
CHAPTER 4

Mo dal Expansion and S patial Averaging; An Iterative Metho d of
Solution

From the point of view expressed by Figure 1.1, we are concerned in this chapter with representing the
combustor dynamics. The procedure, often called `modeling', is based on the equations of motion constructed
in the preceding section and hence in principle will contain all relevant physical processes.1 For the purposes
here, all modeling of combustor dynamics and of combustion dynamics|the mechanisms and feedback in
Figure 1.1|must be done in the context developed in Chapter 1. Thus we always have in mind the idea
of wave motions somehow generated and sustained by interactions between the motions themselves and
combustion processes, the latter also including certain aspects of the mean °ow within the combustor.

The simplest model of the combustor dynamics is a single stationary wave, a classical acoustic resonance
as in an organ pipe, but decaying or growing due to the other processes in the chamber. In practice, the
combustion processes and nonlinear gasdynamical e®ects inevitably lead to the presence of more than one
acoustic mode. We need a relatively simple yet accurate means of treating those phenomena for problems
of the sort arising in the laboratory and in practice. Modeling in this case begins with construction of a
suitable method for solving the nonlinear wave equations derived in Section 3.4. In this context we may
regard the analysis of the Rijke tube covered in Section 2.7 as a basic example of the procedure stripped of
the formalism covered in this chapter.

The chief purpose of the analysis constructed here is to devise methods capable of producing results
useful for prediction and interpretation of unsteady motions in full-scale combustion chambers, as well as
for laboratory devices. That intention places serious demands on the methods used for at least two reasons:

(i) processes that must be modeled are usually complicated and their theoretical representations are
necessarily approximate to extents which themselves are di±cult to assess; and

(ii) almost all input data required for quantitative evaluation of theoretical results are characterized by
large uncertainties.

In this situation it seems that for applications and, as it will turn out, for theoretical purposes as well, the
most useful methods will be based on some sort of spatial averaging. Formal solution of the partial di®erential
equations, even for linear problems, is practically a hopeless task except for very special cases involving simple
geometries. Direct numerical simulations (DNS), or numerical solutions to the partial di®erential equations,
are not real alternatives for practical purposes at this time, and alone are not attractive for obtaining basic
understanding. However, as we will see later, numerical methods o®er the only means for assessing the
validity of approximate solutions, and can always be applied to more complicated (realistic?) problems than
we can reasonably handle with the analytical methods discussed here. In any event, one should view theory
and analysis on the one hand, and numerical simulations on the other, as complementary activities. Recent
experiences have shown that careful coordination of the analytical procedures and numerical simulations
with experimental observations is the most e®ective strategy for treating combustion instabilities in actual

1That seems to be what some people (apparently electrical engineers) mean by the term `physics-based modeling.' What
would otherwise be the basis for acceptable modeling of a physical system has not been explained.

 

RTO-AG-AVT-039 4 - 1 

 

 



combustion systems. With the foundation of basic theory, numerical simulations o®er very powerful means
for improving understanding.

The greater part of the material on analysis and theory of combustion instabilities in this book is based
on a method of spatial averaging. It is important to notice that the elementary example worked out in Section
2.7 already shows the superior results possible with the method of averaging in contrast to an approximate
solution not involving averaging. The essential idea is of course not new, the method being nearly identical
with similar methods used in other branches of continuum mechanics. There are a few special characteristics
associated with applications to combustor that will appear in the course of the following discussion.

4.1. Application of a Green's Function for Steady Waves

The method used later to analyze nonlinear behavior has its origins in an early analysis of linear combus-
tion instabilities in liquid rocket engines (Culick, 1961, 1963). That work was based on solution to problems
of steady waves by introducing a Green's function. It is an e®ective strategy for this application because
departures from a known soluble problem are small, due either to perturbations within the volume or at the
boundary, all of order ¹ in the context developed in Chapter 3. Mitchell (1993) has made the most extensive
use of Green's functions in this context.

The problem to be solved is de¯ned by the equation derived in Section 3.4,

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(4.1)a,b

with ¹a constant, and h and f given by (3.61)a,b for linear stability. Because here h and f are assumed
linear,2 various methods are available to build general solutions by applying the principle of superposition
to elementary solutions representing steady waves. Hence we assume that the °uctuating pressure ¯eld is
a steady wave system within the given chamber, having unknown spatial structure varying harmonically in
time:

p0 = p̂e¡i¹akt (4.2)

where k is the complex wavenumber, also initially unknown,

k =
1

¹a
(! + i®) (4.3)

As de¯ned here, ® positive means that the wave has growing amplitude, p0 » e®t. Of course the wave is not
strictly stationary, a condition existing only if ® = 0, certainly true when h = f = 0, as in classical acoustics.

Even when h; f are non-zero, it is still possible that ® = 0, now de¯ning a state of neutral stability. In
general one must expect ®6= 0; it is a basic assumption in all of the analysis covered in this book that ® is
small compared with !, so the waves are slowly growing or decaying|they are `almost' stationary, and their
spatial structure does not change drastically with time. However, the results obtained are quite robust and
seem often to be usable even when ®=! is not small.

In the ¯rst instance, the problem here is to determine the spatial distribution p̂ and the complex
wavenumber k. For steady waves we can write

h = ·ĥe¡i¹akt ; f = ·f̂e¡i¹akt

2Sections 4.1 and 4.2 cover linear behavior only; Sections 4.3{4.6 include nonlinear behavior.

MODAL EXPANSION AND SPATIAL 
AVERAGING; AN ITERATIVE METHOD OF SOLUTION  

4 - 2 RTO-AG-AVT-039 

 

 



where again · is a small parameter3 characterizing the smallness of h and f . Substitution in (4.1)a,b and
dropping the common exponential time factor gives

r2p̂+ k2p̂ = ·ĥ
n̂ ¢ rp̂ = ¡·f̂

(4.4)a,b

This is of course a well-known classical problem thoroughly discussed in many books. Many methods of
solution are available for the linear problem. We use here a procedure based on introducing a Green's
function discussed, for example, by Morse and Feshbach (1952, Chapter 9). This is an attractive method for
several reasons, including:

(i) Conversion of a di®erential equation into an integral equation, and the iterative method of solution
this suggests, is an e®ective means for minimizing the consequences of the uncertainties inherent in
problems of combustor dynamics;

(ii) Explicit results can be obtained for real and imaginary parts of the complex wavenumber in forms
that are easily interpreted and remarkably convenient both for theoretical work and for applications;

(iii) The method has motivated a straightforward extension to nonlinear problems, with considerable
success. (Chapter 7)

De¯ne a Green's function satisfying the homogeneous boundary condition and the wave equation homo-
geneous except at the single point where a source is located, having zero spatial extent and in¯nite strength
such that its integral over space is ¯nite. Thus the source is represented by a delta function ±(r ¡ r0) and
G(rjr0) is determined as a solution to the problem

r2G(rjr0) + k2G(rjr0) = ±(r¡ r0)
n̂ ¢ rG(rjr0) = 0

(4.5)a,b

The notation rjr0 as the argument of G(rjr0) represents the interpretation of the Green's function as the
wave observed at point r due to a steady oscillatory point source at r0.

Multiply (4.4)a by G(rjr0), (4.5)a by p̂(r), subtract the results and integrate over volume (in the present
case the volume of the chamber) to ¯ndZZZ

V

£
G(rjr0)r2p̂(r) ¡ p̂(r)r2G (rjr0)] dV + k2

ZZZ
V

[G(rjr0)p̂(r)¡ p̂(r)G(rjr0)] dV

= ·

ZZZ
V

G(rjr0)ĥ(r)dV ¡
ZZZ
V

p̂(r)±(r¡ r0)dV
(4.6)

Because G(rjr0) and p̂(r) are scalar functions the second integral on the left-hand side vanishes. The ¯rst
integral is rewritten using a form of Green's theorem, and the basic property of the delta function is applied
to the second integral on the right-hand side:ZZZ

V

F (r)±(r¡ r0)dV = F (r0) (r; r0 in V ) (4.7)

Hence (4.6) becomesZZ
S

° [G(rjr0)rp̂(r)¡ p(r)rG(rjr0)] ¢ n̂dS = ·
ZZZ
V

G(rjr0)ĥ(r)dV ¡ p̂(r0)

where n̂ is the outward normal at the surface of the volume V in question.

3Later, · will be identi¯ed with ¹ introduced in Section 3.3 but it is useful in this discussion to maintain a distinction.
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Now apply the boundary conditions (4.4)b and (4.5)b and the last equation can be written in the form

p(r̂0) = ·

8<:
ZZZ
V

G(rjr0)ĥ(r)dV +
ZZ
S

°G(rsjr0)f̂(rs)dS
9=; (4.8)

Subscript ( )s means the point rs lies on the boundary surface (actually on the inside surface of the boundary).
Because the operator for scalar waves is self-adjoint (see Morse and Feshbach 1953, Chapter 10), the Green's
function possesses the property of symmetry

G(rjr0) = G(r0jr) (4.9)

This property has the appealing physical interpretation that the wave observed at r due to a point source
at r0 has the same amplitude and relative phase as for the wave observed at r0 when the point source is
located at r. With (4.9) we can interchange r and r0 in (4.8) to ¯nd for the steady ¯eld at position r:

p̂(r) = ·

8<:
ZZZ
V

G(rjr0)ĥ(r0)dV0 +

ZZ
S

°G(rjr0s)f̂(r0s)dS0

9=; (4.10)

Equation (4.10) is not an explicit solution for the pressure ¯eld, but is rather an integral equation,

because the source functions ĥ and f̂ in general depend on the °uctuating pressure and velocity ¯elds
themselves. However, because the sources are assumed to be small perturbations of the classical ¯eld having
no sources, · is small and p̂ will not di®er greatly from a solution to the homogeneous problem de¯ned by
h = f = 0. The result (4.10) represents the solution to the inhomogeneous problem; the complete solution
is (4.10) plus a homogeneous solution. We will take advantage of the smallness of · to ¯nd an approximate
explicit solution for p̂ by an iterative procedure discussed in Section 4.1.1.

Whatever tactic one may choose to follow, the result (4.10) is of no practical value without having a
representation of G(rjr0). The most convenient form of G(rjr0) for our purpose is expansion in eigenfunc-
tions Ãn(r), here the normal modes of the classical acoustics problem with no sources in the volume and
homogeneous boundary conditions; G(rjr0) is therefore expressed as a modal expansion,

G(rjr0) =
1X
n=0

AnÃn(r) (4.11)

where the Ãn satisfy
4

r2Ãn + k2nÃn = 0
n̂ ¢ rÃn = 0

(4.12)a,b

and are orthogonal functions, ZZZ
V

Ãm(r)Ãn(r)dV = E
2
n±mn (4.13)

Substitute (4.11) in (4.5)a, multiply by Ãm(r) and integrate over the volume to ¯ndZZZ
V

Ãm

1X
n=0

Anr2ÃndV + k2
ZZZ
V

Ãm

1X
n=0

AnÃndV =

ZZZ
V

Ãm(r)±(r¡ r0)dV

With (4.7), (4.12) and (4.13), this equation produces the formula for An:

An =
Ãn(r0)

k2n ¡ k2
(4.14)

4Equations (4.12)a,b really are essential to the following general results. They can be altered, e.g. n̂ ¢ rÃn = ¡g(r), but
subsequent formulas must be carefully checked.
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Thus the expansion (4.11) for G(rjr0) is

G(rjr0) =
1X
n=0

Ãn(r)Ãn(r0)

E2n(k
2 ¡ k2n)

(4.15)

the modal expansion of the Green's function. Substitution of (4.15) in (4.10) leads to the formal modal
expansion of the pressure ¯eld,5

p̂(r) = ·
1X
n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.16)

Suppose that for · tending to zero, p̂(r) approaches the unperturbed mode shape ÃN ; let the corresponding
function p̂ be denoted p̂N , so

p̂ ¡!
·!0

p̂N = ÃN (4.17)

Now separate the Nth term from the sum in (4.16) and write

p̂(r) = ÃN (r)
·

E2N (k
2 ¡ k2N )

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=;
+·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=;
(4.18)

where the prime in the summation sign means that the term n = N is missing. The eigenvalues associated
with the eigenfunction ÃN (r) is kN . This form is consistent with the requirement (4.17) only if the factor
multiplying ÃN (r) is unity, giving the formula for the perturbed wavenumber

k2 = k2N +
·

E2N

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=; (4.19)

and (4.18) becomes

p̂(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (4.20)

Another more direct derivation of (4.19) very useful in later analysis, may be had by ¯rst multiplying
(4.4) by ÃN and integrating over the volume:

ZZZ
V

ÃNr2p̂dV + k2
ZZZ
V

ÃN p̂dV = ·

ZZZ
V

ÃN ĥdV

Application of Green's theorem to the ¯rst integral givesZZZ
V

p̂r2ÃNdV +
ZZ
S

° [Ãnrp̂¡ p̂rÃn] ¢ n̂dS + k2
ZZZ
V

Ãnp̂dV =

ZZZ
V

ÃN ĥdV

5The form of (4.16) has been seriously misunderstood by many interested in methods for analyzing and interpreting
combustion instabilities. According to (4.12)b, the velocity associated with each of the basis functions must vanish on the
surface enclosing the volume considered. Hence the representation (4.16) seems also to imply that the velocity of the actual

(perturbed) ¯eld must also vanish at the boundary, even with ĥ and f̂ non-zero. That is, the approximate solution for p(r; t)
and u(r; t) cannot satisfy the correct (perturbed) boundary conditions. This conclusion is incorrect, following from the implied
assumption that as r ! r0 on the boundary, the limit as r ! r0 in the sum (4.16) is equal to the sum of the limits of each
of the terms in (4.16). The point is made by example in Annex F; see also Footnote 8 and related remarks at the end of this
chapter.
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after inserting r2ÃN = ¡k2NÃN and rÃN ¢ n̂ = 0, rearrangement gives

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS

9=; (4.21)

The integral of ÃN p̂ in the denominator of (4.21) can be evaluated by using (4.20) and is exactly E
2
N ,

providing the series in (4.20) converges. Hence (4.21) is identical to (4.19). This simple calculation has
shown that (4.18) and (4.20) are consistent.

The preceding calculation contains several basic ideas lying behind much of the analysis used in this book.
In summary, the original problem described by the di®erential equation (4.4)a and its boundary condition
(4.4) are converted to an integral equation, in this case (4.10), established by introducing a Green's function.

This is not an explicit solution because the functions ĥ and f̂ generally depend on the dependent variable
p̂. However, formulation as an integral equation provides a convenient basis for approximate solution by
iteration.

4.1.1. Approximate Solution by Iteration. To apply an iterative procedure, it is necessary ¯rst to
give the Green's function G(rjr0) explicit form. The natural choice for problems of waves in a chamber is a
series expansion in the natural modes of the chamber, a modal expansion, (4.15). For the small parameter
· tending to zero (i.e. all perturbations of the classical acoustics problem are small), a straightforward
argument produces the formula (4.19) for the wavenumber and the integral equation (4.20) for p̂(r).

Apparently, equation (4.20) must be solved to give p̂ before the wavenumber can be computed with
(4.19). We should emphasize that for many practical purposes, it is really k that is required, because its
imaginary part determines the linear stability of the system (® = 0). The great advantage of this approach

may be seen clearly with a simple example. Suppose f̂ = 0 and ĥ = H(r)p̂ in (4.4)a,b. Then (4.20) and
(4.19) become

p̂(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

ZZZ
V

ÃnH(r0)p̂(r0)dV0 (4.22)

k2 = k2N +
·

E2N

ZZZ
V

ÃNH(r0)p̂(r0)dV0 (4.23)

Because · is assumed to be small, solution by successive approximation, i.e. an iterative procedure, is a
natural way to proceed. The initial (zeroth) approximation to the mode shape p̂ is (4.22) with · = 0,
p̂(0) = ÃN . Substitution in (4.23) gives k

2 correct to ¯rst order in ·:

(k2)(1) = k2N +
·

E2N

ZZZ
V

H(r0)Ã
2
NdV0

= k2N + ·
IN
E2N

(4.24)

where IN stands for the integral,

IN =

ZZZ
V

H(r0)Ã
2
NdV0
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Calculation of p̂ to ¯rst order in · requires setting p̂ and k2 to their zeroth order values on the right-hand
side of (4.22), p̂(0) = ÃN , (k

2)(0) = k2N :

p̂(1)(r) = ÃN (r) + ·

1X0

n=0

Ãn(r)

E2n(k
2
N ¡ k2n)

ZZZ
V

ÃnH(r0)ÃNdV0

= ÃN + ·¾N

and ¾N stands for the series

¾N =

1X0

n=0

ÃN
E2n(k

2
N ¡ k2n)

ZZZ
V

H(r0)Ã
2
N (r0)dV0

Substitution of this formula for p̂ under the integral in (4.23) then gives the second approximation (k2)(2)

to k2:

(k2)(2) = k2N +
·

E2N

ZZZ
V

ÃNH(r0)(ÃN + ·¾N )dV0

= (k2)(1) + ·2
·

E2N

ZZZ
V

ÃNH(r0)¾NdV0

(4.25)

A wonderful property of the procedure is already apparent: Calculation of the wavenumber to
some order lll in the small parameter requires knowing the modal functions only to order l ¡ 1l ¡ 1l ¡ 1.
That is the basis for the current standard practice of computing linear stability for solid propellant rockets
(the \Standard Stability Prediction Program," Nickerson et al. 1984) using the unperturbed acoustic modes
computed for the geometry in question.6;7

The \perturbation-iteration" procedure just described is an old and widely used method to obtain
solutions to nonlinear as well as linear problems. Often much attention is paid to achieving more accurate
solutions by carrying the iterations to higher order in the small parameter. That is a legitimate process
providing the equations themselves are valid to the order sought. In Chapter 3 we emphasized the importance
of the expansion procedure largely for that reason. If the equations are valid, say, only to second order in
the amplitude ("), there is no need|in fact no justi¯cation|to try to ¯nd a solution to order "3 and higher.
Similar remarks apply to the expansion in the average Mach number (¹); see footnote 2 in Chapter 3. The
procedure is fully explained in Section 4.6 for the equations derived in Section 3.4.

4.2. An Alternative Derivation of the First Order Formula

The results (4.19) and (4.20) for the complex wavenumber and mode shape can be instructively obtained
in a di®erent way. Both formulas provide means for computing the di®erences k2 ¡ k2N and p̂¡ÃN between
the actual (perturbed) quantities and the unperturbed quantities. It is reasonable that those results should
somehow follow from comparison of the perturbed (·6= 0) and unperturbed (· = 0) problems. The idea is
to average the di®erence between the two problems weighted respectively by the other's mode shape. That
is, subtract p̂ times equation (4.12)a from Ãn times (4.4)a and integrate the result over the volume of the

6Failure to respect this basic property of the procedure has rendered useless some discussions of the subject. For example,
the lengthy discussion by Van Moorhem (1982) is largely irrelevant to the spacially averaged representation treated here and
in earlier works. For reasons di®erent from those o®ered by Van Moorhem, some of the results in question are incomplete, as
discussed in Chapters 6 and 7.

7Calculation of the solution, the mode shape to order l, also requires modal functions to order l¡ 1; see Section 4.6.2.

MODAL EXPANSION AND SPATIAL 
AVERAGING; AN ITERATIVE METHOD OF SOLUTION  

RTO-AG-AVT-039 4 - 7 

 

 



chamber: ZZZ
V

£
ÃNr2p̂¡ p̂r2ÃN

¤
dV +

ZZZ
V

(k2 ¡ k2N )Ãnp̂dV0 = ·
ZZZ
V

ÃN ĥdV

Now apply Green's theorem to the ¯rst integral, substitute the boundary conditions (4.4)b and (4.12)b and
rearrange the result to ¯nd (4.21):

k2 = k2N +
·RRR

V

ÃN p̂dV

8<:
ZZZ
V

ÃN (r)ĥ(r)dV +

ZZ
S

°ÃN (rs)f̂(rs)dS

9=; (4.26)

If k2 is to be calculated to ¯rst order in ·, then p̂ must be replaced by its zero order approximation p̂ = ÃN .
Because the correction to k2N contains the multiplier ·, any contributions of order · multiplying · give terms
of order ·2. Hence to ¯rst order, (4.26) of course becomes (4.19).

This approach does not provide a recipe for computing the modal or basis functions to higher order.
That does not cause di±culty here because we have the procedure given in the preceding section. We will ¯nd
later that the simple derivation just given suggests a useful extension to time-dependent nonlinear problems.
In that situation there is no result corresponding to (4.20) for computing the mode shapes to higher order.
That de¯ciency is a serious obstacle to further progress with a simpli¯ed form of the general procedure, a
subject of current research.

4.3. Approximate Solution for Unsteady Nonlinear Motions

The method covered in the preceding two sections, based essentially on the use of Green's functions,
was the ¯rst application of modal expansions and spatial averaging to combustion instabilities (Culick 1961,
1963). In the early 1970s the procedure was extended to treat nonlinear problems, necessarily involving
time-dependence (Culick 1971, 1975). We summarize that approach here; an alternative formulation based
on a form of Galerkin's method is discussed in the following section.

We begin with the general problem (4.1)a,b and assume an approximation ~p0(r) to the pressure ¯eld as
a truncated expansion in a set of basis functions Ãm,

~p0(r; t) = ¹pr

MX
m=1

´m(t)Ãm(r) (4.27)

where for simplicity|not an essential assumption|we take ¹pr to be the average pressure in the chamber,
uniform in space and constant in time. In this work we will always take the Ãm to be acoustic modes de¯ned
by the geometry, the distribution of average temperature and suitable boundary conditions.8 We would like
the right-hand side of (4.27) to become more nearly equal to the actual pressure ¯eld in the combustor as
more terms are included in the series, so that ~p0 ´ p0 in the limit:

p0(r; t) = lim
M!1

~p0(r; t) = lim
M!1

¹pr

MX
m=1

´m(t)Ãm(r) (4.28)

8The selection of boundary conditions is part of the art of applying this method. Examples covered later will clarify the
point. For the present, it is helpful to think of the Ãm as classical acoustic modes for a volume having rigid walls and the
same shape as the combustion chamber in question. The Ãm therefore do not satisfy exactly the boundary conditions actually
existing in a combustor. Hence the right-hand side of (4.27) is an approximation in three respects: the series is truncated
to a ¯nite number of terms; it does not satisfy the correct boundary conditions; and the basis functions are assumed to be
solutions to the scalar Helmholtz equation with the homogeneous boundary condition n̂ ¢ rÃn = 0. The Ãm alone do not
represent solutions with the perturbations taken into account. However, the solution carried out to the next order does satisfy
the boundary conditions to ¯rst order. This important point is discussed in Chapter 10 of Morse and Feshbach (1952). The
approximate nature of the modal expansion will be clari¯ed as the analysis proceeds. See also Annex F for an example making
the point.
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Because the Ãm do not satisfy the correct boundary conditions, this pointwise property certainly cannot be
satis¯ed at the boundary. It is reasonable, however, to expect convergence in an integral-squared sense; that
is, the integral of the square of the di®erence between the exact solution and (4.27) satis¯es

lim
M!1

ZZZ
V

"
p0(r; t)¡ ¹pr

MX
m=1

´m(t)Ãm(r)

#2
dV = 0 (4.29)

We will not prove this properly, but assume its truth.

Convergence in the sense asserted by (4.29) is a common idea arising, for example, in formal treatments
of Sturm-Liouville problems; see Hildebrand (1952) for a very readable discussion. The matter of convergence
of approximate solutions in the present context is more complicated because one must take into account the
fact that the governing equations and their solutions are expanded in the two small parameters ¹ and "
introduced in Chapter 3. We will also not discuss that problem.

The synthesis of the pressure ¯eld expressed by (4.27) does not restrict in any practical fashion the
generality of the method. For de¯nitions here we assume that the modal functions satisfy the homogeneous
Neumann condition n̂ ¢ rÃn = 0, but for some applications a di®erent boundary condition, perhaps over
only part of the boundary, may serve better. Hence we will assume here that the Ãn are eigensolutions to
the problem (4.12)a,b.

We require that the approximation (4.27) to p0 satisfy equation (4.1)a. Multiply (4.12)b written for ÃN
by ~p0(r; t), subtract from (4.1)a written for ~p0 multiplied by ÃN ; then integrate the di®erence over the volume
of the chamber to giveZZZ

V

£
ÃNr2~p0 ¡ ~p0r2ÃN

¤
dV ¡

ZZZ
V

1

¹a2
@2~p0

@t2
dV ¡ k2N

ZZZ
V

~p0ÃNdV =
ZZZ
V

ÃNhdV

Apply Green's theorem to the ¯rst integral, substitute the boundary conditions and rearrange the result to
give ZZZ

V

1

¹a2
@2~p0

@t2
ÃNdV + k

2
N

ZZZ
V

~p0ÃNdV = ¡
8<:
ZZZ
V

hÃNdV +

ZZ
S

° fÃNdS

9=; (4.30)

Now substitute the modal expansion (4.27) in the left-hand side:

¹pr
¹a2r

MX
m=0

Ä́m(t)

ZZZ
V

³¹ar
¹a

´2
ÃmÃNdV ¡ k2n¹p

MX
m=0

´m

ZZZ
V

ÃmÃNdV = E
2
N

¹p

¹a2r
FN (4.31)

where

FN = ¡ ¹a2

¹pE2N

8<:
ZZZ
V

hÃNdV +

ZZ
S

° fÃNdS

9=; (4.32)

and ¹ar is a constant reference speed of sound. The second sum in (4.31) reduces, due to the orthogonality
of the Ãm, to ´nE

2
n. Under the ¯rst integrals, write

¢a = 1¡
³¹ar
¹a

´2
(4.33)

Then the ¯rst sum in (4.31) is

MX
m=0

Ä́m(t)

ZZZ
V

(1¡¢a)ÃmÃNdV = E2N Ä́N ¡
MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.34)
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With these changes, equation (4.31) becomes

Ä́N + !
2
N´N = FN +

1

E2N

MX
m=0

Ä́m(t)

ZZZ
V

¢aÃmÃNdV (4.35)

The sum on the right-hand side represents part of the e®ect of a non-uniform speed of sound in the chamber
(if ¢a 6= 0). To simplify writing we will ignore this term until we consider special problems. For solid rockets
it is normally a negligible contribution. If the combustor contains °ame sheets, the temperature is piecewise
uniform and this term also doesn't appear, but the presence of the discontinuities generates corresponding
terms arising from FN (see Annex E). Thus there are useful situations in which we deal with the system of
equations:

Ä́N + !
2
N´N = FN (4.36)

This result, a set of coupled nonlinear equations with the forcing function FN given by (4.32), is the basis
for practically all of the analysis and theory discussed in the remainder of this book. A corresponding result
is given in Annex B for a purely one-dimensional formulation. In anticipation of later discussions, several
general remarks are in order.

(i) The formulation expressed by (4.36) accommodates all relevant physical processes. In the derivation
of the conservation equations in Annex A, only inconsequential approximations (for present purposes)
were made, notably the neglect of multi-component di®usion and the representation of the reacting
multi-phase medium by a single-°uid model. However, only the basic gasdynamics are known explic-
itly. All other processes must be modeled in suitable forms.

(ii) Despite the apparent generality of (4.36), attention must be paid to an assumption implied in the
application of Green's theorem in spatial averaging. That is, the functions involved must possess
certain properties of continuity within the volume of averaging. The condition is not satis¯ed, for
example, at a °ame sheet, where the velocity is discontinuous, an important exception. Annex E
introduces the method for handling such cases.

(iii) The selection of functions for the modal expansion (4.27) is not unique; possible alternatives must
always be considered. What works best depends on the nature of the boundary conditions. The closer
the boundary is to a rigid re°ecting surface, the more e®ective is the choice n̂ ¢ rÃn = 0, meaning
that the acoustic velocity vanishes on the boundary. Because a combustor must provide for in°ow of
reactants and exhaust of products, it is simply not possible that the actual enclosure be everywhere
rigid and perfectly re°ecting. For n̂ ¢ rÃn = 0 to be a good approximation, as it should be for the
modal expansion to serve successfully as a zeroth approximation to the pressure ¯eld, the boundary
must be `nearly' re°ecting. Choked inlets and outlets satisfy the condition if the Mach number at
the chamber side is small (that is, the °ow within the volume is consistent with the assumption
¹ ¿ 1). Also, the dynamical response of burning solid propellants is normally such that requiring
n̂ ¢ rÃn = 0 is appropriate. Over a broad useful range of practical conditions, de¯ning the basis
functions with (4.12)a,b is therefore a reasonable choice. Exceptions are not rare, however, and care
must be exercised. For example, a Rijke tube will contain a heater, or a thin combustion region within
the duct. Continuous functions Ãn may not be good zeroth approximations to the actual behavior
discontinuous at the heating zone; moreover, in that case Ãn = 0 at the ends is the proper choice
for boundary conditions on the basis functions. More generally, if the temperature ¯eld is highly
non-uniform, then the zeroth order expansion functions should take that feature into account.

(iv) An enormous advantage of the result (4.36) is its clear interpretation. A general unsteady motion
in a combustor is represented by the time-evolution of a system of coupled nonlinear oscillators in
one-to-one correspondence with the unperturbed modes Ãn. Although the left-hand side of (4.36)
describes the motion of a linear oscillator, the forcing function FN will in general contain terms
in ´n representing linear and nonlinear damping, springiness and inertia. Consequently, it is easy
to ¯nd familiar nonlinear di®erential equations as special cases of (4.36). Such special results aid
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greatly the interpretations of complicated observed behavior in terms of simpler elementary motions.
Thus it is important to understand the connections between parameters de¯ning the oscillators, the
characteristics of the modes, and the de¯nitions provided in the process of spatial averaging.

(v) Di®erent problems are distinguished chie°y in two respects: Geometry of the combustor; and the
form of the forcing function FN . The forcing function contains the in°uences of gasdynamics explic-
itly, but all other processes must be modeled, either with theory or based on experimental results.
The geometry and the boundary conditions determine the modal expansion functions Ãn and the
frequencies !n. For complicated geometries, as for many large solid propellant rockets and for most
gas turbine combustors, computation of the Ãn and !n has been a time-consuming and expensive
process. That situation is gradually changing with the development of more capable software (e.g.,
French 2003; French and Flandro 2003).

(vi) The relatively general context in which the oscillator equations (4.36) have been derived does not
exclude simpler problems which can either be treated as special cases or constructed without reference
to the procedures worked out here. (See, e.g., Section 2.6) However, it is then often more di±cult to
be certain that all important processes are accounted for or properly ignored.

4.4. An Alternative Application of Spatial Averaging: The Method of Least Residuals

With a series of works beginning in the late 1960s, Professor B.T. Zinn and his students developed and
applied a di®erent method based on spatial averaging, an interesting extension of Galerkin's method. See
Powell (1970); Powell and Zinn (1969; 1971a,b; 1974); Zinn and Powell (1968; 1970); Lores and Zinn (1973).
There are necessarily some similarities with the method discussed in the preceding two sections; in particular
the formal results should agree in detail, or at least be reconcilable. There are, however, distinct di®erences
both in the sequence of historical developments and in many important matters of applications.

In respect to the historical developments, the Georgia Tech group was ¯rst to apply spatial averaging to
analyze nonlinear behavior, in liquid propellant rockets. They were also ¯rst to demonstrate several nonlinear
phenomena con¯rmed later in works published by others. Those results are reviewed here in Chapter 7. It
was three years after the ¯rst Georgia Tech report that Culick independently worked out a much simpli¯ed
form of the method described in Section 4.2, to explain nonlinear behavior observed in a laboratory device,
the T-burner, used to measure the combustion dynamics of solid propellants. At that time, there was
practically no communication (or mutual attention) between the liquid and solid rocket communities at the
research level, a condition that blocked certain bene¯ts, but which has since been corrected.

Recently, Seywert and Culick (1998) showed that when applied to the same equation, the two methods
lead to the same formal result (4.28). To establish that conclusion, we follow the formal procedure discussed
by Finlaysen and Scriven (1966) as extended by Powell (1970); Powell and Zinn (1969, 1971a) and Zinn
and Powell (1968, 1970) to account for the inhomogeneous boundary conditions. The method is in fact
quite general, capable of handling much more elaborate problems than that for which the method covered
in Section 4.3 has been worked out. Here we take a direct route to make the main point most clearly. Write
the wave equation (4.1) and its boundary condition as

E(r; t) = 0

B(r; t) = 0
(4.37)a,b

where

E(p0) : = r2p0 ¡ 1

¹a2
@2p0

@t2
¡ h

B(p0) : = n̂ ¢ rp0 + f
(4.38)a,b
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The Galerkin method is based on expansion of the dependent variables in a set of basis functions Án. Here
we suppose that there is only the single variable p0 in the problem9 de¯ned by (4.37). The approximation ~p
expressed as the expansion truncated to M terms is assumed to become equal to the solution p as M !1:

lim
M!1

~p = lim
M!1

MX
m=1

amÁm = p (4.39)

At this stage the functions Án are unde¯ned. The modi¯ed Galerkin method consists in spatially aver-
aging, with a weighting function, the governing equation and its boundary condition, both applied to an
approximation ~p, and requiring that the di®erence vanish:ZZZ

V

E(~p)ÁNdV ¡
ZZ
S

°B(~p)ÁNdS = 0 (4.40)

The spatial weighting function ÁN need not be one of the basis functions, but we made that choice to
establish the equivalence of the methods without unnecessary complications.

Now substitute the de¯nition (4.36) for E and B:ZZZ
V

μ
r2~p0 ¡ 1

¹a2
@2~p0

@t2

¶
ÁNdV ¡

ZZ
S

° (n̂ ¢ r~p0 + f)ÁNdS = 0 (4.41)

Apply Green's theorem to the ¯rst term to giveZZZ
V

r2~p0ÁNdV =
ZZ
S

° (~p0rÁN ¡ ÁNr~p0) ¢ n̂ dS ¡
ZZZ
V

~p0r2ÁNdV

and choose ÁN ´ ÃN de¯ned by (4.12):ZZZ
V

r2~p0ÃNdV = ¡
ZZ
S

°ÃNr~p0 ¢ n̂ dS + k2N
ZZZ
V

~p0ÃNdV

Substitution in (4.41), with ÁN ´ ÃN and some rearrangement leads to the result identical to (4.30):ZZZ
V

1

¹a2
@2~p0

@t2
ÃNdV + k

2
N

ZZZ
V

~p0ÃNdV = ¡
8<:
ZZZ
V

ÃNhdV +

ZZ
S

°ÃNfdS

9=; (4.42)

Owing to the care taken to recognize the approximation to p0 with a truncated expansion, ~p0 appears here
in place of p0 in (4.30).

The preceding remarks establish the equivalence of the methods only for the case when the equations of
motion are written for the °uctuations of the °ow variable and then combined to form the wave equation
for the pressure. It should be apparent from the discussion in Sections 4.1{4.3 that the method developed
there, and used throughout the remainder of this book, is restricted to that formulation. In contrast,
the Galerkin method is not constrained to any particular form of the governing equations; of course the
problem to be analyzed must lend itself to de¯nition of basis functions. In that sense, the modi¯ed Galerkin
method is potentially more general than the method discussed in Sections 4.1{4.3 and used throughout this
book. However, the method has not been extended beyond the applications investigated by the group at
Georgia Tech many years ago and for several reasons seems not to have motivated others to pursue even
similar applications. In almost all their work, the Georgia Tech group introduced a form of a potential for
the unsteady velocity. Combined with sometimes vague usage of expansion parameters and ordering, that
practice renders the method awkward to use and the results di±cult to interpret.

9The other variables of the °ow ¯eld must also be expanded, the procedure being the same as that followed in the method
based on the results of Section 4.3.
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4.5. Application of Time-Averaging

To this point the expansion procedure based on two small parameters has been used only to derive the
systems of equations describing successively more di±cult classes of problems listed in Section 3.3.2. Later
we will see how an iterative method based partly on the expansion reduces those systems of equations to
more readily soluble forms. In this section we apply time-averaging to convert the second-order equations
(4.36) to ¯rst order equations. First, two remarks:

(i) Use of time-averaging is motivated by the experimental observation that combustion instabilities
commonly show slowly varying amplitudes and phases of the modes contributing to the motions.
That behavior is a consequence of the relative weakness of the disturbing processes and is therefore
measured by the small parameter ¹ characteristic of the Mach number of the mean °ow. It is essential
to understand that it is not the amplitudes themselves (i.e. the parameter ") that matters. Thus the
application of time-averaging in the present context is not intended to treat nonlinear behavior in ¹,
but is based on the idea that there is only weak coupling between the mean °ow and the unsteady
motions, proportional to the Mach number of the average °ow. Nonlinear behavior of higher order
in " is a distinct matter, formally una®ected by the time-averaging.

(ii) Two-time scaling (Kevorkian and Cole, 1996; Cole 1968) is an alternative method to time-averaging.
The results obtained are identical up to second order acoustics (Sections 3.3.3(II) and 3.4), a conclu-
sion not proved here but consistent with similar previous works in other ¯elds.

According to the discussion in Section 3.3.3, we can characterize the functions h and f , and hence the
forcing function FN , as sums of terms each of which is of order ¹ and of zeroth or ¯rst order in ". Thus if
we reactivate the ordering parameters ¹ and ", the right-hand side of (3.45)b, for example, has the form

¡¹"
½
f[M]g1 + "

¹
fMg2

¾
+F0F0F0

The divergence of these terms eventually appears in h and Fn. Hence we are justi¯ed in taking Fn of order
¹; to show this explicitly write (4.36) as

Ä́N + !
2
N´N = ¹GN (4.43)

In any event, for ¹ small, the ´N di®er but little from sinusoids so (without approximation) it is reasonable
to express ´N (t) in the equivalent forms

´N (t) = rN (t) sin (!N t+ ÁN (t)) = AN (t) sin!N t+BN (t) cos!N t (4.44)

and

AN (t) = rN cosÁN ; BN = rN sinÁN

rN =
q
A2N +B

2
N ; ÁN = tan

¡1
μ
AN
BN

¶ (4.45)

One way to proceed follows a physical argument based on examining the time evolution of the energy of the
oscillator having amplitude ´N (Culick 1975). The energy EN is the sum of kinetic and potential energies,

EN (t) =
1

2
_́2N +

1

2
!2N´

2
N (4.46)

The time-averaged values of the energy and power input to the oscillator, due to the action of the force
¹GN , are

hEN i = 1

¿

t+¿Z
t

ENdt
0 ; h¹GN _́N i = 1

¿

t+¿Z
t

¹GN _́Ndt
0 (4.47)
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Conservation of energy requires that the time-averaged rate of change of energy equal the time-averaged rate
of work done by ¹GN on the oscillator:

d

dt
hEN i = ¹hGN _́N i (4.48)

From (4.44), the velocity is

_́N = !NrN cos (!N t+ ÁN ) +
h
_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN )

i
(4.49)

Following Krylov and Bogoliubov (1947) we apply the `strong' condition that the velocity is always given by
the formula for an oscillator is force-free-motion,

_́N = !NrN cos (!N t+ ÁN) (4.50)

Hence (4.49) is consistent with this requirement only if

_rN sin (!N t+ ÁN ) + _ÁNrN cos (!N t+ ÁN ) = 0 (4.51)

Now use the de¯nitions (4.44), (4.46) and (4.50) to ¯nd

EN =
1

2
!2Nr

2
N

¹GN _́N = ¹GN!NrN cos (!N t+ ÁN )

(4.52)a,b

The statement \slowly varying amplitude and phase" means that the fractional changes of amplitude
and phase are small in one cycle of the oscillation and hence during the interval of averaging ¿ , if ¿ is at
least equal to the period of the fundamental mode:

¿

rN

drN
dt

¿ 1 ;
¿

2¼

dÁN
dt

¿ 1 (4.53)

These inequalities imply that rN and ÁN may be treated as constants during the averaging carried out in
(4.47). To see this, imagine that rN for example, is expanded in Taylor series for some time t1 in the interval
¿ , t < t1 < t+ ¿ :

rN (t) = rN (t1) + (t¡ t1)
μ
drN
dt

¶
t1

+ ¢ ¢ ¢

For rN slowly varying, _rN doesn't vary much during a period and may be assigned some average value.
The increment t¡ t1 has maximum value ¿ ; so the second term is negligible according to the ¯rst of (4.47).
Therefore rN (t) ¼ rN (t1) for any t1 in the interval of averaging and the assertion is proved.

Substitution of (4.52)b in (4.48) then gives

!2NrN
drN
dt

= ¹
!NrN
¿

t+¿Z
t

GN cos(!N t
0 + ÁN )dt0

which gives

drN
dt

= ¹
1

!N¿

t+¿Z
t

GN cos(!N t
0 + ÁN )dt0 (4.54)
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Because rN (t) and _rN (t) are nearly constant in the interval (t; t+¿), this relation implies the equation before
averaging,

drN
dt

=
¹

!N
GN (t) cos(!N t+ ÁN ) (4.55)

The corresponding equation for the phase ÁN (t) before averaging is found by ¯rst rearranging (4.51) to
give

rN
dÁN
dt

cos(!N t+ ÁN ) = ¡ _rN sin(!N t+ ÁN )
which becomes, after substitution of (4.55),

rN
dÁN
dt

= ¡ ¹

!N
GN (t) sin(!N t+ ÁN ) (4.56)

Now time average this equation over the interval ¿ ; the left-hand side is approximately constant for theorem
give above, and the equation for ÁN (t) is

rN
dÁN
dt

= ¡¹ 1

!N¿

t+¿Z
t

GN sin(!N t
0 + ÁN )dt0 (4.57)

With the relations (4.45), equations (4.54) and (4.57) can be converted to equations for AN and BN :

dAN
dt

=
¹

!N¿

t+¿Z
t

GN cos!N t
0dt0

dBN
dt

= ¡ ¹

!N t

t+¿Z
t

GN sin!N t
0dt0

(4.58)a,b

Whichever pair one chooses to use, (4.54) and (4.57) or (4.55), the general formal problem of solving a system
of coupled second order equations (4.43) for the oscillators, has been converted to the simpler approximate
formal problem of solving a system of coupled ¯rst order equations. The essential basis for that conversion
is the removal of the fast oscillatory behavior with the de¯nition (4.44), a transformation made reasonable
because the changes of amplitudes and phases take place on a much slower (i.e. longer) time scale than
do the oscillations. The presence and role of two time scales is more evident in the following alternative
derivation.

From the second equality of (4.44), we ¯nd the velocity

_́N = !N [AN cos!N t¡BN sin!N t] +
h
_AN sin!N t+ _BN cos!N t

i
Now enforce the condition corresponding to (4.51),

_AN sin!N t+ _BN cos!N t = 0 (4.59)

and the velocity is

_́N = !N [AN cos!N t¡BN sin!N t] (4.60)

Substitution in (4.43) gives

!N

h
_AN cos!N t¡ _BN sin!N t

i
+ !2N [¡AN sin!N t¡BN cos!N t]
+ !2N [AN sin!N t+BN cos!N t] = ¹GN
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and

_AN cos!N t¡ _BN sin!N t =
¹

!N
GN

Multiply by cos!N t and substitute (4.59) for _BN cos!N t to give

_AN cos
2 !N t¡ sin!N t

h
¡ _AN sin!N t

i
=

¹

!N
GN cos!N t

so

dAN
dt

=
¹

!N
GN cos!N t (4.61)

Similarly,

dBN
dt

= ¡ ¹

!N
GN sin!N t (4.62)

Now introduce two time-scales, ¿f the ¯rst scale, of the order of the period of the fundamental oscillation
(in fact, we might as well set ¿f = 2¼=!1; and ¿s, the slow scale characterizing transient changes of the
amplitudes and phases of the oscillations. Two corresponding dimensionless time variables can be de¯ned,
tf = t=¿f and ts = t=¿s. Thus we consider the amplitudes and phases to be functions of the slow variable ts
while the forcing functions GN depend on both tf and to because they depend on the ´N , (i = 1; 2; : : : )

´N = AN (ts) sin
³
2¼
!N
!
tf

´
+BN (ts) cos

μ
2¼
!N
!1
tf

¶
(4.63)

In terms of the dimensionless time variables, is

1

¿s

dAN
dts

=
¹

!N
GN cos!N t

and averaging over the fast variable we have

1

¿s

tf+¿fZ
tf

1

¿s

dAN
dt0s

dt0f =
¹

!N

1

¿f

t+¿fZ
tf

GN cos

μ
2¼
!N
!1
t0f

¶
dt0f

On the left-hand side, dAN=dt
0
s is assume to be sensibly constant in the interval ¿f and we have

1

¿s

dAN
dt0s

=
¹

!N¿f

t+¿fZ
tf

GN
¡
t0f ; t

0
s

¢
cos

μ
2¼
!N
!1
t0f

¶
dt0f (4.64)

Those parts of GN depending on t0s are taken also to be constant and if we now rewrite this equation in
terms of dimensional variables, we recover (4.58)a with ¿ = ¿f = 2¼=!. Similar calculations will produce
again (4.58)a. Note that due to the nonlinear coupling, the amplitude and phases of all modes normally
change on roughly the same scale as that for the fundamental mode; thus the single interval of averaging
works for all modes.

Krylov and Bogoliubov (1947) discuss procedures for carrying the results of time-averaging to higher
order in the small parameter characterizing the expansion. Here, however, the parameter is ¹, a Mach
number characteristic of the mean °ow. Hence, as emphasized in Chapter 3, extension to higher order
in ¹¹¹ is not justi¯ed without re-deriving the basic equations to account for higher orders in the
mean °ow from the beginning.
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With ¹GN replaced by FN , letting N ! n, and ¿sts = t, we ¯nd the usual forms of the time-averaged
equations,

dAn
dt

=
1

!n¿

t+¿Z
t

Fn cos!nt
0dt0

dBn
dt

= ¡ 1

!n¿

t+¿Z
t

Fn sin!nt
0dt0

(4.65)a,b

Inserting the de¯nitions of ts and tf in (4.63), and replacing N by n, we have the expression for ´n(t):

´n(t) = An(t) sin(!nt) +Bn(t) cos(!nt) (4.66)

In Chapter 7 we will use a continuation method to assess the ranges of parameters and other conditions
for which the ¯rst order equations give accurate results when compared with solutions to the complete
oscillator equations. In the development of the theoretical matters described in this book, the sets of ¯rst
order equations, (4.65)a,b, have been central. They remain extremely useful both for theoretical work and
for applications.

4.6. The Procedure for Iterative Solution to the Oscillator Equations

The oscillator equations (4.35) and (4.36) are not yet in a form that can be readily solved because the
functions FN , de¯ned by (4.32) contain not only p

0 but also the dependent variables ½0, T 0 and u0 in the
functions h and f . With the two-parameter expansion as the basis, the iteration procedure provides a means
for expressing FN in terms of p0 only to ¯rst order in ". Thus eventually the oscillator equations become a
system soluble for the modal amplitudes ´N (t). There are of course approximations required, but the orders
of their e®ects can always be estimated in terms of the parameters " and ¹. To appreciate how the procedure
is constructed, it is helpful always to keep in mind the correspondence between the smallness of " and ¹,
and the distortions they represent of the unperturbed classical acoustic ¯eld.

There are two classes of distortions or perturbations: Those represented by higher orders of ", arising
as nonlinear e®ects of ¯nite amplitudes,10 classi¯ed generally as energy transfer between modes; and those
measured by ¹, consequences of interactions, hence energy transfer, between the steady and unsteady ¯elds.
Each of those types of perturbations may be identi¯ed within the volume in question and at the boundary.
Quite generally, then, we must take into account perturbations of the classical acoustic ¯eld, associated with
three kinds of energy transfer: Linear transfer between the mean and °uctuating motions; nonlinear transfer
between modes, or mode coupling, independent of the average °ow ¯eld; and nonlinear energy transfer
between the mean °ow and °uctuating ¯elds. Those three kinds of energy transfer characterize, respectively,
the Problems I; II; III; and IV de¯ned in Section 3.3. The way in which we view and accommodate those
perturbations determines our choice of basis functions ÃN used in the modal expansion11 (4.27). In this
work we are not accounting for nonlinear energy transfer between the mean °ow and °uctuating ¯elds; i.e.
those contributions represented by terms O(¹"2), are ignored as in Section 3.4.

10Recall that in this work, nonlinear behavior is measured in terms of the amplitude " of the unsteady motions. It is
intrinsic to their derivation (Chapter 3) that the governing equations are linear in ¹, i.e. in the Mach number of the mean

°ow. Hence, with those equations, expansions and solutions cannot legitimately be carried further then ¯rst order in ¹. The
procedures developed here can be carried formally to higher order in ".

11The expansion is not adequate for treating Problem IV de¯ned in Section 3.3. In that case the basis functions must
include distortions of order ¹.
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4.6.1. Iteration on the Mach Number of the Mean Flow. To simplify the discussion here we
assume that the functions h and f contain only four sorts of terms: small, roughly of order ", but not strictly
ordered because they are independent of the °uctuating ¯eld; linear in the °uctuations, and hence of order
"; bilinear in the mean °ow speed and the °uctuations, and hence of order "¹; and nonlinear terms in the
°uctuations of order "2 and "3. The terms are additive, so the two functions can be written formally by
rearranging (3.63)a,b in the form

h = "(h00 + h10) + "¹h11 + "
2h20 + "

3h30

f = "(f00 + f10) + "¹f11 + "
2f20 + "

3f30
(4.67)a,b

where h00 and f00 do not depend on the unsteady ¯eld and hence constitute true forcing functions.

The terms h10 and f10 are linear in the °uctuations and independent of the mean °ow speed. They can
be immediately combined with the wave operator on the left-hand side of the oscillator equations, showing
that they represent attenuation and frequency shifts of classical acoustic modes. A particularly clear and
important example is the viscous acoustic boundary layer on a rigid impermeable wall discussed in Annex C
and Section 5.9.

Almost all of the processes responsible for linear instabilities in a combustion system are contained in
the functions h11 and f11 with possible contributions from h10 and f10. At this stage, it is not clear what
phenomena might be represented by the quadratic and cubic nonlinearities not included here. Detailed
investigations are required to address the question.

The special reason for retaining those terms shown in (4.67)a,b is the following. Within the ordering
procedure followed here, only the unperturbed classical modes Ãn are required to generate explicit equations
for the modal amplitudes with the oscillator equations (4.36). To see the problem, substitute (4.67)a in the
right-hand side of the wave equation (4.1)a for p0:

r2p0 ¡ 1

¹a2
@2p0

@t2
= "(h00 + h10) + "¹h11 + "

2h20 + "
3h30 (4.68)

The functions h0, h10, h11, : : : are found by identi¯cation with (3.58) and the de¯nitions of the brackets
given in Section A.6. While h11, h20 and h30 can be found explicitly with those formulas, h00 and h10 arise
from F0F0F0 and P0 and are determined by the models of processes other than the °uid mechanics covered by
the compressible Euler equations. The acoustic boundary layer, for example, contributes to h10 and f10; see
Section 6.5 for another example.

In the iterative procedure, the parameter ¹ de¯nes the iterations so that nonlinear behavior governed
by " is present at each stage to the order selected. The zeroth approximation is the classical acoustic ¯eld
given by the modal expansions with time dependent amplitudes:

p0O = ¹p
MX
0

´m(t)Ãm(r)

u0O = ¹a
2
MX
0

_́m(t)

°k2m
rÃm(r)

(4.69)a,b

The expansion for the velocity ¯eld has been chosen so that term by term the expansions satisfy the classical
acoustic momentum equation free of perturbations

¹½
@u0O
@t

+rp0O = 0 (4.70)
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Correspondingly, the values of density and temperature °uctuations are set by the adiabatic relations,

½

¹½
=

μ
p

¹p

¶1=°
;

T
¹T
=

μ
p

¹p

¶ °¡1
°

Set p = ¹p+ p0, ½ = ¹½+ ½0, T = ¹T + T 0 and expand to ¯nd to second order

½0O
¹½
=
1

°

p0O
¹p
¡ ° ¡ 1
2°2

μ
p0O
¹p

¶2

T 0O
¹T
=
° ¡ 1
°

p0O
¹p
¡ ° ¡ 1
2°2

μ
p0O
¹p

¶2 (4.71)a,b

Then the equation for the ¯rst approximation, p0(1), to p0 is found by setting the °uctuations of °ow
variables in h equal to their classical values and retaining only terms of appropriate order. To see how this
works, begin with (2.78)a,b. De¯ne the function G

G= ¹½r ¢ 1
¹½
F0F0F0III ¡ 1

¹a2
@P0III
@t

(4.72)

The form of G is unspeci¯ed, but we assume that the processes represented lead to terms of all orders retained
in the problem at hand. Then with the ordering parameters shown and the acoustic approximations (4.69)a,b
substituted for all °uctuations, indicated by the subscript ( )O, (3.63)a,b give

12

h : = hIII = " [G00 + G10]O + "¹

·
¡¹½r ¢ 1

¹½
f[M]g1 + 1

¹a2
@f[p]g1
@t

+
1

¹½
r¹½ ¢ rp0 + G11

¸
O

+ "2
·
¡¹½r ¢ 1

¹½
fMg2 + 1

¹a2
@fpg2
@t

+ G20

¸
O

+ "3
·
¡¹½r ¢ 1

¹½
fMg3 + G30

¸
O

(4.73)

f : = fIII = "

·
¹½

μ
@M0

@t

¶
10

¡ (F0F0F0)10
¸
O

¢ n̂+ "¹
·
¹½

μ
@M0

@t

¶
11

+ f[M]g1 ¡ (FFF0)11
¸
O

¢ n̂

+ "2
·
¹½

μ
@M0

@t

¶
20

+ fMg2 ¡ (FFF0)20
¸
O

+ "3
·
¹½

μ
@M0

@t

¶
30

+ fMg3 ¡ (FFF0)30
¸
O

(4.74)

Substitution of 4.73 and 4.74 into the oscillator equations (4.36),

Ä́N + !
2
N´N = ¡

¹a2r
¹prE2N

8<:
ZZZ
V

hIIIÃNdV +

ZZ
S

° fIIIÃNdS

9=; (4.75)

produces the equations for the amplitudes of the unperturbed modes.

Because the basis functions Ãm satisfy the boundary conditions for the unperturbed problem, p0O(r; t)
given by (4.69)a, also does not satisfy the actual boundary conditions|it is the zeroth approximation. It is
the ¯rst order approximation to the pressure ¯eld that satis¯es the correct boundary conditions, which are
¯rst order in ¹. Similarly, the unsteady velocity to zeroth order is given by the expansion (4.69)b and not
only doesn't satisfy the actual boundary conditions but is clearly an irrotational ¯eld, r£ u0O = 0.

12Second and third order terms are shown for completeness in (4.73) and (4.74); they will not be needed until the discussion
of nonlinear behavior in Chapter 7.
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4.6.2. Zeroth and First Order Solutions for the Eigenvalues and Basis Functions. On several
occasions, researchers in this ¯eld, and users of results, have seriously misunderstood the meaning of the
preceding procedure. Its purpose is to give the ¯rst order (in ¹) results for the time-evolution of modal
amplitudes (which to zeroth order are constant in the scheme outlined here) and the ¯rst order (in ¹)
formulas for the eigenvalues of steady oscillations when the perturbations are accounted for in ¯rst order
(in ") i.e. linear stability. The complex eigenvalues for steady waves are found by setting13

´N = ^́Ne
¡i¹akt

h = ĥe¡i¹akt

f = f̂e¡i¹akt

(4.76)a,b

Substitution in (4.75) gives

^́N
¡¡¹a2k2 + !2N¢ = ¡ ¹a2

¹pE2N

8<:
ZZZ
V

ĥÃNdV +

ZZ
S

° f̂ÃNdS

9=; (4.77)

Equation (4.77) is useful only if h and f are linear in the °uctuations, for then every term has e¡i¹akt as
a factor. Hence from (4.67)a,b only the terms h10, h11, f10 and f11 can be retained. The formula (4.77) for
the eigenvalues of the perturbed (actual) problem to ¯rst order is

(¹ak)2 = !2N +
¹a2

¹pE2N

8<:"
24ZZZ

V

ĥ10ÃNdV +

ZZ
S

° f̂10ÃNdS

35
+"¹

24ZZZ
V

ĥ11ÃNdV +

ZZ
S

° f̂10ÃNdS

359=;
(4.78)

This is essentially the result used widely for examining the linear stability of combustion chambers, the
subject of Chapter 6.

Now the question is|how can the eigenfunctions, the mode shapes, corresponding to (4.78) be com-
puted. In fact the ¯rst order modes have never been computed and are not required if one is satis¯ed with
perturbations to the order carried in (4.78). We return to (4.68) written now for steady waves, with the
exponential time dependence; so p0 = p̂e¡i¹akt; : : : . We also drop the terms h00, h20 and h30, giving the
equation for p̂1:

r2p̂(1) + k2p̂(1) = "ĥ10 + "¹ĥ11 (4.79)

Continuing the iteration procedure, the eigenfunction of zeroth order, Ãn and its gradientrÃn are substituted
in the right-hand side wherever p0 and u0 appear. Hence (4.79) becomes an inhomogeneous equation with
the right-hand side given, say H (r):

r2p̂(1) + k2p̂(1) = H (4.80)

with

H = "ĥ10 + "¹ĥ11 (4.81)

13Here ¹ak is the complex frequency in the actual motion, i.e. containing perturbations to ¯rst order from the basis (modal)
functions.
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This equation is most conveniently solved using the Green's function de¯ned in Section 4.1, leading to
the solution (4.20), here having the form

p̂(1)(r) = ÃN (r) +

1X0

n=0

Ãn(r)

E2n (k
2 ¡ k2n)

8<:
ZZZ
V

ÃnH dV +

ZZ
S

°ÃnFndS

9=; (4.82)

where Fn is the boundary condition extracted from (4.67)b consistent with the manner in which (4.67)a was
handled,

Fn = "f̂10 + "¹f̂11 (4.83)

Although (4.82) seems to satisfy the same boundary conditions as the classical mode shape|because
each term contains Ãn|that is not the case. The reason has to do with the behavior of the in¯nite series
representing the Green's function, equation (4.15). Near the boundary, the function behaves as a delta-
function and (4.82) does satisfy the correct boundary condition. The result is not proved here; a good
discussion of the matter may be found in Morse and Feshbach (1952). See Annex F for a simpler example.

Finally, the velocity ¯eld must be computed to ¯rst order by using the linear form of the momentum
equation (3.47)b:

¹½
@M0

@t
+rp0 = ¡f[M]g1 +FFF0 (4.84)

Again the zeroth order acoustic values are substituted in the right-hand side, and for steady waves, with the
mode shape for the pressure given by (4.82), we have for steady waves

i¹½¹akM0(1) = ¡rp̂(1) ¡ "¹f[M̂]g1 + "F̂̂F̂F10 + "¹F̂̂F̂F11 (4.85)

It is particularly important to notice that this ¯rst order ¯eld is in general not irrotational, possibly
the most commonly misunderstood result of the entire procedure developed here. Even though the basis
functions used in the zeroth order modal expansion expressed an irrotational ¯eld, the ¯eld computed to
¯rst order may be rotational. Put another way, the approximate procedure proposed and advocated here
really does have the potential for handling approximately a wide variety of realistic problems with minimal
di±culty. The unspeci¯ed function FFF0 is key in that respect. One has virtually complete freedom in choosing
that function. Especially, FFF0 can be constructed so thatM0 satis¯es a given boundary condition. For example,
one may require that the velocity should be normal to the boundary when there is incoming °ow, generally
accepted to be the case for a burning solid propellant (Flandro 1995a). This matter will be discussed further
in Section 6.9, where some aspects of the '°ow-turning problem' are examined.
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