model. 

13.2.1 Johnson-King 

The Johnson-King model [54, 561 is a one- 
equation model3' principally developed for a re- 
stricted class of flows, i.e., transonic boundary 
layers with strong pressure gradients. Several 
s m a l l  modifications were later proposed to the 
original model [57, 581 to improve agreement 
with experiment. Herein we present the version 
from [56]. 

The Johnson-King model incorporates a "his- 

"For an extensive review of the response of turbulent 
boundary layers to abrupt pertnrbations, see Smits and 
Wood [52]. 

"And all higher order models, e.g., two equation mod- 
els. Reynolds Stress Equation models, and Large Eddy 
Simulation. 

"For reasons discnssed below, Johnson and King con- 
sider the model to be a hybrid Reynolds-stress / eddy 
viscosity model. 



tory" effect in the definition of the turbulent 
eddy viscosity pt in order to emulate the phys- 
ical response of turbulence to rapid changes in 
the mean flow. The concept of an equilibrium 
turbulent eddy viscosity pte is introduced, where 
pte is the eddy viscosity which is obtained in the 
absence of any abrupt changes to the flow, or, in 
the case of an abrupt change, the eddy viscosity 
which is obtained far downstream. The equilib- 
rium eddy viscosity is a blending of "inner" and 
"outer" equilibrium eddy viscosities according 
to 

kc = Ptoe [1 - exp(-Ptte /P& )I (100) 

where the inner and outer equilibrum turbulent 
eddy viscosities are3' 

where q is the kinematic Reynolds shear stress 

and 
- 

Ce, = max( -u"v''e) (104) 
- 

and -d lvNe is the equilibrium (kinetic) Rey- 
nolds shear stress 

The inner equilbrium eddy viscosity (101) em- 
ploys G f o r  w and y for !, with the Van Driest 
damping factor33 (90). The outer equilibrium 
eddy viscosityis the same as Cebeci-Smith (89). 
In principle, given the velocities and density, the 
value of qe, can be determined implicitly from 
(100) to (105). In practice, qe, is determined 
from the +-station immediately upstream of the 
point of interest. 

The eddy viscosity is obtained from a blending 
of "inner" and "outer" non-equilibrium eddy vis- 
cosities according to 

Pt = ko [1 - exp(-Pt,/Pt,)l (106) 
"Here we employ the conventional notation for a 2-D 

turbulent boundary layer, where z and g represent the 
streamwise and normal directions, respectively, and U 

and z the corresponding veloaties. 
"However. the value of A is taken to be 15. 
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where 

The function U(.) is determined in the follow- 
ing manner. The maximum kinematic Reynolds 
stress (m is assumed to be determined by the 
following equation 

where 

The subscript indicates evaluation at the lo- 
cation where c is a maximum. The length scale 
Lm is 

0 . 4 ~ ~  if ym < 0.2256 

0.096 if ym 2 0.2256 
(112) 

and 6 is the local boundary layer thickness. The 
function U(.) is determined by the requirement 
that the value of qm obtained from (109) match 
the value obtained from (106) and (80). The 
constants are listed in Table 6. 

Table 6: Johnson-King Model [56] 

Constant Value 
A 15 
a1 0.25 

Cdif 0.50 
kz 0.0168 

The evolution equation (109) represents a non- 
equilibrium model for the turbulent eddy vis- 
cosity. In regions of rapid changes to the mean 
flow (e.g., in the vicinity of a shock wave), the 
terms on the right side of (109) are non-zero due 
to the rapid response of the equilibrium eddy 
viscosity pte to the changes in the mean flow. 
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The eddy viscosity pt relaxes towards equilib- 
rium over a length scale U(L,) or U ( 6 ) ,  de- 
pending on whether the first or second term on 
the right side of (109) is dominant. This reflects 
the behavior of the turbulence. The use of (m as 
the relaxation function is motivated by the ex- 
perimental data of Perry and Schofield [59] for 
boundary layers in adverse pressure gradients, 
wherein it was observed that G, provided an ac- 
curate correlation of the velocity defect. 

13.3 Two Equation 

The inherent limitations of the zero and one 
equation models influenced the development of 
two equation turbulence models. By specifying 
partial differential equations for two turbulence 
scalars, it is possible to d e h e  the turbulent eddy 
viscosity without reference to a particular geo- 
metric length scale.34 The general form of the 
two equations is assumed to be 

apg apgui - + - = Po- D , f  Di, (113) 
at axi 

where f and g are two different turbdence 
scalars, and P, D and Di represent production, 
dissipation and diffusion, respectively. In gen- 
eral, once the particular choice for f and g has 
been made, exact equations can be obtained for 
f and g from appropriate moments of the in- 
s t ant aneous Navier- S t okes equations. However, 
these exact equations *duce h i g h e e e r  
correlations (beyond -puyuy and -cppT"uy), 
and therefore cannot be employed without mod- 
ification. These exact equations do suggest the 
general form of (113), i .e. ,  the fundamental pro- 
cesses of convection, production, dissipation and 
diffusion. 

It is straightforward to show that any dimen- 
sionally independent pair35 of turbulence scalar 
functions f and g are sufficient to define pt. As- 
sume that the units off  and g are 

f N [length]' x [timeIb 

g - [lengthIc x [timeld (114) 

3'This is not strictly true, since some two equation 
models uae the normal distance from the boundary. 

35Dimensionally independent implies ad - bc # 0. 

Then 

where e = ad - be. 

A wide variety of two equation models have been 
developed, differing principally in the choice of 
the functions f and g. In the following sections, 
three specific models are presented. It should be 
emphasized that oftentimes small but nonethe- 
less important changes to these models are made 
to improve the prediction of certain flows, and 
thus in examining the results of subsequent sec- 
tions, the original reference should be cited for 
the exact version of the model. 

13.3.1 E-w 

Kolmogorov [60] developed L--? first two- 
equation model using the functions f = k and 
g = w where k is the turbulence kinetic energy 
and w is the specific dissipation rate for turbu- 
lence, i .e.,  E = kw where E is the rate of decay 
of k per unit time (at a point). Saffman [61] in- 
dependent developed a two equation model us- 
ing k and w 2 .  Wilcox and Alber [62] extended 
the Saffman model to compressible flows. Sub- 
sequent extensive model development by Wilcox 
and his colleagues [15] led to the present form of 
the k - w  model. 

-+- apw apwui - w-aui 2 

axi - - a - p u i u . - - p p w  k j a2 j  f at 

where p' and 0 are functions of the turbulence 
Mach number 

Mt = - 
a 
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where a = 
The general expressions for p* and P are 

is the local speed of sound. 

where Po, P,' and p are constants and F(Mt)  
is a prescribed function. Wilcox [15] developed 
three different models for F, corresponding to 
the dilational dissipation models of Sarkar [63], 
Zeman (211 and Wilcox [15]. The Wilcox model 
is F' = 312 and 

F(Mt) = [M: - Mf2] "(Mt - Mt.J (120) 

where Mto = 114 and "(2) is the Heaviside 

The turbulent eddy viscosity pt is obtained from 

k 
Pt==pW 

and the constants are given in Table 7. 

Table 7: k - w Model 

Constant Value 
a 519 

13.3.2 k-E 

The Jones-Launder model [64] (; o known as 
the k--E model) employs the functions f = k and 
g = E where E is the rate of decay of turbulence 
kinetic energy. Numerous subsequent modifica- 
tions have been made, e.g., Launder and S h m  
[65], Chien [66], Lam and Bremhorst [67] and 
Becht and Knight [68]. Here we present the 
Jones-Launder model with the Chien modifica- 
tions which enable integration to a solid boun- 
dary. 

2 e H ( z )  = 1 for z > 0 and H ( z )  = 0 for z < 0. 

apE apcui E 

at ax; 
-+- - - c l i p k  

where P k  is the production of turbulence kinetic 
energy 

and n+ = nu,/u is the dimensionless normal 
distance. The turbulent eddy viscosity is 

k2 
pt = c,p- E (1 - ,++) 

where the dimensionless damping function f is 

The constants are given in Table 8. 

13.3.3 q-w 

The Coakley model (also known as the q - w 
model) employs the functions f = fi and g = w 
where w is interpreted as the specific turbulent 
dissipation rate, i.e., w = Elk. Several versions 
of the model have been developed [72, 73, 74, 
751. Here we present the version in Ref. [74]. 
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Table 8: k-e  Model 

Constant k-E Chien Thies €4 Tam [69] 
C P  0.09 0.0874 
Cl 1.35 1.40 
ca 1.80 2.02 
c3 0.0115 
c4 0.5 
uk 1.0 0.324 
U. 1.3 0.377 
PTt 0.90 0.422 

NOTES 
1. Constants C3 and C; are inapplicable to 

Thies & Tam since their computations are for 
free shear flows. 
Thies & Tam have two additional terms cor- 
responding to the corrections of Pope [70] 
and Sarkar [71] which add two additional 
constants. 

2. 

where 

s = ( a q  -+3 au.)  2 - 2  au. - 
azj azi azj azi 

CIR D = 1 - e -  

and 

The constants are given in Table 9. 

Table 9: q-w Model 

Constant Value 
CLI 0.09 
Cl 0 . 5 0  t 0.055 
cz 0.833 
a 0.02 

PT, 2.0 
PTw 2.0 

13.4 Reynolds Stress Equation 

Reynolds Stress Equation models are based - on 
the second moment equation (45) for -pu; ui. 
The t e rm B;j, C;j, and D;j must be modeled. 

,, I ,  

The production term A;j is already expressed in 
terms of the Reynolds stress and mean velocity, 
and therefore requires no further modeling. Ad- 
ditio- a model for the turbulent heat flux 
-c,pT"u; must be given. 

13.4.1 Zhang-So-Gatski-Speziale 

The Zhang-So-Gatski-Speziale model [76] is a 
Reynolds Stress Equation model. The diffusion 
term B;j is modeled as 

where T;j is the kinematic Reynolds stress3' 

- ,, I, - 
(133) 

,, ,, P"iUj T . .  - -u.(I. = -- 
P ' 3 -  I 3  

The pressure-rate of strain  orr relation^^ is mod- 
eled as 

(134) 

and 

and 

In the above expressions 

P;j = Aij (production term) 

"Morrison et a1 [77] use -Zj. 
38Actually, the deviatoric part of the pressure-rate-of. 

Rtrdn 



5-19 

For the model of the turbulent heat flux and 
closure of the mean energy equation, see [77]. 
The constants are listed in Table 10. 

and 2 2  is the normal distance to the boundary. 

The dissipation term is 

D.. - 2 z3 - 3 P 4 j  t PC; 

where E; is a wall correction term 

with 

and 

fwl  = exp [- (wW] 
where Ret = k 2 / v c .  

The dissipation equation is 

* +- = A, + Be + C, + D, (143) at azk  

where 

aui 
A, = - [' 3 +- m ( 7 - 1 ) I ~ ~ g  

Z i  

2 

% I 1  = €-U(%) 

Table 10: Zhang et a1 Model 

Constant Value 
C* 0.11 

3.0 
0.4 

see [77] 
1.50 
1.83 
0.10 

0.7 (see [77]) 
(8  t Cz)/ll  

(8172 - 2)/11 
(3ocz - 2)/55 

13.4.2 Knight 

Knight [78] extended to compressible flow a 
standard incompressible Reynolds Stress Equa- 
tion model. The diffusion term is modeled as 

where Cd, is a constant. This model is an exten- 
sion of the incompressible flow model of Laun- 
der, Reece and Rodi [79]. 

The correlation of the instantaneous pressure 
and fluctuating rate-of-strain is modeled as 

where C,, and C, are constants. This is the ex- 
tension of Rotta's model [80] for incompressible 
flow. 

An isotropic dissipation model with compress- 
ibility effect is used to determine the dissipation 
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term, 14 COMPRESSIBLE LAW 
OF THE WALL 

(147) 
2 

13 - 3 D . .  - -pe6.. 

According to Sarkar et al I201 and Zeman [21] 

p' = p (Es t E , )  (148) 

where E, = C k € & f 2  and the turbulence Mach 
number is Mt = J" 2k/a.  

The conventional equation [64] is employed for 
1 

-+- apc..uk - - P, - D, t Die a P E .  

at a x k  
(149) 

where 

where C,, , C., and C,, are constants. 

The turbulent heat flux is modeled using a gra- 
dient diffusion hypothesis 

(153) 

where Ch is a constant. 

The closure constants are given in Table 11. 
The model employs wall functions which are de- 
scribed in [U]. 

Table 11: Knight Model 

Constant Value 
cd. 0.086 
G I  4.325 
CPl 0.179 

C62 1.80 
C.1 1.01 

c e 3  0.10 
ck 0.0 
c h  0.0857 

There are certain fundamental properties of 
compressible turbulent flows which any accept- 
able turbulence model must be capable of pre- 
dicting with reasonable accuracy. One specific 
example is the compressible Law of the Wall, 
first derived by Van Driest [14]. Consider a 2-D 
compressible turbulent boundary layer on a flat 
plate with zero pressure gradient. The velocity 
components (ulru2,u3)  = ( u , v , w )  along the co- 
ordinate directions ( x I , x ~ , x ~ )  = (x,y,z) where 
x is aligned with the mean flow direction and y is 
normal to the plate. The Reynolds shear stress 
is -pu"v". On the basis of a simple mixing 
length argument for the Reynolds shear stress 

- 

-pu"~" = (%) au 

Van Driest derived the relation3' 

U* 
U+ = -logy+ n + B U .  

where 

2A2ulu, - B 
U+ - - A  5 [d ( d m  ) t 

d m  11 sin-' ( 

(154) 

(155) 

where U .  = is the friction velocity, rw 
is the (local) wall shear stress, pw is the (lo- 
cal) wall density, y+ = yu./u,, U.  and Me are 
the velocity and Mach number at the edge of 
the boundary layer, Taw is the adiabatic wall 
temperature, Tw is the (actual) wall tempera- 
ture, IC = 0.41 is Von Karman's constant, and 
h = 5.0. Note that B is also equivalent to 

(157) 
Taw 

Tw 
B = - -  

"The expression includes the effect of non-unity tur- 
bulent Prandtl number, not originally considered by Van 
Driest. See, for example, Sun and Childs [82]. 
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since where 

k 2  
Pt = Pc,; 

Eq (160) may be integrated and yields within 
the turbulent region 
- 

(165) 
,, ,, -pu v = rw 

where r,,, is the (local) wall shear stress. Sim- 
ilarly, Eq (161) may be integrated and yields 
within the turbulent region 
~- 

(166) 
,, ,, I, ,, -cppT v - PU v U = -qW 

Experimental data supports this result [7, 141. 

It is possible to demonstrate that (155) can be 
derived for most turbulence models. This was 
first shown by Saffman and Wilcox [83] for the 
two equation turbulence model developed by 
Saffman [61] and extended to compressible flows 
by Wilcox and Alber [62]. A derivation for the 
k-w model is presented in [15]. 

We present the derivation for the k - c  turbu- 
lence model. Within the lower portion of the 
zero pressure gradient turbulent boundary layer, 
the total shear stress -pu”v” + pau/ay  is ap- 
proximately constant 

where 

(159) is the heat transfer at the wall. Using (87), 

By comparison with the streamwise momentum 
equation (73), this implies that convective ef- 
fects are negligible in this portion of the boun- 
dary layer. It is reasonable to assume that con- 
vective effects are likewise negligible in the con- 
servation equations for energy, k and E.  Thus, 

Assuming a Crocco-type relationship T = T(u) ,  

- cp au dT qw 
Pt-- + r w u  - 

PTt a y  du - the equations are4’ 

0 = - a [-cppT”v”-q,+ 

a (It*) 

a y  

-au 0 = - p u v  - - - P E +  
a y  

a y  QkP BY 
E-au €2 0 = -C1-pu v - - C z p - +  k a y  k 

which may be directly integrated 

and since T + T,,, as U + 0, 

where 

‘‘A slightly different form of the t equation has been 
utilized wherein the diffision term is 

Assume a solution for k of the -arm 

2 p k  = au, 

to simplify the analysis. 

(174) 
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where a is a constant. Then (162) yields where E is a constant. Using (175) and inte- 
grating, the expression for the velocity to lowest 
order is (175) 

U* 
U+ = -logy+ n + B U ,  Substituting into (163) assuming E = € ( U ) ,  

where 

where 
U U = -  

Comparison with (156) yields 

and 

a 2 -I D(U) = = (1 t BU - A  U ) (179) 

In the incompressible limit, Eqs (162) and (163) 
admit solutions [15] 

Pw 

A = A  
B = B  
B = i r  

Using (158), the second equation implies 

where the Stanton number Ch is 

(190) 
qw 

Ch = 
~ e u e c p  ( T w  - Taw)  

where qw is the heat transfer to the fluid (posi- 
tive if heat is transferred to the fluid), Tw is the 
wall temperature, and Taw is the adiabatic wall 
temperature. Eq (189) is the Reynolds analogy. 

The asymptotic forms for k and E are 

where 

n =  /- 

An asymptotic sc tion of (176) can : obtained 
in the limit Re + m where Re is the Reynolds 
number. Note that 

.=.p cf Tw (184) 

and the skin friction coefficient c f  + 0 as 
Re + CO. The solution, obtained41 by the 
WKBJ Method [84], is 

P W 2  

Jc; p k  - - 

Eqs (186), (191) and (192) can be used to for- 
mulate boundary conditions in the vicinity of 
the wall outside the viscous sublayer (wall func- 
tions) as described, for example, in Jacon and 
Knight [85]. 

E - E ( 1 t B U - A U )  2 2 114 

“Two solutions are dowed by the WKBJ Method, 
but only one is bounded as y + m. 



5-23 

15 RESULTS 

We present a selection of computations using the 
range of turbulence models described previously. 
The emphasis is on compressible turbulent flows 
in simple geometries. The efficacy of the turbu- 
lence models is determined by comparison with 
experiment. Although the examples described 
below illustrate the typical performance of these 
turbulence models, the selection is by no means 
exhaustive. 

In comparing computations and experiment, we 
employ terms such as “excellent”, “good”, “fair” 
and “poor”. The precise definition of these 
terms is, in the author’s opinion, impractical 
although there is reasonably uniform confor- 
mity amongst researchers in their use. In gen- 
eral, we employ the following qualitative defi- 
nitions. “Excellent” agreement implies either 
agreement to within the experimental uncer- 
tainty or plottable accuracy.” “Poor” agree- 
ment implies both significant quantitative M e r -  
ences (e.g., percentage relative differences which 
are several times the experimental uncertainty) 
and disagreement in the trends (e.g., the exper- 
imental data  increases with z and the computed 
results decrease with 2). “Fair” and “good” are 
qualitative judgments intermediate between the 
two extremes of excellent and poor. An “accu- 
rate” prediction also means “good” to “excel- 
lent”. 

15.1 Flat Plate 

The simplest configuration for a bounded com- 
pressible turbulent shear flow is a boundary 
layer on a flat plate with no pressure gradient. 
In general, all turbulence models accurately pre- 
dict the mean flow properties,’l’ e.g., skin fric- 
tion coefficient,4‘ heat transfer coefficient, and 

“Agreement to within plottable accuracy implies that 
the differences between the two results are indistingnish- 
able on an appropriately scaled plot. 

”Except possibly at low Reynolds numbers; see, for 
example, Cebeci et a1 (401. 

“The local sldn friction coefficient is defined 

(193) 

Sometimes, the notation !j p.u: is employed to denote the 
dynamic pressure based on condilions at the local edge of 
the boundary layer, which may differ in the experiment 

mean profiles of velocity and temperature. In 
Fig. 1, the predicted skin friction coefficient 
cf using the Cebeci-Smith model is compared 
at  several different Mach numbers with exper- 
imental data  for an  adiabatic flat plate [40]. 
The Reynolds number Re, based on distance I 
from the leading edge varies among the differ- 
ent experiments. In each case, the ratio of c l  a t  
the specific Mach number to the incompressible 
cf a t  the same Re, is shown. Also displayed 
is the SpaldingChi correlation [as]. The pre- 
dicted cf is within the experimental uncertainty 
indicated by the data  scatter. In Fig. 2, the 
Cebeci-Smith model is compared with experi- 
mental data  of Winkler and Cha [87] for a non- 
adiabatic flat plate boundary layer a t  Mach 5.2 
and T,,,/T. = 5.145 for Stanton number (190) 
and skin friction c0etEcient.4~ 

Figure 1: Skin friction coefficient us Mach num- 
ber on adiabatic flat plate. Open symbols are 
computed values using Cebeci-Smith model, and 
closed symbols are experimental values (from 
1401) 

In Figs. 3 and 4, the computed skin friction 
and momentum t h i h e s s  Reynolds number Reo 
using the Baldwin-Lomax model are compared 

from the freestream dynamic pressure $ p-u?, upstream 
of the Rat plate. 

“Using the empirical formula [7] 

1 
where r P i s  , the experiment of Winkler and Cha 
corresponds to T,/T.., = 0.88. Alternately. lining (158). 
T.,/TnY =0.85.Thirirnplierncoldwcrll(i.e..T.. < T a u . ) .  
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Figure 2: Stanton number St and skin friction 
coefficient cf us Reo on a flat plate. Symbols are 
experimental values, and solid line is computed 
values using Cebeci-Smith model (from [41]) 

with the correlation of Hopkins and Inouye [88] 
for an adiabatic flat plate boundary layer a t  
M, = 1.5 and 2.85. The comparison is good. 

Figure 4: Res us Re, on adiabatic flat plate. 
Open symbols are Hopkins-Inouye correlation, 
and solid line is computed result using Baldwin- 
Lomax model (from [44]). 

1 I I I I I I I I 
0 I 4 m I i o  I I  14 11 

IO-~h. ,  

Figure 3: Skin friction coefficient us Re, on ad- 
iabatic flat plate. Open symbols are Hopkins- 
Inouye correlation, and solid line is computed 
result using Baldwin-Lomax model (from [44]). 

In Fig. 5, the computed skin friction for an adia- 
batic flat plate boundary layer using the Wilcox 
k-w model with several different compressibility 
corrections is compared to  the Van Driest cor- 
relation [88] for Mach numbers up to  five. The 
comparison is very good. 

In Fig. 6, the computed skin friction for an adia- 

0.0 o'2 L 
0 I 2 3 4 5 

M.W 

Figure 5: Skin friction coefficient us Mach num- 
ber on adiabatic flat plate. - k-w with 5' = 0 
and 5' = 312, -- Sarkar with 5' = 1, - . - 
Zeman with 5- = 314, o Van Driest correlation 
(from 1151) 



batic flat plate at Re8 = IO' using the Speziale- 
Sarkar-Gatski (SSG) model is compared with 
the correlation of Van Driest [88]. The agree- 
ment is very good. Similar close agreement is 
obtained for cold wall flat plate boundary layer 
[W. 

Adiabatic Wall 

Van Oriasl Corralation - 
0 SSC Modal 

0.0 I 
0 2 4 6 8 10 

M, 

Figure 6: Skin friction coefficient us Mach num- 
ber on adiabatic flat plate at Reo = lo4. o 
Speziale-Sarkar-Gatski model, - Van Driest 
correlation (881 (from [IS]). 

15.2 Transonic Bump 

An axisymmetric transonic shock wave turbu- 
lent boundary layer interaction was generated 
by an thin wall cylinder with a circular arc bump 
[89] as shown in Fig. 7. The Mach number range 
is M, = 0.43 to 0.925. The Reynolds number 
Re, = 6.1 x loe at M, = 0.875 based on dis- 
tance of the leading edge of the bump from the 
leading edge of the cylinder. The chord of the 
bump e = 20.3 cm and the thickness ratio is 
0.0936. A strong embedded shock formed on 
the downstream portion of the bump causing a 
massive separation of the boundary layer. Com- 
putations were performed by Johnson [57] using 
the Johnson-King model [57], and by Horstman 
and Johnson [go] using both the Cebeci-Suith 
and Jones-Launder (k - c) models. 
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''.4RATE0 

TEST FLOW 

SEPARATE0 

Figure 7: Transonic bump (from [57]) 

-26' 
,4 .I .S 1.0 1.2 1.4 1.6 

XIC 

Figure 8: Surface pressure coefficient for tran- 
I 

The computed and experimental surface pres- 
sure coefficient cp is shown in Fig. 8 for M, = 
0.6 to 0.925. Results are presented for the [57]) 

sonic bump - Johnson-King, - - - Jones- 
Launder, -- Cebeci-Smith, 0 experiment (from 
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Johnson-King model a t  six Mach numbers, and 
for the Cebeci-Smith and Jones-Launder (LE) 
models at three Mach numbers. The Johnson- 
King model is clearly superior. In particular, 
Johnson-King accurately predicts the location of 
the embedded shock which is indicated by the 
abrupt decrease in -e, (e.g., at z / c  0.6 for 
M, = 0.875). 

The predicted compressible boundary layer dis- 
placement thickness 6' is displayed in Fig. 9 for 
M, = 0.875. On the bump (0 < z /c  < l), the 
Johnson-King provides the most accurate pre- 
diction of 6'. This is expected, since the dis- 
placement thickness, in combination with the 
surface shape, determines the pressure distri- 
bution and thus the location of the embedded 
shock 

XIC 

Figure 9: Displacement thickness for transonic 
bump - Johnson-King, - - - Jones-Launder, 

Cebeci-Smith, 0 experiment (from [57]) 

The velocity profile a t  the trailing edge of the 
bump (z = c) for M, = 0.875 is shown in 
Fig. 10. The Johnson-King model is again supe- 
rior, with the Cebeci-Smith model yielding the 
worst prediction. 

The separation and reattachment locations for 
0.43 < M, < 0.925 are presented in Fig. 11 
for the Johnson-King and Jones-Launder mod- 
els. The Johnson-King model is more accurate. 

2 5 -  

2.0 - 

1 5 -  

E 
> 

1 0 -  

M.  - a n 7 5  

-.50 . 25 0 2 5  .50 .E 1 00 1.25 

Figure 10: Velocity profile a t  model trailing 
edge for transonic bump - Johnson-King, - 
- - Jones-Launder, - - Cebeci-Smith, 0 ex- 
periment (from [57]) 
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Figure 11: Separation and reattachment loca- 
tions for transonic bump - Johnson-King, 
- - - Jones-Launder, A experiment (from [57]) 



15.3 Transonic Airfoil I 

A transonic shock wave turbulent boun- 
dary layer interaction was generated on an 
NACA 0012 airfoil [91] a t  angle of attack. 
The Mach number range is Mi = 0.55 to 
1.1 and the Reynolds number Re, = 9 x lo6  
based on the chord. Computations by Coakley 
[92] (using the Cebeci-Smith, Baldwin-Lomax, 
Johnson-King and q-w models) and King (931 
(using the Baldwin-Lomax, Cebeci-Smith and 
Johnson-King models) are presented herein. 

The computed and experimental surface pres- 
sure on the airfoil are shown in Figs. 12  and 13 
for the computations by Coakley and King, re- 
spectively. The Johnson-King model is clearly 
superior in predicting the pressure distribution 
(and, in particular, the embedded shock loca- 
tion) on the suction surface . 

-cP 

1.2 

.O 

0 

0 EXPT. 

.. . . ..... 
-.E/ ,E". I , , 

-1.2 
0 .2 A .O .a 1.0 

WC 

Figure 12: Surface pressure on NACA 0012. 
C-S Cebeci-Smith, B-L Baldwin-Lomax, J-K 
Johnson-King (from [92]) 

15.4 Transonic Airfoil I1 

A transonic shock wave turbulent boundary 
layer interaction was generated on an RAE2822 
airfoil [94] a t  angle of attack. The Mach num- 
ber is M, = 0.750, the Reynolds number Re, = 

0 EXP 
6.L 
c 4  
J.K 

--- 
......... - 1 .a 

Figure 13: Surface pressure on NACA 0012. 
C-S Cebed-Smith, B-L Baldwin-Lomax, J-K 
Johnson-King (from [93]) 

6.2 x lo6 and angle of attack a = 3.19°?6 Com- 
putations were performed by Hellstrom et al 
[96] using the four turbulence models, namely, 
Baldwin-Lomax, &-E, and two versions of a Rey- 
nolds Stress Equation model. 

In Fig. 14, the computed and experimental sur- 
face pressure coefficient cp is displayed. The 
boundary layer on the upper surface separates 
due to the embedded shock wave. All of the tur- 
bulence models predict separation in the vicin- 
ity of the shock. For the Baldwin-Lomax model 
computation, the boundary layer does not reat- 
tach on the airfoil surface. Although the Rey- 
nolds Stress Equation model provides the most 
accurate prediction of the shock location, it 
nonetheless overestimates the location of the 
shock by approximately 0.05~. 

In Fig. 15, the computed and experimental mo- 
mentum thickness E/c is shown. The Reynolds 
Stress Model displays the closest agreement with 
experiment. 

"In order to compensate for blockage effects in the 
wind tunnel test, the computed test conditions [95] were 
M, = 0.754 and (I! = 2.57'. The Reynolds number was 
unchanged. 
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& 

Figure 14: Pressure coefficient vs r / e  for 
RAE2822 airfoil (from [96]) 

~ 

f 

Figure 15: Momentum thickness Ole WJ z / e  for 
RAE2822 airfoil (from [96]) 

15.5 Tkansonic Nozzle 

A 2-D transonic shock wave turbulent boun- 
dary layer interaction was generated in a noz- 
d e  comprised of a straight upper surface and a 
lower wall with a bump [97]. The experimen- 
tal configuration is shown4' in Fig. 16. The 
inflow Mach number M, = 0.63, and the Rey- 
nolds number based on the momentum thickness 
Res = 3.8 x lo3.  The second throat controls the 
downstream pressure to enable a normal shock 
to be fixed in the vicinity of the trailing edge 
of the bump. The flow structure is shown in 
Fig. 17. Computations were performed by De- 
grez et al [98] using the Baldwin-Lomax and k-6 

models. 

Figure 16: Transonic nozzle (from [97]) 

Figure 17: Flow structure for transonic nozzle 
(from [97]) 

In Fig. 18, the computed and experimental sur- 
face pressure is displayed. The agreement up- 
stream of the shock is excellent. In the vicin- 

"The upper bump waa removed in the experiment. 
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ity of the shock wave boundary layer interac- 
tion, the Baldwin-Lomax model more accurately 
predicts the location of the initial pressure rise, 
while the k-e  model provides a more accurate 
prediction of the plateau pressure.48 

Figure 19: Velocity profiles for transonic nozzle 
- -  k - e .  - - - Baldwin-Lomax. o emeriment 

Figure 18: Surface pressure for transonic nozzle 
-- k - e, - - - Baldwin-Lomax, o experiment 

(from [98]) 

(from [981) 

In Fig. 19, the computed and experimental 
mean velocity profiles at four successive z lo- 
cations me shown. The k - c  model predictions 
are in close agreement with experiment and su- 
perior to the Baldwin-Lomax model. 

The definition of the Baldwin-Lomax outer func- 
tion (96) can lead to pathological behavior for 
b in shock wave turbulent boundary layer 
interactions. In Fig. 20, the computed distribu- 
tion of b us z is di~played.'~ An abrupt and 
unphysical rise in n,,,,,x is observed at z = 3.0 
due to the large value of vorticity in the vicinity 
in the quasi-normal shock wave in the nozzle. 
This behavior can be eliminated by ad hoc re- 
striction of allowable values of & as described, 
for example, in Degrez et al [98], Visbal and 
Knight [49], and Degani and SAX [50]. 

"For 2-D separated flows, the surface pressure ia a p  
proximately constant in the separation region (see. for 
example, Green [99]). 

''The distribution of nm., is based on the converged 
solution obtained with the modified Baldwin-Lomax 
model (see (981 for details). 

Figure 20: Behavior of hx for transonic nozzle 
(from [98]) 
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15.6 Wall Jet of unsteadiness in the experiment [105]. 

A wall jet generates a complex viscous-inviscid 
interaction. Aso et al [loo] performed a series 
of experiments for a 2-D sonic nitrogen wall jet 
injected into a supersonic airstream. The ex- 
perimental configuration is shown in Fig. 21. 
The freestream Mach number M ,  = 3.71, the 
Reynolds number based on the distance 1 from 
the leading edge to the injection slot is Rei = 
2.07 x lo', and the ratio of total pressure in 
the wall jet to the freestream airstream is 0.31. 
The jet causes a strong shock to form upstream 
which separates the incoming boundary layer. 
Computations were performed by Gerlinger et 
al [loll using several versions of the q-w model. 

Figure 21: Wall jet (from [ lo l l )  

The computed and experimental surface pres- 
sure is shown in Fig. 22. The different ver- 
sions of the q - w model display small vari- 
ations in the surface pressure, with the clos- 
est agreement achieved with the length scale 
limitation (correction 1 )  and modified constant 
for the velocity divergence term (correction 2)  
[ loll .  None of the computations accurately pre- 
dict the upstream influence in the surface pres- 
sure. This behavior is typical of zero- and two- 
equation turbulence model predictions for 2- 
D/axisymmetric and 3-D shock wave turbulent 
boundary layer interactions [ l O Z ,  1031. For the 
Z-D/axisymmetric shock wave turbulent boun- 
dary layer interaction generated by a compres- 
sion ramp, for example, the separation shock is 
observed to be unsteady with gross displacement 
on the order of the incoming boundary layer 
thickness 6, while the computations indicate a 
stationary shock system [102,104]. Possibly, the 
discrepancy between the computed and experi- 
mental surface pressure in Fig. 22 may be at-  
tributable to unsteadiness in the experimental 
separation shock; however, there is no mention 

Figure 22: Surface pressure for wall jet (from 
[ lol l )  

15.7 Supersonic Curved Compression 
Ramp 

An adverse pressure gradient supersonic tur- 
bulent boundary layer is created by a curved 
surface as shown in Fig. 23. The upstream 
Mach number M, = 2.87, the Reynolds num- 
ber Re6 = 1.58 x lo6, and the ratio of incoming 
boundary layer thickness 6 to the radius of cur- 
vature R, of the surface is 0.02 (Case l) and 
0.10 (Case 2).  Experiments were performed by 
Smits and his colleagues [106, 1071. Computa- 
tions were performed by Lee et al [lo81 using the 
Baldwin-Lomax, k - c and Lee-Taulbee-Holden 
Reynolds Stress Equation models [108]. 

In Fig. 24, the computed and experimental sur- 
face skin friction coefficient cf is presented for 
Case 2.  The experimental c l  is determined by 
two different methods (Preston tube and veloc- 
ity extrapolation). The computed cf is within 
the experimental uncertainty. 

In Figs. 25 and 26, the computed and ex- 
perimental turbulent normal and shear stress 
are shown. The Lee-Taulbee-Holden Reynolds 
Stress Equation model displays closer agreement 
with the normal Reynolds stress than the k - c  
model; however, the opposite holds for the Rey- 
nolds shear stress over most of the boundary 
layer. 



t 
Figure 23: Geometry and surface pressure for 
curved compression ramp (from [108]) 

0 . I ~ O I - O Y  t 

Figure 24: Skin friction us 216 for supersonic 
curved compression ramp (Case 2). o Ex- 
periment (Preston tube),  o Experiment (veloc- 
ity profile extrapolation), - Reynolds Stress 
Equation ('Mass' version), - - Reynolds Stress 
Equation ('Standard' version), . k - e  model, 
- - Baldwin-Lomax model (from [lO8]) 
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Figure 25: Turbulent normal stress for super- 
sonic curved compression ramp (Case 2). o Ex- 
periment, - Reynolds Stress Equation ('Mass' 
version), - - Reynolds Stress Equation ('Stan- 
dard' version), . . ' k- e model (from [lOS]) 

Figure 26: Turbulent shear stress for supersonic 
curved compression ramp (Case 2). o Experi- 
ment, - Reynolds Stress Equation ('Mass' ver- 
sion), - - Reynolds Stress Equation ('Standard' 
version), ... k - e  model (from 11081) 
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15.8 Supersonic Compression Corner 

The supersonic compression corner generates a 
shock wave turbulent boundary layer interac- 
tion as shown in Fig. 27. The upstream Mach 
number M, = 2.87 and the Reynolds num- 
ber Res = 1.82 x lo6. Experiments were per- 
formed by Smits and Muck [lo91 for comer an- 
gles a = 8",16' and 20'. Computations [77] 
are presented for the Zhang-So-Gatski-Speziale 
model [76]. 

FLOW 

Figure 27: Supersonic compression comer 

In Fig. 28, the mean velocity parallel to  the 
surface is shown for the a = 8'. This flow is 
unseparated [109]. The agreement is excellent. 
The normal Reynolds stress is displayed in Fig. 
29. Upstream of the interaction, (a = -0.0508), 
the agreement between the computation and ex- 
periment is very good. Downstream of the in- 
teraction, differences are evident although the 
computation shows similar trends as the exper- 
iment. A similar conclusion holds for the Rey- 
nolds shear stress (Fig. 30). Additional results 
are presented in [77] for the 16" and 20" cases. 
The conclusions are similar to the 8" case. Also, 
the predicted mean velocity profile shows signif- 
icant differences from experiment in the vicinity 
of the corner for the 20" (separated) case.s0 

"It should be noted that experimental data indicates 
that the separation shock for the (1 = 20' case is unsteady 
with streamwise excursions of O(6). 

Figure 28: Mean velocity (parallel to surface) 
for 8" supersonic compression ramp (from [77]) 

Figure 29: Normal Reynolds stress T,, x lo3 for 
8" supersonic compression ramp (from 1771) 
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Figure 30: Reynolds shear stress T., x lo3 for 8' 
supersonic compression ramp (from [77]) 

15.9 Mixing Layer 

The compressible mixing layer (Fig. 31) is 
formed by two compressible streams with differ- 
ent velocities and temperatures. Experiments 
[110, 1111 have demonstrated that the growth 
rate of the compressible mixing layer is reduced 
relative to the incompressible case, and corre- 
lates with the convective Mach number M, de- 
fined by 

where Q is the speed of sound. 

0.6 

0.4 

0.2 

0.0 - 
0.0 0.4 0.8 1.2 1.6 2.0 

Me 

Figure 32: Growth rate for compressible mix- 
ing layer us M, - - unmodified k - w  model, 
- Wilcox C' = 312, - - Sarkar C-  = 1, - .  - Zeman 
I' = 3/4, o experiment (from 1151) 

Figure 31: Compressible shear layer (from 11121) 

0.0 
0.0 0.5 1.0 1.3 2.0 2.5 3.0 3.5 6.0 

MC 

Figure 33: Growth rate for compressible mixing 
layer us M, (from [112]) 
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Various compressibility modifications to two- 
equation and Reynolds Stress Equation models 
have been proposed to improve agreement be- 
tween the computed and experimental growth 
rate as a function of M,. The width of the shear 
layer 6(x) is observed to  vary linearlys1 with x 
and is given by 

where c6 is a function of M, 

In Figs. 32 and 33, the ratio of the compressi- 
ble to incompressible growth rate C6/C6. us M ,  
is displayed for several variants of the Wilcox 
k - u  model [15] and the Reynolds Stress Equa- 
tion model of Sarkar et al [112]. The effect of 
compressibility on the growth rate is accurately 
predicted. 

15.10 Jet 

The supersonic jet in a quiescent fluid is a com- 
pressible free shear flow. Thies and Tam [69] 
performed a series of computations for jet Mach 
numbers Mj = 0.4 to  2.0 and temperature ra- 
tios from 1.0 to 4.0 using the k - c  model with 
the ~ o r r e c t i o n s ~ ~  of Pope [70] and Sarkar (711. 
Moreover, Thies and Tam proposed a new set 
of values for the constants in the k - c model 
(see Table E), on the basis of the argument that 
the large scale eddies are dependent on the flow 
geometry, and hence no single set of turbulence 
constants in a Reynolds-averaged Navier-Stokes 
model can be expected to yield accurate results 
for all types of turbulent flows. 

In Fig. 34, computed and experimental mean 
velocity profiles are displayed for the cold, Mach 
0.4 axisymmetric jet configuration of Schreck et 
al [113]. The agreement is excellent. In Fig. 

"Outside an inception region near the trailing edge of 
the splitter plate in Fig. 31. 

"The correction of Pope [TO] was developed to correct 
the observed inability of the t - r  model to accurately pre- 
dict the spreading rate of an incompressible round jet. In 
the absence of the Pope correction. the k-f model over- 
estimates the spreading rate of the incompressible round 
jet by 40% [TO] .  The correction of Sarkar et  a1 wan de- 
veloped to correct the observed inability of a Reynolds 
Stress Equation model to accurately predict the spread- 
ing rate o f a  compressible free shear layer an described in 
the previous section. 

Y 

Figure 34: Axial velocity for cold, Mach 0.4 axi- 
symmetric jet. Experimental data  from Schreck 
et al [113] a t  0 x = 2.0, o x = 4.0, A x = 6.0, 
XX x = 8.0. - computed (from [69]) 

Figure 35: Centerline Mach number and half- 
velocity point distributions for cold, Mach 2.0 
axisymmetric jet. Experimental data from 
Seiner et al [I141 for 0 centerline Mach num- 
ber, X X  half-velocity radius. - computed (from 

[691) 
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35, the computed and experimental centerline 
Mach number and half-velocity point distribu- 
tions are shown for the cold, Mach 2.0 axisym- 
metric jet configuration. Again, the agreement 
is very good. 

15.11 Afterbody 

The axisymmetric afterbody flow is a separated 
free shear flow (Fig. 36). Experiments were per- 
formed by Herrin and Dutton [115, 116,1171 for 
a cylindrical afterbody at  a Mach number M, = 
2.46 and Reynolds number53 Red = 3.3 x l o6  
based on the cylinder diameter d .  Computa- 
tions were performed by Sahu [118] using the 
Baldwin-Lomax, Chow and k - c Chien models 
and by Tucker and Shyy [119] using two different 
variants of the k-c  model. 

. . . . . . . . . . . . . 

Figure 36: Afterbody geometry and flow struc- 
ture 

In Figs. 37 and 38, the computed and experi- 
mental pressure on the afterbody base is shown. 
None of the turbulence models accurately pre- 
dict the experimental profile. 

In Figs. 39 and 40, the mean streamwise ve- 
locity and turbulence kinetic energy are shown 
at  z / D  = 1.42 which is slightly downstream 
of the end of the recirculation region ( z / D  = 
1.3). The k - c model displays good agreement 
with e ~ p e r i m e n t , ~ ~  while the other predictions 
are in sigruficant disagreement. The predicted 
turbulence kinetic energy at  the same location 
(Fig. 40) shows significant disagreement with ex- 
periment. 

0 5 ,  

0 3  
Z f D  

0 . 2  

0 1  

o n  _ _  
0.0 0 2 0 4 0.6 0 E 1.0 

pb/Px 

Figure 37: Base pressure for cylindrical after- 
body flow . . . Baldwin-Lomax, - . - Chow, 
- k - 6 ,  experiment (from [ l lS] )  

? 4 1  i 

U 

0.00 
0.00 0.25 0.50 0.75 1.00 

PJP,,, 

"The Reynolds number Rea = 1.66 x lo5 based on the 
boundary layer thickness 6 immediately upstream of the 
base. 

"Although larger discrepancies are evident at other z 
locations [118]. 

Figure 38: Base pressure for cylindrical after- 
body flow (from [119]) 
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15.12 Cylinder-Offset-Flare 

The cylinder-offset-flare generates a 3-D shock 
wave turbulent boundary layer interaction. The 
configuration, shown in Fig. 41, is formed by 
a cylinder and an offset 20" half-angle conical 
flare. The ax is  of the conical flare is parallel to 
the axis of the cylinder, but offset by a distance 
equal to  one-fourth of the diameter of the cylin- 
der. Experiments were performed by Wideman 
et al[120] at  a freestream Mach number M, = 
2.89 and Reynolds number Rea = 1.65 x lo5 
based on the turbulent boundary layer thick- 
ness immediately upstream of the interaction. 
Computations were performed by Gaitonde 
et al [121] using the zero-equation Baldwin- 
Lomax model, the one-equation Baldwin-Barth 
(53) and Spalart-Allmaras [55] models, and 
the two-equation k - 6 model. Computations 
were also performed by Edwards and Chan- 
dra (1221 using the one-equation models of 
Baldwin-Barth 1531, Baldwin-Barth-Goldberg- 
Ramakrishnan [123], Edwards-McRae [122] and 
Spalart-Allmaras [55]. 

r l  R 

1 . 4  

1 . 2  

1 . o  

0 . 6  

0 . 8  

0 4  

0 . 2  

0 0  

Figure 39: Streamwise mean velocity for 
cylindrical afterbody flow at  z / D  = 1.42 
-. - Baldwin-Lomax, . . . Chow, - k - E ,  o ex- 
periment (from (1181) 
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k l u z  

Figure 40: Turbulence kinetic energy for 
cylindrical afterbody flow at  z / D  = 1.42 

Baldwin-Lomax, ' .  Chow, - k - 6 ,  o ex- 
periment (from [118]) 

M-2.83 

Figure 41: Cylinder-Offset-Flare (from [121]) 

The surface pressure in shown in Figs. 42 
and 43 where 0 = 0" is the upper surface 
and 0 = 180" is the lower surface. The lc- 
cation of the initial pressure rise is accurately 
predicted by all models except Baldwin-Barth- 
G~ldberg-Ramakrishnan.~~ However, all mod- 

"It should he noted that the experimental shock sye 
tern WRS stationary for this flow [120]. For 2-D separated 
turbulent compression ramp flows [102], the computed 
and experimental surface pressure generally display sig- 
nificant disagreement upstream and in the separated re- 
gion, likely due to the inability of the RANS computa- 
tions to predict the unsteady shock motion observed in 
the experiments. 
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Figure 42: Surface pressure for cylinder-offset- 
flare. BL Baldwin-Lomax, BB Baldwin-Barth, 
SA Spalart-Allmaras, kc  ( M l )  k - c (mesh l), 
kc  (M2) k - c  (mesh 2), J juncture location at  
particular 8.  (from [121]) 

1 .o 
PP- 

1 .o 

1 .o 

1 .o 

-10.0 .5.0 0.0 5.0 10.0 15.0 20.0 25,O 
X . X, (cm) 

Figure 43: Surface pressure for cylinder-offset- 
flare. EM Edwards-McRae, BB Baldwin- 
Barth, SA Spalart-Allmaras, BB(GR) Baldwin- 
Barth-Goldberg-Ramakrishnan (from [122]) 

Figure 44: Surface skin friction for cylinder- 
offset-flare. BL Baldwin-Lomax, BB Baldwin- 
Barth, SA Spalart-Allmaras, kc  ( M l )  k-c (mesh 
I), kc  (M2) k - c  (mesh 2), J juncture location 
at  particular 8. (from [121]) 

. D Y  
- E M  ........ 

t . . . .  . . . .  I . . . .  I , . * .  . I 

.5,MXI O.Oo0 5.WO 1O.OW 15.0W 20.000 
X . X- (cml 

Figure 45: Surface skin friction for cylindt - 
offset-flare. EM Edwards-McRae, BB Baldwin- 

Bath-GoldbergRamakrishnan (from [122]) 
B a t h ,  SA Spalart-Allmaras, BB(GR) Baldwin- 
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els display some disagreement with experiment 
downstream. 

The skin friction coefficient c l  is displayed in 
Figs. 44 and 45. The location of the initial drop 
in cf is accurately predicted by all models except 
Baldwin-Barth-Goldberg-Ramakrishnan; how- 
ever, there are significant discrepancies for all 
models within and downstream of the interac- 
tion region. 

The surface oil flow pattern is displayed in 
Fig. 46 for the one-equation Baldwin-Barth, 
Edwards-McRae and Spalart-Allmaras models, 
and the experiment. The lines of separation 
(LS) and attachment (LA) are predicted with 
reasonable accuracy by all models; however, 
the detailed features within the separated re- 
gion M e r  between the computations and ex- 
periment, and in particular between the compu- 
tations themselves. 

x.4 on 

b) Baldwin-BsrCh d) Esperimmt 

Figure 46: Surface oil flow pattern for cylinder- 
offset-flare near 0 = 180". LA line of attach- 
ment, NA node of attachment, SS saddle of s e p  
aration, LS line of separation, NS node of sep- 
aration, SA saddle of attachment (from [121]). 
For a discussion of the topology of 3-D separated 
flows, see Tobak and Peake (1241. 

15.13 Single Fin 

The single fin geometry is a wedge of angle a 
attached normal to a flat plate (Fig. 47) on 
which an equilibrium turbulent boundary layer 
has developed. The wedge generates an oblique 
shock wave which interacts with the turbulent 
boundary layer on the flat plate. The fin is 
assumed semi-infinite in height and length. A 
detailed assessment of several turbulence mod- 
els for several different configurations of the 
single fin geometry is described in Knight and 
Degrez [125]. Herein we present results for a 
single configuration for Mach number M, = 
4.0, fm angle a = 20" and Reynolds number 
Re6 = 2.1 x lo5 based on the boundary layer 
thickness 6 immediately upstream of the inter- 
action. The experimental data  was obtained 
by Kim et al [126]. Computations were per- 
formed by Edwards [122] (using the Spalart- 
Allmaras-Edwards model [122]), Horstman [127] 
(using the k - c  model), Knight [127](using the 
Baldwin-Lomax model) and Panaras 1511 (using 
the Baldwin-Lomax-Panaras model). 

rln " 

Figure 47: Single fin geometry 

The surface pressureS6 is shown in Fig. 48. The 
Baldwin-Lomax-Panaras and Spalart-Allmaras- 
Edwards models are the most accurate. Both 
models predict the surface pressure in the 
plateau region (36" 5 p 5 47") within 5% 
to 10%. Also, both models display a pressure 
trough at p = 32O, in agreement with experi- 
ment, although the predictions differ from the 
experimental value by 30%. Both models over- 
estimate the peak pressure in the vicinity of the 
corner by 11%. The predictions of the Baldwin- 

"'The abscissa p = tan-'[(r-z,)/(z-z.)] is the an- 
~ I P  on the flat plate measnrcd relative to the freestrewn 
direction. Outside an initial inception region nenr the 
fin leading edge associated with the virtual conical origin 
at (z..zo), the surface pressure is conical (for a physical 
description, see [128, 1291) and thus depends only on the 
angle 0 .  
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Lomax and k - c models exhibit the general 
trends of the experiment, but are less accurate. 

d '  . 

f 
9 0  3l U)  50 60 

Figure 48: Surface pressure for single fin 

The surface streamline angle on the flat plate 
is displayed in Fig. 49. The Baldwin- 
Lomax-Panarasis again the most accurate, with 
the Spa la r t -has -Edwards  model providing 
nearly comparable results. The principal Mer-  
ence between the two predictions is in the region 
of the secondary separation at p = 40". Again, 
the Baldwin-Lomax and k - -E models show gen- 
eral agreement with experiment, but are less ac- 
curate. 

B (dog) 

- gY*lrmuAunr 
BLw*a.lmu ......_. 

-amd.  

B (de@ 

Figure 49: Surface streamline angle for single fin 

The skin Ection coefficient is displayed in 
Fig. 50. The Baldwin-Lomax-Panaras and 
Spa la r t -has -Edwards  models predict a 
peak in the vieinity of the corner which is not 
evident in the experiment;67 in particular, their 
computed values at the experimental location 
p = 26.5' are substantially above the experi- 
ment. Additional measurements in the region 
22" < p < 26' would be helpful in determining 

"Corrected data for ,9 = 22' and 26.5', provided by 
Prof. C. Settles, is induded in Fig. 50. 

whether a peak appears.58 Elsewhere, all four 
models provide generally good agreement with 
experiment. 

Figure 50: Skin friction coefficient for single fin 

15.14 Double Fin 

The double fb ("crossing shock") geometry con- 
sists of two wedges of angles a1 and u p  affixed 
normal to a flat plate (Fig. 51) on which an 
equilibrium turbulent boundary layer has devel- 
oped. The wedges generate intersecting oblique 
shock waves which interact with the boundary 
layers on the flat plate and inner fin surfaces. 
The flow parameters are the Mach number M,, 
Reynolds number Rea,, fin angles a1 and a2, 
contraction ratio Lz/L1, throat middle line off- 
set L3/Llr  boundary layer to throat width ra- 
tio b,/Lz, and wall temperature ratio T,/T.,. 
The fins are assumed semi-infinite in height. For 
the symmetric double fin, L3 = 0 .  A detailed 
assesmat  of several turbulence models for sev- 
eral different configurations of the double fin is 
described in Knight and Degree [125]. Results 
are presented for a single configuration for Mach 
number M, = 4.0, a1 = 7 O ,  az = llo, and 
Re6 = 3.0 x 10'. The experimental data was 
obtained by Zheltovodov et a1 [130]. Compu- 
tations were performed by Edwards (using the 
Spalart-Allmaras-Edwards model [122]), Gnedin 
[131] (using the k-t  variant ofXnight [68]), Has- 
san and Alexopoulos (using the k --w model), 
Knight (using the k--E Chien model), Sekar (us- 
ing the Baldwin-Lomax model) and Zha (using 
the Reynolds Stress Equation model of Knight 
[811). 

"Note that the attachment line is p = 26' [128]. 
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Figure 51: Double fin geometry 

In Figs. 52 and 53, the computed surface skin 
friction lines using the k--E Chien model and 
k--E Knight models, respectively, are shown. 
The experimental surface visualisation in dis- 
played in Fig. 54. The incident separation lines 
originating from the fin leading edges (1 and 
2) can be seen in both computations and ex- 
periment. The computed separation line angles 
are within 10% of the experiment. The k--E 
Chien results display a coalescence of the in- 
cident separation lines into a narrow band (3) 
offset to the left side, in agreement with experi- 
ment. This line represents the surface image of 
the boundary between the left and right vortices 
generated by the incident single fin interactions. 
The k--E Chien results also show a second line 
of coalescence form alongside on the right and 
farther downstream (4) associated with a sec- 
ondary separation underneath the left side of 
the right vortex [132], and a line of divergence 
alongside the right fin (5). A similar line of di- 
vergence (unmarked) is near the left fin. 

For the k--E Knight model (Fig. 53), the in- 
cident separation lines do not coalesce near the 
center of the region, but rather continue further 
downstream almost in parallel until they con- 
verge at z = 110 mm to form a narrow band 
of skin fiiction lines (3), which is offset to the 
left side of the channel. This represents the sur- 
face image of the boundary between the left and 
right vortices generated by the incident single 
fin interactions. Lines of divergence are also ap- 
parent near the right fin (4) and left fin (5) 
associated with the incident single fin interac- 
tion. The second line of coalescence observed 
in the k--E Chien results (4 in Fig. 52) is not 
present in this computation. Consequently, the 
k - E Knight model does not predict a secondary 

separation underneath the left side of the right 
v0rtex.6~ 

- 
Figure 52: Computed skin friction lines k - E- 
Chien model for double fin 
1 Left incident separation line 
2 Right incident separation line 
3 Left downstream coalescence line 
4 Right downstream coalescence line 
5 Line of divergence (similar line near left fin) 

~ (mm) 

Figure 53: Computed skin friction lines k - -E- 

Knight model for double fin 
1 Left incident separation line 
2 Right incident separation line 
3 Left downstream coalescence line 
4,5 Lines of divergence 

In Figs. 55 and 56, the surface pressure a ng 
the Throat Middle LineGo (TML) is displayed. 
The computed and experimental surface pres- 
sure on TML are in good agreement for z < 135 
mm for all models, although the computations 
slightly underestimate the extent of the up- 
stream intluence. The computed results in Fig. 
55 do not accurately predict the pressure rise 

’*For a detailed explanation, nee [125]. 
“The Throat Middle Line is the intersection of the flat 

plate with the streamwise plane which bisects the throat. 
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Figure 54: Experimental surface flow for double 
fin 

(beginning at z = 145 mm) associated with the 
shock reflection from the 7" fin, since the com- 
putations omit the boundary layers on the fin 
surfaces. The computed and experimental sur- 
face pressure at z = 46 and 79 mm are displayed 
in Figs. 57 to 60. Close agreement is again ob- 
served between the predictions of all models and 
experiment. 

Present k-r 

k-eChlen 

Figure 55: Wall pressure on TML for double fm 

The surface heat transfer co&cient c h  is shown 
in Figs. 61 to 64. On the Throat Middle Line 
(Figs. 61 and 62), all turbulence models over- 
predict the heat transfer by approximately a 
factor of two downstream of the intersection of 
the shocks (which occurs at z = 93.7 mm). 
At z = 112 mm (Figs. 63 and 64), located 
within the strongly three-dimensional region of 
the flow, all models show significant disagree- 
ment withexperiment. The overpredictionin Ch 
represents an overestimate in qw, since a series 
of studies [Sl, 1331 have demonstrated that the 
computed qw is proportional to the computed 
Tw - Taw. A possible explanation [131] is that 
the turbulence models overestimate the effects 
of the shock-boundary layer interaction on the 

Figure 56: Wall pressure on TML for double fin 

__ Presantk+ 
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... . . . . . . . . 5 
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Figure 5 7  Wall pressure at z = 46 mm for dou- 
ble fin 

2 .  Z, (mm) 

Figure 58: Wall pressure at z = 46 mm for dou- 
ble fin 
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Figure 59: Wall pressure at z = 79 nun for dou- 
ble fin 
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Figure 60: Wall pressure at z = 79 mm for dou- 
ble fin 
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Figure 62: Ch on TML for double fin 
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Figure 63: c h  at z = 112 mm for double fin 

Figure 61: ch on TML for double fin Figure 6 4  ch at z = 112 mm for double fin 



t u  nee production, thereby generating ex- 
cessive turbulence kinetic energy and turbulent 
eddy viscosity, and thus overestimating the tur- 
bulent thermal conductivity. 

The adiabatic wall temperature T,,/T, is 
shown in Figs. 65 to 68, respectively. The k - 6  

Knight and k - w  models display closest agree- 
ment with experiment. 

3.4 1 

Figure 65: Taw on TML for double fin 

+'I 3.4 

Figure 66: T,, on TML for double fin 

4.0. 
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T A W  

Figure 67: Taw at z = 112 mm for double fin 

Figure 68: Taw at z = 112 mm for double fh 

16 CONCLUSIONS 

The extraordinary wide range of scales in most 
compressible turbulent flows of engineering in- 
terest precludes direct numerical simulation us- 
ing the Navier-Stokes equations. Consequently, 
an averaged form of the Navier-Stokes equations 
is employed. Two basic approaches have been 
developed. The fist  is the Reynolds-averaged 
Navier-Stokes equations (RANS), based on en- 
semble averages of the Navier-Stokes equations. 
The second is Large Eddy Simulation, based 
on a spatial filtering of the Navier-Stokes equa- 
tions. The fist  approach, discussed in this pa- 
per, has led to a wide range of models from zero- 
equation to full Reynolds Stress Equation meth- 
ods. Comparison of computed and experimental 
results for a wide variety of compressible tur- 
bulent flows leads to the following conclusions. 
First, no single RANS model has been demon- 
strated to provide close agreement with exper- 
imental data for all cases considered. Second, 
the higher order models tend to provide bet- 
ter agreement with experiment, although this is 
not uniformly true. Third, the best agreement 
is achieved with RANS models customized to a 
specific type of flow (e.g., the k+ model of Thies 
and Tam for jet flows which employed a Werent 
set of constants than the standard k--E model, 
or the Johnson-King model which was specially 
developed for transonic airfoils with embedded 
shocks). Fourth, the surface pressure distribu- 
tion (and, consequently, the mean aerodynamic 
loads on a vehicle) can be predicted with reason- 
able accuracy6l Fifth, the surface heat trans- 

"For 2-D shodr wave boundary layer interactions with 
separation, the turbulence model has a strong influence 
on the prediction, and certain turbulence models (e.g., 
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fer distribution (and, consequently, the mean 
aerothermodynamic loads on a vehicle) cannot 
be accurately predicted for shock wave turbulent 
boundary layer interactions. Sixth, the prind- 
pal features of the flow separation (as deduced 
from surface streamlines) can be reasonably pre- 
dicted; however, detailed features of the surface 
streamline pattern can be strongly influenced by 
the choice of turbulence model and may not be 
accurate. 

With regards to future work, RANS models will 
likely continue to be developed, with greater 
emphasis on customization for specific types of 
flows. From an engineering standpoint, the de- 
velopment of multiple versions of a two-equation 
model, for example, for different types of flows 
can be a very practical near-tenn solution to 
simulation requirements. This is already a prac- 
tice in industry. 

Large Eddy Simulation (LES) will become more 
common in simulation of compressible turbu- 
lent flows. Unlike RANS models, LES com- 
putes the dynamic motion of the large scale 
structures (which are geometry and hence prob- 
lem dependent), while modeling the small scale 
structures (which tend to be more isotropic and 
hence universal). In principle, therefore, LES 
may be more capable of accurate simulation of a 
wide range of compressible turbulent flows with- 
out resort to customization of model constants. 
Moreover, the continued rapid growth in mi- 
croprocessor performance (%.e., the current dou- 
bling of microprocessor speeds every eighteen to 
twenty four months [134]) and development of 
software standards for parallel computing lan- 
guages (e.g., MPI [135]) offers the opportunity 
for use of LES in engineering design in the near 
future.e2 
Johnson-King) are dearly superior. For 3-D shock wave 
boundary layer interactions, the turbulence model has a 
somewhat weaker influence on the prediction. For further 
discussion of the latter, see Knight and Degree [125]. 

%=By way of example, the CDC 6600, introduced in 
1964, was the first computer to employ functional paral- 
lelism as a major design feature [136]. Its clock speed was 
10 M H z .  The CDC 6600 was used for 2-D RANS simu- 
lations using eddy viscosity models. Its performance on 
the LINPACK benchmarks [137] (which tests sustained 
performance in solving a 100 x 100 system of linear equa- 
tions) waa 0.48 MFlops. The SGI Power Challenge / 
Power Onyx R10000, introduced in 1996, provides up to 
18 CPU8 operating at 200 MHe. Its performance on the 
LINPACK benchmarks is 126 MFlops on one processor, 
an increase by a hctor of 263 over the CDC 6600. 
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A TURBULENCE KINETIC 
ENERGY 

In Section 11, it was stated that the Boussi- 
nesq concept of a turbulent eddy viscosity p t ,  
together with the assumption of a constant tur- 
bulent Prandtl number Prt, reduced the closure 
of the system of equations (72) to (75) to the 

determination of p t .  This is not precisely cor- 
rect due to the appearance of the turbulence kin- 
etic energy k in the definitions of the Reynolds 
Stress (80) and total energy (31). If a one- or 
two-equation turbulence model is used, then an 
additional equation for k is typically prescribed, 
and therefore the system of equations is close. If 
an algebraic turbulence model is employed, no 
additional equation for k is specified. In such 
cases, the contribution of k to (80) and (31) is 
ignored. This may be justified in certain flows 
as follows. Consider the magnitude of the terms 
in (31) 

- 1 P = c,T + y U,% + k (197) 

Now 

- [ r(7- l )  (MZ + MZ)] (198) 
2 

t?=c.T 1 +  

where M = m / a  is the mean flow Mach 
number and Mt = &%/a is the turbulence 
Mach number. The turbulence kinetic energy 
k in (31) can be neglected if 

Mt << M (199) 

and 

Mt << d7 7 (4-1)  = 1.89 for air (200) 

These conditions generally hold for adiabatic 
non-hypersonic boundary layers. Using an anal- 
ysis similar to Appendix B, it can be shown that 

where = ~ / i i  is the mean Mach number, 
and ii = @ is the mean speed of sound. 
Fernando and Smits [138] measured turbulence 
statistics in a 2-D adverse pressure gradient adi- 
abatic turbulent boundary layer [138] (Fig. 69). 
The upstream Mach number M ,  = 2.92, and 
the Reynolds number based on the incoming 
boundary layer Res = 1.67 x lo6. Over a signif- 
icant portion of the boundary - layer, their data 
indicates that M 2 wt2. Assuming further that 
tufz = d2, then from (201), 
_ _  
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For the same conditions [139], rz 0.2, and 
thus Mt zz 0.1. Thus, conditions (199) and (200) 
are satisfied, and k may be neglected in (31). 
Now the term $ pk which appears in (80) can 
be combined with the mean pressure p in (40) 
and (41), and since 

then for adiabatic non-hypersonic boundary lay- 
ers it is clear that $ pk can be ignored in (80). 
For hypersonic boundary layers, and for free 
shear flows, these arguments may not holdB3 and 
the importance of k in (80) and (31) must be ex- 
amined on an case-by-case basis. 

Figure 69: Adverse pressure gradient flow (from 
~ 3 8 1 )  

B ON THE RELATION BETWEEN 
FAVRE AND CONVENTIONAL 
REYNOLDS STRESSES 

The relationship between the Favre and conven- 
tional averages is important for comparison be- 
tween computation and experiment. Using (12) 
and (14) i t  is possible to show that 

iir 

It is interesting to compare the relative magni- 
tude of terms I, II and III for the Reynolds 
shear stress - p u  v in a 2-D supersonic tur- 
bulent boundary layer. Fernando and Smits 
[138] measured turbulence statistics in a 2-D 
adverse pressure gradient adiabatic turbulent 

,, (, . 

''For example, the rm8 fluctuating Mach number 
may be as large 88 one in a hypersonic turbulent 

boundary layer [139]. 

boundary layer (Fig. 69). Under these condi- 
tions, the relationships (66) and (70) deduced 
from Morkovin's hypotheses are valid. Thus 

where M = a /dyRT  is the local Mach num- 
ber. The fluctuations U' and v' are roughly 
comparableB4 and therefore 

AssumingB5 that 7 zz (2)3'' then the ratio 
of I I  to I is 

According to the experimental data  of Fernando 
and Smits [138], 

fi 
( ~ - 1 ) M ' y  5 0.15 

U 

By a similar argument, the ratio of III to  I is 

"I' _- 
p ' u ' p ' v '  [ p u ' v ' ] - l  - x [(7-1)M' (209) 

P 

Thus, 

to within approximately 17% or less for the ex- 
periment of Fernando and Smits. This is within 
the experimental uncertainty in the measure- 
ment of - p u ' v ' .  

- 

"The experimental data [138] indicates 5 2 7  for . .  
y/S 2 0.2. 

"Within a factor which is O(1). 
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1. SUMMARY 
Validation of CFD methods is an ongoing process and it 
strongly depends on an assessment of flow-physics models 
employed in this process. On the basis of reliable numerical 
methods whether they are of boundary layer type or thin- 
layer or full Navier-Stokes approaches, predictive capabili- 
ties of turbulence models have to be validated in order to 
achieve accurate answers on the simulation of complex flow 
phenomena. 

Results are presented and discussed for twdimensional 
and three-dimensional flow cases and for a variety of tur- 
bulence models that are nowadays in use in the field of 
aeronautics and, more specifically, in the aeronautics indus- 
try. Moreover, some aspects of transition region modelling, 
hence enabling in general a continuous growth of turbu- 
lence - in contrast to merely "switching on" the desired 
eddy-voscosity turbulence model "abruptly" - are discussed. 

Additionally, attention is paid on problems related to accu- 
racy and efficiency of a proper validation of turbulence 
models and numerical methods. 

2. INTRODUCTION 
Cost effective aircraft design requires extensive work in the 
area of aerodynamics. As a consequence of rapid develop- 
ments in computer technology, numerical mathematics. mesh 
generation and turbulence modelling, computational fluid 
dynamics (CFD) plays an increasingly important role in the 
design context of new andor advanced aircraft by both 
lowering COSIS, reducing the amount of design cycles and 
providing information on critical flow processes which are 
difficult to measure in the wind tunnel. Moreover, the eco- 
nomic viability of the proposed design for a future large 
aircraft will depend strongly on its aercdynamic characteris- 
tics, especially those contributing to fuel consumption and 
load-carrying capacity (Hirschel et al. 1994). 

For a successful design, aiming at cost- and time-effective- 
ness, both excellent ground facilities (wind tunnels) and ac- 
curate computer-based prediction procedures must he avail- 
able. In most circumstances, the aeronautical engineer has to 
exploit both tools to arrive at a design offering characteris- 
tics close to those defined by technological andor market 
requirements. The value of theoretical approaches lies in 
their ability to provide predictions, economically, rapidly 
and flexibly. in areas where measurements are difficult to 
conduct and where insight into details of the flow structure 
can contribute to decisions on design details. 

It is known, however, that CFD is not an exact technology. 
While its basic framework consists of a well-established set 
of partial differential equations describing fluid motion, this 

(Reynolds-averaged) framework is not self-contained 
(closed) and must he combined with approximate theoretical 
models describing the physical processes in question. Turbu- 
lence and - associated with it - transition from laminar to 
turbulent flow are central phenomena, and a proper predic- 
tion of these phenomena is a prerequisite to accuracy im- 
provements of any numerical method. Further important un- 
certainties arise from the geomeuic approximation of the 
solid components - including surface representation and 
mesh resolution aspects - and the transformation of the dif- 
ferential laws into algebraic equivalents by means of 
approximate discretisation technique but also from non-triv- 
ial treatments of (physically) correct boundary conditions. 

Theoretical models feeding into the above framework al- 
ways arise as a synthesis of fundamental physical laws, em- 
pirical input and - very often - intuition. "Engineering" 
intuition, of course, when aiming at accurate simulation re- 
sults is correlated to a "pre"-knowledge about the desired 
(specific) flow case and has to find input into the simula- 
tion process when generating a very first mesh. 

Normally, turbulence models respecting flow physics are 
'calibrated' by reference to nowomplex flows (only), dom- 
inated by one or the other flow feature (strong shear, strong 
compression, rotation, separation, etc.) and mostly applied to 
flows over generic non-complex geometries. Whether any 
particular model is likely to perform well in complex, prac- 
tical situations is a question which can only be answered 
through a broad-ranging test program, usually involving 
model improvement and optimisation. This 'validation' ef- 
fort is not merely concerned with predictive realism. hut 
includes issues such as numerical realizability. stability, con- 
vergence and computational efficiency. 

Validation has been - and still is - a key contributor to the 
steady increase in the level of confidence placed on CFD. 
While CFD is normally used as a means of exploring the 
response to conceptual or evolutionary design changes and 
obtaining insight into complex flow processes, it comes, in 
certain circumstances. close to constituting an often called 
"numerical wind tunnel". Validation is especially important 
when CFD is to be applied to physically complex three-di- 
mensional flows, involving strong shocks, turbulence, shear, 
separation and unsteady phenomena, all features routinely 
encountered in aircraft aerodynamics. As a 'bonus', well- 
validated methods for aircraft-related flows contribute to the 
solution of a range of problems peripheral to external aero- 
dynamics, such as noise, Nrhomachine performance, gas 
emissions, aircraft-ground interaction and environmental as- 
pects. 

Because a computational procedure for fluid-flow prediction 
is an amalgam of many building blocks. most being highly 
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non-linear and interactive, any related validation process is 
rarely straightforward. Its validity and benefits depend on 
pedantic attention paid to consistency of model implementa- 
tion, boundary conditions. geometric representation of the 
flow domain, the disposition of the influence of the numeri- 
cal grid suppaning the solution, error control and the inclu- 
sion of all relevant flow phenomena. 

During the last years and in line with worldwide investiga- 
tions on transition and turbulence modelling, two projects 
funded by the European Commission - EUROVAL (Haase 
et al, 1993) and EWNalidat ion-WII (Haase et al. 
1997) - were particularly dedicated to validation and assess- 
ment of turbulence models for a variety of - very well 
defined - applications. Although restricted at a fint glance 
to sub- and transonic flows, the lessons learnt did not only 
improve the knowledge about what turbulence model to use 
preferably in what application, hut provided also an in- 
creased insight in the physics of the corresponding flow. 

Whatever will be carded out IO assess flow-physics models, 
it is the outcome of a thorough validation pmcess that is 
dictaring whether a model will be eventually employed in 
M improved industrial design methodology. 

Nowadays, it might be a contradiction in itself to achieve 
accurate results with robust turbulence models, however, 
current (and future) investigations show a drastic increase in 
both accuracy and robustness. an indispensihle requirement 
for engineering use in the aerospace industry. The pmcess 
of flow-physics model assessment has not yet been fin- 
ished, moreover, it must be continued in future initiatives 
and projects - in order to assemble the already available 
"parts of the flow-physics model puzzle" properly. 

The present paper provides results from those lessons learnt. 
It is ttying to demonstrate - on the basis of the aformen- 
tioned European collaborative projects - the capabilities 
reached on one hand and will show the detected model 
shortcomings and deficiencies on the other hand on the ha- 
sis of a set of Navier-Stokes solutions for compressible 
flows. Although this contribution is far from providing a 
complete overview, results are going to be presented for 
algebraic, half-, one-equations and two-equations Nrbu- 
lence models as well as Reynolds-stress turbulence models, 
hence covering (nearly) the whole range of turbulence mod- 
els used in the aeronautics industry. 

3. THE GOVERNING EQUATIONS 

3.1 General Remarks 
As turbulence consists of random fluctuations of the flow 
properties, the well-known statistical approach hy Reynolds 
(1895) is used to express all quantities as the sum of mean 
values and fluctuating parts. The most relevant averaging 
forms are the time averaged, ensemble averaged and spatial 
averaged ones. Most often, applications are concerned by a 
time-averaged description of the flow of interest, therefore, 
the Reynolds-averaged equations of motion are considered 
with the statistical means replaced by the temporal one, i.e. 
the time-averaged equations are normally equated with the 
Reynolds-averaged equations. In this Reynolds averaging, 
strictly applicable to stationary turbulence, the time-aver- 
aged flow variable is to be expressed by (assuming incom- 
pressible flows with velocity and pressure fluctuations): 

A = K + A '  with A ? = O  

and the mean value 

X E t )  = 7 A E t  + Z) dr . I T  -TI2 

Applied to incompressible flow, the equations for the mean 
properties are similar to the non-averaged equations apart 
from the correlation term U ,U ,, the so-called Reynolds 
stress term. 

However, in compressible flow, where significant density 
changes occur, even when pressure changes are small, addi- 
tional density and temperature fluctuauons have to he taken 
into account. The Reynolds-averaging procedure - applied 
to the equations descrihing compressible flow - is produc- 
ing extra terms for desity and temperature. e' and T', fluc- 
tuations which are both difficult to handle and model. Favre 
(1965) has introduced mass-averaged quantities accordrng to 

- 

with 

A = A + A "  and pA"=O 

Although this approach leads to a more compact form of 
the governing equations, the resulting turbulent terms cannot 
he identifed with measured quantities. With the knowledge 
that the difference between Reynolds averaged and Fawe 
averaged variables is small for "moderate" Reynolds num- 
bers, this conflict is often circumvented by using again or 
instead the Reynolds averaged equations. In this approach - 
which is applied to all the results discussed below - com- 
pressibility effects are considered by taking into account a 
variable mean density, F. 
Recalling Morkovin's hypothesis that compressibility effects 
on the wall-hounded eddies are relatively small for Mach 
numbers lower than 5 (and perhaps higher), the Favre aver- 
aging is applied for the velocity components and the total 
energy - as well as the Reynolds averaging is applied for 
the density and pressure. Although the majority of turhu- 
lence-model applications for high-speed flows are derived 
from incompressible turbulence modelling, it is noticeable 
that modifications have heeen done and still are needed to 
be improved further to take compressibility effects - in the 
presence of solid walls - into account. To this end, local 
Mach number (Zeman, 1992) or the gradient thereof (Sa- 
kar, 1995) are employed in various classes of turbulence 
models to account for compressible flows Pervieux. 1997). 

A considerable part of developments in turbulence models 
is based on the eddy-viscosity assumption, by adopting the 
Boussinesq approximation which relates the turbulent 
stresses to the mean strain rate. In the same way, the Bous- 
sinesq law relates the the molecular stresses to the instanta- 
nmus strain rate of the Navier-Stokes equations. 

Assuming that the Boussinesq approximation is valid, i.e. 
(only) eddy-viscosity turbulence models are concerned. the 
Reynolds stress tensor 

r.. = - p m  
'I I '  
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3.2 Summary of CFD (Nnvier-Stokes) Methods Used 

3.2.1 Domier ZD Method 
The Navier-Stokes equations describing two-dimensional, 
unsteady and compressible flows in conservation form, are 
solved by means of a finite volume approach using a 
RungeKutta time-stepping method with multigrid accelera- 
tion. 

This code, a singleblock version, utilises blended second 
and fourth order filtering to prevent odd-zven decoupling. 
For the th-stage scheme, filtering is applied only once to 
provide the best damping properties. Numerical dissipation 
is minimized by taking the eigenvalues in x- and y-direc- 
tion independently, and filtering is switched off in the 
boundary layer region by scaling the filter value with the 
ratio of local to fmstream Mach number. For more de- 
tailed information regarding method descriptions, the reader 
is referred to Haase et al (1983). 

The lamesun-based schemes employ residual averaging and 
a variable timestep approach. Moreover, a multigrid ap- 
proach is employed. In most of the 2D calculations, the 
steady state is defined to be reached if the force coefficients 
and the sum of pressure along airfoil (and wake) or in a 
channel does not vary by more than 0.01%. mpically, this 
leads to an L2-norm reduction of about 5 decades in the 
coarsest and further 3 decades in a very fine mesh (results 
in sections 7.1, 7.2, 7.3 and 7.4). 

with p~ being the eddy viscosity and k the turbulent kinetic 
energy. S,, denotes the strain rate tensor. 

Reducing -just for simplicity - the full three-dimensional 
problem to a two-dimensional boundary layer, the Reynolds 
sfress tensor reduces to - au 

i ay 
- u v  = v -  

and - to describe the eddy viscosity - one can introduce 
Prandtl's mixing layer concept 

au v, = I: 1-1 
ay 

where the mixing length, lm, is an unknown 

A combination of Prandtl's mixing length concept with the 
van Driest assumption for the mixing length, 

I ,  = rcy [ I - exp ( - fiy[fL'2)] with A' = 26, 

now provides an equation for the turbulent eddy viscosity 
given above. This approach is often used for the inner part 
of the boundary layer. 

For the outer part of the boundary layer, Clauser's concept 
for the eddy viscosity reads 

vt = k U. a; 
wth the Clauser parameter, k0.0168. U, denotes the veloc- 
ity at the boundar layer edge and 8,' is the incompressible 
displacement thickness 

1 

a; = \[I -51 dy 
11 

when combining the definitions for the inner layer eddy 
viscosity and the outer layer eddy viscosity, one has (simul- 
taneously) derived a two-layer turbulence model, in particu; 
lar the basic CebeciSmith (1974) algebraic turbulence 
model. 

One of the major requirements for a Nrbulence model, 
namely to define turbulence by a "minimum amount of 
complexity" (Wilcox, 1993). is definitely fulfiled by the Ce- 
beciSmith model, however, Wilcox's follow-on comment, 
"while capturing the essence of the relevant physics". does, 
unformoately. not hold for all kinds of flows. Nevertheless, 
the CebeciSmith turbulence model can be applied with 
good predictive accuracy to attached flows, as it can be 
recognized by some of the results presented below. 

Although the deduction of the Cebeci-Smith model was 
said to be based on boundary layer assumptions, all classes 
of algebraic Nrbuleoce models deal with this derivation 
which also holds for the application of these models in 
Navier-Stokes approaches. 

3.2.2 DLR FLOWer Code 
For the three-dimensional flows presented in sections 7.5 
and 7.7, the FLOWer code (Kmll et al, 1996) has been 
utilized, a Jameson-type solver written in cell-vertex form, 
i.e. the flow variables are associated with the cell vertices of 
the mesh. This code solves the NavierStokes equations for 
time-dependent compressible flow. Similar to the above 
mentioned two-dimensional codes, local time-stepping, im- 
plicit residual averaging and multigrid is employed for ac- 
celerating convergence of the solution. The multigrid impie- 
mentation follows the approach of Jameson (1985) and 
Radespiel et al (1990). 

The FLOWer code is a block-structured code in order to 
handle complex geometries. It ensures second order accura- 
cy at block interfaces by using two rows of interface cells 
(a switch for using just one cell is also implemented). 

3.2.3 BAc DELPHIS Method 
The BAe cell vertex code DELPHIS - applied for the 
RAE2822 results using the Kalitzin-Gould turbulence mod- 
el in section 7.1 - uses a 30, finite-volume, multihlock 
approach to solve the full NavierStokes equations. The de- 
pendent variables are stored at the grid vertices and steady 
state solutions are obtained using a Lax-Wendroff time- 
marching iteration procedure. ?he procedure is explicit. us- 
ing local time steps, and requires the addition of artificial 
viscosity to suppress "checkerboard" mode instabilities. The 
Lax-Wcndroff scheme is based on that version proposed by 
Ni (1982) and Davis et al. (1984) which is second order 
accurate. 

The viscous terms require the evaluation of stresses. which 
in turn require gradients for velocity and temperature. These 
gradients are calculated at the centre of each cell by inte- 
grating around the cell using the primary flow variables 
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located at the vertices. The stresses are then averaged back 
to the vertices and the complete Navier-Stokes equations 
can be integrated around each cell. The final updates are 
distributed in a weighted fashion hack to the cell vertices, 
such that each vertex receives an update from each of the 
eight surrounding cells. This procedure provides a compact 
stencil, while ensuring second order spatial accuracy even 
on distorted meshes. 

The artificial dissipation is similar to the popular second- 
fourth order differencing procedure proposed by Jameson, 
Schmidt and Thrkel (1981). The differences are taken along 
grid lines and not in the coordinate directions. A "pressure 
switch" in the form of local second differences of pressure 
is used to restrict the first order smoothing to shock waves 
and allow the third order terms to be applied elsewhere. 

A multigrid scheme is used to accelerate convergence. This 
is an extension of the method by Ni and Bogoian (1989) 
where the residuals are propagated over progressively corn- 
er meshes. The multigrid is implemented in such a way that 
different levels can be selected in different coordinate direc- 
tions. 

3.2.4 Dornier PNS Method 
The results for a cone at incidence, going to be presented in 
section 7.6, have been obtmned by using the Domier PNS 
(Parabolized Navier-Stokes) method, Rieger (1986 and 
1987). 

This method solves the (Euler and) Navier-Stokes equations 
in parabolized form by using a finitsvolume method to- 
gether with an implicit Beam-Warming scheme. The space- 
marching scheme is simlar to a central hfference scheme 
with the consequence that some artificial hssipahon is need- 
ed. According to lameson, second and fourth order damp 
ing is applred with the latter switched off at shocks - 
downgrading the numerical method to first order in that 
area. All necessary boundary conditions are treated implicit- 
ly as well as the second order dissipation operator - to 
improve the stability of the scheme. 

The new results presented in section 7.6 utilized an im- 
provement of the method described. Computations were run 
in "stepback" mode. This approach enables very accurate 
solution at particular cross sections by "setting back" the 
solution of one cross section to the previous one, i.e. "iter- 
ating" the solution at a particular station. The advantage is 
an increased overall accuracy and the additional possibility 
to get very accurate starting conditions. 

4. TURBULENCE MODELS 
A variety of turbulence models from algebraic over 
1l2-equation to Z-equation models has been applied and 
assessed on different twc-dimensional and three-dimension- 
al test cases. The most often used models will k presented 
bnefly in the following; for a more comprehensive descrip 
tion, the reader is referred to the original publications or to 
the already menuoned ECARP book (Haase et al, 1997). 

The algebraic turbulence models described hereafter are 
two-layer eddy-viscosity models, i.e. different definitions 
are employed for the near wall and the outer region of the 
boundary layer. 

According to the eddy-viscosity concept, in the stress terms 
of the Navier-Stokes equations, the molecular (laminar) vis- 
cosity p is replaced by 

P = P I  +pY* 

while in the heat-flux terms, Wc,, = p/Fr is replaced by 

with the kinematic turbulent viscosity, v,=K/t/e. The Prandtl 
numbers are chosen to be R&72 for laminar and Pr,==.90 
for turbulent flows. 

The second coefficient of viscosity, 

1 -2, 
3 

which is related to a zero value for the bulk viscosity, is 
often treated differently. Sometimes the eddy-viscosity con- 
cept is applied also to A, following a replacement of 1 by 
the molecular viscosity p, in other cases the second coefi- 
cient of viscosity is left unchanged, i.e. the molecular vis- 
cosity is used in the definition of 1. 

4.1 CebeaSmith Model 

4.1.1 The Original Model 
In general, the (basic) algebraic Cebeci-Smith turbulence 
model has been already presented in section 3.1, however, 
the computed outer-layer eddy viscosity is normally multi- 
plied by the Klebanoff intermittency function, 

F K b  = [I + 5.5 (y/v/a)"]-' . 
This function accounts for the turbulence becoming inter- 
mittant when - at the boundary ledge - the free stream is 
approached and when only for a fraction of the time the 
flow is turbulent. The KIebanoff function was invoduced to 
avoid that on-and-off character (CekiBrSmith. 1974) and 
offers a correct derivation of the boundary layer thickness. 

A swalled "modified version'' of the Cebeci-Smith model 
IS taking into account separated flow areas by changing the 
definition of the incompressible displacement thickness in 
the following way: 

* 

i.e. the displacement thickness is integrated by taking the 
edge of the separation region as the lower bound for in- 
tegration rather than the wall (with y=O). 

4.1.2 The Granville ModiJicarion 
Granville (1989) has modified the definition for the mixing 
length by using a pressure gradient parameter in the expo- 
nential term of the mixing length equation, 

1 l = k y p  1 - e - , + m l 2 6  ( 
with k14.0 for p J 0  and p=16.4 for p+<O. The shear 
stress profile r+ is given by 

7 +  = 1 + p + y +  

and 
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Although history effects can now be taken into account, the 
infiuence on the global flow behaviour - especially if flow 
separation has to be treated - is small. The reason might be 
that for separated flows the amount of the outer-layer eddy 
viscosity has more influence on the flow than the inner-lay- 
er eddy viscosity. 

4.2 BnldwipLomax Model 

4.2.1 The Original Model 
The Baldwin-Lomax Nrbdence model (Baldwidomax, 
1978) is also a twc-layer algebraic eddy-viswsity model, 
patterned after the CebeciSmith model. The success of this 
model related to its extensive application to various kinds 
of turbulent flows - particularly for three-dimensional ones 
- is based on the fact that it avoids the need of finding the 
edge of the boundary layer and the corresponding displace- 
ment thickness. The eddy viscosity, v,, is given by 

vti for y s y’ 
v , =  [ v, for Y > Y’ 

where y* is the wal-nearest value of the wall-normal direc- 
tion. y, at which the eddy-viscosity values from the inner 
and outer region are identical. In the inner region, the 
Prandtl-van Driest formulation is used. To allow for an 
easy use in thredimensional Navier-Stokes applications, 
the derivative of the wall-normal velocity profile. dddy, is 
replaced by the magnitude of the vorticity and vh reads: 

Vd = P lo1 
with the mixing length 

1 = IE y [I - e-y+/A+l . 
The dimensionless sublayer-scaled distance, y+, is in fact a 
Reynolds number based on the friction velocity, y.  

The constants in the mixing length equation are the wn 
Kannan wnstant, x a . 4 ,  and the van Driest damping 
constant, A+=26. The subscript ’w’ denotes values to be 
taken at walls. For the outer layer, the eddy viscosity is 
proposed as 

V ,  = k CCP FKhb FWAKE 

with two alternate expressions for F ~ A K E ,  

and the constants Ccp=1.6 and Cw~=0.25. 

It should be mentioned that the original value for CWK 
(d.25). as it has been defmed in the original version of the 
Baldwin-Lomax (1978) model, is sometimes changed to 
Cw~=1,0. Although this higher value yields considerably 
stronger interaction - and very often provides a positive 
tendency on the numerical convergence - its usefulness is 
reversed in case of separated flows. The reason is that an 
increase in CWK results in an increase in the outer eddy 

viscosity, thus diminishing the (already originally) underpre- 
dicted separated domain. 

U~ig is the difference between maximum and minimum ve- 
locity in the profile, 

UD@ = U,, - Ud” , 
where Umin is taken to be zero except in wakes. 

The Clauser parameter, k, is again assigned to be a constant 
with k0.0168, although one should consider that it varies 
slightly in the low-momentum Reynolds number range. A 
possible modification to the Clauser constant has been pres- 
ented by Granville, see below. 

The quantities F,, and ynnr me determined from the func- 
tion 

F = y Iwl [I - .-y+/,3+1 

with the exponential term set to zero in wakes. 

The quantity F,, is the maximum value of F that occurs 
in the velocity profile and, consequently. y,, defines the y 
location where F equals F- 

Additionally, the Klebanoff intermittency factor, FKleb, is 
given by 

4.2.2 The Granville Modifiarion 
Granville has shown that the Klebanoff coefficient, C ~ t d ,  
should be a function of the Coles’ wake factor, II In addi- 
tion, the Ccp value, a wnstant in the Baldwin-Lomax mod- 
el, then depends on C ~ l ~ b  in the following way: 

with 

The last two equations have been obtained from a compari- 
son between the outer layer formulations of the Baldwin- 
Lomax and the Cebeci-Smith turbulence model, assuming 
an outer similarity law for the turbulent boundary layer, 
(Granville, 1976). and its validity up to the wall. 

For equilibrium pressure gradients. l7 remains constant in 
the streamwise direction and can be empirically correlated to 
the Clauser pressursgradient parameter. Granville has fitted 
the latter to the Baldwin-Lomax model and derived an ex- 
plicit formula for cxr.6 as a function of a modified Clauser 
pressursgradient parameter, ,!Iv where 

2 0.01312 
“ I e b  = 7 - 0.1724 +! 

with 

with Ut denoting again the velocity at the boundary layer 
edge. Hence, the equations presented above are providing 
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the possibility of introducing flowdependent variables of 
C K , ~ ~  and Q p  into the Baldwin-Lomax model, which are 
indirectly based on - experimentally - confirmed similarity 
laws. 

For low-Reynolds-number flows, Granville has proposed 
an additional modification to the equation for the outer-lay- 
er eddy-viscosity hy changing the normally-kept-constant 
Clauser constant to 

1 
with the kinematic viscosity, v. F w m  is identical to the 
original equation for the Baldwin-Lomax model. The im- 
proved Clauser "factor". k, now varies with the displace- 
men-thickness Reynolds number, Ree=ud *7v. 

A thorough examination of the original Baldwin-Lomax 
constants and the Granville modification shows that even 
for a zero-pressure-gradient flow, e.g. flat plate flow, the 
original Baldwin-Lomax values and the Granville-corrected 
values do not compare: 

TjTtT7 CKleb 0.591 

This result clearly indicates the reduced outer-layer eddy 
viscosity and the improved damping in the outer part of the 
boundary layer when the Granville correction is applied. 
Thus, in case of flow separation the Granville correction 
provides much better results than the original Baldwin-Lo- 
max model and can be easily implemented without increas- 
ing the model complexity. 

Baldwin-Lomax Granville Correction 

4.2.3 The DeganiSEhiff Modification 
Another modification to the Baldwin-hmax model for 
three-dimensional applicmons contaming large re@ons with 
cross-flow separauon that are caused by strong longitudinal 
vortices, has been given by Deganiachiff (1983). It can be 
used with some success for those (vottical) flows and is 
restricting the ymax search in the original BaldwirrLomax 
model to the first maximum reached. In addition, the search 
for ym on subsequent stations is smoothed by taking lnto 
account the ymnx value derived at the neighboring upstream 
station in order to avoid drastic changes in ymar from one 
station to another. This procedure is, by the way, also used 
in the Dornier 2D Navier-Stokes methods. 

43  JohnsowKing Model 
The Johnson-King (1985) model accounts for convection 
and diffusion effects of the Reynold shear stress. Although 
an algebraic eddy-viscosity distribution is used across the 
boundary layer, this formulation is based on an ordinary 
differential equation that is derived from the turbulent kinet- 
ic energy equation. 

The model incorporates again a two-layer approach, but 
uses an exponential blending between the inner and outer 
layer: 

The outer eddy viscosity distribution equals that of the Ce- 
beci-Smith model, except for an additional non-equilibrium 
parameter, ufs). which is a measure for how far the flow is 
away from equilibrium - which is achieved for u(J)=~, with 
s representing the streamwise direction. The outer eddy vis- 
cosity formulation reads 

v,,, = k U< 6: Fueb * a(s) , k = 0.0168 

The inner formulation in the JohnsowKing model differs 
from that proposed by Cebec-Smith by taking the maxi- 
mum Nrbulent shear stress as a velocity scale 

V , ~  = D%y(- mm)'/' , with IE = 0.4 

Instead of using the wall friction velocity, Johnson (1987) 
uses the turbulent shear stress also for the damping term 

D = 1 - exp[- y(- md'/'/vA+], A +  = 15. 

From the equation of the turbulent kinetic energy, lohnson- 
King derived an ordinary equation for the maximum shear 
stress assuming that the path for the maximum kinetic ener- 
gy is (nearly) aligned to the main flow direction. The ODE 
reads 

From left to right, the terms in the ODE represent dissipa- 
tion, production, diffusion and convection. The index m d e  
notes quantities to be evaluated at the position of maximum 
shear stress and L,,, denoted the dissipation length scale de- 
fined by 

L,,,=0.4ym ym 5 0.22Sd 
.!+O.Osa h>O.22Sd 

The constants a1 and Cdif in the ODE are normally set to 
atd.25 and Cdi4.5. 

Assuming equilibrium, the last two terms in the ODE can- 
cel such that LmlJu/Jylm can be interpreted as the equilibri- 
um value of the maximum shear stress. Setting a to unity 
and replacing the maximum shear stress by its equilibrium 
value, yields 

vu9 = v,,[l - ex~(v~,,/~,.,)l 
v , ~ , ~ ~  = 0.0168 Ue d: FGb 

v , ; ~ ~  0%- 

Comparing the definition for equilibrium and non-equilibri- 
um gives the definition for a: 

0 = VI" 1 VILJ,,, 

For the ease of use. Johnson-King proposed a substitution 
for the ODE and a twwstep iteration to obtain a new U 
value from the implicit formulation. In the results discussed 
below, the Johnson-King model bas been used by utilizing 
an Aitken iteration instead of the originally proposed two- 
step iteration. This allows for getting closer to accurate re- 
sults for one particular time-step and is speeding up the 
rate of convergence. Apart from initial time steps. between 
3 and 5 internal Aitken iterations are usually necessary to 
get down to an error norm of less than 1% for the eddy 
viscosity profile. 



4.4 khnson Coakley Model 
When applyng the Johnson-King model to transonic flows, 
often results have been achieved with shock positrons ap  
pearing to much upstream - in contrast to the algebraic 
models where the shock position is found too much down- 
stream. The latter also holds for the Johnson-King model if 
it is run in equilibrium mode, i.e. as a purely algebraic 
model. Most of the Johnson-Coakley (1990) modifications 
to the (original) Johnson-Kmg model affect the eddy vis- 
cosity of the inner layer. A new velocity scale was formu- 
lated, based on the assumption that the law-of-the-wall is 
more valid in the neighbourhood of the wall for attached 
flow than the originally used rmxing length theory. 

The inner layer eddy viscosity now reads 

vd = D'rcyLI, 

with the new velocity scale 

4 = mu, [I - ~ o l / L J l  + J p , / p U , t a n h ( y / L , )  

where 4 is based on the dissipatron length scale, L,,,8 ac- 
cording to 

L, &Ur 

&& + &Um 
L, = 

For computational purposes, a lower limit of 4,=0.005 
should he imposed in order to prevent "overflow errors" in 
the tanh calculation if 4 reaches zero at separation. 

Two additional modifications have been introduced by 
Johnson-Coakley, firstly a hyperbohc blending hetween in- 
ner and outer layer and, secondly, the diffusion term in the 
ODE is set to zero if a hecomes less than unity, i.e. 
I ldnI  is replaced by max(O,um-l). 

Although the new formulation should reduce essentially to 
the original one in case of separation. computational results 
in the subsonic regime with pressure induced separation 
show a deficit for the Johnson-Coakley model with a clear 
advantage for the (original) JohnsOn-King model (Haase et 
al. 1997). 

4.5 Abid et al Model - 
A 3D Extension of the JohnsowKing model 

This 3D extension of the Johnson-King model utilizes the 
original exponential blending of the Johnson-King model 
with an equivalent to the inner layer formulation 

vti = D k y  rA1' 

with 

where the indices m and w denote the maximum-shea- 
svess and wall conditions, respectively. The constant A +  is 
set to A+=17. The outer layer has been reset to the Bald- 
win-hmax formulation in order to circumvent the calcula- 
Uon of the boundary layer thickness and the resulting dis- 
placement thickness. However, the outer layer eddy 
viscosity formulation (by Baldwin-hmax) has been multi- 
plied agam by the non-equilibrium factor, U: 

6-1 

vm = 0.0168C, F,, FKIeb a 

with ccpT1.6. The original ODE changes into a linear par- 
tial differentral equation (PDE) that can be considered in a 
time-dependenl form in order to utilize the time stepping 
algorithm - which is already in use for the momentum 
equations: 

with 

To resolve for non-equilibrium, the authors propose the 
timdependent relation 

to be updated during the iteration 01 time-stepping process 
rather than using the originally proposed Johnson-King 
twc-step algorithm. 

4.6 General Remarks on %Equation lbrbulence Models 
Tbrbulence models presented so far are using algebraic rela- 
tions to describe the eddy viscosity. In addition, the non- 
equilibrium models are accounting for convection and diffu- 
sion effects of the Reynolds shear stress utilizing an 
ordinary differential equation. Models strongly rely on terms 
related to wall-distance, thus performing well on flows with 
clear boundary layer character. The situation, however. he- 
comes more critical on flows which are both more complex 
from a physical and geometrical point of view. Concerning 
the latter first, the application of the models presented need 
special treatment already in the case of a corner flow where 
two different boundary layers are merging and where wall 
distance cannot be calculated straightforward. In those cases, 
differential turbulence models - and preferably those which 
do not rely on wall-distance terms - can he used more 
successively. Of course, differential models. accounting for 
non-equilibrium effects by incorporating convection, diffu- 
sion, production and dissipation (as already the IIZ-equa- 
lion models are doing). exhibit a much better performance 
compared to the purely equilibrium ones. 

The models presented in the following are so-called low 
Reynolds number models, i.e. a description of the turhu- 
lence processes is provided across the entire flow domain 
including the (low-Re) near wall region. In contrast to that, 
high-Re turbulence models need auxiliary wall modelddefi- 
nitions for a proper description of that area. Those wall 
laws are derived on the assumption of a logarithmic veloc- 
ity distribution close to the wall. 

In the class of Z-equation models, the length scale (or a 
related variable) is governed by a lransport equation that 
has to be solved additionally to that describing the turbulent 
kinetic energy, k. In the k-E models, the length scale vari- 
able is E which is the Nrhulent dissipation rate. The eddy 
viscosity is given as a rationale of fmCm.kZ/E where a trans- 
port equation is needed for k and E. or more general, for a 
length or a time scale. 

The Boussinesq approximation is leading to a linear relation 
between stresses and strains and, more recently, so-called 
non-linear Z-equation turbulence models have been devel- 
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oped with quadratic and/or cubic terms in the stress-strain 
relation. Concerning a proper turbulence representation of 
leading edge flows, these models reduce the u h n  unphysi- 
cal turbulence production rate which is one of the major 
weaknesses of the linear @-E) turbulence models. 

4.7 Chien k-e Model 
The Z-equation Chien k-E turbulence model is described by 

taking a modified dissipation rate 
2 

i = e - 2 v ( F )  Jk’12 

that vanishes at the wall because E approaches the second 
term in that equation. For the Chien model, however, the 
wall dissipation is held to 

k ; = e  - 2v- 
X;  

and 

denote the turbulent Reynolds number, &. The dimension- 
less wall distance, y+. a Reynolds number based on the wall 
shear velocity, is defined as above. 

The eddy viscosity is now evaluated from 

Pz = Pf,C,kl/.g 

with 

f, = 1 - exp(- C, y+) 

The constants appearing in the model take the following 
values: 

o*=l, -1.3, Cp=0.09, C1=1.35, C2=1.8, C,=O.O115, 
C4=0.5 . 

4.8 Wikox, k-u, Model 
In the k--E models, the length scale variable is E. in the k - o  
model, however, w stands for the turbulent vorticity -with 
a dimension Iltime. w is defined by: 

Wilcox (1993) claimed that the use of w instead of E allows 
for an integration (of the partial differential equations) down 
to the wall - through the viscous sublayer - without the 
use of terms which are sensitive to viscosity with respect to 

the cornpading turbulent Reynolds number. In particular, 
Wilcox proposes the following set of equations. 

with 

and the following closure coefficients 

u=5/9. p=3/40, p’=9/loo, 0=1/2. 0’=1/2. 

In general, the Wilcox model performs well in flow cases 
with adverse pressure gradients, however, the wall-boundary 
condition for o is somewhat difficult to handle for general 
aerodynamic flow problems. An additional problem might 
be seen in the sensitivity of the model to the free-stream 
values of w. An alternative - although the free-stream de- 
pendence is still not solved completely, is to re-write the 
wequation in terms of r, the turbulent time scale, or an 
equivalent of that as it is shown in the following descrip 
tion of the KalitzirrGould model. 

4.9 Kdtzin-Gould k-g Model 
By substituting in a first step the specific dissipation rate, 0, 
with the time scale r, i.e. writing 

the boundary problem in the Wilwx model can be over- 
come because the boundary condition for I becomes zero at 
walls. Moreover, the decoupling of k and w, leading to 
strong far-field dependence, does not exist (at least not to 
that extent) in the k-r model, i.e. even in the case that the 
local level of Nrbulence is rather small, a solution for r Will 
be found. However, the far-field dependence problem is not 
completely solved, the value of r has still an influence on 
the boundary layer itself. 

00 the other hand it is well know that r tends to zero 
according to yz (instead of just y; y being the wall n o d  
distance) and this knowledge is guiding to the Kalitzin- 
Gould model which offers gwd predictive accuracies in 
various two- and thredimensional flows. 

The new variable now introduced is instead of r. The 
transport equations then read 

with the eddy viscosity being 

~t = B;Ok2 



The closure coefficients for the Kalitzin-Gould turbulence 
model are the same as those presented above for the Wilcox 
model, namely 

a=5/9, p=3/40, p*=9/lOO, 0=1/2 and d=1/2. 

4.lOHow to Derive the Boundary Layer Thickness from 

In Navier-Stokes computations, the calculation of boundary 
layer integral values is not straightfonvard because it proves 
difficult to accurately derive the boundary layer thickness 
and all boundary layer integral values directly from the ve- 
locity field distribution. An approach for handling this prob 
lem had been proposed by StockBrHaase (1987, 1989) that 
is briefly described in the following. 

The method to be considered relies on the assumption that 
computed Navier-Stokes velocity profiles can be correlated 
to Coles' boundary layer profiles. For these velocity profiles 
it can be shown that [y(dddy)l, occurs at the same 
relative wall distance inside the viscous layer for all at- 
tached and separated flows. Using this feature when analys- 
ing the Navier-Stokes data and evaluating the wall distance 
ymax for which yldddyl - equivalent to the F-function in 
the Baldwin-hmax turbulence model - becomes a maxi- 
mum, delivers the boundary layer thickness to be 

NavierStokea Calculations 

6 = 1.936 ymar 

Consequently, with the knowledge of the boundary layer 
thickness itself. all boundary layer integral values can be 
easily computed by numerical integration. 

For three-dimensional applications. it was proposed in EU- 
ROVAL (Haase et al, 1993), to derive the boundary layer 
thickness, 6, by 

1. searching for the wall-normal distance, ymax, in each 
velocity profile where the maximum of the resultant 
velocity, Iu,l. is found, 

2. calculating the maximum value for the vorticity, 
1 ~ ~ ~ 1 .  and 

3. scanning the vorticity distribution in order to check 
where 

lOIM.OOl~lW,,l for Y<Ymax 

is found. 

The boundary layer thickness is then described by the wall- 
normal distance where lolM.OOI~lw,,l is found. This a p  
proach provides reasonable results at least for wing-type 
flows. 

5. SOME ASPECTS OF TRANSITION AREA MODEL- 
LING 

The class of eddy-viscosity turbulence models presented so 
far are linear models with two major weaknesses. They can 
neither predict the onset of transition nor the length of the 
transition region. 

Prediction of the onset of transion is an important factor for 
accurately simulating flows that have not been tripped in 
the experiment, i.e. where transition from laminar to turbu- 
lent flow has not been forced by special devices. l k o  
strong factors - the streamwise pressure gradient and the 
free-stream turbulence - are influencing the position of 
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transition. Careful computations, however, need to compute 
the growth of disturbances that build up in the boundary 
layer until they reach the condition where transition really 
occurs. Michel (1951) and Granville (1953) suggested meth- 
ods that base on the transition momentum-thickness Re- 
ynolds number. More recently, Amal (1989) and 
Stwk&Haase (1996) proposed methods that can be used for 
analysing boundary layer and Navier-Stokes results by 
means of linear stability theory. 

Transition-area modelling, i.e. simulation of that area where 
the flow is transitioning from laminar to fully turbulent 
flow, is the second important weakness of (linear) eddy-vis- 
cosity models. Moreover, models often massively overpre- 
dict the eddy viscosity in the region of leading edges (e.g. 
of an airfoil). At the onset of transition, turbulence models 
are normally "switched on" without taking into account the 
finite distance of the transition region. Moreover, in the case 
of turbulence models employed that do not have the capa- 
bility of predicting or estimating transition onset, as e.g. the 
higher-order 2iequation turbulence models. the question of 
a smooth transition from laminar to turbulent flow is often 
not considered at all. 

However, just "switching on" the turbulence model at the 
measured or suggested position of transition onset might not 
be a valuable approach, as it is demonstrated for the transi- 
tion-sensitive hypersonic ramp flow in section 7.4. 

In the following, three classes of easy-twmploy transition 
models are presented that are related to firstly switching off 
eddy viscosity in the expected transition region (Baldwin- 
hmax) and secondly, and more precisely, using intermitta- 
ncy functions that provide - when multiplied to the tenta- 
tively computed eddy viscosity - a smooth variation from 
laminar to turbulent flow. 

5.1 Baldwin-Lomax 
For Navier-Stokes calculations, Baldwin-Loma proposed 
to very simply simulate transition from laminar to Nrbulent 
flow by setting v, equal to zero everywhere in the wall-nor- 
mal eddy viscosity profile, for which the (tentatively) com- 
puted maximum value of v, is less than a pre-specified 
value. This results in: 

PV, = 0 a WLirnrnhPrnfi,* c P 4 m M  

with a proposed value of C,+,mfl14. 

5.2 Cebeci 
Cebeci (1974) pointed out that substantial ermrs occur if 
transition modelling is inadequate. Considering e.g. the 
(boundary layer) flow past a compressor blade, the extent of 
the transition region can be correlated according to Chen 
and Thyson (1971) hy 

Rdr = Re,, - Re,,, = CR:: 

where Rhi describes the extent of the transiuon area. Re,, 
is the Reynolds number based on the completion of the 
transition and Re,,, IS the Reynolds number based to the 
start of transition. C is an empirical expression reading 

C = 60 + 4.86 MLyz 0 c M, c 5. 

where Me denotes the Mach number at the boundary layer 
edge. Depending on the (turbine blade) Reynolds number 



6-10 

and the onset of transition this approach might lead to large 
transition areas often extending to the trailing edge. 

5.3 Dhawan&Nnrasimha 
Another estimate, used for the hypersonic ramp flow in sec- 
tion 7.4, is the transition length estimate by DhawanBrNara- 
simha (1958) which is based on an examinahon of exper- 
imental data to deduce the (probable) existance of a relation 
between the transition Reynolds number and the rate of 
production of the turbulent spots. Application of an o b  
served statistical similarity in the transihon distributions to- 
gether with Emmons' (1951) spot theory results tn a single 
universal intermittency function 

yo = 1 - erp(- 0.41y') 

with 5 being the normalized streamwise coordinate in the 
transition zone, 

5 = (x - X M , ,  

and k,, being a measure of the extent of the transition re- 
gion, characterized by 

4, = xv,,-,-n.rs, - *cy,,-e.m 

where x,, denotes the onset of transition. 

One has to be aware of the situation that the two "free" 
parameters to be specified in the transition length model, *, 
and & have to be taken from experiment, see result for the 
hypersonic ramp flow in section 7.4. 

6. REQUIREMENTS FOR ACCURATE AM) 
EFFICIENT MODELLING OF TURBULENCE 

6.1 DNS Requirements 
The most accurate way simulating turbulent flows is of 
course the use of Direct Numerical Simulation (DNS). 
Nowadays, the major problem is that the requested comput- 
er performance is not available. thus restricting the use of 
DNS to low(er) Reynolds numben in the order of O(l@). 

Knowing that in boundary layers an energy transport is tak- 
ing place from larger to smaller eddies and dissipation is 
related to viscosity, the ratio of spacial dimensions between 
small to large eddies is equivalent to a Reynolds number of 
Re3I4. In case of three-dimensional flows this is resulting in 
( R e 9 3  degrees of freedom. Assuming that the time being 
necessary for the energy transport (from the larger) to the 
smaller eddies is equivalent to Re3l4 as well and that a 
number of (mathematical) operations needed is in the order 
of O(I), 

O(Re") memory and 
O(~e3)  numerical operations 

have to be carried out. In other words, doubling the Re- 
ynolds number results m an increase of computer capacity 
by one magnitude. Getting now back to the first paragraph 
of this section, the latter might provide an answer to the 
mentioned limitations on Reynolds numbers being in the 
order of 0(1@) for DNS computations of turbulent flow. 

Although for "real" applications the desired Reynolds num- 
bers are much higher, DNS results obtained at still lower 
Reynolds numbers bear a very good capability of directly 
supporting flow-physics-modelling aspects. On the other 
hand, it becomes quite evident that computational fluid dy- 

namics 
still rely on the utilization of turbulence models. 

6.2 Wbdence  Model Requirements 
If - due to computer limitations - DNS computations can- 
not be applied to flow cases governed by Reynolds num- 
bers greater O(l@), the question arise what the needs are 
for accurately predicting flow on the basis of using turbu- 
lence models. 

Assuming that an estimated size of eddies in a boundary 
layer is in the order of 115 of the boundary layer thickness 
and that 10 mesh points are needed to resolve one eddy, 50 
points are needed in total within the boundary layer. As- 
suming, furthermore. that the boundary layer thickness is 
about 1% of the chord of an airfoil, 5,000 points are need- 
ed in chordwise direction. &tending this to t h m i m e n -  
sional flow with the same mesh spacing in all tbree direc- 
tions for a wing with an aspect ratio of IO. an amount of 
50.000 points is needed. Summing up in space, 

1 2 . 5 ~ 1 0 ~  mesh points 

might form a proper basis for an accurate discretization of 
the considered boundary layer domain. 

Allowing waves, when assuming timbdependent flow, to 
travel just through one mesh interval per time step and to 
allow for a total time equivalent for those waves to travel 
three times the length of the chord for a converged solution, 
results in 15,000 time steps. Hence, a (computer) perfor- 
mance is needed that is beyond the teraflop and adds up to 

r "real" applications at high Reynolds numbers 

>io14 operations per second. 

This is, of course. a rather pessimistic guess (for an as- 
sumed explicit numerical method). however, it reflects at 
least some needs for mesh fineness in order to get close to 
results that can be termed as mesh independent ones. By 
the way, the figures derived above, are based on a mesh 
that is merely resolving the upper-su@e bounabry layer 
of a wing and does neither take into account the lower 
surface nor the fdield of the computational mesh ... ! 
7. APPLICATIONS 
In the following, applications for tww and t h d m e n -  
sional compressible flows will be presented and discussed 
with respect to flow-physics modelling aspects. 

7.1 RAE2822airloil 
The most popular test case treated by the majority of people 
investigating transonic (twdimensional) flow is the RAE 
2822 airfoil, (Cook, McDonald, Firmin. 1979). The cases 
going to be discussed are Case 9 and IO, respectively. Both 
cases consider transonic flow with shock strengths causing 
flow with either approaching separation or showing incipi- 
ent separation. The major problems are related to shocW 
boundary layer interaction that is difficult to treat by the 
turbulence models used. 

In order to carry out any - reliable - validation process, 
emphasis on mesh dependence aspects must be placed ini- 
tially. For the RAE 2822, Case 9, application, a comprehen- 
sive grid-dependence study has been undertaken in a 
GAWEUR initiative (Williams, 1994). The flow parameters 
for Case 9 read Ma = 0.734, Re = 6.5.106, a = 2.54O with 
transition at 0.03 chord on lower and upper surface. The 
flow parameters have been corrected according to recom- 
mendation by the experimentalists (Haase et al, 1993). 



Results of the GARTEUR study are given in Table 1 and 
are based on a use of the Baldwin-hmax turbulence model 
coded in the original version. 

Table 1 Force coefficients for RAE 2822, Case 9. 
A mesh dependence study using the Bald- 
w i d o m a x  turbulence model. 
The mesh structure for the 256x64 mesh is 
presented in Fig. 1. 

Meshpoints D w  Lift Moment 
CD CL CM 

I I I 
128x32 I 0.022277 1 0.85316 I -0.12068 

256x64 I 0.018891 I 0.83565 I -0.11121 
I 512x128 I 0.017665 I 0.82207 I -0.1063R 

1024x256 I 0.017291 1 0.81445 I -0.10490 

Experiment I 0.016800 I 0.80300 I -0.09900 

It can be seen from Table 1 that variatlons in lift and mo- 
ment coefficients are much smaller compared to the drag 
coefficient on the different mesh levels; drag vanatlon is 
close to 100% bctween finest and coarsest mesh. Although 
the finest-mesh results show the best agreement with ex- 
periments, two further items should be made as clear as 
possible: First, as mentioned above, results obtmed for that 
study have been carried out using the original Baldwin-h- 
max model, a turbulence model that dws not precisely de- 
scribe shockhoundary layer interaction. Second, one can 
recognize easily that between the fine grid (SlZxl28) and 
the finest one (1024x256) a hfference of still four drag 
counts has been calculated. However, in the context of an 
accurate design (say of a complete wing) this might he still 
too much. 

It should be noted at this point that the difference between 
measurement and computation is not the most crucial issue 

Flgure 

aspects of validation, errors are evident on both sides, but 
grid independent results should be obtained in all cases in 
order to predict the "deltas" between a variety of solutions 
accurately. 

Results going to he discussed in the following have been 
obtained using a mesh with 512x128 volumes. Moreover, it 
should be mentioned that the mesh bas been adapted to the 
measured shock location. However. in order to provide reb. 
able results for different turbulence models with correspond- 
ing slightly differently predicted shock locations, shock 
aligned mesh adaptation has been applied moderately (for 
the upper airfoil surface) as it is shown in Fig. 1 for the 
second mesh level (256x64) of the RAE 2822 airfoil mesh. 

As already mentioned. in the fine mesh 512 volumes are 
located in the wraparound-direction and 128 volumes are 
used to discretise the wall-normal-direction. 64 volumes 
have been taken from the 512 for wake representation, i.e. 
384 volumes are distributed on the airfoil surface according 
to the C-type mesh structure. The first volume height (adja- 
cent to the airfoil surface) is selected to be between 
3.5~lO-~ chords in the apex region and about 6.0x10-6 in 
the trailing+dge pan on lower and upper surface, respec- 
tively. This results in calculations that exhibit in the finest 
(512x128) mesh 50-78 mesh points in the boundary layer, 
starting with 50 points (volumes) in the stagnation point 
area and reaching 56 points in the lower trailing edge and 
71 (78) for Case 09 (CaselO) in the upper trailing edge 
boundary layer. 

The following discussion of the RAE 2822 test cases will 
now concentrate on Case IO, a test case being more sensi- 
tive with respect to different turbulence model applied. The 
flow parameters are Ma = 0.754, Re = 6.2.106 and a = 
2.81° with transition at 0.03 chord on lower and upper 
surface. The grid dependence that has been canied out, ex- 
hibits y+-values in the fine meshes, i.e. in both the 256x64 
and the 512x128 mesh, that are lower than unity. 

4s ** os io IS 
I . I I . l l l l l l . . . I  

1 Mesh for RAE 2822 airfoil with 256x64 cells 
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!3 Measurements: 
cI= 0.7L300 CO= 0.02420 c~=-0.10600 

- Cebeci-Smith 
CL= 0.80199 CO= 0.02836 cn=-0.10802 
Johnson-King 
CL= 0.73923 CO= 0.02588 cn=-0.09658 
Johnson-Coakley 
cL= 0.78486 cg= 0.02823 ~~=-0.10612 

. . - - - - -. 

Figure 2 Pressure distributions for RAE 2822, Case 
10, and different turbulence models, mesh 
level 512x128 

In Fig. 2, for the Cebeci-Smith, Johnson-King and John- 
son-Coakley turbulence models, pressure coefficient dis- 
tributions are presented and, additionally, the computed 
force coefficient are given. As "usual", the algebraic model 
- but this holds also for the Baldwin-bmax model - is 
shifting the shock more downstream, in contrast to the 
Johnson-King model which (often) positions the shock 
more upstream in alignment with a reduced shock sirength. 
The Johnson-Coakley model ameliorates the shock location 
by the introduction of the modified inner layer formulation. 
This holds for nearly all transonic test cases, as it will be 
shown also in section 1.2 for the MBB-A3 airfoil. 

The thinner lines in all figures of this section correspond to 
the lower airfoil surface distributions, the thicker ones to the 
upper surface. 

8 t 

:4 
0.0 0.2 0.1 0.b 0.8 1.0 

d. 

Figure 3 Skin friction distributions for the RAE 2822, 
Case 10, and different turbulence models 

Fig. 3 depicts the corresponding skin friction distributions 
for the three selected turbulence models. It becomes very 
clear, that in the area where the flow remains attched. all 
three models are producing similar results, however, in the 
shock and post-shock regions, major differences occur. The 

algebaic model returns (shock induced) separation down to 
the trailing edge, whereas the IIZ-equation models provide 
more reliable results showing realtachment in the rear part 
of the upper airfoil surface. 

Johnson-Kmg 
Jahnron-Cookley . - . - - - . -, - - . . . 

02 0.1 0.6 0.8 1.0 
d. 

RAE2822, Case 10, non-equilibrium effects 
using Johnson-King and JohnsoMoakley 
112-equation turbulence models 

The advantage of the IIZ-equation models with respect to 
the algebraic model is due to the fact that the non-equilibri- 
um models are taking boundary layer history effects into 
account by solving an ordinary differential equation. The o 
distribution shown is - as described above in section 4.3 - 
the ratio between the (outer) eddy viscosity for the non- 
equilibrium and equilibrium approach, 

0 
0.0 

Figure 4 

0 = vl.outer 1 vLoulcr.quilibriurn , 

For the upper surface of the RAE 2822 airfoil, Fig. 4, the 
flow well upstream of the shock is close to its equilibrium 
state, wbereas in the vicinity of the shock - initialed already 
some boundary layer thicknesses ahead of it - the non- 
equilibrium eddy viscosity is smaller. This situation is re- 
versed aft of the shock and o reaches a near-quilibrium 
state at the trailing edge again. On the lower surface, where 
the flow (thinner lines in Fig. 4) is accelerated towards the 
trailing edge (due to the rear loading of the airfoil), the 
non-equilibrium eddy viscosity is dominating, too. 

A disadvantage of the l12-quation models when "switched 
on'' at the desired onset of transition is that they often pro- 
duce high unphysical non-equilibrium values for a. Assum- 
ing that the turbulent boundary layer is closer to equilibri- 
um in that area than to non-equilibrium, this local 
maximum can be reduced by using a relaxation between the 
eddy viscosity calculated on a equilibrium and non-equilib- 
rium model basis. Tlis is forcing the flow (and consequent- 
ly the eddy viscosity) to stay near to equilibrium at least 
along some percent of the chord when "switching on" the 
turbulence model right at transition onset. 

More precise answers about the predictive accuracy of any 
Navier-Stokes computation provides an inspection of the 
boundary layer behaviour. The boundary layer displacement 
thickness, presented in Fig. 5, has heen derived by using 
the approach by Stock8zHaase (1989) that has k e n  briefly 
described in section 4.10. Fig. 5 exhibits the displacement 
thickness for Case IO on upper and lower surface (thin 
lines), respectively. The various shock locations can he easi- 
ly detected. causing a rather different post-shock boundary 
layer behaviour. Again, the Johnson-Coakley model gives 
favourable results - when compared to the measurements. 
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Flgure 5 RAE 2822, Case 10, displacement thickness 
distributions 

However, one has to be cauuous in interpreting the results 
shown in Fig. 6 and 7, in particular the results for d d . 6 5  
because different shock locations produce correspondmgly 
different velocity profiles at fixed chord-wise positions. The 
x/c=OdSprofile lies in the post-shock area for all models 
hut the boundary layer history at this station is different due 
to the mfferent positions of the shock upstream of that loca- 
tion. The 112-equation models show well separated flow 
with reasonable shapes of velocity, while the algebraic (Ce- 
becidmith) model exhihits a "feature" which holds for 
nearly all algebraic models, namely to produce spiky, i.e. 
unphysical, near wall profile shapes in separation zones. 

[3 Meosurement 
Cebeci-Smth 
Johnson- King 
Johnson-Cookley 

Figure 6 RAE 2822, Case 10, velocity profiles at 
xkO.65 on upper surface 

Although pressure distnhuhons compare fairly well for the 
different turbulence models tested, larger differences ~ I L  the 
velocity profiles can he detected from Fig. 6 and 7. Apart 
from the situation that the algebraic model is unable to 
predict reattachment behind the shock in that very case, as 
it can be taken from the skin friction distnhution in Fig. 3, 

only the JohnsoncOakley model provides at least a qualita- 
tive agreement with the experimental findings. 

Measurement: 

-- Johnson-King 

' N  

I 7 .* 

, -  . . -0 ._ - 
' 0  

-- Johnson-King 
Johnson-Cookiey 

-0.25 "0.00 0.25 0.50 0.75 1.00 1.25 
u/u. 

Figure7 RAE 2822, Case 10, velocny profiles at 
x k l  .O on upper sulface 

Results for three different Z-equation models can be taken 
from Fig. 8 and 9. presenting pressure coefficient and skin 
friction distributions for the Lien-Leschziner (1991). the 
Cbien (1982) and the Kalitzin (1995) k-% model. The latter 
is the modified Wilcox k-w model expressing the eddy vis- 
cosity as a function of the turbulent kinetic energy and the 
time scale, T=ME. 

0.0 0.1 0.2 a3 ar a5 0.6 0.7 0.8 0.9 1.0 

RAE2822, Case 10, pressure coefficientdis- 
tributions for Z-equation models, for legend 
see Fig. 9 (by couttesy of G. Kalihin) 

Computations of pressure, Fig. 8. and skin friction, Fig. 9. 
exhibit a trend that is recognized in many 2-equation turbu- 
lence models, in particular to underpredict pressure induced 
separation caused by adverse pressure gradients or dismis- 
sing separation at all. Unfortunately. the results discussed so 
far do not provide a proper hasis for being able to distin- 
guish between model sophistication and accuracy, however, 
the advantage of the Z-equation models, being more effec- 
tively applicable to complex geometric shapes, still holds. 

Figure 8 
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Figure 0 RAE2822. Case 10, skin friction distributions 
forz-equation models (bycourtesyof G. Ka- 
litzin) 
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x/c  

Flgure 10 RAE2822, Case 10, pressurecoefficientdis- 
tributionsfork- (-)and k--SST(---) 
model (by courtesy of G. Kalitzin) 

The adoption of Menter's (1994) SST approach, i.e. reduc- 
ing the amount of outer layer eddy viscosity, is ameliorating 
the pressure result, as it can he taken from Fig. IO. Addi- 
tionally. the flow is further approaching separation hut not 
really separating. In general, the SST approach was found 
to predict separated flows or flows approaching separation 
much better. The pressure "plateau" on the upper surface 
(upstream of the shock), however, is slightly more underpre- 
dicted (pressure in fact is overpredicted, -cp is plotted) by 
using the SST approach. As a gift in return, the slightly 
lower (favourable) pressure results in a more upstream 
shock location and the shift of the shock position is caused 
by the slightly different boundary layer history. 

It has been shown in the WARP project (Haase et al, 
1997) that even more improvements on Z-equation turbu- 
lence models can he achieved by taking into account se- 
cond (or third) order effects in the stress-strain relation. 

7.2 MBB-A3 airfoil 
Flow over the MBB-A3 airfoil mucciantini et al, 1979) is 
similar to what has been discussed in the previous section. 
However, the increased Mach number is causing a more 
pronounced shocbundary layer interaction and will ex- 
hibit some further problems in flow prediction on the lower 
side of the airfoil. Results for the MBB-A3 airfoil, Case 
113, are presented to demonstrate the encountered weak- 
nesses. 

Concerning mesh generation for the M B B 4 3  airfoil, a 
similar effort as for the RAE 2822 airfoil has been placed 
on achieving mesh independent results. The mesh (in)depen- 
dence study has revealed a mesh with a first volume height 
(adjacent to the airfoil surface) of 3.4x1W7 chords in the 
apex region and 7 . O x l e  in the trailing-edge part on lower 
and upper surface, respectively. This leads to y+ values at 
the wall of less than 0.5. Computations for test case "113" 
exhibit between 45 to 67 mesh points across the boundary 
layer in the finest (512x128) mesh, starting with 45 points 
at the stagnation point and reaching 59 in the lower-surface 
and 67 on the upper-surface trailing edge region. 

Compared - when different turbulence models are consid- 
ered - to the already sensitive test case RAE 2822. Case 
IO, an even more critical flow simulation is achieved for 
the MBB-A3 airfoil due to much larger deviations in shock 
locations when using different turbulence models. This test 
case that has been thoroughly investigated in the European 
ETMA project ETMA Efficient Turbulence Modelling for 
Aeronautical Applications, Dervieux, 1997). 

The flow parameters for the "113" test case read: Maa.85, 
Re=6.08-1O6, a 4 . 7 8  with transition at 0.4 chords on the 
lower surface and at 0.03 chords on the upper surface, re- 
spectively. The major problem. and this underlines again the 
strong need for having precisely defined and comprehensive 
experiments at hand, is that transition was not fixed in the 
measurements. For the present computations, transition loca- 
tion on lower and upper surface has been "derived" from 
the experiment itself by taking the pressure distribution as 
an initial guess. This more than rough estimate is checking 
where favourable pressure gradients change into adverse 
ooes and has no relation to a serious investigation of transi- 
tion onset. 

Pressure distributions, shown in Fig. 11, using the same set 
of turbulence models as for the RAE 2822 cases - Cebeci- 
Smith, Johnson-King and Johnson-Coakley - exhibit dras- 
tic deviations on both upper and lower (!) surface of the 
airfoil. For the upper surface, the same answers given for 
the RAE 2822 are still valid, although the differences oh- 
tained between the chosen turbulence models are much hig- 
ger. On the lower surface, no real explanation can be given 
for the gap between experiment and computation. The mea- 
surements do not exhibit a supersonic region - the cp* line 
defines the critical pressure coefficient where the flow be- 
comes supersonic - whereas the computational results show 
a clear tendency for a supersonic bucket. Setting transition 
on the lower surface to x/c=O.03, according to the detected 
small area of adverse pressure in that region, does not really 
change the flow behaviour on the lower airfoil surface. 
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Flgure 11 MEB-A3, Case 113, pressure coefficientdis- 
tiibutions for different turbulence models 

It should be mentioned additionally, and this again shows 
the impoflance of the undettaken grid-dependence study, 
that the algebraic turbulence model on the very fine mesh 
produces similar results -with respect to the shock position 
- as the Johnson-Coakley model is predicting on the corn- 
er mesh. Thus, the MBB-A3 "113" test case has not only 
been presented to demonstrate weaknesses but even more to 
encourage further investigahons. 

73 ONERA channel bump flow 
In contrast to simulating exteriour flows, channel flows of- 
fer the possibility of achieving more accurate results by pre  
cisely taking measuremental flow conditions (inflow, out- 
flow, correct boundary conditions due to limited 
computational domain) into account. Moreover, for the 
ONERA bump test, Case A, it is possible to computational- 
ly "shift" the shock directly into that streamwise position 
where it was measured, hence enabling a very good basis 
for properly comparing different turbulence models in the 
shock area itself. It allows for directly comparing boundary 
layer profile data at fixed positions. However, Iixing the 
shock computationally, causes the disadvantage of additional 
calculations as the exit pressure is driving the flow field 
behaviour - and the shock position. 

The flow paramem used in that study are: In-flow Mach 
number Ma9.68. total pressure pt=0.96~1dN/m2, total tem- 
perature T~300K and the experimental pressure ratio being 
pl/p,&.522. The isentropic Mach number target on the 
lower wall - that bas to be fulfilled hy all computations - 
has been set to Ma4.047 at x=O.I58m. 

The mesh that has been used mandatorily in the EUROVAL 
project (Haax et al. 1993) is presented in Fig. 12. It shows 
the refined shock area and allows for y+ values at the wall 
being less than unity. 

Figure 12 

Based on the flow parameters given above and the mesh in 
Fig. 12. flow field results for a variety of turbulence models 
are presented as Mach number contours in Fig. 13. At a 
first glance, most of the solutions obtained look rather simi- 
lar whether algebraic, I/Z-equation, Z-equation or algebraic 
Reynolds stress models are concerned. Apart from some os- 
cillatory behaviour in the post-shock area and slight differ- 
ences in the contour shapes at the inlet boundary due to 
variations in implemention (e.g. the Domier results have 
been obtained by extrapolating the velocity components U 
and v under the constraint that v never violates the "kine- 
matic limit", i.e. the computed density remains positive), the 
shock position, mandatorily adjusted to the experimental 
value, is well captured by all computations. However, closer 
inspection of the near-wall shock area itself exhibits a vari- 
ety of shockmoundary layer interference aspects with vury- 
ing Lshock smctures which are caused by over(under)pre- 
diction of post-shock separation when using the different 
turbulence models. 

ONERA bump, Case A, mesh structure 

Figure 13 ONERA bump, Case A, Mach number con- 
tours for different turbulence models 
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Figure 13 (cont.) ONERA bump, Case A, 
Mach numbercontours for differentturbulen- 
ce models 

The two following figures, Fig. 14 and 15, present a better 
insight into what was discussed up to now. Up to the 
shock, the isentropic Mach number at the tunnel wall, Fig. 
14. is in perfect agreement with the experimental findings. 
i.e. all turbulence models involved return the attached- 
boundary-layer features correctly. m e  marked Mach num- 
ber, ( 0 ), indicating the correct shock location (to be met 
mandatorily by all computations), has been well captured. 
The computed exit pressure ratios that were necessary for 
the different turbulence models to Fix the shock at the de- 
sired position. varied from p,/p,~~1.520 to 1.529, see leg- 
end in Figs. 14 and 15. 

Concerning the flow prediction in the aft shock region, the 
non-equilibrium Johnson-King model provides the best per- 
formance, although it is overpredicting separation, as it can 
be recognized from Fig. 13. It is important to note, particu- 
larly with respect to a thorough validation work, that the 
discrepancy in the area well behind the shock, i.e. the gap 
between the experimental and computed Mach number level 
must not be related to weaknesses in flow-physics (turbu- 

lence) modelling hut was reported as a three-dimensional 
effect in the measurements. 

r 
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- CebecilSnith, pl/p,&522 
- Baldwin/Lomax. pt/p,d.520 _ _ _ _ _ _ _ _  Johnson-King - Equilibrim, p+/p.rr1.528 

Johnson-King - Non-equilibrium, pdpdr1.529 
[I] Measursrnsnts 

Figure 14 ONERA bump, Case A, 
Isentropic wall Mach number for different tur- 
bulence models 

But even when "global" flow features are in Line with the 
measurements. a thorough investigation of the boundary 
layer provides a better indicator on the predictive accuracy 
as it is presented in Fig. 15. showing distributions for the 
boundary layer displacement and momentum thicknesses. 
Concerning computed momentum-thickness distribution one 
should be aware of the importance for any CFD method to 
predict momentum thickness accurately. 

Fig, 15 seems to indicate - concerning the displacement 
and momentum thicknesses - that the algebraic models 
which do not predict pressure in the close vicinity of the 
aft-shock region accurately, are in better agreement with the 
experimental findings. However, the algebraic models do 
not predict either the maximum displacement thickness or 
the downstream conditions correctly. Moreover, the Bald- 
win-bmax model clearly underpredicts momentum thick- 
ness downstream of the shock. Unfortunately, the Johnson- 
King model drastically overpredicu momentum and 
displacement thickness due to an overprediction of shock 
induced separation which can be related to a non-equilibri- 
um outer eddy viscosity being by far too small in that area. 

It should be recalled that this flow is presumably attached. 
as suggested by the experimental velocity distributions, 
there is, however, no conclusive evidence that separation is 
completely suppressed, as there are no experimental data for 
skin friction available. 
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ramp was significantly thin and was transitioning to a tur- 
bulent one right after reattachment. 

Results of two different test cases are going to be discussed 
below on a basis of heat transfer distributions with various 
senings for transition onset, including transition modelling 
itself and "forced" tripping of the originally laminar bound- 
ary layer. 

The mesh used for this investigation was a very fine one, 
adapted to the viscous layers and the shock position. with 
352x160 mesh points in the maimflow and wall-normal 
direction. The mesh has been intensively tested in order to 
allow for grid independent results. 109 (!) cells had been 
stretched across the boundary layer with almost 66 cells in 
the subsonic layer measured at the onset of (laminar) sepa- 
ration. The advantage of this extremely refined mesh is of 
course a high resolution of the boundary layer which in 
turn proved necessary to predict heat transfer rates accurate- 
ly and - as a gift in return - made it more conveniant to 
use the algebraic Cebeci-Smith turbulence model. Moreover, 
due to the fact that turbulent flow was initiated in the very 
close vicinity of flow reattachment, only attached turbulent 
boundary layers had to be taken into account. The Cebeci- 
Smith model could be appropriately used, together with the 
(above described) method by StockBrHaase for deriving the 
boundary layer displacement thickness. In the case of fully 
turbulent flow which does not show any separation at all. 
the CebeciSmith model has been used, too. 

The first test case for a 0.07111 hinge, i.e. a flat plate with a 
length of 0.07m upstream of the ramp, at Ma=14.1. 
R~t=6.5.106/m, T,=58.8K, Twdl=290K and a ramp angle 
of 15". exhibits a considerable length of the transition re- 
gion. The "normally" applied approach of "switching on" 
the desired turbulence model at transition onset failed com- 
pletely with respect to an accurate flow prediction in the 
transition region, Fig. 16. In order to overcome this failure, 
the transition model by DhawanBrNarasimha, described in 
section 5.3. has been applied by chwsing the two "free" 
parameters to be 

ApO.06m and x&.lZm 

Heat transfer distributions in the form of a modified Stanton 
number 

* I  

U 

0.0 0.5 1.0 1.5 2.0 
x/L 

- Cebeci/Smith, pi/p.di=l.522 
- Baldwin/Lomax, pdp.dl-l.520 
__. ___. . JohnsowKing - Equilibrium, pi/p.w1.528 

Johnson-King - Non-equilibrium, Pt/P.drl.529 
c) Measurements -Displacement Thickness 
A Measurements -Momentum Loss Thickness 

Figure 15 ONEFIA bump, Case A, displacement and 
momentum thickness for different turbulence 
models 

7.4 Hypersonic ramp Bow 

Initiated at the Hypersonic Workshop (Dhid6ri et al. 1991), 
emphasis was placed on the calculation and validation of 
hypersonic r-nuy problems. particularly aiming at the 
simulation of flows over deflected control surfaces (e.g. Si- 
meonides&Haase, 1995). However, when starting work on 
test cases and comparing to available measurements drastic 
mismatches between beat transfer measurements and the COT- 

responding computations have been achieved. 

Generally spoken and this does hold for all experimental 
investigations, they are playing n prominent role in the val- 
idation of aerospace design tools and in a thorough under- 
standing of fluid dynamics. Moreover, they play a key role 
in CFD development. However, expectations for using CFD 
as an accurate flow analysis and engineering tool places 
more stringent requirements on experiments supporting code 
development, improvement and validation (Marvin, 1995). 

After thoroughly discussing all issues concerning the specif- 
ic test cases with the experimentalists, it was commonly 
stated that measurements, expected to be in the fully lami- 
nar flow regime, were in fact transitional. New calculations 
have been carried out. dealing with both modelling of tran- 
sition and turbulence. Strong shock wavdaminar boundary 
layer interactions, exhibiting large separated regions, were 
found additionally. The reattaching boundary layer on the 

are presented in Fig. 16 for laminar. transitional and fully 
turbulent flow together with the experimental values and 
results obtained by the reference temperature method (Si- 
meonides, 1992). Obviously, the same niveau of turbulent 
heat transfer is achieved on the ramp whether the flow is 
laminar, transitional or fully turbulent. Apart from a modest 
gap between computation and measurements, even those 
calculations with a "switched on" turbulence model - i.e. 
without making use of the transition model - are reaching 
the same turbulent heat transfer level as the fully turbulent 
computations. The advantage of is that the Navier-Stokes 
method can be used to predict at least the marimwn turbu- 
lenr hear fran$er correctly, independently of the chosen on- 
set of transition. However, an accurate prediction of transi- 
tion from laminar to turbulent flow - with a transition 
taking place well after the interaction - needs, as it is 
shown, more thorough investigations. 



6-18 

The second test case concerned again a ISo ramp but now 
with a flat plate length ahead of the hinge line of OSm 
The flnw parameters are: Ma44.1, Re,,,,t=13.0106/m. 
Tm=58.8K and T~plld90K. In this case -where transition 
occurs very close tn the reattachment point of the boundary 
layer - computations with transition setang at 0.24m are in 
gwd agreement with the measurements performed without 
tripping the boundary layer. The modest underprdction of 
the (laminar) heat transfer data upstream of the hinge lme 
may be attributed to the experimental finite leading edge 
thickness of the flat plate, an effect that bad not been taken 
into account for the computations. 

Whenever transition bad been set to a location well in the 

separation region or upstream of it, as it had been carried 
out by setting transition to 0.06m. it resulted in a fully 
attached flow with heat transfer transitioning directly from 
the fully-laminar to the fully-turbulent level. Additionally, 
and very important from an engineering point of view, it 
becomes obvious from Fig. 17 that transition initiated in the 
close vicinity of the reattachment point results in good esti- 
mates for the highest turbulent beat transfer (peak heating) 
on the deflected control surface. 

In order to obtain a proper hasis for comparing with the 
fully-turbulent computations, an experimental "attempt" was 
carried out. tripping the laminar flat plate boundary layer 
for receiving "Nly" turbulent flow. 

I 
1 
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Figure 16 Heat transfer rates for hypersonic laminar, transitional and turbulent 0.07mramp flow 
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Figure 17 Heat transfer rates for hypersonic laminar, transitional and turbulent 0.20m-ramp flow 
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In Fig. 18. Schlieren pictures for the non-uipjxd (transi- 
tional) and tripped (turbulent) flow are presented. In addi- 
tion, for the non-tripped flow, computed density contours 
are provided. revealing a good comparison with the Schlier- 
en photo given below. In the tripped flow case, however, in 
view of the high level of stability of hypersonic boundary 
layers and their strong restistance to transition (Amal, 
1989). 3mm diameter tripping devices has been used. 
Hence, it is not certain that an equilibrium turbulent bound- 
ary layer was attained on the flat plate part of the model. 
Nevertheless, the tripping caused a fully attached, non-sepa- 
rating, boundary layer, and a fully turbulent boundary layer 

on the ramp. This is confirmed by the fully turbulent com- 
putations which are in close agreement with the experimen- 
tal findings. 

It should be mentioned once more that the Ceheci-Smith 
turbulence model did behave well in all transitional and 
Nrhulent computations due to the fact that this model has 
been applied in regions of attached flow only. It is well 
known that the Ceheci-Smith turbulence model has a good 
predictive accuracy when attached flows are concerned, pro- 
vided a correct calculation of the boundary layer displace- 
ment thickness has been performed. 

CornDuted densitv contours for transitional flow 

Schlieren picture for transitional (untripped) flow 

Schlieren picture for turbulent (tripped) flow 
Figure 18 Densiw contours and Schlieren pictures for hypersonic transitional (non-tripped) and turbulent (tripped) flow - 

over the 0.20m ramp 

75 Flow about DLR-F4 
Validation of flow around the DLR-F4 wing-body (air- 
plane) combination was one of the major challenges in the 
ECARP project. Results obtained by several investigators 
are presented in Haase et al (1997). 

The mesh that had been mandatorily used, consisted of 1.1 
million mesh points and was moderately adapted with re- 
spect to the boundary layer thickness and the shock loca- 
tion. "Moderately" means that mesh lines were concentrated 
in the shock area more weakly in order to allow for slightly 
different locations in the various computations. In particular. 
boundary layer calculations have been carried out on the 
basis of preliminary Navier-Stokes pressure results in order 
to analyse the mesh on the wing. Approximately 30 grid 
points are found across the boundary layer with y+ values 
at the wing surface in the order of O(1). On should note, 
however, that the chosen 1.1 million mesh points were still 
insufficient in so far, as the mesh on the fuselage was still 
rather coarse, hence, a complete computation - being pre  
cise on both wing and body - would have required many 
more grid points in total. Nevertheless, due to the main 

interest in three-dimensional flow simulations over the wing 
using different turbulence models, the mentioned grid was 
mandatorily adopted for the considered validation work. 

The flow parameters read: Mas.75, Re=3.0.106 (based on 
the mean aerodynamic chord length) with an angle of attack 
of 0.93". Transition was fixed at 15% and 25% on upper 
and lower wing, respectively. Flow over the fuselage was 
assumed to be fully turbulent, i.e. starting at the apex with 
turbulent flow already. As indicated by some computations, 
the chosen flow parameters result in flows just approaching 
separation but not really running into separation. The ex- 
periments for this test case did not reveal the appearance of 
shock induced separation. 

Fig. 19 is representing at least some of the problems one 
can discover when validating various types of turbulence 
models. Apart from the ONERA contribution, shown at the 
right hand side of that figure, that uses a non-Navier- 
Stokes approach - namely a VI1 (viscous-inviscid intem- 
tion) method togther with a special 2-halfquation model 
(LeBalleur, 1981) - a variety of results have already been 
achieved by just using the Baldwin-Lomax model. 
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Flgure 19 Pressure contours and skin friction Datterns on the upper wing for Baldwin-Lomax turbulence model and VI1 
solution 

It was related to the diversification in these results that a 
decision was taken by the ECARP consortium to collect 
from each and every partner a concise repon on imple- 
mentation and coding issues of the turbulence models 
employed in the CFD codes, in order to shed more light to 
this problem. Allhough :he complete repor: is an inrema1 
ECARP consortium repor:, ECARPNalidarion partners have 
agreed on a free dissemination (Haase, 1994). 

The different results for the Baldwin-Lomax model should 
be related to the numerical method itself - and, of course, 
to the coding and parametrization of the Baldwin-Lomax 
turbulence model itself. As mentioned before, flow parame- 
ters and mesh have been fixed mandatorily for all ECARP 
partners. 

The results with respect to pressure distributions can be 
claimed to be acceptable - and in reasonable agreement 
with each other. 

Comparing skin friction distributions, different flow situa- 
tions have been computed covering the whole range from 
shock-induced separation to still attached flow. The ONE- 
RA results, Fig. 19, seem to be more accurate, unfortunate- 
ly, these are wing-alone computations not taking into ac- 
count the threedimensional vortex footprint at the 
wing-body junction. Once again, the variety of results ob- 
tained very clearly indicate the strong need for any valida- 
tion process to reveal exact information about the numerical 
method, the mesh and the coding and implementation of 

models, before getting to conclusions about the (different) 
results. 

Figure 20 Pressure contours and skin friction patterns 
on the upper wing for Granville, 112- and 
l-equation models 



Additional to results for the Baldwin-Lomax model pres- 
ented in Fig. 19, Fig. 20 is providing results for the Grat- 
ville (1987) modification to the Baldwin Lomax model 
[OR], the three-dimensional extension of the half-equation 
Johnson-King model by Abid et al (1989) [AVJWI and the 
one-equation Wolfshtein (1969) model [wl. As the John- 
son-King turbulence model for two-dimensional applica- 
tions with adverse pressure gradients, the three-dimensional 
extension of the Johnson-King model by Ahid et al is prc- 
viding a similar accuracy, recalling that no separation on the 
wing was found in the experiments. The Granville and 
Wolfshtein models do predict a smaller area of shock in- 
duced separation compared to most of the Baldwirehmax 
results. Hence, the Granville modification to the Baldwin- 
Lomax model shows a clear improvement - as suggested. 
Fig. 21 is presenting a comparison of pressure and skin 
friction distrihutions on four wing sections using the Bald- 

DLR-F4 WING/BODY FULLY TURB. 
U, 
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win-Lomax and the Ahid et al turbulence model. Addition- 
ally, the expenmental pressures are given The computed 
pressure results are in very good agreement with the mea- 
surements on both lower and upper surface. The shock has 
heen resolved properly by means of the slight mesh adjust- 
ment in that area. As already seen from the skm friction 
contour Ltnes, major differences with respect to the turbu- 
lence model used also show up 10 the section skin friction. 
The Baldwin Lomax model tends to p r d c t  separation ac- 
cording to a slightly more downstream location of the 
shock and a correspondingly increased shock strength. The 
over-interpretation of adverse pressure effects by the Bald- 
win-lomax model can also be extracted from the lower 
surface skin friction behaviour - where the flow is ap 
proaching separation in the aft (rear-loaded) part of the 
wmg. 

Figure 21 Pressure and skin friction distributions on upper and lower wing at various span-wise sections comparing 
Baldwin-Lomax and AVJW models (by courtesy of E. Elsholz, Dasa-DA) 

Results for various Z-equaaon models are presented in Fig. 
22. In pmcular, the models of Chen-Patel (1987), Chien 
(1982), Kalitzin-Gould (1996) - in the k-7 version, an ear- 
lier development of the k-g model as presented in section 
4.9 - and the Chien model plus a modified length scale are 
concerned. Again, for three different partners using the 
Chien model, three different solutions have been ohtamed. 
Moreover, the results obtained by one contributor do not 
show the vortex footprint at all - even for the Chien model 
- although the same numerical method exhibited a wing- 
body junction vortex when using the Baldwin-Lomax NI- 
bulence model. 

To draw a conclusion from these varying results is m fact 
not simple. nevertheless, one might argue that in general the 
relevant flow features have heen successively computed. 
The influence of artificial dissipation has heen recopzed as 
hang neglipble, however, mesh dependence together with 
boundary layer resolution and treatment of farfield condi- 
tions should be investigated funher. Again, tbe major differ- 
ences in results hy choosing different turbulence models 
might be related to U N C S O I V ~ ~  issues on different imple- 
mentation, interpretation and coding of these models. 
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Figure 22 Pressure contours and skin friction patterns on the upper wing for a variety of Z-equation models 

7.6 Flow Over a Cone - A  Solution of the Parabolized 
NavierStokes Equations 

In order to show that algebraic turbulence models - the 
Baldwin-Lomax model in this particular case - can provide 
a reasonable predictive accuracy, results are presented for 
the flow over the Rainbird (1968) cone (Rieger, 1968, 
1987. 1997). For this flow simulation which is governed by 
vortical flow exhibiting primary and secondary vortex sheet 
separation, the Degan-Schiff modifications to the Baldwin- 
Lomax model have hem utilized together with a procedure 
that is taking boundary layer history effects into account. 
For that, local y, positions in the Baldwin-Lomax model 
are smoothed out by using a relaxation based on the ym 
station that has been obtained at the previous flow station. 
Thus, the difficulties encountered in determining F and con- 
sequently F W A ~  values m the Baldwin-Lomax model, be- 
coming apparent when considering vortical flows, have been 
overcome. 

The experimental setup consisted of a 12S0 half-angle cone 
model with the following test conditions: Ma=1.8, total 
(Nnnel) pressure of 25psia and a total (tunnel) temperature 
of approximately 700F. This corresponds to a Reynolds 
number of 25 million based on the axial length of the mod- 
el. Experimental surfacepressure distributions were obtained 
at x/L=O.85 or x=0.88m. 

In the attached flow region, including the complete wind- 
ward side, where the vortex sheet remains attached, the ob- 
tained results are in very good agreement with the exper- 
imental findings, as it can be easily taken from Fig. 23 
where computed and experimental circumferential pressure 
distributions are presented for the 0.88m cross section. 
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Figure 23 Circumferential pressure distribution for Rain- 
bird cone at 0.88m cross section 
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Figure 24 Mesh formation and pressure distributions and uppersurface details for the Rainbird Cone 
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Figure 25 Distribution ofcharacteristicquantitiesforthe application ofthe Baldwin-Lomaxturbulence model forthe Rain- 
bird Cone 
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Although primary separation is slightly delayed. vortex 
sheet separation is well predicted as well as the (circumfer- 
ential) length between primary and secondary separation. 

Fig. 24 is presenting the chosen mesh and the computed 
pressure coefficient distribution at x4.88m. Pitot pressures 
are plotted as near-wall details. It becomes obvious that tbe 
mesh has been adapted with respect to shape and position 
of the shock to account for accurate pst-shock relations 
and additionally allows for a proper resolution of the vis- 
cous near wall region. It wnsisted of 97x151 mesh points 
per cross section in circumferential and wall-normal direc- 
tion. With the stepback mode, approximately 3M)O steps 
have been performes to compute along the complete cone, 
700-8M) might be sufficient. 

x e 51 i t 

0. IO. 20. 30. 40. 50. 60. 70. 80. 90. 100. 
Gridline Index (circumferenUal direcpon) 

Figure 26 Resulting Fma, y,, and Fmax.yma distribu- 
tionsforapplication ofthe Baldwin-Lomaxtur- 
buience model with DeganiSchM modfica- 
lions for the Rainbird Cone 

A good insight into the pcrformance of the Baldwin-Lomax 
turbulence model together with the Degani-Schiff modifica- 
tions is provided by Fig. 25 on the previous page. For the 
0.88m cross section, this figure presents a correlation be- 
tween the vorticity. the Ffunction and the resulting eddy- 
viscosity. The latter is given as the ratio between turbulent 
and laminar viscosity, i.e. a value of unity denotes an eddy- 
viscosity which has the same amount as the laminar one. 
The influence of primary and secondary separation on the 
Ffunction can be clearly detected and it is demonstrated 
that the model is producing - despite of the DeganSchiff 
modifications - a rather unphysical absolute maximum in 
between primary and secondary separation. Another interest- 
ing feature of the Ffunction can be taken from the contour 
plot, a feature that might be caused by the (physical) beha- 
viour of the supersonic boundary layer. This is the F-func- 
tion "plateau" in the inner half of the boundary layer with 
values varying only between Fd.2 and FS.25. The Vortic- 
ity is reduced by more than one magniNde in that area 
which is directly compensated hy the increase in the wall- 
normal distance. Obviously. this "plateau" is causing the 

problem of possibly detecting local maxima in the F funo 
tion close(r) to the wall making a search for y,, (as a 
function of Fma) a "random walk". 

In addition to Fig. 25, y-. F,, and ym.FmaX distribu- 
tions are presented in Fig. 26, providing another insight 
into the sensitivity of the Baldwin-Lomax turbulence mod- 
el. The F,, distribution is "amplified" by the wall-normal 
distance, in other words. the computed ymx value is the 
driving force for the resultant eddy viscosity and, hence, the 
model performance. While the two minima in F,, and 
F-.y, can be closely related to the position of primary 
and secondary separation, the maximum can be correlated to 
the overshoot in the eddy viscosity in between, compare 
again with Fig. 25. 

7.7 Flow about a delta-wing 
The last application presented in this paper is the flow 
about a cropped delta wing at Mad.4, Re3.1 million and 
an angle of attack of a=9.0 (Fritz, 1997). This low-speed 
experiment has been carried out in the DLR-Braunscbweig 
wind tunnel by Loeser (1996). Although this measurement 
is termed a low-speed experiment (because other measure- 
menu at higher speeds have been carried out additionally), 
the Mach number of MaS.4 is indicating a speed range 
being already in the compressible regime, at the lower limit. 
of course. 

This delta wing with a 65" skew angle has a sharp leading 
edge - promoting a leading edge vortex -that is transition- 
ing to a round edge in the cropped rear part of the wing. 
The cropped part of the wing is initiated at 85% of the 
total chord length. 

The mesh that has been used for this test case is a very fine 
C-0 mesh (C type in main-flow direction and 0 type in 
spanwise direction) with more than 2 million mesh points. 
193 mesh points have been distributed in the main flow 
direction, 129 in spanwise and 81 in the wall-normal direc- 
tion. Mesh lines are emanating orthogonally from the wing 
surface in order to allow for an as-proper-as-possible a p  
plication of turbulence models and resolution of the bound- 
ary layer. 

l k o  different turbulence models have been tested. the alge- 
braic Baldwin-Lomax model, again in conjunction with the 
Degani-Schiff modification, and the 2-quation Wilcox k - o  
model. 

Fig. 27 presents total-pressure losses and eddy-viscosity 
contours for the 80% cross section, the cross section located 
just 5% upstream of the cropped part. Total-pressure losses 
indicate the boundary layer thickness distribution and pro- 
vi& an insight into the vortex structure, showing a primary 
and secondary vortex. The extent and shape of these vor- 
tices are obviously influenced by the eddy viscosity dis- 
tribution - given in the lower part of that figure. Although 
the DeganiSchiff modification has been applied to more 
properly account for vortical flow, the corresponding con- 
tour plot exhibits a somewhat strange distribution in the 
area of the vortices while the attached flow region shows a 
reasonable behaviour. Recalling the results obtained for the 
cone flow in the previous section, a similar turbulence mod- 
el deficiency has been obtained with Ffunction maxima 
near the wing leading edge computed well outside of the 
boundary layer and, hence, being unphysical. 
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Figure 27 Total pressure IoSses and eddy viscosity contourstorthe cropped delta wing at 80% chord using the Baldwin- 
Lomax turbulence model with the Degani-Schiff extension 
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Comparing these results with those obtained by utilizing the 
Wilcox model, Fig. 28, exhibits a rather different SwCNre 
for the eddy-viscosity contours. Viscosity in the region of 
the vortices is much more spread out into the flow field, 
the outermost line denotes an eddy viscosity which is still 
10 times bigger than the corresponding laminar viscosity. 
Although the eddy viscosity in the attached boundary layer 
region looks similar for both turbulence models, the maxi- 
mum eddy-viscosity intensity in the boundary layer part for 
the Wilcox model is about 50% higher compared to the 
Baldwin-Lomax model - of course not in the leading edge 
region where the Baldwin-Lomax model predicted an un- 
physical behaviour. The plotted contour lines have same 
contour levels in Fig. 27 and 28. 

The more "diffusive" eddy viscosity distribution obtained 
with the Wilcox turbulence model might be due to the al- 
ready mentioned sensitivity of the Wilcox model to the 
freestream values of o. An examination of the total pressure 
contours in Figs. 27 and 28 exhibits the influence of the 
different eddy-viscosity distributions on the shape and 
swcture of the two vortices. in particular on the size of the 
secondary vortex. 

The difference in pressure between computation and experi- 
ment on the lower side of the delta wing is related to the 
mounting device. The keel-like shape is inluencing the 
pressure by a lot, hence, the disagreement between clean- 
wing computations and measurement is reasonable. 

Although the influence of the two chosen turbulence models 
on the computed pressure distribution is rather small, the 
different extent of the secondary vortex can be also detected 
from the pressure distributions given in Fig. 29. For three 
different cross sections, pressure results for the two turhu- 
Ience models are more or less identical, apart from the area 
at dztip=O.9 where the secondary vortex appears. Here, the 
Baldwin-Lomax model is underpredicting pressure (++ 
plotted) resulting in a more pronounced secondary vortex. 
As expected and to he seen at x/c=0.8, the eddy-viscosity 
obtained for the WUcox model is pmducing a slightly more 
"viscous" pressure gradient at about 0.65 h i p .  

As mentioned above. results presented so far have been 
obtained on a high-quality grid with very gwd resolution 
in the close vicinty of the sharp leading edge. Fig. 30 pro- 
vides a comparison of the above presented results with 
those achieved with a more coarse grid containing 
97x81~49 mesh points (CEIII grid of the common valida- 
tion exercise). It can be seen clearly that the shape and the 
location of the pri- vortex (and logically that of the 
secondary vortex) is very much affected by the resolution 
of the different meshes. The suction peak is shifted towards 
the edge of the wing, more precisely, the coarsegrid suc- 
tion peak is rather close to that position one would obtain 
when numing an Euler calculation, i.e. the primary vortex - 
initiated by the sharp leading edge of the delta wing - is 
dominated by "inviscid" mechanisms. 

8. NEEDS FOR VALIDATION AND ASSESSMENT OF 
TURBULENCE MODELS 

Concluding from the discussion of results provided in chap- 
ter I, a proper validation and assessment of turbulence and/ 
or transition models should place emphasis on a list of 

items given in the following and should, particularly, take 
seriously care of 

b the numerical method whether it is a SINcNred or un- 
structedapproach with central, upwind, cell-centered or 
cell-vertex methods employed, 
the meshes used for the validation purpose with respect 
to the type of mesh, the resolution and/or the level of 
adaptation to the real existing physical problem. 

6 thecorrectly specified-and forthevalidation procedure 
fixed -flow parameters whetha they are the experimen- 
tally given values or in some sense adjusted ones, 
the original NrbUhCe models, i.e. one should not talk 
about model " A  without mentioning modifications at 
all, 

# thenumerical codingandimplementation ofturbulence 
model, 

# the parametrisation of Nrhulence models by fixing the 
model constants to the original values-or at least to men- 
tionaccurately what has beenchangedin themodel, why 
and with what success. 

b 

6 

However, in the "real" world of applying CFD twls to 
particular flow situations, it might he nearly impossible (and 
expensive) to take care of all the items mentioned above. 
The attempt to achieve reliable results, however, needs to 
take into account at least the knowledge about these items 
because it really docs not help a lot to compare results and 
to validate codes and Nrhulence models on an insufficient 
and in fact non-comparable basis - CFLI people should talk 
the same language. 

The hest thing one cun achieve when validating flow phys- 
ics models is to achieve a proper knowledge about the pre- 
dictive accuracy of NrbUhCt! models in a per-test-case 
manner. i.e. to mention types of applications where certain 
models provide reliable results and where not. To obtain 
such recommendation is a laborious task and needs thor- 
ough and accurate numerical studies. guided by comprehen- 
sive measurements. An attempt for such "rating" of ~ r b u -  
lence models has been performed in the "European 
Computational Aerodynamics Research h j ec t "  - C A R P  
(Haase et al. 1997). 

9. CONCLUSION 

It has been shown that a proper validation of CFD codes is 
a challenging process and depends most of all on an assess- 
ment of turbulence and transition madels describing the 
physics of the flow. Results have been provided for t w d i -  
mensional and three-dimensional flows and for a variety of 
turbulence models tbat are in current use in the aeronautics 
industry. In addition, requirements for both predictive accu- 
racy and validatiodassessment of turbulence models have 
been discussed. 

Recently developed non-linear two-equation Nrbulence 
models appear to have a better performance. however, the 
fact that there are several completely different sets of coeffi- 
cients in the literature implies that there is reduced chance 
of a generalised version. Those models bear the possibilities 
of predicting laminar-to-turbulent transition, although a cor- 
rect location can not he predicted right now. Non-linear 
k-E models can give performance close to best Reynolds- 
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stress models, depending on precisely specified variants. 
Compared to linear k-E models, only marginally higher 
computation costs have to be accepted. 

The major improvements are related to the second moment 
closures, which remove assumptions such as the eddy vis- 
cosity and provide for the fisst time, a mly three-dimen- 
sional modelling capability. In these models, certain key 
sowe terms can be modelled ”exactly” and a more realistic 
prediction of the transition region - without the need for 
incorporating additional criteria - is possible. Of course, 
there are some numerical and technical difticulties because 
these models are complex and not very straightforward to 
implement. Moreover, they sometimes require modifications 
to give close agreement with measurements. However. 
compared to predictive accuracy, the application of Re- 
ynolds stress models may provide the most reliable results. 

It can be concluded that the CFD methods used nowadays 
exhibit a good predictive accuracy, however, the overall ac- 
curacy, robustness and reliability has to be improved. A 
major keypoint for this is seen in flow-physics modelling 
issues. It is obvious that implemeniation and coding aspects 
are a major drawback in the context of a more general 
assessment of turbulence and transition models and that cer- 
tain changes in the models themselves can ameliorate the 
predictive accuracy of a particular model in use for a specif- 
ic application. Unfortunately, this can be reversed if the 
same model with the same parametrization is considered for 
other flow cases. 

In order not to waste time and money, future challenges 
and strategies on both an assessment and improvement (or 
new developments) on how to model turbulence and transi- 
tion will definitely rely on comprehensive and properly car- 
ried out validation studies which have to be supported by 
one important item: All investigators should talk the same 
language - at least when parametrization, coding and imple- 
mentation issues of flow-physics models are concerned. 
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