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Foreword 

Propulsion systems, which are one of the priority activities of the Applied Vehicle Technology Panel of 
NATO’s Research and Technology Organisation, are frequently confronted by unexpected and unsteady 
behaviors known by the generic name of “combustion instabilities”. Many solid propellant rockets, liquid 
propellant engines, ramjets and main or reheat combustors of turbojets have been affected by these types 
of problems during development. Combustion instabilities were identified at the start of the 1950s as an 
endemic disease and were then the subject of research aimed at understanding their origins, explaining 
how they developed and, eventually, predicting their levels. The researchers were very quickly convinced 
of the difficulty of the problem, which is essentially due to two factors: firstly, the difficulty of taking 
detailed measurements of the internal flow in engines, because of the extremely severe physical conditions 
inside them, and secondly, the close coupling between numerous unsteady mechanisms related to fluid 
mechanics, combustion, two-phase flows, etc. The work done on this subject in the United States has had 
a profound influence in all Western countries and I had the good fortune, when I was asked to study the 
question for the French Armament Procurement Agency (DGA), to meet Professors Fred Culick and  
Ed Price, then later Professor Gary Flandro and other US Navy, US Air Force and NASA specialists. 
These contacts were determining factors for the direction of French work. 

Today, Professor Fred Culick proposes a summary entitled “Unsteady Motion in Combustors for 
Propulsion Systems” in the form of an AGARDograph. There are very few scientists in the world who 
have accumulated such in-depth expertise and experience on the subject and the RTO should be grateful to 
Professor Fred Culick for having put all this acquired knowledge at the service of NATO’s technological 
research. An attentive reading of the document prepared reveals that it is a truly comprehensive survey,  
in the literal sense of the word. What Professor Fred Culick has done is to put several decades of research 
into an understandable form, thus endowing the work with a true encyclopaedic nature, both by the variety 
of situations examined and by the abundance and exhaustiveness of the references used. Due to his great 
teaching ability, Professor Fred Culick has also been able to conduct a quite weighty mathematical 
analysis with thoroughness and accuracy and to establish the indispensable link between observations 
made on engines and predictions arrived at by calculation. Furthermore, if only one of the work’s qualities 
had to be pointed out, I, for my part, would opt for Professor Fred Culick’s exceptional ability to give 
physical meaning to the equations. 

I therefore think that the AGARDograph prepared by Professor Fred Culick is bound to become a 
worldwide reference on the difficult but always topical subject of combustion instabilities. 

 

Dr. Paul KUENTZMANN 
ONERA, France 

Former PEP/AGARD member 
Former AVT/RTO member 

RTB member 
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Avant-propos 

Les systèmes propulsifs, qui constituent l’une des priorités des activités de la Commission Applied 
Vehicle Technology de la Research and Technology Organisation de l’OTAN, sont fréquemment 
confrontés à des comportements instationnaires imprévus connus sous le nom générique « d’instabilités de 
combustion ». De nombreux moteurs-fusées à propergol solide, moteurs-fusées à ergols liquides, 
statoréacteurs, foyers principaux ou de rechauffe de turboréacteurs ont connu ce type de problème en 
cours de développement. Identifiées au début des années 50 comme une maladie endémique, les 
instabilités de combustion ont dès lors fait l’objet de recherches pour en comprendre l’origine, en 
expliquer le développement et, à terme, en prévoir les niveaux. Les chercheurs ont été très tôt convaincus 
de la difficulté du problème, qui tient pour l’essentiel à deux aspects : d’une part, à la difficulté de réaliser 
des mesures détaillées de l’écoulement dans les moteurs, en raison des conditions physiques très sévères 
qui y règnent, et, d’autre part, du fait du couplage étroit de nombreux mécanismes instationnaires relevant 
de la mécanique des fluides, de la combustion, des écoulements diphasiques, etc. Les travaux conduits sur 
ce thème aux Etats-Unis ont imprégné tous les pays occidentaux et j’ai eu la chance, lorsque j’ai été 
chargé d’étudier la question pour la DGA française, de rencontrer les Professeurs Fred Culick et Ed Price, 
puis ultérieurement le Professeur Gary Frandro et d’autres spécialistes de l’US Navy, de l’US Air Force et 
de la NASA. Ces contacts ont été déterminants pour orienter les travaux français. 

Le Professeur Fred Culick propose aujourd’hui sous la forme d’un AGARDograph une synthèse intitulée 
« Unsteady Motions in Combustion Chambers for Propulsion Systems ». Il existe très peu de scientifiques 
au monde qui aient accumulé une expertise et un expérience aussi approfondies sur le sujet et la RTO doit 
être reconnaissante au Professeur Fred Culick d’avoir mis tout cet acquis au service des recherches 
technologiques de l’OTAN. Une lecture attentive montre que le document préparé constitue une véritable 
Somme, au sens littéral du mot. Le Professeur Fred Culick a en effet remis en forme plusieurs décennies 
de recherche, conférant ainsi à l’ouvrage un caractère véritablement encyclopédique, tant par la variété des 
situations examinées que par l’abondance et l’exhaustivité des références utilisées. Grâce à un sens 
pédagogique aigu, le Professeur Fred Culick a également su conduire, avec rigueur et précision, une 
analyse mathématique assez lourde, et établir la liaison indispensable entre observations réalisées sur 
moteurs et prévisions de calcul. Si en outre une seule qualité de l’ouvrage devait être mise en exergue, 
j’opterais pour ma part sur l’exceptionnelle faculté du Professeur Fred Culick à donner un sens physique 
aux équations. 

L’AGARDograph préparé par le Professeur Fred Culick m’apparaît donc devoir devenir l’ouvrage 
mondial de référence sur le sujet difficile mais toujours d’actualité des instabilités de combustion. 

 

Docteur Paul KUENTZMANN 
ONERA, France 

Ex membre PEP/AGARD 
Ex membre AVT/RTO 

Membre RTB 
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