
CHAPTER 5

Some Fundamentals of Acoustics

According to the experiences related in Chapter 1, combustion instabilities may be regarded as unsteady mo-
tions closely approximated as classical acoustical motions with perturbations due ultimately to combustion
processes. That view, initially an empirical conclusion, motivated the general form of the analytical frame-
work constructed in Chapter 4. Relatively little knowledge of classical acoustics is required to understand
and apply that construction formally.

However, interpretation of the details of observed behavior, and e®ective use of the theory to develop
accurate representations of actual motions in combustors require ¯rm understanding of the fundamentals
of acoustics. The purpose of this chapter is to provide a condensed discussion of the basic parts of the
subject most relevant to the main subject of this book. We therefore ignore those processes distinguishing
combustion chambers from other acoustical systems, and restrict attention to the Problem O de¯ned in
Sections 3.3.3 and 3.4.

5.1. The Linearized Equations of Motion; The Velocity Potential

We will be concerned here with unsteady motions in a pure non-reacting gas at rest. The governing
equations are (3.46) for Problem O, Classical Acoustics, leading to the corresponding wave equation and its
boundary condition, equations (3.52) with hO and fO given by (3.60)a,b for constant average density ¹½ and
written with dimensional variables:

r2p0 ¡ 1

¹a2
@2p0

@t2
= r ¢FFF0 ¡ 1

¹a2
@P0

@t

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂¡FFF0 ¢ n̂

(5.1)a,b

In the absence of condensed material, the de¯nitions (A.34) and (A.58) of the unperturbed functions FFF and
P are:

FFF = r ¢$¿¿¿v +me ¡ uwe (5.2)

P=
R

Cv

h$
¿¿¿v ¢ r ¢ u¡r ¢ q¡Qe

i
+RTwe (5.3)

where
$
¿¿¿v : viscous stress tensor (force/area)

q : rate of conductive heat transfer (energy/area-s)

me : rate of momentum addition by external sources (mass-velocity/volume-s)

we : rate of mass addition by external sources (mass/volume-s)

Qe : rate of energy addition by external sources (energy/volume-s)

Thus the function FFF contains all processes causing changes of momentum of the gas, except for that due
to internal pressure di®erences; and P represents all sources of energy addition except that due to internal
work by the pressure, accounted for by the term pr ¢ u in equation (A.47). The linearized forms of the
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source terms will be constructed as required for speci¯c problems. For most of this chapter we will treat
only problems for which hO and fO vanish, giving the simplest equations for classical acoustics,

r2p0 ¡ 1

¹a2
@2p0

@t2
= 0

n̂ ¢ rp0 = 0
(5.4)a,b

With no sources in the volume or on the boundary, motions exist only for initial value problems in which
the pressure and its time derivative are speci¯ed at some initial time, t0.

In this case, the wave equation is used to describe freely propagating waves following an initial disturbance
or, when the boundary condition (5.4)b is enforced, the normal modes for a volume enclosed by a rigid
boundary. The condition n̂ ¢ rp0 = 0 means that the velocity normal to the boundary is zero, because the
acoustic velocity is computed from the acoustic momentum (3.46)b written in dimensional form with FFF = 0:

¹½
@u0

@t
= ¡rp0 (5.5)

so

n̂ ¢ rp0 = ¹½
@

@t
(n̂ ¢ u0)

from which

@

@t
(n̂ ¢ u0) = ¡1

¹½
n̂ ¢ rp0 = 0 (5.6)

Hence n̂ ¢ u0 = 0 always

We have just derived the equations for classical acoustics by specializing the general equations of unsteady
motion. It is also useful to arrive at the same conclusion in a slightly di®erent way, beginning with the
equations for inviscid motion in a homogeneous medium:

Conservation of Mass:
@½

@t
+r ¢ (½u) = 0 (5.7)

Conservation of Momentum: ½
@u

@t
+ ½u ¢ ru+rp = 0 (5.8)

Conservation of Energy: ½
@

@t

μ
e+

1

2
u2
¶
+ ½u ¢ r

μ
e+

1

2
u2
¶
+r ¢ (pu) = 0 (5.9)

Equation of State: p = ½RT (5.10)

Remove the kinetic energy from the energy equation by subtracting u¢ (momentum equation) to give

½
De

Dt
+ pr ¢ u = 0 (5.11)

where D
Dt =

@( )
@t + u ¢ r( ). Because all irreversible processes have been ignored the entropy of a °uid

element remains constant, Ds
Dt = 0, a result that follows directly by substituting the mass and energy

equations in the thermodynamic de¯nition of the entropy of an element:

½
Ds

Dt
= ½

De

Dt
¡ p

½

D½

Dt
= ¡pr ¢ u+ p

½
(½r ¢ u) = 0 (5.12)
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Taking the density to be a function of pressure and entropy, we can write for an isentropic process

d½ =

μ
@½

@s

¶
p

ds+

μ
@½

@p

¶
s

dp =

μ
@½

@p

¶
s

dp =
1

a2
dp (5.13)

where

a2 =

μ
@½

@p

¶
s

(5.14)

will turn out to be the speed of propagation of small disturbances, the 'speed of sound'. With this de¯nition,
we can rewrite the continuity equation (5.7) for the pressure:

@p

@t
+ ½a2r ¢ u+ u ¢ rp = 0 (5.15)

This result is quite general: in particular, its derivation did not involve using the special characteristics of a
perfect gas.

Alternatively, we may derive this equation for the special case of a perfect gas for which de = Cv(T )dT
and the equation of state is (5.10). Add T times (5.7) to C¡1v times (5.11) with de = CvdT ; then use (5.10)
to ¯nd

@p

@t
+

μ
1 +

R

CV

¶
pr ¢ u+ u ¢ rp = 0 (5.16)

But R = Cp ¡Cv, so R=Cv = ° ¡ 1 for a perfect gas. Comparison of (5.14) and (5.15) gives the formula for
the speed of sound in a perfect gas:

a2 =

r
°p

½
=
p
°RT (5.17)

For an isentropic process of a perfect gas, equation (5.13) can be integrated,

d½ = a2dp =
½

°p
dp

which gives

p = p0

μ
½

½0

¶°
(5.18)

where ½0, p0 are constant reference values.

We may now eliminate the density from the momentum equation (5.8) to ¯nd

@u

@t
+ u ¢ ru+ 1

½0

μ
p0
p

¶1=2
rp = 0 (5.19)

Finally, we obtain the wave equation for the pressure by di®erentiating (5.16) with respect to time and
substituting (5.19) and a2 = °p=½:

@2p

@t2
¡ a20

p

p0
r ¢

· rp
(p=p0)1=°

¸
= °pr ¢ (u ¢ ru)¡ ° @p

@t
r ¢ u¡ @

@t
(u ¢ rp) (5.20)

The boundary condition is de¯ned by taking the component of (5.19) normal to the boundary:

n̂ ¢ rp = ¡
μ
p

p0

¶1=2
½0

·
n̂ ¢ @u

@t
+ n̂ ¢ r (u ¢ ru)

¸
(5.21)
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Equation (5.20) and its boundary condition are easily linearized by assuming that the gas is at rest and
that the °uctuations are all of the same order. To second order in the °uctuations we ¯nd

@2p0

@t2
¡ a20r2p0 =

½
p0r ¢ (u0 ¢ ru0)¡ ° @p

0

@t
r ¢ u0 ¡ @

@t
(u0 ¢ rp0)

¾
+ ½0

(
(° ¡ 1)

μ
p0

p0

¶
r2
μ
p0

p0

¶
¡
μ
r p

0

p0

¶2) (5.22)

n̂ ¢ rp0 = ¡½0 @u
0

@t
¢ n̂¡ ½0

½
1

°

μ
p0

p0

¶
@u0

@t
¢ n̂+ n̂ ¢ (u0 ¢ ru0)

¾
(5.23)

Equations (5.4)a,b are recovered when the second order terms are neglected and u0 ¢ n̂ = 0.

5.1.1. The Velocity Potential. It is often convenient to introduce scalar and vector potentials © and
A from which the velocity is found by di®erentiation (Bachelor, 1967):

u = ¡r©+r£A
With this representation, the dilatation and curl (rotation) of the velocity ¯eld are separated:

r ¢ u0 = ¡r2© ; r£ u0 = r£r£A (5.24)

In general, both potentials are required if the mean velocity is non-zero or sources are present in the °ow.
The boundary conditions may also induce non-zero rotational °ow. Here only the scalar potential is required
for small amplitude motions because in that limit, the classical acoustic momentum is (5.5); taking the curl
with uniform average density gives

¹½
@

@t
(r£ u0) = ¡r£ (rp0) = 0

Hence if r£ u0 = 0 initially, it remains so and we can take A = 0.

The acoustic equations for momentum, (3.46)b and (3.46)d in dimensional variables with FFF0 = P0 = 0
are

@u0

@t
+
1

¹½
rp0 = 0

@p0

@t
+ °¹½r ¢ u0 = 0

(5.25)a,b

Di®erentiate the ¯rst with respect to time and insert the second to give the wave equation for the velocity
°uctuation,

@2u0

@t2
¡ ¹a2r2u = 0 (5.26)

Now substitute u0 = ¡r© to give
r
·
@2©

@t2
¡ ¹a2r2©

¸
= 0

which is satis¯ed if the terms in brackets are a function of time only, so

@2©

@t2
¡ ¹a2r2© = f(t) (5.27)

The right-hand side represents a source ¯eld for the potential, uniform over all space. We may absorb f(t)

by de¯ning a new potential ©1 = © +
R t
dt0
R t0
f(t1)dt1 and relabel ©1 ! © to ¯nd1 the wave equation for

©:

@2©

@t2
¡ ¹a2r2© = 0 (5.28)

1Alternatively, one can reason that when the velocity is found by taking the gradient of ©+
RR
f , the term in f contributes

nothing and hence can be simply dropped. The desired solution is una®ected by setting f = 0.
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When the velocity potential is used, the acoustic velocity is calculated with A = 0

u0 = ¡r© (5.29)

The acoustic pressure is found by setting u0 = ¡r© in the momentum equation (5.25)a, giving

r
μ
¡@©
@t
+
1

¹½
p0
¶
= 0

This solution is satis¯ed if the terms in parentheses are a function of t only, g(t), so

p0 = ¹½

μ
@©

@t
+ g(t)

¶
(5.30)

As above, we may de¯ne a new potential ©(t)+
R t
g(t0)dt0 = ©1(t) and hence absorb g(t) so we may rede¯ne

©1 ! © and

p0 = ¹½
@©

@t
(5.31)

The conditions under which the acoustic ¯eld can be completely described by a velocity potential alone
are precise and, so far as problems involving combustion are concerned, very restrictive. Any analysis or
theory based on the velocity potential alone must also include demonstration that the vector potential can
be ignored, i.e. set equal to a constant or zero. In general, the presence of a non-uniform mean °ow ¯eld and
various kinds of sources in the problems we are concerned with in this work, require that the velocity ¯eld
be derived from both scalar and vector potentials. Use of the unsteady pressure as the primary °ow variable
provides a simpler approach for many purposes, but, as we will ¯nd later, apparently possesses unavoidable
fundamental limitations.

5.2. Elementary Solutions to the Linear Wave Equation

The basic property of linear problems is that the principle of superposition applies. Solutions for com-
plicated problems can often be constructed by superposing elementary solutions. Probably the most serious
practical di±culty in the use of most methods of solution arises with the need to ¯nd solutions for volumes
and boundaries not being simple shapes. Hence the basic solutions discussed brie°y in this section are rarely
usable directly. However, with their simplicity comes the opportunity to understand certain properties of
wave motions generally.

5.2.1. Plane Waves. Choose x to be the direction of propagation. Hence the wave fronts, or planes
of constant phase, are normal to the x-axis. The wave equation is

@2p0

@t2
¡ ¹a2 @

2p0

@x2
= 0 (5.32)

which can be factored in the form when ¹a is constant,μ
@

@t
+ ¹a

@

@x

¶μ
@

@t
¡ ¹a @

@x

¶
p0 = 0 (5.33)

A general solution has the form

p0(x; t) = f(x+ ¹at) + g(x¡ ¹at) (5.34)

where:

f(x+ ¹at) represents a wave traveling to the left

g(x¡ ¹at) represents a wave traveling to the right
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The density follows from the linear relation for small amplitude isentropic motions,

½0 =
¹p

°

p0

¹p
=
1

¹a2
[f(x+ ¹at) + g(x¡ ¹at)] (5.35)

and the velocity follows upon integration of the linear momentum equation:

@u0

@x
= ¡ 1

°¹p

@p0

@x
=

¹a

°¹p2
[f 0(x+ ¹at)¡ g0(x¡ ¹at)] (5.36)

Hence

u0 = ¡ ¹a

°¹p
[f(x+ ¹at) + g(x¡ ¹at)] (5.37)

The important relations follow from comparison of (5.34) and (5.37):

For a wave traveling to the right: u0 =
p0

¹½¹a

For a wave traveling to the left: u0 = ¡ p
0

¹½¹a

(5.38)a,b

Interpretation of these formulas is easily established by considering a compressive wave, an abrupt increase
of pressure. If the front travels to the right into a gas at rest, u0 is positive, i.e. to the right. Due to the
acceleration of gas by the rising pressure, the motion of the gas is in the same direction as the progression
of the front. Thus, a compressive disturbance traveling to the left is followed by leftward motion of the gas.
Similarly, (5.38) show that an expansion or rarefaction disturbance produces motion of the gas opposite to
that of the wave.

The initial value problem illustrates well the use of the general solution (5.34).

Problem: Find the subsequent motion given the initial conditions on the distribution of
pressure and its rate of change:

p0(x; 0) = P (x)

@p0

@t
(x; 0) = Q(x)

(t = 0) (5.39)a,b

Solution to the problem means ¯nding the functions f(x+ ¹at) and g(x¡ ¹at) by applying (5.39) to (5.34) to
give

f(x) + g(x) = P (x)

¹a [f 0(x)¡ g0(x)] = Q(x) (5.40)

Simple manipulation (see, for example, Sneddon 1957) leads to

p0(x; t) =
1

2
[P (x+ ¹at) + P (x¡ ¹at)] + 1

2¹a

x+¹atZ
x¡¹at

Q(»)d» (5.41)

This result is a general solution to the initial value problem. As an illustration, consider an initial stationary
pulse of pressure, so @p=@t = 0, Figure 5.1. Because of the pressure di®erences on both edges, for t > 0, the
pulse splits into two pulses traveling to the left and right, each having amplitude equal to half the initial
amplitude. Both the pressure and velocity disturbances are non-zero within the pulses and zero outside.

For applications to waves in a chamber, the ability to satisfy boundary conditions is essential. The
solution (5.34), for example, can be used to represent incidence and re°ection from a planar surface bounding
a semi-in¯nite space and an initial rectangular pulse, Figure 5.2. Now the initial condition is (5.39) with

SOME FUNDAMENTALS OF ACOUSTICS 

5 - 6 RTO-AG-AVT-039 

 

 



Figure 5.1. Wave motions subsequent to an initial pressure pulse at rest.

Figure 5.2. Re°ection of a pressure pulse from a rigid surface.

Q = 0 and P (x; 0) representing a rectangular pulse located some distance to the right of the surface at x = 0.
The solution (5.41) must satisfy the boundary condition at x = 0 for all times:

p0(0; t) = 0

@p0

@t
(0; t) = 0

(x = 0; t ¸ 0) (5.42)

Note that the `surface' here is not a physically rigid surface but has been chosen as a convenience to require
that the pressure disturbance always vanish there. The solution (see Sneddon 1957) is

p0(x; t) =

8<:
1
2 [P (x+ ¹at) + P (x¡ ¹at)] x ¸ ¹at
1
2 [P (x+ ¹at)¡ P (x¡ ¹at)] x · ¹at

(5.43)
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This result represents the wave system arising, the splitting of the initial pulse and its image system in the
space to the left of x = 0. Thus the formalism has led to a special case of the method of images. The
behavior of pulses in a combustor is a practical application of this method.

5.2.2. Spherical Waves. Although it is often helpful to regard processes generating pressure waves
as distributions of point sources, we will rarely use this point of view explicitly, because we will usually deal
directly with continuous distributions (the functions h introduced Section 3.4). Nevertheless it is important to
understand the fundamental di®erences between elementary planar and spherical waves. The wave equation
for spherical waves is (5.4)a written in spherical coordinates with no dependence on the polar and azimuthal
angles (e.g. see Sneddon 1957, Landau and Lifschitz 1959, and many other standard references):

@2p0

@t2
¡ ¹a2 1

r2

μ
r2
@p0

@r

¶
= 0 (5.44)

This equation is transformed to the equation for planar waves by writing p0 as

p0(r; t) =
1

r
Ã(r; t) (5.45)

Then (5.44) becomes

@2Ã

@t2
¡ ¹a2 @

2Ã

@r2
= 0 (5.46)

Hence a general solution for the pressure has the form

p0(r; t) =
1

r
[F (¹at+ r) +G(¹at¡ r)] (5.47)

where:

F (¹at+ r) represents an inward traveling wave

G(¹at¡ r) represents an outward traveling wave

Corresponding to the initial value problem solved in the preceding section, we seek a solution subject to
the initial conditions:

p0(r; 0) = V (r)

@p0

@t
(r; 0) =W (r)

(t = 0; all r) (5.48)

We required p0 to be ¯nite at the origin, r = 0, so

[p0(r; t)]r!0 = Limr!0

1

r
[F (¹at+ r) +G(¹at¡ r)] <1

= Lim
r!0

1

r
[F (¹at) +G(¹at)] <1

This condition is satis¯ed only if
G(») = ¡F (»)

and the general solution takes the form

p0(r; t) =
1

r
[F (¹at+ r) + F (¹at¡ r)] (5.49)

To satisfy the initial conditions (5.48) the function F (») must satisfy the two equations

F (»)¡ F (¡») = »V (»)
F 0(»)¡ F 0(¡») = 1

¹a
»W (»)

(5.50)a,b
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If the medium is initially at rest everywhere, then W = 0. Corresponding to (5.43), the solution for
spherical waves is

p0(r; t) =
1

2r

(
(¹at+ r)V (¹at+ r)¡ (¹at¡ r)V (¹at¡ r) (r < ¹at)

(¹at+ r)V (¹at+ r) + (r ¡ ¹at)V (r ¡ ¹at) (r > ¹at)
(5.51)

For example, suppose that a small spherical region of radius r0 about the origin has uniform increased
pressure ±p initially, so

V (») =

½
±p 0 < » · r0
0 r0 < »

Then (5.51) gives

p0(r; t) =
1

2r
(¹at¡ r)£

½
±p 0 < (¹at¡ r) · r0
0 (¹at¡ r) < »

p0(r; t) = ¡ 1

2r
(r ¡ ¹at)£

½
±p 0 < (r ¡ ¹at) · r0
0 (r ¡ ¹at) < »

(5.52)

In Figure 5.3 this result is compared with the corresponding result for the rightward traveling wave generated
by an initially pressurized region at the origin. The spherical wave propagating outward consists of a
triangular compressive wave followed immediately by a triangular rarefaction wave. The rarefaction is
generated by re°ection at the origin of the compressive wave propagating inward from the initially pressurized
region. That inward traveling wave is the counterpart of the leftward traveling wave not shown here, for
the planar case. Upon re°ection at the origin, the compressive wave becomes a rarefaction wave, as for the
re°ection of planar waves illustrated in Figure 5.2.

Figure 5.3. Comparison of spherical and planar waves produced by regions of increased pressure.
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5.2.3. Cylindrical Waves. Cylindrical waves possess a special peculiarity: They always have a wake.
The reason can be seen from Figure 5.4 showing the way in which spherical, planar and cylindrical waves
are produced by point sources. The solid concentric circles represent wavefronts generated by sequences of
in¯nitesimally short pulses. A single point source generates purely circular fronts in three-dimensions. An
in¯nite °at sheet of uniformly and continuously distributed point sources emitting in phase produces planar
waves.

Figure 5.4. Generation of spherical, planar and cylindrical waves by point sources.

Cylindrical waves are generated by an in¯nite linear array of point sources. When an observation is
made, the ¯rst disturbance observed is that emitted by the closest point on the line. But no matter where
the observer is located, signals arrive at all times, the later signals arriving from sources further away in the
line. The pressure at an observation point is computed by superposing the signals from the entire linear
array:

p0(½; t) =

1Z
¡1

G(¹at¡ r)
r

dz (5.53)

where ½, r, and z are de¯ned in the sketch. With r2 = ½2+ z2 and setting » = ¹at¡ r, d» = ¡dr, the integral
can be rewritten to give

p0(½; t) = 2

1Z
¡1

G(»)d»p
(» ¡ ¹at)2 + ½2 (5.54)

For large t,

p0(½; t!1)! 1

¹at

»0¡¹atZ
»0

G(»)d» (»0 < » < »0 + ±») (5.55)

Hence the observed signal for a cylindrical wave can never be discrete: there is always a `wake'. Morse and
Feshbach (1952) and Morse and Ingard (1968) give extended discussions, including solutions to the wave
equation for cylindrical waves.

5.3. An Estimate of the In°uence of Internal Heat Conduction on the Propagation of
Acoustic Waves

Acoustic waves impress gradients of velocity and temperature on the medium, therefore inducing viscous
stresses and heat conduction. Those processes necessarily cause dissipation of mechanical energy, the waves
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decay in space and time, and the entropy of the medium increases. However, for many purposes and over
broad ranges of conditions we may neglect those dissipative in°uences. The purpose of this section is to
discuss one simple way to estimate the e®ects of heat conduction on steady sinusoidal waves. The e®ects of
internal viscous stresses may be treated in similar fashion.

With Fick's law for heat conduction, the linearized term r ¢ q0 in (5.3) is
r ¢ q0 = r ¢ (¡¸rT 0)

For one-dimensional motions along the x-axis, and constant coe±cient of heat conduction, ¸c, we have

r ¢ q0 = ¡¸c @
2T 0

@x2
(5.56)

The linearized form of the energy equation 3.41 is therefore

¹½Cv
@T 0

@t
+ ¹p

@u0

@x
= ¸c

@2u0

@t2
(5.57)

With W 0; FFF0 = 0 and in dimensional form, the acoustic continuity and momentum equations (3.40) and
(3.41) for one-dimensional motions in a source-free medium at rest are:

@½0

@t
+ ¹½

@u0

@x
= 0

¹½
@u0

@t
+
@p0

@x
= 0

(5.58)a,b

Substitute (5.58) in (5.57) to give

¹½Cv
@T 0

@t
¡ ¸c @

2T 0

@x2
¡ ¹p

¹½

@½0

@x
= 0 (5.59)

Because energy is dissipated, the motions are not isentropic so we cannot assume p0 » ½0. However we can
eliminate the pressure as a dependent variable by taking it as a function of density and temperature, and
writing

p0 =
μ
@p

@½

¶
T

½0 +
μ
@p

@T

¶
½

T 0 (5.60)

Now combine (5.58)a with (5.60) to form a second equation in the density and temperature °uctuations:

@2½0

@t2
¡
μ
@p

@½

¶
T

@2½0

@x2
¡
μ
@p

@T

¶
½

@2T 0

@x2
= 0 (5.61)

To illustrate the point, it is simplest to consider the case of sinusoidal traveling waves, for which the
°uctuations are2

½0 = ½̂ei(kx¡!t) ; T 0 = T̂ ei(kx¡!t) (5.62)

and k is the wavenumber. In general, k and ! are complex quantities. Substitution in (5.59) and (5.61)
gives the pair of simultaneous algebraic equations·

i! +
¸c
¹½Cv

k2
¸
T̂ ¡ i

·
¹p

¹½2Cv
k2
¸
½̂ = 0"

k2
μ
@p

@T

¶
¹½

#
T̂ ¡

·
!2 ¡ k2

μ
@p

@½

¶
¹T

¸
½̂ = 0

(5.63)

2We will consistently use e¡i!t for harmonic time dependence. Thus sinusoidal wave traveling to the right, in the positive
x-direction, will have the form ei(kx¡!t), a function of kx¡ !t = k(x¡ ¹at), as suggested by (5.34).
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Non-trivial solutions exist for T̂ and ½̂ only if the determinant of coe±cients vanishes, giving the dispersion
relation

i

(
k2

"μ
@p

@½

¶
¹T

+
¹p

¹½2Cv

μ
@p

@T

¶
¹½

#
¡ !2

)
+
¸c
¹½Cv

k2

!

½
k2
μ
@p

@½

¶
¹T

¡ !2
¾
= 0 (5.64)

To interpret this result, imagine that plane waves traveling according to (5.62) are generated by an
oscillating boundary perpendicular to the x-axis, at x = 0. Therefore we take the frequency ! to be real
and given. Solution to (5.64) will give the real and imaginary parts of k2 and hence of k, say k = kr + iki.
Then the spatial part of the exponentials in (5.63) become

eikx = eikrxe¡kix

Consequently, k¡1i is the characteristic length for propagation in space: the amplitude of the traveling wave
is reduced to 1=e of its initial value after traveling a distance x = ki. Planes of constant phase travel with
the speed of sound, the `phase velocity' in this case, and the real part of k is related to the frequency and
wavelength ¸ by:

kr =
¹a

!
=
2¼

¸
(5.65)

If heat conduction is ignored, ¸c = 0 and, because ! is real, so also is the wavenumber,

k = !

"μ
@p

@½

¶
¹T

+
¹p

¹½2Cv

μ
@p

@T

¶
¹½

#¡1=2
(5.66)

Thus the waves travel with unchanging amplitude and wavelength.

Rather than examine the behavior when heat conduction is not ignored, let us determine the conditions
under which its in°uence is negligibly small. We can estimate the conditions by requiring that the term
representing heat conduction on the right-hand side of (5.57) should be much smaller than, say, the ¯rst
term on the left-hand side:

¸c
@2T̂ 0

@x2
¿ ¹½Cv

@T 0

@t
or, with (5.62), ¯̄̄

¸c
¡¡k2¢ T̂ ¯̄̄¿ ¯̄̄

¹½Cv(i!)T̂
¯̄̄

Hence we require μ
¸c
¹½Cv

¶ jkj2
!
¿ 1 (5.67)

If this condition is satis¯ed, then the real part of (5.64) is negligibly small, holds, and the speed of sound is

¹a =
!

k
=

μ
@p

@½

¶
¹T

+
¹p

¹½2Cv

μ
@p

@T

¶
¹½

μ
¸c
¹½Cv

jkj2
!
! 0

¶
(5.68)

Thermodynamics for a two-state system gives the resultμ
@p

@½

¶
¹s

=

μ
@p

@½

¶
¹T

+

μ
@p

@T

¶
¹½

μ
@T

@½

¶
¹s

=

μ
@p

@½

¶
¹T

+
¹p

¹½Cv

μ
@p

@T

¶
¹½

so

¹a =

sμ
@p

@½

¶
¹s

=

q
°R ¹T

μ
¸c
¹½Cv

jkj2
!
! 0

¶
(5.69)

for negligible internal heat conduction and isentropic °ow.
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For the inverse limit when ¸c
¹½Cv

jkj2
! is inde¯nitely large, (5.64) gives

¹a =
!

k
=

sμ
@p

@½

¶
¹T

=

q
°R ¹T

μ
¹½Cv
¸c

!

jkj ! 0

¶
(5.70)

for a perfect gas. This is the limit for in¯nitely fast internal heat conduction, so the process of sound
propagation is isothermal.

To be speci¯c, consider sound waves in air at ambient conditions:

¸c = 0:73£ 104 cal

g¡±K ¹a = 3£ 104 cm

s

¹½ = 1:2£ 10¡2 g

cm3
Cv = 0:17

cal

g¡±K
Hence μ

¸c
¹½Cv

¶ jkj2
!
=

¸c
¹½Cv¹a2

! = 4£ 10¡10!

which less than .01 for ! < 25 £ 106s¡1. This result con¯rms, and explains, the familiar fact that acous-
tic waves in the audio range 10{20,000 s¡1 propagate isentropically under everyday circumstances. The
in°uences of viscous stresses can be estimated in a similar manner.

This conclusion also holds for combustion chambers if the amplitudes of waves are not too large. It
is a great simpli¯cation that we will ignore internal viscous stresses and heat conduction in practically
all problems of combustion instabilities. However, if the waves grow to large amplitudes (`large' must
be characterized in the particular problem at hand) then the losses|referred to as `shock losses'|due to
viscous stresses and heat conduction may not be negligible. For problems of combustion instabilities, those
circumstances are more likely to arise in combustors having higher densities of energy release, notably liquid
and solid rockets.

5.4. Energy and Intensity Associated with Acoustic Waves

In this section we establish de¯nitions of energy density and the intensity|i.e. the °ow of energy|
for classical acoustic waves. The de¯nitions are only approximate under the more complicated conditions
existing in a combustor but the general ideas remain.

Following Landau and Lifschitz (1959) we return to the basic energy equation (5.9) for inviscid °ow.
The idea is to establish a connection between the rate of change of something (the energy) within a volume
and the °ow of something (the intensity) through the closed boundary of that volume. Integrate the energy
equation over a volume ¯xed in space; and apply Gauss' theorem to the terms on the right-hand side:

@

@t

Z
½

μ
e+

u2

2

¶
dV = ¡

Z
r ¢

·
½u

μ
e+

u2

2

¶¸
dV ¡

Z
r ¢ (pu) dV

= ¡
ZZ
°
μ
e+

u2

2

¶
½u ¢ dS¡

ZZ
° pu ¢ dS

This relation must be written to second order in the isentropic °uctuations; for example,

½e = ¹½¹e+ ½0
·
@

@½
(½e)

¸
¹½

+
1

2
½
02
·
@2(½e)

@½2

¸
¹½¹e

+ : : :

= ¹½¹e+ ½0¹k +
1

2

½
02

¹½¹a2
+ : : :
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Eventually the result is

@

@t

Z
"dV = ¡

ZZ
° "u ¢ dS¡

ZZ
° p0u0 ¢ dS (5.71)

where

" =
1

2

p
02

¹½¹a2
+
1

2
¹½u

02 (5.72)

is the acoustic energy per unit volume and p0u0 is the intensity, the °ux of acoustic energy through an area
normal to the direction of propagation (energy/area-s).

The ¯rst term on the right-hand side of (5.71) is third order in the °uctuations and must be dropped.
Hence we have the important result interpreted in Figure 5.5.

@"

@t
+r ¢ (p0u0) = 0 (5.73)

V

S

n

uε

ε
^

Figure 5.5. Acoustic energy and intensity.

Table 5.1 summarizes the basic properties of plane sinusoidal waves. Brackets h i denote time averages
over some interval ¿ ; for any scalar function Ã, its time average is

hÃi = 1

¿

t+¿Z
t

Ãdt0

The dimensions of intensity are energy/sec.-area. Physical devices, such as piezoelectric microphones, can
be built to measure intensity directly: the output, in volts, say, is proportional to the intensity of a wave
incident upon the sensitive element. But the response of the human ear is not linear with intensity; the
output (i.e., what one \hears") is more closely proportional to the logarithm of intensity. That is, what
seems to be a doubling of \loudness" corresponds to a ten-fold increase of intensity. To avoid use of large
numbers, it has therefore become the practice to use a logarithmic scale for expressing acoustic energies and
intensities.

A sound wave is one decibel more intense if its intensity is increased by 10
p
10. The di®erence of level for

two sound waves, in decibels, is de¯ned to be

dB = 10 log10

μ
I2
I1

¶
(di®erence in level) (5.74)

It is conventional to choose as an absolute basis the intensity of a wave which is barely audible at 1000 Hz.
The rms amplitude of such a wave is

dB = 10 log10

μ
I

I0

¶
(level)
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where

I0 =
(2£ 10¡4)2

½0a0
:

Thus,

dB = 20 log
prms

2£ 10¡4 = 74 + 20 logprms (5.75)

With the numbers given above, the relation between dB and pressure is shown in Figure 5.6.

10

175

PRESSURE,   psi

150

125

100

10 10 1-3 -2 -1

dB

Figure 5.6. A graph of decibels versus pressure (lbs./in
2
).

Finally it is interesting to see the frequency response for the human ear, sketched below.

0
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50

100

20

dB

100 1000 10000          20000

THRESHOLD  OF  PAIN 

 THRESHOLD OF HEARING

AUDIBLE   RANGE

FREQUENCY, Hz

Figure 5.7. A graph showing the audible range of hearing for a typical human subject
(adapted from Morse 1948).

Note that 1 dyne=cm2 = 74 dB and one atmosphere is 106 dynes/cm2. From these two ¯gures it is clear
that any steady wave which can be heard without pain has a su±ciently small amplitude that linearization
of the equations of motion is reasonable.
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Table 5.1. Results for Rightward and Leftward Traveling Sinusoidal Waves.

Wave to Right Wave to Left

p0+ = p̂+e¡i(!t¡kx) p0¡ = p̂¡e¡i(!t+kx)

u0+ = p̂+e
¡i(!t¡kx) u0¡ = û¡e

¡i(!t+kx)

û+ =
p̂+
½0a0

û¡ = ¡ p̂¡
½0a0

"+ =
p
02
+

½0a0
"¡ =

p
02
¡

½0a0

l+ = p
0
+u

0
+ =

p
02
+

½0a0
l¡ = p0¡u0¡ = ¡ p

02
¡

½0a20

h( )i = 1
¿

t+¿R
t

( )dt0

hp02+i = 1
2 p̂
2
+ hp02¡i = 1

2 p̂
2
¡

h"+i = p̂2+
2½0a20

h"¡i = p̂2¡
2½0a20

hl+i = p̂2+
2½0a0

hl¡i = p2¡
2½0a0

More generally: p0 = p̂e¡i(!t+') ; ¹u0 = ûe¡i(!t+Ã)

h"i = 1
4

h
jp̂j2
½0a20

+ ½0jûj2
i
= 1

4(p
0p

0¤ + ½0u0 ¢ u0¤)

hli = 1
2 jp̂jjûj cos('+ Ã) = 1

4(p
0¤u0 + p0u

0¤)

where ( )¤ denotes complex conjugate.

5.5. The Growth or Decay Constant

In practice, due to natural dissipative processes, freely propagating waves and oscillations in a chamber
will decay in space and time if there is no external source or energy. If there is an internal source of energy,
waves may be unstable, having amplitudes increasing in time. The basic measure of the growth or decay of
waves is the constant appearing in the exponent describing the sinusoidal spatial and temporal dependence
of small amplitude waves, the de¯nitions (5.62). For `standing' or `stationary' waves in a chamber, the
wavelength, and hence wavenumber, is real and constant, but the frequency is complex:

! ! ! + i® (5.76)

and the variables of the motion have the behavior in time

e¡i(!+i®)t ´ e¡i!te®t (5.77)

For the de¯nition (5.76), ® < 0 means that the waves decay.

SOME FUNDAMENTALS OF ACOUSTICS 

5 - 16 RTO-AG-AVT-039 

 

 



Normally in practice,
¯̄
®
!

¯̄ ¿ 1, implying that the fractional change of amplitude is small in one cycle
of the oscillation. Thus when time averaging is carried out over one or a few cycles, e®t may be taken as
constant, and the average energy density computed with (5.72) and (5.73), is

h"i = e2®t 1
4

· jp̂j2
¹½¹a2

+ ¹½jûj2
¸

(5.78)

Hence we have the important interpretations which serve as the basis for measuring values of ®:

® =
1

jp̂j
djp̂j
dt

® =
1

2h"i
dh"i
dt

(5.79)a,b

The sign of ® is a matter of de¯nition and has no fundamental signi¯cance. Thus, if the time dependence is
taken to be ei(!+i®)t then ® < 0 means that waves are ampli¯ed.

The formulas (5.79)a,b de¯ne local values of the growth constant. It is often more meaningful to know
the value for the entire volume of the system in question, found by using

R h"idV rather than h"i:

® =
1

2
R h"idV d

dt

Z
h"idV (5.80)

5.6. Boundary Conditions: Re°ections from a Surface

In the absence of other sources, the linearized boundary condition on the pressure at a surface is the
¯rst term of (5.1), here in dimensional form:

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (5.81)

The acoustic surface impedance za is de¯ned by

u0 ¢ n̂ = 1

za
p0 (5.82)

and the acoustic surface admittance ya is the reciprocal of the admittance:

ya =
1

za
(5.83)

Then for harmonic motions, p0 = p̂e¡i!t, we can rewrite (5.81) as

n̂ ¢ rp0 = ¡i ¹½!
za
p0 = ¡i¹½!yap0 (5.84)

The units of impedance are (pressure/velocity) ´ (density £ velocity). Hence for the medium, the product ¹½¹a
is called the characteristic impedance, having value 42 g/cm2-s. for air at standard conditions. Dimensionless
forms are de¯ned as:

acoustic impedance ratio: ³a =
za
¹½¹a

acoustic admittance ratio: ´a =
1

³a

(5.85)

In general, impedance functions are complex; the real and imaginary parts are called:

Re(za) : acoustic resistance

Im(za) : acoustic reactance
(5.86)

SOME FUNDAMENTALS OF ACOUSTICS 

RTO-AG-AVT-039 5 - 17 

 

 



From (5.82) and (5.83), the surface admittance is

ya =
u0 ¢ n̂
p0

and the dimensionless surface admittance ratio is

´a = ¹½¹aya =
¹½¹a2

¹p

M0 ¢ n̂
p0=¹p

= °
M 0
n

p0=¹p
(5.87)

where M 0
n is the °uctuation of the Mach number normal to the surface.

If the surface is impermeable, the velocity at the surface is the velocity of the surface itself. However, if
the surface is permeable, or, as for a burning propellant, mass departs the surface, then the impedance and
admittance functions are de¯ned in terms of the local velocity °uctuations presented3 to the acoustic ¯eld,
no matter what their origin.

Quite generally then, the admittance function represents the physical response of processes at the surface.
It is of course an assumption that in response to an impressed pressure °uctuation, the °uctuation of velocity
normal to the surface is proportional to the pressure change. Alternative de¯nitions of quantities representing
the acoustic boundary condition at a surface will arise when we consider special situations.

5.6.1. Re°ections of Plane Waves at a Surface. Con¯nement of waves in a chamber to form modes
necessarily involves re°ections at the boundary surfaces. In solid propellant rockets the processes causing
re°ection are complicated, being responsible not only for con¯ning the waves but also are the dominant
means for transferring energy to the oscillating ¯eld in the chamber. Even at inert surfaces, more than the
simple process of re°ection is involved. Viscous stresses and heat conduction in the region adjacent to a
surface cause dissipation of energy, discussed in Section 5.9.

Here we assume that all activity at the surface can be represented by a complex impedance or admittance
function. The calculation follows that discussed by Morse and Ingard (1968). We consider re°ection of a
planar wave, Figure 5.8, allowing for the possibility of unequal angles of incidence and re°ection; for simplicity
we assume that there is no transmitted wave. The incident wave travels in the direction de¯ned by the unit
vector k̂i and the wavenumber vector is

k =
2¼

¸
k̂ (5.88)

We can represent the acoustic pressure and velocity in this plane wave by

p0(r; t) = gi(ki ¢ r¡ !t)

u0(r; t) =
k̂r
¹½¹a
gi(ki ¢ r¡ !t)

(5.89)a,b

Similar formulas hold for the re°ected wave with ki replaced by kr lying in the direction de¯ned by the
unit vector k̂r. The representations are therefore those shown in Table 5.2

Because the frequency is the same for the incident and re°ected waves, so are the magnitude of the
wavenumber:

jkij = !

¹a
= jkrj = k (5.90)

3For burning propellants, care must be taken with de¯nition of the surface at which the boundary condition is imposed.
Usually the velocity at the `edge' of the combustion zone in the gas phase is the most convenient choice. Thus the admittance
presented to the acoustic ¯eld is not precisely that at the burning surface itself.
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Figure 5.8. Re°ection of a plane wave.

Table 5.2. Some Formulas for Incident and Re°ected Plane Waves.

Incident Wave Re°ected Wave

p0i = gi(»i) p0r = gr(»r)

u0i = k̂i
1
¹½¹agi(»i) u0r = k̂r

1
¹½¹agr(»r)

»i = ki ¢ r¡ !t »r = kr ¢ r¡ !t

= k(x sin μi ¡ y cos μi)¡ !t = k(x sin μr ¡ y cos μr)¡ !t

Re°ection is assumed to occur at y = 0. By de¯nition of za, the surface impedance, with the normal
velocity outward from the surface equal to u0y = u0 ¢ ĵ = ¡u0 ¢ n̂ where n̂ is the unit outward normal vector:

za =

μ
p0

u0y

¶
y=0

= ¹½¹a
gi(kx sin μi ¡ cot) + gr(kx sin μr ¡ cot)

cos μigi(kx sin μi ¡ cot)¡ cos μrgr(kx sin μr ¡ cot) (5.91)

In general za is variable along the surface. Suppose that in fact za is constant, independent of x. That can
be true if

μi = μr = μ

gr(») = ¯gi(»)
(5.92)

Then (5.91) becomes

za cos μ = ¹½¹a
1 + ¯

1¡ ¯ (5.93)

and the complex re°ection coe±cient ¯ is related to the surface impedance by

¯ =
za cos μ ¡ ¹½¹a
za cos μ + ¹½¹a

(5.94)

This result is special because no transmitted wave has been accounted for. For example, if za = ¹½¹a|perfect
impedance matching exists at the interface|(5.93) gives ¯ = 0 when μ = 0, so there is no re°ected wave.
That is true in one sense because in physical terms za = ¹½¹a means that the same gas exists in both sides of
the interface. Thus we are simply describing wave propagation in a continuous medium. On the other hand,
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the physical picture treated here accommodates no transmitted wave, which means that when there is no
re°ection, processes must exist at the interface providing perfect absorption.

Now suppose μ 6= 0 but za = ¹½¹a. Then (5.93) gives ¯ non-zero, i.e. partial absorption, and some of the
incident wave is re°ected.

5.7. Wave Propagation in Tubes; Normal Modes

The simplest form of combustor is a straight tube, having generally non-uniform cross section and
not necessarily axisymmetric. Although the changes of cross section may be abrupt|even discontinuous|
experience has shown that good results may be obtained by assuming that the velocity °uctuations are
uniform at every section and parallel to the axis: the °ow is treated as one-dimensional. The governing
equations are given in Annex B, equations (B.2){(B.4) with no sources:

Conservation of mass:
@½0

@t
+
1

Sc

@

@x
(¹½u0Sc) = 0 (5.95)

Conservation of momentum: ¹½
@u0

@t
+
@p0

@x
= 0 (5.96)

Conservation of energy: ¹½Cv
@T 0

@t
+ ¹p

1

Sc

@

@x
(u0Sc) = 0 (5.97)

The wave equation for the pressure is:

1

Sc

@

@x

μ
Sc
@p0

@x

¶
¡ 1

¹a2
@2p0

@t2
= 0 (5.98)

5.7.1. Waves in Closed Tubes.

(a) Normal Modes for a Tube Closed at Both Ends.

Results for a tube closed at both ends not only contain many ideas basic to general oscillations in
chambers, but also are widely useful for practical applications. For a tube closed by rigid walls, the boundary
conditions at the ends are that the velocity must vanish. The momentum equation (5.96) then states that
acceleration and therefore the pressure gradient must vanish at the ends for all time:

@p0

@x
= 0 (x = 0; L ; all t) (5.99)

General linear motions within the tube can be constructed as superpositions of normal modes de¯ned
in general by two properties:

i) sinusoidal variations in time

ii) the motion at any point bears always a ¯xed phase relative to that at any other point in the volume

Those conditions imply here that the pressure can be expressed as

p0(x; t) = p̂(x)e¡i¹akt (5.100)

where k is the complex wavenumber, related in general to the complex frequency by the formula

¹ak = ! + i® (5.101)
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Because there are no dissipative processes in this problem, ® = 0 so the wavenumber is real. Substitution of
(5.100) in (5.98) with Sc independent of x gives

d2p̂

dx2
+ k2p̂ = 0 (5.102)

A solution to (5.102) satisfying (5.99) at x = 0 is p̂ = A cos kx. To satisfy the condition at x = L, cos kL = 0.
Then k can assume only certain values kl, called characteristic or eigen values:

4

kl = l
¼

L
(l = 0; 1; 2; ¢ ¢ ¢ ) (5.103)

Corresponding to each kl is a characteristic function, or eigenfunction,

p̂l
¹p
= Al cos(klx) (5.104)

For the problems we treat in this book, the motions represented by the kl, p̂l, and ûl are usually called
normal modes, ¹akl = !l being the normal or modal frequency, and p̂l, ûl are the mode shapes of pressure
and velocity. All of these terms are used for two- and three-dimensional motions as well.

A normal mode is characterized by its frequency and the spatial distributions, or `shapes' of all dependent
variables. The mode shape for the velocity is derived from the mode shape (5.104) by integrating the acoustic
momentum equation (5.96) written for ûl:

¡i¹aklûl = ¡1
¹½

dp̂l
dx

=
kl
¹½
¹pAl sin klx

Thus

ûl = i
¹p

¹½¹a
Al sin klx (5.105)

or, written as the Mach number of the mode,

M̂l = i
1

°
Al sin klx (5.106)

(b) Normal Modes for a Tube Open at Both Ends.

In this case, the pressure is assumed ¯xed at the ends, for example because the tube is immersed in a

large reservoir having constant pressure, and p0 = 0. For isentropic motions, ½
0

¹½ =
1
°
p0

¹p so ½
0 = 1

¹a2 p
0 and the

continuity equation (5.95) is

@p0

@t
+
¹a2

¹½

@u0

@x
= 0 (5.107)

Hence if p0 is ¯xed, the velocity gradient must vanish at the ends. Set p0 = Ae¡i¹at sinkx and substitute in
(5.107)

i
¹a

¹p
kAe¡i¹akt sin kx =

¹a2

¹½

@u0

@x

4Only for l ¸ 1 do we ¯nd wave modes. For l = 0, a qualitatively di®erent mode exists for which the pressure is uniform
in the volume but pulsates at a frequency well below that for the fundamental wave mode. The velocity is practically zero and
the oscillator is sustained by some sort of external action. A prosaic example is the low frequency sound one can create by
blowing across the narrow opening at the neck of a bottle. In this case the mode is called the Helmholtz mode and the bottle
is behaving as a Helmholtz resonator. Corresponding very low frequency modes have been observed in both liquid and solid
rockets.
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The left-hand side vanishes (and hence @u0=@x = 0) at x = 0 for any k, but at x = L, we must have
sin klL = 0. Hence kl = (2l + 1)

¼
L and the normal mode shape and frequency are

p̂l
¹p
= Al sin(klx) ; kl = l

¼

L
(l = 1; 2; ¢ ¢ ¢ ) (5.108)

and the mode shape for the velocity is

ûl
¹a
= M̂l = i

1

°
Al cos klx (5.109)

(c) Normal Modes for a Tube Closed at One End and Open at the Other.

Reasoning similar to the above leads in this case to the normal modes when the tube is closed at x = 0:

p̂l
¹p
= Al cos(klx) ;

³
kl = (2l + 1)

¼

2L

´
(l = 1; 2; ¢ ¢ ¢ )

ûl
a
= ¡i 1

°
Al sin(klx)

5.7.2. Normal Modes for Tubes Having Discontinuities of Cross-Sectional Area. Combus-
tors having discontinuous area distributions are commonly used in solid propellant rockets and in various
laboratory devices. Consider the example sketched in Figure 5.9. The boundary conditions at the ends are:

Figure 5.9. A uniform tube having a single discontinuity.

x = 0 :
dp̂

dx
= 0

x = ¯L : p̂ = 0
(5.110)a,b

Possible solutions in the regions to the left and right of the discontinuity are:

p̂

¹p
= A cos kx (0 · x · L)

p̂

¹p
= B sin k(¯L¡ x) (L < x · ¯L)

(5.111)a,b

Note that k = !=¹a is the same throughout the tube because the motion occurs everywhere at the same
frequency.

Completing the problem comes down to determining the conditions for matching the solutions. Two are
required:

i) continuity of pressure:

lim
²!0

[p̂(L¡ ²)¡ p̂(L+ ²)] = 0
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which gives

A cos kL = B sin(¯ ¡ 1)kL (5.112)

ii) continuity of acoustic mass °ow:

Integrate the wave equation (for harmonic motions) across the discontinuity,

L+²Z
L¡²

·
d

dx
(Sc

dp̂

dx
+ k2Scp̂

¸
dx = 0

Because p̂ is continuous, this relation becomes

lim
²!0

"μ
Sc
dp̂

dx

¶
L+²

¡
μ
dp̂

dx

¶
L¡²

#
= 0

Thus, with ¹½ constant and dp̂
dx » û:

(¹½Scû)L+² ¡ (¹½Scû)L¡² (5.113)

After substituting the waveforms (5.111)a,b, and using (5.112) we ¯nd the transcendental equation
for the modal wavenumbers:

S1
S2
tan klL = cot kl(¯ ¡ 1)L (5.114)

This method of solving a problem with discontinuities is only approximate: a practical question is: how
large are the errors? To gain some idea of the errors incurred, tests at ambient temperature (`cold °ow tests')
were carried out by Derr, Mathis and Brown (1974) for the geometry of a T-burner used for measuring the
combustion response of burning solid propellants. Results are shown in Figure 5.10. The measured values
of both the frequencies and the mode shapes are surprisingly well-predicted by this theory. The principal
reason is that the in°uence of a discontinuity is con¯ned to a relatively small region near the change of area,
but the characteristics of the normal modes depend on the motion in the entire volume.

Figure 5.10. Comparison of experimental and theoretical results for normal frequencies in
a T-burner at ambient temperature. (Derr, Mathis and Brown, 1974).
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5.8. Normal Acoustic Modes and Frequencies for a Chamber

We now consider a volume of any shape enclosed by a rigid boundary and containing a uniform gas at
rest. Unsteady small amplitude motions therefore satisfy the linear wave equation (5.4)a and its boundary
condition (5.4)b requiring that the velocity normal to the boundary vanish at all times. By this de¯nition
given in Section 5.7.1, normal modes are solutions to this problem, which oscillate sinusoidally in time and
have ¯xed phase relations throughout the volume. We assume the form5 p0 = Ãe¡i¹akt. The formal problem
is to ¯nd Ã satisfying the scalar wave equation, also called the Helmholtz wave equation, with vanishing
normal gradient at the surface:

r2Ã + k2Ã = 0
n̂ ¢ rÃ = 0 (5.115)a,b

There are many well-written books covering this problem and its solution, for example Hildebrand
(1952); Morse and Feshbach (1952); Morse and Ingard (1968); Matthews and Walker (1964); and Je®ries
and Je®ries (1946). The simplest approach is based on the method of separation of variables, applicable
for closed form solutions in thirteen coordinate systems; see, e.g., Morse and Feshbach (1952). In practical
applications to combustors of these exact solutions, only rectangular and circular cylindrical chambers are
important. Otherwise, apart from special cases such as that treated in Section 5.7.2, the normal modes and
frequencies must be found by numerical methods.

5.8.1. Normal Modes for Rectangular Chambers. The wave equation in Cartesian coordinates is

@2Ã

@x2
+
@2Ã

@y2
+
@2Ã

@z2
+ k2Ã = 0

and n̂ ¢ rÃ must vanish on the six °at surfaces each perpendicular to a coordinated axis, Figure 5.11.
Applying the method of separation of variables leads to a solution having the form

Ã = A cos(kxx) cos(kyy) cos(kzz) (5.116)

and

k2 = k2x + k
2
y + k

2
z (5.117)

The boundary conditions must be satis¯ed:

@Ã

@x
= 0 on x = 0; L

@Ã

@y
= 0 on y = ¡a

2
;
a

2

@Ã

@z
= 0 on z = ¡ b

2
;
b

2

(5.118)a,b,c

Reasoning similar to that given in Section 5.7.1 leads to the values of the wavenumbers

kx = l
¼

L

ky = m
¼

b

kz = n
¼

c

(5.119)a,b,c

5Consistent with the general character of this problem, we replace p̂ by Ã, introducing a common notation for normal
modes. The velocity potential © satis¯es the same pair of equations (5.115)a,b, a result re°ected by equation (5.31) which for
sinusoidal motions means that p0 and © are proportional: p0 = i¹ak¹½©.

SOME FUNDAMENTALS OF ACOUSTICS 

5 - 24 RTO-AG-AVT-039 

 

 



y

x

z

0

b
2

− a
2

b
2

−

a
2

L

Figure 5.11. Rectangular chamber.

and the mode shapes are

Ãlmn = Almn cos
³
l
¼

L
x
´
cosm

¼

a

³
y +

a

2

´
cosn

¼

b

μ
z +

b

2

¶
(5.120)

The distributions of pressure therefore have the same form in all directions; of course the components
(5.119)a,b,c of the wave number can assume any of the allowed values, and the frequency is given by (5.117),
! = ¹ak.

5.8.2. Normal Modes for a Circular Cylindrical Chamber. Let x be the polar axis (Figure 5.12)
and the wave equation in circular cylindrical coordinates is

1

r

@

@r

μ
r
@Ã

@r

¶
+
1

r2
@2Ã

@μ2
+
@2Ã

@x2
+ k2Ã = 0 (5.121)

The boundary condition requires that n̂ ¢ rÃ vanish at the ends and on the lateral boundary:
@Ã

@x
= 0 x = 0; L

@Ã

@r
= 0 r = R

(5.122)

Application of the method of separation of variables leads to a solution of the form

Ã(r; x; μ; t) = A

½
cosnμ
sinnμ

¾
cos klxJm

³
·mn

r

R

´
(5.123)

To satisfy the boundary conditions, the values of kl are integral multiples of ¼=L as above and the ·mn are
the roots of the derivative of the Bessel function:

dJm(·mn)

dr
= 0 (5.124)
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Figure 5.12. Circular cylindrical coordinates.

Figure 5.13 shows the lowest six modes in the transverse planes, and the identifying values of n and m. More
extended results are given in standard texts and collections of special functions, for example Jahnke and
Emde (1938).

Figure 5.13. The ¯rst six transverse modes in a circular cylinder.

5.9. Viscous Losses at an Inert Surface

Dissipation of energy at inert surfaces is often a signi¯cant contribution to the losses of acoustic energy
in a combustion chamber. The problem of computing the losses o®ers a particularly good opportunity to
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illustrate di®erent points of view. We will compute the losses in three di®erent ways, all directly dependent
on characteristics of the acoustic boundary layer. To simplify the analysis we assume that the average tem-
perature is uniform throughout, having the value ¹Te. Solutions for the velocity and temperature distributions
within the acoustic boundary layer are derived in Annex C, equations (C.14)a,b with the time dependence
included:

u0(x; y; t) = ûe(x)
£
1¡ e¡¸y¤ e¡i!t

T 0(x; y; t) = T̂e(x)
h
1¡ e¡¸

p
Pry
i
e¡i!t

(5.125)a,b

Note that the local values of the velocity and temperature impressed on the layer are shown explicitly to
be functions of position along the surface. The idea is that the solution for the boundary layer °ow applies
locally, but variations are induced along the surface by the distributions of velocity ûe(x) and temperature

T̂e(x) in the external °ow. The simplest example is a cylindrical tube closed at both ends, Figure 5.14.
Shaded regions indicate the acoustic boundary layers.

x = 0 L

u'

p'

Figure 5.14. Acoustic velocity and temperature distributions for the fundamental mode
in a closed tube.

5.9.1. Dissipation of Energy Within the Acoustic Boundary Layer. The theory of the acoustic
boundary layer predicts a result, con¯rmed by experimental observations, that the in°uences of viscous
stresses are con¯ned to a thin layer having thickness ±. That is, ±=Rt ¿ 1 in the range of audio frequencies
and for tubes having radius Rt greater than a centimeter or so. With the formula (C.6), the ambient
properties of air given after equation (5.70), and Pr = Cp¹=¸c = 0:73 for air

±

Rt
=
1

Rt

r
2v

!
=

1

Rt
p
f

r
v

¼
¼ 2

Rt
p
f

(5.126)

If f = 9Hz, ±=Rt » :06=Rt, where Rt is in centimeters, and the assertion is proved.

Consequently, we can treat the acoustic boundary layer on the lateral boundary of a circular cylinder
as if it were locally on a °at surface and the results of Annex C apply directly. We ¯nd the total rate of
energy dissipation in the tube by integrating the energy dissipation over the acoustic boundary layer, i.e.
over y > 0. Because the layer is thin and the non-uniformities of the °ow properties decay exponentially
in y, we integrate over all y from zero to in¯nity. Application of the formula (C.19) for the rate of entropy
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production in this °ow gives6 (per unit volume)

ds

dt
=
1
¹Te

24¹μdû
dy

¶2
+
¸c
¹T 2e

Ã
dT̂

dy

!235
Then the rate of energy dissipation per unit volume is

de

dt
= ¡ ¹Te ds

dt
= ¡¹

μ
dû

dy

¶2
+
¸c
¹T 2e

Ã
dT̂

dy

!2
(5.127)

where either the real or the imaginary parts of û and T̂ must be used. The time-averaged energy dissipation
per unit are of surface is therefore the time average of the integral of (5.127) over the entire acoustic boundary
layer:

1

2¼

2¼Z
0

dt

1Z
0

24¹μdû
dy

¶2
+
¸c
¹T 2e

Ã
dT̂

dy

!235 dy (5.128)

This formula gives

time-averaged energy

loss per unit surface area
h _ei = ¡ 1

2°¹p

p
!º

2

"¯̄̄̄
ûe
¹a

¯̄̄̄2
m

+
° ¡ 1p
Pr

¯̄̄̄
p̂

¹p

¯̄̄̄2
m

#
(5.129)

where j jm means the maximum value in the oscillation and º = ¹=¹½ is the kinematic viscosity.

Suppose that a standing wave is sustained in a tube, like the one sketched in Figure 5.14, by a speaker
or piston. If the source of waves is suddenly cut o®, the amplitude of the standing wave system will decay
exponentially in time according to the discussion in Section 5.5, the decay constant being given by the
formula 5.80:

® =
1

2
R h"idV d

dt

Z
h"idV (5.130)

and
R h"idV is the total time-averaged energy in the tube. Here energy losses at the ends are ignored and

compute d
dt

R h"idV as the integral of h _ei, the formula (5.129) over the lateral area of the tube with
p̂e ´ Al cos(klx)
ûe =

Al
¹½¹a
sin(klz)

h"li = A2l
4¹½¹a2

(¼R2tL)

(5.131)a,b,c

The time-averaged total energy is computed with 5.78 and the total time-average rate of dissipation is

d

dt

Z
h"idV = ¡ 1

2°¹p

r
!º

2

·
1 +

° ¡ 1p
Pr

¸
A2l (¼R

2
tL) (5.132)

Hence we ¯nd

® = ¡ 1

Rt

r
!º

2

·
1 +

° ¡ 1p
Pr

¸
(5.133)

Early measurements by several groups, e.g. Henderson and Donnelly (1962), gave a result roughly 8{10%
higher than that predicted by (5.133). That was a puzzling situation for about ¯fteen years. The analysis
for laminar °ow|i.e. for su±ciently low amplitudes of the motion|should, one has reason to expect, be

6For purposes of estimation, it is su±ciently accurate to take the value of º for combustion products to be the same as air
at standard conditions, º ¼ 0:2 cm2=s, and to assume that the average temperature has everywhere its ambient value, ¹Te.

SOME FUNDAMENTALS OF ACOUSTICS 

5 - 28 RTO-AG-AVT-039 

 

 



more accurate than that. Yet the experiments seem to have been done carefully and with good precision.
Eventually, however, it turned out that the experiments must be carried out with extreme care indeed. With
superb work exemplifying how carefully measurements must be made to obtain accurate results for acoustic
losses, Quinn, Colclough and Chandler (1976) determined ® with an error of 0.069%(!) compared with
(5.133).

This example has wide implications in the ¯eld of combustion instabilities. Experiments designed to
con¯rm theoretical and analytical results must be carefully carried out with the greatest possible precision;
also, uncertainties in the results should be reported, a practice too often ignored. That requirement is a direct
consequence of the fact that acoustical motions, despite their `loudness' to human ears, contain relatively
small amounts of energy and therefore are sensitive to small changes in the system containing them.

5.9.2. Another Way of Computing the Decay Constant. The second method of computing the
decay constant due to losses in the acoustic boundary layer is based on the method of spatial averaging. We
begin with the dimensional forms of the linearized equations including viscous stresses and heat conduction,
(5.1){(5.3) but no external sources and mean °ow and with the velocity zero at the boundary:

r2p0 ¡ 1

¹a2
@2p0

@t2
= r ¢FFF0 ¡ 1

¹a2
@P0

@t
n̂ ¢ rp0 = ¡FFF0 ¢ n̂

(5.134)a,b

and

FFF0 = r ¢$¿¿¿ 0v
P0 = ¡ R

Cv
r ¢ q0

For harmonic motions with complex wave number k = (! + i®)=¹a, (5.134)a,b are

r2p̂+ k2p̂ = ĥ
n̂ ¢ rp̂ = ¡f̂

(5.135)a,b

where

ĥ = r ¢ F̂̂F̂F ¡ ik
¹a

R

Cv
r ¢ q̂

f̂ = ¡n̂ ¢ F̂̂F̂F
(5.136)a,b

The procedure described in Section 4.1 leads to the formula for the complex wavenumber for the nth

mode,

k2 = k2n +
1R
Ã2ndV

½Z
ĥÃndV +

ZZ
° f̂ÃndS

¾
(5.137)

where the volume integrals extend over the entire volume of the tube and the surface integral is computed
only over the lateral boundary because losses at the end are ignored. For the viscous e®ects in the boundary
layer,

F̂̂F̂F = r ¢ ¿̂̂¿̂¿v =
μ
¹
d2ûx
dy2

¶
{̂̂{̂{

r ¢ q̂ = dq̂y
dy

= ¡¸c d
2T̂

dy2

(5.138)a,b
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Substitution in the bracketed terms on the right-hand side of (5.137) with ¹ and ¸c constant gives:Z
ĥÃndV +

ZZ
° f̂ÃndS ´

Z ³
r ¢ F̂̂F̂F

´
ÃndV ¡ ik

¹a

Rt
Cv

Z
(r ¢ q̂)ÃndV

¡
ZZ
°
³
n̂ ¢ F̂̂F̂F

´
ÃndS

= ¡ ik
¹a

Rt
Cv

Z
(r ¢ q̂)ÃndV ¡

Z
F̂̂F̂F ¢ rÃndV

= ¡ ik
¹a

Rt
Cv
¸c

Z
d2T̂

dy2
ÃndV ¡ ¹

Z
d2ux
dy2

dÃn
dx

dV

(5.139)

Because the viscous e®ects are signi¯cant only near the wall we can take the incremental element of volume
to be dV = dydS and write the integrals for Ãn ´ Ãl(x) a purely longitudinal mode shape:Z

d2T̂

dy2
ÃndV ´

ZZ
°ÃldS

1Z
0

d2T̂

dy2
dy =

ZZ
°Ãl

Ã
dT̂

dy

!
0

dS

Z
d2û

dy2
dÃl
dx
dV ´

ZZ
° dÃl
dx
dS

yZ
0

d2û

dy2
dy = ¡

ZZ
° dÃl
dx

μ
dû

dy

¶
0

dS

The derivatives dT̂=dy and dû=dy are signi¯cant only within the thin acoustic boundary layer and become
negligible at the outer edge, y=± large. Now use the results (C.14)a,b to evaluate the derivatives at the
surface: Ã

dT̂

dy

!
0

= ¸
p
PrT̂e

μ
dû

dy

¶
0

= ¸ûe

= ¸
p
Pr ¹T

μ
° ¡ 1
°

¶
p̂e
¹p

= ¸
i

¹½!

d¹pe
dx

Inserting these results in (5.139) givesZ
ĥÃldV +

ZZ
° f̂ÃldS ´

μ
ik

¹a

R

Cv
¸c

¶·
¸
p
Pr ¹T

μ
° ¡ 1
°

¶ZZ
°Ãl

p̂e
¹p
dS

¸
+ ¹

·
i¸¹p

¹½!

ZZ
° d

dx

μ
p̂e
¹p

¶
dÃl
dx
dS

¸ (5.140)

where dS is the increment of the lateral surface, dS = (2¼Rt)dx.

The mode shapes for the acoustic pressure in a closed-closed uniform tube is (5.104). As the wave decays,
its shape is very little di®erent from the normal mode shape at the same (or nearly) the frequency. Hence
we can replace p̂e by Ãl = ¹peAl cos klx, and we have the two integrals

ZZ
° p̂e

¹p
ÃldS = qtAl

LZ
0

cos2(klx)dx = ¼RtLAl

ZZ
° d

dx

μ
p̂e
¹p

¶
dÃl
dx
dS = qtAlk

2
l

LZ
0

sin(klx)dx = ¼RtLAl

(5.141)a,b
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In (5.140), the values of k and ! are nearly7 those for the normal mode; replacing k ! kl, ! ! !l and
substituting (D.14)a-d in (5.140), we eventually ¯ndZ

ĥÃldV +

ZZ
° f̂ÃldS =

kl¹p

¹a2
(1¡ i)

μ
1

2
qtLAl

¶μ
1 +

° ¡ 1p
Pr

¶
(5.142)

With
R
Ã2l dV =

1
2 (¼R

2
tL), (5.137) becomes

k2 = k2l +
1

¹pAl
R
Ã2l dV

½Z
ĥÃldV +

ZZ
° f̂ÃldS

¾
= k2l +

1
¹pAl

2 (¼R2tL)

½
kl¹p

¹a2
(1¡ i) ¡¼R2tLAl¢rº!2

μ
1 +

° ¡ 1p
Pr

¶¾
= k2l + (1¡ i)

kl¹p

¹a2

μ
2

Rt

¶r
º!

2

μ
1 +

° ¡ 1p
Pr

¶ (5.143)

The left-hand side is

k2 =
1

¹a2
(! + i®)

2
=
³!
a

´2
¡ i
μ
2®!

¹a

¶
¡
³®
¹a

´2
Because ®¿ !, (5.143) is approximately³!

a

´2
¡ i
μ
2®!

¹a

¶
= k2l + (1¡ i)

kl¹p

¹a2

μ
2

Rt

¶r
º!

2

μ
1 +

° ¡ 1p
Pr

¶
of which the imaginary part is

® = ¡ 1

Rt

r
º!

2

μ
1 +

° ¡ 1p
Pr

¶
(5.144)

which is exactly (5.133).

5.9.3. Still Another Way of Computing the Decay Constant. A third method for computing
the decay constant is instructive for several reasons. First it is a good illustration of the usefulness and at
least for the problem considered here, accuracy of the one-dimensional approximation. Second, it illustrates
an important consequence of the conservation of mass that has other applications. And third, related to
the second, the analysis answers a fundamental question about the problem at hand: how does it happen
that dissipation of energy taking place in the thin acoustic boundary layer is communicated to the waves
outside the boundary layer? That is, the wave fronts remain very nearly planar in transverse sections, yet
the amplitude decays in time due to processes con¯ned to the thin layer near the wall. If the wave fronts (loci
of constant phase) did not remain planar, the frequency would change with time, behavior not observed.

We base the analysis on the equations for unsteady one-dimensional °ow constructed in Annex B. For the
problem at hand, we imagine striking a control surface at the edge of the acoustic boundary layer, represented
by the dashed line in Figure 5.15. The unsteady °ow ¯eld within the acoustic boundary layer, the shaded
region, is given by the results found in Annex C, repeated above as equations (5.125)a,b. Within the volume
outside the boundary layer, a steady planar acoustic ¯eld exists, sustained by the motion of one end, for
example. The velocity of the piston face need not be large and we may approximate the acoustic ¯eld by a
classical resonant mode. Thus in (5.125)a,b we set the frequency equal to !l and ûe(v) is given by (5.105).
As explained in Annex C, the °ow within the boundary layer is reasonably taken to be incompressible and
the equation for conservation of mass is

@ûe
@x

+
@ve
@y

= 0 (5.145)

7These characterizations `not very di®erent' and `nearly' can be rendered more rigorous in the context of the procedure
explained in Chapters 3 and 4. The point here is that including deviations of order ¹Mr from kl introduces corrections of order
¹M2
r which must be ignored for reasons explained in the places cited.
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Figure 5.15. De¯nition of the lateral control surface.

Consequently, a velocity normal to the wall is induced within the acoustic boundary layer because the
external velocity has non-zero gradient parallel to the wall. Chester (1964) has given the formula for v0e for
the linearized boundary layer theory used here:

v0e(x; t) =
r
º

¼

μ
1 +

° ¡ 1p
Pr

¶ 1Z
0

@

@x
u0e(x; t¡ ¿)

d¿p
¿

(5.146)

For the standing acoustic wave, the lth acoustic mode, from (5.105) we have

@u0e
@x

= e¡i!lt
dûl
dx

= i¹akl
Al
°
cos klxe

¡i!lt (5.147)

Substitution in (5.146) leads to the formula for v0e:

v0e = i
!l
°
Al

r
º

¼

μ
1 +

° ¡ 1p
Pr

¶
cos klx

1Z
0

e¡i!l(t¡¿)p
¿

d¿

= i
!l
°
Al

r
º

¼

μ
1 +

° ¡ 1p
Pr

¶
cos klx

e¡i!ltp
!l
d¿

1Z
0

e¡i»p
»
d»

=
(¡1 + i)

°
Al

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
cos klxe

¡i!lt = v̂ee¡i!lt (5.148)

We will need the real part of the spatial dependence:

v̂(r)e = ¡ 1
°
Al

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
cos klx (5.149)

Now we focus attention on the acoustic ¯eld within the control surface shown in Figure 5.15. All
in°uences of the boundary layer are contained in the velocity by v0e representing oscillatory pumping of °uid
through the surface. Hence we have a simple one-dimensional °ow with distributed periodic sources of mass
momentum and energy at the boundary. There is, of course, no net °ow through the boundary, the time
average of (5.148) being zero.

We begin with equations (B.3) and (B.5) written for constant cross-section area and no sources within
the volume. The linearized forms are

¹½
@u0

@t
+
@p0

@x
= F01s

@p0

@t
+ °¹p

@u0

@x
= P01s

(5.150)a,b
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where F01s and P
0
1s are given by (B.14) and (B.16). With mean velocity zero and pure gas, those de¯nitions

become

F01s = 0

P01s =
R

Cv

1

Sc

¡
¹h0s ¡ ¹e0 + Cv ¹T

¢ Z
(mg

s)
0dq

(5.151)a,b

The stagnation and ambient average temperatures are uniform and equal everywhere, so

¹h0s ¡ ¹e0 + Cv ¹T = (Cp ¡ Cv + Cv) ¹T = Cp ¹T (5.152)

With no average °ow inward,

(mq
s) = ¹½v0e (5.153)

where v0e is given here by (5.148). Hence (5.151)b is

P01s =
¹a2

Sc

Z
¹½v0edq (5.154)

After combining (5.150)a,b in the usual way to form the wave equation, and substituting (5.152) and
(5.154), we have

@2p0

@x2
¡ 1

¹a2
@2p0

@t2
= ¡ 1

Sc

@

@t

Z
¹½v0edq

For v0e uniform on the perimeter of a transverse plane, the integral on the right-hand side becomes ¹½v
0
e(2¼Rt)

and the last equation is

@2p0

@x2
¡ 1

¹a2
@2p0

@t2
= ¡ 2

Rt
¹½
@ve
@t

(5.155)

Owing to the perturbation caused by the °uctuating mass °ow at the boundary, the national modes of
the chamber have frequencies ! slightly di®erent from !l, the classical values. Set p

0 ¼ p0l = ¹½Al cos klx and
v0e = v̂ee¡i!t in (5.155), giving

¹pAl cos(klx)(¡k2l + k2) = ¡
2

Rt
¹½(¡i!v̂e)

¼ i2!l¹½
Rt

(¡1 + i)
°

Al

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
cos klx

Rearrangement leads to the formula for the complex wavenumber

k2 = k2l + (1¡ i)
2!l¹½

¹½Rt°

r
º!l
2

μ
1 +

° ¡ 1p
Pr

¶
(5.156)

The real part again gives the formula (5.133).

5.9.4. First Order Correction to the Mode Shape. In the model analyzed here, the essential idea
is that the in°uence of the acoustic boundary layer is exerted on the bulk °ow by the motions induced
normal to the wall. A force of interaction is generated tangential to the wall, having the proper phase to
attenuate the waves in the tube. That process must alter the mode shape to a form consistent with the
¯rst order correction to the acoustic eigenvalue. One way to determine the distortion is to compute the ¯rst
order correction to the zeroth order basis function by following the procedure described in Chapter 4. An
alternative approach is based directly on the di®erential equation for the pressure subject to the boundary
condition set by the radial `pumping' velocity (5.149). The mass source term is the density times (5.149)
and the boundary condition on the radial gradient of the pressure mode shape is

n̂ ¢ rp̂ = ¡i!½0û ¢ n̂ = i!½0v̂ = i!Rc
2
ŵ (5.157)
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where v̂ is given by (5.149). After substitution for v̂, this relation gives the explicit form

dp̂

dr
= (1¡ i)k3=2¯p̂ (5.158)

where

¯ =
1

2

r
2º

a0

·
1 +

° ¡ 1p
Pr

¸
(5.159)

For axisymmetric motions in a circular cylindrical tube, the scalar wave equation for the pressure is

1

r

@

@r

μ
r
@p̂

@r

¶
+
@2p̂

@x2
+ k2p̂ = 0 (5.160)

with solution

p̂ =
nX mX

Anm cos knxJ0(Àmr) (5.161)

where

À2m = k
2 ¡ k2n (5.162)

The boundary condition (5.160) sets the permissible values of Àm and hence the wavenumber k:·
d

dr
J0(Àmr)

¸
r=Rc

= (1¡ i)k3=2¯J0(ÀmRc) (5.163)

There are an in¯nite number of the Àm, so that, for example, for the ¯rst longitudinal mode, the pressure
¯eld is

p̂ = cos
³¼
L
x
´ 1X
m=1

AmJ0(Àmr) (5.164)

For simplicity here, only the ¯rst term will be treated; Àm = À1 and in (5.163) the function J0(À1Rc) appears.

Now one expects that the corrections will be small, so k should not be very di®erent from kn, and the
expansion can be used

J0(À1r) ¼ 1¡ 1
4
(À1r)

2 (À1 ! 0) (5.165)

Thus, ·
d

dr
J0(À1r)

¸
r=Rc

¼ ¡1
2
À21Rc

and (5.163) is approximately

¡1
2
À21Rc = (1¡ i)k3=2¯

·
1¡ 1

4
(À1Rc)

2

¸
If the second order term on the right-hand side is ignored, substitution of (5.162) gives

¡1
2
Rc(k

2 ¡ k21) = (1¡ i)k3=2¯
so

À21 = (k
2 ¡ k21) ¼ ¡

2

Rc
(1¡ i)k3=2¯ (5.166)

Again write k = (! ¡ i®)=a0 with ® ¿ ! on the left-hand side; because the second term on the right-hand
side represents a small correction, set k = !=a0. Equation (5.166) therefore gives approximatelyμ

!

a0

¶2
¡ 2i®!

a20
=

μ
!1
a0

¶2
¡ 2

Rc
(1¡ i)

μ
!

a0

¶3=2
¯ (5.167)
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from which the imaginary part is easily shown to be exactly 5.144 again.

But now the ¯rst term of (5.164), with (5.165) and (5.166), gives a formula for the distorted one-
dimensional (planar) pressure ¯eld:

p̂ ¼ cos ¼x
L
J0(À1r) ¼ cos ¼x

L

·
1¡ 1

4
(k2 ¡ k21)r2

¸
It is easy to show, using the de¯nition (5.159) of ¯, that (5.166) is

(k2 ¡ k21) =
2!

a20
(1¡ i)®0 (5.168)

where ®0 now stands for the attenuation coe±cient (5.144) computed for purely one-dimensional waves, the
real part of (5.167). Because (1¡ i)2 = ¡2i, the distorted pressure ¯eld can be written

p̂ ¼ cos ¼x
L

"
1 + i

μ
!®0
a20

¶2
r2

#
(5.169)

This pressure ¯eld is now to be used in the expression for ŵ = 2½0v̂Rc
, with r = Rc (because the pressure

in that formula is the pressure impressed on the boundary layer):

ŵ = ¡(1 + i)2®0
a20

cos
¼x

L

"
1 + i

μ
!®0
a20

¶2
R2c

#
(5.170)

Finally, use this new result for the source term in the solution for the wavenumber associated with the
one-dimensional problem:

k2 = k21 ¡
2!®0
a20

(1¡ i)
"
1 + i

μ
!®0
a20

¶2
R2c

#
(5.171)

The real and imaginary parts are μ
!

a0

¶2
=

μ
!1
a0

¶2½
1¡ (1 + ³)2®0

!

¾
(5.172)

® = ¡(1¡ ³)®0 (5.173)

where

³ =

μ
!®0
a20
R2c

¶2
(5.174)

Thus, as anticipated, the distortion of the plane wavefronts produces a reduction in the value of the
attenuation constant, which is in the right direction to give better agreement with experimental results. For
Rc = 5 cm and f = 500 Hz,

³ =

·
(2¼)(500)

9£ 108 (25)
¸2
»= 7:8£ 10¡9a20

and for ®0 = 20sec¡1, ³ ¼ 30 £ 10¡7. The correction is therefore very small and cannot explain the
discrepancy between the predicted and observed values. Although only the ¯rst term in the series (5.164)
has been retained, it is unlikely that the last conclusion would be changed upon including further terms in
the series.

The preceding calculation illustrates two points: it is an example of determining the e®ect of a boundary
layer in its external driving °ow, here a standing plane wave; and the result supports the idea that the
zeroth order basic functions really are close approximations, over most of the chamber, to the actual mode
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shapes. In this case, the small di®erences occur in a thin zone at the lateral boundary. The corrected mode
shape calculated here satis¯es the actual boundary condition to ¯rst order. However, the zeroth order mode
shape not satisfying the correct boundary condition nevertheless yields the exact result for the ¯rst order
eigenvalue (the decay constant) when used in the perturbation-iteration procedure constructed in Chapter 4.

5.10. Propagation of Higher Modes in Tubes; Cut-o® Frequencies

In Section 5.7 we constructed the normal longitudinal modes for tubes of ¯nite length. For the cases
considered, the wavefronts are planar and the °ow properties are always uniform over all transverse sections.
The pressure, for example, at a chosen location undergoes a perfect sinusoidal oscillation in time, having
maximum amplitude in time and bearing a ¯xed phase with respect to the pressure at any other location.
Those properties de¯ne such a normal mode as a stationary or standing wave.

A stationary wave may be regarded as the superposition or synthesis of two traveling waves progressing
in opposite directions. We may interpret that result in two ways: 1) the waves are con¯ned to the tube and
su®er re°ection at the ends, su®ering a 180 degree phase change up each re°ection and reversing its direction
of travel; or 2) two waves each in¯nitely long and traveling in opposite directions interfere destructively
at the locations of the ends of the tube so as to maintain the correct boundary conditions. The second
interpretation corresponds to the case for re°ection of pulses worked out in Section 5.2.1 and illustrated in
Figure 5.2.

Either of those two interpretations suggest a question regarding propagation of plane waves in a tube.
What if, because of some sort of disturbance, the wave fronts are distorted? That is, suppose that the wave
fronts, while still perfectly plane, su®er some distortion so that the distribution of the °ow properties are
not uniform in transverse sections. How then is propagation of that wave a®ected? Any such distortion can
be synthesized of two-dimensional normal modes in transverse planes superposed on a traveling wave. Hence
we assume the form for pressure wave traveling in the positive x-direction:

p0(x; y; z; t) = A cos(kyy) cos(kzz)ei(kxx¡!t) (5.175)

The frequency is unspeci¯ed, ! = ¹ak. This wave must satisfy the wave equation

@2p0

@x2
+
@2p0

@y2
+
@2p0

@z2
¡ 1

¹a2
@2p0

@t2
= 0

Substitution of (5.175) produces the relation among the wavenumbers

¡k2x ¡ k2y ¡ k2z + k2 = 0
and

kx =
q
k2 ¡ (k2y + k2z) (5.176)

must be positive and real for propagation in the positive x-direction. The formulas (5.119)a,b,c give the two
transverse wavenumbers and (5.175) is

kx =

s³!
¹a

´2
¡
·³m¼

b

´2
+
³n¼
b

´2¸
(5.177)

Consequently, if kx is to be real, the frequency of the wave must be larger than a critical value !c:

! > !c (5.178)

with

!c = ¹a

r³m¼
b

´2
+
³n¼
b

´2
(5.179)
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The frequency !c is called a \cuto® frequency" for the following reason. Substitute (5.176) in (5.144):

p0 = p̂(y; z)ei
³
1
¹a

p
!2¡!2cx¡!t

´
(5.180)

If ! < !c, the exponential factor can be written

e¡¯xei!t (5.181)

where the attenuation constant ¯ is

¯ =
1

¹a

p
!2c ¡ !2 (! < !c) (5.182)

Two main conclusions follow from this calculation:

i) If m = n = 0, the waves are purely planar longitudinal (or axial) and !c = 0. That is, waves having
any frequency will propagate freely, with no attenuation, and can form standing waves in a tube of
¯nite length, closed or open.

ii) If m;n 6= 0, the cut o® frequency is ¯nite and only waves having frequency greater than the cut
o® frequency will propagate freely and under suitable conditions will form standing waves. Traveling
waves having the transverse structure speci¯ed by the given values ofm and n will decay exponentially
in space, with attenuation constant ¯ given by (5.150)a,b.

In practice, the existence of the phenomenon of `cuto®' may arise if a chamber has slots or passages
extending outward. Suppose that the chamber possesses a normal mode having relatively low frequency
and a shape such that the amplitude of the pressure varies over the opening of the smaller passage. Then
that mode tends to force generation of waves having spatial structure in the cross section of the passage.
Therefore the cuto® frequency for oscillations in the passage is ¯nite. If the frequency of the chamber mode
is less than that cuto® frequency, the excited waves will have amplitude decaying with distance into the
passage. Consequently, a pressure transducer placed at the far end of the passage will register a pressure
amplitude much less than that existing in the chamber at that location. If data are obtained only with
that transducer, then a misleading impression is obtained for the oscillating pressure in the main chamber.
To interpret the data correctly, it is clearly necessary to understand well both the nature of the possible
structure of the chamber modes and the phenomenon of cuto® frequency.

The decay of waves as they travel down a tube seems a strange result in view of the fact that no
dissipative processes have been accounted for. Resolution of this paradoxical result can be reached by
examining re°ection and interference of waves traveling in directions not parallel to the axis of the tube. O®-
axis propagation is associated with the non-uniform structure of the higher order modes and the re°ections
occur because of the boundary conditions set on the lateral surfaces. Morse and Ingard (1968) supply the
details of this interpretation.

5.11. The Impedance Tube

Perhaps the simplest yet most widely useful acoustical instrument is the impedance tube, known for
over one hundred years. Its true origin seems to have been lost. We follow Morse's analysis (Morse 1948),
but the most e±cient and e®ective method for obtaining data is probably that worked out by Baum (1980);
the references must be consulted for thorough discussions.

Figure 5.16 shows the essential features of the basic impedance tube. At one end is mounted the test
sample of which the impedance or admittance function is to be measured. The other end is ¯tted with a
piston or equivalent apparatus (e.g. a loudspeaker) whose frequency can be controlled. Measurements are
taken when the frequency is constant. The piston then causes (`radiates') waves having amplitude p¡ to the
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left. If there are no distributed losses along the tube or its walls, a wave has constant amplitude and phase
between the piston and a thin region of transition at the face of the sample. In that thin region waves are
generated and propagate both to the left and the right.

Figure 5.16. The basic impedance tube.

When the system has reached a steady state of oscillation, the region outside the transition zone contains
a standing wave. The standing wave is the superposition of a wave p̂¡ propagating to the left from the piston,
and a wave p̂+ propagating to the right, the net result of re°ections from the sample and the transition region.
The phase and amplitude of the wave p̂+ are di®erent from those of wave p̂¡ due to the action of the test
sample. We assume there is no mean °ow, so with no distributed losses (or gains) of energy along the tube,
the steady waves are represented by the two amplitudes of pressure and velocity:

p̂¡ = Ae¡ikx (a) û¡ = ¡ A

½0a0
e¡ikx (b)

p̂+ = Be
ikx (c) û+ = ¡ B

½0a0
eikx (d)

(5.183)a{d

where k is a real wavenumber.

The total pressure and velocity oscillations are

p̂ = Ae¡ikx +Beikx = A
·
e¡ikx +

B

A
eikx

¸
û = ¡ A

½0a0
e¡ikx +

B

½0a0
eikx = ¡ A

½0a0

·
e¡ikx ¡ B

A
eikx

¸ (5.184)a,b

De¯ne

Ã = ¼®0 + i¼¯0 (5.185)

and

B = ¡Ae2Ã (5.186)

so (5.184)a,b become

p̂ = A
£
e¡ikx ¡ eikx+2Ã¤

û = ¡ A

½0a0

£
e¡ikx + eikx+2Ã

¤ (5.187)a,b

On the face of the test sample at x = 0, the impedance is

z =

·
p̂

¡û
¸
x=0

= ½0a0
1¡ e2Ã
1 + e2Ã

(5.188)

Thus the phase Ã is related to the impedance by

e2Ã =
1¡ z=½0a0
1 + z=½0a0

(5.189)
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Values of Ã may be inferred from measurements of the envelope of the modal structure along the axis
of the impedance tube; (5.187)a becomes

p̂(x) = ¡AeÃ £eikx+Ã ¡ e¡ikx¡Ã¤ = ¡2AeÃ sin k(Ã + ikx)
Write

Ã + ikx = ¼(®+ i¯) (5.190)

with

® = ®0 and ¯ = ¯0 +
2x

¸
(5.191)

The magnitude of the pressure oscillation in the standing wave is

jp̂j = 2AjeÃjj sin k¼(®+ i¯)j = 2Ae¼®
q
cosh2 ¼®¡ cos2 ¼¯ (5.192)

Within this idealized picture of the pressure ¯eld, one needs only the maxima and minima of jp̂j:
Maxima: jp̂jmax = 2Ae¼® cosh¼® @ ¯0 + 2

x

¸
= §1

2
;§3
2
; ¢ ¢ ¢

Minima: jp̂jmin = 2Ae¼®
p
cosh¼®¡ 1 @ ¯0 + 2

x

¸
= §1;§2; : : :

(5.193)a,b

A sketch of jp̂j is given in Figure 5.17

The real part of Ã, ® ´ ®0, may be found from the ratio of the maxima and minima,

jp̂jmax
jp̂jmin = coth¼® (5.194)

Figure 5.17. Sketch of jp̂j when distributed losses are ignored.
Values of ¯, and hence the imaginary part of Ã, are related to the locations of the maxima and minima.
From (5.193)b, the ¯rst minimum occurs at ¯0 +

2
¸xmin = 1 which gives

¯0 = 1¡ 2

¸
xmin (5.195)

According to these results for the idealized impedance tube having no losses except at the test sample,
only three measurements (jp̂jmax; jp̂jmin; xmin) are required to give Ã and hence the impedance at one
frequency. In practice, use of the impedance tube is considerably more complicated. Even when the sample
presents a well-de¯ned surface to the acoustic ¯eld, the distributed losses cannot be ignored. Procedures for
taking them into account are well-known in the ¯eld; the experimental methods required to handle them
may become fairly involved. Baum (1980) has given a good discussion of the method he devised, perhaps
the most e®ective available.8

The impedance tube remains the best apparatus for determining the impedance function of an inert
surface. E®orts to adapt the method for measuring the impedance (or admittance) function of active surfaces

8This statement is based solely on the author's experience with his students, many years ago.
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have not led to results useful for routine applications. The best example is probably Baum's e®ort to measure
the admittance of a burning surface. O®ering prospects of overcoming rather serious shortcomings of the
T-burner and other devices prospects, the impedance tube posed its own problems which have not been
overcome (Baum 1980). A short survey of applications of the impedance tube to measure the admittances
of gaseous injectors has been given in the article by Brown, Culick and Zinn included in the collection edited
by Boggs and Zinn (1978).
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