
CHAPTER 3

Equations for Unsteady Motions i n Combustion C hamb ers

The examples described in Chapter 1, and many others, establish a ¯rm basis for interpreting unsteady
motions in a combustor in terms of acoustic modes of the chamber. That view has been formalized during
the past ¯fty years and has led to the most widely used methods for interpreting combustor dynamics. In
this and the following chapter, we present the foundations of a particularly successful version of methods
based on expansion in normal acoustic modes and spatial averaging. We assume familiarity with the basic
ideas of classical °uid dynamics and acoustics. Chapter 5 covers the principles and chief results of classical
acoustics required as part of the foundation for understanding combustion instabilities. The discussions in
Chapters 3 and 4 are quite formal, intended to serve as the basis for a framework within which unsteady
motions, especially combustion instabilities, may be treated for all types of combustors. Hence the physical
model for which the formalism is developed is quite general.

3.1. Modes of Wave Motion in a Compressible Medium

In this section, the term `modes' refers not to natural motions or resonances of a chamber but means
rather a type or class of motions in compressible °ows generally. The brief discussion here is intended to
address the question: How is it possible that apparently coherent, nearly classical acoustic waves exist in
chambers containing highly turbulent non-uniform °ow? It's a fundamentally important observation that
such is the case. The explanation has been most thoroughly clari¯ed by Chu and Kovasznay (1957), who
combined and elaborated some results known for nearly a century. Their conclusions most signi¯cant for
present purposes may be summarized as follows:

(i) Any small amplitude (linear) disturbance may be synthesized of three modes of propagation: entropy
waves or `spots', small regions having temperatures slightly di®erent from the ambient temperature
of the °ow; vortical or shear waves characterized by nonuniform vorticity; and acoustic waves.

(ii) In the linear approximation, if the °ow is uniform, the three types of waves propagate independently,
but may be coupled at boundaries (e.g. nozzles) or in combustion zones.

Entropy and vortical waves having small amplitude propagate (are `convected') in a uniform ¯eld with the
mean °ow speed, but acoustic waves propagate with their own speeds of sound. Moreover, in the linear limit,
only acoustic waves carry disturbances of pressure. All three types of waves possess velocity °uctuations. If
the medium is non-uniform or the unsteady motions have ¯nite amplitudes, the three modes become coupled.
As a result, each of the waves may then carry pressure, temperature and velocity °uctuations. Little extension
of the fundamental theory has been accomplished (see Chu and Kovasznay) and what understanding exists
has been gained from considerations of particular problems. Some of the consequences of these types of
modal coupling arise in the theory developed here, but much remains to be investigated.

Long experience has established the wide applicability of the basic physical model of combustion in-
stabilities as acoustic waves propagating in a non-uniform °ow. Vorticity and entropy waves accompany
turbulence in a combustor but may also have other origins, such as °ow separation, the unsteady behavior
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of injection devices, and interactions of the acoustic ¯eld with other processes, notably °ow injected at the
lateral boundaries. Consequently, both the average and time-varying velocity ¯elds in a combustor comprise
irrotational and rotational motions. Observational evidence for combustion instabilities suggests that the
rotational motions are in some sense often secondary, initially one of the chief guiding principles for the for-
malism developed in this chapter, but they cannot be ignored. In fact, both steady and unsteady rotational
motions participate signi¯cantly in combustion instabilities in solid propellant rockets. Several examples of
the generation and behavior of vorticity have been intensively studied in the past ten years. We will discuss
some of the results in Chapter 6.

The main idea at this point is that in lowest approximation the unsteady ¯eld can be expressed as a
synthesis of classical acoustic modes having time-varying amplitudes. Then the purpose of the analysis is to
work out a means for computing the changes of those amplitudes due to various perturbations. Departures
from the simplest classical acoustic behavior arise from the actions of the other physical and chemical
processes taking place in a combustion chamber. All of those processes, except basic gasdynamics, are
assumed to have relatively weak e®ects, producing small shifts of the classical acoustic frequencies and, more
signi¯cantly, small fractional changes of the modal amplitudes during a period of oscillation. Hence there
are two small quantities naturally characterizing the procedure: A reference Mach number for the unsteady
velocity is a measure of the acoustic amplitudes; and a typical Mach number of the average °ow measures
perturbations of the classical acoustic behavior. Much of this chapter is concerned with reduction of the
general equations of motion by expansion in those two small parameters. In applications of the formalism
and interpretation of the results, it is essential to understand and maintain the distinction between the roles
of the two parameters. Failure to do so leads to confusion and false conclusions.

Despite the emphasis on the acoustic ¯eld, this procedure does not exclude the existence of rotational
motions. In the expansion procedure they arise from inhomogeneous terms in the equations for the higher
order terms. This fundamental point has been missed by several workers in this ¯eld and has led at least to
misunderstandings and occasionally to misleading or incorrect analyses. The origins of the di±culties will be
clari¯ed in later discussions, particularly in Chapter 6, but in view of the considerable confusion about the
matter, it is important to begin addressing the matter here. It is not a new idea. Flandro (1967) in his Ph.D.
thesis ¯rst used the general expansion procedure developed in this chapter to work out a problem involving
interactions between acoustic and vorticity ¯elds leading to roll torques in solid propellant rockets. He and
others have subsequently investigated other examples of the in°uences of vorticity on acoustic waves using
this approach, occasionally with controversial and sometimes incorrect results. (See, for example, Flandro
1995; Culick et al. 1991; Culick 1998; Swenson and Culick 1998; Seywert and Culick, 1998; Flandro and
Malhotra 1995; Malhotra, Flandro and Roh 2000; Malhotra and Flandro 2001, 2002; Majdalani and Van
Moorhem 1998; Majdalani 2004; Flandro and Majdalani 2003.)

3.2. Equations of Motion in a Reacting Flow

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer, and combustion prod-
ucts including soot and condensed metal oxides. Hence the equations of motion must be written for two
or three phases consisting of at least one species each. For investigating the dynamics of combustors, it
seems entirely adequate to consider two phases (gas and a condensed phase comprising both liquid and solid
particles). The properties of each phase are represented as mass averages of the properties of all member
species. For a medium consisting of a multicomponent mixture of reacting gases and, for simplicity, a single
condensed phase, it is a straightforward matter to construct a system of equations representing a single
°uid. The procedure is explained in Annex A. As a result we can treat combustor dynamics under broad
conditions as unsteady motions of a °uid having the mass-averaged properties of the actual medium.1 The
dimensional governing equations are (A.59){(A.64):

1We now use Cv ; °; R; : : : to stand for the mass-averaged properties represented by boldface symbols in Annex A.
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Conservation of Mass:
@½

@t
+ u ¢ r½ = ¡½r ¢ u+ W (3.1)

Conservation of Momentum: ½

·
@u

@t
+ u ¢ ru

¸
= ¡rp+FFF (3.2)

Conservation of Energy: ½Cv

·
@T

@t
+ u ¢ rT

¸
= ¡pr ¢ u+ Q (3.3)

Equation for the Pressure:
@p

@t
+ u ¢ rp = ¡°pr ¢ u+ P (3.4)

Equation for the Entropy: ½
Ds

Dt
=
1

T
S (3.5)

Equation of State: p = R½T (3.6)

De¯nitions of all symbols are given in Annex A.

It is particularly important to realize that the source functions W , FFF, Q, P and S in principle contain
all relevant processes in the systems to be analyzed here. They include, for example, the modeling and
representations of the actions of actuation mechanisms used for active control. Eventually, the most di±cult
problems arising in this ¯eld are associated with modeling the physical processes dominant in the problems
addressed.

For both theoretical and computational purposes it is best to express the equations in dimensionless
variables using the reference values:

L : reference length

½r; pr; Tr; ar : reference density, pressure, temperature and speed of sound

Cvr; Cpr; Rr : reference values of Cv; Cp; R

Then de¯ne the dimensionless variables represented byM, and for simplicity use the same symbols used for
dimensional variables:

M =
u

ar
;

½

½r
! ½ ;

p

½ra2r
! p ;

T

Tr
! T ;

Cv
Cpr

! Cv ;
Cp
Cpr

! Cp ;

R

Cpr
! R ;

ar
L
t! t ;

s

Cpr
! s

The dimensionless source functions are
L

½rar
W ! W ;

L

½ra2r
FFF ! FFF;

L

½ra3r
Q! Q;

L

½rar
P! P;

S

½rarCvr
! S

For consistent de¯nitions, pr = ½rRrTr and Rr = Cpr = Cvr, so in dimensionless form, the relations
R = Cp ¡ Cv and ° = Cp=Cv still hold.

Substitution of these de¯nitions in equations (3.1){(3.6) leads to the set of dimensionless equations for
the single °uid model:

Mass:
D½

Dt
= ¡½r ¢M+ W (3.7)

Momentum: ½
DM

Dt
= ¡rp+FFF (3.8)
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Energy: ½Cv
DT

Dt
= ¡pr ¢M+Q (3.9)

Pressure:
Dp

Dt
= ¡°pr ¢M+ P (3.10)

Entropy: ½
Ds

Dt
=
1

T
S (3.11)

State: p = ½RT (3.12)

and
D

Dt
=
@

@t
+M ¢ r (3.13)

We emphasize again that the source terms accommodate all relevant physical processes and can be interpreted
to include the in°uences of actuation used in active control.

3.3. Two-Parameter Expansion of the Equations of Motion

The general equations (3.7){(3.12) are written in the form suggestive of problems that are dominated
by °uid mechanical processes, a tactic dictated by the observations described earlier. This point of view
is the basis for the approach taken here to construct a general framework within which both practical and
theoretical results can be obtained by following systematic procedures.

We are not concerned at this point with simulations or other methods relying essentially on some sort of
numerical analysis and large scale computations. The nature of the problems we face suggests perturbation
methods of solution. If the source terms W , : : : were absent from (3.7){(3.11), the homogeneous equations
then represent nonlinear inviscid motions in a compressible °uid: Nonlinear acoustics in a medium without
losses. One useful method for investigating such problems is based on expansion of the equations in a small
parameter, ", measuring the amplitude of the motion. Speci¯cally, " can be taken equal to M 0

r, a Mach
number characteristic of the °uctuating °ow, " =M 0

r.

The problems we are concerned with here are de¯ned essentially by the non-zero functions W , : : : .
Because observed behavior seems to be dominated by features recognizable as `acoustical', those sources which
excite and sustain the actual motions must in some sense be small. They should therefore be characterized
by at least one additional small parameter. It has become customary to select only one such parameter,
¹ = ¹Mr, a Mach number ¹Mr characterizing the mean °ow, for the following reasons.

2

Any operating combustion chamber contains an average steady °ow produced by combustion of the fuel
and oxidizer to generate products. The intensity of the °ow, partly measurable by the Mach number, is
therefore related to the intensity of combustion; both processes can in some sense be characterized by the
same quantity, namely the Mach number of the average °ow. Thus many of the processes represented in the
source functions may be characterized by ¹, in the sense that their in°uences become vanishingly small as
¹! 0 and are absent when ¹ = 0.

It is important to understand that the two small parameters " and ¹ have di®erent physical origins.
Consequently, they also participate di®erently in the formal perturbation procedures. Familiar nonlinear gas
dynamical behavior is, in the present context, governed by the parameter "; steepening of compressive waves

2We will use the symbols " and ¹ rather than M 0
r and

¹Mr to simplify writing, and to emphasize the special positions held
by the two independent sorts of perturbations.

EQUATIONS FOR UNSTEADY MOTIONS IN COMBUSTION CHAMBERS 

3 - 4 RTO-AG-AVT-039 

 

 



is a notable example. In the expansion procedure worked out here, the term `nonlinear behavior' refers to
the consequences of terms higher order in ".

On the other hand, the parameter ¹ characterizes perturbations of the gasdynamics due in the ¯rst
instance to combustion processes and the mean °ow. Terms of higher order in ¹, but linear in ", represent
linear processes in this scheme. Failure to recognize this basic distinction between " and ¹ can lead to
incorrect applications of formal procedures such as the method of time-averaging. Instances of this point
will arise as the analysis is developed.

3.3.1. Expansion in Mean and Fluctuating Values. There is no unique procedure for carrying
out a two-parameter expansion. We begin here by writing all dependent variables as sums of mean ¹( ) and
°uctuating ( )0 parts without regard to ordering:

p = ¹p+ p0; M = ¹M+M0; : : : ; W = ¹W 0; FFF = ¹F¹F¹F +FFF0; : : : (3.14)

We take the °uctuations of the primary °ow variables (p0, M0, ½0, T 0, s0) to be all of the same order in
the amplitude " of the unsteady motion. Generally, the source terms are complicated functions of the °ow
variables and therefore their °uctuations will contain terms of many orders in ". For example, suppose
W = kp3. Then setting p = ¹p+ p0 and expanding, we have

W = k(¹p+ p0)3 = k
h
¹p3 + 3¹p2p0 + 3¹pp

02 + p
03
i

Hence we de¯ne orders of the °uctuations of the source W and write

W = ¹W + W 0
1 + W

0
2 + W

0
3 + W

0
4 + : : :

where the subscript denotes the order with respect to the amplitude: Here, for the example, W = kp3 and
W 0
2 = (3k¹p)p

02. All source functions are expressed in this general fashion, but modeling is required to give
explicit formulas.

Most combustors contain °ows of relatively low Mach number, say j ¹Mj . 0:3 or so. Thus we can assume
that for a broad range of circumstances, processes depending on the square of ¹M, i.e. of order ¹2, probably
have small in°uences on the unsteady motions. We therefore neglect all terms of order ¹2 and higher in the
equations. As a practical matter, the equations are greatly simpli¯ed with this assumption which we adopt
throughout this work.

After substituting all variables split into sums of mean and °uctuating values, and collection of terms
by orders, we can rewrite (3.7){(3.13) as· ¹D¹½

Dt
+ ¹½r ¢ ¹M+ ¹M ¢ r¹½¡ ¹W

¸
+

·
@½0

@t
+ ¹½r ¢M0

¸
+
£
¹M ¢ r½0 + ½0r ¢ ¹M+M0 ¢ r¹½+r ¢ (½0M0)

¤¡ W 0 = 0
(3.15)

·
¹½
¹DM0

Dt
+r¹p¡ ¹FFF

¸
+

·
¹½
@ ¹M

@t
+rp0

¸
+

·
¹½
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢+ ½0 ¹D ¹M

Dt

¸
+

·
½0
@M0

@t
+ ¹½M0 ¢ rM0 + ½0

¡
¹M ¢ rM0 +M0 ¢ r ¹M¢¸+ [½0M0 ¢ rM0]¡F0F0F0 = 0

(3.16)

·
¹½Cv

¹D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+ Cv

·
¹½
@T 0

@t
+ ¹pr ¢M0

¸
+

·
¹½Cv

¡
¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv½0 ¹D ¹T

Dt
+ p0r ¢ ¹M

¸
+

·
Cv ¹½

@T 0

@t
+ Cv½

0 ¡ ¹M ¢ rT 0 +M0 ¢ r ¹T¢+ Cv½0M0 ¢ rT 0 + p0r ¢M0
¸
+ [Cv ¹½M

0 ¢ rT 0]¡ Q0 = 0
(3.17)
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· ¹D¹p
Dt

+ °¹pr ¢ ¹M¡ ¹p+ °¹pr ¢ ¹M¡ ¹P
¸
+

·
@p0

@t
+ °¹pr ¢M0

¸
+
£
¹M ¢ rp0 +M0 ¢ r¹p+ °p0r ¢ ¹M¤

+ [M0 ¢ rp0 + °p0r ¢M0]¡ P0 = 0
(3.18)

·
¹½ ¹T
¹D¹s

Dt
¡ ¹Ş +

·
¹½ ¹T
@s0

@t

¸
+

·
¹½ ¹M ¢ rs0 + ½0 ¹T

¹D¹s

Dt
+ ¹½ ¹TM0 ¢ r¹s+ ¹½T 0 ¹M ¢ r¹s

¸
+

·
½0 ¹T

@s0

@t
+ ½0T 0

@D¹s

@t
+ ½0 ¹TM0 ¢ r¹s+ ¹½T 0M0 ¢ r¹s+ ¹½T 0 @s

0

@t
+ ¹½ ¹TM0 ¢ rS0

¸
+

·
½0T 0

@s0

@t
+
¡
¹½T 0 + ½0 ¹T

¢
M0 ¢ rs0 + ½0T 0 ¡M0 ¢ r¹s+ ¹M ¢ rs0¢¸+ [½0T 0M0 ¢ rs0]¡S0 = 0

(3.19)

£
¹p¡R¹½ ¹T ¤+ £p0 ¡R ¡¹½T 0 + ½0 ¹T¢¤+ [¡R½0T 0] = 0 (3.20)

where the convective derivative following the mean °ow is

¹D

Dt
=
@

@t
+ ¹M ¢ r (3.21)

As a convenience in writing, it is useful to introduce some symbols de¯ning groups of ordered terms.
The set of equations (3.15){(3.20) then become:· ¹D¹½

Dt
+ ¹½r ¢ ¹M¡ ¹W

¸
+

μ
@½0

@t
+ ¹½r ¢M0

¶
+ f[½]g1 + f½g2 ¡ W 0 = 0 (3.22)

·
¹½
¹D ¹M

Dt
+r¹p¡ ¹F¹F¹F

¸
+

μ
¹½
@M0

@t
+rp0

¶
+ f[M]g1 + fMg2 + fMg3 + f[M]g2 ¡F0F0F0 = 0 (3.23)

·
¹½Cv

¹D ¹T

Dt
+ ¹pr ¢ ¹M¡ ¹Q

¸
+ Cv

μ
¹½
@T 0

@t
+ ¹pr ¢M 0

¶
+ f[T ]g1 + fTg2 + fTg3 + f[T ]g2 ¡ Q0 = 0 (3.24)

· ¹D¹p
Dt

+ °¹pr ¢ ¹M¡ ¹P
¸
+

μ
¹½Cv

@P 0

@t
+ ¹pr ¢M 0

¶
+ f[p]g1 + fpg2 ¡ P0 = 0 (3.25)

·
¹½ ¹T
¹D¹s

Dt
¡ ¹Ş +

μ
¹½ ¹T
@s0

@t

¶
+ f[s]g1 + fsg2 + fsg3 + f[s]g2 + fsg4 ¡ S0 = 0 (3.26)

£
¹p¡R¹½ ¹T ¤+ fp¡R½Tg1 + fR½Tg2 = 0 (3.27)

The de¯nitions of the bracketed terms f½g1, ¢ ¢ ¢ etc. are given in Annex A, Section A.6; the subscript
f gn on the brackets identi¯es the orders of terms with respect to the °uctuations of °ow variables, and
the square brackets [ ] indicate that the terms are ¯rst order in the average Mach number. We have
shown here in each equation terms of the highest order °uctuations generated by the purely °uid mechanical
contributions plus sources that must be expanded to orders appropriate to particular applications. Only the
entropy equation produces terms of fourth order.
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Time derivatives of quantities identi¯ed with the mean °ow are retained to accommodate variations
on a time scale long relative to the scale of the °uctuations. This generality is not normally required for
treating combustion instabilities and unless otherwise stated, we will assume that all averaged quantities are
independent of time.

3.3.2. Equations for the Mean Flow. At this point we have two choices. Commonly the assumption
is made that the variables of the mean °ow `satisfy their own equations'. That implies that the brackets [ ]
vanish identically. With the time derivatives absent, the equations for the mean °ow are:

¹M ¢ r¹½+ ¹½r ¢ ¹M = ¹W (3.28)

¹½ ¹M ¢ r ¹M+r¹p = FFF (3.29)

¹½Cv ¹M ¢ r ¹T + ¹pr ¢ ¹M = ¹Q (3.30)

¹M ¢ r¹p+ °¹pr ¢ ¹M = ¹P (3.31)

¹½ ¹T ¹M ¢ r¹s = ¹S (3.32)

¹p = R¹½ ¹T (3.33)

This set of equations certainly applies when the average °ow is strictly independent of time and there are
no °uctuations. The time derivatives cannot be ignored when the °ow variables change so slowly that the
motion may be considered as `quasi-steady' and °uctuations are still ignorable.

It is possible that when °uctuations are present, interactions among the °ow variables cause transfer
of mass, momentum and energy between the °uctuating and mean °ows, generating time variations of the
averaged variables. Then the appropriate equations are obtained by time-averaging (3.22){(3.27) to give3

¹D¹½

Dt
+ ¹½r ¢ ¹M = ¹W ¡ f[½]g1 ¡ f½g2 + W

0
(3.34)

¹½
¹D ¹M

Dt
+r¹p = ¹F¹F¹F ¡ f[M]g1 ¡ fMg2 ¡ fMg3 ¡ f[M]g2 +F0F0F0 (3.35)

¹½Cv
¹D ¹T

Dt
+ ¹pr ¢ ¹M = ¹Q¡ f[T ]g1 ¡ fTg2 ¡ fTg3 + ¹Q0 (3.36)

¹D¹p

Dt
+ °¹pr ¢ ¹M = ¹P¡ fpg1 ¡ fpg2 + ¹P0 (3.37)

¹½ ¹T
¹D¹s

Dt
= ¹S¡ fsg1 ¡ fsg2 ¡ fsg3 ¡ f[s]g2 ¡ fsg4 + ¹S0 (3.38)

¹p = R¹½ ¹T ¡ f½Tg1 ¡ f½Tg2 (3.39)

3Note that the °uctuations of the source terms denoted by W 0 ¢ ¢ ¢ etc., actually contain squares and higher order products
of the dependent variables; hence their time averages will generally be non-zero.
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If the mean °ow is strictly independent of time, then time averages of all ¯rst-order brackets, f g1,
must vanish. For generality we allow them to be nonzero. There seem to be no analyses in which their
variations have been taken into account.

The two sets of equations governing the mean °ow in the presence of unsteady motion de¯ne two distinct
formulations of the general problem. In the ¯rst, equations (3.28){(3.33), computation of the mean °ow is
uncoupled from that of the unsteady °ow. Hence formally we are concerned with the stability and time
evolution of disturbances superposed on a given, presumed known, mean °ow una®ected by the unsteady
motions. That is the setting for all investigations of combustion instabilities founded on the splitting of
small °ow variables into sums of mean and °uctuating values. This approach excludes, for example, possible
in°uences of oscillations on the mean pressure in the chamber (often called `DC shift'), not an unusual
occurrence in solid propellant rockets. When they occur, DC shifts of this sort are almost always unacceptable
in operational motors. They may be directly a®ected by the °uctuations, or they may be largely due to
changes in the mean burning rate.

In contrast, the set (3.34){(3.39) is strongly coupled to the °uctuating ¯eld. The situation is formally
that producing the problem of `closure' in the theory of turbulent °ows (see, for example, Tennekes and
Lumley, 1972). We will not explore the matter here, but note only that the process of time averaging
terms on the right hand sides of the equations introduces functions of the °uctuations that are additional
unknowns. Formal analysis then requires that those functions be modeled; perhaps the most familiar example
in the theory of turbulence is the introduction of a `mixing length' as part of the representation of stresses
associated with turbulent motions. The set (3.34){(3.39) also can be used to compute `DC shifts' for speci¯ed
°uctuations of the °ow variables. No results have been reported.

Numerical simulations of combustion instabilities do not exhibit the problem of closure if the complete
equations are used, avoiding the consequences of the assumption (3.14). Thus, for example, the results
obtained by Levine and Baum (1982, 1988) do show time-dependence of the average pressure in examples
of instabilities in solid rockets. Another possible cause of that behavior, probably more important in many
cases, is nonlinear dependence of the burning rate on the pressure or velocity near the surface of a solid
propellant rocket. Within the structure given here, that behavior arises from time-averaged functions of p0,
M0, : : : contained in the boundary conditions.

We use in this book the formulation assuming complete knowledge of the mean °ow, given either by
suitable modeling or by solution to the governing equations (3.28){(3.33). This may in some cases be an
important omission. Probably the most important consequence is that the e®ect of oscillations on burning
rate and mean pressure in solid propellant rockets is not covered. See Section 2.1, for example Figure 2.6.
This is often, especially in tactical rockets, a signi¯cant matter which has been treated by the author only
with preliminary calculations in the present scheme. Flandro (private communication) is currently working
on this problem.

3.3.3. Systems of Equations for the Fluctuations. The general equations of motion (3.22){(3.27)
and those for the mean °ow written in Section 3.3.1 contain a restriction only on the magnitude of the average
Mach number. Such generality blocks progress with the analysis and for many applications is unnecessary.
The set of equations (3.22){(3.27) must be simpli¯ed to forms that can be solved to give useful results. Many
possibilities exist. We follow here a course that previous experience has shown to be particularly fruitful for
investigations of combustor dynamics. The choices of approximations and tactics are usually motivated by
eventual applications and the type of analysis used.
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First we assume that the mean °ow is determined by its own system of equations; that is, we avoid
the problem of closure and use the ¯rst formulation, equations (3.28){(3.33), discussed in Section 3.3.1.
Consequently, the mean °ow is taken to be independent of time and the combinations in square brackets [ ],
equations (3.22){(3.27), vanish identically; we write the equations in the form

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 ¡ f½g2 + W 0 (3.40)

¹½
@M0

@t
+rp0 = ¡f[M]g1 ¡ fMg2 ¡ fMg3 ¡ f[M]g2 +F0F0F0 (3.41)

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 ¡ fTg2 ¡ fTg3 ¡ [fTg2] + Q0 (3.42)

@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 ¡ fpg2 + P0 (3.43)

¹½ ¹T
@s0

@t
= ¡f[s]g1 ¡ fsg2 ¡ f[s]g2 ¡ fsg3 ¡ fsg4 +S0 (3.44)

The various brackets are de¯ned in Section A.6 of Annex A. They are formed to contain terms ordered with
respect to both the mean Mach number and the amplitude of the °uctuations:

f[ ]g1 : 1st order in ¹M; 1st order in M0; O(¹")

f g2 : 0th order in ¹M; 2nd order in M0; O("2)

f[ ]g2 : 1st order in ¹M; 2nd order inM0; O(¹"2)

f g3 : 0th order in ¹M; 3rd order in M0; O("3)

f g4 : 0th order in ¹M; 4th order inM0; O("4)

(3.45)

No terms have been dropped in passage from the set (3.15){(3.19) to the set (3.40){(3.44), but °uctuations
of the sources W 0; ¢ ¢ ¢ ;S0 are not now classi¯ed into the various types de¯ned by the brackets (3.45).

We have put the equations in the forms (3.40){(3.44) to emphasize the point of view that we are
considering classes of problems closely related to motions in classical acoustics. If the right hand sides are
ignored, (3.40){(3.44) become the equations for linear acoustics of a uniform non-reacting medium at rest.
The perturbations of that limiting class arise from four types of processes:

(i) interactions of the linear acoustic ¯eld with the mean °ow, represented by the terms contained in the
square brackets within curly brackets, f[ ]g1;

(ii) nonlinear interactions between the °uctuations, represented by the curly brackets conveniently re-
ferred to as: f g2, second order acoustics; f g3, third order acoustics; and f g4, fourth order
acoustics;

(iii) interactions between the mean °ow and nonlinear acoustics to second order, represented by f[ ]g2;
(iv) sources associated with combustion processes, represented by the source terms W 0;FFF0;Q0;P0 and S0.

By selectively retaining one or more of these types of perturbations we de¯ne a hierarchy of problems of
unsteady motions in combustors. We label these classes of problems O, I, II, III, IV according to the orders
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of terms retained in the right hand sides: the left hand sides contain only the terms of order " = M0
r, the

equations for classical linear acoustics.

O. Classical Acoustics, (¹ = 0; "! 0)

Perturbations to ¯rst order in " are retained on the right-hand sides of (3.40){(3.44):

@½0

@t
+ ¹½r ¢M0 = W 0

¹½
@M0

@t
+rp0 = FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = Q0

@p0

@t
+ °¹pr ¢M0 = P0

¹½ ¹T
@s0

@t
= S0

(3.46) a-e

I. Linear Stability, O("; ¹")

Retain interactions linear in the average Mach number and in the °uctuations on the right-hand
sides:

@½0

@t
+ ¹½r ¢M0 = ¡f[½]g1 + W 0

¹½
@M0

@t
+rp0 = ¡f[M]g1 +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡f[T ]g1 + Q0

@p0

@t
+ °¹pr ¢M0 = ¡f[p]g1 + P0

¹½ ¹T
@s0

@t
= ¡f[s]g1 +S0

(3.47) a-e

II. Second Order Acoustics, O("; ¹"; "2)

Retain the linear interactions and the nonlinear second order acoustics on the right-hand sides:

@½0

@t
+ ¹½r ¢M0 = ¡(f[½]g1 + f½g2) + W 0

¹½
@M0

@t
+rp0 = ¡(f[M]g1 + fMg2) +FFF0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡(f[T ]g1 + fTg2) + Q0

@p0

@t
+ °¹pr ¢M0 = ¡(f[p]g1 + fpg2) + P0

¹½ ¹T
@s0

@t
= ¡(f[s]g1 + fsg2) +S0

(3.48) a-e
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III. Third Order Acoustics, O("; ¹"; "2; "3)

Retain the linear interactions and the nonlinear acoustics up to third order on the right-hand
sides:

@½0

@t
+ ¹½r ¢M0 = ¡(f[½]g1 + f½g2) + W 0

¹½
@M0

@t
+rp0 = ¡(f[M]g1 + fMg2 + fMg3) +F0F0F0

¹½Cv
@T 0

@t
+ ¹pr ¢M0 = ¡(f[T ]g1 + fTg2 + fTg3) + Q0

@p0

@t
+ °¹pr ¢M0 = ¡(f[p]g1 + fpg2) + P0

¹½ ¹T
@s0

@t
= ¡(f[s]g1 + fsg2 + fsg3) +S0

(3.49) a-e

IV. Mean Flow/Nonlinear Acoustic Interactions, O("; ¹"; "2; "3; ¹"2)

Retain all terms on the right-hand sides of (3.40){(3.44) except fsg4 in (3.44). No results have
been obtained for this class of problems.

Several other classes of problems possible to de¯ne in this context will not be considered here since no
results have been reported. There is some indication that problems in class IV may have some important
consequences but no theoretical results exist.

In each class of problems, the source terms W 0; ¢ ¢ ¢ must be expanded to orders consistent with the orders
of the °uid-mechanical perturbations retained.

3.4. Nonlinear Wave Equations for the Pressure Field

Practically all of the subsequent material in this book will be either directly concerned with pressure
waves, or with interpretations of behavior related to pressure waves. The presence of unsteady vorticity
causes important revisions of such a restricted point of view, as we have already mentioned, but the basic
ideas remain in any event. Hence the wave equation for pressure °uctuations occupies a meaningful position
in all ¯ve classes of problems de¯ned in the preceding section. Its formation follows the same procedure used
in classical acoustics.

De¯ne MMM and R to contain all possible terms arising in the sets of equations constructed for the problems
O{IV:

¹½
@M0

@t
+rp0 = ¡MMM +F0F0F0 (3.50)

@p0

@t
+ °¹pr ¢M0 = ¡R + P0 (3.51)

where

MMM = f[M]g1 + fMg2 + fMg3 + f[M]g2
R = f[p]g1 + fpg2 (3.52)a,b
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Di®erentiate (3.51) with respect to time and substitute (3.50) for @M0=@t:

@2p0

@t2
+ °¹pr ¢

·
¡1
¹½
rp0 ¡ 1

¹½

¡
MMM ¡F0F0F0¢¸ = ¡@R

@t
+
@P0

@t

Rearrange the equation to ¯nd

r2p0 ¡ 1

¹a2
@2p0

@t2
= h (3.53)

with

h = ¡¹½r ¢
·
1

¹½

¡
MMM ¡F0F0F0¢¸+ 1

¹a2
@

@t
(R ¡ P0) + 1

¹½
r¹½ ¢ rp0 (3.54)

The boundary condition for the pressure ¯eld is found by taking the scalar product of the outward
normal, at the chamber boundary, with (3.50):

n̂ ¢ rp0 = ¡f (3.55)

f = ¹½
@M0

@t
¢ n̂+ (MMM ¡FFF0) ¢ n̂ (3.56)

Replacing MMM and R by their de¯nitions (3.52)a,b, we have the formulation based on the inhomogeneous
nonlinear wave equation and its boundary condition:

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(3.57)a,b

with

h =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

¸
¡
·
¹½r ¢ 1

¹½
fMg3

¸
¡
·
¹½r ¢ 1

¹½
f[M]g2

¸
+

·
+¹½r ¢ 1

¹½
FFF0 ¡ 1

¹a2
@P0

@t

¸ (3.58)

f = ¹½
@M0

@t
¢ n̂+ n̂ ¢

h
f[M]g1 + fMg2 + fMg3 + f[M]g2

i
¡F0F0F0 ¢ n̂ (3.59)

With this formulation, the wave equations and boundary conditions for the classes of problems de¯ned
in Section 3.3 are distinguished by the following functions h and f :

O. Classical Acoustics

hO = ¹½r ¢ 1
¹½
FFF0 ¡ 1

¹a2
@P0

@t

fO = ¹½
@M0

@t
¢ n̂¡FFF0 ¢ n̂

(3.60)a,b
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I. Linear Stability

hI =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

¸

fI = ¹½
@M0

@t
¢ n̂+ n̂ ¢ f[M]g1 ¡F0F0F0 ¢ n̂

(3.61)a,b

Allowing F0F0F0 and P0 to be non-zero gives the opportunity for representing sources of mass, momentum,
and energy both within the volume and at the boundary. The ¯rst term in fI accounts for motion of
the boundary.

II. Second Order Acoustics

hII =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

¸
+

·
¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

¸

fII = ¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2]¡F0F0F0 ¢ n̂

(3.62)a,b

III. Third Order Acoustics

hIII =

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0

¸
+

·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

¸
+

·
¡¹½r ¢ 1

¹½
fMg3

¸
+

·
¹½r ¢ 1

¹½
F0F0F0 ¡ 1

¹a2
@P0

@t

¸

fIII =¹½
@M0

@t
¢ n̂+ n̂ ¢ [f[M]g1 + fMg2 + fMg3]¡F0F0F0 ¢ n̂

(3.63)a,b

IV. Mean Flow/Nonlinear Acoustics Interactions

hIV =hIII ¡ ¹½r ¢ 1
¹½
f[M]g2

fIV =fIII + n̂ ¢ 1
¹½
f[M]g2

(3.64)a,b

With these forms for the functions h and f , the de¯nitions of the classes of problems considered here
are complete, giving the basis for the analysis worked out in the remainder of this book. Only problems
within classical acoustics can be solved easily. All others require approximations, both in modeling physical
processes and in the method of solution. Modeling will be discussed in the contexts of speci¯c applications;
a few remarks help clarify the approximate method of solution described in the following chapter.
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Remarks:

(i) The equations derived here are written with the dimensionless variables de¯ned in Section 3.1. This
is an important point to recall when results are written in terms of dimensionless variables. Annex D
contains the corresponding results in dimensional variables.

(ii) The classes of problems O{IV de¯ned here are described by inhomogeneous equations that even
for linear stability cannot be generally solved in closed form. The chief obstacles to solution arise
because the functions h and f contain not only the unknown pressure but also the velocity and
temperature. For given functions F0F0F0 and P0, numerical solutions could be obtained for a speci¯ed
combustor and mean °ow ¯eld. The results would apply only to the special case considered. To
obtain some understanding of general behavior it would be necessary to consider many special cases,
a tedious and expensive procedure.

(iii) Therefore, we choose to work out an approximate method of solution applicable to all classes of
problems. Numerical solutions, or `simulations' then serve the important purpose of assessing the
validity and accuracy of the approximate results.

(iv) The approximate method of solution described in the following chapter is based ¯rst on spatial aver-
aging, followed by an iteration procedure involving extension of the expansion in two small parameters
de¯ned in this chapter. This method has been most widely used and con¯rmed in applications to
combustion instabilities in solid propellant rockets, but it can be applied to problems arising in any
type of combustor.

(v) Instabilities in solid rockets have been particularly helpful in developing the general theory for at
least three reasons: 1) the mean °ow ¯eld, nonuniform and generated by mass addition at the bound-
ary, requires careful attention to processes associated with interactions between the mean °ow and
unsteady motions; 2) more experimental results for transient behavior have been obtained for solid
rockets than for any other combustion system; and 3) although still far from being satisfactorily un-
derstood, the dynamics of burning solid propellants is better known than for any other combustion
system.

(vi) The °uctuations of the source terms, W 0, FFF0, : : : S0 will be made explicit as required in particular
applications.

(vii) No assumptions have been made restricting either the average or the time-dependent velocity ¯elds
to be irrotational. Moreover, all viscous e®ects can be accommodated with suitable de¯nitions of the
source terms.

(viii) For reasons explained earlier, the wave equations are written for the pressure which, in lowest ap-
proximation, is associated only with acoustic waves. However, on the right-hand sides (i.e., in the
functions h and f) the total unsteady velocity appears. Hence by suitable decomposition (see Sec-
tion 7.9) coupling between, say, vorticity and acoustic waves can be investigated. In particular, this
formulation allows calculation of the e®ects of vorticity on stability (Flandro 1995). However, we
must emphasize that the methods and results worked out in the following chapters are intended to
be relatively easy to apply. The price of this property is their approximate character.

(ix) The most signi¯cant omission at this stage is accounting for turbulence. In principle, modeling of
turbulence could be included in the derivation of the general equations. However, that strategy would
bring unnecessary complications and erect serious obstacles to obtaining useful results with minimal
e®ort. For applications to practical situations, the e®ects of turbulence seem to be de¯nitely secondary.
Theoretical justi¯cation for ignoring the possible e®ects of random or statistical °uctuations in the
°ow is based on the work of Chu and Kovasznay (1957).
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