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TECHNICAL EVALUATION REPORT ON 1997 SPECIALISTS' MEETING ON "NUMERICAL 
UNSTEADY AERODYNAMIC AND AEROELASTIC SIMULATION" 

M. Lacabanne, Aerospatiale, 3 16 route d e  Bayonne AATEIEGICA, 
31060 Toulouse Cedex 03, France 

R. J. Zwaan, formerly NLR P. 0. Box 90502, 1006 BM Amsterdam, 
The Netherlands 

SUMMARY 
This paper presents a technical evaluation of the Workshop 
on "Numerical Unsteady Aerodynamic and Aeroelastic 
Simulation" held at the 85th meeting of the RTO (formerly 
AGARD) Structures and Materials Panel on 13-17 October 
1997, in Aalborg, Denmark. 

ABBREVIATIONS 
AIC Aerodynamic Influence Coefficient 
AOA Angle Of Attack 
CUA Computational Unsteady Aerodynamics 
(CAP)-TSD (Computational Aeroelasticity Program)- 

CAS Computational Aeroelastic Simulation 
CFD Computational Fluid Dynamics 
DLM Doublet Lattice Method 
EE Euler Equations 
FE Finite Element 
FP Full Potential 
LCO Limit Cycle Oscillation 
MDO Multi-Disciplinary Optimization 
MIMO Multiple InpuVMultiple Output 
(TL)NS (Thin Layer) Navier-Stokes 

Transonic Small Disturbance 

1. INTRODUCTION 
The objectives of the Workshop were: 
. Review of the technological readiness of CUNCAS 

methods. 
Review of the industrial readiness of these methods in 
practical applications. 

. 

SMP has monitored continually the progress in the 
development of computational capabilities in unsteady 
aerodynamics and aeroelasticity. The last meeting in this 
subject area was the 1991 Specialists' Meeting on 
"Transonic Unsteady Aerodynamics and Aeroelasticity", 
San Diego, USA, AGARD-CP-507. Since then many more 
advances were made in refining mathematical models, 
applications to more complex aircraft configurations and 
computational efficiency. 
Within SMP, however, the concern grew about in what 
measure industry could benefit from these advances. Voices 
were given to the threat that a gap existed between the 
technological and industrial readiness and that this gap was 
gradually increasing, manifested e.g. by an enormous over- 
representation of contributions to conferences and journals 
from the side of research institutes and universities in 
comparison with industry. 
The need was felt to organize a meeting in which the 
industrial views could be brought out explicitly, which has 
led to the present Workshop. A preparatory step was the 
pilot paper of M. Burt, Military Aircraft Division, British 
Aerospace Ltd., UK, who expressed the industrial needs 
and expectations of CUNCAS. 

In accordance with the objectives of the Workshop equal 
numbers of papers from industry and instituteshiversities 
were pursued and realized. One paper was withdrawn 
(No. 6) and one paper was replaced (No. 13). In section 2 
those issues of the papers are highlighted that were relevant 
to the subject of the Workshop. 

2. OUTLINE OF PAPERS 

2.1 J. W. Edwards: "Calculated Viscous and Scale 
Effects on Transonic Aeroelasticity" 

A viscous-inviscid interactive coupling method, CAP- 
TSDV, is described for the computation of unsteady 
transonic flow including possible separation and 
reattachment, occurring in self-exited shock-induced 
oscillations and transonic flutter. Basic elements are the 
lag-entrainment integral boundary layer equations and the 
transonic small disturbance potential code CAP-TSD, 
coupled with a variable gain, integral control coupling 
method. Mach scaling is applied to enable the use of 
validated modelings at wind tunnel model scale to make 
predictions at full scale flight vehicles. 
Results of flutter calculations for the AGARD 445.6 wing 
show excellent agreement for M<1 .O. Numerical 
experimentation at the transonic dip yields minor scale and 
Reynolds number effects, but an obvious effect originates 
from motion amplitude. 
Another example deals with wing flutter calculations for a 
business jet. Good agreement is found with experimental 
data up to M=0.9 and with results of an NS code at small 
amplitude motions. At large amplitudes LCO is predicted, 
which corresponds with wind tunnel observations. 

2.2 C. PCtiau, Ph. Nico and B. Stoufflet: "Tendances en 

The evolution is described of using CFD methods within 
the aeroelastic analysis system ELFINI- 
AEROELASTICITY. At the present stage the system 
includes for the "heavy" computations an EE method to 
determine in combination with an FE model the effects of 
initial shapes and rigid body motions on the so-called load 
and aerodynamic bases, according to the concept of 
ELFINI. Using the results, a linear potential method is 
applied to calculate the aerodynamic characteristics for all 
required aircraft configurations and flight conditions. 
Calibration of the aerodynamic model is achieved by using 
wind tunnel and flight test data. 
Currently two nonlinear CUA methods are explored, 
focusing on transonic flow: 
. 

CFD pour I'ACroClasticitC" 

The steady method CITRON and unsteady method 
TCITRON for wings with simple geometry. 
The method using unstructured grids EUGENIE for 
complex configurations. 

. 



T-2 

These methods can be integrated with FE models to 
perform CAS analyses. This procedure, however, is very 
expensive and the reliability of the time responses is 
uncertain because of the analysis tools requiring linearity. 
As a way out linarized CFD tools are investigated, also 
considered by ONERA. 
Results presented illustrate the various development stages. 

2.3 D. Schuster, M. Smith, B. Buxton, L. Huttsell and 
E. Turner: "Application of a Three-Dimensional 
Eulermavier-Stokes Aeroelastic Method" 

This paper discusses two validation cases of the well- 
known TLNS method ENS3DAE. The method is in 
development and use since 1989; its present stage of 
development is explained in the paper. 
The first application concerns a 4% thick rectangular semi- 
span wing with a 25% chord aileron at M=0.7 and a static 
aileron deflection of 1 deg, using the inviscid EE option of 
ENS3DAE to calculate the control effectiveness for an 
increasing dynamic pressure, including control reversal. The 
results show an excellent agreement with those of CAP- 
TSD if the same grid is used. 
In the second application results of the TLNS option are 
presented for the BACT model, a 12% thick semi-span 
rectangular wing with a 25% trailing edge control surface 
that could be oscillated harmonically. Two chordwise 
sections with pressure taps were installed at and besides the 
place of the control surface. Results of static and dynamic 
calculations for M=0.77 are in very good agreement with 
wind tunnel data for the subsonic part of the pressure 
distributions, and are reasonable in the transonic part 
where discrepancies occur which will be investigated 
further. 

2.4 W. Wegner: "Aerodynamics for Elastically 
Oscillating Wings Using the Virtual Grid 
Deformation Method" 

A method for dynamic grid generation is described, which 
can be applied in CFD codes to calculate motion-induced 
aerodynamic forces. At issue is the technique to transform 
the basic flow equations into a time-dependent boundary- 
fitted coordinate system, which in most current grid 
generators implies a time-consuming recalculation of the 
grid point locations at each time step. Different from this 
technique, the author presents an alternative virtual 
mapping algorithm that uses only the normal vector of the 
cell faces and the relative velocity of the cell face centers 
instead of the precise location of the grid points. 
He claims that his algorithm is computationally time- 
efficient, but no quantification is given. 
The algorithm can also be used if viscous flow is 
considered. This is demonstrated by the application of a 
viscous-inviscid interaction method, developed by the 
author, to the AMP wing model in fixed position and in 
pitching motion. Calculated steady and unsteady pressure 
distributions are compared with wind tunnel data. The 
agreement is satisfactory, but makes clear that the influence 
of a body at the wing root and of model flexibility should 
not be neglected. 

2.5 G.D. MortchClCwicz: "Application des Equations de 

A linearized EE method, REELC, is presented for use in 
flutter calculations at small amplitudes. The unsteady 
aerodynamic solution is defined as a first-order harmonic 

Euler LinCarisCes au Flottement" 

perturbation of a steady solution. Consequently, the 
calculation of the unsteady solution is considered as a 
complex steady problem. Disadvantage of this procedure is 
of course the doubling of the required memory, but on the 
other hand results become available immediately in the 
frequency domain, while the computation time is 
independent of the reduced frequency. 
Calculated pressure distributions are shown for a pitching 
NACA 64A010 airfoil at a transonic flow condition, and 
compared with wind tunnel data. Noteworthy is that the 
unsteady solution converged very quickly, even before the 
steady solution was fully converged. Another example deals 
with a delta wing for which generalized aerodynamic forces 
are presented for a series of reduced frequencies as well as 
flutter characteristics using these forces. The author 
mentions the total computation time for this case and states 
that the time would have been forbiddingly long if an Euler 
method were used. 

2.6 Paper withdrawn 

2.7 C. Farhat: "High Fidelity and High Performance 
Computational Algorithms for the Solution of 
Three-Dimensional Static, Transient and Eigen 
Aeroelastic Problems" 

The author highlights the sfatus of the three-field coupled 
fluidstructurelmoving grid method , which he developed 
with M. Lesoinne, for apprications to nonlinear 
(aerodynamic and structural) cases, including "pathological" 
features as high AOA and flow separation. This method 
employs a partitioned procedure for time-integrating the 
coupled equations, to be used both for explicit and implicit 
schemes. The primary subject of the paper is the algorithm 
for first-order time integration in the structural and fluid 
domain, providing maximum performance of the solution 
(reduced CPU time) at suecient accuracy and numerical 
stability. This algorithm includes subcycling, implying that 
the structural time step is faken larger than the aerodynamic 
time step. 
The performance is demonstrated by dynamic response 
calculations for the AGARD 445.6 wing using an EE 
formulation and an unstructured grid. The CPU time turned 
out to be a factor 20 less than that of the case without 
subcycling. An intriguing second example is the time 
response of a 2-D model of the Tacoma Narrows Bridge, 
with nonlinearities in both aerodynamics and structure. The 
result is in qualitative agreement with observations. 
In the future applications to buffet problems are foreseen. 

2.8 M.L. Baker: "CFD-Based Corrections for Linear 

The paper presents a method to introduce results of CFD 
codes into production-type aeroelastic methods through 
corrections of the initially used linear aerodynamic forces. 
This method does not imply the usual multiplicative 
correction factors for AlC's, but makes use of the concept 
of "local equivalence". This requires only a small number 
of nonlinear aerodynamic computations, in this way 
reducing effectively the expenses of the routine aeroelastic 
computations. The concept is based on defining any 
arbitrary displacement of the airplane structure as the sum 
of a "representative" displacement and a residual. The 
aerodynamics of the "representative" and residual 
displacements have to be provided by locally linearized 
CFD solutions and fully linear methods, respectively. The 

Aerodynamic Methods" 
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paper indicates how the concept can be implemented 
efficiently in AIC calculation codes. 
Results of flutter stability curves for the AGARD wing 
445.6 model, calculated with the use of the DLM, the 
CAP-TSD method and the newly presented method show a 
good agreement for the latter two methods. Further 
validation for complex configurations, using Euler/NS 
codes, is ongoing. 

2.9 L. Huttsell, J. Tinapple and R. Weyer: 
"Investigation of Buffet Load Alleviation on a 
scaled F-15 Twin Model by Means of Blowing and 
Smart Structures" 

A buffet investigation is described on a sting mounted 
4.7% scale F-15C twin tail model, which is the first phase 
of a larger research program. Phase 1 included the 
experimental study of the buffet characteristics and of the 
effect of tangential blowing as a means of buffet 
suppression, computation of the flow field and a 
comparison of computational and test results. One vertical 
tail was flexible and was provided with instrumentation to 
allow pressure measurements. Flow visualization was 
applied to trace vortical flow initiation. The unstructured 
EE simulations were performed at one tunnel test condition 
(M=0.2, AOA=24 deg, side slip angle=-4 deg). In the paper 
details are given of the methods used for surface and 
unstructured spatial grid generation and the solver for 
inviscid and viscous flow. In the present simulation the 
inviscid mode was used. 
RMS values of the measured bending and torsion moments 
at the root of the flexible tail showed that tangential 
blowing had little effect. The computed model forces and 
moments for inviscid flow agreed reasonably well with the 
test results. The vortical flow was determined to be 
initiated at the top of the engine inlets, which confirmed 
the visualization results of the tunnel test. Flow trace and 
vector plots indicated that the vortices pass the vertical tails 
very closely at the outer sides, again confirming 
visualization results. 
In a continued research program an EE simulation with a 
structured grid will be performed. 

2.10 S. Schulze: "Transonic Aeroelastic Simulation of 
a Flexible Wing Section" 

A CAS method, SNAP2d, is discussed to analyse flutter 
characteristics of an airfoil in transonic flow. Its main 
feature is the use of domain decomposition, i.e. the 
partitioned solution procedure in which the solvers for fluid 
motion and structural motion are active alternately, 
exchanging data only at certain time steps (subcycling). A 
substantial reduction of the computational effort is found in 
applying large "global" time steps in the structural domain, 
favored there by the relatively low frequency content, in 
comparison with the time steps in the flow domain, which 
are small as required by stability and accuracy. The 
theoretical basis of the method is described extensively for 
an EE modeling in combination with an F E  model. 
Flutter stability curves and time responses are presented for 
a NACA 64A010 airfoil in three configurations. The 
stability curves agree mainly well with results from other 
sources, except for a small second transonic dip which was 
not predicted earlier. Also the flutter mechanism is 
analysed, revealing that especially the rapid variation of the 
out-of-phase component of the torsional moment coefficient 

with Mach number effects the shape of the transonic dip 
region. 

2.11 B.J.G. Eussen, M.H.L. Hounjet, J.J. Meijer and 
B.B. Prananta: "NLR Experience in Unsteady 
Aerodynamics and Aeroelastic Simulation 
Applications" 

The paper presents the current status and research activities 
of the CUNCAS method AESIM. This system has been 
developed primarily for flutter certification of transport 
type aircraft, with the aim to become an affordable tool for 
industry. The solver includes FP, EE or TLNS modelings. 
The status is illustrated with pressure distributions on the 
oscillating wing of a fighter type wind tunnel model, 
calculated with the FP and TLNS options, showing 
satisfactory agreement with measured data. 
Extensions of AESIM are ongoing which are primarily 
focused on a further reduction of computational effort and 
user interference, and on increased confidence level: 
. The efficient application of MIMO techniques to 

analyse calculated time responses and determine flutter 
speeds. 
An on-line prognostic method to continue time 
responses after the simulation has stopped. 
Large time step coupling procedures in CAS, using 
prolongations in either aerodynamic or structural 
domain. 

. 

. 

Improved Pad6 techniques for transforming linear 
aerodynamics between frequency and time domain. 
. LCO simulations with optimal integration of CUA 

methods and steady and unsteady wind tunnel data. 
Preliminary results of these points of investigation are 
shown. Representative are accurate EE and TLNS unsteady 
pressure distributions obtained with 8 and 48 time steps per 
period, respectively, and coupled EE results obtained using 
8 time steps per cycle. The 3-D EE and TLNS aerodynamic 
computations are about 5 and 15 times slower than those 
with FP. 

2.12 M J. de C. Henshaw, D. McKeirnon and 
C. Mairs: "Flutter Prediction for Complex 
Configurations" 

A modular process is described for the design and 
qualification of military aircraft to prevent 
aero(servo)elastic instabilities. A key characteristic is that 
the utilization is allowed of sophisticated CUA as well as 
the most effective simple methods, consistent with the 
particular stage of the design cycle being adressed. The 
authors state that about 75% of the effort required to 
qualify flutter aspects is associated with the modeling 
(major part) and analysis phases, the remaining 25% being 
involved with validation, qualification and certification 
(mainly ground and flight testing). On the other hand, 75% 
of the cost is associated with the validation and 
qualification phases. Further, the authors point out the 
strong relationship between the extent of the modeling and 
analysis effort and the cost savings through reduced flight 
testing. Also the risk of redesign is reduced. Potential for 
improving the quality of the modeling and analysis phase is 
therefore found in the use of advanced CUA codes in 
relation to transonic flow and complex configurations. 
The CUA tools at BAe(MA&A) include production tools 
like inviscid linear methods, and advanced methods like 
TSD and EE methods; an NS code is being developed. The 
optimal place of these tools in the design process is 
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discussed in the paper. Various issues concerning CUA 
developments are adressed, including the impact of CUA 
on the design process as a whole. Noteworthy is the 
authors' suggestion to link the post-processing techniques 
to determine frequencies and dampings from calculated 
response data to flutter flight data analysis methods. A case 
study is presented: the AGARD SMP taileron with a 
comparison of results 
obtained with linear, TSD and EE methods. In conclusion, 
the authors state that CPU time is the major limiting factor 
for EE and NS methods, and their expectation is that, 
although the performance of these methods will increase, 
they will complement and not replace the existing simpler 
methods. 

2.13 W. Luber and J. Becker: "High Incidence 
Unsteady Aerodynamics for Aeroservoelastic 
Prediction" 

The design of flight control laws for modem fighter aircraft 
is generally based on an analytical model describing the 
dynamics of the aircraft structure and the aerodynamic 
forces generated by the structural vibration modes and 
control surface deflections. A specific problem is the 
prediction of stability margins of the vibration modes at 
high incidences. The authors state that for these cases no 
theoretical methods exist to predict unsteady aerodynamic 
forces (including flow separation), and therefore they fall 
back on a validated semi-empirical method consisting of a 
linear theoretical method modified by steady and unsteady 
pressure distributions from wind tunnel tests. The 
modification has to affect primarily the generalized control 
surface aerodynamic efficiencies and the vibration mode 
induced aerodynamic damping forces. 
In an application to a delta canard fighter aircraft, predicted 
open-loop frequncy response functions are compared using 
the linear theoretical and the semi-empirical method. A 
validation by flight tests has still to take place. 

2.14 C. Chen, D. Liu and D. Sarhaddi: "A Unified 
Aerodynamic Module for Aeroelastic and MDO 
Applications" 

A unified AIC based unsteady aerodynamics module 
ZAERO is presented, covering subsonic to hypersonic flow. 
The integration of the module into the structural 
optimization method ASTROS is being carried out. The 
module can also be used as a stand alone system as well as 
be interfaced with FE methods like NASTRAN MSC. 
ZAERO consists of four unsteady codes: subsonic and 
supersonic for aircraft configurations with external stores, 
transonic for lifting surface systems and 
hypersonidsupersonic for lifting surface systems and wing- 
body configurations. In the paper more details about these 
codes are given. 
Numerous validation cases of ZAREO and 
ZAERO/ASTROS are presented in which calculated results 
are compared with results from other methods and 
experimental data. The agreement is generally satisfactory; 
in some cases departures exist which are explained. 
Finally, the authors present as global strategy for 
computational aeroelasticity in industrial applications: to 
utilize the AIC methods complimentary to CFD methods. 

2.15 B. Franzen, B. Nilsson and B. Winzell: 
"Experience with Unsteady Aerodynamics for 
SAAB Military Aircraft" 

The au hors present an outline of current numerical 
unsteady aerodynamic and aeroelastic tools used at SAAB. 
The comer stones are the linear system AEREL for 
sub/supersonic flow and complete aircraft configurations, 
an FP aeroelastic simulation code for wings and recently 
the multipurpose EE/NS program EURANUS which was 
made time-linearized and extended to a pilot version for 
aeroelastic simulation. 
Various applications are shown dealing with the Gripen and 
the SAAB 2000 aircraft. Referring to the paper for the 
details, some relevant experiences are summarized here: 
. Use of CFD tools in project work is almost 

forbiddingly time-consuming, especially the grid 
generation, and should be less in next generation 
codes. Also computing time should be reduced. 
Linear flutter analysis of the Gripen provides 
acceptable results and unsteady transonic aerodynamics 
do not add much to that. 
In the attempt to get the unsteady aerodynamics in 
flutter analysis right all other contributions (structure, 
control system, etc.) should be modeled with 
corresponding accuracy. 
The confidence level of the current CFD methods is 
not high enough to justify their use in an industrial 
environment. This experience is supported by the 
results presented of an ongoing unsteady wind tunnel 
research project with two cropped delta wing models 
and a flutter analysis for the AGARD 445.6 wing. 
An indirectly gained experience is the acceleration of 
the convergence obtained in static aeroelastic 
calculations by using critical damping. 

I-, 

. 

. 

. 

. 

. 

3. ROUND TABLE DISCUSSION AND 

From the technical presentations and discussions, some 
important points related with CUMCAS should be noted: 

EVALUATION 

3.1 Progress of CUNCAS in research institutes and 

It clearly appears that since the 1991 AGARD Specialists' 
Meeting on this topic progress has been evidently made in 
CUA, and also in the application of CUA to predict 
aeroelastic phenomena. 
The Workshop reviewed the whole range of CUA methods, 
as already defined in the evaluation report of the 1991 
Specialists' Meeting. They include the classical small 
disturbance potential equation, the nonlinear potential 
equation( both TSD and FP), the Euler equations (EE) and 
the NS equations (both Full NS and TLNS forms). 

industry 

Research institutes and universities are continuing to 
develop CUA methods, mainly TSD, EE, TLNS, and to 
validate them using public experimental results (e.g. 
AGARD 445.6 wing, ISOGAl and LANN wing). Most of 
the correlation between analysis and test is made with the 
AGARD 445.6 wing flutter test results. Many papers show 
the capability of the different methods to predict the 
transonic dip for the AGARD wing. 
Aircraft manufacturers commonly use linear methods 
including correction factors, but they are evolving towards 
the use of nonlinear CUA or linearized CUA. Industry 
needs to implement affordable techniques which do not 
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demand tremendous effort and high computation times, and, 
at the same time, are accurate in the prediction of 
aeroelastic phenomena. Industry uses the most advanced 
techniques only for isolated cases (paper 15 presented by 
Dr. Winze11 of SAAB shows the implementation of EE and 
NS solutions). Industry will have the responsibility to 
choose the most suitable methods according to the 
development stage of an aircraft project. 
The need for AIC correction factors still remains, even if 
nonlinear CUA tends to be used as a "numerical wind 
tunnel". 
Indeed, industry must run a large number of aeroelastic 
computations, varying Mach numbers, payload and fuel 
configurations, and cannot afford to compute all the cases 
with nonlinear CUA. Furthermore, AIC's are still necessary 
for aeroelastic optimization work. 
The cost saving achieved by using CUA in the flutter 
analysis process needs to be assessed. A trade-off between 
accuracy, computation cost, manpower effort and cost 
saving induced by the application of CUA methods to 
aeroelastic phenomena predictions should be established 
whenever possible. 

3.2 Improvement of CUA techniques 
CUA techniques must still be improved so as to reduce 
computation time. This reduction might be obtained by 
improvement of algorithms and use of parallel computers. 
Another challenging aspect of CUA is the problem of grid 
generation and the choice between use of a fixed grid or 
moving grid. 

Comparisons of solutions using structured or non-structured 
grids should be made. There is a need to think about 
checks for grid generation. When using NS equations, good 
turbulence models should be used so that the solution of 
these equations involves more physics and not numerical 
concerns. 

3.3 Validation cases of CUA methods 
There is still a need for validation cases and for calibration 
of CUA methods versus experiments. Indeed, the AGARD 
445.6 wing which was the test reference in many papers, is 
not fully appropriate for validating CUA codes because 
there is no strong transonic effect and because some test 
results remain questionable. The AGARD wing should only 
be a case for calibration of methods before performing 
analysis on more difficult cases. 
A lot of work still remains in defining good test cases. 
There is a consensus in saying that available test cases are 
not sufficient for calibrating CUA methods and flutter 
predictions in the transonic regime. Dr. Bahtia of Boeing 
emphasized this point and proposed that research institutes 
work on the definition of new standardized cases. 

3.4 Additional comments 
The CUA tools discussed in the workshop serve typically 
aeroelastic needs and interests, and their procedures and 
algorithms are therefore not completely equivalent to those 
of the CFD tools of "steady" aerodynamic experts. So 
keeping CUA expertise in the organization of industries and 
institutes in or very close to the aeroelastic department or 
group is highly desirable. 
It was agreed that viscous effects should be included in 
computations to predict aeroelastic phenomena like LCO. 
Dr. Edwards of NASA said that "an expanded concept of 

stability for transonic flutter computations and testing 
"should be defined. 
Linearization of Euler equations must be considered as an 
alternative to the solution of nonlinear EE equations. While 
capturing nonlinear effects (shocks, etc.) for small motions, 
linearization of Euler equations allows computation time to 
be saved. 
There is a need for developing post-processing software to 
derive stability criteria from response time histories. 
All the efforts made in CUA will serve to validate the 
complete aeroservoelastic loop. 

4. CONCLUSIONS AND RECOMMENDATIONS 

There is no doubt that considerable progress has been made 
since 1991 to predict classical aeroelastic phenomena (e.g 
transonic dips), but also less classical ones like LCO. 
Progress is made step by step, both in the research 
institutes and universities and in the aeronautical industry. 
While the industry aeroelasticians perform most of the 
analysis with classical linear methods including weighting 
factors, they also use CUA methods for some cases. 
Nevertheless, the use of CUA methods in industry remains 
marginal because of cost, required implementation effort 
and the clear need for more validation of the methods 
versus experiment. 
There is a need for new standardized tests which will serve 
as a basis for further calibration of methods. These cases 
should be defined by the research institute community. 
They should cover a wide range of aeroelastic phenomena 
(static deformation, flutter in the transonic regime, LCO, 
buffet, etc.). They should address clean wing transonic 
phenomena, as well as control surface aerodynamics in 
connection with aeroelasticity concerns. 
One of the main challenges of CUA is the grid generation, 
with a need to represent the details of geometry (e.g missile 
or underwing stores for military aircraft, nacelles for civil 
aircraft). The improvement of algorithms, reduction of 
computation time and implementation effort are necessary. 
The advanced methods should only be used when they 
bring in more physics and the aeroelastician should know 
when he has to be concerned about the numerics. 

FOR FUTURE EFFORTS 

Up to now, because of insufficient calibration of CUA 
methods, high cost and the manpower required to 
implement such methods, industry is not ready to use time 
domain solutions extensively for analysis of aeroelastic 
phenomena. Industry still prefers to use, for aeroelastic 
analysis, linear or linearized solutions including weighting 
factors which improve AIC's. However, aircraft 
manufacturers are thinking about the integration of these 
methods within the complete aeroelestic analysis and 
validation process. Calibration of the methods versus 
experiment for classical static and dynamic aeroelasticity 
and for less conventional aeroelastic phenomena (LCO, 
buffeting, etc.) remains necessary. 
In the technical evaluation report of the 1991 Specialists' 
Meeting it was mentioned that the "one really new thing" 
seen in the presentations was the transonic LCO on a 
fighter aircraft. LCO understanding had been addressed by 
a semi-empirical method. In the 1997 Workshop papers 1 
and 10 have treated the LCO phenomenon through 
computation and correlation with tests. 
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Nevertheless, a special effort for understanding and 
predicting LCO phenomena is still necessary. 
The recommendations included in the same report remain 
relevant. The objectives of computational unsteady 
aerodynamicists and aeroelasticians should be to continue 
jointly the investigation of transonic dip phenomena, do 
comprehensive work on LCO for the short term and 
medium term and extend studies to buffeting for long-term 
studies. 
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CALCULATED VISCOUS AND SCALE EFFECTS ON TRANSONIC AEROELASTICTY 

John W. Edwards* 
NASA Langley Research Center 

Mail Stop 121 
Hampton, Virginia USA 236814001 

Abstract 

A viscous-inviscid interactive coupling method is used 
for the computation of unsteady transonic flows. A lag- 
extrainment integral boundary layer method is used with a 
transonic small disturbance potential code to compute the 
transonic aeroelastic response for two wing flutter models. 
By varying the modeled length scale, viscous effects may be 
studied as the Reynolds number per reference chordlength 
varies. Appropriate variation of modeled frequencies and 
generalized masses then allows comparison of reponses for 
varying scales or Reynolds number. Two wing planforms are 
studied: one a four percent thick swept wing ahd the other a 
typical business jet wing. Calculations for both wings show 
limit cycie oscillations at transonic speeds in the vicintiy of 
minimum flutter speed indices. 

Introduction 

The onset of transonic shock-induced flow separation 
is known to be associated with a variety of nonclassical 
aeroelastic instability and response ~henomm, ' - '~  referred 
to variously as: single degree of freedom flutter, limited- 
amplitude flutter, limit cycle oscillations (LCO), control sur- 
face buzz, shock induced oscillations (SIO) and buffeting 
(onset). A characteristic of the "instabilities" involved is a 
tendency to grow to a constant or bounded "limit amplitude" 
which can vary from a nuisance level to levels large enough 
to cause structural failure. In the latter case, the nonclassical 
response, generically referred to herein as LCO, is typically 
observed near the flutter boundary, making a distinction b e  
tween the two response mechanisms difficult. Edwards'4s15 
reviewed these features of transonic aeroelasticity, conclud- 
ing that i.) computational capability for such cases would 
require modeling of dynamically separating and reattaching 
viscous boundary layers and ii.) such capability was not yet 
mature for wings or more complete configurations. 

Flg. 1 Sketb of shock-bouadary layer interaction. 

'Senior Research Engineer, Aeroelasticity Branch, Struc- 
tures Division 

Interactive Boundary Layer Modeling (IBLM) provides 
an alternative to such direct computation of flows involving 
viscous shear layers. Separate computations are made for 
an h e r  viscous boundary layer region and an outer inviscid 
flow region as illustrated in Fig. 1. Subscript "e" denotes 
the "edge" of the boundary layer, while superscripts "i" and 
"v" denote inviscid and viscous variables. Ref. 16 devel- 
oped an integral boundary layer lag-entrainment method to 
compute displacement thickness 6' which was used to up- 
date the flow tangency boundary condition of the inviscid 
solver. This "direct" solution method for the entrainment 
equation becomes singular at flow separation and "inverse" 
computation  method^'^-^ have been developed in attempts 
to treat flow separation. 

Edwards"* summarizes developments of such inverse 
computational methods by many and ex- 
tends the inverse method of H0wlet t~3~,  implemented in 
the CAP-TSd'a (Computational Aeroelasticity Rogram- 
Transonic Small Disturbance) potential equation code, with a 
new interactive coupling procedure capable of treating tran- 
sonic Shock Induced Oscillation (NO) conditions for air- 
foils. Bartel~'~9'~ has recently developed an IBLM with a 
fully unsteady finite-difference boundary layer model inter- 
acted with a two-dimensional version of the CAP-TSD code 
and presents many SI0 calculations. 

In the present paper, calculations of wing flutter are 
presented for two cases: a four percent thick swept wing 
flutter model, and a thicker typical business jet wing flutter 
model. Viscous effects are shown for both models, including 
examples of LCO. The effect of model scale, and thus 
Reynolds number, is studied for both models. Evidence of 
a significant effect of Reynolds number for flutter and LCO 
conditions involving separation onset is shown. 

Mathematical Method 

Details of the inviscid flow equation, the boundary layer 
equations, the modifications to boundary conditions, and the 
IBLM coupling procedure are summarized in this section. 
Further details are given in Refs. 23 and 24. 

Inviscid Flow Equation 
The CAP-TSD potential equation code is used in this 

analysis. The CAP-TSD code uses an approximate factor- 
ization algorithm for timeaccurate solution of the unsteady 
TSD e q u a t i ~ n ~ l . ~ ~  

where 9 is the inviscid-disturbance velocity potential and 

io = -&t - B A  (24  

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation", 
held in Aalborg, Denmark, 14-1.5 October 1997, and published in R-822. 
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where A = M 2 ,  B = 2M2, El = 1 - M 2 ,  FI = 

For the 2-D version of the code, f2 = GI’ = 0. The 
code contains modifications to these coefficients developed 
by Batix~a~~ to approximate the effects of shock generated 
entropy and vorticity. 

-1 [. 7 - (2 - y)M2]M2. G I  = - fM2.  and H I  = - M 2 .  

--Entrainment Boundary Layer Equations 

The effect of a turbulent viscous boundary layer is mod- 
eled in the quasi-steady manner of Green et al.16 by solving 
a set of ordinary differential equations, termed the Boundary 
Layer Equations (BLE), m z for the integral boundary layer 
quantities: momentum thickness 8; shape factor ?7; and en- 
trainment coefficient CE. The various closure parameters 
in these equations are given in Ref. 31. In this form, the 
equations are suitable for attached flow boundary layers and 
provide the boundary layer displacement thickness 

6’ = HB (3) 

This provides a “direct” calculation of the viscous modifica- 
tion to the airfoil shape to be implemented in the boundary 
conditions discussed below. 

At separation, the equations become singular and an al- 
ternative ccinverse” IBLM is used as described by Howlett%, 
Melnik and Brook1* and LeBalleur19. In this form, the equa- 
tion for B is replaced by an equation for the viscous edge 
velocity, U“, and B and 6 * are obtained from the interactive 
boundary layer coupling method described below. 

Numerical Implementation 
From the leading edge of the airfoil, the boundary layer 

is approximated by the turbulent boundary layer on a flat 
plate. At a specified point, numerical integration of the in- 
verse boundary layer equations is implemented with a fourth- 
order RungeKutta method. For the Mach number range 
studied, it was found that the inverse equations, in conjunc- 
tion with the coupling method described below, converged 
rapidly for attached flow upstream of regions of flow sepa- 
ration (and also for downstream regions of reattached flow). 
This obviated the use of the direct boundary layer equations 
thus circumventing the numerically troublesome switching 
between the direct and inverse equations in separating flow 
regions, where the largest parameter gradients occur. 

Interactive Boundary Layer Coupling Method 
Since the intended applications of the IBLM include 

cases of wing flutter, including SI0 and LCO, the coupling 
method was developed based on the observation that at the 
transonic flow conditions of interest, the flowfield is f re  
quently inherently unsteady, displaying oscillating shocks 
and separating and reattaching boundary layers. The inter- 
acting boundary layer method is thus regarded as a simula- 
tion of two dynamic systems, the outer inviscid flow and the 
inner viscous flow, whose coupling requires active control 
elements in order to minimize the coupling error between 

the two systems. The elements utilized, illustrated in ana- 
log block diagram fashion in Fig. 2, include a variable gain 
integral control element for the displacement thickness and 
a first order smoothing filter for the momentum thickness 
e~timate2~3. 

For the 3-D code, the boundary layer and interactive 
coupling equations are solved independently at each span- 
wise chord station on the wing. This is accomplished at each 
time step, within the Newton linearization iteration loop of 
the approximate factorization solution algorithm of the re 
sulting CAP-TSDV code, where the appended “V” indicates 
the IBLM capability. 

. e  1 1 

V I  I - 
r n  

BLE 
1 

XX b 

Flg. 2 Schematic diagram of variable gain, integral control, 
viscou&inviscid interative coupllng method. 

Scaling and Reynolds Number Modeling 

The scaling relations used for flutter models, referred 
to as Mach scaling,g,3a*37 are given in Table I. In construct- 
ing a flutter model, all of the scaling parameters, Ai, must 
be considered. The situation for a computational simula- 
tion of Reynolds number effect is much simpler, since there 
are no constraints on “model” size. Assuming the simulated 
“model” responses are to be computed for the same gas, 
same Mach number, same dynamic pressure, and same rel- 

I Ratio- I I modelfaircraft 
Parameter I 

frequency 

force 

torque 

dynamic 
uressure 

Reynolds 
number 

Xf AVfXI 

X p X v 2  

’bbie 1 Mach scaling used for flutter model tesing. 



ative debxim?. wehave Ap = A v  = A ,  = 1, leaving the 
following scaling relations f a  colnpuutiolul aaoelasticity: 

3 g d  . -: A, = A ,  
d frequmcied: A, = A;' 
Reynoldsnumberperrootchord: A,, = A ,  

In cases such as the prcsmt, w b e n e x p e h m t d  data from 
actual wind tunnel models is avaihble ud we wish to predict 
the behavim of a larges Eight vehicle. the roles of "aircraft" 
md "modcl" in the di relations is r e v d .  For exam- 
ple, if we wish to predict comput.tinully thc rcspoase of 
a Eight vehicle 20 times 1.rga than the fluttu model, the 
computational rcmelnstic d y s i r  should be perf& by 
mcdifyi the Mmel.stic qutim of mMicn of the But- 
ter modcl wich: = 20, A, = m n ,  A, = 0.05, and 
ARa = 20. m i s .  gendizsdmpsscs are incmadby A:, 
d kquacied arc demeased by A I ,  d the Reynolds 
number haease8 by A, .  The procedure f a  studying the 
Ctrccts of scale or Reynolds number on, e.g. Buttex, is thus: 
detsmim the Mmpluianrl .emclastic modal root loci for 
the two l a @  aules (i.e., m0d.l f r e q d e s  nnd dunpings 
vaaus dynamic preasun): and then. compare the scaled fre- 

Euttu model teak? a cunputntion with A , = 1. Also, ampli- 
tude effcets such as wingtip motion, cm be "mppred using 
the scaled deBcetionT,i, = z,,,,/A,. 

qlwacy, +,. nnd damping, {. with h s e  obtained from 

Model Descriptions and Results 

Wg Flutter Models 

The first wmg Butter model. shown in Fig. 3. is the 
AGARD Stpndard Aeroelnstic C~uliguratim~~ which was 
tested in the T d c  Dynamics Tunnel OT) at NASA 
Lmgley Research Cmter. It is a semispan wall-mounted 
model baving a qunner-chord sweep angle of 45 deg., a panel 
a s p t  ratio of 1.65, nnd a upa ratio of 0.66. The wing 
had a NACA 65A004 nitfoil section and was cmsmted 
of laminated mahogmy. The wing is modeled smturally 
using the Erst four MNA vibration modes, with naml fre- 
q d e d  wing fmn 9.6 Hz f a  the 6rst bending mode 
to 91.54 Hz f a  the second torsion mode. The CAP-TSDV 
calculations were performed on a 150 x 30 x 8Opoinf corn- 
p u t a t i d  grid with 100 points along each of 15 spanwise 
chords on the wing. otha computational conditions were: 
n '  ' 'onal timc step dt = 0.05, one Newton iteration, 

The seumd wing Butter model, shown in Pig. 4, is a 
typical business jet cmfiguratim also tested in the TDT. The 
semispsn wing-fuselage model was mounted on the wind 
tunnel sidewall nnd tested in air, with expaimeotnl flutter 
dnta obuined f a  Mach rmmbas from 0.628 to 0.888. Tbe 
wing has a taper ratio of 0.29 and U midchord sweep of 
23 de*. The n i r f d  thickness varies from 13 pemnt at 
the symmeny plane (for the extended wing-alone d g u -  

.nd K ,  = o.00090. 

1-3 

rution d y d )  to 85 perCmt at the wing tip. Si natural 

Elg. 4 BlrPiaeu Jd (utter model m ~ ~ t d  la NASA L.nllley 
~ a m o n l c  Dynamics h o d .  
vibratim modCS were included in the calculations. with fro 
q u a c k  ranging fmn 4.3 Hz to 62.7 Hz The CAP-TSDV 
calculations were performed m a 100 x 50 x 80 point cam- 
putntional grid with 45 points almg each of 33 spaawinc 

n a d i m n s i d  tim step dl = 0.09, m e  Newtcm iteration. 
chords on the wing. other computatiolul omditions wcre: 

and K ,  = n.00010. 

AGARD Wing 4456 Flutter Calculations 
The majority of publushed calculations for this model 

(actually U series of models with similar planforms) me f a  
the "weakened modcl #3" tested in air, since tbis test u)yeTcd 
the l q e s t  trpmdc sped range nnd showed U significant 
m m m i c  dip effect. Edwards?' summarizes U numba of 
these calculations fmn both inviscid nnd viscous mahods. 
The focus upon this case is unfaaulate, in that the model 
tested in air resulted in unrealistically large mws ratim nnd 
d reduced Butter Sequencies. 

Models tested in b v y  gas . It is thus desirnbk to 
study m l t s  for the "wulrcned models 65 and #6" which 
were tested in heavy gas nnd had more repronable rang= 
of mess ratio and frequacy. CAP-TSDV calculations for 
these c a w  are shown in Fig. 5. Again, f a  these casea 
with M 5 1.0. the CAP-TSDV results are m excellent 
agreunent with expitnent for M = 0.74 md 0.92. Due 
to issues discussed above for very low "pwonic Mach 
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numbaa, calculations have llot batl attanpled f a  the rhird 
experimzlcll M.ch Ilumk of 1.0. Iuatedd, tal- U 
M = 0.9(M.%reVuled mintmxhgminimumfutlne m 

A,r&Ilg fran 1 to40 md m&lg Reynolas munbaper 

the Bum sped indu parumxu at M = 0.95. p i p  6 
shows haer bo- f a  five values of tk. d e  facan, 

root chad fran 3.5 million to 140millim Inacres ahow 

0.50 

Flutter 

Speed 

- 

-e- experiment t Index 

0.6 

W d W f f  

CAP-TSDV 

- 

0.25 
0.4 1.2 

Mach number 
(a) Buner speed index. 

Rurharmmmul ' experimmmtion at M = 0.96  re^ 

.42 

.41 
Flutter 

index 
speed 

.40 

- 
h Rex 10-6 

0 1 3.5 

010 35 
A20 70 
b40 140 

- 

- 

.39 
.88 .W .92 .94 .96 .98 

Mach number 

.42 r 
Flutter 

index 

.39 
.88 .90 .92 .94 .96 .98 

Mach number 

nB 7 aNiad CIM d motim .mpiitude  pm 'nulla" 
h a d o r y  near mialmum tnasonic flutter 

This limit cycle behavior wla funk studied by * 
qmtially imrdsii the dymmic pnsm bctwem mu- 
pured NOS ban Q = 0.5 to 0.81 psi. Ihe resulriog tip 
d e E d m  lime bistay is h w n  in F i  9. 'helve wm- 
p u m m  with a total of '24,OOOtim steps wa-e c a l d d .  
The dynamic pssurc w r r i u m r m ~ l e d  rr indicated in steps 
between mued NOS. For CJ 5 0.60 psi., tk. "pansc is 



damped md fa (J = 0.70 psi., small mtmUy stable oscil- 
lations arc seen. With Q incruscd to 0.78 psi., slowly diva- 
g a t  d a t i o m  develop ami with hulha incnxse to 0.81 

tive damping uotil the amplitude reaches approximptely 0.12 
inchCS puli-tqeak. The growth of the. oscillations then 
qumchcs and it appears that L limit cycle condition will 
again develop, although furtber ulculaticms are needed to 

psi., thE d i v u p u  oscillations grow with incrused nee- 

fully establish this feature. 
This same sequence of increasing dynamic pressure 

ulculations was perfamed for X = 10. or Re = 35 million. 
md the results are shown in Figure 10. Very similar behavior 
is shorn in Figun: 9 for A = 1 and Re = 3.5 million Hence, 
for this wing geomcby and "test" conditions. the nonlinear 
effect of motion amplitude dominates the effect of Reynolds 
number. 

200 

GAFl 
0 

-200 
I .o 

ztip. 

in. 
0.0 

5 10 15 20 25 30 
-1.0 

0 

t', chords traveled 

Elg. 8 Calculated AGAIIl) Wln# 445.6 Up rrsponsc lo heavy gm for M = O.% M d  Q I 0.75 pd. 
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0 25 50 15 

t’, chords traveled 

Fig. 10 Calculated s d d  AGARD win$445.6 rtzponse In heavy gas for M I 0.96 and lncreaslng dynamlc pressure; A ,  = 10. 

This limit cycle behavior f a  this d e l  was only ob 
served f a  the highest calculated Mach number. M = 0.96 
which lies on the “backside” of the small transonic dip sew 
in Fig. 5. At this Mach numbex and for the wing mw 
tions calculated, the flow is fully attached with no signifi- 
cant uansdc features. The boundary layer coupling method 
pafonned well. with wellCOmerged displacement thichess 
profiles. Numerical flow visualizations of Ihe wing pressure 
showed deuils which are p i b l y  key U) this nonlinear re 
sponse behavior. At this Mach number and for this thin 
wing, significant regions of near sonic flow develop adjacent 
U) the wing uppa and lower surfaces as the wing oscillates. 
Very high Frrquency upswam moving pressure waves are 
seen in the visuplizations which are wmism with forward 
propagating Mach waves. At a given point on the wing, the 
frquency of these pressure waves is 10-20 times the flut- 
ter mode frequency f a  this case. The amplitudes of these 
calculated l i t  cycles is small and no mention of such be- 
havior is ~epr ta l ’~ .  It is unlikely that such small motions, 
even if present, would have been delected since they would 
have been heavily masked by the model response to tunnel 
hubulem. 

One hml cwnputational experiment for this case in- 
volved permrbing the LCO obtained at the end of the se- 
quence shown in Figure 10. Figure l l  shows this result 
obtained by restarting from the last sequence with all modal 
displacemmls and velocities doubled. lnstead of returning to 
the original LCO state, the response slowly diverges to more 
than five times the original amplitude. Again, furtha calcu- 
lations me needed to establish the final state of the system. 

p, $ doubled 

- 
Ztipj O 

in 
-0.5 

0 25 50 
Y ,  chords traveled 

Flg. 11 Mecl d perturbatloo from Limit Cycle Osellhtlm 
cmdltlon; M = 0.96, AdO.0 ,  Q I 0.81 pd., heavy 8.s 

Business Jet wing Flutter Calculations 
Ihe business jet wing flutter model shown in Figure 

4 was tested in the Transonic Dynamics ’Aumel at NASA 
Langley Research Center. G i b e  presents flutter calcu- 
lations for the model including spatial and temporal m v m -  
gence studies. and surface pressure coefficient comp8risons 
for rigid and statically deformed cases. using TSD. Euler, 
and Navier-Stokes methods. For the present study, the ef- 
fects of including viscous effects and varying Reynolds num- 
ber by varying the model scale were investigated using the 
CAP-TSDV d e .  

Wind Tunnel Model Scale, X A T h e  model was WR 
snucted from aluminum plate with fiberglass wrapped foam 
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providingtheailfdcontollr. Tbewiagwlsmauntedlow 
on the side-wall mnmted huelage model which had a cir- 
cular - d m  with a u m i d  aft end. The wing mot 
angle-ohmck w u  vmied during the tcst to minimize l d -  
iag. Tbe nuxitnum mgleneedd for this pwpm w u  0.2 
depxs U thehigkdt rested Mach munber. This mot angle 
was uscd for the cllculatims desaibed Mow. Thisrosulted 
in calculated at& tip dCeectiona (for X = 1.0) of -1.33 in. 
at M = 0.R2A md +135 in. .t M = 0.888. Thc Rcymldp 
lurmbar for these two Mach numbers w a c  2.17 million md 
1.14 million respectively, based on the 2.0 ft. mot chord. 
The modcl had a 4.4 ft. scmispm. 

sure, displacemmt thickness, md skin friction a h w n  in 
~ P l o t S  Of the Uppa md lOWR wing SUrfUX Prcg 

Pig. 12 for M = 0.888. Note the IOWR surface l ead i i  edge 
d o n  peak md mild inbod  shock seea in theprwsures. 
Tbe displrcemnt thickness is Oriented positive downwards 
fOr bert V k d h k I I l  of the p h .  The lOWR SUI- 

face displ-t thicklws is similar to the uppa surface 

of 8ppmximately 1.5 pncent mot chord The skin friction 
reflects these fahues m in the displacnnart thickcess md 

with muimum thickneaw below one pacmt except near 
the mot where the 10WR surface shock pmduces a lhiclmesr 

is informative regarding closzneaa to scpantion Thc IOWR 
surface rrpili-edge is separated at themot and t h m  is a 
small separation bubble just mbod of the tip and aft of the 
leading-edge suction peak. The skin friction codficicnt is 

Pressure 

low in the h.ilingcdge region of the upper surfice, &- 

uppa surface aepmtimbubble a key in theeffect o f a m  

Cdculated fluaa speed irdicg md f q d w  v m  
M.ch munber a crmpaed with e x w t  in Pi. 13. 
Tbe lineu CAP-TSD, E u l ~ ,  md Navier-Stokw d e s  a 
fmm GibboorfD while the four CAP-TSDV data pohts mm 
new. CrmpPrismofthwefluttabarnbricsludstosimilu 
observations ls for the 445.6 wing: 

Inviscid calculations a p e  among tkmmelvss md 
a ia very good a p e m m  with expimat for the lowex 
Mach rmmbas. P a  hi& Mach rmmbas in the vicinity 
of the trmsOnic dip region, h e  inviscid codes b&ome in 
aeasingly cmservative. For this wing. inviscid cllculatim 
should not bc used for M > 0.80. 

2. For Mach n u m b  at and below the midmm 

TSDV md CPL3D. me in agrrement mui bah v i d e  good 
agreement with experiment, largely -!hg the deficieocy 
in the inviscid umhods. 

3. Linear flutta cdcdaticm8 me in exccknt agrcb 
ment with eXpaimenr up to M = 0.R5. but cmnot be relied 
u p  for higher tmnsonic Mach numbas. The good agrcb 
ment in the lowex uauscaic speed mge is due to well-kmwn 
comp.nsuing defem of linear theory w W m  thickness md 
visuam effects a neglected. 

ingarlinimmIlo.r88pacmtspm.This~onmdthe 

plitudc up00 fluacr modc lwplme dcgibcd Mow. 

1. 

lrauumic nuaa speed index, the V h  methods. CAP- 

Tip 

1 

0 
-cP 

Displacement Thickness 

Root 

P 

Skin Friction 

0.006 4 cfo 

Upper Surface 

Lower Surface 

12 coo(av plda d buslnem Jet dw presswe .ad boundary layer parameters at ~ntlcally ddorwd ewditloas: M = 0.8.88, 
Q = 79 pU., a = 03', X = 1, Rec = 1.14 milllm. 
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0.5- 

Flutter 

All of the results discwed thus far were oblained from 
uansient or harmonic responses of small amplitude, that is, 
wing tip response amplitudes were less than s e v d  tenths 
of an inch. Under thesc cnditions, no large change8 of the 
static aaodynnmic lolding occwed and transient responses 
exhibited exponential stability, characteristic of 8 “locally 
linesr” system behavia. At M = O.RRR the CAP-TSDV 
code was able to calculate large amplitude response motiolls 
which danonsualed Limit cyck bebvior. The motion was 
calculated for the expcrimentpl “flutter” dynamic pressun of 
79 lb/ftz. The conditions for the Limit cycle are n o d  in Fig. 
13 by the solid symbol indiclting a 0.5 Hz. &rease in fm 
quarcy over the small amplib.de value. Elgun 14 shows two 
transient responses umiimun ’ g the limit cycle behavior. The 

0 CAP-TSDV 
0 CAP-TSD } amplitude 

v CFL3D-NS 
. a CFL3D-Euler flutter 

. 

Ztip 

in. 

V 
Speed 
Index 

- 
- v w v  

Q=79 psf 
- 
\ 

V L  

0 1  
0.5 1 .o 

Mach Number 

(a) flutter spxd index. 

’I A 
5 1  
0.5 1 .o 

Mach Number 

(b) frequency. 
Flg. 13 Compnrbm between aperlmenW and ukuhted 
lultrr qeed Index and frequency for a business Jet lulter 
model kded In dr. 

motions w a e  excited from converged stntically defomvd 
conditions by multiplying the modal displacrments .ad v 6  
locities by factors of 5.0 for Fig. 148 and 0.5 for Fig. 14b. 
The larger factor simulates a wing tip displacnnent of abut  
7 inch=, resulting in decaying oscillatim to a l i t  cycle 
with M amplitude of 5-6 inches peak-tqeak. The ~ ~ t ~ a l l ~  
factor results in oscillations growing in amplib.de to the h i t  
cycle. This behavior is similar to model behavior obserwd 
during the test. Video tspc of the model d m  at the ex- 
paimental “flum” conditions for this Mach number shovvs 
the model to be undergoing constant amplitude wing oacilla- 
tiolls with amplib.de of sli@ly less than one tip chord (6.3 
inches) peal-@peal. This is in very good agreemmt with 
the calculated LCO amplitude and hequency shown in Fig. 
14. The plate cmstruction of the model provides sufficient 
strength to allow the model to sustain oscillations of this 
amplitude withour structural failure. Inspcctim of the wing 
boundary layer p a r m m  and surface pressures during the 
calculated l i t  cycle oscillatim Mafinned that the flow 
OVR the wing ww intamittently separating and realtachkg 
in the outboard upper and lower surfae regions described 
above. This apparently provides the mechanism needed to 
quench the growth of the unstable fluna mode motions. 

f=9.16 Hz 
I I I I I -10 

0.8 time, sec. 0 

(a) amplitude decaying to limit cycle oscillation. 

c 
1 f=9.21 HZ 

-10 -J 
0.8 time, sec. 0 

(b) ampliNde growing to limit cycle oscillation. 
Flg. 14 Cakulated limit cycle rapoose for a buslnem Jet r ing 
flutler model: M = 0.8888, Q = 79 pd., A r 1.0, RI. = 1.14 mlllkm. 

Effect of Reynolds number. A s  A limited shuiy 
of the effect of Reynolds number on this LCO behavior at 
M = O.RRR was conducted. Figure 15 shows tbe stmly 
deformed wing pressure contours. Canparison with Figiue 
12 indicates modest changes in the wing loading for the 
increased Reynolds number. B d a r y  layer paramettxs 
(not shown) indicate that the displacement thickness ova 
the wing is approximately half that shown for A = 1.0, 



~ f a t h C i n c r u a s d  gradients llQrm in cp in the 
inbardregirn of the lower surface md the oubolrd region 

cae5icimtsdarruSdslighllyfmnCL =O.034udCM = 
-0.038 f a  A = 1 to C ,  = 0.017 md CM = -0.027 f a  
A = 10 md the d e d  wing tip displu!uncut dcueased by 
se.v€d tmthr of m inch. 

of theuppa d a c e  in F i  15. Tbe wing lift and momoN 

r;,;;g3 

&g 
,, +;:<::,;..*4 ....... ............ Q *.: ;:,.':... 

$.:,,*.:? 

............ ............... J 

loo r 
60 

20 

-20 

-60 

z!ip 
in 

-1 00 
0 12.0 

lime, sec 
AI. 16 c.lful.ted Umit qck r e p m e  fur a bdaess jel  Mag 
lllttn modcl: M = 0.688, Q I I 9  pat., A E 10.0, Re. = 11.4 
d b a  

P i  16 shows the effect of the inuedxd Reynolds 
mrmba upm the LCO behavior of the wing. If thae had 
beano  effect, the wing oscillations would be expcctcd to 
grow to a LCO condition with wing tip motions of abut 
55-30 inchS. whenrr the acmal motirn shown in F i  
16h.sre;lchcd MI Lrhes md has not yet achieved a b l e  
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limit cycle conditions. while the h i g h  Reynold8 number 
luds to inuedxd pl~surs gmdimrs md hence slightly in- 
creased o(ms0oic shcck strmgth, the thirmer bouadpry laya 
is appamtly less pmre to providing the qua&iqg mecha- 
nism for the LCO and I u g u  wing motions are requid to 
indlu% such quenching. In the pramt CUIC, Lco motions 
forthe A = 10 use are over twice the LCOtmtimsulcu- 
lated and observed for the wind numel model d e  which 
WM tested. This might infer that the wind hmnel nutter 
model teat provided m ununservative Butta bo-. On 
the otba h.nd. the large LCO mot im obsaved duriag the 

tR."Tbeambiguitytlnddyingthisdiscussionofst.bily fa 

nutta CmpIltatiOns ud tedting. 

le& WCIC W l T d y  imaprctcd by thC teat a@lCQ'S M 'flflul- 

realistic Butter model tedtiug should be inrequeted as a r e  
s- for m expmdod ranxept of st.bility f a  umwonic 

Concluding Remarks 

A viscous-inviscid interactive coupling method hw 
been desuibed. directed towuds the computirn of un- 
steadysep.rpt ingmd~t l . lmsonicnowswhichm 
be tredted in casu of self-excited shock-induced oscillations 
md U ~ C  nutter. Ldg-entraimnent integral boulduy 
layer qutions md a lraMooic d l  dhubalm povntid 
code are coupled with a variable gain, integral crntrd cou- 
P h  - 

Flutta calculations for the AGARD 445.6 flutta model 
are in excellent agreement with apaiment for M < 1.0 
for models tested in air md heavy gas. Cdculatims with 
the CAP-TSDV code are in excellent rgrmnmt with results 
fmn a Navia-Stokes code at M = 0.96. For Mach numbers 
klow md very near unity. v i suw m c d e l i  ia required f a  
such thin wing8 in order to achieve acceptable ICEURC~. In 
this region, calculatinrs show evidence of EMU amplitude 
limit cycle behavior. Effects of d e  and Reynolds numba 
for this fourpercent thick model are small faMach numbas 
ICSSthantkIllhhUmlIlKSOm 'c nutm speed; less than ollc 
perceat dusurs in flutter spced for irrrwi Reynolds 
number from 1 to 140 million. For Mach numbas just above 
theminimumtnnsnn 'c flutter speed, n g l l i i  amplitude 
&e& are larger than Rey~lds  number effects for this wing. 
It is impat8nt to note that f a  this d e l  and test conditions, 
there are M saong mnsonic flow features and the flow is 

flutter calculations for a business jet wing d e l  also 
show very pal agrement with expaiment for the available 
test data up to M = 0.9. For this thicker wing, the 
requirement f a  v h  modcling extemh to l m r a  lTmsonic 
Mach numbers. Again, calculations with the CAP-TSDV 
code are in vgy good agrammt with a Navier-Stokes code 
at M = 0.888 f o r d  amplitude fluua motions. F a  large 
amplitude wing oscillations, the CAP-TSDV wde predicts 
limit cycle behavior at this Mach number in very good 
agreement with that observed during wind tunnel tests of 
the model. Also. the effect of a &old in- in d e  a 
Reynolds number leads to a thirns boundmy layer. weaka 
v i suw effects. and limit cycle oscillation amplitude gmws 
to over twice that calculated and obsaved in wind tunnel 
nutta tests. 

completely attached. 
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RESUME 

AEROELASTICITE ET C.F.D. 
(AEROELASTICITY AND C.F.D.) 

C. PETIAU, B. STOUFFLET, Ph. NICOT 
DASSAULT AVIATION 

DGT, 78 Quai Marcel Dassault 
92214 Saint Cloud Cedex, France 

Nous prksentons I’kvolution de I’utilisation 
des methodes de C.F.D. dans notre s y s t h e  
d’analyse dro6lastique (ELFINI). 

Nous sommes partis d‘un outil fond6 sur le 
couplage d‘un modele E.F. structural et 
d’un modele drodynamique, issu de la 
thkrie  du potentiel linhire, r e d 6  
empiriquement (en particulier sur les essais 
en vol) ; le caractere linthire de ces 
modeles pennettant une organisation trks 
efficace des calculs (notions de << base de 
charges )) et de U base aerodynamique n), 
avec un balayage tres peu coiitewi de 
I’ensemble des configurations de vol h 
6tudier (Mach, altitudes, manoeuvres, 
configuration de masses et d’emports). 
Actuellement, en gardant la meme 
organisation, nous utilisons opkration- 
nellement une mithode El6ments Finis 
Euler pour le calcul des effets de formes 
<< initiales )) et de mouvements << rigides D. 

Nous poussons maintenant nos d6velop- 
pements sur 2 axes principaux : - methodes U non lineaires )) de couplages 
statiques et dynamiques directs avec 
modeles akrodynamiques par methode de 
potentiel non lin6aire et surtout par 
methode Elements Finis Euler stationnaue 
et instationnaire, 
- mbthodes d‘ Euler linearis6es)) au 
voisinage des solutions a6roelastiques 
statiques non liieaires prk6dentes. 

En conclusion, nous evoquons les grandes 
lignes de notre hture organisation des 
calculs d’a6ro6lasticit6 qui devront etre 
plus precis tout en restant a un coat 
abordable. 

ABSTRACT 

We present the evolution of the use of 
C.F.D. methods within our system of 
aeroelastic analysis (ELFINI). 

We started from a tool founded on the 
coupling of a structural F.E. model and of 
an aerodynamic model, based on linear 
potential theory, empirically calibrated 
(mainly from flight tests) ; the linear 
character of these models allows a very 
efficient organization of calculations 
(notions of <<load basis)) and of 
<<aerodynamic basis))), sweeping of the 
whole flight configurations (Mach, 
altitudes, maneuvers, mass and external 
store configurations) being inexpensive. 

Presently, keeping the same organization, 
we use an Euler F.E. method for effects of 
<< initial )) shapes and of << rigid )) motions. 

Now we push our developments along two 
main directions : - << non linear )) methods of direct static and 
dynamic coupling with aerodynamic model 
by non linear potential methods and mainly 
by steady and unsteady F.E. Euler method, 

- <<linearized)) Euler methods, in the 
neighbourhood of previous non linear static 
aeroelastic solutions. 

As a conclusion, we evoke the main 
features of our future organization of 
aeroelasticity analysis which would be more 
accurate while remaining << affordable )). 

Paper presented at an AGARD SMP Meeting on ‘‘Numerical Unsteady AerodyMmic and Aeroelastic Simulation”. 
held in Aalborg, Denmark. 14-15 October 1997, and published in R-822. 
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I 

1. INTRODUCTION 

Au debut des-annees 90 nos outils d'analyse 
aeroelastique etaient globalement fondes 
sur le couplage de moddes dynamiques 
structuraux "Elements Finis" d'avion 
complet (voir planche 1) et de modkles 

instationnaires issus de I'equation du 
potentiel linearis6 resolue par mkthode de 
singularit6 de "doublets" et "sources" (voir 
references 1,2, 3), le modele adrodyna- 
mique stationnaire faisant systbmatiquement 
I'objet de recalages empiriques (experience 
des avions prkedents, essais en soufflerie 
et surtout essais en vol, voir reference 4,s). 

Ces modeles nounissent I'ensemble des 
analyses ou intervient I'a6rooClasticitC : 

- Analyses de stabilite (divergence statique 

aerodynamiques stationnaires et 

et flutter) 

- Modele de mecanique du vol "avion 
souple" et foumiture des opirateurs 
necessaires a la mise au point du 
S y s t h e  de Commande de Vol 
(fonctions de transfert entre les 
deplacements des vkrins de commande 
de vol et les capteurs des mouvements 
de I'avion, indicateurs de severit6 des 
charges, ...). 

- Calcul des reponses structurales en 
manoeuvre et selection des cas de 
charges dimensionnants. 

Une technique particuliere, rappelke au $2, 
permet, a partir de la constitution initiale 
d'une "base de charges" et d'une "base 
aerodynamique", de balayer a tr&s faible 
coQ les milliers de configurations a 
examiner dans le domaine de Mach, 
altitudes, manoeuvres, configurations de 
masse et d'emports. 

La relative imprkision des mod& 
aerodynamiques thhriques utili&s, surtout 
en transsonique, avait deux inconvknients : 

- Le risque de d b u v e r t e s  tardives de 
difficultks au niveau des essais en vol, 
coCiteuses a rattraper. 

- La necessite d'un nombre Blew5 de ces 
essais en vol pour assurer la 
qualification. 

L'espoir d'ameliorer cette situation est 
venue de I'kmergence de modelisations 
aeodynm'ques plus precises, en particulier 
les modelisations Elements Finis EULER, 
dont les cofits de calcul commencent a &e 
abordables, mEme pour balayer de multiples 
configurations d'avion complet avec 
emports (voir planche 2). 

Nous presentons ici la penetration de ces 
techniques C.F.D. dam notre processus 
actuel d'analyse aeroklastique, nous 
hoquons ensuite les dheloppements en 
cours. 

2. METHODE ACTUELLE OPERA- 
TIONNELLE EN AEROELASTI- 
CITE 

Elle est dans le prolongement de notre 
approche "classique" supportk par notre 
logiciel "ELFINI-AEROELASTICITY" 
(voir reference 1, 2, 3), bask  sur le 
couplage d'un modhle structural "Elhents  
Finis" de I'avion complet (10000 100000 
degres de liberte, exemple planche 1) avec 
des moddes aerodynamiques "linearis6s" ; 
ces moddes sont maintenant de provenance 
mixte : 

- M6thode Elements Finis EULER pour 
les effets de forme initiale et les 
mouvements "rigides" 

- Mkthode de potentiel linearis6 pour les 
mouvements "souples" et les effets 
instationnaires. 



L'organisation des calculs est r6sumb 
planche3, le principe est d'effectuer les 
opkations "lourdes" sur le modhle 
structural -et sur Ies moddes 
aerodynamiques independamment de toutes 
les con6gurations de vol a h d i e r  (Mach, 
altitude, manoeuvres, masse et emports). 

Ces operations lourdes, de constitution des 
"base de charges" et "base aerodynamique", 
sont Ies suivantes : 

- Le calcul des deplacements du modde 
Elements Finis pour quelques centaines 
de chargements de base. Ces 
chargements de base correspondent i 
des charges unitaires de pression ou 
d'inertie par zones ; tout chargement 
statique ou dynamique peut Stre 
represent6 par combmaison linkaire des 
chargements de base. 

- La construction du modele akrodyna- 
mique pennettant d'exprimer les charges 
aerodynamiques stationnaires et 
instationnaires dans la base de charge 
precedente, en fonction du mouvement 
de l'avion. Ce mouvement est d6fini par 
une combmaison de formes de base 
aerodynamiques (mouvements rigides et 
deformes souples) independantes des 
degres de liberte du modhle klastique. 
Par les mkthodes Elements Finis 
EULER, on calcule les effets de formes 
initiales et de mouvement rigide 
(linearisation par dflkrence entre 
2 positions), les conditions aux l i t e s  
de paroi peuvent tenir compte de 
I'epaisseur de couche limite. Les effets 
de deformations "souples" stationnaires 
et les effets instationnaires sont encore 
calcules par methode de potentiel 
Iinhise, les effets instationnaires sont 
calcults dans le domaine fthuence. 

- L'extraction, a partir de ces modeles 
elastique et aerodynamique encombrants 
d'opkrateurs de base "condenses" 
contenant les sedes donndes intervenant 
dans le couplage akrodastique : 

I 
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Matrice de rigidite et matrice de 
masse reduite dans la base de charge. 

Operateur de lissage des d6fonn6es 
E.F. de base par les formes 
aRrodynamiques de base. 

"Indicateurs de StMrit6" des charges 
de base. 

A partir de ces operateurs de base les 
calculs qui suivent sont trhs rapides et 
permettent de balayer des d e r s  de 
contigurations, ce sont : 

- L'klaboration des CoefIicients des 
equations de l'Ao6lasticit6 statique ou 
dynamique pour les configurations de 
vol et de masse considerb. 

- Les analyses de stabiit6 (Divergence, 
Flutter). 

- Le calcul du mouvement de l'avion, en 
quasi statique ou en dynamique, avec le 
suivi des "indicateurs de s&6rit6 des 
charges". 

- La selection des cas de charges 
dimensionnants. 

Le modde Aodynamique continue i 
pouvoir Stre recale sur les essais en 
soufflerie et surtout sur les essais en vol i 
partir de mesures de jauges de contraintes 
(voir methode d'identikation de modde 
presentee dans les r6ferences 4 et 5). 

Une technique de "linkisation par zone" 
permet de prendre en compte Ies non 
lin6arit6s drodynamiques dues aux grands 
mouvements rigides (principalement sur 
I'effet d'incidence et les braquages de 
gouverne). 

Nous presentons planche4 des comparai- 
sons de rksultats de ces moddes i des 
resultats derives des mesures en vol ; elles 
sont globdement satisfaisantes pour les 
configurations quasi statiques stationnaires. 



Avec cette approche la presence de non 
linearite mecanique (exemple : jeux, effets 
de membrane, grandes rotations des 
gouvemes, non IinCaritCs hydrauliques des 
servocommandes, ...) se traite par 
integration directe dans le domaine temps 
apres "rationalisation" (approximation par 
equations differentielles) des forces 
aerodynamiques instationnaires initialement 
exprimees dans le domaine frequence 
(methode validee pour le calcul du flutter 
en presence de jeux mecaniques). 

3. PRINCIPAUX DEVELOPPEMENTS 
EN COURS 

Nous donnons la priorite a I'analyse du 
domaine transsonique, grand badin et donc 
incidences moderees qui est le plus critique 
pour les phenomenes d'aeroelasticite et 
pour lequel nous avons un bon espoir de 
developper des outils precis a coat 
d'utilisation abordable. 

Nous travaillons sur 2 familles d'outils. 

3.1 Couplage airoilastique avec 
C.F.D. non liniaire 

On explore 2 techniques de C.F.D. : 

- Formulation de potentiel non conservatif 
avec modele de differences finies 
(methode de Jameson, voir references 6 
et 7), avec nos outils stationnaires 
CITRON et instationnaires TCITRON ; 
les calculs sont rapides mais ne traitent 
que des ailes de forme simple. Ces outils 
nous servent a la fois pour les 
benchmark de comparaison avec les 
methodes plus lourdes et surtout pour la 
comprehension generique des 
phenomenes. 

- Formulation d'EULER conservative avec 
modele #Elements Finis non structure 
(voir reference8) avec notre code 
EUGENE qui se positionne comme 
notre outil de base permettant de traiter 
les formes les plus complexes 
(interaction des emports des avions 

militaires, des nacelles moteurs des 
avions civils). 

Dans les 2 techniques, les conditions aux 
limites, correspondant aux mouvements 
paroi et ti IUpaisseur de couche limite, sont 
modelides par une technique de 
"transpiration" evitant un traitement de la 
deformation des maillages. 

Pour le couplage le comportement 
dynamique de la structure est condense par 
la construction d'un ensemble d'opkrateurs 
lineaires, fournis par ELFIN, donnant le 
deplacement des noeuds du maillage 
aerodynamique a la paroi en fonction des 
pressions aux facettes de la paroi du 
maillage C.F.D. 

En statique la condition au l i t e  de paroi 
est actualisee periodiquement au cours des 
iterations de I'algorithme de resolution des 
equations C.F.D.; en dynamique elle I'est a 
chaque pas de temps d'itegation ; dans les 
2 cas le coat d'actualisation est negligeable. 

En statique comme en dynamique les 
operateurs structuraux representent 
simultan6ment les mouvements solides 
(avions et gouvemes) et ceux des modes 
"souples". En statique ils incluent le calcul 
de I'equilibre en mtcanique du vol pour les 
manoeuvres considerees. En dynamique ils 
peuvent integer la representation du 
Systeme de Contrale de Vol, ils peuvent 
Etre adapt& a tout schema d'intkgration 
implicite desire. 

Nous presentons planche 5 un resultat type 
de calcul d'aeroelasticite statique avec 
CITRON ; un point remarquable est que le 
surcofit est nul par rapport a un calcul paroi 
rigide, la reactualisation de la condition au 
limite de paroi pour I'aerooClasticit6 
accelerant ICgkrement la convergence de 
I'algorithme Jameson dans ce cas. 

Planche 6 nous presentons des compa- 
raisons de calculs instationnaires avec les 
mesures sur I'aile L A "  (reference 9) pour 
des mouvements rigides de paroi ; la non 
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prise en compte de la couche limite 
explique en partie I'iipr4aision relative de 
la position des chocs. 

Planche 7 nous montrons une suite de 
calculs de reponse dynamique sur une 
derive, en deqi et au deli de la vitesse 
Flutter. On compare les resultats des codes 
TCITRON et EUGENIE, ainsi que le calcul 
de I'effet d'une protuberance en haut de 
d6rive avec EUGENE. 

Pour une utilisation systematique en analyse 
de Flutter, supportant des itaations de 
conception d'un avion, I'utilisation des 
simulations dynamiques avec C.F.D. non 
linkires est codiontee a 2 difficultes : 

- Le codt des calculs actuels et m6mes 
futurs, quand on envisage des analyses 
d'avion complet avec emports (maillage 
de l'ordre du million de noeuds) et le 
balayage d'un domaine assez large de 
configurations (Mach, altitude, 
manoeuvres, configurations massiques et 
emports, ...). 

- Le diagnostique precis de I'instabiitd de 
Flutter ri par&ir de l'examen de rdponses 
temporelles, sachant que les m6thodes 
actuelles (methodes "polydf&ences") 
utilisks pour I'analyse des mesures en 
vol presument a priori la lindaritd des 
phenomknes et ndcessitent des 
khantillons de mesure de plusieun 
centaines de fois la pdriode des modes 
de vibration surveillds. 

C'est le besoin de contourner ces 
2 difficultds qui nous a conduits ri etudier 
les m6thodes de C.F.D. "h6aris&ee" que 
nous prbntons maintenant. 

3.2 C.F.D. "IinhrisCe" 

Ces methodes que nous prhnisions dam 
la rdfdrence3 sont maintenant bien 
defrichks par 1'ONERA (voir prksentation 
de G.D.Mortchelevicz dans ce workshop). 
L'idk duectrice est qu'il peut exister autour 
d'un &at d'Quilibm statique un domaine de 
petites perturbations stationnaires ou 
instationnaires dans lequel les equations 
C.F.D. sont lin6arisables (dkeloppement 
au ler ordre des termes des Quatiom au 
voisinage de la solution statique, voir 
principes en encadd). 

Princine nu mCn 'am non linhirc 

@ R ( I . A )  - 0 w - Veuard ' (a  
1. - ValaUdP.pmm?lm. 

(a pmm?lm&fmcamC.FD.) 
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Nous developpons cette technique a partir 
de notre outil EUGENE ; nous prbentons 
planche 8 une comparaison de resultats 
entre ces methodes "IinCarisCes" et des 
calculs non lineaires "complets". 

En instationnaire, on calcule directement 
dans domaine frequence I'ensemble des 
reponses pour des mouvements 
harmoniques des formes aerodynamiques 
de base (deformees polynominales avec 
ELFINI); cela au voisinage d'un equilibre 
aeroelastique statique calcule en non 
lineaire ; a partir de l i ,  la suite des calculs 
de Flutter est menee dans le cadre de I'outil 
ELFINI-AEROELASTICTY standard. 

Une variante de cette approche lineansee 
est developpee pour le calcul des 
"sensibilites" (derivees des performances 
aerodynamiques par rapport a des 
parametres de forme, voir principe en 
encadre page prkcedente), en vue 
d'intkgration a notre outil d'optimisation des 
formes aerodynamiques. 

4. CONCLUSION 

Nous voyons poindre une nouvelle 
generation d'outils pour I'aero6lasticite 
transsonique avec I'utilisation industrielle 
des codes couples Elements Finis elastiques 
ELJLER, reellement en support de la 
conception de nos avions. 

Pour le balayage de I'ensemble des 
configurations de vol, I'organisation des 
calculs restera proche de l'organisation 
actuelle ELFINI-AEROELASTICITY. 

L'outil EUGENE "rigide" donne les effets 
de forme initiale et I'outil EUGENE 
linearid stationnaire et instationnaire 
remplacera progressivement les methodes 
de singularites pour les effets de 
mouvements des formes aerodynamiques de 
base. 

Pour les points critiques on approfondira 
I'analyse par des calculs quasi statiques non 
lineaires avec couplage direct Elasticite- 

Mecanique du Vol - C.F.D. EULER (calcul 
pas plus coDteux qu'un calcul rigide); 
autour de ces points d'equilibre 
akroklastique statique non lineaire la 
stabilite dynamique (Flutter) sera analysk a 
partir de forces aerodynamiques instation- 
naires calculkes avec ELJLER lintarist. 

On fera appel aux mkthodes dynamiques 
non linkaire "completes" si on redoute des 
phenomenes engendrant des mouvements 
de moyennes ou grandes amplitudes c o m e  
des oscillations a cycles l i t e s  liees aux 
mouvements de chocs. I1 faut cependant 
noter que, si on travaille en support de la 
conception des formes, ce type de 
phenomene pathologique est plutat a 
contourner en changeant le dessin qu'a 
analyser finement ; pour la comprehension 
"generique" de ces phhomenes, I'outil 
rapide TCITRON peut etre pratique. 

Un point important a traiter est la prise en 
compte des phenomenes visqueux, pour 
I'instant on effectue en statique une 
correction de la forme paroi de I'epaisseur 
de couche limite en jouant sur la condition 
de transpiration ; la validite de cette 
approche est a verifier pour les calculs 
instationnaires, lidarises ou non. 

Nous developpons aussi, a plus longue 
echeance, le couplage aeroelastique avec 
les codes Navier-Stokes instationnaires, les 
premieres applications vides sont les 
interactions entre structure et ecoulement 
decolle. 
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Planche 1 

Maillage gkneral d'un avion de combat 

Deformees 
&dlastiaues 

Mach 0,9 

Facteur de charge 9g 
x 5  

Roulis stabilise 260% 
x 8  
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PLANCFIE 2 
CALCULS EULER AVION COMPLET 
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PLANCHE 3 

U ELFIN1 AEROELASTICITY )) ORGANIZATION 
(DIRECT COUPLING OF STRUCTURE F.E.A. AND C.F.D. TOOLS) 

Coupling 
operators 

Aeroelastic 
operators 

F.C.S 
Model 

Stability 
Analysis 

Calculation of 
Aircraft Motion 

Sizing 
Calculation -E Loads 
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I' 
PLANCHE 4 

COMPARABONS CALCUL - VOL 
(EFFETS DE FORME INITIALE ET DE MOUVEMENT RIGIDE CALCULE PAR EULER) 

I 

alDha = I  rad 
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0 0  0 5  macho 1.5 2 0  4 0  
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4 .i: 2 0 0.00 

alpha = 1 rad 
x voilure (m) 
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mach 

alpha = 1 rad 
k voilure (m2) +5=zG+ 
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I 20 
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mach 
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PLANCHE 5 
AEROELASTICITE STATIQUE AVEC CITRON 

L 

L 

I CillCUl . Type (le colivergence ~ Arret apres / Temps moyeii I 

I .. ~ . .  
236 Iters : 64.9s 

! 

: . . .. . .... .... ... . .. . !. . ,. ..... ., ...... . ... ... 
SIllS Collplnge convergence )s 

Avec Coiipl:ige i convergence > ~ 2 I6 Iters (-8.5%) ! 62. Is (-4.3%,) 0 
........ ...~. ......................... .. ~. . .... ...... ......................... ~ ........... 

‘b Le Couplage Aeroelastique n’implique pas de coMs supplementaires. ’ 
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PLANCRE 6 
COMPARAlSONS A L E  LA” 

10 

5 

0 

-5 

10 

15 

Partie rMle des Kp complexes (aile Lam), M ,  = 0.822, f = 24hr 

.v . .  

o 01 aa 0.8 0.8 * 

Partie imaginaire des Kp complexes (aile Lann), M ,  = 0.822, f = 24hz 



2-14 

I, 

I.*"* . 
i 

-. 
I.".* 

, 



2-15 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 

e 

PLANCHE 8 
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SUMMARY 

This paper discusses recent applications of the ENS3DAE 
computational aeroelasticity method. In particular, it 
describes aeroelastic and unsteady aerodynamics 
calculations performed on wings with trailing edge control 
surfaces. These simulations include the investigation of 
control reversal for a swcturally flexible wing with a 
deflected control surface, and a static and dynamic analysis 
of a rigid wing with an oscillating control surface. The two 
sets of calculations were performed independently on 
different wings using different grid topologies. The control 
reversal simulation represents an inviscid Euler static 
aeroelastic analysis of a thin wing with a rectangular 
planform. The geometry of this wing makes it suitable for 
computations using more approximate, inviscid 
aerodynamics methods. Thus, the results of the present Euler 
computations are compared with numerical data generated 
hy a validated computational aeroelasticity code which uses 
a simpler aerodynamic formulation. The second illustrated 
case involves the simulation of a significantly more complex 
flowfield and the static and dynamic analyses of this 
geomeuy were performed using the viscous Navier-Stokes 
equation option in ENS3DAE. Results of both the steady 
and unsteady calculations on this wing are compared with 
existing experimental data. 

INTRODUCTION 

The ENS3DAE aeroelastic method' has been in 
development and use since 1989 when it was delivered to 
the Air Force Wright Laboratory hy the then Lockheed 
Aeronautical Systems Company. Since that time, a number 
of static and dynamic, rigid and aemelastic test cases have 
been analyzed using the program and the code has been 
validated against existing computational and experimental 
data. Research using the code has focused on applying the 
method to problems whose geometric andor aerodynamic 
complexity are suited to analysis using the EulerMavier- 
Stokes Flows involving shock waves 
interacting with boundary layers, generation of vortices and 
separated boundary layers are among those that can and 
should be addressed using this class of method. These types 

of flows can be generated by vehicles operating deep in the 
transonic speed regime or at high angles-of-awl, or simply 
by geometric anomalies in the surface of the vehicle. An 
example of this latter mechanism is a deflected control 
surface. 

Nonlinear aemelasticity with control surface deflection has 
been investigated hy Batina, et al? and Guruswamy and 
Tu5, both using inviscid transonic small disturbance 
potential flow theory as their aerodynamic basis. Pitt and 
Fuglsan$ also investigated aileron reversal using this type 
of method. These simulations were performed on wings with 
thin airfoil sections and control surface deflections of one- 
half degree orless. thus avoiding violation of the inviscid 
small disturbance assumptions inherent in the aerodynamic 
analysis. The first application described in this paper 
examines the static aeroelastic deformation of a thin wing 
with a small control surface deflection. Control effectiveness 
and reversal is predicted using the Euler equation option of 
ENS3DAE and results are compared with those of 
Andersen, et al.'s7 CAP-TSD' transonic small disturbance 
equation analyses. 

Larger control surface deflections and thicker wing sections 
require higher-order aerodynamic simulations since inviscid 
methods classically overpredict the effectiveness of the 
control surface for these cases. Under these conditions, 
strong shocks and separated flow can form on the control 
surface. In addition, the sharp edges of the control surface 
combined with its increased loading can form local vonices 
which can interact with the rest of the lifting surface 
flowfield. In general, prediction of these features requires a 
viscous simulation. Ohayashig. lo has investigated a 
semispan wing and a full-span windfuselage configuration 
with oscillating control surfaces using three-dimensional 
Navier-Stokes aerodynamics. Both of these simulations 
modeled a thin wing with a trailing edge control surface. 
The full-span computations involved large control surface 
deflections, and complex interactions between the wing and 
control surface vonices were observed. The second c a s  
presented in this paper uses ENQDAE to perform a viscous 
calculation for a wing with a simpler planform and a thick 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and A e m e h t i c  Simulation", 
held in Aalborg, Denwuark 14-15 October 1997, and published in R-822. 
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airfoil section. Both static and oscillating trailing edge control 
surface deflections are simulated, and the unsteady 
computations are performed at a much lower reduced 
frequency than the referenced computations. These 
computations are compared with experimental benchmark 
data. Of particular importance are detailed comparisons of the 
unsteady pressure distributions due to control surface 
oscillation with unsteady experimental pressure data. 

ENS3DAE AEROELASTIC METHOD 

ENS3DAE solves the full three-dimensional compressible 
Reynolds averaged Navier-Stokes equations using an implicit 
central finite difference approximate factorization algorithm. 
The method accepts either single or multiple block curvilinear 
grid topologies and can be run in a steady state or time- 
accurate mode. Turbulence characteristics are predicted using 
the Baldwin-Lomax algebraic turbulence model or the 
Johnson-King model. For the present calculations, the 
Baldwin-Lomax model is used with transition assumed to be at 
the leading edge of the wing. A multigrid option for steady 
flows has recently been added to the method and the code has 
been explicitly written to take advantage of vectorization. 
Directives for parallel operation on shared memory processors 
are also included in the programming. 

A linear generalized mode shape structural model is closely- 
coupled with the aerodynamic method to analyze structurally 
flexible vehicles. Since dynamic aeroelastic and oscillating 
control surface simulations require grid models that deform in 
time, a Geometric Conservation Law (GCL) patterned after 
that recommended by Thomas and Lombard" has also been 
incorporated in the code. 

In the interest of brevity, the details of the numerical algorithm 
will not be discussed in this paper, and the reader is referred to 
Reference I and Reference 2 for a detailed description of the 
method. 

WING GEOMETRIES 

The wing geometries chosen for these studies are shown in 
Figure I .  Both have a rectangular planform and constant airfoil 
section from root to tip with no twist. The wing used for the 
static aeroelastic calculations is patterned after the so-called 
heavy Goland wing.'* In this paper. the wing is simply referred 
to as the rectangular wing. This wing has a semispan of 20 feet 
and a chord of 6 feet. It includes a 25% chord trailing edge 
control surface, designated by the shaded area in the figure, 
that extends from the wing midspan to the tip. The airfoil for 
this wing is a 4% thick symmetrical parabolic arc section. 

The oscillating control surface case was performed on the 
NASA Langley Benchmark Active Controls Technology 
(BACT)I3 wing. The BACI  model is also a rectangular wing 
with a NACA oOlZ14 airfoil section. The wing has a semispan 
of 32 in., and a chord of 16 in. It is fitted with a trailing edge 

Flow 

1 Rectangular Wing 

BACT Wing 

-14.4"- + 9 . 6 " 4  I 
r -1 

-32" 4 
igure 1. Planform views of rectangular 

and  BACT wings. 

control surface which extends from 45% span to 75% span and 
has a chord of 25% of the wing chord. The wind tunnel model 
also had upper and lower surface spoilers which are not 
depicted in the figure and were not simulated in this analysis. 
Experimental data for this wing included overall wing forces 
and moments as well as unsteady pressures. A row of pressure 
taps were located on the upper and lower surfaces of the wing 
at 60% span, which coincides with the spanwise center of the 
aileron. Pressures were measured from the wing leading edge 
to the trailing edge at this wing station. In addition, a second 
row of pressures were located at 40% span. At this location, 
upper and lower surface pressures were measured from 60% 
chord to the wing trailing edge. 

Geometry Modeling and Grid Generation 

Due lo the differences in airfoil section, different grid 
topologies were used to model the two wings. Since the 
rectangular wing has a thin sharp-edged airfoil, a multizone H -  
H grid topology is employed for this lifting surface. A 
planform view of the grid for this configuration is shown in 
Figure 2. This figure is arranged vertically so that the wing 
root is at the bottom of the figure and the wing tip is at the top. 
The wing is modeled using two grid zones, one for the 
Rowfield above the wing surface and the other below the wing. 

Each zone consists of 120 points in the streamwise direction 
with 61 points distributed from the wing leading edge to the 
trailing edge. There are a total of41 spanwise points with 33 of 
those stations extending from the wing root to the wing tip. 
Each zone uses 50 points normal to the wing surface to 



x (feet) 
Figure 2. Planform view of rectangular wing grid. 

complete the flowfield model. Thus a total of 492,000 grid 
points are used for this Euler simulation. The spanwise 
distribution of points was taken from the CAP-TSD grid used 
in Reference 7 so that a direct comparison could be made 
between ENS3DAE and CAP-TSD. 

Figure 3 displays a section of the H-grid through the middle of 
the flap on the rectangular wing with the flap deflected one 
degree. Grid points are clustered at the wing section leadmg 
and trailing edge as well as near the control surface hinge line. 
The first grid line parallel to the airfoil surface is placed 0.0025 
chords from the surface which is sufficiently close to the wing 
for the inviscid calculations to be performed on this geometry. 

Figure 3. H-grid through rectangular wing section. 

Since the BACT wing has a blunt leading edge, twelve percent 
thick airfoil section, a C-H grid topology is used to model this 
configuration. This grid consists of a total of 332,469 grid 

E3 

points distributed with 153 points in the wraparound or "C" 
direction, 53 points in the spanwise. or " H  direction. and 41 
points from the wing surface to the outer boundary. An 
isomevic view of the BACT surface grid with the aileron 
deflected -5' is presented in Figure 4. The grid lines are placed 
in the spanwise direction so as to accurately define the edges of 
the trailing edge control surface. In addition, there is a grid line 
precisely at 40% and 60% span so that a direct comparison can 
be made with available experimental data. The streamwise 
distribution of grid points is also tailored to accurately model 
the aileron hinge line. 

BACT Wing 
SA,, = -50 

Figure 4. Isometric view of BACT wing surface 
grid, S,, = -5.W. 

A side view of the viscous grid through the 60% span station is 
shown in Figure 5. The nominal wall spacing normal to the 
wing surface is O.OOO2 chords at the leadmg edge, linearly 
increasing to 0.003 chords at the trailing edge. This spacing 
generates y' values less than 6 over the entire surface of the 
wing. This ensures that at least one grid point will be within 
the lmnar  sublayer of the boundary layer, which is required 
for accurate application of the turbulence model. The aileron 
deflection for the static cases is obtained by preprocessing the 
rurfoil sections used to define the wing surface. A ngid body 
rotation of the trailing edge portion of the airfoil sections at the 
inboard and outhoard edges of the control surface is performed 
to define new airfoil contours at these wing stations. The 
airfoils just inboard and just outboard of the aileron are left 
unchanged. The flowfield grid is then generated about this 
modified geometry using the same techniques as for the case 
where the aileron is not deflected. This effectively shears the 
baseline grid in the vicinity of the aileron IO define the 
deflected control surface geometry. This method is simple and 
very efficient to implement. However, it results in a model 
which does not have gaps between the control surface and the 
main wing. This is not a sigruficant prohlem in this analysis 
since these gaps are very small on the BACT model. This 
approximation also is more significant when large control 
surface deflections are to be simulated, but in this analysis our 
deflections have been limited to five degrees or less. 

For cases where the aileron is oscillated, a mode shape 
describing the aileron deflection is input d~rectly into the 
ENS3DAE program. The undeflected grid is used as the basis 
for the aerodynamic solution. The grid is deformed in time hy 
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Figure 5. BACT airfoil section grid, a,,, = 5.00. 

superimposing the aileron deflection mode shape on the 
baseline grid and using ENS3DAE's built-in grid motion 
capability to deflect the grid. Again, this method effectively 
shears the grid in the vicinity of the aileron and control surface 
gaps are not simulated. The mode shape is also defined as a 
deflection only in the vertical direction. so the chord of the 
control surface is stretched as the aileron is deflected. For 
small deflections, this stretching is negligible. 

RESULTS 

Static Aemlsstic Analysis of the Rectangular Wing 

The rectangular wing was analyzed using the inviscid Euler 
equation option in ENS3DAE. The flow conditions forthe 
analysis are Mach 0.7. zero degrees angle-of-attack and a static 
control surface deflection of one degree. The beam structural 
model of Reference 7 was used for all structurally flexible 
calculations performed on this wing. 

An initial static rigid calculation was performed at the 
reference conditions to establish a basis for aileron control 
effectiveness. A series of structurally flexible simulations were 
then performed at steadily increasing dynamic pressure. The 
rolling moment at each dynamic pressure was computed and 
the ratio of the flexible rolling moment to the rigid rolling 
moment was calculated. A plot of this ratio as a function of 
dynamic pressure is presented in Figure 6. Included on this 
figure are CAP-TSD results from Reference 7. Control revenal 
occurs when the control effectiveness ratio becomes negative. 
as shown in the figure. ENS3DAE predicts a control reversal 
dynamic pressure of approximately 3 10 pwnds per square foot 
(psf) compared to CAP-TSD's prediction of 335 psf or an eight 
percent difference. The ENS3DAE and CAP-TSD results were 
computed with the same spanwise grid distributions, and 
similar streamwise grid point distributions. However, 
ENS3DAE's vertical grid resolution in the vicinity of the wing 
surface was finer than that used in the original CAP-TSD 
analysis shown as the upside down triangles in the figure. The 
CAP-TSD computation was rerun for dynamic pressures of 

250 and 300 psf using the Euler analysis normal grid 
distribution. These results are shown as the diamonds in the 
figure. For this grid, CAP-TSD predicts an estimated reversal 
dynamic pressure of 319 psf which compares to within three 
percent of the Euler results. These results illustrate that grid 
refinement plays a significant role in this analysis and further 
investigation into these effects are under way. 

Figure 7 compares the ENS3DAE and CAP-TSD pressure 
distributions as a function of the streamwise coordinate along 
the midspan of the flap for the 300 psf dynamic pressure. The 
Euler analysis is depicted by the solid line, while the CAP- 
TSD analysis is shown by the symbols. These pressure 
distributions were chosen since they are near the point of 
reversal. The CAP-TSD and Euler calculations compare very 
closely for this case, as would be expected for this 
configuration at these flight conditions. In general, the Eula 
analysis predicts sharper, deeper pressure peaks in the vicinity 
of the wing leading and trailing edges, and at the control 
surface hinge line. These results provide confidence that the 
ENS3DAE method is predicling accurate results for relatively 
benign Right conditions, and we are ready to apply the method 
to more challenging problems. Transonic and low supersonic 
calculations are currently being computed using ENS3DAE. 
and these data will be similarly compared with CAP-TSD 
results. 

BACT Wing Static Analyses 

Static and dynamic rigid calculations were performed on the 
BACT wing with ENS3DAE providing viscous full Reynolds- 
averaged Ngvier-Stokes simulations. These calculations were 
compared with experimental data acquired in heavy gas in 
NASA Langley Researeh Center's Transonic Dynamics 
Tunnel (TDTj. The nominal flight conditions for these 
calculations are Mach 0.77 and a Reynolds number of 
280,ooo/ft, which coincide with the test data acquired in the 
TDT. 

Prior to computing the fiowfield for the wing with the deflected 
aileron, a number of calculations were performed on the basic 
wing without control surface defiection. Inviscid Euler and 
viscous Navier-Stokes calculations were performed on the 
wing for both nonlifting and lifting cases. Detailed description 
of the Euler computations have been omitted from this 
discussion, but there are several notable features nf the Euler 
analysis which should be addressed. As expected, shock 
strength was greater for the inviscid calculations, and the 
shock was displaced aft of the viscous analysis. Viscous effects 
were also clearly visible in the surface pressure distribution 
near the bailing edge of the wing. In this region, the inviscid 
pressures recovered to a significantly higher stagnation 
pressure than their viscous counterparts. Tbis difference is due 
to the thickening of the boundary layer near the trailing edge, 
which tends to flatten h e  CUrvaNre of the airfoil in this region. 
This effect is even more pronounced when the control surface 
is deflected. and is the primary reason why inviscid methods 
cannot generally be applied to this problem. 
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Figure 6. Aileron control effectiveness as a function of dynamic pressure 
for the rectangular wing, k 0 . 7 ,  a=0.Oo, SA,,=l .OO. 
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Figure 8 presents the viscous computation of the flow at 
MzO.77. and zero degrees angleof-attack. For this nonlifting 
case, the computations compare relatively well with the 
experimental data acquired in the TDT. The theory predicts a 
slightly lower pressure on the forward portion of the wing at 
the 60% span station, but the pressures on the remainder of the 
wing are in good agreement with the experimental data. 

ENS3DAE calculations are compared with experimental data 
at MS.77 and a=3' in Figure 9. At these conditions, a shock 
on the upper surface is clearly visible in both the theoretical 
and experimental data. The lower surface pressure dmrihution 
and the pressures behind the shock are. accurately predicted hy 
the theory. However, the pressure distribuhons do not compare 
well on the forward portion of the wing upper surface. This 
area is usually insensihve to viscous effects since the boundary 
layer is thin and the flow is experiencing a favorable pressure 
gradient. However, a sharp increase in the experimental 
pressure is observed on the 60% span upper surface at 5% 
chord. This sudden increase is speculated to be due to the 
transition strip on the model, and the strip could be affecting 
the flow downstream. The theory accurately predicts the 
pressure forward of 5% chord. A second possibility for this 
poor correlation is aerodynamic interactions between the 
model and the wind tunnel which are not accounted for in the 
analysis. In addition to the wind tunnel walls. there are several 
model support components including a splitter plate, and an 
instrumentation housing which add to the blockage of the 
tunnel. All computations to date have heen performed without 

modeling the wind tunnel walls or support structure. 

Static calculations were also performed with aileron deflection. 
Figure IO shows the pressure distribution for an ENS3DAE 
Navier-Stokes calculation at M=0.77, a=O.Oo. and S,,=5.0°. 
At these conditions, lift is generated by the wing due to the flap 
deflection. Once again, the theoretical and experimental 
pressures agree well on the aft portion of the wing, and on the 
entire lower surface. However, as with the previous lifting 
cases, the upper surface pressure on the forward portion of the 
wing does not agree well with the experimental data. The 
theory predicts a consistently lower pressure on this part of the 
wing. 

ENS3DAE was run for a total of 2000 iterations for these 
steady Navier-Stokes analyses, and theL-2 norm of the density 
residual is reduced by approximately 2.5 orders of magnitude 
during this period. By iteration 2000, oscillations in the lift and 
pitching moment coefficient have reduced to a very small 
amplitude and can be considered at a steady state for this 
analysis. Noticeable oscillations in the drag coefficient were 
still present at this point in the solution. To further investigate 
the convergence characteristics of this pmhlem, a viscous 
solution at (x=Z0 was run a total of 4000 iterations and the drag 
was shown to reach a steady state at approximately ZKI 
iterations. The differences in the pressure distributions 
between 2000 and 4OKI iterations were virtually indiscernible. 
Therefore, for the purposes of this study, all static simulations 
were assumed to be at a steady state after ZOO0 iterations. 

BACT ENS3DAE Analysis 
M=0.77, =O.O", S,.=O.Oo 

ENS3DAF., NaviepStokes 
U TDTData-UpperSurface 
A TDT Data - LowerSudaee 

Figure 8. Steady viscous pressure distribution on BACT wing at 
M=0.77, u=O.Oo, 6,,,=0.0°. 
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BACT ENS3DAE Analysis 
M=0.77, %3.0", S,.=O.Oo 

ENS3DAE, Nuvierstokes 
0 TDT Dah. Upper Surface 
A TDT Dah - Lower Surface 

Figure 9. Steady viscous pressure distribution on BACT wing at 
M=0.77. u=3.Oo, Sfi,=O.Oo. 

BACT ENS3DAE Analysis 
M=0.77, CL=O.O", 6,.=5.0° 

ENS3DAE, Nuvier-Stokes 
0 TDTDsts-UpperSurface 
A TDTDnta-LowerSurface 

Figure 10. Steady viscous pressure distribution on BACT wing at 
Md.77, ti=0.Oo, S,,,=5.Oo. 
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Unsteady Adys i s  of BACT Wing nitb Osdllstlng Aileron 

Unsteady simulations have been performed by harmonically 
oscillating the BACT aileron at a specified frequency. The 
unsteady computations are performed by using a steady 
solution about the baseline condition without aileron 
deflection. then impulsively staning the aileron oscillation. 
The solution is allowed to run until a total of three cycles of 
aileron oscillation are completed. For the simulations 
presented in this paper. the aileron is oscillated sinusoidally 
with an amplitude of two degrees at a frequency of five Hem 
(Hz). which corresponds to a reduced frequency of 0.056 
based on wing semichord. 

An initial calculation was performed using a nondimensional 
time step of 0.1 172 which for this problem is a CFL number of 
approximately 90 based on the global minimum time step for 
this grid. This CFL number is well beyond where we had 
previously run the code, and we felt that these conditions 
might be near the algorithm's stability limit. With this time 
step. one cycle of aileron oscillation at 5 Hz requires 1O.ooO 
time steps. Thus, it required 30,000 time steps to complete the 
three cycles of motion. Once this initial transient was 
successfully completed. we searched for the largest time step 
we could take and have the code remain stable. We were 
ultimately able to double the time step lo 0.2344. which gave 
us a CFL number of 180 and reduced our tun time to 5,Mx) 
time steps per cycle of aileron oscillation. Upon comparing 
these two analyses, no noticeable differences in the results 
were observed. 

Figure 11 shows the unsteady pressure at 60% span and 23% 
chord for the 5,000 time step per cycle simulation. The 
pressure is plotted against nondimensional time, and the 
aileron deflection angle as a function of time is included at the 
bottom of the figure. Following an initial transient due to the 
impulsive sm of the aileron oscillation, the pressure at this 
station quickly becomes sinusoidal and by the end of the first 
cycle of aileron oscillation, it has slabilized into a clean 
periodic form. The pressure distributions due to the second and 
third cycles of aileron motion are vimraUy identical giving us 
good confidence that the solution has reached a stable periodic 
response by the end of the second cycle of aileron deflection. 
Pressure distributions at other wing stations show similar 
character. 

The unsteady pressures at the 40% and 60% span station were 
analyzed by taking the Fast Fourier Transform 0 of the 
pressures during the third cycle of aileron motion and scaling 
the real and imaginary components by the amplitude of the 
aileron deflection. In the following figures. the real component 
of the unsteady pressure represents the pressure perturbauon 
that is io-phase with the aileron motion, while the imaginary 
component represents the pressure perturbation whose phase 
lags the aileron motion by ninety degnes. In addition, the 
mean pressure coefficient has also been extracted from the 
unsteady pressure. 

BACTUmkdy P a r S W  D s b  
M4.77, ad.O', 8AI.=2.0.0., f-5 Hz. 

wc - 0.23,?4.60 

2.0 

1.0 

-2 0.0 . 
-1.0 . 
-2.0 

Figure 11. Unsteady BACT pressures Md.77. 
ud.0'. Sfil.=2.Oo, f=5 HZ. 
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aswellas 

(7) 

(1) Examples of fluid flow modelling 

As a particular example, the Euler equations, the ba- 
sic equations of inviscid fluid motion, are regarded. 
Then U describes the vector of the so-called conserva- 
tive flow variables and F, G, H describe the fluxes in 
all coordinate directions, the components of which are 
developed by the conservation laws of mass, momen- 
tum, and energy: 

U 

U = P [  i ] ;  F = P [  u2 +PIP ;; ] i  

[e + PIPI U 

W W 

G = p  [ ua+plp :l 1 ;  B = P [  wz E +PIP ] (8) 

Body forces, which are due to gravitation, and rates 
of heat, which are due to thermal conduction and dif- 
fusion, can be neglected in this particular application 
of gas dynamics. The necessary closing condition is 
fulfilled by the equation of state with which a caloric 
and thermal perfect gas can be assumed. 
The representation of the transformed basic equa- 
tions into a strong conservation form eq.(4) was fist 
achieved by Viviand [15] and Vinokur [14]. 

(2)  Transformation of the normal vector 

The transformation of the basic equations into 
boundary-fitted coordinates can be expressed by the 
normal vectors of the areas t = const., q = const., c = 
e a s t .  In this section the tie-dependency of the nor- 
mal vectors is extracted. 

In the following, N(<) = graq denotes a non- 
n o r m a l i  normal vector of the area < = const. & 
denotes a normal vector normalized to the Jacobian 
J. The standard normalization is integrated as a 
special case. For example, when regarding the area < = mst., the following is obtained 

[e + PIP1 [e + PIP1 w 

(9) 

J .  N is a normalized form of N because of I, = 
&(l/J),  tu = &(l/J) ,  etc. which results from 
eq.(6). 

If the gradients of the normal vector are known at 
time point t = 0, the changes to time point t > 0 can 
be described by angles a, 8, y and, if the need arises, 
by the change of the Jacobian J. In the following, 
a, stands for the rotation around the y axis, 0 for 
the rotation around the z axis, and y for the rotation 
around the x axis. 
Then, considering the non-normalized as well as the 
normalized version, the timedependent local normal 
vector can be obtained with a transformation: 

N(s,y,z, t)  = [Tl(z,y,z,t)-N(z,Y,z,t =O) ' 

This separation approach is the basic idea of the 
method presented here. Eq.(lO) is applicable to the 
transformed fluxes in eq.(6). Eq.(ll) will be needed 
in the numerical solution algorithm for the determina- 
tion of the time-dependent change of the finite control 
volume in chapter 4. 

The transformation matrix [a contains the rotations 
around the x,y, and z axes: 

with the rotation matrix in the x direction: 

1 0  0 

0 - s h y  cosy 
0 cosy s iny]  

in the y direction: 

1 cosa 0 -sina 

sina 0 cosa 

and in the z direction: 

cosp sinp 0 
[T.] = -sinp cos@ 0 [ .  0 1  

The transformation eq.(12) is non-commutative; it be- 
gins with the rotation around the z axis of the steady 
reference system and ends with the rotation around 
the x axis. Other sequences are possible which can be 
aehieved by exchanging [T,], [Tu], and [Tal . 
With the aid of [TI, the normal vectors of the moving 
grid are transformed into a fixed area. [TI and, with 
that, a, p, y are dependent on the spatial coordinates 
and on time. 
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3 Virtual Grid Deformation 

The numerical solution algorithm of hyperbolic conse- 
vation laws is based on the finite volume scheme and 
on a time-stepping procedure, and it requires a dis- 
cretization of the calculation area. 

The time-dependent nodal points of each cell element 
of the computational grid define the geometric posi- 
tions of the cell face centers, the normal vectors of the 
cell faces, the cell face areas, the cell volume as well 
as their time derivatives. 

Most of the current solution methods in computa- 
tional fluid dynamics use the time-dependent geomet- 
ric positions of the grid points t o  recalculate the metric 
terms and the cell volume after every single time step. 

However, the hyperbolic conservation laws in time- 
dependent curvilinear coordinates, when applied to  
numercal calculations in a discretized area, require no 
more information than: 

- the normal vector of the cell faces and 
- the cell volume 

as well as the following time derivatives: 

- the relative velocity of the cell face centers and 
- the change in time of the cell volume. 

In chapter 2 it is shown that the transformed basic 
equations are dependent on the normal vectors of the 
curvilinear coordinates and on the Jacobian of the co- 
ordinate transformation. In chapter 4 it will be shown 
that the Jacobian J can be interpreted as a cell volume 
of the discretized area and that the time-dependent 
cell volume as well as its change in time can be com- 
pletely determined by the normal vectors and the rel- 
ative velocities of the corresponding cell faces. There- 
fore, essentially only the two variables are required: 

- the normal vector of the cell faces and 
- the relative velocity of the cell face centers. 

Only these extracted kinematic values have to be im- 
plemented in the numerical algorithm to simulate a 
time-dependent grid deformation. It is regarded as 
virtual mapping since the geometric positions of the 
grid points are not taken into account. 

An overview of the method is given in section (1). 
Theorems for the design of time-dependent normal 
vectors and the relative velocities are stated in sec- 
tion (2). 

(1) Principle algorithms 

The transformation into a time-dependent curvilinear 
coordinate system can be seen as a sequence of two 
steps: 

The transformation from the Cartesian coordinate 
system x, y, z into the initial curvilinear coordinate 

system (,.I,[ is described by the mapping eq.(2); the 
transformation from the initial curvilinear system into 
the moving curvlinear system f '? r l ' ,  (' is sufficiently 
described by the local translations f, y, Z and by the 
rotational angles a, p, y. 

Figure 1: Temporal change of the normal vector of ,% 

cell face 

Changes of a given curvilinear coordinate system are 
generally described as a function of its curvilinear CIF 

ordinates. The changes can particularly be given i l s  

a function of a specific coordinate direction or 11 or 
(. For example, the rotation matrix [TI can be reprme 
sented by: 

2- = 2 - ( L a ( 6 ) , C ( 6 ) )  oT 
T = T(C(llo),II?C(tlO)) (le) 
T = T(l(<o)>s(G)>C)) 

This kind of parametrization is valid without limit& 
tion for the application of the virtual grid deformation 
- it is even advantageous. This will be proved in the 
next section. 

The relation of the boundaries of the transformc:d 
computational region to  the physical area depends on 
the chosen topology. Basic two-dimensional types are 
H-, C-, and 0- topologies. Three-dimensional t o p o b  
gies are the result of the combination of these basic 
types. 

Grid motions are always induced at the boundaries. In 
the following, the boundaries and lines of the compu- 
tational region are specified with respect to the cause 
and effect of motion. 

Motion-inducing boundnries - as opposed to the re- 
maining boundaries - are not inhibited in their form of 
motion. Their positions are coupled with the coordi- 
nate direction which functionally expresses the spatial 
grid deformation. For example, the inner and outer 
motion-inducing boundaries determined by the levels 
CO and (1 during the parametization of the grid defor- 
mation in the ( direction. 
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Motion-induced lines connect the points of the oppc- 
site motion-induced boundaries and fulfill their move 
ment. Otherwise, motion is achieved by interpolation. 
For this, the properties of a unique and smooth m a p  
ping are required, which l i t  the motion possibilities. 

Time-dependent boundary conditions arise either b e  
muse of the form of motion of the body s d a c e  or due 
to the relative motion of the far field boundary and, 
depending on the topology, can occw in all boundaries 
of the computational region. Thus they determine the 
motion-inducing boundaries as well as motion-induced 
lines on the outer boundaries. In the latter case, the 
restriction of motion possibilities is irrelevant in prac- 
tice since, in the physical domain, this is usually a far 
field boundary. 

Motion-inducing boundaries can also be divided into 
&ed and free boundaries. Fixed boundaries are deter- 
mined by boundary conditions. nee boundariea only 
have to maintain the motion of their outer points and 
are totally free in motion otherwise. However, smooth 
transitions are desirable here aa well. 

Manifold descriptions can be made of the motion- 
inducing boundaries and are adjusted to the formu- 
lation of the technical requirement. Both of the fol- 
lowing exceptions are of particular interest: 

1. One of the motion-inducing boundaries is fixed in 
the steady reference system: [;lo=.;[ 3 = o  or 

0 

[ +;[ ;] = 1  (17) 
1 

Such a construction is necessary for an unsteady 
solid boundary interference when, e.g., the Bow 
of an oscillating wing is simulated in a tunnel, 
whereby tunnel wall interference must be taken 
into account. 

2. The motion-inducing boundaries are coupled in 
their form of motion. In the case of a rigid-body 
motion, the identity 

is appropriate. The angles of the local normal 
vector are then independent of the spatial coor- 
dinates. 

Index 0 defines the left or lower boundary, index 1 
defines the right or upper boundary. 

The design of the functions which describe the virtual 
grid motion is carried out in 6 steps. This is first 

Figure 2 Moving of a two-dimensional curvilinear 
coordinate system 

illustrated for two-dimensional curvilinear coordinates 
€(z,  r) ,  C(s, z )  in the C-topology in which local relative 
velocities Vkin = [ i , 2 ]  and the local rotation angle a 
occur (see fig.2): 

1. Choice of an appropriate coordinate direction tor 
the parametization of the grid changes. In the 
following example, the essential timedependent 
boundary conditions occur at the CO and Cl 
boundaries and are de6ned as motion-inducing 
boundaries. The parametiiation is then carried 
out in the C direction. 

2. Representation of the fixed boundaries by the lo- 
cal rotation angle a(€,~) and the local relative 
velocities V([ ,T) .  A closed functional description 

3. Determinationofthe changes CY(€,T),  bSn(t,7) of 
the free boundaries at 6. The values at the posi- 
tions (EA,CO),([B,CO) correspond with the outer 
values of the fixed boundary. They correspond in 
the physical domain with the trailing edge of the 
given proflle. 

4. Determination of the changes ~ ( C , T ) ,  V~,,(C,T) 
of the motion-induced lines in the C direction. 
The foot points lie on a free or fixed motion- 
inducing boundary which, formally speaking, 
does not make any dserence. 

5. Inverse transformation of the local Cartesian v e  
locity components G,,, = [i, 21 from the virtually 
moved coordinate system f ,  q', C' into the initial 
curvilinear coordinate system t, q, C: 

is advantageous. 

it(€',C',~)~osa(€',C',~) - z(E',C',T)Sina(€',C',+) 

i(Q, C,T)  msa(f', c,' 7 )  + k( t ' ,  C', 7 )  sin.(€', C',d 
+ i(t, C,T) 

--t Z ( F ,  C, 7 )  (19) 

6. Determination of a and Vk,,, for the points (&, &) 
of the discretized computational region and for 
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the centers of the cell lines by arithmetical means: 

1 

1 
a i + i . b  = 5 b i . ~  + a i + l , k I  

ai,r+t = 5 [ai,k + ai,r+l] (20) etc. 

A spatial three-dimensional grid motion is achieved 
when steps 2,3,4 are successively expanded in the q 
direction. The principle of parametrization in the C 
direction does not change. In step 5, the rotational 
angles in all coordinate directions are to be consid- 
ered in the given sequence; see eq.(12). In step 6,  the 
arithmetical mean is applied to the cell face centers of 
the control volume. 

The previous steps show that the analytical descrip- 
tion of the motion-induced linea is possible when fol- 
lowing the methods of differential geometry. This will 
be substantiated in the next section. The transition 
into the discretised coordinates of the computational 
grid is carried out in only one last step. 

(2) Theorems of unique and smooth grid deformations 

The analytical description of the time-dependent grid 
deformation developed here is based on the following 
prerequisite: 
Prerequisite. The boundary-fitted coordinates 
eq.(2) of the initial grid are based on a unique and 
smooth mapping. 

In the following, only the time-dependent changes of 
the initial grid are observed. They must be also a 
unique and smooth mapping. Then, an overlapping 
of grid lines is excluded and the grid quality of the 
initial grid is maintained. 

Definition 1. The mapping on curvilinear coordi- 
nates is unique when it is locally regular. 

Definition 2. Curvilinear coordinates are smooth 
when there are minimum spatial changes in their tan- 
gential vectors and when taking into consideration the 
constraints of defined tangential vectors at the bound- 
ary. 
The smoothness of the discretized computational grid 
also follows the smoothness of the cuvilinear coordi- 
nates: There are minimum spatial changes in the an- 
gles and in the distances between the lines when taking 
into consideration the constraints of the defmed an- 
gles and distances at the boundary. Orthogonality at 
the boundaries specifically produces boundary-fitted 
coordinates. 

The generation of smooth grids is possible by means 
of variation approaches, several of which lead to the 
sc-called elliptic grid generation: see Godunov and 
Provkopov [5], Steger and Sorensen [ll], Thompson 
[U], Roache and Steinberg [9], Neisius [SI. A mathe- 
matical description for smoothness, however, has not 
yet been determined in the literature. 

Theorem 1. If the changes of a curvilinear coordi- 
nate system is angular conform in every point <, 7, C, 
i.e., if all local tangential vectors are rotated hy a, P ,  7, 
then the following applies: 

1. The mapping Is locally unique 
2. The mapping is locally smooth 
3. The changes a, P ,  7 can be parametrized by one 

The uniqueness follows from the separation approach 
eq.(lO) or eq.(ll) which also applies to the functional 
matrix and leads to the identity det[T] = 1. The 
smoothness directly results fmm definition 2. The 
parametrization follows from the reduction 

characteristic direction or q or C. 

a,c=a,"=a,<=a ; P , c = P , ? = P ? C = P  ; 

Y,c = Ym = Y>C = 7 

During the transition to a discretized computational 
grid the values are obtained in the cell face centers by 
arithmetical means of the values in the discrete points 
([,,q3,C& see eq.(20). The local mapping is then no 
longer angular conform, however, aa is necessary, it is 
smooth as according to definition 2. 

Theorem 1 presumes the existence of angular conform 
mapping which stii needs to be found in the form of 
a function of one of the coordinates or q or (. Dur- 
ing parametrization in the C direction, the mapping is 
generally as follows: 

= [1 - Q(dl [ ] + Qtb [ ] 
1 

with the relative arc length: 

- - C - C O  
C=Co- 

Cl - CO 
the transformed distances: 

axo  AX^ - x .to 
 AX^  AX^ - x. t1 
AX01 = AX01 - B 

1, 
I. 

(%3) 

(24) 



- 

and the following abbreviations: 

Axo(C) = X(C)  - xo , (25) 

AX1 (C) = X(C) - XI , AXoi = Xi - Xo (26) 

Indexes 0 and 1 characterize the points of the lower 
and upper motion inducing boundaries CO and CI. 

Figure 3 Basic steps for the analytical design 
of the virtual grid deformation 

The interpolation functions Q ( ( ) ,  Q R ( ( )  and 
R(i),Ro(C) are dependent on the relative arc 
length C. The influences are depicted in fig.3 For a 
two-dimensional form of motion. Q, R are associated 
with the direct forms of motion, and QR, RQ with the 
coupled forms of motion. The cross products describe 
the relative velocities due to the angular velocities 
and the rotation due to the shear. 

In general, each component of the interpolation func- 
tion is individudy specified which has to be expressed 
by diagonal matrices, for example: 
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Theorem 2. The mapping eq.(Zl) and eq.(22) is 
unique if the interpolation functions Q ,  QR and R, RQ 
meet the following necessary conditions: 

1. QKo) =WO) = QR(CO)  =&(CO) = 0 for the 

2. QKd = R(Cd = QR(CI) = LRQ(Cd = 0 for 

3. 9. = qv = q. = q 

4. q(<) = qr(O for all i 

lower boundary 

the upper boundary 

rz = rv,= rz = r ; ry2 = rru = T, = rq ; 
for all C 

; qm = q q  = 91 = rq ; 

5. q(C) is monotonic for o 5 5 1 
The first two conditions m l l  the tiie-dependent 
boundary conditions of the motion-inducing bound- 
aries. The identity of the individual components and 
the identity of the interpolation functions q and qv fol- 
lows the parametrization; it guarantees local angular 
conform mapping. The monotonic condition becomes 
clear in the example shown in fig.3a) and b), taking 
into consideration that the grid lines do not overlap. 

Of particular interest is the linkage between the local 
relative velocities and the local rotational angles in 
the field, i.e., the relation between the interpolation 
functions q, qr and r, r, . 
Theorem 3. If the interpolation functions q and q,, 
respeetively, are given in the polyyomia! representa- 
tion to themth degree q(C) = eo+c~C+czC~f-+~C"', 
then the following holds for all i: 

1. r(<) = do + d i t  + dzt2 + . . +d%? 
with d, = 0 
di = '+l c 

3 . q l = q = O  

for e, = 0 
for e, # 0 

2. P q ( i )  = -3 [c1 + Z C Z I  + 3c3p + ' ' + m G P - ' ]  

The proof of theorem 3 and a more detailed explana- 
tion of the method will be presented in an upcoming 
papa. 

4 Changes in the Finite Volume 
Scheme 

The numerical solution algorithm requires the dis- 
cretization of the spatial coordinates <? q, C into i = 
1, ..I; j = 1, .J; k = 1, ..K intervals. Similar to differ- 
ential equation(4), the difference equation 

The translations Z,g,Z and the angular velocities 
&,b,i. at the boundaries CO and can be seen as 
auxilary values for the determination of the motion- 
induced limes of the moving grid. They are not needed 
for the numerical solution of the conservation laws. 

= o  (28) 
A[JU] A@ AG A H  +-+-+- [- AT A€ A, A, 

must also satisfy the conservation laws in its integral 
form for all I x J x K cells which yields a finite volume 
scheme. The term J,,,,n in eq.(28) corresponds to the 
volume of cell i , j , k .  The cell face centers are the 
reference points for the flux transport and therefore 
also for the grid velocities. 



A generalized finite volume scheme is derived from 
the integral form of conservation laws and thus is in 
no way restricted to any specific form of the control 
volume. In the following, however, a structured mesh 
with octahedron-shaped control volumes are focused 
on, and therefore the volume scheme given in eq.(28) 
becomes applicable. In this case, the unique mapping 
eq.(2) of the curvilinear coordinates directly correlates 
with the grid points of the control volumes, and the 
solution scheme for a virtual grid deformation can he 
described in a computationally efficient manner. 

The time integration has to reflect the hyperbolic 
character of the differenti equations, i.e., the solu- 
tion U(T) is always successively computed from the 
previous time step for all n = 0,1,2,.. time levels. 
The representation of the time level n = 4 is depen- 
dent on the type and order of time integration. 
The numerical solution depends on the initial data at 
T = 0 and on the time- dependent boundary condi- 
tions at the boundaries of the computational domain. 

The application of the virtual grid deformation 
method is independent from the type of flux differ- 
encing as well a8 from the type of time integration. It 
can be combined with central or upwind schemes and 
with explicit or implicit algorithms. Only the volume 
change AJ/AT in eq.(28) has to be taken into account 
which, in turn, is solved by the so-called geometric 
conservation law. 

(1) Geometric conservation law 

The geometric conservation law - fist demonstrated 
by Thomas and Lombard [12] - results from the hyper- 
bolic conservation laws, eq.(4), for constant variables 
U = U, and any grid velocity. Then the constant 
variables can he separated and a determination of the 
temporal change of the control volume follows: 

The discrete representation of the t i e  level n + 4 is 
dependent on the type and order of the t i e  integra- 
tion, examples of which are shown as follows: 

1. first-order explicit 

= 0 (30) 
J"+' - J" 

AT 

2. first-order implicit 

[ A i  Arj A[]"' = O  (31) + -+-+- J"+' - J n  

AT A€ AV A < .  . . *,)A 

3. second-order implicit 

1.5Jn+' -2Jn+0.5J-'  + [if -+-+- i: A(]"+' = o  
A< i~i.k 

AT -.-. - 
(32) 

We gain the insight that the temporarily changing 
control volume has to be determined only by the rel- 
ative velocities of the cell face centers. Then the geo- 
metric conservation law eq.(Z9) is consistent with the 
hyperbolic conservation laws eq.(4). Due to infinites- 
imal rotations of the cell surfaces around its center 
points, higher-order terms are not to be taken into 
account. This statement is valid for the first-order 
hyperbolic conservation laws regarded here and for all 
corresponding numerical solution schemes. It is also 
valid when additional viscous terms are included. 
(2) Determination of the change in volume 

The description of eq.(29) is primarily dependent on 
the order of the time integration, however, it can al- 
ways be expressed as a recurrence formula: 

J"+' = J" + ATJ"+i (first order) (33) 

(second order) 

(34) 
It is applied for the determination of the time- 
dependent volumes P"" and is obtained successively, 
starting from the well-known initial state J*=O. With 
regard to eq.(7) and eq.(9), the term J follows from 
eq. (29): 

Eq.(35) with the transformation eq.(9) is dependent 
only on the Cartesian grid only velocities z, $, i and 
on the rotation angles a, p,? as well as on the well- 
hown metric terms of the initial state. All of these 
values are already provided by the determination of 
the motion-induced lines either for time level n or n + 
1; see chapter 3. To the right of eq.(35), cell volume 
only J is not contained implicitly. 

The computation of the volume change with the help 
of equations (33) and (34) is advantageous because the 
evaluation of a recurrence formula is adequate and efJi- 
ciently applicable in combination with a time-steppmng 
algorithm. 
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5 Numerical Results 

In the following, the AMP model wing documented by 
Zingel, Jajes, Vogel [U] is examined. The theoretical 
results of a steady flow configuration and of a real 
unsteady mode shape are represented and compared 
with the measurements. In addition, the influence of 
the body is pointed out. 

A computational C-H type grid with 200 x 43 x 32 grid 
points in the <, q,  C directions is used. The elliptic grid 
generation by the method of Steger and Sorensen [ll] 
is based on an initial grid which is generated alge- 
braically by the method of Smith and Erikson [lo], 
and which is carried out by Neisius [E]. The distance 
of the wing to the outer grid line is 10 root profile 
lengths. Sectional views of the grid are emphasized in 
fig 4. Unsteady grid deformations are virtually simu- 
lated, as stated in this paper. 

The virtual grid deformation method can also be a p  
plied for all kinds of conservation laws when viscous 
terms are taken into consideration. In these numerical 
examples, a viscid-inviscid interaction method devel- 
oped by the author is used in which three-dimensional 
separation bubbles are simulated. In this context, only 
the validation with the measurements is important. 
Then, the influence of the elasticity of the wing on the 
aerodynamic forces can be judged in a correct manner 
and the importance of a grid deformation method is 
pointed out. 

(1) Steady results 

Fig. 5 shows pressure distributions in several span 
sections for the steady flow configuration M ,  = 
0.78,Re = 3.49 . 106,ao = 2.85. The wind tunnel 
interference is taken into account by a reduction of 
the angle of attack of 0.5". The static elastic defor- 
mation is correctly represented by the grid generation. 
Theoretical and experimental data agree su5ciently. 

The influence of the body on the wing should not be 
ignored in transonic flow. The shock is reduced and 
is positioned further upstream by the body. This ef- 
fect appears in the spanwise direction up to the outer 
area of the wing. The shock line on the wing can be 
seen as a characteristic line on which disturbances are 
transported without damping. 

(2) Unsteady results 

An actual mode shape of the AMP model wing in 
transonic flow is regarded. It results from a pitching 
motion around the rotation axis ZR = 0.39, stimulated 
at the wing root by: 

M ,  = 0.78 ; Re =3.49.106 ; 
a ( ~ )  = 2.35" + 0.22°sin(w*~) ; W* = 0.41 

the wing root. The mode shape contains a phase lag 
of the wing motion in the spanwise direction. In ad- 
dition, a rigid pitching motion without any elastic de- 
formation - a simple mode shape approximation - is 
investigated. 

Fig.6 and fig.7 show the first harmonica of pressure dis- 
tributions at several profile sections of the wing and 
the first harmonics of the local lift and momentum dis- 
tributions over the span for the rigid pitching motion 
and for the real elastic mode shape. In this case of low 
amplitude, the higher harmonics hardly apppear. It 
can be seen that the behavior in the outer area of the 
wing is different for both forms of motion especially in 
the imaginary parts. Therefore the.elasticity should 
not be ignored for an aeroelastic analysis. The agree- 
ment between theory and experiment is more consis- 
tent than in the case of pure inviscid calculation; see 
Wegner [ 17. 
The contrast between both forms of motion can also 
be seen in the change in the local aerodynamic coef- 
ficients of several span sections; see f ig4  and in the 
local mean power distribution over the span; see fig.9. 
The damping is relatively high during rigid pitching 
motion and there is no aerodynamic damping during 
the actual vibration mode. However, this does not yet 
indicate flutter instability. 

The differences between theory and experiment in the 
inner area of the wing are mainly due to the body 
which is shown in the last figure. On the other hand, 
the body does not essentially influence the unsteady 
flow characteristics in the outer wing area, but never- 
theless it influences the aerodynamic damping of the 
whole wing; see fig.9. 

6 Conclusions 

Elastic grid deformations are taken into account by a 
newly-presented calculation method of the unsteady 
conservation laws. The only prerequisite for this 
is that the intial computational grid is unique and 
smooth. The method is t i e  efficient, especially for 
a physically timedependent calculation. The simula- 
tion of an elastically moving wing allows for the pre- 
diction of aerodynamic instabilities. It cannot be a p  
proximated by rigid-body motion. 

All of the deflections of the mode shape are very small 
values which correspond to the pitching amplitude of 
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Fig.$: AMP model wing; C-H type grid; 200 x 43 x 32 cells. 
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Fig.7 AMP model wing in harmonic pitching motion; lift and momentum 
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Fig.8: AMP model wing in harmc'nic 
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APPLICATION DES EQUATIONS D’EULER LINEARISEES A LA PREVISION DU FLOTTEMENT 
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1. SOMMAIRE 
L’ntiiisation des kquations d’Euler lin6arisk dans 
le cadre d’excitations harmoniques des modes struc- 
turaux permet de calculer les forces a6ro61astiques 
dans le domaine frequentiel pour un coiit calcul 16- 
duit, bien infkieur L celui obtenu par la methode 
classique de simulation temporelle utisant les kqua- 
tions d’Euler. Des exemples num6riques permettent 
d’illustrer cette approche. 

2. INTRODUCTION 
La prevision de la stabilite aero6lsstique des avions 
s’effectue en r&olvant le systeme couple akody- 
namique structure dam le domaine frequentiel et n& 
cessite par consequent la determination des forces 
a&o6lastiques sur la base modale de l’avion. Cette 
approche classique et opBrationnelle avec l’utilisa- 
tion de codes lii6aires suhsoniques ou supersoniques, 
devient particulierement onereuse dans le cadre des 
equations d’Euler malgre l’utiliiation d’une condi- 
tion de d6bit B la paroi en instationnaire, permet- 
tant de garder un maillage h e  au cows du temps 
(Mf 1). Le problbme du flutter consistant en la 
recherche du debut de l’instabitb, l’amplitude des 
mouvements simul& est faible. Cette hypothese com- 
plhentaire permet d’envisager la liiBarisation des 
equations d’Euler autour de la solution stationnaire, 
en considerant le mouvement du mode de structure 
c o m e  une perturbation du premier ordre. Cette ap- 
proche a &e Btudiee depuis de nombreuses ann&s 
dans le cadre des turbomadines (W 2,3,4,5,6,7). 
DifErentes excitations temporelles des modes struc- 
turaux peuvent &re r6alisk conduisant B des prc- 
hlemes distiicts : - l’excitation est une fonction “large bande” (sa 
transform& de Fourier est B support compact dans 
l’intervalle [-F,,,, F,.,], une solution instation- 
naire r&lle peut etre calculee dont la transform& de 
Fourier est B support compact dans le m6me intervalle 
(Ref 8) ; - l’excitation est une exponentielle divergente, comme 
le propose Hounjet (Ref 9), une solution stationnaire 
d’un prohkme rM, doit &re calcul& ; 
- l’excitation est harmonique en temps, une solution 
stationnaire d’un problbme complexe, doit i%re cal- 
Cul&. 
Aprb avoir p r h n t 6  I’obtention du mod&le des &qua- 
t i m  d’Euler lin&ii&ea et les dH6rentes approches 
lih b l’excitation temporelle des modes structuraux, 
le s c h b a  utilise est ddvelopp.4. Des applications 
numeriques illustrent ces developpements. 

3. LES kQUATIONS D’EULER LINkARlSkES 
Les equations d’Euler s’krivent sous la forme : 

oh : 

W = ‘((P,P,Pv,Pw,PE) 

f = ‘(m plr’ + P. PUW, PW, ( E  + P)U) 
9 =  ‘(pu,PW>pu’ +P,ww,(E+P)W) 
h =  ‘(PW,P~,PWP’ +.p,(E+p)w) 

p d&igne la maeae volumique, (U, U, w )  le champ de 
vitesse, E = pe l’hergie. 
Le champ inatationnaire W est d h m p o &  en un 
champ stationnaire W. et une perturbation du pre- 
mier ordre 6(W) diie au mouvement de faible am- 
plitude. En effeduant un dbveloppement limit6 au 
premier ordre, on obtient l’kquation suivante pour le 
champ 6(W) : 

a 
+-&(C(W8)6(W)) = 0 

oh A(W.) , B(W,) , C(W.) dhignent 1- matrices 
jacobiennes des flux f , g , h , calculk pour le champ 
stationnaire. 
Lea conditions aux limit- utilisent principalement lea 
relations de compatibilite (M 10, 11). Ella sont 
ecrites pour les cellules ayant au moins une face nur 
une frontibe. Les valeurs pr6ditea sont prises au 
centre de la d d e  (extrapolation B l’ordre ko). Lea 
conditions aux liitea principalement u t i i s h  dam 
le cadre des Bquations d’Euler sont : 
- une condition de glissement ; 
- une condition de transpiration instationnaire per- 
mettant la simulation de d&rmations ou mouvement 
du profil au cours du temps. Cette condition aux 
l i t e s  consiste B krire les quatre premieres rela- 
tions de compatibilite sur la base instantan&, et B 
complbter par la relation de glissement instationnaire 
V.n(t) = V,(t).n(t), oit n(t) et V,,(t) d6signent la nor- 
male et la vitesse instantau& du profX. La normale 
instationnaire de la face est obtenue en d&l-t 
chaque point de la frontihe du deplacement inatan- 
tan6 et en recalculant la normale B piutiu de cette 
position fictive des points ; 
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- A l’infini on privilbgie la condition de non r6flexion. 
Celleci consiste A considbrer d’une part un domaine 
extgieur pour lequel 1’Ltat du fluide sont connues, 
et d’autre part le champ interne. L’application des 
relations de compatibilite entre ces deux domaines 
permet le calcul du champ frontike, et ce sans avoir 
besoin de specifier le type de la frontikre (amont ou 
aval), ou Mat  du champ (subsonique ou superson- 
ique). 
Les conditions aux limites A appliquer, dans le cadre 
des equations d’Euler lin6aris&a, sont deduites de 
celles impos&s pour les Bquationa d’Euler par l inh i -  
sation au premier ordre. Pour la condition de glisse 
ment, la normale instationnaire doit atre Bgalement 
lin&isBe. 

4. LES D&REN”W APPROCHES 
Les modes de structure ont une evolution en temps 
et en espace dB6nie par : 

H ( M , t )  = H8(M)f(t) 
oh f ( t )  dBsigne une fonction temporelle, et H J M )  un 
mode structural. 

4.1 Excitation large b a d e  
La fonction f(t) prend la forme : 

La transformke de Fourier de cette fonction vaut 1 
sur l’intervalle [ - WO , WO I. 
Les &pations d’Euler linBaris6es sont intBgrBes sur 
l’intervalle de temps [-Tl,+Tz], -7‘1 designe un 
temps (nBgatii) oh la fonction f ( t )  est nbgligeable, 
et T2 le temps oh l’energie transmise au systhme 
a et6 rkcupBr&. Du fait de la linearit6 des Bqua- 
tions, le champ 6(W) a sa transform& de Fourier 
A support compact dam l’intervalle [-wo,+uo]. Il 
en est de mBme pour le coefficient de pression et les 
forces aRroklastiques. Une transformee de Fourier die 
crkte (RBf 8) permet de les calculer. La rkolution 
frbquentide est donnBe par la relation : Af = $, 

Cette mBthode pose les probl6mes suivants : 
- obligation d’utiliser un pas de temps uniforme pour 
rboudre les Bquations d’Euler lin6aris6es. En ghBral 
lea maillages tridimensionnels pr6sentent quelques 
mailles dBgBnBr&s qui obligent B diminuer le pas de 
temps ; 
- le temps d’intBgration etant 6x6 par la finesse de la 
rbolution frbquentielle de la transformBe de Fourier, 
ceci conduit en gBn6ralA un cotit calcul prohibitii. 

4.2 Excitation exponentidle divergente 
La fonction f ( t )  prend la forme : 

T=Tl+Ta. 

f(t) = exp( s t )  

Ceci conduit au problkme stationnaire r&l : 

Les propriBtBs intrinskques de cette m6thode sont 
pr6sentBes avee le cas de l’excitation harmonique. 
L’utilisation, propode par Hounjet, de cette ap- 
proche consiste A lisser par des fractions rationnelles 
les forces aRro&astiques ainsi obtenues et B etendre 
au domaine complexe le liisage obtenu. 

4.3 Excitation hamonique 
La fonction f(t) prend la forme : 

f(t) = exP( 1 1 
Ceci now conduit B rboudre le problkme complexe 
stationnaire suivant : 

a a 
ay  

+-(B(Ws)6(W)) + Z ( C ( W . ) ~ ( W ) )  = 0 

L’intBrBt de cette approche est d’obtenir directement 
la valeur des forces adro6adiques dBsir&s dans le 
domaine complexe. Cependant ceci conduit A un 
doublement de la place mBmoire nBcessaire du fait 
de la n6cessitB de travailler en complexe. 
Ces deux dernikres approches permettent l’utiiisation 
des techniques classiques d’acdleration de la conver- 
gence : methode du pas de temps local, mBthode 
multigrille. Seule la premikre technique a BtB mise 
en oeuvre dans le travail prbentk. 

5. S C E l h A  NUMkRIQUE UTILE& 
Le schBma de Jameson-Lerat, dBvelopp6 par Liamis 
( ~ f  12) dans le cadre du code CANARI (Rhf 13), 
est utilise pour r6soudre cea 6quations. Ce s c h h a  
s’etablit de la manikre suivante : 
- un maillage structure multi blocs du domaine de 
calcul est r&diiB ; 
- une discrbtisation spatiale des Bquations par une 
mBthode de volume h i e  de type Jameson (R6f 14) est 
mise en oeuvre. Les inconnues sont prises au milieu 
des cellules. Le flux au traves d’une face s’obtient 
comme moyenne des flux de part et d’autre de cette 
face ; - on obtient ainsi un systbme d’bquations du premier 
ordre en temps que l’on intbgre par un s c h b  de type 
Runge Kutta en ligne A K pas : 



1 
K - 1 + 1  

auec: (2, = 
, p + 1  = ,,,(n,K) 

avec: K > 2 .  
Pour des problkmes non lineaires cette integration 
n’est precise qu’& l’ordre 2. Par contre elle est precise 
& l’ordre K pour des problkmes lin6aires A condition 
de d & i r  les instants intermMiaires par : 

- une viscosit6 artscielle dite “d6pendant du pas 
de temps” est introduite, mettant en oeuvre des 
operatems du deuxihe ordre pour capturer les cbocs, 
et du quat r ihe  ordre pour rendre le sch6ma dissipatif 
au sens de Krebs. Cette viscosit6 est bas& sur un 
senaeur pression. Des conditions aux l i t e s  particu- 
libres, introduites par Eriksson (Ref U), permettent 
de confker A la viscosit6 de bonnes propri6t6s ; 
- une phase implicite precise au second ordre, de type 
rayon spectral d6velopp6e originellement par Lerat, 
Sidh, Daru (R6f 16) permet une augmentation signi- 
ficative du critkre de s tabi t6  de Courant-Friedricbs- 
Lewy (CFL), critkre limitant le pas de temps par 
rapport au pas d’espace. Cependant dans les deux 
derniers cas une condition de s tabi t6  conditionnelle 
demeure. Les formules suivantes ont pu 6tre 6tablies 
pour les excitations de type : 
- exponentielle divergente : At,,, 5 - ; 

- harmonique : Atmaz 5 - ; 
oh T,,, dhigne le facteur d’adimensionaliiation en 
temps. 

t(l) = (n t 0r)At , I  = 0,1, ..., K ,a0 = 0 

1.767 
Tnzs 

0.8 
UT,, 

6. EXEMPLES D’APPLICATIONS 
La presentation ci-dessus a 6t6 concr6tis6e ayee le 
d6veloppement du code REELC, R6solvant les Equa- 
tions d’Euler Li6aris6es en Complexe, dans le cadre 
de l’excitation harmonique. 
Le temps de calcul par pas de temps et par cellule 
sur le CRAY YMP de 1’ONERA est de 3.033 
secondes. 
Pour les applications consid6rPles le nombre CFL est 
pris 6gal & 8. 

6.1 Cas bidimensionnel : pmll NACA MAO10 
Ce cas test concerne le prof3 NACA 64A010 en 
Bcoulement infini pour un nombre de Mach amont 
de 0.796, & incidence nulle. Un mouvement de tan- 
gage quart avant est simul6. L’amplitude du mou- 
vement est de 1.01 degr6, la fr6quence d’excitation 
est de 34.4 Hz. Ce cas test a 6t6 6tudi6 exp6rimen- 
talement par Davis (Wf 17). Du fait d’une Egghe 
dissymbtrie entre le prof3 extrados et intrados la r6- 
partition du coefficient de pression stationnaire, figu- 
re 1, n’est pas parfaitement symbtrique. La compa- 
raison des Bvolutions de convergence entre les forces 
Arodastiques et le champ stationnaire est presentee 
Ala figure 2. L’obtention d‘un &at stationnaire pour 
les forces Aro6lastiques, figures 3 et 4, est atteint 
rapidement : 200 & 300 itbrations, alors que le champ 
stationnaire, h i ,  n’est pas converg6. Ce contexte fa- 
vorable est & l’origine du gain de temps consequent 
obtenu et permet ainsi l’utilisation du code pour des 
applications complexes. Le premier hamnonique du 

coefficient de pression est cornpar6 A la solution ex- 
pkrimentale & la figure 5. 

6.2 Application indnstrielle au cas d’on avion militpire 

Le calcul de flottement est effectu6 pour une aile 
Delta. Le maillage rkalis6 est de faible dimension 
(105780 cellules). Seize modes structuraux sont prig 
en compte. Deux nombres de Mach : 0.9 et 1.2 sont 
smul6s. Les incidences sont a j w t k  de manikre A 
obtenir une portance d’environ 90 000 Newton. Les 
matrices de forces a6rohtiqnes sont calcul&s pour 
treize fr6quences r6duites k = + : 
0.,0.001,0.1,0.2,0.3,0.4,0.5,0.65,0.8,1.0,2.0,3.0,4.0 
La qualit6 de convergence n’est pas afTect6e par lea 
valeurs des fr6quences r6duites consid6rh. 
Pour les deux nombres de Mach consid6r68, les ef- 
fets transsoniques sont neghgeables, et les r6sultats 
obtenus peuvent &re comparh A ceux obtenus par 
des m6thodes lineaires. La figure 6 prhentent cette 
comparaison sur le terme diagonal des matrices de 
forces a6ro6lastiques pour les deux nombres de Mach 
consid6r6s. La simulation du flottement est donn& A 
la figure 7. 
Le temps calcul a 6t6 limit6 B 600 secondes par con- 
figuration de calcul. Une matrice de forces Aodas-  
tiques (16 modes, 1 frkuence) coCte 9600 secon- 
des de temps CPU. Chaque calcul de ffottement (13 
fr6quences) a nkessite 124800 secondes, soit pra- 
tiquement 35 heures. 
Deux remarques doivent &re faites : - le code REELC permet le calcul de la frkquence 
nulle ; 
- un tel calcul serait inenvisageable en simulant les 
equations d’Euler dans le temps et en simulant 4 
penodes pour chaque fr6quence et chaque mode. 

7. CONCLUSIONS 
L’utilisation des Bquations d’Euler linearisees pour 
la simulation du flottement a 6t6 d6montr& dam le 
cadre de l’excitation barmonique. 
Les l i t a t i o n s  de cette m6thode sont li6es au champ 
stationnaire qui ne peut Bvoluer : 
- chocs et sillages fig& ; 
- mouvements de faibles amplitudes. 
L’efficacit6 de la m6thode d6velopp& est due : 
- & l’utilisation de la m6thode de pas de temps local ; 
- & la possibilite (non trait6e ici) de l’utilisation de 
m6thodes multigrilles ; 
- A la possibilit6 d’arreter le calcul lorsqu’un niveau 
de convergence suEsant est obtenu sur les forces 
a6ro6lastiques g6neralii6es ; 
- a l’iud6pendance du temps de calcul en fonction de 
la frequence de calcul. 
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Abstract 

We overview two sequential and parallel partitioned 
procedures that are popular in computational non- 
linear aeroelasticity, and addreas their limitation in 
terms of accuracy and numerical stability. We pro- 
pose two alternative serial and parallel staggered al- 
gorithms for the solution of coupled transient aeroe- 
lastic problems, and demonstrate their superior ac- 
curacy and computational efficiency with the flutter 
analysis of the AGARD Wing 445.6. We contrast 
our results with those computed by other investigb 
tors and validate them with experimental data. 

1 Introduction 

Several approaches have been proposed in the past 
for solving fluid/structure interaction problems on 
moving and deforming meshes, among which we note 
the two closely related Arbitrary Lagrangian Eule- 
rian (ALE) [1,2] and dynamic mesh [3] methods. In 
the most general case, all of these methods can be 
used to formulate the fluid/structure problem of in- 
terest a8 a three-field problem: the fluid, the struc- 
ture, and the dynamic mesh that is often represented 
by a pseudo-structural system. For example, in the 
case of the ALE method, a fluid/structure interac- 
tion problem can be described by the following set 

AIA A Associst e x l o w  
1 AIAA Student Member 

of coupled partial differential equations 

+JV,.(F(W) - ZW) = JV,.R(W) 

p s e  -&(E : <(US)) 

&$ - dh(E : T(t)) 

= b 

= 0 
(1) 

The first of Eqs. (1) is the ALE nondimensionalcon- 
servative form of the Navier-Stokes equations and 
describes viscous flows on dynamic meshes. Here, t 
denotes time, a dot designates a derivative with re- 
spect to time, r(t) denotes the t i d e p e n d e n t  po- 
sition or displacement of a fluid grid point (depend- 
ing on the context of the sentence and the equ- 
tion), { its position in a reference configuration, 
J = dei(&/#), W is the fluid state vector us- 
ing the conservative variables, and 7 and 72 de- 
note respectively the convective and diffusive fluxes. 
The second of Eqs. (1) is the classical elastodynamic 
equation where us denotes the displacement field of 
the structure and ps its density, E and E denote 
respectively the strain tensor and the tensor of elas- 
ticities, and b represents the body forces acting on 
the given structure. This equation can be replaced 
by another one describing a nonlinear behavior of 
the structure without affecting the issues raised and 
resolved in this paper. Finally, the third of Eqs. (1) 
governs the dynamics of the fluid moving grid. It is 
similar to the elastodynamic equation because the 
dynamic mesh is viewed here a pseudo-structural 
system. A bar notation is used to indicate that p 

Poper presented at an AGARD SMP Meeting on “Nwnericd Unsleady AemdyMmic and A e m e h t i c  Simulation”. 
held in Aalborg. Denmark 14-15 October 1997. and published in R-822. 
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is a fictitious density, and E is a fictitious tensor 
of elasticities. The Dirichlet, Neumann, and other 
boundary conditions intrinsic to each of the fluid 
and structure problems are omitted for simplicity. 

Clearly, the first and third of Eqs. (1) are directly 
coupled. If up denotes the ALE displacement field 
of the fluid and p its pressure field, US and OF the 
structure stress tensor and the fluid viscous stress 
tensor, r the fluid/structure interface boundary (wet 
boundary of the structure), and n the normal at a 
point to r, the fluid and structure equations are usu- 
ally coupled by imposing that 

The first of these two interface boundary conditions 
states that the tractions on the wet surface of the 
structure are in equilibrium with those on the fluid 
side of r. The second of Eqs. (2) expresses the 
compatibility between the displacement fields of the 
structure and the fluid at the fluid/structure inter- 
face. For inviscid flows, this second equation is re- 
placed by the slip wall boundary condition 

on r (3) 

The structure and dynamic mesh motions are also 
coupled by tbe continuity conditions 

The semi-discrete form of Eqs. (1) can be written 
as 

$(AW)+FC(W,x,X) = R(W,x) 

- d a X  M ~ + D % + + X  -dX = o  
(5) 

where x is the displacement or position vector of 
the fluid moving grid points (depending on the con- 
text of the sentence and the equation), W is the 
fluid state vector, A results from the finite ele- 
ment/volume discretization of the fluid equations, 
F" = F-XW is the vector of ALE convective fluxes, 
F denotes the vector of convective fluxes and R the 

vector of diffusive fluxes, U is the structural displace- 
ment vector, M and K denote respectively the finite 
element mass and stiffness matrix of the structure, 
f"t , IS the vector of external forces acting on the 
structure, M, D,  and k are fictitious maas, damp 
ing, and stiffness matriees associated with the fluid 
moving grid and constructed to avoid any parasitic 
interaction between the fluid and 'its grid, or the 
structure - and the fluid moving grid. For example, 
M = 6 = 0 includes as particular cwea the spring 
analogy based mesh motion scheme introduced in [3], 
and the continuum mechanics based mesh updating 
strategies advocated by many investigators. 

The main objectives of this paper are to overview 
the solution by partitioned procedures of the semi- 
discrete Eqs. (5), address the limitations of conven- 
tional staggered algorithms that are often employed 
in computational aeroelasticity, and propose new 
ones with superior numerical properties and better 
computational efficiency. 

- -  

2 Partitioned solution procedures 

For simple and small-scale structural problems - for 
example, for an airfoil with one or two vibrational 
degrees of freedom - the second of Eqs. (1,5) can 
be recast in first-order form so that the fluid and 
the structural equations of motion can be combined 
into a single formulation (for example, see [4]). In 
such a case, a "monolithic" fully explicit or fully im- 
plicit treatment of the coupled fluid/structure equa- 
tions of motion is possible. However, for more com- 
plex aeroelastic problems, each of the three compo- 
nents of the coupled problem described by Eqs. (1,5) 
has different mathematical and numerical proper- 
ties, well-established but distinct numerical solvers, 
and readily available commercial software. Conse- 
quently, the simultaneous solution of Eqs. (1,5) by 
a monolithic scheme is in general computationally 
challenging, mathematically and economically sub- 
optimal, and software-wise unmanageable. 

Alternatively, Eqs. (1,5) can be solved by a parti- 
tioned or staggered procedure [3,5-8,161. Partitions 
are spatially and temporally discretized by methods 
tailored to the underlying mathematical models and 
geometric complexity; for example finite volumes 
and a Runge-Kutta scheme for the fluid, and finite 
elements and a midpoint rule for the structure. The 
choice may also be influenced by software availability 
in each individual discipline. As a result, partitions 
are processed by different programs with interadion 



effects treated as external vector inputs. They are 
advanced with their own tiie-step exchanging in- 
formation at synchronization points only, a strat- 
egy that simplifies explicit/implicit treatment, sub- 
cycling, load balancing, software modularity, and re- 
placements as better models and methods emerge in 
the fluid and/or structure disciplines. For example, 
an elementary yet popular partitioned procedure for 
solving Eqs. (5) goes as follows: (a) advance the 
structural system under a fluid induced load, (b) 
transfer the motion of the wet boundary of the struc- 
ture to the fluid system using Eqs. (4) and the second 
of Eqs. (2) or Eq. (3), (c) update the fluid dynamic 
mesh accordingly, (d) advance the fluid system and 
compute new pressure and fluid streas fields, and (e) 
convert the new fluid preasure and stress fields into 
a structural load using the first of Eqs. (2). Clearly, 
such a partitioned procedure can be described as a 
loosely coupled solution algorithm. However, if ac- 
curacy and/or numerical stability require it, predic- 
tor/corrector iterations can be added within each cy- 
cle of this five-step staggered scheme, in which case 
the overall partitioned procedure becomes a strongly 
coupled solution algorithm. In the latter case, the 
partitioned solution method can be preferable over 
a monolithic scheme because of its modular and a g  
pealing mathematical and implementation features. 

2.1 The conventional serial staggered 
algorithm 

In this paper, the basic staggered algorithm outlined 
above is referred to as the Conventional Serial Stag- 
gered (CSS) procedure. It is graphically depicted 
in Fig. 1 where U denotes the structure state vector 
(U u ) ~ ,  p denotes the fluid pressure, the subscript 
n designates the n-th timestation, and theequalities 
shown at the top hold on the fluid/structure inter- 
face boundary r. The simplicity of the CSS method 
is attractive and apparently has earned it the highest 
popularity among partitioned procedures for aeroe- 
lastic computations in the time domain (for example, 
see [3,5,8]). 

In most if not all aeroelastic problems, the fluid 
flow usually requires a finer temporal resolution than 
the structural, vibration. Therefore in such appli- 
cations, the coupling time-step At will be typically 
dictated by the time-step A ~ F  that guarantees a cer- 
tain accuracy in the flow solution, rather than the 
time-step Ats > AtF that meets the accuracy r* 
quirements of the structural field. Using the same 

timestep At in both fluid and structure computa- 
tional kernels presents only minor implementational 
advantages. On the other hand, subcycling the fluid 
computations with a factor nSIF = Ats/AtF can of- 
fer substantial computational advantages; t h w  ad- 
vantages include savings in the overall simulation 
CPU time because in that case the structural field 
will be advanced fewer times, and savings in I/O 
transfers and/or communication costs when comput- 
ing on a heterogeneous platform because in that case 
the fluid and structure kernels will exchange infor- 
mation fewer times. 

The CSS method can be easily equipped with fluid 
subcycling as illustrated in Fig. 2. 

xn=Un-l $+,=U. xn+z=u.+l 

Figure 1: CSS: the conventional serial staggered prc- 
cedure 

Figure 2: CSS: fluid subcycling 

However, as noted for example in [4] and math- 
ematically demonstrated in [7], the CSS procedure 
has the disadvantage that it is only fist-order time- 
accurate, even when the underlying flow and struc- 
tural solvers are second-order time-accurate. For 
this reason, references such as [4] and others ad- 
vocate fully implicit monolithic solution procedures, 
and references such as [9] and others recommend full 
subiterations - that is, iterating on steps 1 to 4 in 



Fig. 1 until Eqs. (5) are satisfied before advancing 
the fluid and structure responses from one coupled 
time-step to another. While these alternatives cer- 
tainly remedy the low accuracy issue of the CSS pro- 
cedure, two reservations can be formulated against 
them: (a) as stated earlier, monolithic schemes are 
not realistic for complex aeroelastic problems where 
the structure is given the same attention and impor- 
tance as the fluid (i.e., a nonlinear flexible multibody 
dynamics system and ultimately a linear or nonlin- 
ear flexible full aircraft codguration), and b) it has 
been shown for other claases of fluid/structure inter- 
action problems that the computational cost 8880- 
ciated with full subiterations can offset the beneiit 
of the larger timestep they can allow [lo]. A third 
alternative that is presented in this paper is a new 
subiteration-free staggered algorithm that has the 
same computational complexity as the CSS proce- 
dure, and yet delivers a superior accuracy that is at 
least similar to that of a monolithic implicit scheme 
or a strongly coupled (full subiterations) partitioned 
method. Before discussing this new alternative in 
details, we overview another partitioned procedure 
that is gaining popularity on parallel computers. 

2.2 A straightforward parallel 

Intra-field parallelism - that is, parallelism within 
each of the fluid, structure, and mesh motion sub- 
problems - can be implemented in the CSS pro- 
cedure as in any Computational Fluid Dynam- 
ics (CFD) or computational structural mechanics 
(CSM) algorithm. However, the CSS method in- 
hibits inter-field parallelism: the structural system 
cannot be advanced in time until the fluid system is 
first updated. 

Advancing the fluid and structural systems simul- 
taneously and in a loosely coupled manner is appeal- 
ing because it has the potential of reducing the total 
aeroelastic simulation time. Recently, the authors of 
[ll] have proposed a partitioned procedure for aeroe 
lastic problems where inter-field parallelism is imple- 
mented as shown in Fig. 3. Essentially, the fluid and 
structure kernels are executed in parallel during the 
time-interval [tn, tn+l]. Inter-field communication 
or 1/0 transfer is needed only at the beginning of 
each time-interval. In the sequel, we refer to this 
simple parallel staggered algorithm as the Conven- 
tional Parallel Staggered (CPS) procedure. Two of 
the objectives of this paper are to show that the CPS 

staggered algorithm 

method requires relatively small timesteps in order 
to be numerically stable and sufficiently accurate, 
and to propose an improved version that has better 
accuracy properties. 

Figure 3: CPS: the conventional parallel staggered 
procedure 

3 An improved serial partitioned 
solution procedure 

Explaining the basic idea behind the improved 8e- 

rial partitioned procedure proposed in this paper re 
quires recalling first an important notion pertaining 
to flow computations on dynamic meshes. 

3.1 Impact of the geometric 

A sufficient condition for a numerical method prcr 
posed for the solution of a flow problem on a moving 
grid to be mathematically consistent is that it pre- 
dicts exactly a uniform flow. In [12] it was shown 
that this requirement is satisfied only when the nu- 
merical scheme chosen for solving the flow problem, 
and the algorithm constructed for updating the dy- 
namic mesh, satisfy a discrete Geometric Conserva, 
tion Law (GCL) that is similar in its principle to the 
GCL condition that was first pointed out in [13] for 
structured grids and finite difference schemes. More 
specifically, it was proved in [12,13] that for first- 
and second-order time-accurate ALE b i t e  volume 

conservation law 
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and ALE stabilized finite element methods, the ve- 
locity of the dynamic mesh must be computed as 

. Xntl  -x" 
At X =  

in order to satisfy the GCL. 
Note that Eq. (6) is intuitive and has been "nat- 

urally" used by several investigators independently 
from any GCL consideration (for example, see [3]). 
However, we show next that the impact of Eq. (6) 
on the solution of Eqs. (5) is significant. 

The semi-discrete equations describing the motion 
of the structure are usually solved by a second-order 
time-&curate scheme where 

(7) 

It follows that if a basic partitioned procedure satig 
fies the GCL and the first of the continuity equations 
(4), it violates the second of these interface condi- 
tions, as well as the slip condition (3) when the flow 
is inviscid and discretized by an ALE (or dynamic 
mesh) formulation. Indeed, if x = U is enforced at 
the fluid/structure interface and the velocity of the 
dynamic mesh at the interface boundary r is com- 
puted via Eq. (6), the following holds if the struc- 
tural equations of motion are timeintegrated by a 
second-order scheme 

In particular, the reader can verify that when the 
CSS procedure is equipped with Eq. (6) in order 
to satisfy the GCL and with a second-order struc- 
tural timeintegrator, it violates the continuity of the 
velocity field acroas the fluid/structure interface l'. 
Hence, under such conditions, the CSS procedure 
introduces an error in the prediction of the energy 
exchange between the fluid and the structure on the 
boundary r, which practically limits it to small time- 
steps to maintain a certain level of accuracy. 

3.2 A displacement and velocity 
conserving staggered algorithm 

Here, we propose a staggered algorithm for the so- 
lution of the aeroelastic semi-discrete equations (5) 
that can satisfy the GCL without violating either of 
the interface continuity conditions (3,4). Hence, un- 
like the CSS method, this algorithm does not intro- 
duce errors in the prediction of the energy exchange 

between the fluid and the structure on the interface 
boundary r. We label this method the Improved 
Serial Staggered (ISS) procedure because, a8 shown 
in Section 6, it is capable of computing highly accu- 
rate aeroelastic solutions using coupling timesteps 
that are at least comparable to those afforded by 
fully implicit monolithic schemes and strongly cou- 
pled solution methods. 

The description of the ISS method proposed in 
this paper goes as follows 

(1) given some initial conditions WO, U,, and U,,, 

initialize the fluid dynamic mesh motion as fol- 
lows 

(9) 
A t .  
2 

x - ~  = u0 - -u0 on r 
For n = 1, ... 

(10) 
(2a) set 

x, =Un 

(2b) update the fluid dynamic mesh as follows 

Xn++ = xn-+ + Atxn (11) 

(3) solve the flow problem to obtain the fluid 
state vector Wn+k 

(4) extract the pressure field on r from Wn++ 
and convert it into a structural load 

(5) advance the structural system using the 
second-order timeaccurate midpoint rule 

PROPOSITION 1. Using the ISS procedure, the fol- 
lowing dat ion holds 

Xn-+ =U" - -U. on r (12) 2 

PROOF. Eq. (12) holds for n = 0 (see Eq. (9)). 
Assuming it holds for a given n, Eqs. (10,12) can be 
substituted into Eq. (11) to obtain 

(13) 

Sinee the structural problem is solved by the mid- 
point rule, it follows that 

.- 
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Finally, from Eqs. (13,14) we derive 

which completes the proof by induction of PROPO- 
SITION 1. 
PROPOSITION 2. The ISS procedure described 
above satisfies Eq. (6) (implied b y  the GCL) and 
both interface continuity equations (4). 
PROOF. Define 

X,-L + X,+$ 

2 x, = = 

Substituting Eq. (11) into Eq. (16) gives 

(17) 
At . 

x, = X,-A + - x, 2 2  

and substituting Eqs. (10,12) into Eq. (17) gives 

X, =U, o n r  

which concludes the proof of PROPOSITION 2. 
REMARK 2. From Eq. (13), it follows that u p  

dating the fluid dynamic mesh using Eq. (11) is 
equivalent to updating it using 

A t .  
2 Xn++ = U, + --U, 

The second proposition summarizes the main idea 
behind the design of the ISS method, and high- 
lights the major difference between this improved 
serial staggered procedure and the conventional se- 
rial staggered procedure CSS overviewed in Section 
2.1. 

The ISS method advocated in this paper is illus- 
trated in Fig. 4. It is subiteration-free, has a com- 
putational complexity that is similar to that of the 
CSS method, and exhibits superior numerical prop 
erties that are highlighted in Section 6. It can be 
equipped with fluid subcycling as for the case of the 
CSS procedure (see Fig. 2). 

4 An improved parallel partitioned 
solution procedure 

The mathematical analysis performed in [7] for a 
linearized aeroelastic model problem suggests that 
for the CPS procedure, inter-field parallelism is 
achieved at the expense of amplified errors in the 
fluid and structure responses. This is not surprising 

Figure 4: ISS: the improved serial staggered proce- 
dure 

given that the CPS method does not implement any 
feedback between the fluid and the structure within 
one coupled time-step. In order to improve the ac- 
curacy of this basic parallel time-integrator, we pro- 
pose to exchange information between the fluid and 
structure kernels at half-step. We label the corre- 
sponding staggered algorithm the Improved Parallel 
Staggered (IPS) procedure, and depict it graphically 
in Fig. 5. 

Figure 5: IPS: the improved parallel staggered pro- 
cedure 

The computations performed during the first half 
of a cycle of the IPS procedure are identical to 
those that are performed during a cycle of the 
CPS method, except that the fluid system is ad- 
vanced only up to t ,++, while the structure is time- 
integrated all the way to t ,+l .  Let Wn++ and n,+~ 
denote respectively the fluid and state vectors com- 
puted during the first half of an IPS cycle. At tn++, 
the fluid and structure kernels exchange the most 
recently computed pressure, displacement and ve- 
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locity information. In the second half of the same 
IPS cycle, the fluid system is advanced from t,+* to 
t"+l using the structural state vector U,+l, and the 
structural response is simultaneously re-computed 
using the fluid state vector WO+$. Hence, the eval- 
uation of U,,, can be interpreted as a prediction 
step whose objective is to guess the next position 
of the flnid/structure boundary r in order to u p  
date the fluid dynamic mesh using a better informa- 
tion than U,. Note that the IPS procedure can be 
equipped with fluid subcycling as for the case of the 
CSS method (see Fig. 2). 

From the results of the mathematical analysis per- 
formed in [7] for a linearized aeroelastic model prob 
lem, we can expect the IPS method to have a bet- 
ter accuracy than the CPS procedure, at the ex- 
pense of one additional communication step or 110 
transfer during each coupled time-integration cycle, 
and one additional flow solution if no subcycling is 
performed (the additional structure solution is per- 
formed in parallel and therefore does not consume 
additional parallel CPU time) 

5 Flow, structure, load, and mesh 
motion solvers 

The three-dimensional unsteady implicit flow solver 
considered in this paper operates on unstructured 
dynamic tetrahedral meshes. It combines a Roe 
upwinding scheme for the computation of the con- 
vective fluxes with a Galerkin centered approxima- 
tion for the approximation of the viscous terms. 
Second-order accuracy is achieved through the use 
of a piecewise linear interpolation method that fol- 
lows the principle of the Monotonic upwind Scheme 
for Conservative Laws (MUSCL). An ALE formu- 
lation [2,14] is incorporated into this fluid solver to 
allow the grid points to displace in a Lagrangian 
fashion, or be held fixed in an Eulerian manner, or 
be moved in some specified way to give a continuous 
and automatic rezoning capability, depending on the 
needs of the physical problem to be solved. Time- 
integration is carried out by a second-order implicit 
backward difference scheme whose implementation 
satisfies the geometric conservation laws (GCL). 
This three-dimensional unstructured and unsteady 
implicit flow solver is parallelized using domain de- 
composition [14]. 

In all application problems discussed in the next 

section, the structure is represented by a finite ele- 
ment model, and its dynamic behavior is predicted 
using the true displacement, velocity, and accelera- 
tion degrees of freedom (d.0.f.) rather than modal 
or other generalized coordinates. The corresponding 
semi-discrete equations of dynamic equilibrium are 
time-integrated with the implicit second-order mid- 
point rule. 

6 Applications 

In order to illustrate the issues, support the claims, 
and validate the new algorithmspresented in this pa- 
per, we consider the flutter analysis of the AGARD 
Wing 445.6 [15]. This wing is an AGARD standard 
aeroelastic configuration with a 45 degrees quarter- 
chord sweep angle, a panel aspect ratio of 1.65, a 
taper ratio of 0.66, and a NACA 65A004 ahfoil sec- 
tion. The model selected here is the so-called 2.5-ft 
weakened model 3 whose measured modal frequen- 
cies and wind-tunnel flutter test results are reported 
in [15], and for which computational aeroelastic data 
can be found in [8,16]. 

An undamped finite element model of the wing 
with 800 triangular composite shell elements and 
2646 d.0.f. is constructed using the information 
given in [15]. It yields natural mode shapes and 
frequencies that are similar to those derived exper- 
imentally. More specifically, the frequencies associ- 
ated with the first four natural modes of this finite 
element model are respectively 9.83 Hz, 39.54 Hz, 
50.50 Hz, and 96.95 Ha. They differ from the exper- 
imentalonesbyonly2.5%,3.6%,4.5%,and5.9%, 
respectively. These modal results are included here 
only for validation purposes; we remind the reader 
that our flutter analysis is conducted using the true 
finite element representation of the wing and not its 
modal coordinates. 

Two three-dimensional unstructured tetrahedral 
CFD Euler meshes are generated. The first one 18 

coarse as it contains 22014 verticea only; it is this 
mesh that is intended for flutter analysis. The sec- 
ond one is finer: it contains 331233 vertices and 
is intended only for Butter convergence verification. 
Note that our f is t  mesh is coarser than the CFD 
grid with 45180 nodes that was used in [E] and an 
order magnitude coarser than that with 261129 grid 
points that was employed in [16] for similar flutter 
analyses. 

All computations dimmed next are carried out on 
an IBM SP2 parallel computer. A single processor 
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is wigned to the finite element structural model, 3 
processors to the coarse CFD mesh, and 40 proces- 
BOZS to the fine one. 

0.1 Mesh convergence verification 
First, the freestream conditions are set to M, = 
0.901, pm = 1.117 x IO-’, and pm s 10.0. 
The last two values are dimensional values with the 
same units as in [15]. The finite element structural 
model is perturbed along its f ist  bending mode, 
and two steady state solutions are computed around 
the deformed configuration of the wing using both 
the coarse and fine CFD meshes. Next, this per- 
turbation is used as an initial condition, and the 
aeroelastic response of the wing is computed US- 
ing both the coarse and fine CFD meshes, and the 
ISS procedure with a dimensional coupling time- 
step At = and with At/2. In all cases and 
for all subsequent aeroelastic computations, the di- 
mensional global fluid time-step is set to Atp = 
min(5 x At). Hence, the dimensional coupling 
time-step At = leads to a subcycling factor 
ns/p = 2. Note also that this dimensional coupling 
time-step corresponds to sampling the period of the 
first torsional mode of the dry wing in 25 points, as 
usually done for a fully implicit monolithic solution 
algorithm. The obtained dimensional lift histories 
are shown in Fig. 7 These results indicate that for 
the given freestream conditions, the wing does not 
flutter, which is consistent with the experimental re- 
sults detailed in [15]. They also show that the spatial 
resolution of the coarse CFD mesh and the size of the 
dimensional coupling time-step At = IOV3 are ade- 
quate for the aeroelastic analysie in the time domain 
of the AGARD Wing 445.6. In particular, note that 
for the coaree CFD mesh, the curves for At = 
and At = 5 x are undistinguishable. Hence, 
for the sake of efficiency, all subsequent aeroelastic 
computations are performed using the coarse CFD 
mesh, and for ISS, a dimensional coupling time-step 
~t = 10-3. 

6.2 Benchmark of the improved 
staggered algorithms 

Next, the previous freestream conditions are kept 
the same and the aeroelastic response of the wing is 
recomputed using the CSS, CPS, and IPS algorithms 
and various time-steps. 

11 
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Figure 6: Lift histories predicted by ISS using At = 
10-3 

The results reported in Fig. 8 show that for a 
dimensional At = CSS predicts an unstable 
behavior of the wing. However, after reducing the 
dimensional timestep to At = 2 x CSS re- 
produces the same stable response as ISS (curves 
are undistinguishable in Fig. 8). In the absence of 
a formal theoretical analysis of the solution of the 
transient nonlinear aeroelastic semidiscrete problem 
(5) by partitioned procedures, we can conclude that 
either the domain of numerical stability of the CSS 
procedure is more restrictive than that of the ISS 
method, or that the ISS procedure has higher accu- 
racy properties than the CSS method. In any case, 
this example highlights the superior performance of 
the proposed ISS procedure which is shown to be 
capable of reproducing the same result as the CSS 
method using a coupling time-step that is 5 times 
larger than can be afforded by the CSS algorithm. 

Similarly, the lift histories reported in Fig. 9 and 
Fig. 10 show that the coupling time-step has to be 
reduced by a full order magnitude to At = 
before the CPS procedure converges to a stable re- 
sponse, and by a factor of 3 to At = 3.3 x 
before the IPS method also converges to a stable 
behavior and reproduces a response that is undistin- 
guishablefrom that prediced by ISS with At = 
Once again, this demonstrates that inter-field paral- 
lelism compromises numerical stability and/or ac- 
curacy, and that the improved parallel staggered 
procedure IPS proposed in this paper has better 
stability and/or accuracy properties than the con- 
ventional parallel staggered method CPS [U]. For 
At = 3.3 x the IPS procedure performs two 
flow solutions per staggered cycle (recall that Atp = 
min(5 x 10-4,At) -+ nS,p = 1); on the other hand 
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airplane deflection U, can be expressed as a first 
order Taylor series 

ap Prn(u)=Prn(p?/)+-& (2) 
au 

where the superscript “NL.” denotes a nonlinear 
quantity. If nonlinear aerodynamic data is 
available for deflections of the form U = qp for 
various values of q and a specified representative 
deflection shape p, then the first term in the above 
equation can be taken directly from the available 
CFD solntions. Since p, is specified ahead of time, 
only the coefficient q can be chosen 
independently. The value of q is chosen in order 
to make the first term as dominant as passible, and 
to minimize the impact of the residual deflection 
on the pressures of interest. In general the value 
of q will depend on the deflection U of the 
airplane. 

For stability analysis, we are not so interested in 
the absolute values of the pressures, but in their 
derivatives with respect to deflection. These 
derivatives, or Adynamic Iatluence 
Coefficients (AIC’s) are commonly used in 
aercelastic analysis. The fouowing derivation will 
not explicitly point out the unsteady nature of the 
AIC’s, but each quantity is assumed to be 
complex-valued in general, and to depend 
implicitly on reduced frequency k=m/ZV. By 
simply differentiating equation (2) with respect to 
deflection. we can approximate the derivative of 
the nonlinear pressure with respect to deflection 
(in essence. a co& AIC matrix) as 

If the parttal derivative of pressure with respect to 
deflection (aP/au) in the residual term of the above 
equation is approximated by the linear AIC matrix 
A l e  (which has little effect on the solution if the 
residual term is small), then the corrected AIC 
mamx can be written as 

where the definition of &U from Equation (1) has 
been substituted into the last term, the explicit 
dependence of on PI] has been omitted for 
brevity, and the notation of the corrected AIC 
matrix A I P  has been introduced. This can also be 
writtenas 

Therefore, if the nonlinear aemdynamic pressure 
distribution is known for a given p and various 
values of q, and if the (unsteady) derivatives offie 
nonlinear pressure with respect to q are known 
then a corTected AIC matrix can be constructed 
that captures some of the effects of aerodynamic 
nonlinearities. It should be emphasized that this 
technique is not a “correction factor” in the 
traditional sense. Typically, correction factors are 
multiplicitave corrections applied to the l i  AIC 
matrix in order to bring some selected derivative 
values into agreement with nonlinear data. In this 
technique, however, the hear pressures are not 
simply multiplied by a factor, but a component of 
the linear pressure dimibution (the third term of 
equation 5 )  is removed, and it is replaced with a 
nonliiear pnssure distribution (the second term of 
equation 5).  For deflections U which are nearly 
collinear with the shape function p, the pan that is 
replaced is the dominaat pan, and the residual 
tern is Small. 

It should be noted that the derivative aP%q is. in 
general, a function of Mach number, Reynolds 
number, rednced frequency, and the steady-state 
incidence and deformation of the airplane. 
Although the example presented below is based on 
a symmetric wing at zero angle of attack (and 
therefore zero steady-state deflection). the 
procedure can be expanded to compute a corrected 
AIC matrix that depends on the steady-state aim 
and deformation state of the airplane. 

The technique of Equations (2) and (5)  is termed 
an equivalence technique. since the aerodynamic 
nonlinearities are introduced through an 
“equivalent” scalar variable q. The introduction of 
the equivalent variable q makes is possible to 
estimate the nonlinear pressure distribution (and its 
derivatives) due to various values of q, and to 
apply them to correct an entire AIC matrix. This 
is feasible. since the subspace of deflections for 
which nonlinear aerodynamic data is required is 
now onedimensional, rather than the many- 
dimensional space of all possible deflections. 

The’problem now is to choose a value of q such 
that the “equivalence” concept makes sense. The 
choice of values for q can be thought of as a 
(potentially non-orthogonal) projection h m  the 
space of all possible deformation states of the 
airplane to the subspace of the deformations for 
which more accurate aerodynamic data is 



available. If the projection is linear, then it can be 
written in matrix fomas  

In order to illustrate the possible correctjon 
techniques that can be built fium the equivalence 
concept, we shall consider several me.th& of 
choosigtheparametert]. Inthefirstcase,letus 
assume that t] simply represents the angle of anack 
of the airplane, and 6 contains all the aeroelm-c 
deflection. The representative mode vector p then 
is simply a vector repmating a unit angle of 
attack, and the projection operator D in this case is 
simply 

D=[, 0 ... xi ... 0 0](7) 

where the non-zero entry corresponds to the pitch 
degree of freedom of some reference point on the 
airplane (such as the center of gravity). The value 
@ is the magnitude of the pitch rotation of that 
degree of freedom in the mode shape. p. This is 
certainly nothing new, since the method described 
above is essentially identical to the common 
practice ofusing expuimeatal or 0 data for a 
rigid airplane, and appending a linear c o d o n  
for aeroelastic effects. 
This appmach has the advantage of simplicity, but 
has several shortcomings. Perhaps most 
significant is the faa that the equivalent 
deflections depend only upon the position of a 
single reference point, and make no use of 
information about the deformation of the rest of 
the airplane. Another possible technique is to use 
a simple vector projection, such that 

D=- PT 
IPI * 

In this case, the representative deflection of the 
airplane will be that of an equivalent “mean” angle 
of anack of the configuration With this 
formulatioa it might be expected that better results 
could be ob- because the true shape ofthe 
airplane would be in some sense ‘‘balanced” 
around the representative shape. and the largest 
ermr would be d e r  than that obtained with the 
first technique. 

Each of the approaches described above makes use 
only of the vector deiinitions of the deformed 
shapes of the airplane, and therefore has no 
information penaining to the aerodynamic 
interference that may be occurring. A third 

method compuw the equivalent dcflcction based 
on equivalence of some arrodyaamic puaatity such 
aslift. Inthiscase,theprojeaionoperatorDis 
givenby 

D = (H AZCLp)-‘H AICL 
where  AI^. is the hear d y n a m i c  iuthnce 
coefficient mahix, and H is an integration matrix 
converting aerodynamic pltssum into an 
integrated a e w c  d c i e n t .  Ifthe pvaxor 
againnpresentraunitaagleofattadSthe 
equivalent deflstion t] computed using this 
technique is the angle of atlack that assuming 
linearaemdynamics, gives the SBme overall lift 
coe5icient as the deformed shape in question. 

This is perhaps the bst of the techniques 
presented so far. This concept, which is based on 
upvalence of some integrated aemdyaamic 
qnaotity (such as lift) is an improvement over the 
others presented, but it slill has the disadvantege 
that the aerodynamic nonlinearitis are only 
applicable to a global “mean” deformation Since 
the airplane will @ s u a b l y )  encounter other 
deformations, this is a serious shortcoming and 
must be wemme in a succe&d mahod 

One technique for accounting for some of the 
effects of unpredicted deformations is to apply the 
method of equations 2 and 5 to discrete areas or 
“zones” of the airplane, each of which have theii 
own distina values of t]. In this paper, for 
simplicity, the only type of zone that will be 
considered is a streamwise saip of the wing but 
the technique allows for more general definitions. 
If the airplane is discmized into zones. then for a 
given deflection state, each zone has a given value 
of the integrated coefficients of interest, and 
therefore has its own equivalent deflection t]. The 
pressure distribution on that zone can then be 
computed using a variation of that used in 

(9) 

Equations (3-5): 



where the subscript i indicates that the equation 
only applies to compute pressures on zone I, and 
the matrix H, integrates the aerodynamic 
coefficients of zone i (such as the local sectional 
lift coefficient). The overall corrected AIC matrix 
is then formed by taking the appropriate. rows from 
each of the [apc/aul, matrices and assembling 
them into one full AIC matrix This can be written 
in matrix notation as 

where the matrix J, is a diagonal matrix with null 
enhies for aerodynamic elements (boxes) that are 
not in zone I. and unit (1.0) entries for 
aemdynamic boxes tbat are included in zone I. 
Conceptually, this approach is very simple If one 
considers the spedal case o f a  high aspect ratio 
wing where the equivalent deflection is a rigid 
airplane angle of attack and the local equivalence 
zones are wing strips. In general, any deflection of 
the wing atreaS the flow over the entire wing and 
this effect is caphued by the concept of a IoCaUy 
equivalent angle of aaack For example, if the 
wingtip pitches up, a lift wil l  be induced over the 
entire wing At a given span station (strip), the 
nonlinear pressure distribution due to the total 

‘(including induced) lift is assumed to be 
equivalent to that generated by an “equivalent” 
airplane angle of attack, for which the nonlinear 
pressura are known. Any residual effect is 
corrected using linear theory. 

Results: The AGARD 445.6 
Wing 
The process described above has been applied to 
the lmwnic fluner analysis of the AGARD 445.6 
wing. This conliguration is well documented in 
the literature, and has been extensively analyzed 
using many codes, ranging from the simplest linear 
mahods [Zl] to small dimrbance. solutions [2,3] 
to full Navier-Stokes simulations [6,221. In this 
study, the AGARD 445.6 wing is analyzed using a 
linear lifting surface method. a transonic h e -  
marching aeroelastic simuhion method, and a 
linear analysis with corrected aemdynamics. 
While the VBnSonic effects for this confiption 
are not extreme, the results indicate that the local 
equivalence correction factor technique can 
aaurately predict the stability boundaries in the 
presence of a transonic flutter dip. 

The baseline linear flutter analysis was performed 
using the pk-method of flutter solution with linear 
doublet lattice aerodynamics [10,23]. while 
nonlinear aemdynauuc and aeroelastic solutions 
were computed using the transonic small 
dishhum (TSD) equations [1,2,3]. While the 
TSD equation is one of the simplest models of 
h;msonic aemdynamics, it is expected that if the 
corrections cm successfully capture the behavior 
of the TSD solution$ they should also capture the 
transonic effects of Euler or Navier-Stokes 
solutions. 

The AGARD 445.6 wing conliguration was 
actually a series of models tested in the NASA 
LaRC Transonic Dynamics Tunnel WT) in the 
1970’s. and the geometry and mode shapes are 
thoroughly documented in reference [Zl l .  All 
solutions presented here correspond to the so- 
called “Weak3” model. The experimental flutter 
boundaries are also presented in [ZI], and 
correlation between nonlinear aeroelastic solutions 
and the experimental flutter boundaries are 
presented in [3,6,22]. 

Aerodyn-&tic Box Geometry of the 445.6 Wins 

The main focus of this paper is not to correlate 
with the experimental data, but to show correlation 
between an “expensive” nonlinear aeroelastic 
solutions and an “inexpensive” corrected linear 
solutton. Therefore, there is no discussion of the 
experimental flutter results. However, a brief 
discussion of the model geometry and vibration 
characteristics is in order. The 445.6 wing is a 
semispan wing with the planform shown in Figure 
1. The wing has a (full span) aspect ratio of 4.0. 
leading edge sweep of 45 degrees. and a taper ratio 
of 65%. The airfoil section is a Symmetric NACA 
65A004 section. The aemelastic behavior of the 
445.6 wing is a classical bending-torsion flutter. 
and is accurately captured using only the first two 
vibration modes. The fmt bending mode has a 
fquency of 9.6 Hz, and the torsion mode has a 
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frequency of 38.1 Hz. Since the flutter mechanism 
of interest is a classical bendinghorsion 
interaction, the first bending and torsion modes of 
the wing are shown in Figure 2. 

Figure 2: First Bending and First Torsion 
Mode Shapes. View from Inboard Trailing 

Edge 

Choice of Unsteady Motion 

The first step in applying the correction method 
described above is to decide on what type of 
unsteady motion (representative deflection p) for 
which to obtain unsteady aemdynamic data. 
Ideally, the representative deflection should be 
chosen to be as similar to the target flutter 
mechanism as possible in order to improve the 
fidelity of the corrected aerodynamic matrices in 
predicting the flutter mechanism of interest. This 
implies that the value of r ]  on all zones will be 
approximately qual. and that the residual term 6u 
will be small. 

Time History Data 

0 01 005 

ODDS 0.025 7 

0 '  

. 1 
-0035 -0025j 

- 
$ 0  1 z 

0 01 -005 
5 10 15 20 

Chord Lengths TmMUd 

Figure 3: Time History of Pitch Angle and 
Wing Lift and Moment Coefieient 

Unfortunately, it is often impractical to choose a 
representative deflection shape in this manner, 
either because multiple flutter mechanisms are 
targeted, or because the mechanisms are not 
known accurately ahead of time. For reasons of 
simplicity and economy, it is also desirable for the 
corrected aerodynamics to be constructed using 
unsteady aerodynamic solutions due to simple 
rigid body motion of the airplane, rather than 
elastic motion. In this work, the "representative 
deflection" p was chosen to be a rigid body 
pitching motion about the midchord of the wing 
mot. While not the most accurate choice possible. 
the use of rigid body pitching as a representative 
deflection is a good test of the robustness of the 
proposed technique. Since the flutter mechanism 
of interest is primarily first wing bending, greater 
accuracy could probably be obtained if the 
"representative deflection" was selected to mimic 
the first bending mode. 
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Figure 4: Spanwise Lift Distribution Due to 
Pitching Motion. Mach 0.95, k = 0.1. 

Nonlinear unsteady data 

The nonlinear unsteady aerodynamic data for 
generatjng correction factors was generated using 
the pulse transform method 1241 with tlie transonic 
small disturbance aerodynamic method of [ 11. In 
this technique. a forced motion analysis is 
performed. where a single generalized 
displacement is defined as a function of time as 

where a is the pulse amplitude (chosen to be small 
enough that small permrbation assumptions are not 
violated), c is a constant determining the width of 
the pulse (chosen to be small enough that 
significant excitation is obtained in the reduced 
frequency of interest), and r, is the "centef'of the 
pulse. chosen such that the deflection when the 



solution is started is essentially zero, avoiding 
discontiauities and the assoCiated transients in the 
solution. For this analysis, the generalized 
displacement was wing pitch about the root 
midchord, the amplitude was 0.01 radians. The 
resulting time histories of the wing pitch and wing 
lift coefficient is shown in Figure 3. Note that 
since the airfoil is symmetric and the flutter 
solution is at zero angle of attack the initial and 
iinaI lift and moment coefficients are. zero. 
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in Figure 2). The equivalent pitch angle is shown 
for at a redud frenuency of 0.1, which is near the 
flutter fquency. For comparison, Figure 6 also 
shows the geomehic pitch angle (real and 
imaginary paas) as a function of span. Note that 
the equivalent pitch angles include the induced 
effects of the entire wing deformation, so &e 
equivalent pitch angle is a "smeared" version of 
the geometric pitcb angle (i.e. the higher pitcb 
angles at the tip induce upwash at the root, causing 
an induced angle of atlack that is shown in the 

) equivalent pitch). 
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Figure 5: Spanwise Lift Distribution Due to 
Pitching Motion. Mach 0.95, k = 0.1. 

Fmm this time history data, and the associated 
time histories of the surface pressures, the Fourier 
transforms of the input @itch) and the outputs 
(pressures) cin be obtained, and by simple 
frequency-by-frequency division, the pressure 
distribution due to a harmonic pitching oscillation 
at various frequencies can be estimated. A 
comparison between the pulse transform technique 
and a direct harmonic oscillation of the wing was 
performed. and showed very close agreement. The 
spanwise distribution of lift coefficient is shown in 
Figures 4 and 5 at a reduced frequency of 0.1 (near 
the flutter reduced frequency). Figure 4 shows the 
lift distxibution in tenus of real and imaginary 
parts, while Figure 5 shows maguitude and phase. 
By detinitioa the corrected d y n a m i c s  exactly 
match the nonlinear aerodynamics for pitching 
motion. 
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0 0.2 0.4 0.6 0.8 1 
mon 

Figure 6: Equivalent Pitch Distribution for the 
First Wing Bending Modc 

I 
i 

Since the flutter mechanism is primarily wing 
bending, let us consider what happens when the 
wing is vibrated in the first wing bending mode. 
Recall that the wing is divided into zones (Strips). 
and that when the wing is excited in the first 
bending mode, each strip will have its own 
"equivalent" pitch angle determined by the local 
equivalence pmcess described above. In ordes to 
illustrate the concept Figure 6 shows the spanwise 
distribution of "equivalent" pitch angle (real and 
imsginary pad) for the first bending mode (shown 

Flutter Results 
The variation of frequency and damping with 
dynamic pressure as computed in the hear flutter 
solution at mb 0.95 is shown in Figures 8 and 9. 
The hear flutter crossing is fairiy mild, at a 
dynamic pressure of approximately 79 pounds per 
square foot (PSF) .  The corresponding nonlinear 
time-marching flutter solution is shown in Figure 
7, showing the time histories of the first two 
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Figure 8: Frequency vs. Dynamic Pressure Comparison Between Lmear, Full Nonlinear, and 
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Mach 0.95 Flutter Results 
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Mach 

Linear 

Nonlinear 

(CAP-TSD) 

generalized displacements, corresponding to the 
first bending and first torsion modes. This time 
history data is computed at a dynamic pressure of 
54 PSF, which is very close to the n e u d  stability 
point (estimated at 56.2 PSF). Figures 8 and 9 also 
show the estimated variation of frequency and 
damping with dynamic pressure, based on the 
nonlinear aeroelastic time-marclung solution. As 
in the linear case. the nonlinear flutter solution 
shows a coalescence between the bending and 
torsion frequencies, and a fairly mild fluaer 
crossing. However, the flutter dynamic pressure 
and frequencies are much lower than those 
predicted by the linear analysis. 

Finally, Figures 8 and 9 also show the variation of 
frequency and damping with dynamic pressure for 
the flutter analysis using corrected linear flutter 
analysis. The solution method is identical to that 
used to generate the linear solutions, but the 
aerodynamic influence coefficient (AIC) matrices 
have been corrected to match the nonlinear 
unsteady aerodynamic data due to pitching motion 
about the root midchord. Once again, the flutter 
crossing is fairly mi14 but the dynamic pressure at 
instability is very close to the nonlinear stability 
boundary, at about 60 psf. 

These figures indicate that the local equivalence 
correction technique can indeed be used to 
accurately estimate aeroelastic stabiity in the 
presence of transonic aerodynamics. The obvious 
question is: Can other, simpler correction methods 
do the same (or better) job? While a rigorous 
survey of all correction techniques that have been 
proposed over the years is beyond the scope of a 
single paper. one common technique was tested. 
In the transport aircraft indumy, it is common to 
generate a real valued, diagonal pre-multiplier 
correction factor matrix Wand apply it to the AIC 
matrix at each reduced frequency such that the 
corrected AIC matrix is given by 

AIC‘ = w A Z C ~  (12) 
The values of the correction factors Ware typically 
chosen such that some commonly measured 
quantities. such as the spanwise Lift and moment 
distributions due to a unit angle of attack, are 
matched exactly at zero frequency. This technique 
was applied to the flutter analysis of the AGARD 
445.6 wing at Mach 0.95, and the flutter results are 
compared to the linear and nonlinear solutions in 
Figures I1 and 12. In the steady aerodynamic 
solutions. the lift distribution predicted by linear 
theory was fairly accurate, but the aerodynamic 
center location was significantly forward of that 

0.90 0.95 

93.8 PSF 79.0 PSF 

16.4 Hz 15.0 Hz 
86.5 PSF 56.2 PSF 

15.5 Hz 12.9 Hz 

predicted by the nonlinear code. This results in a 
diagonal correction factor matrix that significantly 
amplises the pnsslnes on the aft partion of the 
wing, while depressing the leading edge-gressure 
spike. This effect can clearly be seen in the 
behavior of the torsional mode frequency with 
increasing dynamic pressure, since the more&i 
aerodynamic center reduces the ‘‘Softening” effect 
of the aerodynamics. 

Overall, the real diagonal method repmduces the 
frequency variation with dynamic pressure fairly 
well. However, since the real Correction factors do 
not correct the phase of the llllsteady aerodynamic 
forces, this technique fails to a-tely predict the 
stability boundary, in fact showing sigdlcantly 
more error than uncorrected linear theory. 

83.6 PSF 59.8 PSF 

14.4 Hz 13.0Hz Equivalence 
Correction 

sectional Lift 102.5 PSF 
& Moment 
Correction 17.0 Hz 

Table 1: Summary of Liaear, Nonlinear, and 
Correfted Flutter Results. Dynamic Preswre 

in PSF, followed by frequency in Hz 

Since the AGARD 445.6 wing has a moderate 
aspect ratio, and since the flutter mechanism is  a 
pure interaction between bending and torsion 
flutter. it is somewhat surprising that this 
technique gives such poor results. It is conjectured 
that this is due to the failure of a real weighting 
factor to correct the phase of the uosteady fonxs, 
and improved results might be obtained with 
complex, frequency-dependent weighting factors 
for this configuration. 

A similar set of l i ,  nonlinear, and corrected 
linear analyses using the local equivalence 
approach were performed at Mach 0.90, with 
comparable results. The aerodynamic corrections 
did not change the chatacter of the flutter 
mecbanism, but the dynamic pressure at the 
instability was significantly r e d u d  due to the 



nonliaear acrodynarm ’a. The ilutternsultsare 

f 

’ 1 inTable 1, and inFigures 12 and 13. 
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Figure 12: Summary of Linmr, Nonlinear, and 
Correeted Linear FlutterBoundaries. 
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Figure 13 Linear, Nonlinear, and Corrected 
Linear Flutter Frequencies. 

Conclusions 
A new technique bas been presented that allows 
linear unsfeady aerodynamic matrices to be 
corrected to improve agreement with nonlinear 
unsteady aerodynamic data. which can come from 
Cm, wdes .or wind tunnel W. The new 
technique is distinct &om previous correction 
factor techniques in that the correction is not in the 
form of a multiplicative weighting factor, but is 
formed by directly replacing part of the linear 
aenxlynamic pressures with data from a nonlinear 
analysis. Any residual is accounted for with linear 
themy. Ibe correaions are applied to disaae 
zones on the ainmff such that for each zone. the 
nonlinear pressure distribution is based on that 
zone’s “equivalent deflection.” Since the 
corrections are computed and applied on a zone- 
by-zone basis. the technique is called local 
equivalence. Since the local equivalence 

conectiontechniquedirectlynplacesacomponent 
of the linear pressure distribuiion with nonlinear 
values. there is no requirement for arbitrary 
weighting functions or least squares solutim. 
Since the technique comcts pre9nue$ rather than 
spanwise Wmoment d c i e n t s .  the technique is 
more applicable to low aspect mtio configuratirms 
thanprevious method$ and wouldbeexpectcdto 
give beuer performance for non-beadingltorson 
fluaer mechanisms. 

The nsulting corrected linear acrodynamia were 
applied to a dynamically linear stability analysis of 
the AGARD 445.6 wing, and gwd agnemart was 
shown between a direct nonlinear stabiity 
calculation and the corrected linear solution 
S e v d  other flutter anal- were performed 
using linear aerodynamics with simple correction 
factors applied to c o r n  the spanwisc lift and 
moment distribution, and it was shown that the 
local equivale.nce correctioas give s@liticantly 
better correlation with the direct nonlinear 
solution. 
While the emphasis of the current papa is 
unsteady applications. the local equivalence 
correction technique presented is also applicable to 
steady nonlinear aaoelastic analysis (i.e. loads). 
and provides a simple and elegant method for 
including the effects of nonlinear aerodyaamics 
into production-level aemlastic analysis and 
aemlastic OptimiPUion 
Further validation of the local equivalence 
conection technique for steady and unst- 
aerodelastic analysis including applications to 
complex, low aspea mtio configurations using 
Euler and Navier-Stokes aerodynarmcs is ongoing. 

Acknowledgements 
The author wishes to express his thanks to Joe 
Giesing of the Boeing Company for many helprul 
discussions and insights, and to John Edwards of 
the NASA Langley Research Center for providing 
the CAP-TSD model of the AGARD 445.6 wing. 

References 
1. I. T. Bath& “Efficient Algorithm for Solution 
of the Unsteady Tmosonic Small-Distuhm 
Equation,” J. Aircraft 25, 7, July, 1988. pp. 598- 
605. 

2. H. J. Cunningham, J. T. Batina, and R M. 
Bennett. ‘‘Modern Wing flutter h d Y s i S  by 



8-12 

Computational Fluid Dynamics Methods,” J. 
Aircraft 25.10, October. 1988, pp. 962-968. 

3. J .  W. Edwards R M. Bennett, W. Whitlow, 
Jr., and D. A. Seidel, "Time-Marching Transonic 
Flutter %lUtiOnS Including Angle-of-Attack 
Meets," J .  Aimaft, 20, 11, November 1983, pp. 
899-905. 

4. B. K. Bhamdvaj, “Computation of Steady and 
Unsteady Control Surface Loads in Transonic 
Flow,” AIAA Paper 90-0935, April 1990. 

5. J. T. Batina, “Unsieady Euler Algorithm with 
Unstructured Dynamic Mesh for Complex Airaaft 
Aeroelastic Analysis,” AIAA Paper 89-1189-CP, 
1989. 

6. E. M. Lee-Rawh and J. T. Batina, “Wing 
Flutter Computations Using an Aemdynamic 
Model Based on the Navier-Stokes Equations,” J .  
Aimaft, 33, 6, November-December 19%. pp. 

7. P. M Hartwich and S. Agrawal, “Method for 
Perhubing Multiblock Patched Grids in 
Aemlastic And Design optimization 
Applicatioo$””AIAA Paper 97-2038-CP, 
JundJuly 1997. 
8. G. P. G~ruswamy and C. Byun, “Fluid- 
Structural Interactions Using Navier-Stokes Flow 
Equations Coupled with Shell Finite Element 
Structures,” 24* AIAA Fluid Dynamics 
Conference, Orlando, FL, 1993. 
9. J. P. Giesing, T. P. Kalman, and W. P. 
Rodden “Subsonic Unsteady Aerodynamics for 
Geneml Configurations, part I - Vol. I - Direct 
Application of the Nonplanar Doublet Lattice 
Method“ AFFDL-TR-71-5, November 1971. 
10. E. Albano and W. P. Rodden, “A Doublet 
Lattice Method for Calculating Lift Didbutions 
on Oscillating Surfaces in Subsonic Flows,” AlAA 

En;ua published in 7, 11, November, 1969, pp. 
2192. 
11. E. H. Dowell, “Eigenmode Analysis in 
Unsteady Aerodynamics: Reduced Order 
Models,” 36* AIAA/ASME/ASCE/AHS/ ASC 

Conference, New Orleans, LA, 1995. 

1139-1147. 

JoUmaL 7, 2, Febl~ary 1969. pp. 279-285. Also, 

structures. struaural Dynamics, and Materials 

12. K. C. Hall, “ E i g e d y s i s  of Unsteady Flows 
About Airfoils, cascades, adn Wings,” AIAA 
Journal, 32, 12, December 1994, pp. 2426-2432. 

13. M. C. Romanowski and E. H. Dowell, “Using 
Eigenmcdes to Form an Efficient Euler Based 

UnsteablAerodynsmUs ’ Analysis,’”Aemelaty 
and Fluid Shucture Interaction Problems. Vol. 
AD-44, ASME. 1994. 
14. M. C. Romanomki and E. H. Dowell, 

Eigenmode Based Reduced Order Unneady 
Aemdynamia,” AIAA Paper #95-13.808,19h. 

15. W. A. Silva, ‘Extension of a Nonlinear 

“Aeroelaptic Aaalysis of an Airfoil using 

Systems Theory to GC~~ml-Frequenc~ Transonic 

AIAAIASMEIASCWAHSIASC s-, 
Structural Dynamics, and Materials Conference, 
La Jolla, CA, 1993. 
16. W. A. Silva, “Application of Nonlinear 
Systems Theory to Transonic Aerodynamic 
Respoases,” J .  Aira;lft 30.5, September-October, 
1993, pp. 660-668. 
17. M. L. Baker, D. L. Mingori, and P. J. Goggin 
“Approximate Subspace Iteration for Constructiog 
Reduced order Models of Unsteady Aerodynamic 
Systems,” 3? AIAAIASWASWAHStASC 

Conhence, Salt Lake City, Utah, April 1996. 
18. M L. Baker, “Model Reduction of Large, 
Sparse Dynamic Systems with Application to 
Unsteady ,Aerodynamic$” F%D. Dissertation, 
University of California, LAX Angeles, 19%. 
19. J. P. Giesing, et, al., “Modifications to the 
WBM-6 Nuclear Blast Response Computer 

1, August 1983. 
20. J.  P. Giesing, T. P. Kalman, and W. P. 
Rodden, “Correction Factor Techniques for 
Improving Aerodynamic Rediction Methods,” 

21. E. C. Yam, Jr.,AGARD StandardAeroelartic 
Configurations for Qvnamic Response I - Wing 
445.6, AGARD Repoit No. 76s. 1988. 
22. E. M. Lee-Rausch and J. ‘T. Batina, “Wing 
Flum Boundary Prediction Using Unsteady Euler 
Aerodynamic MethW J .  Airmft, 32, 2, March- 
April 1995, pp. 416-422. 
23. W. P. Rodden and E. H. Johnson, 
MSOiYAASTRAN Aeroelastic A ~ l y s i ~  User S 
Guide, Version 68. The MacNeal-Schwendler 

24. S. R Bland and J .  W. Edward$ “Airfoil 
Shape and Thickness EfFects on Transonic 
Airloads and Fl~tk~.” J .  Aircraft 21, 3, p ~ .  209- 
217, 1984. 

Aerodynamic Respo=,” 34* 

stluaures, smchnal Dynamics, and Materials 

pmgran5” USAF Report AFWL-TR-81-166, part 

NASA CR-144967, May 1976. 

Corporation, 1994. 



9-1 

MVESTKATION OF BUFFET WAD ALLEVIATION ON A SCALED F-15 TWIN TAIL MODEL 

L. J. Hntlsell 
J. A. T i l e  

Wrigbt-Pallerson AFB OH45433 USA 

and 

R M. Weya 
Aaonauticsl System cents 

AlIFmCe ResearchLabaatory 

wrigbt-Pallemon AFB OH 45433 USA 

SUMMARY 

One ofthe common problems on twin tail fighters opastios at 
bigh angles of atlack is buffet. llu Air F a  Research 
Laboratoy uns(eady Aeodynamics Inlegrmcd Product Team 
(ET) perfmed an expesimd buffet mvcstigation on a 
d e d  F-15 model. The modcl wns ttsted m the Subsonic 
ABodynamic Resemb Labaatory (SARL) located at Wrighl- 

the bufkl e l m a c t a m  ’ ‘cs and investigated tuugmtial blowing 
ss a meaap ofbuffet supprrssioa Phase ll will mvesti@e the 
we of pieoelectric actuators cm tbe flexible tail to suppnss 
the snuchwl response due to buffet. A n u m a i d  simulation 
of tbe rigid model wapperfmcd fora Machnumba of 02, 
24 degrees angle of ansk, and 4 depxs of slideshp using an 
uwbwhnrd CFD (Computational Fluid Dynamics) cods. A 
d computation wm pafamed to evaluate engine mass 
flow effects. This paper will present the results of the bullet 
tests the computational effm and a comparison ofthe 
computational and test results. 

Patlagon AFB, Ohio. phas I of this p r o g r a m  characlaized 

m O F S Y M B O I S  

AOA AngleofAttack 
M &testmm Mach numb 
PSD Powerspe€.tralDEnsity 
psf p o ~ p a s q u s r e f o o t  
Q dynamicpressure 
a angle of attack 

1. MTRoDuclloN 

the subject of a study conducted by an AGARD Working 
Gaoup (5). I.-==(6)summsnzed ’ thisstudyanddocumented 
the comprehensive stateof-tbfut review of buffet techniques 
andpdictionmethodsbytheWotkingGroup. Another . 
assessment of dynamic loads due to flow separation is 
qd by -Y (7). 

The vortical flow pattw on the FIA-18 aimaf? at b@ angle 
ofsnack is shown inFigure 1. The b m  v o d a  IravelsSn end 

cllmnt fighters a r c q u i d  to maneuver at In@ angles of 
ansck and rn expenmclng rrhuchwl problems due to buffet 

Thc abllay to a c c d y  @cl the botfet on a verhcal tail 18 
a c u l t  due to the wmplenty of tbe rntaaction baween the 
amxall geometry, flow field, vortex tqccEtory end empenage 
sbwturc In tbe past, the dynarmc buffet loads have been 

on afl wmponmls of the empenage, in par(icular vaocal lads 

Ihe buffet or d y n a m i c  aoitation associated with 

withprcQminsnt ~iessssociatedwiththeairf low 
prcpdes of the E&& (i.e., vmtex flow fium dets and sharp 

sparsted flow is mrmally broad-bsnd random flwtuntions 

urmw, wakes bdindpoas or other components of the 
E&&). The Meting, or shuctnral response to Met, can 
rrsultmkgeoscillatory respoas*l at resonant frosuencies of 
the E&&. A gwdreview of tbe general princiiles of the 
buffet problem is given by Jones (4). ’Ihe dats of buffeting 
andotbertrsnsonicpbmmnaaonmimeuvering aircrafl were 

J *  = 
Ftgure 1 Vorbcal Flow on FIA-18 at High Angle of Attack 

u p w d  impqes on the verhcal tad and causes veq iugb 
dynamic loads. A full-scale F/A-18 airuafl was b l e d  m the 
National Full Scale Aercdynamic Complex 80 by 120 Fwt 
wind hmnel at NASA Ames. Buffeting pressllres and the 
resulting Structnral response of the v d c a l  tails were obtained 
ova  a range of @e of attack and sideslip conditions (8 and 
9). Ihe tests were conducted with and withoni the Leading- 
JUge-Exbsion (LEX) fences ( i  to rduce the buffet 
load). NASA Langley has also conducted buffet tests on a 16 
pucent scale F-IS model. lime diffaent suppression 

piezoelectric aclualors) w m  evaluated. A comparison of the 
pressure rneammnents b m  the 1/6 scale tests and the full- 
scale tests is presented in r e fmce  IO. Buffet tests on FIA-18 
models have also been d o m e d  by o h  such as Lg and 
Tang ( I  I). Unda a Phase ll SBlR (small Business hovative 
Rmearch) contracf Active Control experts (ACX) is 
developing an active buffet suppression system for an FIA-I 8 
(12). The sllppression system wesdistriiutedpiezoelectric 
actuators and willbe demonsmtd by ground tests on a full 
scale vertical tail. 

Mncepts (existinp ndda, oscillating cylinder, and 

Paper presenred at an AGARD SMP Meeting on “Numerical Urnready Aerodyruunic Md Aeroehtic Simulation”, 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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In 1981, buffeting pressure measurements were made on the 
vertical tail surfaces of a I 3  pacent F-IS model (I) .  The test 
variables inclnded dynamic p m ,  angle of attack, vertical 
tail incidence, and rudder deflection. The pressures and 
sssociated vibration response levels reached a maximum at 
qmmimately 22 QBrees angle of nUack. The flow field 
characteristics in the vicinity of the vertical tail were 
investigated and am shown in Figure 2. otha flow field 

Figure 2. F-IS Vertical Tail Flowfield Charact&lks 

meQSllwlents on an F-IS model at high angles of attack have 
been performed by &math  et al ( 13). An on-going SBIR 
contract with Rohini hternatid and Georgia Tech is 
investigating the use of stacked piezoelectric actuators for 
buffet alleviation. Several shuctural fixes have been made to 
the F-IS aircraft to extend the fatigne life of the vertical tails. 
The most recent modification is the addition of a composite 
"exoskin" doubler (14). 

Witbin the Air Force Research Laboratory, an Integrated 
Roduct Teem (ET) was formed for cwrdinating and 
iniegmtingunstesdyaemdynamicreseanh. TheIFTisa 
multidisciplinary team with membas from the 
Aemmeckmics, Flight Controls, and Sln~~tums Divisions. 
OM of the on-going projects is buffet suppression. ?his paper 
will present the results of the buffet tests on a scaled F-IS 
model and the CFD computations. 

The wind lunncl testing was conducted in the SubsoNc 
Adynamic Research Laboratory (SARL) locatcd at Wright- 
pattsson Air Force Base, Ohio (USA). Tbc SARL facility is a 
modem high coneaction ratio open circuit wind tunnel with a 
maximumMschnumbuofapproximriWlyO.SS. Thetest 
section is IO feet high by 7 feet w i d e d  IS feet in length with 
2 foot flats on the comers to give th crass xxtion an 
octangulsr shape. A honeycnmb section sanhvicbed knucsn 
two scts of sflgn snangrmcnts dsmpcn a d  condition the 
inlet flow to pmvide low hhdence in the test section. Fifty- 

six percent of the test section walls am comprised of optical 
quality Plexiglas to allow any model view angle, and laser 
light sheet visualizstion techniques. 

The SARL data system consist of a Micra VAX Ul 
programmable computer connected to a soflware conhlled, 
120 channel, 40 mV to 10 V, double ended multiplexer and a 
13 bit 100,ooO samples per second, auto ranging d o g  to 
digital convater. Balance chsneels, discrete pressure 
transducR3, S h b  gag- and dRUU&R Were fed 
h u g b  Dynamic brand amplifewbridge conditionas. 
Additionally for this test a Metrum dynamic data mnda was 
used to record the vertical tail surface pressure, bending and 
torsion seain gages, and tip pod accelemmetas. 

For these tests the tunnel was opgated at Mach 0.2. An 
existing 4.7% scale model of an F-1SC aircraft was modified 
for these tests. Figure 3 shows a photo of the sting mounted 
model in the S A R L  wind lunnel. The model was a srandard 

I 
Figure3. F-ISModelinSARLWindTunnel 

aerodynamic model, essendaly rigid at these low speeds and 
dynamic pressures. The model was modified by replacing the 
rigid vertical tail on the left haud side with a scaled Oexiile tail 
that emulated the fM s e v d  vibration modes of the full size 
tail. The tail was coIlstructed using a single aluminum spa 
witha thin aluminnm web to form the pmfde of the tail. 
grain balsa wood was used to form the airfoil shspe. The 
flexiile tail was esuippea withbending and torsion strain 
gauge bridges located at the mot to measure bending and 
torsion moments, both static and dynamic. Accelemmetas 

pressure esnsducas were mounted on each side of the rigid 
and flexile tails to measure static and oscillatory pressures. 
The locations of these transducer8 ( F i i  4) were the same on 
both sides so that apressure dif€aence ~cmss the tail could be 
obtained. 

The model was hntha moditied to allow for blowing 

bump, and the wing mot leading edge). Figure S show a 
sketch of these blowing locations. The six blowing locations 
(two laterally symmehic blowing slots at esch location) w a  
all achieved by designing and fabricating new model segment8 
that ~pIaced the existing solid segments. AU six blowing 
locations feetuRd a tangential blowing slot that was ,010 inch 
wide by 0.75 inch long and was fed by a plenum built into the 
model. &fore them entry esch of the six blowing slots-: 

flow) using U pmision orifice plate flow m e .  At the wind 

End 

were placed in the f o w d  snd afl BlpBs of the tip pod. six 

introduced tangentially at three locstions (the nose, the p 

cnliited for mass flow v- plenlnn pressure (for choked 
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TRANSONIC AEROELASTIC SIMULATION OF A KEXIBLE WING SECTION 

Silvio Schulze 

Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (DLR) 
Institute of Aeroelasticity 

Bunsenstr. 10 
37073 Gottingen, Germany 

ABSTRACT 
Flutter characteristics and results of aeroelastic time response 
analyses of NACA64010 airfoils oscillating in transonic flow 
are presented. These solutions were obtained by a newly devel- 
oped two-dimensional aeroelastic simulation code which is de- 
signed in such a manner that the flow and the structure can be 
modelled independently by using the so-called domain decom- 
position approach. The coupled field problem is then effective- 
ly solved in the time domain by applying a partitioned solution 
procedure in which the fluid and the structural solvers are exe- 
cuted in an alternating fashion and exchange interface data only 
at certain time steps. 

In this study the prediction of the flow field around airfoils in ar- 
bitrary motion is based on the solution of the unsteady Euler 
equations. The structure might either be modelled as a rigid 
body system or as a more realistic flexible configuration. In this 
context, the finite element method is used to model e l s t ic  ef- 
fects in the chordwise direction of a typical wing section, thus 
accounting for more general motions of the airfoil including the 
fluid Structure interaction boundary. 

The underlying theory is briefly outlined and results are present- 
ed for several aeroelastic test cases of varying complexity in the 
structural model. Both cases with and without control surface 
are dealt with and the effect of flexibility on the transonic ae- 
roelastic stability behavior is investigated. 

1 INTRODUCTION 
Although the field of aeroelasticity is well established, modern 
developments. e.g., the maturing adaptive structures technolo- 
gy combined with modern control system theory, continuously 
pose new problems to the aeroelastician. The general problem 
of meeting future air transpoR requirements challenges re- 
searchers, particularly when new concepts such as the new 
class of super transport aircraft are pursued. Among other prob- 
lems introduced by the use of smart materials, control systems. 
etc.. the increasing size and, hence, the structural flexibility of 
such aircraft result in a variety of severe static as well as dynam- 
ic aeroelastic and fight mechanic problems, particularly in the 
transonic flight regime, which is generally of primary concern. 

The physical domain of aeroelasticity in the transonic region is 
richly varied due to nonlinear aerodynamics. Apart from flow 
separation, the physical manifestation of nonlinear aerodynam- 
ics lies in the development of strong pressure discontinuities, 
generally referred to as shocks. Indeed, the formation of shocks 
may be regarded as the definition of transonic (mixed subsonic 
supersonic) flow. 

Some important aeroelastic problems caused by nonlinear aero- 
dynamicsare listed here: - transonic dip (i.e., a significant decrease in flutter speed 

- limit cycleoscillatioos (LCO) (i.e.. flutter with finite 

when the Mach number approaches unity) 

amplitudes due tothe dynamics of shock waves, sometimes 
with flow separation) 

- aileron buzz (i.e.. transonic control surface flutter where 
shock wave motions and flow separation in the vicinity of 
the control surface play an important role) 

In general. one can say that undesired, yet not well understood 
aeroelastic phenomena impose constraints on advanced aircraft 
designs. New phenomena cannot be anticipated by simply ex- 
trapolating current experience, particularly when nonlinearities 
are present. In order to expand the design frontiers for high per- 
formance aircraft new methods must be developed and applied. 
This is of paramount importance since the usefulness of classi- 
cal flutter and divergence prediction methods based on Fourier- 
type solution procedures in the frequency domain is limited in 
the transonic Right regime. This is because the aerodynamic 
nonlinearities mentioned earlier cannot be adequately repre- 
sented by these methods and the airloads have to be calculated 
in the timedomain. 

In the past decade much progress has been made in the develop- 
ment of computational methods for the calculation of unsteady 
aerodynamics around airfoils, wings, and complete aircraft con- 
figurations in the time domain, typically referred to as Compu- 
tational Fluid Dynamics (CFD). The favored formulation of- 
fluid dynamic equations is generally Eulerian and finite differ- 
ence methods have proven to be a powerful tool for their soh- 
tion. On the other hand, in the field of Structural and solid 
mechanics finite element methods using the Lagrangian formu- 
lation have taken over other alternatives. including finite differ- 
ence methods, and are firmly established and widely used in 
practice today. It is unlikely that finite difference methods will 
experience a revival in solid mechanics, nor can it be expected 
that finite element methods will replace finite differences in flu- 
id mechanics in the near future. Hence, in order to take full ad- 
vantage of developments in the single domains, the coupling of 
fluid and structural solvers is widely practiced for the treatment 
of fluid structure interaction problems. As for the solution, par- 
titioned analysis procedures provide an efficient and modular 
way to deal with such problems. Thus, in conjunction with re- 
cent advances in supercomputers, aeroelastic time domain cal- 
culations for the prediction of highly nonlinear aeroelastic 
phenomena have become feasible. 

In order to do justice to the nonlinear aspects of transonic flow 
and the increased flexibility of future aircraft structures, a two- 
dimensional aeroelastic simulation code called SNAP2d (Simu- 
lation of Nonlinear Aeroelastic Phenomena) has been devel- 
oped. It is designed in such a manner that the flow and the 
structure can be modelled separately by using the domain de- 
composition approach. Regarding the presented results. the pre- 
diction of the flow field around airfoils in arbitrary motion is 
based on the solution of the unsteady Euler equations. The 
StNCture might either be modelled as a rigid-body system or as 
a more realistic flexible configuration using the finite element 
method. 

The purpose of this study is to present some preliminary results 
showing the effect of flexibility on transonic flutter and limit cy- 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic ond Aeroelastic Simulation", 
held in Aalbarg, Denmark, 14-15 October 1997, and published in R-822. 

- 



10-2 

cle behavior. The first part gives an overview of the underlying 
theory while the second part is devoted to the presentation of 
the obtained results and their discussion. 

2 AEROELASTIC MOD= ANTI METHOD OF SOLUTION 
It is well-known that io order to study the motion of a continu- 
ous body essentially two approaches exist. namely the 
Lagrangian and the Eulerian description. In the Lagrangian de- 
scription one observes the motion of all material particles of a 
continuum from the initial to the end condition. This formula- 
tion is particularly suited for structural dynamics because in 
this field small particle motions are generally of primary con- 
cern. In the Eulerian description one observes the material flux 
aid, hence, the time variation of physical variables at a fixed 
geometrical point in space. This formulation is generally pre- 
ferred in fluid dynamics where large particle motions are 
present and it usually suffices to know the change in flow vari- 
ables at certain points in space. However, for many free-surface 
flows and problems of fluid structure interaction. a more versa- 
tile description of the fluid domain is needed. Accordingly, the 
demand to apply boundary conditions on moving surfaces and 
the desire to effectively control solution accuracy led to the 
idea of moving and adaptive meshes, respectively. These gener- 
alized descriptions, generally referred to as mixed or arbitrary 
Lagrangian-Eulerian formulations (ALE), were originally de- 
veloped by Noh [3O] and Hirt, Amsden and Cook [Z], [23] in fi- 
nite difference formau while Belyuchko et al. 171 and Donea et 
al. [ZO] contributed to the development of the theoretical frame- 
work for mixed Lagrangian-Eulerian finite element formula- 
tions for compressible inviscid flows. An ALE finite element 
method for incompressible viscous flows had first been repon- 
ed by Hughes [25]. Fairly recently, Bendiksen [9]  introduced 
the arbitrary Lagrangian-Eulerian formulation to aeroelastic 
stability and response analysis and demonstrated the capabili- 
ties of the method in simulating transonic aeroelastic phenome- 
na with emphasis on the nonlinear effects in a sequel of papers 
[IO], [ I l l .  [I?.]. 
From the above, one can draw the conclusion that the arbitrary 
Lagrangian-Eulerian formulation is the most promising solu- 
tion for treating future aeroelastic problems. Indeed. certain 
problems have been successfully solved with this method but it 
also has specific shortcomings. First. due to the inevitably dis- 
tinct physical nature of the two media, fluid and structure, both 
domains in general have different natural time constants in the 
sense of their response characteristics. thus. accurate solutions 
by a monolithic time integration scheme can only be obtained 
by the use of very small time steps. Second, establishing a reli- 
able computer program would be at least as much work as was 
necessary to develop the single domain codes and would run 
three risks: uncontrollable complexity. rigidity in formulation 
(and thus the inability to accommodate technology advances), 
and lack of flexibility to deal with new problems. Finally, insuf- 
ficient experience is a disadvantage which should not be under- 
estimated. 

As a consequence, and keeping in mind the fact that the bulk of 
existing engineering software has been developed for the treat- 
ment of single-field problems. it appears that the coupling of 
available and reliable single-field solvers is the most practica- 
ble and efficient alternative. In so doing, different field solvers 
including its pre- and post-processing software can be used as 
,.plug in" modules, thus offering the analyst flexibility to deal 
with the specific problem at hand. Also, maintaining simplicity 
in the single-field solver facilitates the adoption of new prob- 
lem formulations. Rather than establishing large-scale comput- 

er programs that do  everything - and probably not too well - 
already existing software should be utilized to deal with multi- 
disciplinary problems. This approach is favored by the majority 
of researchers in the field of aemlasticity, as is here as well. 

2.1 AerodynnmieModel 
Since aemlasticity is concerned with interactions between the 
elastic deformations of slructures in ao a inmam and the result- 
ing aerodynamic reactions, the accurate evaluation of the non- 
conservative forces acting on the structure is of vital 
importance. As long as flow separation does not occur, the Eul- 
er equations are a nasonable aerodynamic model for transonic 
flutter calculations. The development and motion of shock 
waves in particular can be adequately described. 

2.1. I Governing Equations 
The two-dimensional conservation form of the Euler equations, 
derived from the fundamental physical principles: - conservation of mass, 

* Conservation of momentum. and - conservation of energy 

in an inviscid compressible fluid and applied to a finite control 
volume V with the surface S fixed in space in Cartesian coordi.. 
nates ( x .  L). can be written in integral form as follows 

Q =  

with Q. the vector of independent solution variables. and I' 
and H. the two flux vectors in the x and z direction. respectivs- 
ly. The variables pF,, p. U, w are the fluid density, pressure, Car- 
tesian velocity components and E, H are the specific total 
energy and enthalpy. Under the condition of an ideal gas the 
pressure p can be eliminated from Eq. ( I  ) using the relations 

a2 1 E = -  + - (U2 + w2)  
K ( K - 1 )  ?. (3) 

(4) 

where a is the local speed of sound and K = c,,/c,, the ratio 'of 
specific heats. 

In view of a numerical solution of the Euler equations by means 
of finite difference methods the partial differential form of 
equation ( I  ) 

is preferred and can be directly obtained by applying the funda- 
mental physical principles to an infinitesimal fluid element or 
indirectly by manipulating the integral form. 

Equation ( 5 )  was derived in Cartesian coordinates and for a 
control volume fixed in space. For the aeroelastic problems to 
be solved here, however, a transformation to a boundary-fitted 
moving coordinate system ( 5 . 6 )  which allows for general ,de- 
formations of the control volume is needed. 



103 

a) C-mesh around profile including far-field 

Spatial discretization around profile Fig. 1 

On condition that the relation 

1 = r  r = z  

between the Cartesian and boundary-fitted cwrdinate systems 
are known at any time f , the Euler equations (5) are now given 
in the new cwrdinate system still in conservative form by 

Q 

The subscripts in equation (8) denote derivatives of the consid- 
ered wordinate with respect to its subscript, e.g. h = &E,/&, 
the so-called metric terms, while 

is the Jne~bian a functional determinanf of the transformation. 
2.1.2 Mesh Generation 
In order to make the application of kinematic boundary condi- 
tions easier, the Euler equations have been transformed to con- 
tour adaptive coordinates. In the present shldp, as is depicted in 
Fig. 1,aC-meshisusedwhae 6 = const-Linesmaptheinner 
and outer boundary. Thereby, the intluence of the gap between 
the wing and the control surface on the fluid flow is assumed to 
be negligible, thus not included in the spatial dcscrebzah ' 'onof 
the fluid domain. The mesh consists of 149 points in the 5 and 

b) Crnesh near profile including coordinate deflnltion 

21 in the direction with 105 mesh points coinciding with the 
airfoil's surface Since stronger gradients in the flow were w- 
petted in the vicinity of the control surface binge, the mesh 
lines wme conwted in this region The necessary mesh defa- 
mations are computed by the elliptic mesh genedon method 
de.scrlbed in [IA. This pmecdure is based on a set of Poisson 
equations, so that the m b  generation itself becomes a bound- 
ary value problem. Although this is computationally more ex- 
pensive than algebraic methods, it appcsrs superior with 
respect to the smootbnw of the mesh and the capability of 
treating complicated boundary conditions. During the computa- 
tion the meah is smoothly deformd from ZCIO at the outer 
boundary (fa-field boundary) to the v a l w  prescribed by the 
motinn of the profile's surf&% (fluid sl~cture boundary). Or- 
thogonality constraints are imposed at the inner boundary to re- 
duce the computational effort in detamining the pressure 

2.1.3 Bowuhy Condirions 
The governing equations above are valid for inviscid fluid flow 
in general. They are the same apt ions  whether the flow is 
through a d ,  a wind tunnel, a around airfoil. The dif- 
fennce enters through the boundary conditions. Since the fluid 
flow is v u y  w i t i n  to changes in the boundary conditions and 
the exchange of information between the structure and the fluid 
only taka place via the fluid struclure boundary, it is of utmost 
impomnce to be vexy careful in their numerical implemmta- 
tiw. 
In c~se of a stationary surface with the flow passing over it, the 
physical bundary condition fa an inviscid fluid demands that 
the flow slips over the surface since there is no friction. Hence. 
the flow must be tangent at the surface. This condition of tan- 
gent flow along the airfoil's surface is satisfied by setting the ve- 
locity components nonna~ to the surface to zero t . 2  = 0 ,  

acthgatthedeformedsurface. 
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where 8 is the velocity vector and the normal vector, posi- 
tive outward. In case of a moving boundary the relative n o m l  
velocity vector t,,, has to be considered 

where 8 ,  isthevectorcontainingthesurfacemeshspeeds. 

The pressure on the body's surface is determined from the nor- 
mal momentum equation following the proposal of Rizzi 1321. 
This method is more accurate than the simple extrapolation of 
the pressure from interior field values. 
Non-reflecting boundary conditions we applied in the far-field, 
which ensure that disturbances can leave the interior field 
across the outer boundary without being reflected into the com- 
putational domain. 

2.2 StruchvalModd 
For the theoretical investigation of the probably most danger- 
ous, though not the most Frequently encountered type of aircraft 
flutter, which results from the coupling of fundamental bending 
and torsional motions of relatively large aspect-ratio wings, the 
two-dimensional representative wing section introduced by 
Theodorsen and Garrick [33]. [34] has been extensively used 
and a great deal of qualitative information can he obtained 
about the influence of various system parameters on the above- 
mentioned type of aeroelastic instability. 
In order to do justice to the increased flexibility of modem light- 
weight aircraft the finite element method is used in this study to 
account for more general motions of a typical wing section. 
With the introduction of additional degrees of fnedom it is pos 
sible to describe the motion of the airfoil more accurately. In 
particular, local changes of the profile's surface leading to local 
changes in the angle of attack, thus changing the pressure distri- 
bution, are captured. 

2 2. I Governing Equarwns 
The governing finite element equations are usually generated 
via variational principles, e.g. the principle of virtual work or 
displacement and stationarity of the total potential. Hamilton's 
principle or the pnnciple of virtual work in combination with 
d'Alembert's principle can be applied for dynamic problems. 
Both formulations are equivalent to each other and lead to the 
same differential equations of motion. While Hamilton's princi- 
ple uses energy expressions, the virtual work principle directly 
considers the actual loads acting on the structure. 
Since the main idea of the finite element method is the appmxi- 
mation of a continuous body by a finite number of discrete ele- 
ments interconnected at the nodal points at the element 
boundaries, it is expedient to establish general relations on the 
element level using a local coordinate system in which the local 
degrees of freedom at the nodes are measured. The system ma- 
trices of the total element assemblage are then obtained by iden- 
tifying the global degrees of freedom which correspond to the 
local element degrees of freedom using some kind of connectiv- 
ity array If the local coordinates are not aligned with the global 
coordinate system, an additional transformation is necessary 
pnor to the assemblage. 
Applied on the element level denoted by the superscript (e). 
Hamilton's principle in its extended form. taking into account 
non-conservative external loads can be written as [ 161 

where 8 is the variational operator, U(') = ST(') -8U(') is 
the variation of Lagrange's function with T@) and U ( c )  as the 
element specific kinetic and potential energy, and 8WeZl is the 
virtual work of all external loads acting on the element no mat- 
ter whethertheycanbederivedfromascalarpotentialornot. 

Assuming a linear elastic continuum where the stress-strain re- 
lationship is given by Hook's law 

S(4 H ( C ) e ( ' ) ,  (12) 

with €I (6 as the symmetric, positive definite matrix of material 
constants, and the vectors s (d and e (4 representing the stress- 
es and strains, the element specific potential energy including 
discrete linear springs of stiffness E ,  at the pints i can be ex- 
pressed as 

where are the displaccmeuts at the points i ,  and V(') is 
the element volume. The element strains e (4 depend on the ele- 
ment displacements v (4 and can be evaluated by differentia- 
tionusing anelement specific differential operator D (4 

e(') =D( ' )v ( ' )  , (14) 

It should be noted that the displacement vector v (4 is related to 
all particles i of the continuum and represents a continuous dis- 
placement field. Following the original ideas of Lagrange. how- 
ever, it is generally assumed that the motion of the body can be 
described by a carefully chosen set of generalized (or 
Lagrange) coordinates U (e), which, in case of the finite ele- 
ment method, are identical with the nodal displacements. The 
interior displacement field, necessary for calculating the strains 
and stresses, is then approximated by interpolation (shape) 
functions (Rib method). htroducing the element displacement 
interpolation matrix G (e), it follows for the displacement field, 
the strains, and the stresses, respectively: 

Similarly, the element specific kinetic energy can be found as 

T(C) = 1 p(C1 II(')TG(.)TG((.))(C)dV(C), (19) 
2(vr.ll 

where p [e) is the element material density and U '4 are the ele- 
mentnodal velocities (i.e.,the firsttimederivativeof U (e)). 



The variation of Lagrange's function in generalized coordinates 
results in 

Considering only the distributed surface loads p @ ] ,  the virtual 
work in generalized coordinates reads as 

SWJ;! = - S u ( C ) T G p ) T p ( @ d S ( e ) ,  (21) 

where Cje) is the surface displacement interpolation matrix an- 
alogto G('),and S(')theelementsurface. 
Introducing equations (20) and (21) into (111, the solution of 
equation (11) as variational problem leads to the well-known 
Lagrange equations of second kind 

(SI.,) 

Neglecting structural damping effects, the equations of motion 
of the element ( e )  in local coordinates follow as 

MWu(e-1 +gWu(') =f'" (23) 

with the element mass matrix, the element stiffness matrix, and 
the applied loads, respectively 

M('1 = p(ClG(dTG(C) dV(e1 , (24) 

K ( 4  = D & 4 T H ( e ) D k )  d V ( 4  , (25) 
(vial 

(WI) 

(SI.)] 
p) = j G ~ I T ~ ( I I ~ S ( L I ,  (26) 

The assumption of small sbains in general permits the evalua- 
tion of the integrals over the undefomed geometry of the ele- 
ment without significant error. 
The assembly process might be written symbolically as 

c ( M ( d u ( c )  + g ( C ) u ( C 1 )  = f'" (27) 
CL.) (4 

and. after intmducing boundary constraints, leads to the equa- 
tions of motion of theentire system in global coordinates 

M i i + K u  =f, 

where M and K are the constant global mass and stiffness ma- 
trices. and f is the global vector of applied loads. 
2.2.2 Applrcation to Typical Wing Section 
Following the ideas of Theodorsen and Oarrick, a typical wing 
section of unit width in the spanwise direction is considered. as 
illustrated in Fig. 2. It is assumed that the inertial and elastic 
properties of the system can be represented by a finite element 

assemblage of beams or plates which do not necessarily model 
the aerodynamic surface of the system. In addition, the spatial 
discretization of the structure is independent of that of the fluid 
(and vice versa) and is accomplished by structural constraints 
like matwial discontinuities, the need to implement hinges, 
elastic supports, and the specification of nodal displacement 
conditions only. Every node k might be supponed by a transla- 
tional andor rotational spring, and adjoining elements e might 
be interconnected by a stiffness coopling matrix to establish a 
hinge for the purpose of modelling one or several control sur- 
faces, as indicated in the figure. The local element degrees of 
freedom are measured in the local coordinate system 
( x ( ~ ) ,  z( ' ) ) .  while the global degrees of freedom refer to the 
global coordinate system (x, z), both of which are Cartesian. 
The surface of the profile in the global coordinate system is giv- 
en by q ( x )  and coincides with the inner = const. line of the 
aerodynamic mesh. During the temporal integration of the cou- 
pled field problem the pressure p is computed in each mesh 
cell and assumed to be constant throughout each cell 

finite elements e = 1, 2, _.., n 
finiteelement nodes k = 1, 2, ..., n + I 
aerodynamicpoints i = I ,  2, ..., rn 

- 
'"&a k a+ 
- 

i + ~ - '  - 

Fig. 2 Typical wing section and relation 
between the spatial discretization of 
the fluid and the Structural domain 

Fig. 3 Definition of local nodal displacements 

Since in the decomposition approach favored here the only way 
to communicate between the structure and the flutd is via the 
surface (fluid structure boundary). it is of utmost importance to 
describe the motion of the surface as accurately as possible. 
The importance is twofold. Firstly, the time-varying surface 
specifies the kinematic boundary for the fluid. and secondly, 
some assumptions about the kinematic of the surface have to be 
made in order to be able to determine the generalized forces 
(i.e., the evaluation of the integral (26)) transmitted from the 
fluid to the Structure in a consistent manner with the mechanical 



principles already applied (kinetic or natural boundary wndi- 
tion for the structure). This leads us to the matter of shape func- 
tions for the elements. 

For the sake of simplicity, a beam element of unit width with 
the nodal degrees of freedom 

measured in the local coordinate system ( x  (d, z is consid- 
ered. as illustrated in Fig. 3. 

Based on the well-known differential equations of equilibrium 
of a prismatic beam for bending and axial behavior the interior 
continuous displacement field 

(30) 
T 

"(e)  (x(4) = [,(e) W(.) e(.)] 

can be exactly expressed (within the classical beam theory) as 
function of the nodal displacements according to equation ( I  3, 
where the element displacement interpolation matrix can be 
written as 

r _. 

The vectors p i r ) ,  g$) and p$s)  contain the so-called Her- 
mitian polynomials [SI corresponding to the degrees of free- 
d o m ~ ( ' ) , ~ ( ' )  ande('),sothat,e.g. u ( e )  = g,?Tu(e). 

Finally, the surface displacements as functions of the nod- 
al degrees of freedom U (4 remain to be specified. For this pur- 
pose, an element including its corresponding surface (fluid 
stnicture boundary) in local coordinates is shown in Fig. 4, 
where, for matters of simplicity, only the upper side is wnsid- 
ered. The shape of the surface given by q ( e ) ( x ( e )  ) in the unde- 
formed state (its slope is q'(') = * ( < ) / W e ) )  can be 
arbitrary with the only exception that it should be not too far 
away from the element, and. of course, continuous at the ele- 
ment boundaries. In so doing, a hear relation between the dis- 
placements of the elastic center line and the surface 
displacements of the element can be obtained. 
The following model for the deformation of the surface is a p  
plied. In the undeformed state the surface is measured perpen- 
dicular to the elastic center line of the element, i.e., 
perpendicular to the x ( ~ )  axis. While the deformation the sur- 
face point P moves to p ,  assuming that the distance between 
the center line of the element and the surface does not change 
and that it is still measured perpendicular to the now deformed 
elastic center line. The continuous surface displacements are 
identified by the subscript S. According to this procedure. a 
bending moment assumed to be positive in the clockwise direc- 
tion about the y (e) ax is  causes tension in the top fibers of the el- 
ement and the upper surface is stretched while the bottom fibers 
of the element and the lower surface are subjected to compres- 
sion. This is simply the transfer of the well-known hypothesis 
of Bernoulli for bending deformations of prismatic beams, 
which, without emphasizing it explicitly, has already been as- 
sumed to be valid in the construction of the shape functions for 
the beam element 
It is important to note that the elastic and inerual properties of 
the system are solely represented by the finite element and that 

no resistance comes from the tension and compression of the 
surface. From a mechanical point of view one can imagine the 
following: Along the bearing element aligned with the x ( ~ )  ax- 
is, several massless and infinitely rigid beams, allowing the 
transmission of axial forces and bending moments, are perpen- 
dicularly and rigidly wnnected to this element. The lengtbs of 
these beams are prescribed in a way that they model the aerody- 
namic surface, i.e..theirnuterends coincide with the surface. 

Fig. 4 Definition of local element surface 
displacements 

From the geometrical interpretation of Fig. 4 one can derive the 
following relation 

which gives linearized 

"j'3 (x(d) = (33) 

Applying Eq. (15)inconjunction with (31) to (33) finally yields 

where GAC) is the searched element surface displacement inter- 
polation matrix. 
With the help of GJc) the surface's motion can be automatically 
determined if the nodal displacements U ( e ) ,  and thus, the interi- 
or element displacement field v ( ~ )  are known. In addition, the 
knowledge of G F )  allows for the calculation of the integral 
(26) to obtain the generalized element forces. 
2.2.3 Boundary Condrtions 
As already mentioned above, every node might be suppotted by 
a translational andor rotational spring and adjacent elements 
mightbeinterwnnectedbyjoinrs. In thefollowingexamplecal- 



culations the system is similarly supported by discrete linear 
spnogs like the classical wing section model and has an option- 
al control surface. Under this condition, the fundamental de- 
grees of freedom responsible for classical flutter are retained 
while still allowing for elastic deformations in the chordwise di- 
rection 

All nodal degrees of freedom can be constrained or prescribed 
with the additional feature of having the possibility to impose 
dynamic displacement conditions. This is useful in order to ini- 
tializc an unsteady aeroelastic calculation or for the determina- 
tion of unsteady aerodynamic coefficients. In this study the 
axial displacements U (4 of all elements are constrained since 
their contribution to the overall solution is negligible and leads 
only to increased computational effort 
The kinetic boundary condition is fulfilled with the evaluation 
ofthe integral (26). 

2.3 Method of Solutlon 
The coupled field problem can be effectively solved in the time 
domain by applying a panitioned solution procedure in which 
the fluid and the structural solvers are executed in an alternating 
fashion and exchange interface data such as pressure, displace- 
ments, and velocities at certain time steps. Theoretically, a 
large number of available finite difference expressions can be 
employed. However, with effectiveness considerations in 
mind, only a few methods need to be considered. 
2 3. I Fluid Domain 
The Euler code used in this study was written and adopted to 
the requirements of the partitioned solution procedure by the 
authorof[18l,whereitisdescribedindetailandappliedtotwo- 
dimensional transonic cascade flow. Results of computations of 
unsteady transonic flow amund oscillating airfoils are given 
and compared with solutions of a Full Potential method and ex- 
perimental data in [371. The agreement is generally good in the 
whole frequency range important for flutter predicllon. 
The Euler code makes use of the flux vector splitting method 
developed by van Leer [36] for Cartesian coordinate systems. 
Anderson et al. [31,[41 paved the way to enable the application 
of this naturally dissipative upwind method also to boundary- 
fitted moving coordinates while retaining the advantages of the 
original splitting, in particular the shock capturing capab 
The solution in the time domam is based on the approximately 
factored BeamlWarnung implicit singlestep algorithm [6] us- 
ing a cell-centered finite volume formulation with a MUSCL 
type extrapolation (Monotonic Upstream Centered Scheme for 
Conservation Laws) [35] for the spatial discretization. The con- 
dition for numerical stability of the fluid solver depends on the 
spatial and temporal discretization and can be expressed by 
means of a linear stability analyses by the CFL number (Cou- 
rant-Friedrichs-lewy). 
2.3.2 Strucrural Domain 
For the time integration of the structural equations of motion, 
Newmark's method [29] is employed, which can be cast in ex- 
plicit and implicit form by the variation of two method-specific 
parameters. It also has the advantage of being a singlestep al- 
gorithm, thus, the whole procedure is easily extended to vary- 
ing time step sizes. The critical time step required for stability 
and accuracy has to be calculated from the mass and stiffness 
properties of the complete finite element model. More specifi- 
cally, the highest frequency obtained by an eigenanalysis of the 
free vibration equilibrium equations determines the time step. 
Comprehensive discussions of this important subject can be 
f0und.e.g.. in [5]. (391. 
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Since the required number of operations to solve equation (28) 
is directly proportional to the order and bandwidth of the sys- 
tem matrices, the computational effort can be considerably re- 
duced by transforming the basis to modal (normal) generalized 
coordinates using the eigensolutions of the free vibration equi- 
librium equations with neglected damping. In so doing, the sys- 
tem matrices can be diagonalized. hence. the system of 
differentihl equations (28) decoupled. Also. only a fraction of 
the total number of decoupled equations needs to be considered 
to obtain a good approximate solution, which is generated by 
the mode superposition principle. The contributions of higher 
frequencies and mode shapes are usually negligible and the so- 
lution is dominated by the low frequency content of the system. 
As a result, much larger time steps can be used. Once a decision 
has been made on the modal approach, and the reduction of the 
system to the normal generalized degrees of freedom which sig- 
nificantly contribute to the expected response has been per- 
formed, the question whether to employ the implicit or explicit 
formulation of Newmark's method does not arise. The admissi- 
ble time step has to be almost the same for both methods due to 
accuracy requirements. For simplicity, the explicit scheme, 
which is spectrally equal to the well-known central difference 
method [51. is used. 

2.3.3 Solunon of Coupled Field Pmbkm 
The coupled time integration procedure can be conceptionally 
described as follows employing the same time step AI for the 
fluid and the structure (Fig. 5).  

I .  Obtain starting values from the actual state of the en- 
tire system, i.e., generalized displacements a i ,  ve- 
locities ri;, accelerations U;, and aerodynamic 
loads f i  at time level t i .  If the system is not al- 
ready in motion, the generalized aerodynamic load 
vector is determined from the free-stream condition 
corresponding to the fixed initial wing-surface 
boundary. 

Compote generalized displacements U ; +  ! , veloci- 
ties U;+ I , and accelerations U i + ,  at time level 
l i+ l  = r , + A t  using the aerodynamic forces at 
time level t i .  

Update the aerodynamic mesh, advance the fluid do- 
main, and calculate the generalized aerodynamic 
load vector fi+ , according to ai+ I , ui+ I , and 
U;+, attimelevel I ; + ~ .  

2. 

3. 

f;, I 

Kl fluid domain 

structural domain 
ui K i t 1  

f i  t , +A I  1 

Fig. 5 Temporal flow diagram illustrating the 
coupled field integration scheme 
assumingthesame timestep forthe 
fluid and the structural domain 



This cycle is repeated until the desired response is obtained. 
?he mutual time step for stability of the coupled field integra- 
tion procedure is determined from the condition 

AI = min {ArF(CFL) ,Ars(q-) ) ,  (35) 

where AtF and Ars are the admissible time steps for the fluid 
and the structure, respectively, which are restricted hy the re- 
quirements discussed above. 

Of course, in the case of making use of the modal approach, the 
computed normal generahzed displacements, velocities, and ac- 
celerations have to be transformed into the physical plane at 
each time step since the fluid structure boundary is described in 
physical cwrdinates, while on the other hand, the aerodynamic 
loads acting on the surface have to be transformed into the com- 
putational plane of generalized forces corresponding to the nor- 
mal coordinates. 
Assuming a judicious choice of the mathematical model repre- 
senting the structure, in aeroelastic response and stability analy- 
ses a greater time step for the integration of the structural 
equations of motion can generally be chosen as compared to 
that of the fluid. However, when considering that the computa- 
tion of the aerodynamic data by modem CFD methods mdies 
up the lion's share of the total computational costs, it is usually 
not worth applying a different scheme. Only when working in 
heterogeneous hardware environments, where the single-field 
solvers are executed on different platforms, it might be desir- 
able to reduce the time needed to exchange data hy employing 
different time steps in each domain. With these considerations 
in mind. the coupled time integration procedure described 
above has been extended as follows 

generalized displacements, velocities, and accelerations to ad- 
vance the fluid domain within the open time interval 
r, < I < ti+ I have to be approximated, e.g. by linear interpola- 
tion. 

r - I .  
u ( r )  = U ~ + - ( U ~ + ~ - U ~ ) ,  Ar r isrsr i+ ,  (37) 

It should be noted that ui + is already known within the full ac- 
curacy of the employed structural integration scheme and that 
only the values inside the open interval ri < I < r, + I are approx- 
imated. However, experience has shown that the use of higher 
order interpolation functions has no significant, if any effect on 
the overall solution. The procedure is illustrated in Fig. 6. 

2.3.4 Energy Comiderariom 
Newmark originally proposed the constant average accelera- 
tion method, also well-known as the trapezoidal rule. which to- 
day is considered a special case within the Newmark family of 
algorithms [SI, [391. It is probably not exaggerated to say that it 
is the most popular and most often applied time-step algorithm 
in structural dynamic analysis. This is because for this class of 
problems it possesses a unique property that it shares with the 
exact continuum equations of motion for undamped systems 
subjected to a conservative force field. It exactly conserves the 
total energy of the S ~ N C ~ U I % ~  system 

Er,, = T(u ,  1) + U ( u ,  I) = Eo = const. , (38) 

i.e., the sum of kinetic T and potential energy U remains wn- 
stant during the evolution in time and is equal to the initial ener- 
gy Eo. This means that no amplitude decay is introduced and 
that also the higher frequency components, although not accu- 
rately evaluated, are not damped out and still retained in the re- 
sponse, which is in sharp contrast to the behavior of other 
implicit time integration schemes. 
On the other hand, the fundamental conservation law (38) does 
not hold for non-conservative loadings, hut the more general 
energy identity 

AtS - 2 AtF 

fi+ I 
fluid domain 

Fig. 6 Temporal flow diagram illustrating the 
coupled field integration scheme 
assuming different time steps for the 
fluid and the structural domain 

If A r F i A r s .  the global time step At = Ats is divided into 
nSIF equally spaced intervals so that 

holds, where ArF is determined by the CFL condition and At3 
by the highest frequency of the ~ t ~ c t ~ r a l  system. The structural 
domain is time-marched from r i  to r i +  I in a single time step 
AI = Afs,  as described above. while the fluid domain is ad- 
vanced from 1; to I ; + ,  in nSIF time steps. Since dataexchange 
is only permitted at the time steps 1; and I,+ I ,  the necessary 

readily derivable from Lagrange's equations, can he employed, 
where the integral comprises the effects of all non-conservative 
generalized forces fn,. In this case the total energy E,,, is not 
a constant equal to the initial energy E o ,  it is in- or decreased 
by the value ofthe integral in the time I , 

Since damping and other dissipative effects have been neglect- 
ed in the derivation of the ~tructural equations of motion, the 
following energy identity 

must be satisfied by the solutions of the initial-value problem 
(28). where W,, is the external work done by the generalized 
aemdynamic forces f . 
Such energy relations are commonly valid in physical problems 
and have long been used in the theory of differential equations 
to prove existence and uniqueness of solutions. However, be- 
ginning with the work of Courant, Friedrichs, and Lewy [19], 
they also have a long tradition to attest numerical stability and 
accuracy of finite difference approximations 13 I]. 



As discussed further below. the energy identity (40) can he used 
to check the accuracy of the proposed partitioned time integra- 
tion procedure, which is why it is included here. 

Based on the progress in computational fluid dynamics, many 
aemelastic applications have followed. For matters of simplici- 
ty and the reasons given above, the two-dimensional typical 
wing section introduced by Thendonen and Ganick [331, [341 
was often used as structural model in these studies In particu- 
lar, extensive efforts to predict transonic aeroelastic phenome- 
na have resulted in a sequel of papers, e.g.. [81, [211, [U], 1261, 
[38]. It is, however, clear that the assumption of two-dimension- 
ality of the flow at transonic speeds is only valid for some por- 
tions of large aspect-ratio wings. 
More recently, Blom and Leyland [IS] presented related work 
concerning the partitioned solution procedure, while Bendiks- 
en (91 also accounted for camber bending in the stability analy- 
sis of a typical wing section using a newly proposed ALE 
method for aemelastic applications 
In order to be able to compare the results of the suggested meth- 
od with previous flutter calculations and also to show the effect 
of chordwise flexibility of a wing segment m two-dimensional 
transonic flow on aeroelastic stability, the classical ngid wing 
section was used as reference model. Since the general formula- 
tion of the finite element method allows for the lumping of 
structure properties and loads, the exact rigid case can readily 
be treated in a very effective manner. Another alternative offers 
the application of the modal decomposition technique. Either 
procedure leads to a reduced order structural model resulting in 
larger admissible time steps for the integration of the structural 
equations of motion in time. This is an advantage of the present 
method in contrast to Bendiksen's ALE formulation of the proh- 
lem 191, where the rigid case is achieved by letting the stiffness 
of the elements approach infinity. Further considering that in 
reference [9] the fivestage Runge-Kutta scheme was used for 
the entire fluid smcture domain, which is only conditionally 
stable and thus demanding very small time steps not only for ac- 
curacy hut above all for numerical stahility. considerable com- 
puting time can be saved by using the domain decomposition 
approach. Personal experience has shown that hy stiffening the 
elements to a degree where no significant camber bending oc- 
curs, the admissible time step for the structure using an uncon- 
ditionally stable scheme is decreased well below that 
acceptable for the fluid domain 

In this section, transonic time response solutions are presented 
for five test cases. two of which were previously studied using 
the well-known transonic codes LTRANZ-NLR [NI and USTS 
[261. which solve the two-dimensional transonic small distur- 
bance equations. More specifically, a two-degree-of-freedom 
(2d.o.f ) system investigated by Isogai [26] and a three-degree- 
of-freedom (3 d.0.f.) system examined by Yang and Batina [38] 
were used as basis configurations. The aemelastic parameter 
values for both cases are listed below using the definition of pa- 
rameters and sign conventions of reference 1381. 

lsogai [26]: 
a,= -0.3,xa= 0.5, ra= 0.7, wh/wa= 0.2.p= 60 

YanglBatina [38]: 
ah=-0 .2 ,xa=0.2 , ra= 0 . S , w h / w ~ = 0 . 3 , ~ =  23.48 

3 -ULm OF AEUOELASTZC COMPUTATIONS 

xB= 0.008. r8 = 0.06, cP = 0.5, w /ma = 1.5 B 

The remaining test cases are modifications of the latter model 
utilizing the same parameters. First. a 2 d.0.f. system was estab- 
lished hy merely locking the control surface to the wing, and 
second, this 2d.o.f. system and the original 3d.o.f system 
wereallowed to havechordwise flexibility. For the sake of clari- 
ty, the test cases are listed in Table I ,  where the sequence of cas- 
es is chosen according to the complexity of the structural 
model. 

Table 1 Aeroelastic test cases 

rigid 
ible 

It should he noted that originally Cases C and E were the main 
objectives of this investigation. where the flutter boundaries 
surprisingly exhibited two transonic dips in flutter speed, This 
phenomenon was initially attributed to the presence of the con- 
trol surface, which is why the control surface was locked in a 
second attempt resulting in Cases B and D. Perhaps not surpris- 
ingly, these cases also showed a second dip. since the relatively 
high stiffness io the control surface hinge of Cases C and E 
(0  /ma = 1.5) effectively diminishes possible flutter for the 
bending-aileron and torsion-aileron branches. Due to the fact 
that in reference [381 results for the considered case are only 
presented for a single Mach number. and therefore a sound ba- 
sis of comparison was still lacking, an additional example. tak- 
en from reference [261. was considered (Case A) with the 
advantage of having comprehensive information on the behav- 
ior of critical flutter parameters vs. Mach number for a typical 
2d.o.f. system. As is discussed further below. a second dip was 
also detected for this case. 
Regarding the finite element modelling, the continuous mass 
and stiffness parameters were obtained by formulating and 
solving nonlinear constrained optimization problems, so that 
the global system parameters exactly match the prescribed dis- 
crete values. In this context, some assumptions were necessary 
about the way in which the structural properties should be dis- 
tributed. Accordingly, the mass and stiffness coefficients were 
approximately scaled to the square and cube of the profile's 
thickness, respectively. In so doing, it turned out that in order to 
retain the global structural parameters, especially the location 
of the center of gravity of the wing and the massbalanced con- 
trol surface, the introduction of two small eccentric tuning 
masses was necessary. Except where noted. nine beam ele- 
ments were used in the chordwise direction in the present study. 
The rigid body Cases A to C were exactly obtained by lumping 
the disuibuted system properties. Also note that for Cases B to 
E the same finite element model was used since only the bound- 
ary conditions needed to be changed. 
All results of aemlastic computations presented here were per- 
formed for zero mean angle of attack and using a 
NACA64AOIO airfoil, where the airfoil coordinates were taken 
from reference 1141. In order to extract the frequency, damping. 
amplitude, and phase information from the simulation data. the 
time-history series were filled in a least square sense with com- 
plexexponentialfunctionsI131. Theproblemoffindingthecrit- 
ical flutter solution, which by definition is an oscillation with 
steady amplitude, so with zero damping, was iteratively solved 
by employing the Newton-Raphson method [SI. which is qua- 

8 .  
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dratic in convergence. The iteration cycle: ( I )  prescribe (in- or 
decrease) flight speed, (2) compute aemelastic time response, 
and (3) determine vibration parameters, was continued until a 
predefined tolerance forthe damping coefficients was achieved. 

3.1 Resalts For Rigid Wing Seetion (CascsA to C) 
The results for the three typical rigid wing segments presented 
in this section serve as a basis for comparison with previously 
pubhshed results and as reference solutions for the Cases D and 
E. Although not shown here, it should be noted that additional 
flutter computations in the low subsonic Mach number range 
were successfully carried out during the checkout phase of the 
program, including comparisons with results obtained from 
classical frequency domain flutter computations. 
3.1.1 ResulrsforCaseA 
Case A is the same as Case B in referencc I261 studied by Isogai 
and simulates the vibrational characteristics of an unswept 
wing. A relatively mild transonic dip was observed, as shown 
in Fig. 7, where the non-dimensional flutter velocity coefficient 
U; = UF /(bo),./$ vs. Mach number M is plotted. Also 
shown in the figure is a result predicted by Bendiksen for the 
m e  case at a Mach number of M = 0.8, taken from refer- 
ence [8]. The results are compared to the predictions obtained 
by the present code for the ideal rigid wing segment. As can be 
seen, the agreement is generally good. but a second dip was de- 
tected in the Mach number range 0.85 < M< 0.9 with the 
present code. It is interesting to note that lsogai did not present 
any results for this very range. The two neighboring points 
were merely connected with a dashed line. Fig. 8 shows the cor- 
responding flutter frequencies wF , non-dimensionalized by the 
torsion natural frequency w, , vs. Mach number, which also 
compare very well with the previously obtained results except 
for the Mach numbers 0.85 < M < 0.9. 
In order to impart an idea of the response behavior of the sys- 
tem. typical timedomain solutions for Case A are presented at 
M = 0.8 for four different flight speeds. These examples cor- 
respond to the neutrally stable, stable, unstable, and LCO solu- 
tions depicted in Fig. 7. Fig. 9 shows the displacement response 
and the evoluhon of the energy quantities with time for the criti- 
cal flutter velocity coefficient U; = 0.453, The system war 
forced to oscillate according to the previously determined flut- 
ter mode 

for four cycles 8x/wF of the flutter frequency mF given by the 
frequency ratio wF /we = 0.349. After its release, additional 
25 cycles of free motion were computed in order to obtain the 
aemelastic time response. As can be seen, no disturbances oc- 
cur at the transition from forced to free motion, indicating that 
the exact flutter conditions were used to initiate the time re- 
sponse calculation. Also. the values of the displacement ampli- 
tudes were chosen within the range where the unsteady 
adynamic  coefficients depend linearly on the displacement 
amplitudes. as has been investigatedin [26]. 

The energy quantities were only computed for the free motion 
of the system according to equation (40) and non-dimensional- 
ized by the initial energy E, , so that the difference between the 
total energy and the external work should be equal to one in the 
wholesimulationperiod (E, ,3 , -Werl ) /Eo = const. = I .  

This means that neither energy is introduced nor dissipated by 
the numerical integration scheme. In so doing, the energy iden- 
tity (40) provides an autonomous check on the numerical accu- 
racy and stability of the finite difference approximation of the 
coupled field problem. However, it should be noted that the sat- 
isfaction of (40) does not guarantee a ..healthy" solution of the 
entire aemelastic problem. since it does not account for mis- 
takes in the calculation of the generalized forces from aemdy- 
namic pressure data. For example, any arbitrary constant (in 
reasonable bounds) can be added to the generalized force vec- 
tor without violating the energy identity (40). 

0.35 - , 
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As can be seen in Fig. 9. the difference E,,>]- WeXI remains 
constant and equal to the initial energy E,. thus attesting the 
quality of the proposed partitioned integration procedure. No 
systematic divergence of E,,,] - We,[ away from the initial ener- 
gy could be detected, as was repeatedly observed by Bendiksen 
[9]. [ I l l  using the domain demmposition approach. Even for 
long-term calculations up to 100 cycles, covering more than 
60.000 time steps, the energy identity (40) was satisfied and the 
aeroelastic response remained neutrally stable as if the first 25 
cycles in Fig 9 had been copied to the end ofthe simulation pe- 
riod. 
Fig. 10 shows the displacement response and energy evolution 
for Case A at M = 0.8 for a subcritical velocity coefficient, 
while Fig. 11 showsthesameforasupercritical velocitycceffi- 
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Fig. 9 Displacement response and energy 
evolution for Case A at M = 0.8 for 
critical flutter velocity coefficient 
U; = 0.453 (neutrallystable solution) 

cient. More specifically, the stable solution was obtained by de- 
creasing, and the unstable solution by increasing the critical 
flutter speed by about two percent. 
Again, the calculation was initiated by forcing the system to os- 
cillate according to the flutter mode as described above. Then 
the airfoil was left free in order to obtain the aeroelastic re- 
sponse. As compared with the neutrally stable response, the fre- 
quency for the stable solution (Fig. IO) was found to be slightly 
lower and for the unstable solution (Fig. I I )  to be slightly high- 
er than that for thecritical flutter solution. 

When the flight speed was increased by about IO%, the solution 
entered a steady limit cycle oscillation (KO) after 12 cycles of 
free motion, as can be seen in Fig. 12. The reason for this 
bounded amplitude oscillation lies in the dynamics of the 
strong shocks present at this Mach number for the considered 
iurfoil. The vibrations are characterized by an increased ampli- 
tude and frequency ratio. Also, the torsional response is no 
longer a simple harmonic oscillation but shows the presence of 
higher harmonics resulting from the shock wave motions. 
In this context, it should be noted that whether or not K O  is 
found depends to a certain degree on the length of the chosen 
simulation period, since the approach of the system to a steady 
LCO depends on the magnitude of the flow velocity. The higher 
the flow velocity for a given (sufficiently high) Mach number 
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Fig. 10 Displacement response and energy 
evolution for Case A at M = 0.8 for 
subcritical velocity coefficient 
U* = 0.443 (stablesolution) 

the faster the system reaches its steady LCO amplitude and vice 
versa. It is therefore anticipated that the unstable solution de- 
picted in Fig. l l might have entered a LCO solution for an ex- 
tended simulation period. 
As can be seen in Fig. 12, the difference in energy E,,, - We.! 
starts oscillating slightly about the mean value Eo as the ampli- 
tudes increase. However, the spunous growth and decay of en- 
ergy tend to compensate each other over one cycle of 
oscillation, thus no systematic divergence occurs. The same be- 
havior was observed for even higher torsional amplitudes, 
where the applicability of the method is open to question since 
the assumption of small displacements, thus the justification of 
linearity in deriving the governing structural equations of mo- 
tion is violated. Although very interestmg limit cycle solutions 
were repeatedly computed during this study, it is beyond the 
scope of this paper to discuss their origin and mechanism in de- 
tail. Numerical investigations on this fascinating nonhear ae- 
melastic phenomena have been published by Kousen and 
Bendiksen 1271, where the interested reader is referred to. 

3.1.2 ResuIfsforCaseB 
Case B is a modification of the 3 d.0.f. system previously stud- 
ied by Yang and Batina [38], which is the object of investiga- 
tion in the next section. As for the results presented in this 
section. the system was modified in so far as the control surface 
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Fig. 11 Displacement response and energy 
evolution for Case A at M = 0.8 for 
supercritical velocity coefficient 
U* = 0.461 (unstable solution) 

was locked to the wing, while keeping the values for the 
aeroelastic parameters as used for Case C. The computed flutter 
boundary for Case B is depicted in Fig. 13, while the corre- 
sponding flutter frequency. amplitude ratio, and phase differ- 
ence of the displacement response vs. Mach number are 
depicted in Fig. 14. 

In Fig. 13 also shown by specific symbols are some additional 
representative results, which were obtained during the search 
and trail of the expected flutter boundary. Whereas most sym- 
bols in context with the legend descriptions are self-explanato- 
ry. the cross 'x' symbolizes explosive flutter, which is 
accompanied by the failure of the numerical scheme within a 
few cycles in so far as the amplitudes grow without bound. 
For Mach numbers lower than 0.70 no shocks are present and 
the solution rapidly grows (unstable solution) when the critical 
value of the flutter speed is exceeded. Decaying (stable) solu- 
tions are obtained for subcritical speeds. The flutter modes at 
the critical values of flight speed are characterized by typical 
bending-torsion motions at a frequency between those of the 
uncoupled natural frequencies of the binary system. Also, for 
this range of Mach numbers, no significant change in the phase 
difference between the torsional and bending motions exists. as 
can berecognized from Fig 14. 
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Fig. 12 Displacement response and energy 
evolution for Case A at M = 0.8 for 
supercritical velocity coefficient 
U'= 0.497 (LCOsolution) 

With increasing Mach number attended by the development of 
weak shocks, a mild drop in critical flutter speed and a hroaden- 
ing of the region where exponentially growing solotions were 
computed is found. The minimum value of the critical flutter 
speed coefficient is predicted at M = 0.78 when the shock 
wave is located at about 55 to 60 percent of the profile's chord. 
The presence of the shocks is well reflected by the unsteady 
load distribution. as has been shown in great detail in the excel- 
lent work of lsogai [26]. In order to imparl an idea on the hehav- 
ior of the unsteady lift and moment coefficients at a relevant. 
reduced frequency k = o b / U  ( b  - semichord) for Case B, the. 
variations of the in-phase (real pan) and out-of-phase (imagi- 
nary part) compouents of the first harmonic of the lift coeffi- 
cient c , , . ~  and the torsional moment cocfficient c,,,,,~ for 
small torsional oscillations about the elastic axis i = oh b 
(4046 chord position) versus Mach number are plotted in Fig. 
15 and Fig. 16, respectively. The coefficients are defined as in 
reference [26]. As is obvious from these figures, the large nega- 
tive value of the out-of-phase component of the torsional mo- 
ment coefficient at about M = 0.78 (which means that there is 
a considerable phase lag between the torsional motion of the 
profile and the unsteady aerodynamic response) has a damping 
effect on the torsional degree of freedom of the system. while at 
the same time the drop in the out-of-phase component of the lift 
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coefficient @caring the sign convention in mind) indicates 
less aerodynamic damping in the bending degree of free- 
dom. This is also mirrored by the displacement responses 
(Fig. 14). where at the bouom of the first dip in flutter speed 
the flutter frequency approaches a minimum close to the 
first natural frequency (bending), involving an increase In 
the bending amplitude. This implies a bendingdominated 
flutter mode at the bottom of the first transonic dip. With in- 
creasing Mach number the shocks strengthen and migrate 
further aft towards the trailing edge, which is accompanied 
by a significant decrease in the magnitude of the in-phase 
component of the torsional moment coefficient, since the 
center of pressure shifts also aft towards the elastic axis. 
This, and the decrease in the in-phase component of E ,  ,, 
have a stabilizing effect on the flutter boundary (Fig. 13) 
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Fig. 14 Flutterfrequency, amplitude ratio and phase difference 
of displacement response vs. Mach number for Case B 
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Fig. 15 Unsteady l i i  coefficient vs. Mach number for 
torsional oscillations about elastic axis at 
k = 0.22 for Case B 

In addition, the out-of-phase component of 
the torsional moment coefficient rapidly 
rises, thus resulting in less aerodynamic 
damping in the torsional degree of free- 
dom. This enables the transition from 
bending-dominated flutter to torsion-domi- 
nated flutter for Mach numbers beyond 
where the first dip in flutter speed occurs, 
as is well reflected in the displacement re- 
sponses (Fig. 14). The flutter frequency a p  
proaches the torsion natural frequency. the 
torsional amplitude increases, and the 
phase difference between the bending and 
torsional motions reverses. 
Within the considered range of free-stream 
Mach numbers the flutter boundary reach- 
es a maximum at M = 0.83. With a fur- 
ther increase, a second drop in flutter 
speed occurs which might be interpreted in 
a similar fashion as just discussed. since 
the aerodynamic coefficients as well as the 
displacement responses change anew. 
though at different absolute values. More 
specifically, the notable point in Fig. 16 is 

M 
Fig. 16 Unsteady torsional moment coefficient 

vs. Mach numberfortorsional 
oscillations about elastic axis at 
k = 0.22 for Case B 
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that the out-of-phase component of the torsional moment coeffi- 
cient is actually positive, thus producing negative aerodynamic 
damping in the torsional degree of freedom. This might also be 
the reason that explosive flutter and no limit cycle behavior is 
predicted in this Mach number range for slightly higher flight 
speeds than the critical speed. 

It is interesting to note that such behavior of the flutter bound- 
ary at transonic speeds has been observed only for three-dimen- 
sional transport-type wing configurations so far. For example, 
two transonic dips have been found experimentally for a super- 
critical wing model tested at NLR (401 while numerically pre- 
dicted flutter boundaries exhibiting two dips are reported on in 
reference [28]. The observations made in these studies that the 
first (.,usual") transonic dip involves bending-dominated flutter 
while the second dip is characterized by an almost single de- 
gree-of-freedom torsional type of flutter are also striking in the 
present study using a strictly two-dimensional model. It is rec- 
ognized, however, that viscous effects might play an important 
role at these Mach numbers. as was observed in the experiment 
at NLR [40], where the single degree-of-freedom torsional type 
of flutter was found under separated flow conditions for higher 
angles of attack. 
Finally, it should be noted that extensive attempts to find multi- 
ple solutions of the flutter boundary near the first dip were un- 
successful and, apart from explosive flutter. resulted in either 
decaying, exponentially growing. or LCO solutions, as is indi- 
cated in Fig. 13. Such multiple solutions have been reported for 
binary systems simulating the vibrational characteristics of an 
swept wing, seee.g. [8]. 
3.1.3 ResultsforCaseC 
Case C is identical to the 3 d.0.f. system studied by Yang and 
Batina [381 using the NACA64A010 airfoil. In reference 1381 
results of time response and classical fluner analyses are pre- 
sented at M = 0.825, applying unsteady aerodynamic coeffi- 
cients computed by the codes LTRANZ-NLR 1241 and USTS 
1261. For the given parameters the flutter speed and mass ratio 
were found to be U; = 0.539 at p = 20.86 using LTRAN2- 
NLR coefficients and U; = 0.518 at = 27.60 using USTS 
coefficients. Based on the fluner solution using LTRANZNLR 
aerodynamics, with h,/b = 0.001 , a, / ( h , / b )  = 0.748, 
Po / (ho /b )  = 0.638, and wF /wu = 0.616 (no phase infor- 
mation given), diverging responses were obtained with the 
present code. However. neutrallv stable resoonses resulted at 
U; = 0.509 and p = 23.48. 
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Fig. 17 Flutter velocity coefficient vs. Mach 
number forcase C 

M 

Estimates of the vibrational parameters of the critical aeroela- 
stic response were determined to a , / ( h , / b )  = 0.817, 
P,/(h,,/b) = 0.565. w F / w U  = 0.617, qa-qh = 0.679. 
a n d q - q h  = 5.413 [rad]. 

The flutter boundary for Case C as a function of Mach number 
as predicted by the present code is shown in Fig. 17, while the 
corresponding flutter frequencies are depicted in Fig. 18. The 
amplitude and phase information of the critical displacement re- 
sponses vs. Mach number are plotted in Fig. 19. 
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Fig. 18 Flutterfrequencyvs. Mach number for 

Case C 
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(e) M = 0.866 

-continued 

U, M = 0.85 

Fig. 20 Iso-Mach contour lines at various Mach 
nurnbersforCase C 

Also, in order to impart insight into the distinct flow patterns. 
the instantaneous contour tines at various Mach numbers are 
shown in Fig. 20. The animation snapshots correspond to the 
points in Fig. 17 which are labeled (a) through U,. 

For Mach numbers lower than 0.80 the flutter behavior differs 
only little from that of Case B. This is not surprising, since the 
system can approximately regarded as a 2d.o.f. system be- 
cause of the high stiffness in the control hinge. The high fre- 
quency ratio of o g / m a  = 1.5 totally avoids flutter for the 
bending-aileron branch. However, as will become apparent in 
the following, it still allows for torsion-aileron torsion associat- 
ed aeroelastic instabilities. 
As the Mach number increases a steep upward rise of the flutter 
boundary and an increase in flutter frequency is predicted, as 
was observed in the 2d.o.f. system. However, as compared to 
Case B the second drop in Runer speed appears somewhat earli- 
er af about M = 0.82 .This behavior has a close relation to the 
presence of the control surface and the strong shock waves in 
its vicinity at these Mach numbers. As is clear from the ampli- 
tude and phase information depicted in Fig. 19, the flutter mode 
changes and becomes primarily torsion flutter, where it is evi- 
dent that the control surface degree of freedom contributes ap- 
preciably to the flutter mode in the range of Mach numbers 
0.82 <M< 0.855. In addition, the fluner frequency rises and 
reaches a maximum value shortly after the bottom of the sec- 
ond dip at M = 0.86, reflecting the dominance of the torsion 
natural mode. 
For Mach numbers higher than 0.86, when the shocks move to- 
wards the trailing edge, the flutter mode changes and the flutter 
boundary increases anew. At M = 0.875 the amplitude and 
phase parameters of the bending-torsion branch, lu,, l/lh,,/b[ 
and (pa - (p,, , approach almost the same order of magnitude as 
they exhibit at Mach numbers lower than 0.70. 

3 2  Repalts for Flexible Wing Section (Cases D and E) 
Based on sample calculations using the arbitrary Lagrangian- 
Eulerian formulation. Bendiksen concluded that camber bend- 
ing might play an important role in the transonic fluner prob- 
lem. This conclusion reached in reference [9] is more definitely 
confirmed in the present study and may have particular implica- 
tions for the application of adaptive swctures in wing technolo- 
gy. In this section, the effect of chordwise flexibility on the 
aeroelastic response behavior of two typical wing segments. 
namely those ofCaseB and C. is investigated. 
In order to gain insight into the possible dynamic behavior of 
the studied cases and also to provide a meaningful measure for 
the flexibility taken into account. the eigensolutions of the re- 



spective free vibration equilibrium equations of motion were 
computed first. In additton, since there is usually little justifies- 
lion for including the dynamic responses of the higher frequen- 
cy modes, the computational effort was significantly reduced 
by transformingthe basis to modal (normal) generalized wordi- 
nates and considering only a few modes. This implies that all re- 
sults presented in this section were computed using the modal 
approach. It should, however, be noted that during the checkout 
phase of the program also computations for the rigid wing seg- 
ments (Cases B and C) were performed using either discrete or 
modal (normal) generalized coordinates, which led to exactly 
the same results within the accuracy of the output routine (8 dig- 
its). 
The influence of the flexibility on the dynamic behavior was as- 
sessed by comparing the fundamental mode shapes +b of Cas- 
es D and E with the componding sets of mode shapes +. 
obtained for the ngid body Cases B and C. On condition that 
the considered eigenvectors +b consist of the same number 
of components representing the same coordinates (sign conven- 
tion) in a common basis. this can he achieved by employing the 
Modal Assurance Criterion (MAC) [l] 

which is independent from the possibly different normalization 
of the eigenvectors. Maximum conformity is given by a MAC 
value of 100%. while at least a MAC value of 70% is required 
in order to speak of related mode shapes. 

For the purpose of enabling direct comparison between the Cas- 
es B and D as well as Cases C and E by applying the Modal As- 
surance Criterion, the eigenvectors of Cases B and C were 
exactly expanded lo the required size. 
3.2. I Resulrs for CaseD 
Case D is the same as Case B except that the dynamic behavior 
of the system is now described by 20 degrees of freedom. More 
precisely, 9 beam elements are used in the chordwise direction 
of the typical wing segment. each of wiuch has two degrees of 
freedom at each node, i.e., one translational and one rotational 
degree of freedom. The entire finite element assemblage then 
has 20 degrees of freedom, thus accounting for more general de- 
formations, or in  other words for chordwise flexibility, of the 
typical wing segment From inspection of the eigensolutions of 
the system it was concluded that the first four mode shapes are 
sufficient to represent the global dynamic behavior of the sys- 
tem including camber bending effecls As a result. the frequen- 
cy content of the system is reduced from initially 
mmur/ma = 1.34. IO' to wm,/ma = 7.81 accompanied 
by a reduction in the admissable time step for the structural do- 
main from Ars/Ta = 4.97 . 
(where Ta = 2 x / o ,  ), assuming that one period of the h i g h  
est frequency of the system is resolved by 150 time steps, i.e.. 
Ats = I / ( 150fm,) Typical admissible time steps A f F / T a  
for the temporal integration of the fluid domain are of a order of 
magnitude of about IO" for the explicit and IO-' for the im- 
plicit time integration scheme. This attests more precisely the 
statement given above that the admissible structural time step 
can decrease well below that acceptable for the fluid domain. 
The MAC values with respect to the first and sewnd natural 
mode shapes of Case D are 99.85% and 98.61%. respectively, 
while the corresponding frequencies exhibit relative errors of 
- 0.33% and - 3.5%. As is clear from these values, the funda- 
mental modes of the rigid body system (Case B) are well repm- 

to Ars/Ta = 6.39. 

duced by the finite element model. Even more surprising are 
the remarkable changes in the flutter boundary and the flutter 
frequency, which are plotted vs. Mach number in Fig. 21 and 
Fig. 22. Also depicted in these figures are the solutions ob- 
tained for the corresponding rigid system in order to make com- 
parison easier and also to wntrast the effects of flexibility. 
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Ag. 21 Flutter velocity coefficient vs. Mach 
number for Case D 
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Flg.22 Flutter frequency vs. Mach number for 
Case D 

As can be seen, for Mach numbers lower than 0.79 the flutter 
boundary as well as the flutter frequency are shifted towards 
lower values. This means that the minimum of the first transon- 
ic dip is also shifted towards lower critical flight speeds. The 
reason for this might lie in the effect that camber bending mo- 
tions of the profile increase the in-phase components of the un- 
steady aercdynamic coefficients, thus increasing the impact of 
the aerodynamic forces on the structure. The minimum value in 
flight speed is predicted at the same Mach number as for Case 
B, indicating that the out-of-phase components of the unsteady 
aercdynamic coefficients remain relatively unchanged. For 
Mach numbers slightly higher than 0.79 a steep upward rise of 
the flutter boundary is predicted, and reaches a maximum at a 
significantly higher level than was observed for Case B. 

Another notable point is that the flexibility seems to have a sta- 
bilizing effect on the limit cycle behavior of the system. For ex- 
ample, in the region where the second dip occurs no K O  was 
found for the rigid wing section, while stahle LCO solutions 
were predicted forthe flexible wing segment. 
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flg. 23 Considered eigensolutions for Case E 

However, as already mentioned above, whether or not LCO is 
found depends on the length of the considered simulation peri- 
od. It is therefore expected that some of the unstable solutions 
depicted in Fig. 13 for Mach numbers where firm shocks are 
present might have resulted in LCO solutions for extended sim- 
ulation periods. In addition. the higher the flow velocity the 
faster the system reaches its steady K O  amplitude and vice 
versa. In so far the rapid approach of the flexible system to its 
steady LCO solution might also be viewed as an effect of the in- 
creased impact of the airloads due to camber bending. 
The second drop in flutter speed is predicted at slightly lower 
Mach numbers compared to Case 8, which, from the discus- 
sion in section 3.1.2, implies that camber bending affects the 
precise position of the shocks. therefore producing a phase shift 
in the unsteady aerodynamic coefficients. 
3.2.2 Resulfs for Case E 
By analogy with the companson of the results for Case D with 
those of Case B. the results for Case E are now compared to the 
results obtained for the 3d.o.f. system studied in section 3.1.3 
(Case C). The finite element assemblage used for Case E has 21 
degrees of freedom. However, again the dynamic behavior of 
the system was found to be sufficiently accurately described by 
mode superposition using only the first six mode shapes of the 
system. The respective eigensolutions are depicted in Fig. 23. 
Also, in order to impan an idea on the possible deformations of 
the typical wing section including its surface (fluid structure in- 
teraction boundary), Fig. 24 shows a sketch of the 6th mode as 
an example. 
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Flg. 24 Example of deformed typical wing 
section using the 6th mode shape of 
Case E 

The MAC values with respect to the first three natural mode 
shapes were computed as discussed in  the previous section and 
are 99.81 %, 99.73%. and 99.35%. respectively. The relative er- 
rors in the corresponding frequencies are - 0.40%. - 5.42%. 
and - 3.07%. Again a high level of conformity between the 
mode shapes of the two systems is obvious, though the relative 
error in the frequency of the second mode (torsion) is notewor- 

In Fig. 25 and Fig. 26. the predicted flutter boundaries and vari- 
ations in flutter frequencies for the Cases C and E are plotted vs. 
Mach number in the same figures. Again. the flutter boundary 
as well as the corresponding flutter frequencies are shifted to- 
wards lower values for Mach numbers smaller than those 
where the minimum in flutter speed was predicted for Case C. 
In contrast to the phenomenon found in Case D. where com- 
pared to the rigid case the flutter boundary reached a even more 
pronounced maximum for slightly higher Mach numbers be- 
yond the first transonic dip, the flutter boundary for Case E 

thy. 



1018 

0.58 0 LCO 

reaches almost the same value before it starts to drop anew with 
increasing Mach number. As with the first drop in flutter speed, 
the minimum of the second transonic dip is also found to be 
smallerthanthatoftherigid wing segment. 
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Fig. 25 Flutter velocity coefficient vs. Mach 

numberfor Case E 
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Fig. 26 Flutter frequency vs. Mach number for 
Case E 

Another notable point in comparing Cases C and E with each 
other is that the consideration of chordwise fleubility seems to 
have a destabilizing effect on the limit cycle behavior, as can be 
seen from the obtained LCO solutions for both cases (Fig. 17 
and Fig. 25). This is in contrast to the observed behavior for 
Cases B and D, where for the flexible Cax D (Fig. 21) more sta- 
ble LCO solutions were predicted than for the corresponding 
rigid Case B (Fig. 13). This effect, however, was not further in- 
vestigated in this study. 
4 CONCL~INGREMARKS 
An aemlastic simulation code has been developed to analyze 
the response behavior and stability characteristics of typical air- 
foil sections in two-dimensional transonic flow by using the do- 
main decomposition approach. The prime features of the 
proposed method are viewed in its capability to implement 
aerodynamic models of varying complexity and in the general 
formulation of the stmctural model by means of the finite ele- 
ment method, while different spatial discretizations in the fluid 
and structural domain are permitted. Elastic effects in the chord- 
wise direction of a typical wing section are taken into account, 
thus allowing for more general motions of the airfoil including 

the fluid structure interaction boundary. The exact rigid case is 
readily treated in a very effective manner by lumping the S ~ N C -  

tural propties and distributed loads. In addition, the proposed 
method allows for the application of the widely used modal de- 
composition technique to the structural equations of motion. 
which was shown to lead to a significant decrease in computa- 
tional costs. 
In this study transonic aemlastic time response calculations 
were carried out for several test GBS~S and the effect of chord- 
wise flexibility on the aeroelasitc stability behavior was investi- 
gated. More specifically, the flutter characteristic of a two 
degne-of-freedom airfoil oscillaung io pitch and plunge was 
first CalNlated and compand with previously published w 
sults. The agreement was generally good. though for a narrow 
range of free-stream Mach numbers a second drop in flutter 
speed was predicted with the present code, which did not show 
up in the previous analysis. The same phenomenon was found 
in all considered cases and was shown to be closely related to 
the shock dynamics. 

An energy identity was implemented to obtain an independent 
check on the accuracy of the proposed partitioned time integra- 
tion procedure. This was mainly done to verify the conclusion 
reached in references 191 and [ll] that the ..classical" domain 
decomposition approach overestimates the energy flux from 
the fluid to the structure, thus leading to a systematic diver- 
gence of the difference between the total energy of the structur- 
al system and the work done by the aexcdynamic loads. As is 
clear from the present analyses, a well-posed partitioned time 
integration procedure is capable of correctly reproducing the 
energy exchange between the fluid and the structure. 
Based on sample calculations using the arbitrary Lagrangian- 
Eulerian formulation, it was also concluded in reference 191 
that camber bending might play an important role in the tran- 
sonic flutter problem. This conclusion was more definitely con- 
firmed in the present analyses and may have particular 
implications for the application of adaptive st~ctures in w r y  
technology. The invesugations in this study revealed that for 
the considered cases the minimum of the flutter boundary is 
shifted towards lower critical flight speeds if camber bending 
motions are included in the analysis. In addition, the minimum 
of the sccood drop in flutter speed is predicted at slightly lower 
Mach numberr as compared to the corresponding rigid case., 
which implies that camber bending affects the precise position 
of the shocks. therefore producing a phase shift in the unsteady 
aerodynamic coefficients. 
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Figure 5: 3-D view of vector plot and contour plot of 
normal displacements of an arbitrary symmetric vibra- 
tion mode of a fighter-type aircraft. 

9.3 Aerodynamic models 

The aeroelastic solver is able to carry out the nonlinear 
aeroelastic analysis in the subsonic, transonic and sn- 
personic speed range. 
At present the time-accurate flow is modelled by: 
FP, completed by the Clebsch potential model for 
flows with strong shock waves which takes into ac- 
count entropy and vorticity corrections 1191. 
The choice for this model, mainly motivated by o p  
erational requirements with respect to  turn-around 
time and computational costs, is discussed in [5]. 
Recently the EE/TLNS methodology as described in 
[a, 91 has been embedded because there is enough 
evidence that with the TLNS complemented witb a 
simple turbulence modelling the needs of the industry 
can be met for many realistic configurations. The 
latter extension is motivated by the type of flows and 
geometries which are encountered with fighter-type 
aircraft. 

3.4 Simulations 

The present version of the method enables the follow- 
ing types of simulation around 2-D and 3-D configura- 
tions: 

Steady aerodynamic simulation at given M, and 
angle-of-attack for rigid configuration; 

Figure 6: 3-D projections of vector plot and contour 
plot of normal displacements of an arbitrary symmetric 
vibration mode of a fighter-type aircraft. 

Steady aeroelastic simulation witb static deforma- 
tions at  given M,, angleof-attack and dynamicpres- 
sure; 
Unsteady aerodynamic simulation for forced motion, 
deformation or gust a t  given M,, angle-of-attack, 
vibration mode and type of the motion (gust) (sinu- 
soidal, impulse, jump, polynomial, etc.); 
Unsteady aeroelastic simulation due to  elastome- 
chanical motion or deformation at given M, , angle- 
of-attack, dynamic pressure and vibration modes. 
Also an external force due to exciters (flutter vane, 
gusts) can be included. 

Simulations can be performed about symmetric con- 
figurations with symmetric and/or anti-symmetric vi- 
bration modes with respect to the zy (horizontal) and 
zz (vertical) planes. Also simulations are possible for 
wing-tail configurations and for complete bodies which 
require circumferential periodicity conditions to be ap- 
plied. 
On slit surfaces emanating from apices or non-trailing 
edge body parts the imposing of a hard wall, a free jet 
or a undisturbed pressure condition can be imposed. 

3.6 Elastomechanical model 

The elastomechanical model is split into a static part 
and a dynamic part which are explained in the following 
sections. The static deformation of the aircraft configu- 
ration is obtained by means of the 'freefree' flexibility 



Figure 7: Normal displacements of an arbitrary sym- 
metric vibration mode (5th) of a fighter-type aircraft, 
from flutter computational chain (surface-spline). 

matrix. The dynamic structural behavior of the air- 
craft is based on the generalized modal deflection ap- 
proach. The dynamic deformations are expressed in 
generalized coordinates qi and their associated modal 
mass M ,  damping D, stiffness K and vibration modes 
hi .  For a description see [5]. 

3.6 A(ero)E(lasto) Transfer 

The information transfer a t  the fluid/structure interface 
is performed by the interpolation models which are well 
described in [7]. 
From the implemented interpolation models [5] it has 
turned out in applications that the Least Squares Poly- 
nomial approximation of the data and Aounjet’s vol- 
ume spline interpolation method are attractive to se- 
lect because they do not require any user preparation 
or intervention. The well-known planar surface spline 
interpolation and its curvilinear application are hardly 
used in applications. 
In general it is assumed that the elastomechanical data 
are obtained through e.g. NASTRAN so that for this 
case the interface NASAES has been created. 

3.7 Othern 

Besides the vibration modes, other sets of geometric d i s  
turhance fields (control modes, pseudo vibration modes) 
which are interpolated by the volume spline or poly- 
nomial spline method might be specified by the user. 
These modes are also described in [5]. 
In order to facilitate the comparison with other refer- 
ence pressure data during the simulation, the volume 

Figure 8: Mesh around wing-body-tail fighter-type con- 
figuration, number of points - 200,000. 

spline method is also used to interpolate arbitrary data 
to the aerodynamic surface grid. 

3.8 Time signal analysis 

One of the fundamental tasks in an aeroelastic analysis 
is the determination of the frequency and damping of 
aeroelastic modes (e.g. to detect if one of the gener- 
alized displacements becomes umtahle and flutter will 
occur). As many different time response signals may 
have to be analyzed several methods for curvefitting 
should he available. In general each time response sig- 
nal exists of contributions of various modal modes, nnf 
which the frequency and damping of each one have to 
be determined. 
Therefore, during an unsteady simulation the data must 
be analyzed on-line in the time domain in order to de- 
termine the behavior of a coupled system. The main 
purpose of this analysis is to determine the frequency 
and damping characteristiui of the discrete time signal. 
To fulfil that task the following methods have heen em- 
bedded [ll]: 

The exponential sine fit, 
Prony’s method, 
Fast Fourier Transform analysis, 
Curve-fitting of transfer functions. 

Since a wide array of time response signals is available 
several ways exist to make use of the above-mentioned 
time-fitting tools. The most common time response sig- 
nals which can be used to determine the frequency and 
damping characteristics of the discrete time signal con- 
sist of: 

For every modal mode separately: 
the generalized coordinate, 
the velocity of the generalized coordinate, 



Figure 9: Mean pressure contours (EE) on fighter-type 
configuration at M ,  = 0.92, am = 6.0 deg. 

the generalized force. 
Also a combination of modal modes and/or the pres- 
sure or deformation data a t  selected points can be 
analyzed. 

3.9 Monitoring and Postprocessing 

Direct monitoring and analysis of all aeroelastic quanti- 
ties ofinterest are of major importance to the user. The 
monitoring of the system is able to provide a graphical 
preaentation of the deformations and pressure distribu- 
tion on the configuration at selected time samples as 
well as the mean steady pressure distribution and its 
first harmonies over a selected time interval. Further- 
more, the monitoring is able to provide the dynamic 
response of integrated loads as lift and moment coeffi- 
cients for complete configurations as well as individual 
components. Also the pressure coefficients might be 
compared wi th  

Pressure coefficients generated at  a different time or 
iteration index which is important for checking con- 
vergence. 
Pressure coefficients generated in a different session 
which is important for checking different modellings 
(e.g. FP against EE). 
Arbitrary reference pressure (experimental) coeffi- 
cients during the simulation which is important for 
identification. The volume spline method is used to 
interpolate the arbitrary data to  the aerodynamic 
surface grid. 

When the aeroelastic equations are solved for sev- 
eral flow conditions (variable Mach numbers, angles-of- 
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Figure 10: Comparison of experimental and calculated 
mean pressure distributions on the wing of fighter-type 
configuration at M ,  = 0 . 9 2 , ~ ~  = 6.0 deg. 

attack, amplitudes and frequencies of oscillation) facili- 
ties are available to monitor and predict the derivatives 
of the unsteady airloads in that range and to estimate 
the critical flutter speed. 
Attention has been paid to provide the user with 2- 
D and 3-D plot and analysis facilities to inspect and 
analyze all aeroelastic quantities of interest during the 
simulation. At any time the user may interrupt the pro- 
gram for the analyses and inspection of the data. Again 
this strongly reduces the workload of the aeroelastician 
who is not directed to  other program for visualization. 
The visual output includes screen output and off-plot 
PostScript output. 
Except for the mean and first harmonic components of 
the aforementioned data which is only available after 
finishing a complete period of a harmonic motion, the 
data may he required by the user a t  any time or itera- 
tion step. 

3.10 

Two kinds of visualization tools are available: 
A 2-D facility for plotting collections of 2-D abscissa- 
ordinate plots gathered on one screen or on multiple 
screens. 

0 A 3-D facility for plotting collections of 3-D surfaces 
with contour plots and/or vector plots on one screen 
or on multiple screens. 

The facilities may be used to plot the aforementioned 
quantities depending on the type of simulation. The 
plots can he stored in color PostScript format (using the 
special options in the interactive plot facility or using 
screen dump techniques in combination with other plot 
facilities. 

Inspection: Screen and PostScript plots 
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Figure 15: Second mode shape of T-tail configuration. 

The generalized coordinates of each individual mode 
were calculated in time as a result of a non-zero initial 
value for the acceleration of the generalized ccoordinate. 
The result of the simulation is shown in figure 16. In 
figure 17 the time response data is evaluated through 
exponential sine fit signal processing [Ill to get damp- 
ing and frequency information. The exponential sine fit 
results compare well with the simulated data. 
The results of these simulations confirm that the T-tail 
has a stable dynamic behavior for the flight condition 
under consideration. This is in accordance with the 
MSC/NASTRAN flutter diagram [6] .  

4. CURRENT RESEARCH ACTIVITIES 

In this section a number of current research activities 
are discussed, viz. the subjects: 

MIMO class research 
8 TLNS+ research 
8 Linear aero research 

LCO simulation system 

4.1 MIMO research 

To analyze the many time response signals a number of 
methods have been embedded (see section 3.8). Very 
recently a feasibility study has been started to apply 
the promising MIMO-class techniques 1211 for that pur- 
pose too. They will enhance the analysis capability as 
depicted in figure 18. 
Experience has learned that for a fail safe analysis of an 

Figure 16: Result of a T-tail configuration of dynami,: 
response of generalized coordinates at Mm = 0.84 and 
altitude 0.0 ft in Standard Atmosphere. 

elastomechanical system the mentioned fitting routine,s 
are applied first to the non-aerodynamically loaded sys- 
tem and next to the system loaded using linear aerody- 
namic.s [22], through convolution of transfer functions, 
[23]. The data from these analyses might act as a guide- 
line for the analysis of the non-linear time signal, origi- 
nating from the coupled non-linear fluid structure sim- 
ulation. The analysis process has been fully automated 
through use of scripts. This facility allows the analysis 
process to he repeatihle and to he documented. 
It should be noted ihat also ihe analysis mighi provide . 
a prognostic way Lo speed up the simulaiion by allowing 
for larger time sfeps [io]. 
The adoption of MIMO technology [21] permits a black 
box evaluation of the aeroelastic system in such a way 
that after a single fully-coupled simulation for one flight 
condition the system state for other flight conditions 
(e.g. qdyn) might he predicted and to extract xseful 
data (e.g. Generalized Forces) from the coupled simu- 
lation which ran he used for other purposes. 
The main purpose is to extend the single point applica- 
tion of coupled simulation methods l o  multiple points 
and wayhead is given to perform postprotessing activi- 
ties, pk-, k-method etc, with extracted data from an arc 
plication of a fully-coupled simulation. This multi-point 
strategy is explained in the figures 19,ZO and further 

'No knowledge is assunled of coefficients of the structural and 
aerodynamic system. 
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Figure 1 7  Result of a T-tail configuration after expo- 
nential sine fit signal processing of dynamic response of 
generalized coordinates at M ,  = 0.84 and altitude 0.0 
ft in SA. 

described in [XI. A slightly different model structure 
MIMO* includes auto regressive terms on the outputs. 
Two examples here focus on current ongoing MIMO 
activities [ll] with respect to the timeanalysis and 
demonstrate the status of the aeroelastic environment 
too. 

4.1.1 AGARD I-wing 446.6 

The first example of the applicability of the MIMO-cla98 
techniques, in this crse the modified MIMO* method, 
in flntter analysis is presented for an aeroelaatic investi- 
gation which was conducted for one of the 3-D AGARD 
standard aeroelastic configurations in subsonic, tran- 
sonic and supersonic flow. This confiyration is de- 
scribed in [24]. The configuration for dynamic response 
I-wing 445.6 model “weakened no. 3” was selected at 
Mack0.901. The data were obtained from [lo]. 
The data (generalized forces) as obtained from simula- 
tion with the identified MIMO* model, together with 
the original data for subcritical flight condition are pre- 
sented in figure 21. The data has been plotted for time 
points after the transition has damped out. An excel- 
lent agreement is shown between both data sets (they 
conincide entirely!). 
The main purpose of the excercise will be a simulation, 
at an increased airspeed to a supercritiesl value, apply- 
ing the MIMW results obtained from the subcritical 

Figure 18: Deployment timeanalysis methods with r e  
spect to aeroelastic systems. 
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Figure 19: Multi-point strategy. 

condition and make the comparison with results of the 
aeroelastic simulation at the higher airspeed. Figure 22 
depicts the comparison wbich shows that the system at 
the supercritical airspeed is unstable and that the lin- 
ear MIMO* model prediction performs very well for the 
lower 3 modes. Mode 4 is overpredicted. 
Slightly larger errors were found with the MIMO model, 
i.e. without the auto regressive terms [ll]. Which 
model set results in the best estimates for aerodynamic 
modelling in aeroelastical closed-loop systems is yet to 
be investigated. 

4.1.2 T-tail-fuselage 

The second example to demonstrate the ability of the 
MIMO-class techniques deals with the transport-type 
T-tail fuselage combination, which was already consid- 
ered in section 3.11.2. The conclusion was that the 
exponential sine fit results (Fig. 17) of the time sig- 
nals compare reasonably well with the simulated data 
(Fig. 16). Results with the MIMO-class procedure are 
depicted in figure 23. The MIMO-class fit results are 
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Figure 20: Flowdiagram multi-point strategy. 

astonishingly good. Both methods revealed about the 
same damping and frequencies. The results of these sim- 
ulations show again that the T-tail has astable dynamic 
behavior for the flight condition under consideration. 

4.2 TLNS+ research 

Transonic aeroelastic investigations of modern aircraft 
put increasingly higher demands on the accuracy of 
predicting unsteady aerodynamic loads and aeroelastic 
characteristics. Methods for numerical aeroelastic sim- 
ulations have joined, in which the aerodynamics and 
structural dynamics are considered simultaneously and 
so provide an integrated approach for the multidisci- 
plinary aeroelastic problems. A central question is the 
affordability of of these methods at various levels of 
pratical applications. It is evident that opinions about 
affordability depend on local needs conditions and ap- 
preciations. It is also clear, however. that answer- 
ing this question should be based on a thorough in- 
sight into potential gains in efficiency and robustness 
of these methods. The exploration of these gains is a 
research topic in which Delft university of Technology 
(DUT) and the National Aerospace Laboratory (NLR) 
in Amsterdam cooperate. 
The outcome of that research so far has been presented 
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Figure 22: Comparison of MIMO* predicted (...) and 
reference (-) generalized forces data for AGARD I-wing 
445.6 at  supercritical flight condition. 

Figure 23: Result of T-tail configuration after MIMO 
signal processing of dynamic response of generalized CO. 

ordinates at M, = 0.84 and altitude 0.0 ft in SA. 

in [8, 9, 101 for 2-D and 3-D CUA and CAS meth- 
ods using EE and TLNS solvers. One of the main 
features of these solvers is the development of a r e  
bust efficient upwind implicit timemarching algorithm 
for timeaccurate TLNS equations, employing suhitera- 
tions, espaciallly directed to  the aeroelastic analysis in 
viscous transonic flow. The purpose of using anhiter- 
ations is to accelerate steady-state convergence and to 
permit a large time step in timeaccurate simulations; 
thereby reducing the computational cost, while main- 
taining adequate accuracy. Further details are discussed 
in [E, 91. The ability of the method was demonstrated 
for many cases, including c a m  of inherently unsteady 
flow due to shock-induced separation. Considered 3-D 
cases were: 1)  ONERA M6 wing, 2) Fighter-type wings 
and 3) LANN wing. 

Important observations related to  pratical aeroelastic 



simulations conduded in [9] were: 
Accurate results have been generated applying not 
more than 24 and 48 time steps per period for the 
EE and the TLNS applications, respectively. In that 
perspective again attention is devoted to the calcul& 
tion results with EE equations employing small time 
steps (64/cyde) and large time steps ((l/cycle) for a 
fighter-type Configuration (see section 3.11.1 and [SI). 
The methods turned out to  be very robust and the 
only principal usersupplied numerical parameter for 
an m t e a d y  calculation is the time step. 
The comparison with experiments demonstrated the 
superiority of the TLNS method over the inviscid 
methods for cases involving thick wings. 
The 3-D methods have turned out to  he about a fac- 
tor O(5) to  O(15) slower as compared ta a t i m e  
accurate F P  method for the inviscid and the TLNS 
applications, respectively. This makes them afford- 
able for embedding in an aeroelastic simulation envi- 
ronment. 
Since ihe siabiliiy resiriciion i o  ihe time sfep of the 
componenfs of %he aemelasfic simulation have been 
strongly relozed, fhe neri goal is to  improve %he cou- 
pling of the aerodynamic and siruciural equafions. 
Also it seems to he appropriate now to improve on 
the turbulence modelling. 

Related to the above-mentioned observations a nnm- 
her of current research subjects and/or subjects, which 
need contiuously attention, are discussed and illumi- 
nated with some applications. These subjects are: 

Applications of the current TLNS method 
Tme-step reduction in CUA applications 
Time-step reduction in CAS applications by: 

Higher order extrapolation methods 
Prognostics using Time Analysis Methods (TAM) 

Turbulence models: 
Baldwin-Lomax 
Sparlat-Allmaras 

4.2.1. Semi-span straked delta wing 

To investigate the efficiency and robustness of the cur- 
rent TLNS code the applicability is further demon- 
strated by comparing calculated data with experimental 
data of the NLR wind tunnel test described in [25] for 
the semi-span atraked delta wing. The geometry of the 
outer wing panel is the same as that of the fighter-type 
configuration discussed in section 3.11.1. The flow con- 
dition is M, = 0.90, a, = 6.0 deg. Steady calculations 
have been performed with the EE mode of the TLNS 
code [9] on a mesh of 9 7 x 1 2 5 ~ 3 0  grid points. 
Figure 24 shows the planform and steady isobar con- 
tours at the upper side of the wing with total preasure 
contours behind the wing. Clearly visible are the vor- 
tices initiated by the simple strake and the tip of the 
outer wing panel. Measured mean preasure contours at 
the same flow conditions are presented in figure 25. 
A qualitative comparison of the pressure contours (Figs. 
24,25) on the upper surface at the indicated wing sta- 
tions of the outer wing panel shows a fairly well agr- 
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ment, in particular the presence of the lambda shock 
waves near the tip 3. 

Figure 24: Steady pressure contours (EE) on a semi- 
span straked delta wing configuration with total p res  
sure contours behind the wing at M, = 0.90,am = 
6.0 deg. 

i 

Figure 25: Measured mean preasure contours on a 
semi-span straked delta wing configuration at M, = 
0.90, U, = 6.0 deg. 



11-14 

4.2.2 LANN wing 

To verify the current TLNS method for 3-D steady and 
unsteady applications with moderate viscous and tran- 
sonic effects for cases involving thick wings the LANN 
wing was selected in [SI. The superioty of the TLNS 
method over the inviscid methods for the LANN wing 
was clearly demonstrated. Because of the superioty of 
the TLNS method and future applications for figbter- 
type aircraft the results are preaented again. 
The geometry of the wing bas been taken from [26]. The 
experimantal data is obtained fiom [27l. Extensive com- 
parison of calculated FP data with experimental data 
was already performed in [%I. 
Calculations and comparisons were made for pitch- 
ing oscillation about 62.1% root chord at M,,tcu = 
0.822, am = 0.6deg and Re, = 7.3 x l o 6  based on root 
chord. The amplitude of oscillation was 0.25 deg, with a 
reduced frequency k = 0.102 based on root semi-chord. 
The dimension of the grid was 1 2 8 x 3 2 ~ 2 4  for the invis- 
cid case and 1 2 8 x 3 2 ~ 3 6  for the viscous case. The same 
surface grid was used in both cases. For the turbulence 
modelling the simple Baldwin-Lomax algebraic model 
was applied. 
Comparisou of the mean pressure distributions is shown 
in figure 26 at selected span stattions. The Euler results 
show already a substantial offset to the experimental 
data, even at  the lower side. The TLNS data are in 
fairly good agreement with the experimental data for 
the whole wing at both sides for both shock positions 
and peak suction levels at the leading edge. Note that 
the FP results approximate good the Euler data. 
Unsteady first harmonic pressure coefficients are com- 
pared in figures 27, 28. The EE results were generated 
with 24(12) time steps per cycle and TLNS results were 
obtained using 48(16) time steps per cycle. 
The lower side shows, except at the root, a subsonic 
distribution. The upper side shows clearly the effect of 
the lamda shock waves. Except for peak values the real 
part of the data is predicted fairly well by the TLNS 
method. The Euler data show too much differences. 
The agreement for the imaginaypart of the data is leas 
adequate at both sides. Aft of the shock wave the TLNS 
method performs better. In front of the shock wave the 
Euler data seem to compare better. 
In general, is has to be concluded that a fairly good 
agreement has been achieved. Part of the differences 
between calculated and experimental data should be at- 
tributed to the deformation of the wind tunnel model 
during wind-on conditions and the added complication 
of peak measurements and integration in the experi- 
ment. 

4.2.3 Tim-step reduction in CUA 

In view of the development of a robust and an efficient 
algorithm for time-accurate TLNS equations to obtain a 
realistic and affordable simulation system an earlier ap- 
plication discwed in [8], will be reconsidered, viz. the 
2-D AGARD standard test case for transonic viscous 

Figure 26: Comparison of experimental with FP, 
EE and TLNS calculated mean pressure coefficients 
on LANN transport-type wing, M, = 0.82,0, = 
0.6 deg and Re, = 7.3 x lo6. 

flow (case 3 of Landon [27l). The flow conditions are 
Ma = 0.60, am = 4.86 deg ,Re ,  = 4.8 x l o 6  and the 
boundary layer is fully turbulent. The mode of vibra, 
tion is a pitching oscillation of the NACA 0012 profile 
about quarter-chord with an amplitude of 2.44 deg and 
a reduced frequency k = 0.081 based on semi-chord. 
In [E]  the computational efficiency of the code for the 
current case was demonstrated for several variations of 
the iteration parameters, i.e. time steps/period, subie 
erations and Jacobian recalculations, thereby applying 
2nd order extrapolation. 
Comparisou of calculated sectional coefficients, C, and 
C, (Fig. 29) for variety of time step simulations reveals 
that larger time steps/period for 3rd order extrapola- 
tion could be obtained, thereby reducing the computa, 
tional cost, while maintaining adequate accuracy. Four 
cases of calculated results have been presented for high 
(400) to very low number (16) of time steps/period 
in combination with 4 and 12 subiteratious, respec- 
tively. The lift coefficient shows a very good agreement. 
The moment coefficient shows a more sensitive behav- 
ior. Some differences are apparent, but the extremitips 
appear to be captured well enough by all the cases. For 
this particular viscous test case it seems that 16 time 
steps with 12 subiterations is sufficient. 
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ignre 27: Comparison of real part of experimental 
with FP, EE and TLNS calculated first-harmonic pres  
sure coefficients on LANN wing at  M ,  = 0.82, a,,, = 
0.6 deg, aamP = 0.25 deg and k = 0.102. 

4.2.4 Extrapolation methods in CAS 

Driven by the requirement of realistic aeroelastic simu- 
lations, special attention is devoted not only to a proper 
modeling of the physics but also to  their efficiency and 
robustness. Consequently, an important practical a.+ 
pect is the capability to  march accurately at  a large time 
step, thereby reducing the overall turn-around time. 
However, this implies that all components of the simu- 
lation methodology should passess a large time step 
capability. 
Therefore, an improvement of the aero-structural cou- 
pling procedures is necessary to  benefit from the large 
time step allowed by the current aerodynamic meth- 
ods, shown earlier. In [lo] two coupling methods have 
been studied: an improved aerodynamic extrapolation 
method and a structural extrapolation method. Also a 
third one is introduced: the prognmtic method. The 
latter is an extension of the structural extrapolation 
method and nsea results of the time analysis to guess the 
new states. The three coupling approaches have been 
presented in detail in [lo], therefore the main features 
will be discussed briefly and exemplified with a few ap- 
plications. 

In general the equations of motion for the aeroelastic 
system can be written into a standard state-space form 
as: 

X = A X + B U  (1) 

L! 
Fi 
W: 

re 28: Comparison of imag. part of experimental 
FP, EE and TLNS calculated first-harmonic prea 

sure coefficients on LANN wing at M, = 0.82, a,,, = 
0.6 deg, aemp = 0.25 deg and k = 0.102. 

A standard method [lo] can be used to solve Eq.1: 

where is a representative value of the aerodynamic 
force U ( t )  between time levels (n) and (n + 1). Calcu- 
lation of 0 and 8 are described in [lo]. This commonly 
used loosely coupled method was originally suggested 
in [29], where the aerodynamic force U ( t )  is assumed to 
vary linearly between time steps (n) and (n + 1). The 
aerodynamic force at  time level (n + f) is then ex t rap  
olated as: 

(3) 
U-+? -U" 3 - -U"-'. 1 

2 2 
This value is used to represent the value of U between 
timestep (n) and (n+l). This method fails, however, to  
give good results for large time steps simulations. Two 
approaches are studied to  improve the method: 

Aerodynamic extrapolation 
The aerodynamic force is expressed as: 
U = U ( Q ,  X )  and the extrapolation to time level 
(n + f )  is: 
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Figure 29: Comparison of sectional coefficients, CI 
and C,,, for variety of time step simulations, during 
oscillatory pitching motion of NACA 0012 profile a t  
M ,  = 0.60,am = 4.86 deg ,Re, = 4.8 x 106,01., = 
2.44 deg and k = 0.081. 

where Q is defined by the TLNS equations [lo]. 
The aQ/& and ax/& are readily available data 
while aU/aQ and aU/aX have to be calculated. 

The reason for this method is the fact that the 
structural part behaves smoother than the aerody- 
namic forces. Thus a better result may be expected 
from extrapolating the structural state. To obtain 
the aerodynamic force at time level (n + i), the 
state of the mesh is first approximated as: 

Structural extrapolation 

(5) 
. At X"+f  X" + X " -  

2 '  

The z in the second term is readily available while 
the i: is approximated simply as (2" - t"-')/At. 
Using this data a mesh is generated and the surface 
velocity is used to enforce the boundary condition. 
Thus the aerodynamic part of the method marches 
at  a time level between the structural states. This 
method is more efficient than the first one since 
all quantities needed for extrapolation are readily 
available or can be easily calculated. 

To show the applicability of the improved extrapola- 
tion methods for large time step simulations a forced 
vibration case [lo] of the 3-D configuration for dynamic 
response I-wing 445.6 model weakened no.3 is presented. 
Only calculation results with EE are shown. The a p  
plied grid consists of 1 2 1 x 2 9 ~ 2 4  mesh points. The case 
at M, = 0.96 is considered. The second mode of the 
wing is excited in a sinusoidal motion with reduced fre- 
quency k = 0.10, based on root semi-chord, and an am- 
plitude of 0.005. Figure 30 shows the response of the 
fist two vibration modes using a small time step (48 

4.m 1 
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Figure 30: Comparison of time responses between smaU 
(48/period) and large (lO/period) time step simula- 
tions for improved aerodynamic extrapolation method, 
for AGARD I-wing 445.6 at  M ,  = 0.96,am = 
0.0 deg, amp = 0.005 (2nd mode) and C = 0.10, during 
forced vibration. 
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Figure 31: Comparison of time responses between small 
(32/period) and large @/period) time step simulations 
for the prognostic method, employing Prony's method, 
on Isogai case A at  M ,  = 0.85. 

steps/period) and a large time step (10 steps/period). 
The conclusion is that no significant differences are ob- 
served. Other applications have been demonstrated in 

Finally a prognostic method is proposed, which is dw 
cussed in the next section. 

[101. 

4.2.5 

The prognostic method proposed in [lo] which is a re- 
finement/generalization of the previous extrapolation 
methods and mighthe regarded as a higher-order ex- 
trapolation using transfer functions. In each time step 
the structural or aerodynamic part is extrapolated to 
the next time level by: 

Prognosties using TAM in CAS 



Here P(#, t) denotes the approximation of time trace 
{#,,,#,,-1, ......, #n-m} at t which should be ob- 
tained hy performing one of time analysis methods 
(TAM) presented in [lo], m denotes the number of re 
tarded time steps in the time domain. It will be obvious 
that as soon as the function P is not changing anymore 
the simulation can be finished since the following time 
steps will not present any new additional information. 
In fack this means the time step is virtually ink i te .  
A 2-D aeroelastic application of the prognostic extrap- 
olation method, discussed in [lo], is presented for the 
NACA 64A010 airfoil using structural datafromthe kc- 
gai case A [30]. The structural parameters are 0=-2.00, 
r,=1.80, rz=3.48, p=60.00 and the ratio of the uncou- 
pled frequency wn/w,=1.00. The flutter boundaries of 
this case, compared to some other methods, have al- 
ready been shown in [SI. The result presented here will 
concentrate on the large time step aspect of the method. 
A mesh consisting of 140x32 points was applied. Only 
application with EE equations will be presented. The 
simulation is started from a steady condition with an 
initial z. The small time step simulation uses 32 time 
steps/period of the uncoupled mode while the large time 
step simulation applies 8 time steps/period. 
The case considered is a subcritical condition at M ,  = 
0.85 with v" = U,/(w,b& = 0.53. Comparison of 
simulation using small time steps and large time steps 
for the prognostic method, employing Prony's [ l l ]  anal- 
ysis for the time traces is shown in figure 31. The results 
of both simulations show an excellent agreement, no dif- 
ferences are observed. The inadequacy of the common 
method [29] for large time step simulations of this case 
have been shown in [lo]. 

4.3 Linear Aero Research 

To ease applications and to build confidence a coupled 
aeroelastic simulation should also be run based on lin- 
ear aerodynamics. This requires the generalized aerc- 
dynamic forces (transfer functions) which are in general 
available in the frequency domain to be fitted [23, 311 
and transformed to the time-domain. 
Figure 32 shows a number of possibilities to calculate 
the generalized aerodynamic forces together with the 
transformation tools to obtain transfer function repre- 
sentations of the loads for ease formulation in the time 
domain. The blocks in the four outer corners of the d i a  
gram are sources to calculated the aerodynamic forces. 
The three inner blocks around the kernel of the dia- 
gram, t ransferfunct ion,  are fitting procedures for the 
aerodynamic forces. These fitting procedures include: 
1) Complex curve fit in s-domain, 2) Real fit curve in 
s-domain, and 3) MIMO-class techniques and Prony's 
method, which have been described in [ll]. 

A feasibility study with 2-D airloads and 3-D airloads 
has been performed [ l l ]  to investigate the most effi- 
cient way to embed linear aerodynamics in the AESIM 
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method. Without the analytical details the procedure 

The assumption is made that the behavior of any un- 
steady parameter of interest such as an aerodynamic 
load or a pressure coefficient can be described by a a p  
propriate form for the transfer function which is a ratio 
of two s dependent polynomials which is known as the 
Pad& approximation. The complex fitting procedure has 
been assumed to obtain the approximation. The ratio- 
nal polynomial has been transformed to the statespace 
form. Subsequently, this system has been solved using 
the Newmark scheme embedded in the AESIM system. 
Two applications of the study will be presented, a 2- 
D case for a flat plate and a 3-D case of the AGARD 
I-wing 445.6. 

W a s  88 fOllOWS [11]. 

2-D application Calculations of unsteady airloads 
have been performed with DOULAT for a flat plate 
heaving (mode 1) and pitching about an axis 0 . 5 ~  in 
front of the leading edge (mode 2) at  M ,  = 0.5 and a 
reduced frequency range up to I 5 I= 1.0. (Note: The re- 
duced frequency is defined here as k = Irn(s), based on 
the semi-chord.) The generalized forces data generated 
by DOULAT were fitted with the aforementioned prc- 
cedure. Thereafter the Newmark scheme was applied to 
oscillatory motions in the same frequency range and the 
time traces were transformed to the frequency domain. 
Figure 33 shows the comparison in the frequency dc- 
main between the original data (circle) and the fitted 
data (linecross) which show a good agreement. Fig- 
we 34 shows the comparison in the frequency domain 
between the original data (circle) and the data (cross) 
obtained by analysing the time traces which again show 
a good agreement. From this the conclusion might be 
drawn that the aforementioned procedure is applicable 
in 2-D. 

3-D application Calculations have also been per- 
formed with GUL for the 3-D AGARD I-wing 445.6 
at M ,  = 0.901. This configuration is described in [26]. 
Again two modes were selected, modes 2 and 4. A sim- 
ilar procedure was applied as outlined above. 
Figure 35 shows the comparison in the frequency dc- 
main between the original data (circle) and the fitted 
data (linecross) which show a good agreement. Figure 
36 shows a comparison in the frequency domain between 
the original data (circle) and the data (cross) obtained 
by analysing the time traces which shows again a good 
agreement. 
From this the conclusion might be drawn that the afore 
mentioned procedure shows good promise for embed- 
ding in the AESIM system. 

4.4 LCO simulation system 

Modern fighter-type aircraft operating in the high sub- 
sonic, transonic and low supersonic speed regime may 
experience under certain conditions transonic nonlinear 
flutter, known as limit cycle oscillations (LCO). The 
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Figure 32: Flowchart of techniques for transforming lin- 
ear aerodynamics between frequency and time domain. 

Figure 33: Comparison ( lirectly calculated and fit- 
ted unsteady coefficients t L harmonically heaving and 
pitching flat plate at M ,  = 0.5. 

phenomenon is related to flutter but affects aircraft per- 
formance in a manner similar to buffet. Conditions 
of transonic LCO instabilities are moderate angle-of- 
attack, usually smaller than 10 deg and transonic Mach 
numbers ranging from - 0.9 to ,., 1.1. The flow con- 
ditions during this type of LCO are characterized by 
mixed attached/separated flow. Lowly damped vi- 
bration modes tend to respond provided they have the 
proper Characteristics to couple with this type of flow. 
The coupling frequently occurs near flutter boundaries 
obtained with linear theory [14], i.e. with panel meth- 
ods for attached flow. 
To determine accurately this kind of nonlinear aeroelas- 
tic instabilities, an investigation was started at NLR in 
the early nineties to understand the nature of LCO ex- 
perienced by fighter-type aircraft maneuvering a t  tran- 
sonic speeds. In addition to conducting an extensive 
wind tunnel investigation on oscillating fighter type 

-2-, -2 0 

R..l 

Figure 34: Comparison in the frequency domain of di- 
rectly calculated and to and fro transformed unsteady 
coefficients of a harmonically heaving and pitching flat 
plate a t  M ,  = 0.5. 

wings [3, 20, 321, a major objective was to develop a 
semi-empirical method for predicting LCO [12, 13, 151 
characteristics of full scale aircraft. 

As part of the method, a model for determining aerody- 
namic loads from steady and unsteady data bases wils 
developed that is suitable for predicting LCO of fighter- 
type aircraft at transonic speeds. Based on previous 
studies using steady pressure data [32], it was shown 
that time lags in the aerodynamic flow field are essen- 
tial to obtain realistic LCO amplitudes. Analysis of un- 
steady wind tunnel data obtained from [3, 201 showed 
that these aerodynamic time lags are affected by the 
various types of Row field involved. Further, on the basis 
of the knowledge of these flow field types and the results 
of the unsteady wind tunnel measurements, an aerody- 
namic (pressure) state-space model was developed by 
NLR, for transforming the unsteady highly nonlinear 
aerodynamic loads into a form appropriate for use in 
time simulation methods. This pressure model is simi- 
lar to the nonlinear "ONERA" aerodynamic model ini- 
tially developed by n a n  & Petot [33]. The development 
of the N L R  unsteady pressure model and capability of 
producing nonlinear transonic aerodynamics that a.re 
typical of transonic LCO were presented in 112, 13, 151. 
It was also demonstrated for a number of aircraft con- 
figurations [12, 13, 151 that the current status of the 
semi-empirical LCO prediction method with implemen- 
tation of the NLR unsteady pressure model produced 
results which correlate correctly with flight test data.. 
The above description of the NLR pressure model shows 
that extensive use is made of steady and unsteady wind 
tunnel test data. It is clear that the effectiveness and re- 
liability of the model strongly depends on the complete- 
ness of the experimental data base and the thorough- 
ness of the evaluation of the model. These, however, 
have been obtained on a limited scale in the present re- 
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Fignre 35: Comparison of directly calculated and fit- 
ted nnsteady coefficients of the harmonically oscillating 
AGARD I-wing445.6 at M ,  = 0.901, (modes 2 and 4). 

test use can be made of the existing wind tunnel 
model. 

Application of CUA/CAS. 

CUA For model configurations and flow condi- 
tions which have not or can not be represented 
in a wind tunnel test program the required aen 
dynamic information may be obtained from CUA- 
techniques, steady and unsteady. The current de- 
velopment of theee techniques shows that they are 
very promising, even for the complicated types of 
flow including flow separation (see sections 3 and 
4), but that they have matured more sufficiently. 
It is to be expected that in the near future these 
CUA-techniques may play a complementary role. 
Measured steady and unsteady pressure and loads 
data [3, 20,321 may be used to validate those tech- 
niques. 

CAS Extensions for typical fighter-type aircraft 
applications of the discussed AESIM system to 
perform realistic computational aeroelastic simula- 
tions. Because of the modular design of the sys- 
tem, such extensions should be carried out relative 
easy. Measured flight test data may be used to val- 
idate the updated AESIM system. Further, calcu- 
lated aeroelastic responses may be compared with 
results of the semi-empirical prediction method, or 
viceversa. 

Realisation of the suggested extension of the AESIM 
system will enhance the aeroelastic analysis capability 
for fighter-type aircraft as depicted in figure 37. 

Fignre 36: Comparison in the frequency domain of di- 
rectly calculated and to and fro transformed unsteady 
coefficients of the harmonically oscillating AGARD 1- 
wing 445.6 at M, = 0.901, (modes 2 and 4). 

WINDTUNPELMA 

R E S W N S  ANNYSIS 

SEMI-EYPIRICU YDDELS 

search program. Continued research is therefore needed 
to enhance the confidence in the model and to establish 
its applicability for wide r ange  of model and flow pa- 
rameters. Such research may be defined in one or more 
of the following directions. 

Continued preasure and load measurements in the 
wind tunnel. 

The aim of this test is to extend the unsteady part 
of the data base, which currently corresponds to a 
limited number of model and flow parameter val- 
ues, and 80 to bring it in balance with the steady 
part [32] of the data base, which corresponds to 
an extensive set of parameter values. Particularly, 
interest exists in collecting data for more leading- 
edge and trailing-edge flap deflections and denser 
frequency ranges (e.g. frequency sweeps). In the 

SEMI-EMPIRICU MODELS 
WS€D ON NSS. 

NAMERSTOKES SOLVER 
1N.S.S.I 

Figure 3 7  Classification of prediction methods 

6. FUTURE RESEARCH ACTIVITIES 

Future aeroelastic research activities will be focused 
on realistic and affordable aeroelastic simulations de- 
picted in In figure 38. The aim is to extend the cur- 
rent AESIM system to an aeroelastic simulation envi- 
ronment for fighter-type aircraft application. 
Starting with the basic ingredients of the aircraft: 

Structural modelling, 
Aerodynamic modelling and 
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SUmmm 
The aeroservoelastic stability of a fighter type 
aircraft is investigated at high angle of attack. The 
effects of non-linear, incidence dependent unsteady 
aerodynamic forces of elastic modes and of control 
surface deflections on the structural couplig are 
demonstrated for low and high subsonic speeds for 
different incidences. The difference of open loop 
frequency response functions calculated with linear 
and with high angle of attack unsteady 
aerodynamics documents the necessity of 
introduction of high incidence effects for 
aeroservcelastic stability calculations. Non-linear 
effects are introduced using unsteady pressures of 
wiadtunnel experiments on an oscillation model by 
correcting of theoretical pressures. 

Limit Airspeed 
Minimum Operational Airspeed 
Maximum Operational Airspeed 
Gain Margin> Minimum change 
in loop gain, at nominal phase, 
which results in an instability 
beyond that allowed as a residual 
oscillation 
Phase Margin => The minimum 
change, at nominal loop gain, 
which results in an instability 
Mode fiqueacy in Hz 
generalised co-ordinate 
mode frequency 
generalised mass 
generalised stitfuess 
generalised unsteady aerodynamic 
forces of the modes 
generalised unsteady aerodynamic 
efficiency of inboard flap 

generalised unsteady aerodynamic 
efficiency of outboard flap 
generalised unsteady aerodynamic 
efficiency of foreplane 
generalised inertia couplig term 

for inboard flap 
generalised inertia coupling term 

for outboard flap 
generalised inertia coupling term 

for foreplane deflection 
Actuator impedance function 
Sensor transfer function 
Advance filter characteristic 
Inboard flap control loop gain 
Outboard flap control loop gain 
Foreplane control loop gain 
pure theoretical pressure of the not 
measured mode j 
pure theoretical pressure of the 
measured mode i 
experimental pressure of the 
measured mode i 
incidence distribution of the not 
measured mode j 
incidence distribution of the 
measured mode i 
corrected pressure distribution of 
the not measured mode j 

1. Introduction 

This contribution describes a possible way to 
predict the aeroservoelastic stability of an aircraft 
at high incidence including non-linear aerodynamic 
effects. The design of flight control laws for modern 
aircraft is very much influenced by aerosewcelastic 
means to alleviate structural coupling effects. Notch 
filters or active feedback's of local elastic 
acceleration or rates have to be optimised in order 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation" 
held in Aalborg, Denmark, 14-15 October 1997, and published in R-822. 
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to give minimum structural coupling together with 
minimum acceptable effects on aircraft handling 
and on flutter phase and gain margins without 
violating required stability margins. The design of 
the notch filters or of the active feedback control 
laws is general based on an analytical dynamic 
model which includes the description of flight and 
structural dynamics together with unsteady 
aerodynamic forces of the elastic vibration modes 
and of control surface deflections. A specific 
problem area concerning layout of filters or control 
loops arises especially at high incidence, high 
altitude flight conditions, since the unsteady 
aerodynamic forces, especially in case of unstable 
aircraft configurations play an important role for 
the stability margins of elastic modes compared to 
the margins for on ground conditions. 

mode as applied in this investigation have to be 
extrapolated for arbitrary mode shapes and 
carefully analysed and validated by comparisons to 
windtunnel and in-flight response calculations for 
measured accelerations before full application to the 
aircraft structure. Many effects like model support 
interference, freestream turbulence, Reynolds 
number, tunnel wall interference have to be 
considered. The investigation is performed for a 
typical delta canard fighter aircraft shown in Fig. 1. 

2. Stabilitv Criteria 

For aeroservoelastic stability assessments of an 
aircraft with Flight Control System (FCS) criteria 
from the following MIL Specifications have to he 
applied: 

Flight Control System MIL-F-9490D 

Airplane Strength and Rigidity, Vibration, 
Flutter and Divergence MIL-A-8870 

The military specifications for aircraft with FCS 
contain gain and phase margin requirements for the 
open loop frequency responses. For the rigid 
dynamics in the frequency range of the modes M 
from 0.06 <fM< first aeroelastic mode which are in 
the range of minimum to maximum operational 
speed 6 dB gain and 45 degree phase margin and at 
limit airspeed VL 4.5 dE3 gain and 30 degree phase 
margin, MIL-F-9490D requires for the mode 
frequencies fM > first elastic mode 8 dB and 60 
degrees phase margin in the operational range and 6 
dB and 45 degrees phase margin for VL. 
The requirements are summanzed ' in Table I .  

Fig. 1: Aircraft Two Side View 

Usually theoretical unsteady aerodynamics from 
linear theory are applied which do not include high 
incidence aerodynamic effects, effects of flow 
separation or related non-linear aerodynamic 
behaviour. In general the high a unsteady 
aerodynamics of rigid and elastic aircraft modes 
cannot be predicted by existing theoretical methods. 
Numerical simulation of high a aerodynamics is not 
applicable for flexible aircraft aeroservoelastic 
design and clearance work. Much effort has to be 
invested into unsteady windtunnel experiments, and 
design and clearance tasks have still to be based on 
in-flight measurements. Unsteady windtunnel 
experiments of unsteady pressures for a rigid roll 

Frequ. I I I 
fu<0.06 I G M 4 . 0  I GM=*4.5 I GM=i3.0 I G M 4 .  

Table 1: MIL-F-9490D minimum gain and phase 
margin requirements 

Special requirements for mode frequencies fbr > 
first elastic mode may be formulated which take 
into account uncertainties in the prediction of 
unsteady aerodynamic forces at extreme flrght 
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conditions. Especially if actively controlled 
contigurations are concerned, which are unstable. 
For these configurations the flight clearauce has to 
be based upon prediction for open loop response 
lilnctions. 

The aeroservoelastic stability requirements deked 
for flutter in MIL-A-8870B shall be met as well. A 
minimum required flutter margin boundary of 15% 
in VD at umstant altitudes and Mach numbers is 
defined there. The damping wefficient g for any 
flutter mode shall be at least three percent. 
The damping requirements are demonstrated in 
Figure 2. 

Critical Mode 

I \  
Fig. k Minimum Required Damping Margin 

3. 
problem 

Descnotion of the structural couoling 

The structural coupling problem described here is 
specific for military aircraf~ witb heavy underwing 
tanks and stores with low wuencies down to 
about 4 Hz tank/stores and wing bending modes are 
present due to the high mass condition. These low 
fkquency wing bending elastic modes, shown for 
the Consguration analysed in Figure 3, produce 
counkracting fuselage modes which are mainly 
rigid fuselage pitch oscillations. 

Tank Yaw Moda I = 3.5 Hz 

n Wing Bending I Tank Roll f = 4.5 Hz 

n Wing Bending / Tank Piwl f = 5.4 Hr 

%\ Fuselage Bending / Engin Piwl I = 10.8 Hr 

Fuselaga Baul!q/Tlp Pod Piwl f = 14.0 Hz \ \  

Fig. 3 Normal Mode Shape, N C  with Tank 
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The rigid fuselage modes caused by the wing 
bendmg mode creates a coupling problem which is 
in contract to the general well known structural 
coupling problem caused by the first elastic bending 
mode of the fuselage and the feedback of its elastic 
fuselage pitch rate signal through the gyros to the 
control surkes, see Figure 3 fifth mode. The 
structural coupling effects caused by the first 
fuselage bending mode can easily be reduced by 
putting the gyms in a position of zero elastic mode 
pitch angle or rate. Strong notch filtering can be 
introduced in the feedback loop to avoid the 
structural coupling of the I st fuselage bending 
mode. 

The feedback slgaal of the gym in the fiequency of 
the low frequency wing bending modes however 
cannot be innuenced and deviated by gyro 
positioning. In addition the fiequency of the first 
elastic mode is so low that the normally used notch 
filter technique to reduce structural coup@ cannot 
be applied fully. The stability criteria for handling 
would be affected by lose of phase at around the 
short period mode fiequency due to effects of the 
notch filtering. Therefore the low frequency mode 
shall be shown as a phase. stable mode, if this mode 
cannot be phase stabilised, configuration changes or 
active control meaos would be helpful. A typical 
behaviour of the structural coupling effect in the 
low frequency mode is the increase of the frequency 
response in flight due to unsteady aerodynamic 
excitation by the control surfaces. (Ibis effect was 
not experienced in the structural coupling signal of 
the fkst fuselage bending mode of other fighter 
aircraft where the problem was always found 
critical for on ground conditions, in flight 
aerodynamic mode damping caused lower 
coUPk3.) 
Therefore the aerodynamic excitation forces of the 
low frequency mode and its aerodynamic damping 
is of prime interest for the stability of heavy 
tank/stores aircraft configurations. The effects of 
unsteady aerodynamic forces at high angle of attack 
have to be considered carefully. 

4. Andvticd Modelling 

The calculation of open loop frequency response 
functions has to be based on an analytical model 
which represents the rigid aircraft dynamic and 
contains the dynamic equations of the control laws, 
the sensor, computer and actuators transfer 
functions. This rigid aircraft dynamic model is 
coupled to the structural dynamic aircraft model 
which represent to the dynamic behaviour of the 

elastic aircraft including unsteady aerodynamic 
forces of the elastic modes and of the control 
surfaces (generalised aerodynamic force of elastic 
modes and generalised efficiencies of inboard, 
outboard and foreplane rotations). The structural 
dynamic equations are formulated for unsteady 
aerodynamic forces which are functions of the angle 
of attack. 

F,, (io 1 .~GrR,(i. 1 .FpIusB-IDY(i .  1 
The unsteady aerodynamic forces A ,  A,JB, A,,oB, 
ACw be calculated by computer programs for the 
derivation of hear unsteady aerodynamic forces 
for the case of small angles of attack and for high 
angle of attack with the procedure as described in 
the following chapter. 

5. Prediction of unsteadv aerodvnnmic 
forces at hieh incidence 

Aeroservoelastic and flutter calculations with the 
inclusions of flight control e h  are normally 
performed for level flight conditions using linear 
unsteady aerodynamic theory. The results of these 
calculations could be in error for manoeuvring 
conditions of military aircraft from medium up to 
high incidence, since the applied linear theories do 
not accouLlt for effects of leading edge vortices at 
higher incidences and effects of locally separated 
flow are not included in the calculation of motion 
induced unsteady aerodynamic forces. These effects 
may be introduced into the aeroservoelastic analysis 
using a correction method as described in ref. 1 to 3 
and using measured unsteady pressure distributions 
on a windtunnel d e l  for only one rigid mode. 

5.1 

The correction method as developed in ref. 1 is 
applied for the update of generalised forces used in 
the analytical model for aeroservoelastic 
calculations. 
The calculation of the generalised aercdynamic 
motion dependent forces A,{cz&fa,,k) is performed 
by a modification of linear unsteady aerodynamic 
theory, the 3D Doublet lattice method, or the 
collocation method using both measured steady 
pressure distributions and the measured unsteady 

Description of the correction method 
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is known, which for the formulation of arbitrary 
vibration modes is assumed to be independent of the 
mode. 
The corrected pressure distribution for arbitrary 
mode shapes U, are then calculated by 

pressure distribution of a wing oscillation. The 
problem consists here mainly in the prediction of 
the diagonal terms A, and of the coupllng tern A,,, 
at separated flow condition if only one measured 
mode is available. 
The corrected generalised aerodyoamic motion 
dependent forces A,,fa-&ia,k) are calculated as 
follows for given Machaumber Ma and reduced 
frequency R 

The corrected unsteady pressure distribution 
Aci of the measured vibration mode u,(x,y) is 
calculated by using a modified cinematic boundary 
condition. 

A c i  =(D’+iDn)-l .a* 

where: 

(D’ + ‘0”) is the matrix of aerodynarmc 
innuenffi coefficients 

The local velocity U, + iio is calculated h local 
Machaumber and speed of s o d .  

The local speed of sound a ( x , y ) = m i s  
derived h adiabatic compression. 

From the difFemce between measured and 
corrected unsteady pressure distribution of the 
measured vibration mode an additive correction 
term 

In general the measured motion induced pressure 
contains a contribution of the fluctuating pressure 
at the reduced 6equency of the harmonic oscillation 
k. The contribution AZp( k) may be approximately 
extracted from the static measurement. 
Therefore the measured unsteady pressure can be 
COrreCted. 

ACPc(k) = [ AZp (k)  + A,(k)] - AFp(k) 

5.2 Windtunnel model description 

5.2.1 Unsteady pressure plotting model 

Windtunael tests were performed on a U7 scaled 
half model of a tactical fighter type aircraft. The 
model configuration included a delta wing, a 
foreplane and half a fuselage installed at the 
windtunnel wall. The wing and foreplane were very 

The fiselage was fixed to the turn table by means 
of a large rigid cylindrical part locked when 
incidenffi was reached by a set of hydraulic brakes, 
Fig. 5.  The fuselage contained two hydraulic 
rotating actuators. The first one aligned with the 
foreplane axis, allowed to give static foreplane 
deflections while the second one aligned with the 
fuselage centre line provided roll excitation of the 
wing. 
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The different measurements performed were steady 
and unsteady pressure fields, steady and unsteady 
roll moment, accelerations on the wing. The model 
was equipped with 67 pressure pickups, 67 steady 
pressure tapping, 7 accelerometers, 3 strain gauge 
bridges. The steady and unsteady pressure pick-ups 
pairs were distributed along four wing sections on 
the upper surface and, in a smaller number, along 
three wing sections on the lower surface. 

Fig. 5: Windtunnel Model Set Up 

Tests were performed using sinusoidal wing roll 
excitation. After conditioning and switchmg, 
amplifying and filtering at a cut-off frequency 
chosen between once and twice the excitation 
frequency, the signals were digitalized at a sampling 
rate of eight times the excitation frequency. Fourier 
analysis was perform4 modulus and phase of each 
signal, normalised to the amplitude of the roll 
oscillation were computed at the excitation 
frequency, giving unsteady pressure coefficients. 
Tests were performed for different Mach numbers 
and angles of attack including buffeting situations. 
The Mach number ranged from 0.3 to 0.95, 
incidence ranged from 0 to 40 degrees, decreasing 
as Mach number increased: 40 degrees at M = 0.3, 
10 degree at M = 0.85 and 0.9, 8 degrees at Ma = 
0.95. 

5.2.2 Steady pressure plotting model 
In addition to the unsteady pressure model which 
included steady/quasisteady pressure measurememt, 
a tidl series of quasisteady measurement have been 
performed on a steady pressure ploaing windtunnel 
model. Especially steady pressures have been 
measured for different flap deflections at different 
high incidence to derived the derivatives due la 
flaps aAcp/hm,,,, (a,Ma). 

5.3 Measured quasisteady pressures 
distributions (U k Au conditions) 

The quasisteady pressure distributions O A c p / 3 u  are 

demonstrated for some characteristic conditions in 
Figures 6 to 8 for the upper and lower wing surface 
separately. There are 7 spanwise section shown fix 
upper and lower side, 5 are corresponding to real 
measurement sections. The values at y/s = 0.3 and 
0.15 are interpolated. 

Mach 0.8, zero incidence 
The pressure distribution at upper and lower side 
shown in Fig. 6 above is typical for subsonic flow, 
upper and lower side pressures are similar in 
amplitude, no transonic effect are apparent. The 
applicability of linear subsonic theory may be 
reasonable for this condition. 

Quasi Steady Pressure 
l6 -cPl Ma=0,8;alfa=O 

12- 

1.5 

Fig. 6: 
lower side, Ma = 0.8, a = 0" 

Quasisteady Pressures at upper m d  
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Mach 0.9, zero incidence 
The pressure distribution at the wing upper side is 
characterised by transonic &its,  visible in the 
spanwise sections y/s = 0.5, 0.75, 0.9, 0.95, 
possibly due to a shock located at about midchord 
is show in Fig. 7. 
The lower side shows less effects and is similar to 
the Ma = 0.8 results. 

Quad Steady P m n  
IR.  *_.. Ma5D.S: a l k d  

Fig. 7: 
lower side, Mach = 0.9, a = Q 

Quasisteady Pressures at upper and 

Mach 0.8, a = 8.0 degree 
Strong changes can be observed in the upper side 
pressure distribution if the static incidence is 
increased from 0 to 8.0 degrees indicating a strong 
nonlinear behaviour of the quasisteady form with 
incidence, Fig. 8. High effects due to a leading edge 
vortex are present for the inner wing resulting in 
high pressure. peak's, even changes in pressure sign 
are observed atyh = 0.5. 

The lower side. pressures are less effected, 
especially for inner wing sections, howwer outer 
wing sections show a decrease in amplitude 
compared to zero incidence results. 
Similar strong leading edge vortex effects are 
observed also at Mach 0.9 at inner wing sections in 
the upper side pressure distribution. 
The strong increase of the outer wing tmhg edge 
pressures compared to zero incidence results 
observed at a = 8.0 deg. upper side gives an 
indication of the changes in mode excitation if the 
behaviour is extrapolated to pressure for outboard 
flap rotation. 

Fig. 8: 
lower side, Mach = 0.8, a = 8' 

Quasisteady Pressures at upper and 

Conclusion from quasisteady pressures ahc, /& : 
Mach 0.8,~ = 8.0 deg. 

A very strong non-linear behaviour of 
quasisteady pressure distributions at wing upper 
side with static incidence observed both for Ma 
= 0.8 and Ma = 0.9. The lower side pressures 
are less a f f d  by static incidence and remain 
almost unaffected &om 6.5 degree onwards. 
Outer wing tmhg edge pressures show an 
increase compared to zero incidence results, 
indication higher excitation forces if 
extrapolated for instance to Mltboard flap 
rotation both for Ma = 0.8 and Ma = 0.9 and 
incidences greater than rem. 

Quasisteady pressure distributions for flap 
deflections ~AC,/%,,(S,, iAti,,) 

Normal force derivative versus incidence due to 
flap deflection. Fig. 9 demonstrates the trend of the 
n o d  force derivative due to inboard 
aC,/i%, and outboard flap & N / / a s ,  versus 
incidence. As shown above by quasisteady 
pressures the n o d  force derivative decreases 
strongly from LO deg onwards both for inboard and 
outhoard flap Mection. 
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Fig. 9: Ma9.8, Normal Force Derivative 
Versus Incidence due to I/B and O/B Deflect-n 

Fig. 1 0  Quasisteady Pressure Distribution due 
to Flap Deflection: Comparison of high a 

5.4 Description of measured unsteady 
pressure distribution due to hannonic 
wing roll oscillations 

Quasisteady pressure distributions for a = 4 deg 
and a = 20 deg due to Uspan  flap deflection are 
demonstrated in Fig. 10 for Mach = 0.9 . 
The comparison shows the decrease of AcP6 with 
incidence. Especially the outer wing experienm a 
strong decrease at 20 deg cornparedto a = 4  deg. 

5.4.1 Ma& 0.8 results 
The pressure distributions due to harmonic wing 
roll are demonstrated for the upper and lower side 
of the wing in real and imagiaarY part of the 
unsteady pressure upper side in Figure 1 1. 

for real and imaginarypart k = 2rrfsN reduced 
fresuency f = 10 Hz. 

Static incidence 8.0 degrees 
Strong non-hear afFects with incidence are found 
in general for the inner upper wing leading edge 
correspondmg to leading edge vortex effects and 
also for the outer wing sections strong a dependent 
&e& occur in the real and imaginary part of the 
unsteady pressure.. The lower side pressure 
distributions are less influeaced. Only one example 
is demomtrated here for 8.0 degrees and Mach 0.8. 

Fig. 11: Unsteady Pressures Distribution due to 
Wing Roll Motion, Ma = 0.8; a = Bo 
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Fig. 11: Unsteady Pressures Distribution due to 
Wing Roll Motion, Ma = 0.8; a = So 

Conclusions of the unsteady results 
Similar strong non-linear effects with static 
incidence as observed for quasisteady pressures are 
present in unsteady upper side pressures due to 
harmonic wing roll oscillations. The modulus of the 
unsteady pressures is increased at incidences 3.5 to 
9.0 degrees at the inner wing loading edge region 
and at the trailing edge outer wing region in real 
and imaginary part. The lower side unsteady 
pressures are less affected by static incidence. 

5.4.2 Mach 0.3 results 

The unsteady pressure distributions due to the wing 
roll oscillations were evaluated for different static 
incidences from a = 12.5 up to 40 degrees and roll 
motion frequencies 6, 12 and 18 Hz for the clean 
wing configuration for wing upper and lower side. 
Some results are shown in Figure 12 for 25 degrees. 
Influence of frequency 
The imaginary part of the upper side pressure 
distribution changes almost linearly with frequency 
in the measured frequency range 6 - 18 Hz. All 
typical leading edge vortex effects are repeated with 
different frequency for different high static 
incidences. A quasisteady behaviour is found at 
high incidence. 

Influence of static incidences 
The increase in the amplitude of the upper side 
outer wing imaginary parts of the pressure 
distribution at high incidence compared to zero 
incidence or linear theory gives indication of an 
increase in elastic mode damping at least for the 
first wing elastic bending mode. 

There is also the indication that the aercdynamic 
damping of elastic modes will be present up to 40 
degrees of incidence, since all i m a g i i  parts of 
the pressure distribution for all high a conditions up 
to 40 degree are of significant amplitude and 
increase linearly with frequency. Therefore no loss 
of damping may be expected also for other modes 
than the rigid wing roll mode. 

Lower mode excitation due to an inboardloutboard 
flap rotation might be expected due to the decrease 
(U > 13 deg) of trailing edge real and imaghy 
pressures found at all high incidences as also found 
in quasisteady measurements. It might be concluded 
that quasisteady measurements are sufficient to 
predict the magnitude of unsteady aerodynamics. 
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Un6tuady P- Real Pati Uppar .Ide 
w= 0.3, a h  ==*, f = E H ~  

41 

Cpl UnateadyPreaaureReaiParl W d d e  

41 Ma= 0.3, a h  =25', f = 6 Hr 

Fig. 12: Unsteady Pressure Distribution due to 
Wing Roll, Ma = 0.3, a = 2S0, f = 25 IIZ 

5.5 Generalised aerodynamic forces at high 
incidence 

Two aerodynamic magnitudes are essential for the 
aemservoelastic stability namely: 

For the structural con6guration treated the 
generalised aerodynamic damping of the low 
frequency elastic total aircraft modes and the 
generalised inboard and outboard flaperon unsteady 
efficiencies will cause. the most intensting coupling 
effects in flight. 

Generalised control surfh. efficiencies 
U >  13 deg 
For Mach 0.4 both for the inboard and outboard 
flap the correction causes in general a decrease in 
the magnitude of the real part of the generalised 
control surface efficiencies of about 10% - 48% of 
the theoretical value depending on the normal mode. 
The unsteady lunge moments of outboard flap is 
strongly decreased. The imaginary parts of the 
efficiencies are also strongly changed. 

U < 10 deg. 
The effects on unsteady outboard efficiencies are 
dif€erent at Ma = 0.8, a = 6.5 and 8 degrees. 
Factors up to 1.7 are present depending on the 
mode. The effects are smaller at Ma = 0.9 a = 7.5 
deg, faaors up to 1.35 are found compared to linear 
theory. The increase for a < 10, decrease for a > 
13 degree was also found in the steady normal force 
derivative. 

Aerodynamic mode damping 

Comparison of corrected and theoretical generalised 
forces for the second elastic mode are shown in 
table 2 for Mach 0.4, and in table 3 for Mach 0.8. 

At Mach 0.4, 25 deg the imaginary part of the 
second elastic mode is increased by a factor of 
1.25. 

At Mach 0.8, 6.5 degrees the imaginary part of 
the m n d  elastic mode is increased by a factor 
of 1.7, at Mach 0.8, 9 degrees the factor is also 
1.7. 

At Mach 0.9, 7.5 degrees the imaginary part of 
the second elastic mode is increased by a factor 
of 1.3. 

It is noted that the aerodynamic mode damping is 
proportional to the imaginary part of the generalised 
force. 

The aercdpamic mode damping 
The generalised control surface efficiencies 
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6. Proof of the orediction method 

The validation of the prediction method has been 
performed earlier in ref. 2 and 3 using windhlnnel 
measurements on a trapezoidal wing. 

The corrected pressure distribution Acp, of a not 
measured mode j is predicted from a measured 
mode i according to chapter 5.1 

The windtunnel measurements on the trapemid 
wing have been performed for a pitcb and roll 
motion, see Figure 13. 

A -3.2 
A 4 3  
s .awm* 
l p a s a s m  

proll: n4.2 64Am 

Fig. 13: Trapezoidal Wing Windtunnel Model 
for unsteady pressure measurement 

For instance the corrected (predicted) pressure 
distribution of a pitch oscillation from a roll 
oscillation is 

or the corrected pressure distribution of a roll 
oscillation from a pitch oscillation is 

Figure 14 demonstrates the comparison between 
theoretical and measured results of a wing roll 
motion with predicted pressures from wing pitch 
motion pressures. The result hlly validates the 
correction method for subsonic speeds. 

is simplified because the influences of local velocity 
components were shown to be of minor influence 
for low subsonic flow. 

Real part 

1 
-101 cp i 

meav 
mmnt 
PradkUOll 

01-11. - 
r - s m  - -_ . 

......... 

Fig. 14: Validation of the correction Method for 
High Incidence Aerodynamic 

The validation of the method using transonic model 
results could not be performed in a consistent 
manner for high subsonic spe& since only one 
vibration mode, wing roll was tested. 
In order to check the prediction at high 
Macbnumber quasisteady results have been applied 
in order to predict unsteady pressures h m  wing 
roll measurements. 
Using quasisteady pressures for the prediction of 
transonic model unsteady wing roll results was 
based on a reduced formula 

where 
Ac?, (a, k = 0) measured quasisteady 

pressure distribution 
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AC:’’’~ (k = 0) 

The comparison of measured unsteady pressures of 
the transonic model wing roll motion with this 
prediction at Mach 0.8 and Mach 0.9 also 
demonstrated an improvement especially at the 
wing tip region. 

theoretical pressure 
distribution 

7 .  

The effects of high incidence unsteady aerodynamic 
forces on gain and phase margins are illustrated in 
Figure 15 for the open loop response function of the 
longitudinal controller of the Delta Canard fighter 
aircraft for Mach 0.4,25 degrees and sea level. 

Onen 1000 freauencv resnonse functions 

, . . .  
270 180 9i 0 

Open Loop Phase [ ’ ] 

OpenLwpPhase[’] 

Fig. 15: Open Loop Frequency Response 
Function, Comparison high incidence aerodyn. 

Figure 15 shows the Nicholas diagram with and 
without corrected aerodynamics in the fresuenc!i 
range up to the third elastic mode. The first wing 
bending mode with corrected unstm$r 
aerodynamics shows a decrease in dB’s and an 
additional phase shift compared to the not corrected 
firequency response. 

The first elastic mode is shown to be phase stable, 
where as the second mode at 4.5 Hz does not meat 
the stability requirements indicated by the shaded 
area (notch filter efFects are needed). 

Open Lwp Phase 1 ’ ] 

4 ! ! !  ! ! ! ! ! ! ,  I 1  , I 
360 -no -1 80 40 0 

OPn M P  plmsa I ‘I 

Fig. 1 6  Nichols Diagram open loop frequency 
Response, Comparison of High Inadence 
Aerodynamic Effects 



In Figure 16 the results for Mach 0.8 and 8 degrees 
of incidence are illustrated without and with 
corrected unsteady aerodynamic forces in the 
Nicholas diagram. For corrected and pure 
theoretical unsteady aerodynamic forces the results 
show a phase stable first and second elastic mode. 

The. third mode at 5.5 Hz does not meet the 
requirements with and without the effect of high 
incidence aerodynamics, but with incidence 
correction a reduction of the positive dB's is 
present. For higher elastic modes at 9 and 12 Hz the 
effect is about a 4 dB increase as demonskated in 
the Bode diagram in Figure 17. In general the high 
a unsteady aerodyoamic forces lead to alleviation 
ofthe dB level in the Ist wing bending mode and 
give raise to the phase shift. 

Fwuw I * 1 

Fig. 17: Bode Diagram of Open Loop Frequency 
Response, Comparison of High Incidence 
Aerodynamic, Ma = 0.8, a = 8' 

8. Conclusions 

From the investigation of the aeroservoelaetic 
behaviour of a Delta Canard configuration at high 
incidence the following conclusion can be drawn: 

The. structural coupling effects of low fresuency 
elastic wing bending modes distribution caused 
by pitch rate. feedback can not be influenced by 
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sensor positioning. The low h y e n c y  modes 
must be phase stabilised using filters. 

At incidences below about 6 to 13 degrees the 
unsteady aerodynamic damping of elastic modes 
is smaller than the damping at small incidence. 

0 At incidences above 13 degrees the elastic mode 
damping is higher than the values at small 
incidence. 

The control surface unsteady aerodynamic 
forces above about 13 deg of incidence are 
decreasing and theii phase shift increases 
leading to dEl reductions in open loop fresueacy 
response hctions and additional phase shift. 

The prediction method for high incidence 
unsteady aerodynamics is validated by 
windtunnel tests. 

The. prediction method has to be validated 
through flight test. 

In general high incidence aerodynamic effects 
have to be considered in aeroservoelaetic 
stability predictions. 
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A Unified Unsteady Aerodynamic Module for 
Aeroelastic and MDO Applications 

P.C. Chen, D. Sarhaddi 
ZONA Technology, Inc., Mesa, Arizona 85202 

D.D. Liu 
Arizona State University, Tempe, Ar i ina  85287 

Summary 

Recent advances in the lifting surface methods are attributed to the possible generalization of t he  
Aerodynamic Influence Coefficient (AIC) method to the Transonic and Hypersonic flight regimes. 
Thus, a unified AIC (UAIC) approach has been developed for aeroclasticlMD0 applications in the 
complete Mach number range. 

A typicnl CFD method usually requires CFDICSD interfacing in a time-domain aeroelastic analysis, 
while additional grid generation effort is needed in each MDO design cycle. The former procedure is 
still underdeveloped and the latter could be costly. Free from these procedures, the presmt UAIC is 
fully compatible with classicnl linear aeroefastic matrix equntions. Thus, the UAIC approach as an  
unsteady aerodynamic module a n  be r d i l y  integrated with current standard FEM systems or into a 
MDO environment, practiced by aerospace industries. Specifically, the present module consists of 
four major unsteady aerodynamic codes which jointly cover all flight regimes, thereby rendering the 
module unified for all Mach numbers. First, the cnpability of the present aerodynamic module will 
be discussed. Second, the seamless integration of the present aero module w’th a MDO software 
ASTROS is properly defined. Third, fllses studied for the validation of the integrated aerodynamic 
module will be presented. These include: supersonic analysis of a swept untapered wing, a fighter 
wing with transonic flutter constraint and a rectangular wing in roll with control surface reversal. 

Finally, we will present our concept of computational aeroelasticity in terms of Aeroelasticity 
Modeling Methodology (AIC methods) and Aeroelasticity Simulation Methodology (CFD methods) 
from the standpoint of industrial application. We believe that these two methodologies, if their 
practices follow the proposed global strategy, could compliment each other in achieving further 
computational expediency and with wider applicability. 

INTRODUCIlON 

In recent years, rapid progress in aeroservo- 
elastiaty and multi-disciplinary optimization 
WDO) has demanded further improvement of 
computational aerodynamic methods in their 
opability to generate s-domain aerodynamics, 
their compatibility with structural FEM and 
their expediency for design optimization. 
Meanwhile, aerodynamic parameters such as 
wing thickness, body-wing configurations, and 
Mach number range to cover Transonic and 
Hypersonic flow regimes are considered as 
important parameters to be included in a 
general aerodynamic module, ready to be 
integrated with a MDO system such as 
ASTROS’. 

Although current CFD methods have reached a 
rather mature stage for steady aerodynamic 
design/analysis, its acceptance by industries for 
aeroelastic applications is still hampered by the 

problems in grid generation, CFD/CSD 
interfacing and extensive turn around time. 
For example, without a major modification, the 
program structure of ASTROS remains totally 
unfriendly to be interfaced with a time-accurate 
CFD method2’. On the other hand, panel 
methods imbedded in the Aero module of 
ASTROS such as the Doublet Lattice Method’ 
(DIM) and the Constant Pressure Method’ 
(CPM), albeit fully compatible with the 
structural FEM, requires further improvement 
in their robustness, their confinement to lifting 
surfaces (rather than wing-body systems) and 
their extendibility to transonic and hypersonic 
Mach numbers. 

Towards this end, during the last few years we 
have re-examined the above lifting surface 
methods critically from the viewpoint of 
program robustness and range of applicability. 
The result of this re-examination effort is a 
developmental planning of a unified 

Paper presenred at an AGARD SMP Meeting on “Numerical Unsteady Aerodynamic and Aeroelwtic Simulation ” 
held in Aalborg. Denmark, 14-15 October 1997, and published in R-822. 



aerodynamic influence coefficient (UAIC) 
approach extending the applicability of our 
current wing-body AIC methods to the 
transonic and hypersonic regimes Fig. 1). This 
paper attempts to report this UAIC approach 
and review these methods developed in each 
valid flight regime accordingly. 

A unified unsteady aerodynamic module 
(hereinafter called ZAERO module) is 
developed based on the UAIC formulation. 
The ZAERO module is a stand-alone 
Aerodynamic module, which can be interfaced 
with existing Fhrl pmgrams such as 
NASTRAN and ASTROS. Under Wright 
Lab/AF contractual suprt ,  a seamless 
integration of the ZAERO module into 
ASTROS is being carried out. Fig. 2 shows the 
integrated ASTROWZAERO program 
architecture. 

In what follows, three validation casea for  
ASTROS/ZAERO will be presented. These 
include a wept u n t a p d  wing analysis in 
supersonic flow, a fighter wing with transonic 
flutter constraint and a rectangular wing in roll 
with control surface reversal. 

ZAERO: A UAIC B A S D  AERODYNAMIC 
MODULE 

The ZAERO module consists of four major 
unsteady aerodynamic d e s  that jointly cover 
the complete domain of all Mach number 
ranges, namely ZONA7U (formerly ZONASIU), 
ZONA6,ZONA7 and ZTAIC. As can be seen in  
Fig 1, the aero modules currently integrated 
within MSWNASTRAN and ASTROS only 
have the purely subsonic and supersonic 
capabilities. 

By contrast, the ZAERO module serves as a 
unified aerodynamic tool which provides 
computed data from unsteady pressures to 
Generalized Aerodynamic Force3 (GAF's) 
throughout all Mach numbers by means of the 
unified AIC approach. In hct, it is the UAIC of 
the ZAERO Module that has effidently 
provided the k-domah solution. By means of 
rational-approximation techniques6'7 the s- 
domain solution can be obtained from the k- 
domain solution for the subsequent 
aeroservoelastic application 16lO21P 

The development of the ZAERO module has 
been the major endeavor of ZONA Technology 
in the last decade. The following is a brief 
account of the capability of the computer d e s  
in ZAERO. 

ZONA6/ZONA7: Generates Unsteady 
SubsoniclSupersonic Aerodynamics for Aircraft 
Configurations with External Stores63 

Prior to 1990, all unsteady aerodynamics 
methods for aeroelastic computations were 
based on lifting-surface models (e.g. DLM). The 
aerodynamic effects due to the presence of 
bodies and due to wing-body interference were 
largely ignored. Meanwhile, the coupled 
extemal-store wing flutter, a problem that is of 
frequent concem to modem aeroelastidans, can 
no longer be resolved by the lifting surface 
modeling alone. For this reason, development 
of methods such as ZONA6/ZONA7 is 
mandatory. 

In the following examples, Egs. 3 and 4 are 
computed by ZONA6 and Fig. 5 by ZONA7. 
Note that ZONA6 and ZONA7 are based on a 
higherader panel formulation, and therefore 
are more robust than a lowader  method like 
DLM. ZONA6 also includes a My-wake option 
for treatments of truncated stores. 

Fig. 3 presents the out&-phase pressures on 
two spanwise stations on a M' Delta Wing. It is 
seen that using a typical panel cut, DLM totally 
breaks down at M4.8 and k=O5. Fig. 4 presents 
the unsteady pressure dong the underwing 
store of a NLR Wing-Tiptank-Pylon-Store 
configuration. It is clearly seen that a large 
dimepancy exists between the results of body 
alone and that of the wing-My. 

Fig. 5 pnesents the spanwise unsteady forces and 
moments of a NLR wing (F-5 wing) with 
undenving fin-missile and pylon. It is seen 
that, in both cases, the disaepancy between the 
wing-only results and the wing-body results are 
substantial. 

ZONA51 UIZONA7U: Generates Unified 
Unsteady HypersoniclSupersonic Aero- 
dynamics for Lifting Surface 
and Wing-body Configurations 

A Unified Supersonlc/Hypersonic Lifting 
Surface Method has been developed 
recentlylo'I1. This method combines the 
Supersonic Lifting Surface Theory (such as 
ZONA51") with a nonlinear thickness 
correction matrix EiP based on a composite 
thirdader  theory, which is rendered 
uniformly valid throughout the 
Hypersonic/Superwnic regime, is. 

I.c,l= [D +@I -' ( w )  
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where D is the linear supersonic downwash 
matrix provided by ZONA51 and p is a 
switching function that operates on the 
nonlinear thickness matrix E for compression 
and expansion waves. This Eorrectiom matrix 
takes the flow nonlinearity as well as the flow 
mtationaiity due to shock wave0 into account, 
which cover8 both the Mach wave and 
Newtonian limits. For aeroelastic applications, 
ZONA51U has been applied to various wing 
planforms with thickness distributions. 
superseding ZONA51U, ZONA7U integrates 
ZONA51U into ZONA7 in that only the lifting 

hypemmic/supmmic aerodynamics. 

Fig. 6 shows the GAF cL of an osdllating wedge 
byZONA7U is in good.agreement with Euler 

Q. 7  show^ the flutter results of a 
70’ Delta Wing. It is found that ZONA7U 
improves substantially over the linear theory 
multa in terms of pressures, stability 
derivatives, and provides more conservative 
flutter boundaries due to the thickness effect. 
Furthermore, the input format of ZONA7U ie 
nearly the same as that of ZONA7 only with an 
a d d i t i d  input card on the Wing Profile 
Slope. The computing time for ZONA7U is 
also comparable to that of ZONA7. 

aurfares are subject to unified 

mArc Gcncrntcs unstcpdy Trunsonic 
Aerodynumia for Lipins Surfnce Systems 14,15,16 

Since 1985, ZONA has been following up on the 
development of the Transonic Strip mS) 

for unsteady flow computations of 
arbitrary wing planforms. The TES method 
consists of two consecutive steps, to a given 
nonlinear Transonic small Disturbance Code 
such as i”, namely the chordwise mean 
flow correchon ‘ and the spanwise phase 
mmction. Based on the TES concept, ZONA’S 
Transonic Aerodynamic Influence CoefAdent 
WAIC) method is developed to fully automate 
the computation pmcedure resulting in a 
modal- AIC matrixI6. The computation 
pnxedw requires direct pressure input from a 
set of computed or measured data. Otherwise, it 
does not require airfoil shape or grid generation 
for a given planform. Meanwhile, all the 
mean-flow shock jumps are properly included 
in the resulting unsteady aerodynamics 
through the AIC formulation. The unsteady 
pressures can be readily solved on the surfaces 
of a lifting surface system aamding to the 
bllowing modal-based AIC formulation, ia. 

line modes. x p ,  is the computed pressure due 
to #,and h is the given modes which expressed 
inbZUWof#. 

Computed results of ZTAIC have been 
validated with existing results for a number of 

lanf-. These include: the Le6sing 
Wing at M 9 . 9  Fi 8); the LA” Wing”; the 
Northrop F-5 Wing with/without control 
surface” (see Refs. 14,15 and 16). 

Computed flutter results of the AGARD 
standard 445.6 wing Fig. 9). the modeled F-16 
Wing and the Doggett Wing are presented in 
Reh. 16,Xl. 21, and 22. It is seen in l3g. 9 that 
the fluW results of ZTAIC and CAPISD are in  
good agreement. In conhast to CAPISD, the 
essential feature of ZTAIC is that it can provide 
transonic Modal AIC’s, which can be readily 
adopted by the ASTROS static/dynamic matrix 
equations. The Modal AIC also serves as the 
aerodynamic transfer function. Once computed 
it can be repeatedly used in the ASTROS 
optimization loop. Furthermore, ZTAIC has a 
userdented input format which is fully 
compatible with that of DLM. 

ZAEROMODULEINASTROS 

wing B 

According to the ASTROS/ZAERO program 

MAIC) generated by the ZAERO module are 
computed during the ASTROS preface phase 
and need not be recomputed in the ASTROS 
analysis/optimization loop. Meanwhile, 
computation of the ZAERO module is triggered 
by the new bulk data enby MKAEROZ which 
apedies the Mach number, reduced 
frequencies, method flags and the mean flow 
conditions. 

With the seamless integration of ZAERO into 
ASTROS near completion, several validation 
cases are underway. A case studied by Rodden= 

spedic cases studied using ASTROS/CAFTSD 
by Kolonaf‘ and by Andersen et alX are 
selected for present validations of the 
developed ASTROS/ZAERO. 

d t e b u r e  wg. 21, database entities (such as 

Using MSC/NAS” - Aero II and two 

Swept Untupcrcd Wing: Supersonic Flutter 
Anulysis” 

Fig. 10 and Table 1 present a validation case on 
s u p e r d c  flutter analysis of a 15’ swept 
untapered wing at M=13 and 3.0. In Table 1, 
computed results of ASTROS/ZONA7 for the 
no-thickness case and that of Rodden’s method 
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(employing ZONA51 in MSC/NASTRAN) are 
compared with test dataz6. While the predicted 
flutter speeds with thickness effect (Case B) due 
to Rodden and ZONA7U are slightly 
unconservative at M4.5, both are found 
conservative at M=3.0. 

Fighter Wing Optimization un'th Transonic 
Flutter Constraint2' 
(Figs. 11-13, Tablcs 2 4  

A fighter wing test case by Kolonay is selected 
for the present validation of the ZAERO 
module for transonic aeroelastic 
analysis/optimization at a design Mach number 
M=0.93. Hg. 11 shows the FEM and ZAERO 
aerodynamic models for this wing. The FEM 
model consists of 86 grid points. 62 membrane 
(CQDMEM/ CTRMEM) elements are used for 
modeling the wing skins, 361 shear (CSHEAR) 
elements for spars and ribs, 111 rod (CROD) 
elements for sparcaps and shear webs. There 
are 26 design variables defined for skin, spar, 
rib, sparcap and shear web design. 
ASTROS/ZAERO optimization is performed 
for one flutter constraint, which is: Flutter free 
from 0 - 15,000 in/= at M=0.93 with mean 
angleof-attack of a=0.5', and density at 
p=6.67E-07 slinch/in3 (= lM/in'). 

Three unsteady aerodynamic methods in the 
ZAERO module are used in conjunction with 
the ASTROS optimization. These are: ZONA6, 

input (ZTAIC/TSD), and ZTAIC with 
ENSAERd steady input GTAIC/N-S). 

The flutter speeds and frequenaes of the initial 
design (at M4.93, a=0.5) are presented in 
Table 2. Here, the flutter speed of the initial 
design is about 20% below the constrained 
flutter speed (I5paO in/s). The computed 
results of ZAERO are compared with those of 
Kolonayn using linear/nonlinear versions of 
CAPISD with ASTROS. Overall, flutter results 
of the linear and nonlinear methods show good 
agreement. Less than 5% discrepancy in flutter 
speeds is found between ZTAIC/N-S and 
nonlinear CAPTSD. 

Fig. 12 shows the steady and unsteady pressure 
distributions of the initial design (at M=0.93, 
0~0 .5 '  and k=l.O). The steady pressures of 
CAFTSD show stronger shock strength than 
that of ENSAERO, as expeded. This difference 
in shock strength does influence somewhat the 
in-phase and out-of-phase pressures due to first 
bending and torsion modes. However, it is 
interesting to note that the corresponding 
flutter speeds in Table 2 (at M4.93 but at 

ahear ZTAIC with CARS$ steady 

different flutter frequency) vary no more than 
2%. 

Fig. 13 shows the design weight history of the 
fighter wing using ASTROS/ZAERO. Note that 
ASTROS optimization achieves converged 
solutions at the 11th iteration using ZONA6, 
9th iteration using ZTAIC/TSD and 8th 
iteration using ZTAIC/N-S. By converged 
solution, it is meant that the weight is 
minimized, while the flutter constraint is 
satisfied. Table 3 presents the optimized 
weights and flutter speeds at final design. For 
final design weight due to the nonlinear 
methods, the difference between weight 
percentage change of ZAERO and CAFTSD is 
about 11% and the trend is acceptable. 

By contrast, the final design weight due to the 
linear methods show opposite trend in weight 
percentage change. ZONA6 yields a 31.7% 
weight reduction whereas linear CAPISD a 
187% weight increase. The reason for this 
remains to be clarified. 

Table 4 presents a list of local design variables of 
the final design structure. It is seen that the 
final structure design using ZTAIC/TSD and 
ZTAIC/N-S are nearly the same. They are also 
in good agreement with the results using 
nonlinear CAPISD, except at design variables 8, 
16 and 21. Again, variance in the percentage of 
structure changes of the design variables are 
noticed when using the linear methods. 

Rectangular Wing in Roll Pcrfonnance with 
Control Surface RmmaIE (Figs. 14-17) 

A rectangular wing test case of Andersen et alZ5 
i s  selected for the present validation of the 
ZAERO module for static aeroelastic analysis of 
the wing in roll with control surface reversal, 
the Mach number ranges from M=0.7 to 1.5. 

Fig. 14 shows the planform and aerodynamic 
model of the wing with aileron. The FEM 
model (not shown here) is a beam model 
consisting of ten equal length beam elements 
along the one-third chord position. A single 
aileron spans the outboard half of the wing 
with the hinge line located at threequarter 
chord. 

Fig. 15 presents the "equivalent" rigid rolling 
moment derivatives Ce and reversal dynamic 

and ZONA7U. Note that C, is aerodynamic 
related, but qrcocrs.l results from aerodynamic- 
structure interaction of the wing. Good 
agreement at M4.85, 0.9, 0.925, 0.95, 0.975, 1.1, 
1.2 and 1.5 with the solutions due to the 

pressure q,-& computed by ZONA6,ZONA7 
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CAPISD/linear method is noted. ZONA'IU 
provides the most conservative solution at 
Md.5. 

Fig. 16 presents the "equivalent" rigid rolling 
moment derivatives and reversal dynamic 

and by CAPISD at five transcmic Mach 
n u m h  (M=OS5,0.9,0.925,0.95 and 0.9'75). It is 
seen that ZTAIC/TSD results am in good 
agreement with nonlinear CAPISD. By 
contrast different results using ZTAIC/N-S in 
C e  is observed near M4.975, showing a low 
value of C, obtained at M=0.975. 

The -des between the two ZTAIC 
solutions in C a  at high transonic Mach number 
is caused by the steady shock solutions of 
CAPISD and ENSAERO. The Cp plot of Fig. 17 
shows the forward shock location due to 
ENSAERO, in contrast to the aft shock (of the 
trailing edge) due to CAPISD. Consequently, 
the lifting pressures ACp are impacted by these 
steady shock solutions as shown by the ACp's on 
the aileron. The kink in ACp due to ZTAIC/N- 
S is clearly a result of the steady N-S shock 
solution. The large departme in these aileron 
ACp's is known to affect the transonic hinge 
moment, whose value is sensitive to prediction 
methods and flow viscosity (Winzell, Ref. 28). 
Here, the effect of  aileron ACp on the rolling 
moment derivative is apparent. 

~ u r e  computed by ZTAIC/TSD, ZTAIC/N-S 

COMPUTATIONAL AEROELASTICITY 

Preference to CFD methods or AIC methods for  
aeroelastic applications has been the subject of 
much discussion. Here, we refer both 
methodologies as a part of the computational 
aeroelasticity. In general, our concept of 
computational aeroelastiaty consists of 
Aemelastic Modeling Methodology, which 
includes AIC methods, structual FEM, etc., and 
Aemelastic Simulation Methodology, which 
includes CFD methods, cldy-mupled 
CFD/CSD interfacing method, etc. (see Figs 18, 
19) In our estimation, there should exist little 
mnflict in the choice of these two 
methodologies for aeroelastic applications. 
Rather, they should compliment each other if 
their pctices could follow the proposed 
strategy as shown in Figs 18 and 19. 

On the one hand, AIC methods, as evidenced ty 
the present module, cuuld provide expedient 
amplitude-perhxbation solutions in both the k- 
domain and kdomain. Consequently, their 
application to aemswoelasticity and the MDO 
environment is straightforward. In terms of 

aeroelastic applications, they should provide 
selected critical ~ndi t ion~  for CFD methods to 
fine tune the unsteady aerodynamics in a 
conhed flow regime, thus saving a substantial 
computing effort in search of potential flutter 
solutions. 

On the other hand, the utuFzation of CFD 
methods is tolink up with a s t r u c t u d  FEM via 
a dcdy-coupled CFD/CSDinterfacing, such as 
the BEM s o l v 2 ,  as indicated in Figs 18, 19. 
clearly, CFD methods are qujred when more 
acovate solutions bemme mandatory in a flow 
regime where nonlineaxity dominates (e.g. 

attack flow with vortex dynamics). 

For classical-flutter predictions, the flow 
nonlinearity could be linearized through a 
d u s t  indidal method routine in conjunction 
with a proposed modal AIC methodI6. In this 
way, CFD solutions could be carried over to the 
kdomain for its subsequent partiapation to 
aeroservdasticity and MDO applications. For 
applications in static aemelasticity, the propod 
modal AIC method can be an expedient means 
in utilizing CFD solutions to generate a 
flexibility C O ~ ~ O C ~ O ~  ' to the measured rigid load. 

Thus, it is in this context that we propse the 
global strategy for computational aeroelasticity. 
From the standpoint of indue- application, 
the utilization of AIC methods and CFD 
methods should not be mutually exclusive, but 
rather be complimentary. 

CONCLUSIONS 

We have presented a unified AIC based 
unsteady aerodynamic module ZAERO, 
applicable to all  ranges of Mach number, from 
subsonic to hypersonic. The seamless 
integration of ZAERO into ASTROS was 
surressfully demonstrated by the present in- 
depth study on three seleaed validation cases. 
However, two specific findings in these cases 
studies are of some concern. For the fighter 
wing optimization case, good aepement is 
found between all methods in the initial design, 
but not 80 in the final design. The deparhue 
found between the final design results of two 
linear methods is probably caused by the 
difference in their aerodynamic sensitivities. 
Perhaps a standard test cases(s) should be 
established for applying other CFD methods to 
ASTROS for further verification of this issue. 

For the rectangular wing in roll performance 
case, the disagreement between OUT two ZTMC 

steady inputs indicates that the inclusion of 

thick wing in superaitid flow, high-angle-of- 

results in C e  using CAPISD and ENSAERO 
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viscous effect is aucial to the prediction of 
transonic static aerodynamic moments, as noted 
by Winzd.  

As the seamless integration of ASTROS/ 
ZAERO near completion, its validation should 
continue to cover more cases for transonic and 
hypersonic design and analysis. 
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Figure 1. Z4ERO and Other Aerodynamic Modules. 
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Figure 2. ASTROSIZILERO Rogram Architecture. 
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Table 1. Flutter R d e  of a 15' Swept Untapexed Wing With 
and Without Thicloless E f f e c t .  
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Figure 11. StruclmVAemdynamic Models of a Fighter Wing Test Case: Optimization with Transonic Fluuer 
Constraints at M a 9 3  (Kolonay, Ref. 24). 
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Table 2. Flutta SpeeaS of the Initial Design: Fiiw wing optimizatioh 

M=0.93, a=0.5' 
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Table 3. Design Weight and Flutter Speeds of the Final Jksign: Fighter Wine Optimization. 

a) Weight at F i i  Design: 

Linear Method Nonlinear Method 
Kolmuy ASlRosIzAwO ASlROS-0 AS'IROSRAWO 

BiDepW-mD) (zoNA6) W-W-mD) 6 A I C p i - s ) .  @TAlC,TSD) 
F l d  507 340 427 373 376 

W e W  +1.87 -3 1.7 -14.22 -25.1 -24.5 
Welet m) 

W) 
Initial weight = 497.7 lb. 

b) Flutter Speed of Final Design (pfj.76E-07 slincNin3). 

Z A E R O O  W q z T A I C R s n )  WERO(ZTA1UNS) 

"""(%Y 15,Ooo 15,100 15,000 

Fluiter 17.07 17.08 17.05 
rneqIJraeY rn) 
m r S p c d  21.8 28.0 29.8 huaac (%) 

Table 4. Final Design ShucIure: Fighter Wing Optimization. 
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Figure 14. Flanform and Aenxlynamic Model of a Rectangular Wing Test Case: Transonic Roll Performance with 
Control Surface Reversal (Andasen et al Ref. 25). 
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Steady Pressure at U% Span AC, Due to Unlt Alleron DeflectIan 
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Figure 17. Rectangular Wing Ressure Distributions at M4.975: Steady Lifting Rcssurcs. 
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Figure 19. Computational Aeroelasticity for MDO ApplicationS. 
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Experience With Unsteady Aerodynamics Computation 
for Saab Aircraft 

by 

Bo Franzen, Bo Nilsson and Bengt Winzell 
Flutter and Loads Department 

SAAB AB 
S-58188 Linkoping, Sweden 

SUMMARY. 

Unsteady aerodynamtcs plays a vital role in the design 
of an aircraft. Already in the initial phase it is necessary 
to have reliable estimates of flutter boundaries and to 
supply infomation for control system software and 
hardware. Thus speed and accuracy of unsteady aerody- 
namic computation are required. In practise, it  is natural 
to depend mainly on computations based on linear the- 
ory. There are situations where speed of computation 
and accuracy are contradictory, and then one must resort 
to previous experience and correction strategies. 

The elastic modern aircraft is becoming more and more 
aero-servo-elastic. The quality of simulation of the 
numerous feedback mechanisms is highly depending on 
the accuracy of control surface aerodynamics. More- 
over, the frequent application of multi-disciplinary opti- 
mization puts new strong demands on unsteady 
aerodynamic accuracy. 

In this paper we will show examples of validating exper- 
iments and computations, and discuss applications of 
classical and new methods for real civil and military air- 
craft. 

INTRODUCTION. 

Modern aircraft are flexible structures which easily 
respond to aerodynamic unsteadiness. While experience 
of previous projects and flight testing plays a fundamen- 
tal role in the clearance of a new design, there is a fun- 
damental and ever increasing role of computation for 
flutter and response. 

At Saab we saw the advent of computer programs for 
unsteady aerodynamics more than 40 years ago. Since 
then the efficiency and accuracy of the linear aerody- 
namics modeling have reached considerable heights, 
now enabling whole design concepts to be analyzed in a 
fraction of the time that was possible before. Recently, 
more complicated modeling of the flow in terms of non- 
linear equations for the Full Potential, Euler's and even 
Navier-Stokes' equations have been introduced. It is not 
always true, however, that an increase of precision in the 
prediction have compensated the computational effort 
of more sophisticated methods. Moreover, the accuracy 
of the sophisticated methods is itself subject to suspi- 
cion and doubt. 

Although classical bendingltorsion flutter seems to be 
accurately predicted by existing computational meth- 

ods, and thus can be excluded already in the early 
design phase, there are many aspects of airforce compu- 
tation which are less mature. For instance the control 
surface effectiveness and hinge moments are difficult to 
calculate correctly and such data are important for suc- 
cessful prediction of the coupled aerodynamics - elastic- 
ity - controls system. The installation of a large number 
of weapons under the wings and even at wing tips lead 
to considerable change in the elastic and aeroelastic 
properties of an aircraft. This challenges both the ae ro  
dynamics and the structural dynamics analysis to accu- 
rately predict these properties, in particular as we are 
looking for an "optimal design". 

COMPUTER PROGRAMS. 

The comer stone in flutter and response analysis is the 
AEREL' system, once introduced by Stark. It contains a 
linear unsteady potential boundary element method for 
subsonic flow, ADE, and another method for supersonic 
flow. Recently we have included ZONA%* enabling a 
common modeling of the full configuration aircraft in 
the whole speed range. The program package contains 
pre and post processing tools for loads, generalized 
aerodynamic forces, flutter analysis and means for 
checking data and results. The linear methods work in 
the frequency plane. 

Mainly for analyzing single wing transonic phenomena, 
an unsteady aerodynamics method based on the full 
potential equation was introduced3. p his method steps 
in time, using transpiration technique for the time vary- 
ing deformation input and for strip wise boundary layer 
correction. It also couples the aerodynamics solution 
directly with the equations of motion for the deforming 
wing. 

Through close cooperation with FFA (the Swedish 
Aeronautical Research Institute in Stockholm) we have 
recently introduced the multi purpose CFD program 
EURANUS in industrial applications. The EURANUS4 
program was developed by FFA and VUB (vrije Uni- 
versiteit Brussel) for steady state Euler and Navier-Sto- 
kes flow, capable of handling multi-block structured 
grids. It was made time accurate hy FFA' through a dual 
time step technique and introduction of a moving grids 
option. A pilot version of a direct coupling of d y -  
namics and structutes was introduced by Saab. 

Paper presented at an AGARD SMP Meeting on "Numerical Unsteady Aerodynamic and Aeroelastic Simulation", 
held in Aalbarg, Denmark, 14-15 October 1997, and published in R-822. 
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APPLICATIONS FOR MILITARY A I R C R A m  

During ten years, considerable work including analysis, 
tests and experiments for the JAS 39 Gripen aircraft was 
carried out. Careful modeling of the aircraft as a set of 
planar thin surfaces for the AEREL' system enabled 
complete flutter analysis of many weapons configura- 
tions, including the effect of the digital control system. 
The analysis was based both on Finite Element mode 
shapes and mode shapes measured in ground vibration 
tests. The subsequent Eight test program essentially ver- 
ified the flutter calculations. We will briefly discuss, 
however, a case where the flight test program showed a 
difference in damping, compared with calculations. 

A multi-role aircraft such as Gripen suggests a large set 
of different weapons configurations. It turns out, how- 
ever, that very few cases require actual aerodynamic 
modeling of under wing stores. The tip installation is of 
higher aero-elastic importance, and thus the bulk of 
computations have used an aerodynamic model for the 
complete aircraft, including its wing tip configuration, 
but with few exceptions under wing storage has entered 
the computations only via the mode shapes. 

The model is trimmed such that typical aerodynamic 
derivatives match available data in the aerodynamic 
design data base. This usually requires correction fac- 
tors for control surfaces. 

Aerodynamic influence matrices in a reasonably fine 
grid are computed for a set of subsonic and supersonic 
Mach numbers and a range of reduced frequencies. 
These matrices are stored and reused for repeated gener- 
alized aerodynamic forces calculations for multiple con- 
figuration elastic mode shapes. The generalized forces 
are treated as aerodynamic transfer functions in flutter 
analysis, aero-servo-elastic analysis and response analy- 
sis. 

Aem-sem-el-er test exc ItatlQa 
methpd. 

The Gripen aircraft has a fly-by-wire control system 
with feedback control to overcome its basic longitudinal 
instability in subsonic flight. The feed back signals are 
given by accelerometers and rate gyros, and these pick 
up any motion in the rigid but also the elastic aircraft. 
Hence this aircraft is an aero-servo-elastic system and 
must be treated as such in flutter analysis and dynamic 

. .  

response analysis. In particular this requires the elastic 
mode shapes to be computed or measured also at the 
gyro position. In most cases. however, the impact of the 
control system feedback on flutter stability is rather 
weak. 

The control surface =NOS are used for flutter excitation. 
A repeated sine sweep of the elevons, the rudder and the 
canards excite the aimaft, and the response at several 
locations on the aircraft is measured by accelerometers. 
The signals are telemetrized to the ground contml for 
on-line examination and are recorded for detailed post 
flight evaluation. An example of the response at the 
wing tip launcher is presented below. 
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between calculated and measured pitch rate to elevator 
deflection. 

and affect the stability of the flight control system as 
described above. 

To reduce the number of iterations in the autopilot 
design process, the flight systems department get at an 
early stage approximate correction factors for the trans- 
fer functions between control surface deflection and 
autopilot sensors. These correction factors account for 
the elastic contributions to the transfer functions. 

The theoretical analyses are checked by extensive test- 
ing both on ground and in flight. The ground testing is 
used for calibration of the structural model i. e. the 
mode shapes, modal deflection at the autopilot sensors 
and mass couplings to the control surfaces. In the 
response calculations measured structural damping is 
used. The figure below shows a comparison between 
measured and calculated response of the pitch rate gyro 
to pitch command. The reduced model of the autopilot 
is checked by measuring the different transfer functions 
between sensor outputs and control surface commands. 

GVT. Pitch rate vs pitch cmd deg/sedrad Mach 0 - 
._ CM 

- 
Gain(dB) , , , I , , , 

__ 1 1 1 I 1 1 1  I 
Phase (deg) 

The ASE-flight testing which is performed in connec- 
tion with flight flutter testing is used for verification of 
the calculated stability margins. The accuracy of the 
ASE-process depends to a large extent on the unsteady 
aerodynamic calculations especially on the control sur- 
face. aerodynamics. This is most often over-predicted 
which calls for the use of correction factors. The figure 
helow shows a Nyquist diagram with a comparison 

Pitch rate vs 6, deg/seddeg Mach 0.6 6 km 

.j n; - 

Re 

Flutter anal- 

Flutter analysis is done with the p-k method. Hence one 
iterates in  the equation 

[p2. M + p' . C + K + A(lm(p')) + S(p')lq = 0 

P* = P 

to find the eigen solutions q and the eigenvalues p of 
the coupled aerodynamic-structures-controls system. 
Here M is the mass matrix, C is a damping matrix, 
A ( o )  is the matrix of aerodynamic transfer functions 
defined for pure harmonic oscillation and S is the 
resultant transfer functions matrix for the control sys- 
tem. The solution p = d + io of the non-linear eigen- 
value problem thus conlains the increment d / o  and the 
frequency w .  

We are generally using Mach number and altitude as 
parameters in the analysis and present the flutter analy- 
sis in a set of diagrams of damping versus flight speed at 
different altitudes. Similarly frequency versus speed is 
given for different altitudes. 

During testing it was found that there is a difference 
between computed and measured damping rates for 
high transonic Mach numbers. 

Decrement 
A - 

1.0 Mash number 

This discrepancy was unexpected and considered too 
large not to be explained. An investigation of the cause 
of the non-conservative prediction was initiated. The 
damping is for a mode involving the tip missile motion 
and the flexible wing tip. The following hypotheses 
were put forward: 

Transonic dip phenomena due to shock waves etc. 
As will be discussed helow, the conclusion was that 
no strong transonic effects could be detected when 
replacing linear theory unsteady aerodynamics by 
Euler computations. 

Could there he flow separation over the wing, and 
was this an effect similar to the LCO-phenomena 
discussed by Cunningham and Meijer6? 
As will be discussed in the next subsection, the 
conclusion was that the wing is very well shaped, 
no! admitting any flow separation at normal angles 
of attack in this speed range. 

Spurious feedback control? 

Although not necessary for the clearance of the present 



aircraft, an explanation is important to have confidence 
in the unsteady aerodynamics. 

It is difficult to measure unsteady aerodynamic forces in 
flight but in this case such data were obtained to validate 
the linear unsteady aerodynamic forces at the wing tip. 
Indeed, exciting the aircraft at resonance frequency and 
measuring shear force and pitching moment close to the 
wing tip, we could compare computed aerodynamic 
forces with measured ones and found good correlation. 
The diagrams below compare (in the frequency plane) 
measured data at a supersonic free stream Mach number 
with computations. ?he motion of the wing tip was used 
as input for the computed aerodynamics. 

Gmpnnng mcarured 
fsolid line) and corn- I- 

pufed (dashed) shear I 
force for flu mmmr? 
ercurd af msomncc 
JM-W. 

Cm, application 

In order to estimate the strength of transonic effects on 
the flutter characteristics of the Gripen aircraft we 
applied the CFD program EURANUS4.5. A detailed 
grid around the wing with its complex wing tip geome- 
try was created by the MULCAD module of I W  
cFD7. 

The grid consisted of a little more than l,ooO,ooO points 
in 194 blocks. A reason for such a large number of 
blocks is that EURANUS works in structured meshes 
and that the geometry has many details, such as depicted 
in the figure below. 

\ / 

An example of Mach number distribution about part of 
the wing tip is shown below for a free stream Mach 

.\JI 
number of M’= 0.95. The whole grid was then deformed 
according to the elastic mode shapes, one by one. The 
amplitude of this deformation was a pulse of “one 
minus cosine” type. The transient response in pressure 
distribution was computed, and because of the small 
maximum amplitude in the perturbation, air force matri- 
ces were obtained using Fourier analysis. Using these 
transonic aerodynamic forces in flutter analysis some- 
what reduced the damping compared to linear analysis, 
but this reduction was global in speed and of much 
smaller magnitude than the difference to flight data. We 
rather attributed this difference in damping to the ten- 
dency of inviscid analysis to over emphasize transonic 
effects. No transonic effect was detected. 

So far we have not applied unsteady Navier-Stokes anal- 
ysis for the Gripen aircraft. However; in an attempt to 
spot any signs of possible flow separation on the wing, 
stem& viscous CFD analysis was carried out for several 

A - - I - - - -  
I 

L 
t- 

velocity vectors at the trailing edge. 
M = 1.05, a = 5 9  



transonic and supersonic Mach numbers. M 2 0.9, and 
for angles of attack up to 5 degrees. The snapshot above 
demonstrates the attached flow character that we found 
to be typical for the JAS Gripen wing. This supports the 
experience from flight tests that the flow over the wing 
is of very high quality. 

Use of Cm, in project work seems stdl to be almost for- 
biddingly time consuming. This is partly due to the 
many man weeks or even months it takes to create struc- 
tured grids around complex geometries. However, the 
gridding problem should be less time consuming in the 
next generation of Cm, codes, using various types of 
more freely distributed blocks or even unstructured 
grids. But also the computing time is considerable. At 
present our experience in the work on Gripen IS that for 
flutter, linear analysis does a reasonably good job and 
that the effects of transonic unsteady aerodynamics are 
less pronounced. 

APPLICATIONS FOR CIVIL AIRCRAIT 

We will briefly discuss two examples of applications for 
the Saab ZOO0 aircraft. The first example concerns con- 
trol surface aerodynamics and dynamics of dampers. 
The second example is for gust load evaluation. 

mutter stabktv of a w s v s t e m ,  

The initial design of Saab 2000 had a mechanical con- 
trol system for the elevator. The concept was later ahan- 
doned for a power controlled elevator. The change in 
design was motivated by the flight mechanics longitudi- 
nal stability which had to be increased in certain 
extreme configurations. The flutter stability was well 
proven both in test and analysis. 

The mechanical control system consisted of aerodynam- 
ically balanced control surfaces with tabs which also 
had an aerodynamic balance. The tab was a so called 
spring tab. 

. .  

- -  

The unsteady aercdynamics for the spring tab system 
was obtained from a combination of linear potential the- 
ory and specially designed flight tests to obtain reliable 
correction factors to the computed forces. Control sur- 
face aercdynamics is rather difficult to compute, and in 
this case both the tab and the main control surface were 
aerodynamically balanced. In such a configuration, the 
hinge moments is the difference of two large hut almost 
equal numbers, and the resultant force enters the deli- 
cate stability equations. Measuring tab loads in fight 
gave quasi-steady data and with the help of this, correc- 
tions to the linear potential analysis could be obtained. 
In the flutter analysis, a variation of these factors was 

made to certify the robustness of the prediction 

It turned out that in order to prove flutter stability in the 
extended flight envelope (20% increased speed range), 
spring tab dampers had to be innoduced. These were of 
hydraulic type, and influenced the dynamics of the ele- 
vator and tab considerably. 

Usually a damper is a pure damper only in a narrow fre- 
quency band. In the diagram below we show measured 
characteristics of the damper that was used in the air- 
craft. It shows a stiffness component and a damping 

4.0 

2 0  

f mtr) ) 

10 20 IO M 
Damping d e  componet. 

component of the total impedance. The interesting, and 
as it turns out, most beneficial effect of the spring tab 
flutter damper is the stiffness it adds at higher frequen- 
cies. It separates the two (01 more) basic control surface 
frequencies. The "tab frequency", which without 
damper is in the order of 15 Hz, was raised to above 25 
Hz. Thus the elevator mode, which on ground has a low 
frequency, but becomes stiffer due to the aerodynamic 
spring with increasing dynamic pressure, is unable to 
couple with the tab mode. This is clearly demonstrated 
in the diagrams below. 

Irc*d4rnlbnpr N D b n p r  

..._----- 

Tlis analysis is an example of how, in addition to the 
difficulty to get the unsteady aerodynamics right, the 
flutter analyst also has to consider all other dynamic 
ingredients in the model. 

Unsteady aerodynamics plays an important part in gust 
loads calculations. Considerable work is spent on devel- 
oping a reliable computational model for the unsteady 
linear potential theory. Since gust loads are obtained in a 
global model of the aircraft and the equations of motion 
for the whole rigid and elastic aircraft are to be solved, 



the basic aerodynamic derivatives have to be well reprc- 
duced and the quasi-steady aerodynamic loads distribu- 
tion over fuselage and hhing surfaces must be correct. 
Since modem aircraft also have feed back control, the 
inclusion of any control system is important and there- 
fore also the control surface effectiveness. 

Linear theory has to be corrected for numerous effects 
which are not usually covered by the linear theory. This 
includes the relaxation of the Kutta condition on non- 
lifting surfaces and the control surface effectiveness. 
Means for such corrections were included in the 
AEREL' package. 

ap~ o M m w m a m e  
I 

The diagram above is an example of how the computa- 
tional model is trimmed to closely reproduce detailed 
air loads on the aircraft. This is the wing torsion distri- 
bution due to change in angle of attack. In particular, the 
jump in load m o s s  the engine nacelle is a crucial fea- 
ture. The authorized loads data were obtained from a 
combination of wind tunnel experiments, computations 
and similarity with other aircraft. Our experience is that 
the detailed trimming of the computational model sel- 
dom calls for any drastic deviations from just plain geo- 
metric corner coordinate data in the aircraft definition. 

EXPERIMENTS AND VALIDATION 

Nonlinear methods for unsteady aerodynamics can be 
accepted for industrial application only when proven 
accurate and ready to use in such applications where a 
better analysis than the classical methods is needed. 
Unfortunately our experience is, that many times the 
cases which call for the more complicated analysis also 
are complicated with respect to geometry or flow condi- 
tion. The geometry can be too complicated to enable 
enough detailed grids for appropriate resolution, or the 
flow conditions may be highly vortical or contain sepa- 
rated flow and there we have less confidence in the abil- 
ity of new methods to really pick up the true physics. 
So, overall, unsteady CFD methods are considered with 
suspicion since it appem that in the cases where you 
really would need them, they are not ready for use. 

However, anticipating the methods to mature we have 
ongoing programs to investigate the accuracy one can 
achieve and the ease by which the methods can be han- 
dled in the industrial environment. We will discuss three 
rather simple cases here. 

. .  Unsteadv air loads on a- d elta wine. 

Jointly with VAC (Volvo Aero Corporation) and FFA 
(Swedish Aeronautical Research Institute) we have 
taken part in a series of experiments and computations 
of unsteady pressure on a cropped delta wing with a 55 
degree leading edge sweep. The model was built in two 
different sizes, one tbree times the other. The larger 
model was equipped with a pan span trailing edge con- 
trol surface. One chord was instrumented with dynamic 
pressure transducers. 

nl 

With a NACA64AOO6 section this wing is purely sub- 
sonic for M = 0.7 and moderate angles of attack. There- 
fore unsteady pressures. measured in a transonic 0.5 m x 
0.5 m wind tunnel at VAC should match the ones com- 
puted with linear potential theory. The figure below 
indeed verifies this. For the computations we have used 
Stark's ADE method'. The frequency of 285 Hz for this 
model with a root chord of 23 cm corresponds to a 
reduced frequency of about 1.0, based on the chord 
where the measurements were taken. 

"--___Ji . . . .  

A . :  

For M = 0.95 (actual tunnel reading was M = 0.97, but it 
was later discovered that the Mach number over the 
wing was less) the flow is transonic h a d y  at a = 00. 
The computation is thus carried out with an unsteady 
full potential analysis, including a simple boundary 
layer correction. Here the reduced frequency based on 
local chord is about 0.25. 
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The experimental data in the figure above was obtained 
with three different levels of pitch amplitude, ranging 
from 0.2 to 0.7 degrees. There is a spread in the data, but 
there is no evidence that this is due to physical nonlin- 
earity. It is probably more an estimate of the tolerances 
in the measurement. 

The comparison seems to indicate that the measure- 
ments were correct (agreement with linear theory for 
subsonic Row) and the mnsonic case supports the use of 
the transonic full potential method for mild transonic 
flow and pitch motion. Without boundary layer c o r n -  
tion, however, the results were inadequate. More about 
this is published in Reference 8. This experiment will be 
followed by one in the larger TI500 wind tunnel at FFA, 
this time with a variation in mean angle of attack. 

UnSfeadV air loads due to 0- 

The larger model of the delta wing was tested at FFA in 
the wind tunnel Tl50O9. The trailing edge control sur- 
face was oscillated around different mean angles and 
with different frequencies and amplitudes. For the sub- 
sonic free stream Mach number, M = 0.7, the compari- 
son with theory is rather good. For higher Mach 
numbers, with well developed transonic Row conditions, 
the comparison between theory and measurements is 
reasonable as long as the theory can handle the tran- 

. .  

Real parts w r y  P d  
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Unstepdy pnswrr due to control surfaa 
osdllption M = 0.94. 

sonic flow and if the mean control surface angle is not 
too large. A large deflection angle resulted in separated 
flow over a large part of the control surface. 

In the figure above we plot unsteady pressure measure- 
ments (symbols), compared with unsteady Eulw com- 
putations (lines) for the subcritical case. M = 0.94. in 
which the shock is located just ahead of the hinge line. 

For M = 0.97, the shock is stronger and located slightly 
behind the hinge line. Because EURANUS was used in 
the inviscid Euler mode, the shock location in the com- 
putation is too far aft, and this of c o m e  worsens the 
comparison. The peaks are also much higher in the com- 

Real part Imssinnry P b  

-S. U ao- 

VIIS&& press& due to conpal & a c e  
d a t i o n  M = 0.97, S = 00. 

putation. The height of such peaks depends on ampli- 
tude and sampling rate in tests and on grid size in the 
computations. Therefore global quantities, like the lift- 
ing force, can be reasonable even if the detailed pressure 
plot shows bad agreement. In this case, however, the 
hinge moments must be completely different in the test 
and in the computation. 

When the control surface is further deflected, the shock 
moves further aft in the test until the flow separates. 
This physical phenomenon has a great effect on the con- 
trol surface effectiveness, but so far a CFD analysis has 
not been successfully applied. The figure below presents 
steady pressure distribution for a sequence of increasing 
control surface deflection angles. Notice the fully snper- 
sonic character of the pressure ahead of the hinge line 
and also the classical behavior of pressure on a ramp in 
supersonic Row behind the hinge line. The classical for- 

mula AC,, = 'lope suggests an IdloE of about 1.08 m 
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here, and that is about what corresponds to the local Cp 
of about 0.25-0.3 ahead of the control surface. 

VSIS for the 44 

Previous investigations comparing measured flutter data 
with linear theory predictions and also full potential 
analysis have shown that for thin wings and small angle 
of attack, already linear theory is enough to get reason- 
able to good agreement with experiments. This was pre- 
sented in References 10 and 11. If for instance there is a 
hansonic dip, linear theory appears to miss that, and if 
the dip is at a subsonic Mach number, well below Mach 
one, a typical recovery of flutter speed after the dip is 
not predicted at all by linear analysis. However, full 
potential analysis predicted such a recovery at too early 
aMach number”, a dangerous result. 

Here we will present recent analysis for the AGARD 
445.6 wingt2, tested in NASA Langley’s Transonic 
Dynamics ntnnel. So far only linear analysis and full 
potential calculations have been carried out. We intend 
to follow up by Euler and Navier-Stokes computations 
in the near future. 

The 445.6 wing is very thin. The flutter data were 
obtained at zero angle of attack. This wing therefore is 
relevant for validation of methods which will be used in 
military aircraft design. There is a transonic dip, but the 
dip is located in the speed range close to Mach one. 
Hence the shift in aercdynamic characteristics between 
subsonic and super sonic flow could be expected to be 
similar to the reduction of flutter speed at a transonic 
Mach number and the subsequent recovery for higher 
Mach numbers. The occurrence of the phenomenon 
should however be somewhat earlier in the test than in 
the linear analysis. Indeed this seems to be the case. 

In the diagram above we have plotted the measured data 
by ring symbols, joined by the solid line. The linear the- 
ory prediction is given by plus symbols, and an “engi- 
neer‘s concept” of the transonic dip is intmduced as a 
dashed line. The prediction is somewhat non-conserva- 
tive, hut on the supersonic side it is far better than what 
was achieved by full potential analysis: 

,omc . ~. ... ............... .. ,,. . . .. . . . ~ . .  . . ~ ~~ .~.. ~~ ~1 

The full potential program can work in two different 
grid structures. The CH-grid prediction, which is given 
by star symbols, joined by dashed lines, agrees very 
well with test data for the subsonic free stream Mach 
numbers, but on the supersonic side the discrepancy is 
intolerable. There is a strong influence of grid on the 
results. The plus symbols are predictions made using an 
HH-grid instead of the CH-grid. The normal strategy is 
to use HH-grid for high Mach numbers and CH-grid for 
low speed. The result above supports this, but the differ- 
ence is too large to ensure confidence in any of the 
results. 

Another question mark should be raised for the flutter 
frequency estimates. Below we plot the experimental 
data (solid lines and ring symbols) together with linear 
theory (dashed line), CH-grid (stars) and HH-grid 
(pluses) full potential predictions. Usually we expect the 
linear theory to predict the low speed data with high 
accuracy. The discrepancy here for M = 0.5 indicates 
that the coupling mechanism between the structural 
modes is not correct. This could for instance be due to 
the mode shapes which are computed rather than mea- 
S d .  -- 

z 

Our conclusion is. as so many times before, that the lin- 
ear theory, the faults and weaknesses of which we are 
quite familiar with, seems to be the better tool when 
assessing the flutter stability in the whole speed range. 
On the other hand, the nonlinear CH-grid prediction is 
very g o d  up to M = 0.95, and therefore it is important 
to find out what the reason for the non-conservative 
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supersonic estimates is. 

All OUT nonlinear codes for unsteady aerodynamics have 
been extended to include a simple means of coupling 
with the smcture. F'resently such coupling assumes that 
every deformation can be expressed as a combination of 
natural elastic mode shapes with coefficients q, . In this 
case the mass and stiffness matrices are diagonal. Fur- 
ther development to more general deformation shapes 
can easily be done, simply by introducing the capability 
of the codes to handle non-diagonal mass and stiffness 
matrices. 

By strong coupling we mean that in the implicit time 
marching scheme, the inner iterations update both 
deformation and flow before moving on to the next time 
step. Hence the equations of motion 

mi . (qi + 2dmiq, + w f )  +Ai = Fi 

for the aeroelastic system are solved in time. 

For small amplitude (flutter onset) analysis it is feasible 
to compute air force matrices using one mode shape at a 
tune, and then to apply the classical flutter solver for the 
flutter analysis. The strong coupling seems to be an 
alternative either for large deformations or when the 
number of mode shapes is very large and only a few 
flow conditions have to be analyzed for flutter. 

The coupling is, however, much more needed in static 
aeroelasticity, for instance when computing the actual 
wing geomehy in flight, knowing only the jig shape. 
(The inverse problem, determining a jig shape that 
results in a desired flying wing is also tractable with a 
coupled method.) 

II Y - 
Convergence to static aemelertic state 
rising critical modnl damping (left) and 
no modal damping (right). 

The experience with coupled analysis for static 
aeroelasticity is that the convergence can be accelerated 
by using critical damping (d = 1) in the equations of 
motion. Moreover, for a well designed wing it can be 
easier to converge the coupled flow solution than the 
uncoupled one, since the aemlastic deformations 
reduce the local twist of the wing. 

The following theoretical example' shows that aeroelas- 
tic effects play a crucial d e  in drag estimates. For a 

required C, the resulting CO can be significantly dif- 
ferent if the analysis is performed with a rigid wing or if 
the wing is allowed to deform. The example wing is 
defined by supercritical section profiles and thus is sen- 
sitive to small changes in angle of attack or local twist in 
the transonic regions. In this case the jig shape must be 
changed to increase wing performance, but viscous 
effects have smaller influence (although it certainly 
changes the angle of attack for trim). 

0 2  I 4m o m  0016 0- om om 0- 001 
m 

C, versns C ,  computed with viscous (symbols) 

(solid) hU potential method. 
Md inviseid, conpled (dnshed) Md M C O O p k d  

CONCLUSIONS 

We have demonstrated how different methods for com- 
puting unsteady aerodynamics have been applied to 
Saab military and civil aircraft. The experience with 
nonlinear methods is that Euler or Navier-Stokes com- 
putations are hardly mature enough for industrial 
project work. 

We have also demonstrated cases where classical linear 
analysis is not enough but also demonstrated that linear 
analysis on thin wing configurations is rather accurate. 
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