
CHAPTER 6

Linear Stability of Combustor Dynamics

All problems of unsteady motion in combustion systems can be divided into the two classes: linearized
and nonlinear. From the earliest discoveries of their transient behavior until the late 1950s, `combustion
instabilities' implied small amplitude unsteady (and unwanted) motions growing out of a condition of linear
instability. Even with the expanding awareness that the nonlinear properties must be understood as well,
linear behavior always remained an essential part of understanding all aspects of combustion instabilities,
including the consequences of nonlinear processes.

The literature of linear combustion instabilities contains many papers dealing with special problems.
There seems often to be a tendency to regard the results as somehow disconnected. However, apparent
di®erences arise chie°y from the di®erences in the processes accounted for and in the choices of models for
those processes. So long as the problems are dominated by oscillating behavior in combustors, probably
most, if not practically all, of the results can be obtained in equivalent forms by suitable applications of the
methods explained here. That statement is not as outrageous as it may seem, following as it does from the
generality of the expansion procedures and the method of averaging covered in Chapter 4.

6.1. Historical Background of Linear Stability 1

Among the earliest interpretations of combustion instabilities was the idea of unstable disturbances
having small amplitude. That idea lies behind the characterization of small oscillations and is commonly
assumed to explain the initial stage, and hence the origin, of an oscillation in a combustion chamber. In
fact it is a widely observed motion in solid rockets, but the cases in other systems are often not so clearly
de¯ned. The latter are often regarded as `nonlinear' in some sense. Of the wide range of possible behavior,
linear motions are most easily and rigorously described, and form the context within which the greater part
of understanding combustion instabilities has been developed. We will examine some important aspects of
nonlinear behavior in Chapter 7.

Although there were earlier considerations of oscillations in solid propellant rockets, the ¯rst analysis of a
combustion instability seems to be that worked out by Grad (1949). At the suggestion of E.W. Price (private
communication), Grad considered the problem of unsteady motions in a solid propellant rocket. Although he
did not ignore the average °ow entirely, he managed to avoid treating the details of the velocity ¯eld within
the chamber away from the burning surface. He used an approximation to the mean °ow based on a separate
analysis. Eventually Grad worked out simple formulas for perturbations of the wavenumber. However, the
calculations are di±cult to follow and, so far as this writer knows, the results have never been checked against
observations. A natural result of the analysis is that high frequency oscillations are possible. Grad closed his
paper with the footnote that \high frequency oscillations have actually been observed recently in experiments
performed at Inyokern, California." That place was the Naval Ordnance Test Station (NOTS) which became
the Naval Weapons Center (NWC) and is now the Naval Air Warfare Center (NAWC). Researchers at China

1A more thorough account of early developments of linear stability is given in Chapter 2.
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Lake have had remarkable in°uence on the ¯elds of steady and unsteady combustion of solid propellants
continuously since the beginnings during World War II.

Grad's analysis and interpretation of his results were largely ignored, perhaps because combustion insta-
bilities in such a well-developed form did not constitute a pressing problem and because accurate data were
lacking. Moreover, when troublesome instabilities were encountered in solid rockets, they were eliminated or
reduced by making changes in the system.2 The situation changed markedly in the late 1950s. Apparently
the development of large motors was the main stimulus. The need to develop theoretical, computational,
and experimental methods then became clear. In the U.S. a very substantial e®ort grew, widespread but
well-coordinated. A particularly important outgrowth of the coordination was the organization that in 1963
became JANAF and subsequently the JANNAF (Joint Army/Navy/NASA/Air Force) Sub-Committee. Ap-
parently the initial e®orts in JANAF were largely exerted by the solid rocket community, which we will tend
to ¯rst here.

In the period covering the late 1950s to the middle 1960s, the special ad hoc group, \The Technical Panel
on Solid Propellant Instability of Combustion", accomplished much in urging and coordinating research on
instabilities in solid rockets. A useful collection of papers \Scienti¯c Papers 1960{1963" produced by the
panel gives a quite complete coverage of work by the group which included participants from Canada and
Europe. The titles of the papers correctly suggest that they truly covered the ¯eld and set the agenda for
much of the research carried out in the following decades.

The dominant group in theoretical developments during this period was that at the Johns Hopkins Ap-
plied Physics (JHU) Laboratory, mainly McClure, Hart, Bird and Cantrell. Although they treated unsteady
erosive burning (McClure, Bird and Hart 1960b and McClure, Hart and Bird 1962), their results were not
extensive; the subject has still not advanced very far. That is practically the only nonlinear subject that
they treated deeply enough to obtain results, limited though they were. Thus, almost all the theoretical
work dealt with linear stability. One of their most important accomplishments|which may not seem so
impressive now|was to gain universal recognition of the admittance function of a burning surface as pos-
sibly the most important quantity to know accurately as an essential part of the basis for determining the
stability of a motor. That is a consequence of the thorough fashion in which the JHU group formulated the
general problem. In fact, that approach to the overall problem had considerable impact on the development
of the theoretical aspects as well as on the general understanding of the ¯eld.

A large boost was given activity in the ¯eld of instabilities in solid propellant rockets. when a problem
arose with the ballistic missile Minuteman II, an instability in the third stage (see Section 1.3). From its
¯rst use in the late 1950s (Price and So®eris 1958) the T-burner had become generally accepted as the
test device for giving data on the admittance or response function for a burning surface. The Minuteman
problem led to a great deal of e®ort based on the device in the late 1960s and in the 1970s. Many important
research programs devoted to the T-burner and to other subjects were sponsored by the Air Force Rocket
Propulsion Laboratory (AFRPL).3 Simultaneously, work on all aspects of instabilities in solid rockets was
actively pursued at the Naval Weapons Center, China Lake. It was during this period that work was begun
to develop `standard stability prediction' programs.

2E.W. Price (1992) has given the best historical account of oscillatory combustion in solid propellant rockets in the U.S.
from the beginning (c. 1948) to 1991. Apparently no comparable document exists for experiences in other countries although
there are scattered brief descriptions.

3The author is particularly indebted to AFRPL for supporting programs under which the method of nonlinear analysis
described in this book was largely developed. Much of the work, especially in the early stages, was accomplished at Hercules,
Inc. where the author served as consultant to a group headed by Dr. Merrill Beckstead. The methods were initiated largely
under the sponsorship of the Air Force and the Navy, especially with the encouragement and support of E.W. Price.
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The growth of understanding and theory of instabilities in liquid propellant rockets followed a path
virtually independent of the work on solid propellant rockets in the U.S.4 After the early experimental work
reported by Gunder and Friant (1950), discussed also by Yachter (1950), and by Summer¯eld (1950) who ¯rst
used a time lag following the suggestion of von Karman, Crocco (1951)a, b developed the idea of the time lag
for low-frequency oscillations. `Low' means here that the propagation of disturbances within the chamber
was ignored. Higher frequency instabilities, those which are close to normal acoustic modes of the chamber
being studied, were then investigated by Crocco and Cheng (1956). They treated only one-dimensional
motions in that work.

In his second paper referenced above, Crocco (1951)b essentially formulated the problem subsequently
analyzed at great length by the Princeton group, the last published paper on the subject apparently being
that by Zinn (1968). Figure 6.1 is a sketch of the situation. During the nearly two decades of work, the
method of analyzing the unsteady °ow ¯eld changed considerably but the prescription of the unsteady
injection processes remained virtually unaltered, taking only two or three di®erent forms. Because the
injection of mass is restricted to the planar interface at the head end, the `injector plane', the in°ux of
material imposes a boundary condition on the °ow of gases within the chamber. That condition is quite
simply related to the velocity or mass °ux which, following Crocco, is expressed in terms of the time lag.
The reasoning has been summarized in Section 2.3.2, leading to a formula (2.88) for the source of mass w`
containing two unknown quantities, the time lag ¿ and the `pressure index' n:

w` = ¹w`

μ
1¡ d¿

dt

¶
(6.1)

Injection

Concentrated at

the Head End  (m' , u' )i i

Uniform Flow

in the Chamber

(u', T', p')

Choked Nozzle

(u'  , m' )N N

Figure 6.1. Basic physical model of a liquid rocket used in the Princeton theoretical work
(1950{1968).

As explained in Section 2.3.2, this formula is used for the °uctuation of the mass source in the equation
for conservation of mass. When the equations are linearized and written in terms of complex quantities, the
real and imaginary parts of the equations e®ectively serve as two formal conditions determining n and ¿ as
functions of the other variables in the problem.

The ¯rst extended theoretical account of linearized combustion instabilities was given in the book by
Crocco and Cheng (1956) partly covered in previous papers by the authors. For the most part, the work is
really a lengthy discussion and analysis of the linearized formulation of the situation sketched in Figure 6.1.
Because the governing equations are not spatially averaged, for simplicity only one-dimensional problems are
treated. The text contains an informative extended discussion of the time lag formulation and its linearized
form. Appendix B of the book is a calculation of the admittance for a choked nozzle, an elaboration of the
works by Tsien (1952) and Crocco (1953).

4I have been unable to locate any survey reports from the USSR during this or earlier times. See Natanzon (1999) for brief
mention of early work on instabilities in the Soviet Union, and for a good summary of the principal Russian work available,
including nonlinear analysis and experimental work. The recent book by Dranovsky (2006) covers test methods and results
very thoroughly, but contains no theory dealing with fundamental dynamical processes.
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In 1961 Culick (1961, 1963) worked out the ¯rst analysis of combustion instabilities using a Green's
function and spatial averaging; the analysis was carried out for liquid rockets. That formulation allowed
easy handling of linear three-dimensional problems, requiring calculation of the corresponding admittance
function for the nozzle. More complete results for the admittance were later reported by Crocco and Sirignano
(1967). Three-dimensional oscillations with the approximations shown in Figure 6.1 were analyzed by Scala
(1955); Reardon (1961); Crocco, Reardon, and Harrje (1962); and Reardon, Crocco and Harrje (1963). The
latter two papers contain limited experimental results.

Probably the greatest motivation for working so diligently to develop theory and prediction methods
for solid rockets is the intrinsic limitation of single, short ¯ring times. Thus, much e®ort has traditionally
been devoted to transient behavior, particularly the growth of the amplitude during an unstable ¯ring. The
situation is quite di®erent for liquid rockets, and especially for airbreathing systems that present opportunities
for relatively long controllable test runs. It is perhaps, therefore, understandable that less attention has been
paid to certain details of transient behavior in liquid-fueled systems.5 An exception to that practice was
the early work by Crocco and co-workers, developed especially in the book written with Cheng. The text
was devoted almost entirely to linear unstable motions including transients, and had much useful in°uence
in the subject of instabilities in liquid rockets.6 Subsequently there were many papers published on linear
instabilities in various systems.

In the 1980s there was renewed strong interest, both in the U.S. and in Europe, in small vehicles using
dump combustors as the basic internal con¯guration for ramjets. As a result, active research programs were
conducted to examine theoretical and experimental problems °owing largely from this simple con¯guration.
The kinds of problems considered were, however, somewhat di®erent from most of those traditionally studied
as they were presented for solid and liquid rockets. Probably the most signi¯cant di®erence was that
largely nonlinear motions were important,7 in respects not previously encountered in rocket engines. This
characteristic had the far-reaching consequence that computational °uid dynamics became an essential part
of progress. One of the ¯rst analyses using CFD was the interesting work by Jou and Menon (1986, 1990).
Now CFD is widely used to study internal °ows, although its practical use is only in early development. The
subject is mentioned only brie°y in this book.

Despite the rapid growth, broad applications, and truly fundamental importance of numerical methods
for internal °ows, the approximate literal analysis of internal °ows remains an extremely important basis for
understanding and designing propulsion systems. Together, this and the following chapter cover the most
important practical aspects of the analytical method developed in this book. All results obtained are based
on application of the method of spatial averaging.

6.2. Zero-Dimensional Instability of a Bulk Mode

Oscillations characterized by nearly uniform amplitude and phase in a chamber have arisen in practically
every type of combustion system. Because the pressure oscillation is nearly independent of position, the
velocity °uctuation is approximately zero. These oscillations occur at relatively low frequencies and are
often caused by processes con¯ned to the surface of the chamber, or to openings permitting °ow. The most
familiar related example is the sound produced when one blows past the opening of a bottle. In that case,
the term `Helmholtz mode' is often used to identify the origin of the tone; in discussions of combustion
systems, one often ¯nds the descriptive name `bulk mode', and for solid propellant rockets the special name

5I believe that relatively less attention to the ¯ne points of true transient behavior, while no doubt motivated by practical
concerns, is responsible for a tendency to acquire less understanding of the behavior of disturbances in liquid-fueled systems.

6As a personal note, the author is forever indebted to Professor Crocco, for that work motivated his thesis work (Culick
1960).

7An exception enjoying several useful applications was the elementary linear analysis by Culick and Rogers (1981), which
included a simple analysis of the choked inlet duct to determine its admittance function.
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`L¤ instability' is applied. It is the last we treat here in some detail, although in simpli¯ed form, to introduce
some of the basic ideas of computing linear instability.

Akiba and Tanno (1959) adapted the analysis by Crocco and Cheng (1956, Chapter 2) of a low frequency
instability in liquid rockets8 to the corresponding problem in solid rockets. The main di®erence between
applications to the two classes of systems is in the models used for unsteady combustion. In the limit of
linear behavior there are really no basic distinctions, another example of the practical value to be gained
from studying systems other than that of immediate concern.

Although Akiba and Tanno apparently had no concern with particular problems in motors, Sehgal and
Strand (1964) worked at the Jet Propulsion Laboratory (later o±cially named JPL) and were involved with
development of motors for space vehicles. Because of operations at low pressures requiring lower structure
weights, L¤ instability became an important problem. The ¯rst published concern with the behavior, partic-
ularly its connection to intermittent extinction, was documented by Anderson, Strehlow, and Strand (1963).
While the subsequent analysis by Sehgal and Strand di®ered only in certain details from Akiba and Tanno's,
their lasting contribution was the ¯rst comparison of theory and experiment, shown here in Figure 6.2. The
two theoretical lines arise from details of the analysis which produces two intersections of curves de¯ned in
the speci¯cation of the boundary of the stable and unstable regions of operations. No reason was given that
one of the theoretical curves is favored by the experimental results. The de¯nitions of the dimensionless
critical time constant (¿n)cr and characteristic chamber length L

¤ are

(¿n)cr = ¿cr
¹r2

4·
(6.2)

L¤ =
4·cDRTf (¿n)cr

a2
¹p¡2nc (6.3)

where · is the thermal di®usivity; cD is the discharge coe±cient; Tf is the °ame temperature; and a is the
constant in the linear burning rate law. Equation (6.3) therefore predicts quite well the behavior L¤ » p¡2n
shown in Figure 6.2, prepared using the properties of the propellant tested, JPL-534.

The two analyses just mentioned di®ered mainly in their representations of unsteady burning of a
solid propellant. Akiba and Tanno drew on Green's model (See Section 2.1.2), while Sehgal and Strand
worked out their own analysis of the combustion response, an incomplete9 form of Denison and Baum's
earlier approximate theory (Section 2.2.2). Both treatments followed Tsien's lead in application of a form
of Nyquist's theorem (Annex G and Chapter Nine) to study the stability of the system. Tsien used a
modi¯cation of the theorem suggested by Satche (1949) to handle an exponential necessarily accompanying
introduction of a (constant) time lag in the combustion process.10 Although neither treatment required a
time lag in the same way followed by Tsien, both used Satche's modi¯cation of Nyquist's theorem. That
is an unnecessary complication as Beckstead, Ryan, and Baer (1966) and the next paper by Coates, Cohen
and Harvill (1967) implicitly showed.

Following previous authors, Coates et al.began their analysis with the transfer function Gm for the
motor

±m0

±mi
= Gm =

Gc
1¡GpGc (6.4)

which follows directly from the block diagram drawn in Figure 6.3.

8The discussion by Crocco and Cheng is an extension and elaboration of the original paper by Tsien (1953), based on
essentially the same ideas. Tsien also proposed possible use of feedback control; see Chapter Nine.

9One consequence of the incompleteness is failure to reach the correct limit for zero frequency; see equation (12) and

accompanying comment, in Coates et al. (1967).
10The analyses by Tsien; Crocco and Cheng; Akiba and Tanno; and by Sehgal and Strand were based on Laplace transforms,

applied, naturally, to linear problems. Hence the presence of a constant time lag ¿ in the coupling between, for example, the
heat or mass sources, and the pressure °uctuations, produces exponentals, e¡s¿ , in the characteristic equation.
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Figure 6.2. L¤ versus chamber pressure, showing the stability limit for oscillations (Sehgal
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Figure 6.3. Block diagram of the system, adapted from Figure 1 of Coates, Cohen, and
Harvill (1967).

The transfer function Gp for the combustion dynamics is given by Denison and Baum's result, (2.67)
here; Gc is the transfer function for the chamber dynamics. For the model of the L

¤ burner used in the
works cited, and explained in the next section, the equation for the unsteady chamber pressure is,

¿c
d

dt

³p0
¹p

´
+
p0

¹p
=
m0

¹m
: (6.5)

The Laplace transform is

(1 + s¿c)
P (s)

¹p
=
M(s)

¹m
(6.6)

so

Gc =
1

1 + s¿c
: (6.7)
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Denison and Baum's result, (2.67), gives Gp, completing the basis for the calculation discussed by Coates,
Cohen, and Harvill. Figure 6.4 reproduces two results the authors found in support of their calculations.
The solid lines are computed from this result

1

L¤
=

1

·¡2c¤
¹r2

(¿n)cr
(6.8)

where (¿n)cn = (¿c¹r
2=·)cr. Beckstead (1965) obtained the data for Utah TF propellent.
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Figure 6.4. L¤ instability data for two propellants (a) Utah TF (University of Utah) and
(b) JPL-534 (Jet Propulsion Laboratory) (Coates, Cohen, and Harvill 1967).

Besides having very low frequencies and nearly uniform but sinusoidal (i.e., pulsating) pressure ¯elds
when oscillations are excited, instabilities of the bulk mode often lead to intermittent unsteady behavior
commonly referred to as `chu±ng.' Figure 6.5 shows both types of behavior leading to extinction of com-
bustion. Identifying the stability boundary unambiguously, given that loss of stability does not necessarily
mean growth of an oscillation out of noise, presents problems under these conditions. The di±culties are
both experimental and interpretive, treated at some length in the references. We will not discuss the subject
here except to note that whatever the precursor behavior, the limit of stability seems to de¯ne a su±ciently
narrow band of values, L¤ and pressure or burning rate, that a line is a reasonable approximation, Figures
6.2 and 6.4. Put simply, it makes sense to speak of the `L¤ stability limit.'

Chu±ng was not a new phenomenon, discovered quite early as one aspect of L¤ instability. The earliest
written record seems to have been prepared by Crawford et al. (1945) although earlier informal reports have
been suggested on several occasions. Some early British experiences were discussed by Hu±ngton (1954).
An indication of the problem's practical persistence is conveyed by the session on \Nonacoustic Combustion
Instability" included in the AIAA Solid Propellant Rocket Conference, January 1964. Eisel et al. (1964)
reported results of tests with an L¤ burner and a very long `acoustic' burner having adjustable length as
long as sixty (!) feet. Several records of chu±ng at low frequency instabilities from the paper by Yount and
Angelus (1964) are reproduced in Figure 6.6 showing well the intermittent behavior sometimes observed.

Oberg (1968) addressed the problem displayed by Figure 6.5 which had led to the idea of `nonacoustic'
instabilities in contrast to `acoustic' instabilities of the sort described in Chapter One. It was his correct
contention that `acoustic' and `nonacoustic' instabilities are in fact closely related. Of those working in the
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Figure 6.5. Two examples of natural cessation of L¤ instabilities (a), growth of oscillations
ending in extinction; (b) chu±ng, leaking to extinction (Beckstead, Ryan, and Baer, 1966).

Figure 6.6. Five pressure records of chu±ng (A) and low frequency instabilities (B) (Yount
and Angelus 1964).

¯eld, he was ¯rst to recognize that an L¤ instability is the limit, as the frequency tends to zero, of the wave
or acoustical modes. Oberg showed the result explicitly for longitudinal motions; Culick (1968) subsequently
proved that the conclusion holds generally, with a calculation repeated here in Section 6.6.

A straightforward description of the bulk mode or L¤ instability is based on the assumption that the
frequency is so low that all processes respond essentially instantaneously. This requires that the travel time
of a small disturbance in the chamber, and in the nozzle, be much less than the period of the oscillation.
The pressure then remains sensibly uniform throughout and pulsates in time.

With this assumption, all variations in space are ignored, and in particular the conservation of momentum
need not be considered. Mainly one is concerned with the conservation of mass. Let Sb be the area of burning
surface St the area of the nozzle throat, V the volume, and c¤ the usual characteristic velocity. The total
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mass of gas in the volume is ½V at any instant; its rate of change must equal the di®erence between the rate
at which mass enters, and the rate at which it leaves,

d

dt
(½V ) = mSb ¡ St p

c¤
(6.9)

where m = ½sr is the mass °ux at the burning surface. The relation de¯ning c
¤ as the ratio of Stp to

the total mass °ux out the nozzle c¤ = Stp=m =
p
RT=¡, with ¡2 = °

³
2

°+1

´ °+1
°¡1

is strictly valid only in

steady °ow (Altman et al. 1960). Its use here is justi¯ed by the assumption that the transit time of a °uid
element through the nozzle is much less than the period of oscillation. This is sometimes referred to as the
\zero-length" approximation to the time-dependent behavior of a nozzle. Note that (6.9) applies to any
geometry; it is not restricted to end burners.

We assume that the thermodynamic state of the gases is uniform in the chamber, and that combustion
occurs only in a thin zone near the propellant surface; residual combustion is ignored. Further, it is assumed
that the gases can be described by the equation of state for a perfect gas, p = ½RT . Thus we have two
equations in three variables (p; ½; T ) because the mass °ux from the surface m is assumed to be a function
of pressure only. The principle of conservation of energy provides a third relation, but it will be handled
shortly in a simpli¯ed manner.

Now we form a linearized problem in familiar fashion by writing p = ¹p + p0 : : : etc. and by ignoring
squares and higher order terms. Then the linearized equation of state is

p0

¹p
=
½0

¹½
+
T 0
¹T

(6.10)

Similarly, equation (6.9) can be expanded as follows:

¹½V
d

dt

³½0
¹½
¡ T

0
¹T

´
= ( ¹mSb)

m0

¹m
¡ St¹p
¹c¤
³p0
¹p
¡ c

¤0

¹c¤
´

(6.11)

Because c¤ » pT ; c¤0=¹c¤ = T 0=2 ¹T and the last equation can be written
¹½V

St¹p
¹c¤
d

dt

³p0
¹p

´
=

"
¹mSb
St ¹p
¹c¤

#
m0

¹m
¡ p

0

¹p
+
¹½V ¹c¤

St¹p

d

dt

³T 0
¹T

´
+
1

2

T 0
¹T

(6.12)

In steady °ow, conservation of mass requires

¹mbSb = St¹p=¹c
¤ (6.13)

and with the equation of state, we ¯nd the characteristic time ¿c,

¹½V ¹c¤

St¹p
=
V

St

¹c¤

R ¹T
=
L¤¹c¤

R ¹T
= ¿c (6.14)

where the conventional de¯nition of L¤ is

L¤ = V=St (6.15)

Thus the equation for the pressure °uctuation is

¿c
d

dt

³p0
¹p

´
=
m0

¹m
¡ p

0

¹p
+
h
¿c
d

dt

³T 0
¹T

´
+
1

2

T 0
¹T

i
(6.16)

To simplify the discussion further, consider the extreme case in which the oscillations are so slow, and
mixing is so thorough, that the temperature is not only uniform in the chamber but also constant, so T 0 = 0.
Then the last equation is

¿c
d

dt

³p0
¹p

´
=
m0

¹m
¡ p

0

¹p
(6.17)
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With m = ½sr;m
0= ¹m = r0=¹r, and if the burning always responded instantaneously to a change of

pressure, r » pn, one could write
r0

¹r
= n

p0

¹p
(6.18)

and (6.17) would become

¿c
d

dt

³p0
¹p

´
= (n¡ 1)p

0

¹p
(6.19)

The solution to this equation is immediate:

p

¹p
=
³p0
¹p

´
0
e

³
n¡1
¿c

´
t

(6.20)

where (p0=¹p)0 is the °uctuation at t = 0. Thus, if n > 1, a small disturbance will grow without limit. This
is well-known behavior: motors using propellants with n close to unity are very sensitive to small changes
in pressure and if n is positive, the system is unstable. That is the ¯rst criterion established for stability if
combustion in a solid11 propellant rocket, found by Malina (Karman and Malina, 1940).

The relation (6.18) is valid only in the limit of very low frequencies. In general, the burning rate of
a propellant exposed to a sinusoidal pressure oscillation will vary sinusoidally also, but not in phase with
the pressure, as shown in Section 2.2.2, equation (2.66), for the simplest realistic case. That behavior is
represented by the response function Rb,

m0

¹m
= Rp

p0

¹p
=
£
R(r)p + iR(i)p

¤p0
¹p

(6.21)

The response function is a complex function of frequency, and can be written as

Rp = R
(r)
p + iR(i)p = jRpj(cosÁ+ i sinÁ) (6.22)

For harmonic motions,

p0

¹p
= Pe¡i(!+i®)t

= Pe®te¡i!t (6.23)

If the growth constant ® is positive, then the oscillation is unstable and grows exponentially in time. In all
problems of linear stability, the principal task is to compute the growth constant. Substitution of (6.21) and
(6.23) into (6.17) leads to

¿c(®+ i!)P = [R
(r)
p + iR(i)p ]P ¡ P (6.24)

The amplitude P is a common factor, and the real and imaginary parts of (6.20) give the two equations

Real Part ®¿c = R
(r)
p ¡ 1 (6.25)

Imaginary Part !¿c = R
(i)
p (6.26)

The response function is a fundamental quantity in all problems of combustion instability in solid propel-
lant rockets. It is a dynamical property of the propellant, summarizing all the linear behavior for unsteady-
burning. There is presently no way to calculate the response function for a real propellant. As we have
emphasized in Chapter 2, the most important current experimental problem is its measurement.

11With only minor changes of de¯nitions and interpretation, the same result follows for liquid or gaseous propellant rockets.
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Figure 6.7. Real and Imaginary parts of a simple response function (see the same result,
Figure 2.14).

Equation (6.25) shows that a sinusoidal oscillation is unstable if the real part of the response function

is greater than unity. The frequency of an unstable oscillation is then given by (6.26); obviously R
(i)
p must

be positive for this relation to make sense.

There have been many attempts to compute the response function. Many of these actually produce
the same result,12 discussed in Section 2.2. The main feature is that the response function depends on two
parameters (called A and B) and is a function of the dimensionless frequency

− =
!·

¹r2
(6.27)

where · is the thermal di®usivity of the propellant. The real and imaginary parts of Rb have the form shown
in Figure 6.7, a repeat of Figure 2.14. In this case, according to (6.26), a bulk-mode instability can occur

only for frequencies such that the dimensionless frequency is below the value −0 at which R
(i)
p passes through

zero. Let −¤ be the value of − at which R(r)b = 1, so ® = 0. Then a sinusoidal °uctuation is unstable if −
lies in the range

−¤ < − < −p : (6.28)

Equation (6.26) becomes ³ ¹r2
·

´!·
¹r2
¿c ´ ¹r2

·
−¿c = R

(i)
p (6.29)

On the stability boundary, when − = −¤,

¹r2¿c =
·

−¤
R(i)p (−

¤) (6.30)

With ¹r = a¹pn, and ¿c = L
¤¹c¤=R ¹T , this relation gives

L¤ =
h·R ¹T
¹c¤a2

R
(i)
p (−¤)
−¤

i 1
¹p2n

(6.31)

The group in brackets is almost independent of pressure, so equation (6.31) gives the result that on the
stability boundary, L¤ » ¹p¡2n. This result has been veri¯ed by experimental results such as those given in
Figure 6.2 and 6.4.

12In the past 10{15 years, e®orts have been reported to formulate more realistic forms. The broad characteristics and roles
of the real and imaginary parts of the response function remain. That's a useful mnemonic aid. See, however, Section 6.9.3.
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For ®6= 0, (6.26) again gives (6.31), but with − > −¤; dividing the two results one ¯nds
(L¤)®>0
(L¤)®=0

=

"
R
(i)
b (−)

R
(i)
b (−

¤)

#³−¤
−

´
(6.32)

The right-hand side is less than unity, so the unstable region in the plot L¤ versus ¹p lies below the stability
boundary as shown in Figure 6.2.

Equations (6.25) and (6.26) for steady sinusoidal motions follow from the simple model of the combustion
dynamics used as the basis of equation (6.17) for general (but linear) time-dependent behavior. Experimental
results ¯rst con¯rmed that the picture was correct. For practical applications, and especially as part of the
e®ort to determine the transient behavior of burning propellants at higher frequencies, there was much
interest in obtaining ¯rm results for the response function over broad frequency ranges. A reasonable
beginning is to determine the extent to which L¤ instability may be used to distinguished quantitative
di®erences among propellants.

To do so requires correlating data with the complex equation (6.24) which produces the two real equa-
tions (6.25) and (6.26). The two equations allow determination of two parameters. It is a lucky result that
Denison and Baum's results (2.66) contains only two parameters, A and B. Then the question is|can A
and B be determined from experiments, uniquely for each propellant? Put another way, will the parameters
A and B de¯ne the dynamical behavior of solid propellants? To answer the question, we must determine
how well this theory explains observed behavior.

It is easy to solve (6.25) and (6.26) for A and B to ¯nd

A = −
¯1h2 + ¯2h1
®1¯2 ¡ ®2¯1 (6.33)

B = ¡®1h2 + ®1h1
¯1h2 + ¯2h1

(6.34)

where h1 = 1 + ®¿c, h2 = !¿c and

®1 = h2(1¡ ¸r) + h1¸i
®2 = h1(1¡ ¸r)¡ h2¸i
¯1 = (h2 ¡ n)¸r ¡ h1¸i
¯2 = (h2 ¡ n)¸i + h1¸r

(6.35)a,b,c,d

function ¸ of dimensionless frequency was de¯ned by equation (2.26)a,b;

¸r = 1
2

©
1 + 1p

2

£
(1 + 16−2)1=2 + 1

¤1=2ª
¸i = 1

2
p
2

£
(1 + 16−2)1=2 ¡ 1¤ (6.36)a,b

Equations (6.25) and (6.26) with Denison and Baum's result for Rb, de¯ne the two families of curves
drawn in Figure 6.7 for ® = 0, the only condition for which data are available. Acceptable results must
have A > 0 (by de¯nition of A) and must also lie to the left of the line for intrinsic stability.13 Evidently
Denison and Baum's result may represent the dynamics of A-35 (A=14, B=0.8) but not those of A-13.
Possible reasons for the di®erence have not yet been explained. The two propellants had the same oxidizer
particle size distribution and di®ered by only 1% in the amounts by mass. A-13 had 24% by mass of PBAN
binder; A-35 contained 25% of an estane type of polyurethane binder. One might guess that the di®erence
in dynamical behavior suggested by Figure 6.8 is related to the di®erent binders, but details are lacking.

13The term \intrinsic stability" refers to unlimited growth of a disturbance in the burning rate which is dependent only
on the dynamics of the propellant and which occurs without an external disturbance.
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Figure 6.8. The L¤-chart for determining the parameters A and B. Data for the propel-
lants A-13 and A-35 lie in the indicated regions. (Beckstead and Culick 1971).

6.3. A Formal Solution to the Problem of Linear Stability

By `solution' we mean here formulas for calculating the amplitudes ´n(t) of modes retained in the
expansion for the pressure ¯eld, p0(r; t) = ¹p§´n(t)Ãn(r). The amplitudes satisfy the oscillator wave equations
(4.36) with N replaced by n:

d2´n
dt2

+ !2n´n = Fn + F
c
n (n = 1; 2; : : : ) (6.37)

where F cn stands for the generalized `force' associated with the exercise of control; and Fn is the spatial
average of that part (sometimes called the \projection" on the basis function Ãn) of the internal processes
a®ecting the motion of the nth oscillator, given by (4.30):14

Fn = ¡ ¹a2

¹pE2n

½Z
hÃndV +

ZZ
° fÃndS

¾
(n = 1; 2; : : : ) (6.38)

and

E2n =

Z
Ã2ndV (6.39)

Here we will suppress F cn because we are concerned only with the internal behavior of the system.
15 In

general, the Fn contain contributions associated with the motions of oscillators other than the n
th|i.e., the

modes are coupled. For analysis of linear stability we are justi¯ed in ignoring that coupling, for reasons
given by Culick (1997). Each Fn is a linear function of the amplitude and velocity of the oscillator, having

14In this chapter and subsequently we will often indicate integration over volume by single integral signs, as here, to avoid
unnecessary use of

RRR
.

15The functions FFF and P implicitly contain all e®ects of control; the generality of subsequent calculations is therefore not
reduced by removing F cn.
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the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(n = 1; 2; : : : ) (6.40)

where the F ´n and F
_́
n are constants, depending only on the mode.

With these assumptions, the oscillator equations (6.37) are the uncoupled set

d2´n
dt2

¡ F _́
n

d´n
dt

+
¡
!2n ¡ F ´n

¢
´n = 0 (n = 1; 2; : : : ) (6.41)

Because the equations are uncoupled, the normal modes Ãn for the corresponding classical acoustic problem
are also the normal modes for the linear problem of combustor dynamics. The general problem of determining
linear stability has therefore come down to the problem of determining the stability of the normal modes.
In the usual fashion we assume sinusoidal time dependence with complex frequency − (− ´ ¹ak below):

´n(t) = ^́ne
¡i−t (n = 1; 2; : : : ) (6.42)

Equation (6.41) gives the quadratic equation for −n:

−2 + iF _́
n−¡

¡
!2n ¡ F ´n

¢
= 0 (6.43)

having solution

− = ¡i1
2
F _́
n + !n

s
1¡ 1

!2n

·
F ´n +

1

4

³
F _́
n

´2¸
(6.44)

where we take the (+) sign on the radical to give a positive real frequency. Hence the amplitudes are

´n(t) = e
1
2F

_́
n te¡i!n

p
1¡³2t (6.45)

with the de¯nition

³n =
1

!n

r
F ´n +

1

4

³
F _́
n

´2
(6.46)

The nth mode is stable of

F _́
n < 0 (6.47)

That is, the coe±cient of _́n in the expression for Fn must be negative for the n
th mode to be stable. That

formal condition means that the nth mode has positive damping.

According to the methods of Fourier analysis, an arbitrary disturbance at some initial time (say t = 0)
in the chamber can be synthesized of the normal modes. The time-evolution of the disturbance is therefore
determined by the ´n(t). In particular, an arbitrary disturbance in a combustor is stable if (and only if) all
of the normal modes are stable and we arrive at the general result for the linear stability of a combustor:

(i) Write the linearized function for the force acting on the nth oscillator (spatially averaged acoustic
mode) in the form

Fn = F
´
n´n + F

_́
n

d´n
dt

(ii) Then any initial disturbance in a combustor is stable if and only if all the F _́
n are negative:

Linear Stability () F _́
n < 0 (all n)
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The preceding calculation, and its conclusion, illustrate further a point ¯rst made in Chapter 3: We have
found a means of computing the linear stability of a combustor without knowing the actual linear motions
themselves. The complex frequency (6.44) is in fact the frequency for the actual linear modes including
the in°uences of all the processes accounted for. But calculation of the F ´n and F _́

n with the formula
(6.38) requires knowledge only of the unperturbed normal modes|their frequencies !n and shapes Ãn(r).
The formal statement of this property is that the eigenvalues (−n) to any order in the relevant expansion
parameter (here ¹Mr := ¹ de¯ned in Chapter 3) can be computed knowing the eigenfunctions (Ãn) only to
one less order. The eigenvalues −n are here given to ¯rst order in the Mach number of the average °ow
but only the unperturbed classical eigenfunctions Ãn are required. This is the basic characteristic of the
expansion procedures with spatial averaging that makes the method devised here so useful in practice, as we
have emphasized in Chapter 4; examples of this important result are widespread in the ¯eld of combustion
instabilities generally, but may be found especially in the literature for solid rockets.

6.4. An Alternative Calculation of Linear Stability

An equivalent calculation of the result for linear stability makes direct use of the formula for the wavenum-
ber. Write

´n = ^́ne
¡i¹akt ; Fn = F̂ne

¡i¹akt

and substitute in (6.37) with F cn ignored to ¯nd (¹ak)
2 = (¹akn)

2 ¡ F̂n=^́n, or
(¹ak)2 = (¹akn)

2 ¡ 1

^́n

³
F̂ (r)n + iF̂ (i)n

´
(6.48)

where ( )(r) and ( )(i) identify real and imaginary parts. With16 ¹ak = ! + i®, this formula is

!2 + i(2®!)¡ ®2 = !2n ¡
1

^́n

³
F̂ (r)n + iF̂ (i)n

´
Because ® and F̂n are ¯rst order in the expansion parameter and terms of higher order must be dropped

17,
we ignore ®2 with respect to !2. Then the real and imaginary parts of the last equation give

!2 = !2n ¡
1

^́n
F̂ (r)n

® = ¡ 1

2!n
F̂ (i)n

(6.49)a,b

where ! has been set equal to !n in the right-hand sides to ensure that higher order terms are not retained.
Now take the square root of the ¯rst equation and again drop higher order terms to ¯nd

! = !n ¡ 1

2!n

F̂
(r)
n

^́n

® = ¡ 1

2!n

F̂
(i)
n

^́n

(6.50)a,b

The system is unstable if F̂
(i)
n is negative, so ® is positive. This condition is essentially a generalized form

of Rayleigh's Criterion discussed further in Section 6.6.

After higher order terms are dropped from (6.44), the real and imaginary parts of − ´ ¹ak = ! + i® are
! = !n ¡ 1

2!n
F ´n

® = ¡1
2
F _́
n

(6.51)a,b

16Thus ® > 0 for instability: e¡i¹akt ´ e¡i(!+i®)t = e¡i!te®t which grows without limit in time when ® > 0.
17Recall remarks in Chapters 3 and 4.
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Comparison of (6.50)a,b and (6.51)a,b gives the connections between the two representations of the forcing
function:

F ´n =
F̂
(r)
n

^́n

F _́
n =

1

!n

F̂
(i)
n

^́n

(6.52)a,b

Generally Fn will contain several processes, each of which will depend linearly on ´n and
d´n
dt , and appears

additively in Fn. Hence, formulas corresponding to (6.52)a,b apply to each of the individual processes. They
are often useful, if only for checking correctness, in detailed calculations.

6.5. Linear Stability with a Heat Source and Motion of the Boundary

As a ¯rst approximation to problems of combustion instabilities it is useful to ignore all processes
involving interactions between the unsteady and steady ¯elds, and focus attention on the two generic causes
of instabilities: time-dependent energy addition and motions of the boundary. With suitable interpretation
the second may represent the in°uence of unsteady combustion of a solid propellant. Then in dimensional
variables the linearized pressure and momentum equations (3.46)d and (3.46)b, and the boundary condition
(3.57)b on the pressure °uctuations are

@p0

@t
+ °¹pr ¢ u0 = R

Cv
_Q0 (6.53)

¹½
@u0

@t
+rp0 = 0 (6.54)

n̂ ¢ rp0 = ¡¹½@u
0

@t
¢ n̂ (6.55)

Now form the wave equation as in Section 3.4, so the problem is governed by the two equations

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(6.56)a,b

where

h = ¡ 1

¹a2
R

Cv

@ _Q0

@t

f = ¹½
@u0

@t
¢ n̂

(6.57)a,b

The expansion procedure and application of spatial averaging leads to the explicit oscillator equations
(4.36):

d2´n
dt2

+ !2n´n = ¡
¹a2

¹pE2n

(Z "
¡ 1

¹a2
R

Cv

@ _Q0

@t

#
ÃndV +

ZZ
°
·
¹½
@u0

@t
¢ n̂
¸
ÃndS

)
(6.58)

As a simple example, consider the one-dimensional problem of waves excited in a tube ¯tted with a
piston, Figure 6.9, and with distributed heat addition provided, say, by an electrically heated coil. Only
longitudinal modes are considered, and

Ãn = cos(knx) ; kn = n
¼

L
; E2n =

1

2
ScL (6.59)
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Figure 6.9. A tube with distributed heat addition and an oscillating piston to drive waves.

where Sc = ¼R
2
c is the cross-section area of the tube. We ignore any average motion in the tube, and suppose

that the average thermodynamic properties are maintained constant and uniform by suitable steady heat
losses through the walls of the tube. The heat addition and motion of the piston are sinusoidal, having
phases ÁQ and Áu with respect to pressure oscillations:

_Q0 =
¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt+ÁQ)

u0p ¢ n̂ = jûpj e¡i(¹akt+Áu)
(6.60)a,b

Hence for use in h and f :

@ _Q0

@t
= ¡i¹ak

¯̄̄
_̂Q(x)

¯̄̄
e¡i(¹akt+ÁQ)

@

@t

¡
u0p ¢ n̂

¢
= ¡i¹ak jûpj e¡i(¹akt+Áu)

(6.61)a,b

With ´n = ^́ne
¡i¹akt, substitution in the oscillator equations (6.58) leads to£¡(¹ak)2 + !2n¤ ^́n = ¡ ¹a2

¹pE2n

½
¡ 1

¹a2
R

Cv
(¡i¹ak)

Z
cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
e¡iÁQdV

¡i¹½¹ak
ZZ
° cos(knx)jûpje¡iÁudS

¾
After some rearrangement, and setting ¹ak = ! + i®, we ¯nd

(! + i®)2 = !2n + i(! + i®)
¹a2

¹p( 12ScL)

8<: 1

¹a2
R

Cv
Sc

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

e¡iÁQdx

+ ¹½Sc
jûpj
^́n
e¡iÁu

9=;
Because j _̂Qj and jûpj are small perturbations we can write this equation to ¯rst order in small quantities:

!2 + i(2®!) = !2n + i!n
2

¹pL

8<: R

Cv

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

e¡iÁQdx+ ¹½¹a2
jûpj
^́n
e¡iÁudx

9=;
Take the real and imaginary parts to ¯nd

!2 = !2n +
2!n
¹pL

8<: R

Cv

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

sinÁQdx+ ¹½¹a
2 jûpj
^́n

sinÁu

9=;
® =

1

¹pL

8<: R

Cv

LZ
0

cos(knx)

¯̄̄
_̂Q(x)

¯̄̄
^́n

cosÁQdx+ ¹½¹a
2 jûpj
^́n

cosÁu

9=;
(6.62)a,b
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Internal feedback, and hence a condition for instability, exists if either or both of j _̂Qj and jûpj depend
on the °uctuating pressure (or velocity). For example, set

j _̂Qj = q0 ^́nÃn = q0 ^́n cos knx
jûpj = u0 ^́n

(6.63)a,b

and (6.62)a becomes
!2 = !2n + 2!n (Aq0 sinÁq +Bu0 sinÁu)

where

A =
1

2¹p

R

Cv
; B =

°

L
(6.64)

To ¯rst order in small quantities we ¯nd the results for the frequency and decay or growth constant:

! = !n +Aq0 sinÁQ +Bu0 sinÁu

® = Aq0 cosÁQ +Bu0 cosÁu
(6.65)a,b

Remarks:

(i) The nth mode is unstable if Aq0 cosÁQ +Bu0 cosÁu > 0.

(ii) If 0 · Áu · ¼
2 then a necessary condition for instability is 0 · ÁQ · ¼

2 .

(iii) Instability of the nth mode is encouraged if j _̂Q(x)j cos knx is larger, i.e., if the heat addition is greater
where the mode shape of the pressure takes its largest values, an example of Rayleigh's Criterion.

It is important also to notice that due to the spatial averaging, one cannot distinguish among the ultimate
e®ects of volumetric and surface processes. There is an equivalence of the in°uences of the various processes,
their importance in respect to position within the chamber being dominated by their location relative to the
mode shapes. That characteristic has far-reaching consequences in applications to combustion chambers.

6.6. Rayleigh's Criterion and Linear Stability

As part of his research on the excitation of acoustic waves by heat addition18 in chambers, Lord Rayleigh
(1878, 1945) formulated the following explanation for the production of tones in a Rijke tube:

\If heat be periodically communicated to, and abstracted from, a mass of air
vibrating (for example) in a cylinder bounded by a piston, the e®ect produced
will depend upon the phase of the vibration at which the transfer of heat takes
place. If heat be given to the air at the moment of greatest condensation, or be
taken from it at the moment of greatest rarefaction, the vibration is encouraged.
On the other hand, if heat be given at the moment of greatest rarefaction, or
abstracted at the moment of greatest condensation, the vibration is discouraged."

That paragraph has become probably the most widely cited `explanation' for the presence of combustion
instabilities generally. For easy reference, the explanation has long been referred to as \Rayleigh's Criterion."

It is important to realize that Rayleigh addressed only the conditions under which unsteady heat addition
`encourages' oscillations, i.e., is a destabilizing in°uence. Other processes, stabilizing or destabilizing, are

18The literature in the 19th century included many works on `singing °ames' which also formed part of the background
for Rayleigh's Criterion. It was only in the late 20th century that the close basic connections between the behavior of `singing
°ames' and the Rijke tube were understood.
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neither excluded nor included, and there is certainly no implication that satisfaction of the criterion is either
a necessary or a su±cient condition for instability to exist. Several published examples exist of quantitative
realizations of the criterion (Putnam and Dennis 1953, Putnam 1971; Chu 1956a; Chu 1956b; Zinn 1986;
Culick 1987, 1992). The purpose of this section is to establish a generalized form of Rayleigh's Criterion by
using the analysis based on spatial averaging, and to show the equivalence of Rayleigh's Criterion and the
principle of linear stability.

The main idea is that a positive change of the time-averaged energy of a modal oscillator in a cycle
of oscillation is exactly equivalent to the principle of linear instability, that the growth constant should be
positive for a motion to be unstable. To establish the connection we use the oscillator equations,

d2´n
dt2

+ !2n´n = Fn (6.66)

The instantaneous energy19 of the nth oscillator is

"n =
1

2

¡
_́2n + !

2
n´

2
n

¢
(6.67)

and the change of energy in one cycle is the integral over one period of the rate at which work is done by
the force Fn:

¢"n =

t+¿nZ
t

Fn(t
0) _́n(t0)dt0 (6.68)

Under the integral, Fn and _́n must be real quantities; here we use the real parts of both functions,

´n = ^́ne
¡i¹akt = j^́nje¡i¹akt

Fn = F̂ne
¡i¹akt = jF̂nje¡i(¹akt+ÁF ) = jF̂nj (cosÁF + i sinÁF ) e¡i¹akt

(6.69)a,b

We measure all phases with respect to the pressure, so ^́n is real and, being the maximum amplitude, is
positive. Substitution in the oscillator equations gives

k2 =
1

¹a2

Ã
!2n ¡

F̂n
^́n

!
of which the real and imaginary parts are to ¯rst order in small quantities:

!2 = !2n ¡Re
Ã
F̂n
^́n

!
= !2n ¡

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ cosÁF

®n =
¡1
2!n

Im

Ã
F̂n
^́n

!
=
¡1
2!n

¯̄̄̄
¯ F̂n^́n

¯̄̄̄
¯ sinÁF

(6.70)a,b

The oscillator's motion is stable if ®n is negative (see Footnote 9), i.e. if the imaginary part of F̂n is positive.

Also for use in (6.68) we have

_́n = ¡i¹akj^́nje¡i¹akt = ¹akj^́nje¡i(¹akt+¼
2 ) ¼ !nj^́nje¡i(!nt+¼

2 )

so

Re( _́n) = !nj^́nj cos
³
!nt+

¼

2

´
= ¡!nj^́nj sin!nt (6.71)

The real part of Fn is

Re(Fn) = jF̂nj cos (!nt+ ÁF ) = jF̂nj fcos!nt cosÁF ¡ sin!nt sinÁF g (6.72)

19"n is not the energy of the nth acoustic mode, which is given by the integral of (5.72) over the volume of the chamber.
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Figure 6.10. The Caltech dump combustor.

Hence the right-hand side of (6.68) is

¢"n =

t+¿nZ
t

Re(Fn)Re(´n)dt
0 = !jF̂nj

t+¿nZ
t

½
sin2 !nt

0 sinÁF ¡ 1
2
sin 2!nt

0 cosÁF

¾
dt0

= !jF̂njj^́nj¿n
2
sinÁF

Substitution of (6.33)b leads to the formula

¢"n = 2¼®n!nj^́nj2 (6.73)

which establishes the desired connection between Rayleigh's Criterion and linear stability.

Remarks:

(i) Positive ®n (the system is linearly unstable) implies that the average energy of the oscillator increases,
and vice-versa.

(ii) Rayleigh's original criterion is equivalent to the principle of linear instability if only heat exchange
is accounted for and is neither a necessary nor a su±cient condition for existence of a combustion
instability.

(iii) The extended form (6.73) of Rayleigh's Criterion is exactly equivalent to the principle of linear
instability, all linear processes being accounted for.

Putnam (1971) has made the most extensive use of Rayleigh's Criterion in practical situations. His book
and papers give many examples of applying the Criterion as an aid to making changes of design to avoid
oscillations generated by heat release, particularly in power generation and heating systems.

In the past ¯fteen years many groups have been making direct observations on laboratory systems to
check the validity of the Criterion's implications. The key step is based on the assumption that radiation by
certain intermediate species in hydrocarbon reactions (CH and OH are the most common identi¯ers) can be
interpreted as a measure of the rate of chemical reactions taking place and hence of the rate at which energy
is released. Simultaneous measurements are made of the spatial distribution of radiation in a system, and of
the pressure oscillations. The results then allow at least a qualitative assessment of the extent to which the
oscillations are being driven by the energy released in the combustion ¯eld, or whether other mechanisms
may be active and important. It is an important method with many useful applications. However, there
are serious matters of interpretation, e.g., due to poorly known rates of collisional de-activation of radiating
species. Measurements of time-dependent energy release is an active research topic.
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Figure 6.11. Experimental con¯rmation of Rayleigh's Criterion. Data obtained from
chemiluminescence of OH (Sterling and Zukoski, 1991).

It seems that the ¯rst report of simultaneous measurements of pressure and radiation allowing con¯rma-
tion of Rayleigh's Criterion appeared in a Ph.D. thesis (Sterling, 1987; Sterling and Zukoski, 1991). Figure
6.10 is a sketch of the dump combustor used as the test device, and Figure 6.11 shows the main result. The
integral of ¢E over the volume of the chamber (here the integral over the length is equivalent) is a measure
of the severity of oscillations. For the case shown in the lower portion of the ¯gure, the integral of ¢E over
the length is clearly positive, consistent with the observed presence of oscillations.

6.7. Some Results for Linear Stability in Three Dimensions

The term `stability of motions' has several meanings for °ows in combustion chambers, including:

(i) the stability of laminar steady °ow when viscous and inertial properties of the medium dominate,
leading to formation of large vortices or to turbulence, a ¯eld of distributed vorticity if the steady
°ow is unstable;

(ii) the stability of shear layers, commonly producing large scale vortex motions when a shear layer is
unstable;

(iii) the stability of laminar °ame fronts, responsible for one source of turbulent combustion when fronts
are unstable;

(iv) the stability of small disturbances which, when the compressibility and inertia of the medium dominate
the motions, can develop into acoustic waves.
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In terms of the modes of motion mentioned in Section 3.1 and discussed further in Section 3.3, the phe-
nomena (i){(iii) are classi¯ed as waves of vorticity and the fourth comprises acoustic waves which, depending
on the physical situation, may possess or generate vorticity as well. The perturbations must in some sense
be small, as we have stressed with examples we examined in Chapter 2 and already in the present chapter.
Even these `small' perturbations produce realistic and useful results. According to remarks we made in
connection with the derivation of the formalism in Chapter 3, the results derived there are general; further
progress depends on modelling and more explicit calculations.

We discuss in the following section results for motions that are `one-dimensional', an approximation
that holds a special position in °uid mechanics generally for two reasons: It is often a surprisingly accurate
approximation; and solution to a one-dimensional problem is enormously simpler than its three{dimensional
counterpart. This has been a particularly productive approach to analyzing combustion instabilities. While
it might seem logical to cover the simpler analysis ¯rst, we believe that some of the special aspects of the
subject are more readily understood by working out the three-dimensional results ¯rst. As `special aspects'
we have in mind especially the contributions of `°ow-turning' and `pumping' associated with °ow at or
through lateral surfaces of a combustion chamber. Those phenomena will be treated in a more rigorous
fashion using the proper three-dimensional formalism in Sections 6.9 and 6.12 which accommodate vorticity,
the true physical origin of both °ow-turning and pumping. In his work, Flandro (1995 and later works) has
been careful to emphasize this connection.

6.7.1. Linear Stability of Three-Dimensional Motions. The formulas (6.14)a,b are general, re-
stricted only by the approximations used in formulating the analytical framework. Hence the problem of
obtaining results speci¯c to any given problem apparently comes down to ¯nding explicit forms for F ´n and
F _́
n , by evaluating the integrals de¯ning Fn, equation (6.38). Section 3.3 and Annex A contain details forming
the functions h and f given to second order, de¯ned by (3.62)a,b. Here we need only the linear parts, i.e.
terms of order " and of order ¹" in the expansions.

While the use of dimensionless variables is virtually a practical necessary for systematic development
of the formal expansions in Chapters 3 and 4, there are certain advantages here in working with primitive
dimensional variables. According to the results of Section 6.3, we know everything about linear stability
once we know the driving force Fn in the system of oscillator equations. To make the procedure as clear as
possible, we repeat some of the results and display some details where it seems helpful. The nonlinear wave
equation and its boundary condition are (D.3)a,b:

r2p0 ¡ 1

¹a2
@2p0

@t2
= h

n̂ ¢ rp0 = ¡f
(6.74)a,b

The linear parts of (D.4)a,b are

h = ¡¹½r ¢ f[u]g1 + 1

¹a2
@

@t
f[p]g1 +r ¢ ¹F0¹F0¹F0 ¡ 1

¹a2
@P0

@t

f = ¹½
@u0

@t
¢ n̂+ ¹½n̂ ¢ f[u]g1 ¡F0F0F0 ¢ n̂

(6.75)a,b

where

f[u]g1 = ¹½ (¹u ¢ ru0 + u0 ¢ r¹u)
f[p]g1 = ¹u ¢ rp0 + °p0r ¢ ¹u

(6.76)a,b

Expansion of the pressure °uctuation in normal modes is the representation we use for the zeroth order
approximation to the pressure ¯eld,

p0(r; t) = ¹p
MX
m=0

´m(t)Ãm(r) (6.77)
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u0(r; t) =
MX
m=1

_́m(t)

°k2m
rÃm(r) (6.78)

After spatial averaging has been carried out, the system of oscillator equations is (4.36),

d2´n
dt2

+ !2n´n = Fn (6.79)

with the de¯nition (4.32)

Fn = ¡ ¹a2

¹pE2n

½Z
hÃndV +

ZZ
° fÃndS

¾
(6.80)

We write the linear contributions to Fn

Fn = ¡ ¹a2

¹pE2n

½
¹½I1 +

1

¹a2
I2 +

ZZ
° ¹½

@u0

@t
¢ n̂ÃndS ¡

Z
F0F0F0 ¢ rÃndV ¡ 1

¹a2

Z
@P0

@t
ÃndV

¾
(6.81)

and from Annex D, equations (D.10)a,b:

I1 =

Z
(¹u ¢ ru0 + u0 ¢ r¹u) ¢ rÃndV

I2 =
@

@t

Z
(°p0r ¢ ¹u+ ¹u ¢ rp0)ÃndV

(6.82)a,b

With use of two vector identities, I1 can be re-written

I1 =

Z
r(¹u ¢ u0) ¢ rÃndV ¡

Z
(u0 £r£ ¹u) ¢ rÃndV ¡

Z
(¹u£r£ u0) ¢ rÃndV

The ¯rst integral can be put in the more convenient formZ
r(¹u ¢ u0) ¢ rÃndV =

ZZ
° (¹u ¢ u0)rÃn ¢ n̂dS ¡

Z
(¹u ¢ u0)r2ÃndV = k2n

Z
(¹u ¢ u0)ÃndV

because on the boundary surface rÃn is everywhere parallel to the surface, so rÃn ¢ n̂ = 0. Hence I1 is
more simply

I1 = k
2
n

Z
(¹u ¢ u0)ÃndV ¡

Z
(u0 £r£ ¹u) ¢ rÃndV ¡

Z
(¹u£r£ u0) ¢ rÃndV (6.83)

and the `force' acting on the nth oscillator is

Fn = ¡ ¹a2

¹pE2n

½
¹½k2n

Z
(¹u ¢ u0)ÃndV ¡ ¹½

Z
(u0 £r£ ¹u+ ¹u£r£ u0) ¢ rÃndV

+
1

¹a2
@

@t

Z
(°p0r ¢ ¹u+ ¹u ¢ rp0)ÃndV + ¹½

ZZ
° @u0

@t
¢ n̂ÃndS

¡
Z
F0F0F0 ¢ rÃndV ¡ 1

¹a2

Z
@P0

@t
ÃndV

¾ (6.84)

This form can be simpli¯ed further since within the linear approximation, we take u0 and p0 equal to
their unperturbed acoustic values in the volume integrals in Fn

20; for harmonic motions the uth terms of
(6.77) and (6.78) are

p0 = p̂e¡i¹aknt = ¹p^́nÃne
¡i¹aknt

u0 = ûe¡i¹aknt = ¡i ¹a
°kn

^́nrÃne¡i¹aknt
(6.85)a,b

20In the surface integral, @u0=@t ¢ n̂ is a non-zero perturbation because u0 is not given by the classical acoustic value at
the surface. For example, this term could represent the in°uence of motions of a loudspeaker set in a wall. Thus we correctly
set u0 = ûe¡i¹aknt and û is left to be speci¯ed according to the desired boundary condition.
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Then F0F0F0 = F̂̂F̂Fe¡i¹akt, P0 = P̂e¡i¹akt, Fn = F̂ne¡i¹akt and 6.84 becomes

F̂n = ^́n
¹a2

¹pE2n
(¡i¹½¹akn)

½
1

°

Z
(¹u ¢ rÃn)ÃndV ¡ 1

°k2n

Z
(rÃn £r£ ¹u+ ¹u£r£rÃn) ¢ rÃndV

+
°¹p

¹½¹a2

Z
(Ãnr ¢ ¹u+ 1

°
¹u ¢ rÃn)ÃndV +

ZZ
° û

^́n
¢ n̂ÃndS

¾
+
¹a2

¹pE2n

½Z
F̂̂F̂F ¢ rÃndV ¡ ikn

¹a

Z
P̂ÃndV

¾
The integrand of the second integral vanishes because the ¯rst term in the parentheses is perpendicular to
rÃn and in the second, r £ rÃn = 0. From the de¯nition of the speed of sound, °¹p=¹½¹a2 = 1 and the
amplitude of the force is

F̂n = ^́n
¹a2

¹pE2n
(i¹½¹akn)

½
2

°

Z
(¹u ¢ rÃn)ÃndV +

Z
Ã2nr ¢ ¹udV +

ZZ
° û

^́n
¢ n̂ÃndS

¾
+^́n

¹a2

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn ¡ ikn

¹a

P̂

^́n
Ãn

#
dV

(6.86)

Use the identity

(¹u ¢ rÃn)Ãn = 1

2

£r ¢ (¹uÃ2n)¡ Ã2nr ¢ ¹u¤
and combine terms to write F̂n in the form

F̂n = ^́n
¹a2

¹pE2n
(i¹½¹akn)

½ZZ
°
·
û

^́n
¢ n̂+ 1

°
¹u ¢ n̂Ãn

¸
ÃndS +

° ¡ 1
°

Z
Ã2nr ¢ ¹udV

¾
+^́n

¹a2

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn ¡ ikn

¹a

P̂

^́n
Ãn

#
dV

(6.87)

Four remarks are important:

(i) The mean °ow ¯eld may be rotational (r£ ¹u6= 0) and time-averaged sources of mass are accommo-
dated (r ¢ ¹u6= 0).

(ii) With the iterative procedure discussed in Chapters 3 and 4, the substitutions of classical acoustic
mode shapes are required in the right-hand side, except in the surface integral where the correct
boundary condition on the velocity must be used:

p0 = p0a = ¹p´n(t)Ãn(r) ; u0 = u0a =
1

°k2n

d´n
dt
rÃn (6.88)

(iii) The calculations in Section 4.6 have shown that to ¯rst order in the average Mach number, the
unsteady ¯eld may also be rotational. However, the greatest in°uences of rotationality have not been
included here. Those are represented by two terms associated with behavior at a burning surface,
discussed in Sections 6.9 and 6.12. There are also some important e®ects associated with vorticity,
contained in the terms I−− and Ia−. They have been dropped from (6.87), but they will be discussed
later in Sections 6.12 and 7.4.

(iv) The processes of `pumping' and `°ow-turning' are implied by these results, but are obtained only

after considerable further calculations discussed in Sections 6.9 and 6.12. The integrals containing F̂

and P̂ are central in this respect, containing pieces related to production of vorticity. See the last
remark in the introduction to this section. It's true that there is a bit of `after-the-fact' °avor here,
but that is within the spirit of the construction of 6.79 and 6.87. These do not, and are not intended
to, constitute a `theory' based on ¯rst principles. To give F0F0F0 and P0 speci¯c forms for particular
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processes, requires using special results calculated independently of the apparatus constructed here,
namely those found by Flandro (1995)a. The required computations have not been done.

Now we follow the procedure explained in Section 4.1 to ¯nd the formula for the complex wavenumber.
For linear harmonic motions (6.37) and (6.48) give

k2 ¡ k2n = ¡
1

¹a2
F̂n
^́n

(6.89)

Substitution of (6.87) in (6.89) gives

k2 ¡ k2n = ¡i
kn
¹aE2n

½ZZ
°
·
°û

^́n
¢ n̂+ ¹u ¢ n̂Ãn

¸
ÃndS + (° ¡ 1)

Z
Ã2nr ¢ ¹udV

¾
¡ 1

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn ¡ ikn

¹a

P̂

^́n
Ãn

#
dV

(6.90)

This formula is actually quite general due to the functions F̂̂F̂F and P̂, which have not been assigned speci¯c
forms, for reasons examined in Section 6.7; at least two important processes, `°ow-turning' and `pumping'
are not shown explicitly.

Let the right-hand side be denoted by iK so (6.90) is

k2 ¡ k2n = iK = iK(r) +K(i)

Because k = (! + i®)=¹a and kn is real, this equation can be expanded to give³!
¹a

´2
¡
³®
¹a

´2
+ i

³
2
!®

¹a2

´
¡
³!n
¹a

´2
= iK(r) ¡K(i) (6.91)

All parts of the right-hand side of (6.90) written in dimensionless form are of ¯rst order in the Mach number
of the mean °ow. Hence the last equation shows that ®2 is of second order and can be ignored. Similarly,
the real part is of the same order, so ! di®ers from !n by terms of ¯rst order and³!

¹a

´2
¡
³!n
¹a

´2
=
³!
¹a
¡ !n
¹a

´³!
¹a
+
!n
¹a

´
¼
³!
¹a
¡ !n
¹a

´³
2
!n
¹a

´
+ 0( ¹M2

r ) (6.92)

Thus, for use in (6.90), k2 ¡ k2n ¼ (! ¡ !n)(2!n=¹a2) + i(2!n®=¹a2) so ! ¡ !n = ¹a2

2!n
K(r) and ® = ¹a2

2!n
K(i).

With these approximations, and K(r), K(i) replaced by their explicit forms, (6.91) leads to the formulas for
! ¡ !n and ®:

! ¡ !n = 1

2

°

E2n

ZZ
° û(i)

^́n
¢ n̂ÃndS ¡ ¹a2

2!n¹pE2n

Z "
F̂̂F̂F(r)

^́n
¢ rÃn + kn

¹a

P̂(i)

^́n
Ãn

#
dV (6.93)

® = ¡ 1

2E2n

½ZZ
°
·
°
û(r)

^́n
¢ n̂Ãn + (¹u ¢ n̂)Ã2n

¸
dS + (° ¡ 1)

Z
Ã2nr ¢ ¹udV

¾
+

¡ ¹a2

2!n¹pE2n

Z "
F̂̂F̂F(i)

^́n
¢ rÃn + kn

¹a

P̂(r)

^́n
Ãn

#
dV

(6.94)

With slight rearrangement, the formulas (6.90), (6.93) and (6.94) have been given as (86){(88) by Culick
and Yang (1992)21

21Here, with p0 = p̂e¡i¹akt and ¹ak = ! + i®, e¡i¹akt = e®te¡i!t, stability requires ® < 0, i.e. ® must be negative.
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Both !¡!n and ® are sums of contributions from the various processes accounted for. Most importantly,
the formula for the growth constant has the form

® = (®)combustion + (®)mean°ow=acoustics + (®)nozzle

+ (®)particles + (®)injectionsystem

+ (®)inertsurfaces + ¢ ¢ ¢
(6.95)

By suitable interpretation of the ¯rst two integrals in (6.93), the ¯rst three pieces of ® are given explicitly;

the last three are generated by the terms involving F̂
(i)
and P̂(r) and hence cannot be written explicitly at

this point.

For most combustion systems, the six contributions shown explictly seem to cover practically all dy-
namical behavior, with the exception of two surface contributions mentioned in note (iv) above. Those are
fundamentally important in solid rockets; see Section 6.9. Interactions of the oscillations with turbulence
may also be signi¯cant but that subject remains essentially undeveloped; no results have been reported for
the e®ects of turbulence on instabilities in full-scale systems. Descriptions of some major contributions to
(6.95) are given in Section 6.6.

That the growth constant representing the di®erence between gains and losses of acoustic energy has
the form (6.95) for a linear system has long been known (McClure et al. 1960). At least implicitly, (6.95)
has been a part of all considerations of combustion instabilities. However, extensive data giving good
quantitative results for the transient growth of oscillations have been obtained only for solid propellant
rockets and related laboratory devices. Despite the widespread attention to the problem in liquid rockets
(see, for example, Crocco and Cheng 1956, Crocco 1965 and Harrje and Reardon 1972), including theoretical
predictions, and observations of stability boundaries, little experimental data exists for the values of ® itself
under conditions of true linear instability. The same can be said of other liquid and gas-fueled systems:
Emphasis in most treatments has been on the stability boundary where ® = 0.

When ® is negative (i.e.,small disturbances decay) its value may be regarded as a measure of the stability
margin of the system. During development of the liquid rockets for the Apollo vehicle, an experimental
method for assessing the stability margin was worked out, based on measurement of the decay of disturbances
following injection of a small explosive charge (Harrje and Reardon 1972, Chapters 9 and 10). There seem to
be no reports of e®orts to determine the values of the various contributions to the decay constants determined
in those tests. The same may be said of the very extensive experimental work carried out in Russia over
many years (Dranovsky 2006).

There may be other reasons for those conclusions but the main one seems to be due to an intrinsic
di®erence in the nature of the systems. A liquid or gas-fueled system can be tested repeatedly, so as a practical
matter, improvement of the dynamical behavior can be pursued on a trial-and-error basis. Development of
the F-1 engine (Oefelein and Yang 1993) is perhaps the outstanding example. The processes responsible for
the instabilities are so complicated that theory and experiments directed to understanding the mechanisms
in detail would have been expensive, time-consuming and perhaps even impossible to complete successfully
with the tools available forty years ago.

In contrast, no solid rocket can be retested without repeating the expensive process of cleaning and
preparing the motor case and nozzle; manufacturing propellant; loading the motor; and allowing the material
to cure. Moreover, there is likely no control of the ¯ring. Hence, practically from the beginnings of solid
rocketry, attention has been paid to time-dependent behavior during tests. When linear stability theory
became available, it was natural to develop su±ciently good instrumentation and methods of data processing
to obtain accurate values for ® and its constituent parts. In recent years, great e®orts have been expended on
measurement and interpretation of the growth constant for many solid rockets and under many experimental
conditions.
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The growth constant has a useful quantitative interpretation. With the de¯nition

p0(r; t) = p̂(r)e¡i¹akt = p̂e¡i(!+i®)t = p̂e¡i!te®t ;

we ¯nd the ratio of values of two peaks of the oscillation at a ¯xed location, occurring at times t1 and
t2 = t1 +mT = t1 +m2¼=!.

jp02jpeak
jp01jpeak

=

¯̄̄̄
¯e¡i!(t1+m

2¼
! )e®t2

e¡i!t1e®t1

¯̄̄̄
¯ = em2¼®=! (6.96)

because e¡im2¼ = cosm2¼ + i sinm2¼ = §1. Hence the peak value is e times larger when m2¼®=! = 1, or
!

®
= 2¼m or

f

®
= m (6.97)

Hence, f=® is the number of cycles required for the peak value of the pressure oscillation to increase by e (or
decrease by 1=e if ® < 0). This interpretation suggests the potential practical value of measuring transient
growths and decay. Normally, many tens or perhaps hundreds of cycles are required for e-folding of the peak
values. That is the best and most convincing evidence for the essential assumption on which the analysis
is based, that perturbations of the acoustic ¯eld are `small', implying ® and ! ¡ !n, equations (6.93) and
(6.94) are both small compared with !.

6.7.2. The Admittance and Response Functions for a Burning Surface. The term û ¢ n̂ in the
surface integral, equation (6.90), arises from the part ¹½@u=@t ¢ n̂ of f , equation (6.38). Although û ¢ n̂ = 0
is required for the basis functions used here, it is allowed to be non-zero in f to account for motion of the
surface in the actual problem; in other words, it is a perturbation. In general, the boundary surface is
not rigid. At burning surfaces, the unsteady combustion process produces °uctuations of burning rate, and
hence velocity, of the order of the average Mach number. A model of the processes involved and calculation
of the °uctuations have been discussed in Section 2.2. The response function Rp de¯ned for the °uctuation
of mass °ux, by the relation (2.4), is given in its simplest form as equation (2.52).

It is a convention in classical acoustics, that has become standard practice in the subject of this book,
to replace °uctuations of the velocity at the boundary by admittance functions. The idea is that if a small
pressure °uctuation is imposed on a boundary, the surface will move, at a velocity proportional, in ¯rst
approximation, to the pressure °uctuation. In solid rockets, there are chie°y three classes of boundaries:
inert impermeable surfaces; burning surfaces; and areas through which °ow may pass, mainly the exhaust
nozzle. Most other systems contain only the ¯rst and third types.

No exposed surface in a solid rocket chamber is truly inert, but erosion of insulation material is slow
compared with combustion rates. Thus, we may consider the material to be inert as a good ¯rst approxima-
tion. In that case, there is negligible motion of the surface, and the acoustic ¯eld is in°uenced primarily by
viscous e®ects con¯ned to an acoustic boundary layer, treated in the following section.

Burning surfaces and regions of °ow through the boundary may be treated together. From the de¯nition
of mass °ux, mb = ¡½su ¢ n̂, and with the perfect-gas law, we have

¡û ¢ n̂ = m̂b

¹½s
¡ ¹u ¢ n̂¢T̂s¹Ts +

p̂

°¹p
¹u ¢ n̂ (6.98)

where subscript s denotes the value at the surface. The minus sign appears on û ¢ n̂ because n̂ is positive
outward but û andmb are positive inward (i.e., into the chamber). The quantity ¢T̂s represents the di®erence

between the actual temperature change T̂s and the isentropic temperature °uctuation associated with the
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pressure disturbance:

¢T̂s = T̂s ¡ ° ¡ 1
°

p̂

¹p
¹Ts (6.99)

With °¹p = ¹½ ¹a2, and p̂=¹p = ^́nÃn, (6.98) can be solved for the combination appearing in the ¯rst integral of
(6.90):

°

^́n
(û ¢ n̂)Ãn + (¹u ¢ n̂)Ã2n ´ ¡°

Ã
m̂b

¹½s
¡ ¹u ¢ n̂¢T̂s¹Ts

!
Ãn
^́n

(6.100)

Analysis of the unsteady response of a burning surface produces most directly results for °uctuations of
the mass °ux m̂b, whereas measurements provide directly the combination on the left-hand side of (6.100).
Hence, two functions have been introduced in the literature for solid rockets, the response function Rb and
the admittance function Ab, de¯ned by the relations

m̂b

¹mb
= Rb

p̂

°¹p

¡ û ¢ n̂
¹a

= Ab
p̂

°¹p

(6.101)a,b

With these de¯nitions, the combination (6.100) gives

1

¹a

μ
°
û ¢ n̂
^́nÃn

+ ¹u ¢ n̂
¶
´ ¡(Ab + ¹Mb) ´ ¡ ¹Mb

Ã
Rb + °

¢T̂s= ¹Ts
^́nÃn

!
(6.102)

where the subscript b has been introduced to indicate conditions at the burning surface.

Because the processes at burning surfaces are ultimately the source of the energy for instabilities in solid
rockets, the problem of coupling to acoustical motions has received much attention for many years. It is not
possible to compute accurate values of the response function for a given propellant. Experimental methods
carry considerable uncertainties but have advanced to the point of being e®ective for comparing propellants,
and for assessing trends of behavior accompanying compositional changes. (Section 2.2)

Denison and Baum (1961) ¯rst discovered an approximation to the response function now commonly
used for correlating data and in computations of stability of solid rockets, Culick (1968)b reviewed the
analyses of the response function available in the late 60s. As we have shown in Section 2.2, because of
common assumptions of the physical behavior, almost all results have the same form as Denison and Baum's
formula,

Rb =
nAB

¸+ A
¸ ¡ (1 +A) +AB

(6.103)

if combustion processes at the surface are insensitive to pressure.

More recently, there have been continuing attempts to improve the representation (6.103), based on
test results and incorporating ideas relating to the basic behavior of modern propellants. See, for example,
Section 2.2; the ¯nal reports of the MURI programs (Culick 2002; Krier and Hofenrichter 2002); and papers by
the investigators involved. The representation (6.103) remains the basic result used as a ¯rst approximation
in studies of the internal dynamics of solid propellant rockets. Deviations from this form (see Chapter 2)
are extremely important and continue to be a subject of research in this area.

6.7.3. The First Measurements of the Stability Boundary for a Solid Rocket. Probably the
¯rst systematic experimental investigation of the stability boundary for a solid rocket was carried out by
Brownlee as his dissertation (Brownlee 1959). A useful summary of some of the results was published by
Brownlee and Marble (1960). Brownlee's work ¯tted into a larger program on unstable burning in solid
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rockets carried out at the Jet Propulsion Laboratory (JPL) during the 1950s and 1960s. A companion paper
by Landsbaum, Kuby and Spaid (1960) appeared in the same volume with Brownlee and Marble's report.
Further aspects of the tests are discussed there, but the topics are not germane to the present discussion.

The portion of the results relevant here were interpreted by Culick (1966) using a form of the theory
worked out in this book. Figure 6.12 is a sketch of the cylindrical motors used and a typical pressure trace
suggesting how the onset of a linear instability was de¯ned with the data. The boundary was de¯ned to be
reached when the mean pressure rose above its predicted value in steady combustion. Stability boundaries
for the motors tested are shown in Figure 6.13. Data from 250 ¯rings were used.
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Figure 6.12. Geometrical parameters de¯ned by Brownlee and a typical time history of
the mean chamber pressure (Brownlee and Marble 1960).

In all tests the instability was dominated by the ¯rst tangential (lmn) := (010) mode. More recently,
roughly in the last 20{30 years, longitudinal modes have been more commonly unstable. The important
di®erence is that the velocity °uctuation parallel to the axis of the motor is very small when a tangential
mode is excited (zero in the classical limit). However, in both cases the °uctuating motion is largely parallel
to the surface. The scouring e®ect|a kind of unsteady erosive burning|is likely the cause of the large
increase of the mean pressure appearing in Figure 6.12. This is the mechanism commonly referred to as
\velocity coupling." Stability boundaries are shown in Figure 6.13. Two features are especially striking: The
boundaries are nearly straight with positive slope; and the boundaries have slope increasing with the length
of the motor.

The reasoning by Culick (1966) led to the conclusion that the stability boundary was determined by the
balance of energy loss through the nozzle and energy gain from combustion. After the Mach number at the
burning surface has been eliminated in favor of Kn := area of burning surface/area of the nozzle throat, the
power balance leads to

Kn = 0:0935
¡¹ap
°

L

Dp

³
A
(r)
b +m2

1

´
(6.104)

where m1 = 1:84. At the time (1966) this analysis was carried out, the admittance for the propellant was

not known. Therefore the tack was taken to ¯t the data reasonably well by choosing A
(r)
b , especially its

dependence on the chamber diameter Dp, that is, frequency. Figure 6.14 is a plot of the values of A
(r)
b

inferred to provide an exact ¯t for L = 3100, requiring Kn = 2:13LDp. The data are for an early composite
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propellant tested in a T-burner (Angelus 1960). Then the stability boundaries for other values of L are
calculated, with the results shown in Figure 6.13.
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Figure 6.13. Stability boundaries for
the 010 mode: experimental (measured)
(Brownlee and Marble 1960); theoretical
(calculated) (Culick 1966).
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Figure 6.14. Dependence of the ad-
mittance function on frequency in-
ferred from Brownlee's measurements
(Culick 1966).

While these results are useful and seem clearly to contain much truth, they are certainly not free of
questions. An important one in particular is raised by the use of the admittance function as the boundary
condition for the 010 mode. Because this mode has no velocity component in the direction normal to the
burning surface, it is by no means clear that one can even use Ab as it is de¯ned in terms of the normal velocity
component. The same di±culty arises for longitudinal modes with burning surfaces not perpendicular to
the direction of propagation. This matter has been addressed in development of the theory of longitudinal
modes treated within the one-dimensional approximation, discussed in the following section.

A second question concerns the possible in°uences of `°ow-turning' and other rotational contributions, a
matter raised and presently being studied by Flandro and Perry (2006). On the other hand, it is not obvious
that the situation here is analogous to that of a longitudinal wave. The di®erence is that for a longitudinal
wave, the unsteady velocity is coplanar (locally) with the mean velocity, whereas for a transverse mode the
unsteady and steady velocities are perpendicular. The analysis necessary to settle this question has not been
worked out. Flow-turning is discussed in Section 6.12.

6.8. Stability of Oscillations in a Bulk Mode

Most oscillations occurring in combustion chambers are related to wave modes of motion. They can
often be interpreted and analyzed as perturbed forms of individual or mixed classical acoustic modes. For
many years, oscillations having very low frequencies were regarded as somehow di®erent, but in the context
of acoustics generally, that view misses the mark. In fact the oscillations at frequencies below that of the
lowest acoustic mode are perturbed forms of the classical acoustic mode having frequency equal to zero, as
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explained in Section 6.3. The purpose of this discussion is to show how the result for the bulk mode of
a chamber|the L¤-mode in a solid propellant rocket|is extracted quite easily from the results discussed
already for wave modes. That this result should be true is fairly clear from the calculations in Section 6.3
because the distribution of burning surface was not required. This point was ¯rst made by Culick (1968) in
a note generalizing Oberg's 1968 computation.

For the mode in a rocket chamber corresponding to the N th classical acoustic mode, the wavenumber
and mode shape for sinusoidal oscillations are given by equations (4.19) and (4.20), with · = 1,

k2 = k2N +
1

E2N

8<:
ZZZ
V

ÃN (r0)ĥ(r0)dV0 +

ZZ
S

°ÃN (r0s)f̂(r0s)dS0

9=; (6.105)

p̂(r) = ÃN (r) +

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

8<:
ZZZ
V

Ãn(r0)ĥ(r0)dV0 +

ZZ
S

°Ãn(r0s)f̂(r0s)dS0

9=; (6.106)

The mode ÃN has the classical shape for the bulk mode, namely ÃN = 1, to which the corresponding value
of kN is kN = 0. Thus E

2
N =

RRR
Ã2NdV = V and the two equations are

k2 =

ZZZ
ĥ(r0)dV0 +

ZZ
° f̂(r0s)dS0 (6.107)

p̂(r) = 1 +

1X0

n=0

Ãn(r)

E2n(k
2 ¡ k2n)

ZZZ
Ãn(r0)ĥ(r0)dV0 +

ZZ
°Ãn(r0s)f̂(r0s)dS0 (6.108)

Equation (6.108) shows that the pressure ¯eld di®ers from a constant value by an amount of order mean

°ow Mach number. With the formulas (6.75)a,b written for ĥ and f̂ , there is a common factor k in all terms
of (6.107), which can be written

k =
i

V

ZZ
° ¹m0 ¢ n̂ dS0 +

ZZ
°A dS0 (6.109)

The ¯rst term represents the sum of acoustic energy convection through the boundary, and a contribution of
work done on the oscillations due to interaction with the mean °ow. Fluctuations at a non-rigid boundary,
for which A6= 0, cause work done on or by the surface.

With the de¯nitions of Ab for a burning surface and An for a nozzle, the real and imaginary parts of
(6.109) are

!

¹a
=
1

V

h
SbA

(i)
b ¡ SnA(i)n

i
®

¹a
=
1

V

h
Sb(A

(r)
b + ¹Mb)¡ Sn(Mn +A

(r)
n )
i (6.110)a,b

These equations assume the forms given in Section 6.3 after introducing the de¯nitions of the response
function, Rb = (m

0= ¹m)=(p0=¹p), and setting the density °uctuation equal to its isentropic value in the relation

Ab =
°¹p

¹a

u0

p0
= ° ¹Mb

·
m0= ¹m
p0=¹p

¡ ½
0=¹½
p0=¹p

¸
= ° ¹Mb

·
Rb ¡ 1

°

¸
(6.111)

Then with the characteristic time ¿c = V=° ¹MbSb¹a = c
¤ ¹V =¹a2St = c¤L¤=¹a2,

!¿c = R
(i)
b ¡ 1

° ¹Mb

μ
Sn
Sb

¶
A(i)n

®¿c = R
(r)
b ¡ 1

° ¹Mb

μ
Sn
Sb

¶³
¹Mn +A

(r)
n

´ (6.112)a,b

which are equivalent to (6.25) and (6.26).

LINEAR STABILITY OF COMBUSTOR DYNAMICS 

RTO-AG-AVT-039 6 - 31 

 

 



6.9. Linear Stability in the One-Dimensional Approximation

Results corresponding to (6.90), (6.93) and (6.94) can be derived for the case when the one-dimensional
approximation is used. The formulas found for the one-dimensional (1-D) case are in the ¯rst instance
apparently much simpler to use than those found for three-dimensional (3-D) problems. Details of the grain
con¯guration, for example, do not appear. Only the cross section of the port and its variation along the
length of the motor must be known. Applications have apparently con¯rmed that the formula for the growth
or decay constant seems to be su±ciently accurate for many purposes, but we will see that positive result is
partly illusory.

The foundations of the calculations have been discussed by Culick (1970, 1973, 2001) and Culick and
Yang (1992). This formulation is the basis of the Standard Stability Program (SSP) ¯rst written by Lovine
et al. (1976) and in improved form by Nickerson et al. (1983). The corrected and improved version including
extension to three-dimensional problems is currently under development (French 2004).

When longitudinal or axial acoustic modes are excited in a slender (i.e., L=D not small) solid rocket
contain a uniform grain burning only at the lateral boundary, an important basic question arises: How are
the waves driven? The di±culty in understanding the mechanism due to combustion processes con¯ned to
the boundary arises because the °ow from the boundary enters normally to the surface but the mean and
unsteady motions in the bulk of the volume are parallel to the surface. Evidently there must be a transition
zone, an unsteady layer normally thin, because experimentally, the frequencies of the longitudinal modes
are estimated quite closely by the classical formulas for organ pipe oscillations. As an attempt to address
part of the question with a relatively simple analysis, Culick (1970, 1973) worked out the consequences of a
strictly one-dimensional approximation to the problem; some omissions in that work are corrected here.

In the one-dimensional approximation, the equations to be solved are written for properties averaged
over a cross section, with only the axial component of °ow accounted for. The in°ow of mass, momentum
and energy from the combustion zone then appear as sources in the equations of motion. In particular,
the inward momentum is assumed to have no axial component at the surface, but must acquire the axial
component of the bulk °ow at each section of the combustor. It is implied in the analysis that the adjustment
occurs instantaneously so no account needs to be taken of any process of memory in the axial direction.

Much discussion, and correction of the original results, has been precipitated exactly because the for-
mulation to treat `one-dimensional' problems is, after all, an approximation. One must be aware that the
question always is present: Does the one-dimensional approximation contain imperfect forms of all processes
present in the complete three-dimensional formulation? The query is di±cult to answer, partly because in the
process of applying the one-dimensional approximation, some viscous e®ects may also be implied although
the coe±cient of viscosity does not appear (see, for example, Shapiro 1952). Only comparison of exact and
approximate results may give an answer, and even then questions may remain. In this section we cover the
procedure and results cited above; in Sections 6.9.1 and 6.9.2 we summarize the current results containing
recent corrections.

The procedure for deducing the formula for the wavenumber is the same as that followed in Section 6.7
for three-dimensional problems. Annex B is a summary of the equations derived for the one-dimensional
approximation, including source terms denoted by ( )s which are associated with °ow through the lateral
boundary. With only linear terms retained, the wave equation, its boundary condition, and the functions h1
and f1 are

1

Sc

@

@x

μ
Sc
@p0

@x

¶
¡ 1

a2
@2p0

@t2
= h1 (6.113)

@p0

@x
= ¡f1 (x = 0; L) (6.114)
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where

h1 = ¡¹½ 1
Sc

@

@x

μ
Sc
@

@x
¹uu0
¶
+
¹u

¹a2
@2p0

@t@x
+
°

¹a2
@p0

@t

1

Sc

d

dx
(Sc¹u) +

1

Sc

@

@x
Sc(F

0
1 + F

0
1s)¡

1

¹a2
@(P01 + P

0
1s)

@t
(6.115)

f1 = ¹½
@u0

@t
+ ¹½

@

@x
(¹uu0)¡ (F01 + F01s) (6.116)

Equations (6.113){(6.116) correspond to (6.74)a,b and (6.75)a,b. To simplify the formulae, and to
emphasize several important points that do not depend on gas/particle interactions, we will
assume that the °ow contains no particulate matter. Then W 0

1, F
0
1 and P

0
1 are found as the °uctua-

tions of (B.8), (B.9) and (B.11) without the contributions from particles:

F01 =
@¿ 0v
@x

+m0
e +m

0
D ¡ ¾0e ¼ 0 (6.117)

P01 =
R

Cv
Q01 +RTW

0
1 ¼

R

Cv
Q01 (6.118)

W 0
1 = W

0
e ¼ 0 (6.119)

Recall that ( )e identi¯es external sources and m
0
D is the °uctuation of mass associated with di®usional

processes; see Annex A for the de¯nition of mD. With viscous terms ignored, only P
0
1 is non-zero. Finally,

the surface terms F01s and P
0
1s in h1 and f1 are found from the de¯nitions (B.20) and B.22) to be

F01s =
1

Sc

½
(¹us ¡ ¹u)

Z
m0
sgdq + (u

0
s ¡ u0)

Z
¹msgdq

¾
(6.120)

P01s =
R

Cv

1

Sc

½
(¹h0s ¡ ¹e0 + Cv ¹T )

Z
m0
sgdq + (h

0
0s ¡ e00 + CvT 0)

Z
¹msgdq

¾
(6.121)

Expansion of the zero-order representations of the pressure and velocity ¯elds have the forms corre-
sponding to (6.77),

p0(x; t) = ¹p

M1X
`=1

´`(t)Ã`(x) (6.122)

u0(x; t) =
M1X
`=1

_́`
°k2`

dÃ`
dx

(6.123)

where the Ã` are normal modes satisfying the homogeneous equations

1

Sc

d

dx

μ
Sc
dÃ`
dx

¶
+ k2`Ã` = 0 (6.124)

dÃ`
dx

= 0 (x = 0; L) (6.125)

After substitution of (6.122) in (6.113) and spatially averaging the result, we ¯nd the system of oscillator
equations and the `forcing functions' F`:

d2´`
dt2

+ !2` ´` = F` (6.126)

F` = ¡ ¹a2

¹pE2`

8<:
LZ
0

h1Ã`Scdx+ [f1Ã`Sc]
L
0

9=; (6.127)
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and E2` =
LR
0

Ã2`Scdx. Equations (6.126) and (6.127) correspond to (6.79) and (6.80).

For harmonic motions, h1 = ĥ1e
¡i¹akt, etc., substitution of (6.127) in (6.126) leads to the formula for the

square of the wavenumber,

k2 = k2` +
1

¹pE2`

8<:
LZ
0

ĥ1
^́̀
Ã`Scdx+

"
f̂1
^́`
Ã`Sc

#L
0

9=; (6.128)

where (6.115) and (6.116) are now

ĥ1 = ¡¹½ 1
Sc

d

dx

μ
Sc
d

dx
¹uû

¶
¡ ik ¹u

¹a

dp̂

dx
¡ i° k

¹a
p̂
1

Sc

d

dx
(Sc¹u) +

1

Sc

d

dx
Sc(F̂1 + F̂1s) + i

k

¹a
(P̂1 + P̂1s) (6.129)

f̂1 = ¡i¹½¹akû+ ¹½ d
dx
(¹uû)¡ (F̂1 + F̂1s) (6.130)

are the one-dimensional forms of equations (6.75)a,b.

The ¯rst three terms of ĥ1 and the ¯rst two terms of f̂1, correspond exactly to their three-dimensional
counterparts in (6.75)a,b; F01 + F01s and P01 + P01s correspond to FFF0 and P0. Thus the special topics which
we discuss shortly have to do mainly with F01s and P

0
1s and parts of FFF

0 and P0. First we carry through the
manipulations equivalent to those beginning with (6.77), but now for one-dimensional problems. Substitution
of (6.129) and (6.130) into (6.128) gives
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d
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¡
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)
(6.131)

The zeroth order forms of p̂ and û are given by the one-dimensional acoustic formulas,

(p0)
zeroth
order

= p0`(x; t) = p̂`(x)e
¡i¹ak`t = ¹p^́`Ã`(x)e

¡i¹ak`t

(u0)
zeroth
order

= u0`(x; t) = û`(x)e
¡i¹ak`t = ¡i ¹a

°k`
^́`
dÃ`
dx
e¡i¹ak`t

(6.132)a,b

Consistent with the general ordering procedure, these formulas are to be used anywhere p̂ and û are multiplied
by ¹u(x) or its derivative(s). Thus, only the ¯rst term in the last set of brackets in (6.131) contains the
perturbed form of û (not û`).

Integration by parts and use of equation (6.124) leads to the result
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(6.133)
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The second and third terms in the ¯rst curly brackets of (6.131) are

¡ik
LZ
0

¹u

¹a

dp̂

dx
Ã`Scdx = ¡i¹p ^́̀ k`

¹a

LZ
`

¹uÃ`
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Scdx (6.134)
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¸
Scdx (6.135)

and the terms in (6.131) containing (F̂1 + F̂1s) combine in an obvious fashion. With (6.133){(6.135), the
formula (6.131) can be written
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(6.136)

Now we rewrite the terms in the ¯rst bracket set to show that (6.136) is exactly the one-dimensional form of
(6.90). Integration of the ¯rst term by parts gives two terms, one of which is proportional to the last term
in brackets and the other is a boundary term:
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(6.137)

Substitution of (6.137) in (6.136) and some rearrangement gives
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(6.138)

which is (6.90) written from one-dimensional problems. However, the terms containing F̂1s and P̂1s are
additional here because of the explicit accounting for °ow through the lateral boundary.

6.9.1. The One-Dimensional Approximation to `Flow-Turning'. The correspondence between
the terms in (6.138) and (6.90) is clear. What is especially important are the e®ects represented by the

sources at the lateral boundaries, F̂1s and P̂1s, found from the formulas (6.120) and (6.121). It is important
for interpretation of this result to remember (Annex B) that F1s represents the source of momentum, and
P1s the pressure source, both associated with the mass source at the boundary. Moreover, the average values
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of the sources may be zero (Annex C) or non-zero, as for a burning surface. We treat ¯rst the contribution
to stability by unsteady momentum addition of °ow at the boundary,

LZ
0

F̂1s

^́`

dÃ`
dx
Scdx =

LZ
0

1

Sc

·
(¹us ¡ ¹u)

Z
m̂sg

^́̀
dq +

μ
ûs ¡ û
^́`

¶Z
¹msgdq

¸
dÃ`
dx
Scdx (6.139)

Figure 6.15 shows interpretations of the various quantities appearing in (6.139).

u u'

vs

usu's
LATERAL

SURFACE

v's
u's

u

(a)

u u'

LATERAL

SURFACE

vs
v's

vs
v's

(b)

Figure 6.15. Velocity vectors for °ow through a permeable boundary. (a) non-zero mean
°ow parallel to the boundary; (b) only normal °ow at the boundary.

Observation, for example by use of ¯lms, and physical arguments, suggest that the average °ow from
the surface of a burning solid propellant is always normal to the surface. The situation sketched in Figure
6.15(a) apparantly does not exist. Hence we assume ¹us = ûs = 0 as shown in Figure 6.15(b); (6.139) is
therefore

LZ
0

F̂1s

^́̀

dÃ`
dx
Scdx = ¡

LZ
0

1

Sc

·
¹u

Z
m̂sg

^́`
dq +

û
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Substitute (6.89)b for û and the second term is
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We estimate the ¯rst term in (6.140) by assuming m̂sg to be independent of position on the surface;
with q(x) the total perimeter of the chamber at position x,

¡
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Z
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dq
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¶
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LZ
0

¹uq
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The ratio in parentheses is the response function, of order unity (Chapter 2 equations (2.66) and (2.67), for
example). Thus the term depends on the square of the mean velocity and must be ignored. Hence for use
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in (6.138), combination of (6.140) and (6.141) gives
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This result is the one-dimensional approximation to `°ow-turning'. It appeared ¯rst in equation (3.9) in
Culick (1973), and has since been the motivation for considerable discussion in the literature and in various
technical meetings. Always to be kept in mind is perhaps the most interesting aspect of the matter, the
contrast with the results of three-dimensional analyses. An especially important property is the accuracy
with which behavior that is necessarily three- (or two-) dimensional is approximated by the results of one-
dimensional predictions.22

What has come to be accepted as the `°ow-turning' process has the following elementary interpretation
for a burning solid propellant exposed to oscillations. We imagine that the solid/gas interface is ¯xed and
that solid material advances to the interface with constant speed. As soon as the solid is transformed to
gas, it begins to acquire both steady and oscillatory motion, partly due to viscous forces exerted by gas
released earlier, but principally due to the oscillatory pressure. Thus the incoming °uid acquires su±cient
unsteady motion to join the °ow ¯eld existing at some distance from the interface. Figure 6.16 is a simpli¯ed
interpretation of this process in two dimensions. From the interpretation just given, it is evident that, because
work is done on the incoming °uid both to impart the oscillatory motions and to turn the °ow as sketched
in Figure 6.16, the process of `°ow-turning' constitutes a loss. For harmonic motions, oscillations parallel to
the surface, the loss is given by (6.142) within the one-dimensional approximation. Twenty years after the
approximation was deduced, Flandro (1995) showed rigorously with analysis of a two-dimensional °ow that
the result (6.142) is exact.

(a)

(b)

Figure 6.16. The origin of `°ow-turning': An element of °uid shown (a) at entry normal
to a burning or porous surface, and (b) in an intermediate state of the process of acquiring
the local axial velocity having mean and acoustic components.

If `°ow-turning' is the only contribution to momentum transfer at the lateral surface and there is no
momentum addition within the volume (F1 = 0), the formula (6.138) becomes
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(6.143)

22We refer to behavior which, in principle at least, is covered by terms involving F̂ and P̂ in (6.90), and correspondingly

may arise from F̂1, P̂1, F̂1s and P̂1s in (6.138).
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6.9.2. The One-Dimensional Approximation to `Pumping'. There is a second equally important
contribution to the unsteady energy transfer accompanying °ow through a lateral boundary. This process
was mistakenly not included, with `°ow-turning', in the general analysis discussed by Culick (1973), although
a restricted form was discussed at the end of the same paper (see Annex C). The basic process has acquired
the name `pumping', referring to the in°uence of the °ow immediately adjacent to the boundary on the
°ow past the boundary. It arises because the °ow parallel to the surface has a time-varying component
which varies with position along the boundary. The discussion here concerns largely the one-dimensional
counterpart of the two- or three-dimensional process ¯rst found and explained by Flandro (1995)a.

Due to conservation of mass, as demonstrated in Section 5.9.3, motion is then induced in the direction
normal to the boundary. It is that portion of the °uid motion that is called `pumping'. For the case of
harmonic motions past an impermeable boundary, the °uid velocity accompanying the pumping action is
given by equation (5.146). We investigate now the pumping action for the case when °ow with average
velocity ¹vb passes through the boundary. We assume that there is no °uctuating component of v at the
surface: v0b = 0.

Unlike the case for fully three-dimensional calculations, the ¯rst integral in (6.143), which has as part of
its integrand the one-dimensional form of r¢ ¹u, is generally non-zero. The conservation of mass is expressed
for one-dimensional °ow by equation (B.2) written for steady purely gaseous °ow,

¹u
d¹½
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= ¡¹½ 1
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1

Sc

Z
¹mbdq

We take ¹½ to be strictly constant and the continuity equation for steady °ow is

1
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1
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Z
¹mbdq (6.144)

Let ¹mb = ¹msg for the case here and substitute in (6.143) to give
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(6.145)

The de¯nition (6.121) for P01 gives the contribution from °uctuations of heat release within the °ow,

P̂1 =
R

Cv
Q̂1 = (° ¡ 1)Q̂1 (6.146)

From (6.121) we ¯nd the term representing the e®ect of °ow through the lateral boundary,
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After substitution of the appropriate de¯nitions,
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2
s

2
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2
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1

2
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where ¢Ts = Ts ¡ T . Because the kinetic energy is normally negligible in combustion chambers,
R

Cv
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RT +

Cp
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R¢T = a2 + °R¢T (6.148)

Hence (6.147) becomes
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Substitution of (6.146) and (6.149) into (6.145) gives

k2 = k2` ¡ i
k`
¹aE2`

8<:
·μ
°
û
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Temporarily denote the last integral by P and rewrite the various terms in the following way:
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The penultimate term can be written using the relation (6.144) for conservation of mass,
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Upon substitution of ^́̀ P in (6.150), this term is cancelled by the second term in curly brackets; k2 is now
given by the sum of terms23
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When interpreting this result, it is helpful to recall that with ¹ak = ! + i®, e¡i¹akt = e¡i(!+i®)t = e®t¡i!t,
so ® < 0 for decay of waves, i.e., the imaginary part of the right-hand side of (6.151) must be negative for
stability.

23Taking into account di®erences of de¯nitions (mainly ei¹akt in earlier work is replaced by e¡i¹akt here, and p0` = p̂`e
i¹ak`t

is written p0` = ¹p^́`Ã`e
¡i¹ak`t) equation (6.151) agrees with equation (3.13) in Culick (1973) written for a °ow without particles.

The last term in (6.151) was mistakenly dropped from (3.13) in the earlier work.
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For practical purposes it is necessary to have the real and imaginary parts of k, corresponding to the
formulas (6.93) and (6.94) found for three-dimensional waves. Write (6.151) as

k2 = k2` + (A+ iB)

Then with ! ¡ !` and ® small,
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Then with ¹ak`=!` = 1, we ¯nd for the real and imaginary parts of (6.151),
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The terms containing ¢T̂s represent the e®ects of a frequency shift depending on ¢T̂
(i)
s , the part of ¢T̂s

out-of-phase with the pressure oscillation; and attenuation depending on the in-phase part ¢T̂
(r)
s associated

with convection inward at the lateral boundary. Fluctuations of the mass °ux inward a®ect the frequency
shift and attenuation by carrying °ow having an average temperature di®erence ¢T̂s, represented by the
last term of 6.152 and 6.153.

More signi¯cant are the terms identi¯ed by ¤ and ¤¤ which we will temporarily denote as the contributions
~®sp and ®FT to ®:
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The contribution ®FT , generally referred to as the `°ow-turning' damping, was discovered by Culick (1973)
in his analysis of unsteady one-dimensional oscillations.
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In his 1995a paper, Flandro found a second contribution which Culick had not identi¯ed24 in his 1973
paper. This di®erence has directly|or indirectly|been part of the cause for much discussion, occasionally
controversy. The di®erence (with hindsight!) is illusory: The 1973 result, equation (6.153) here, contains
the important process called \pumping"25 by Flandro.

In the 1973 work, the mass in°ux was implicitly taken to represent °ow of combustion products from
burning solid propellant. That was certainly what the author had in mind. But the quantity msg may
of course represent °ow normal to the lateral boundary due to any cause. For example, in Section 6 of
Culick (1973) and here in Annex C, the °uctuation m0 = ¹½v0 represents changes associated with the acoustic
boundary layer. The time-averaged value m0 is then zero. For the linear behavior we are dealing with, we
may write msg as a superposition of various possible contributions. It is su±cient for our purpose to take
m0
sg as the sum of the °uctuation m0

sc due to unsteady combustion; and the unsteadiness m
0
PU produced by

the °ow:

m0
sg = m

0
sc +m

0
PU (6.156)

Thus for harmonic variations in time, (6.154) becomes a sum,
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In the ¯rst form, m̂
(r)
sc may be replaced, for example, by its formula obtained after introducing the admittance

or response function de¯ned in Section 6.7.2. Together, the °ow-turning contribution, (6.155), and the second
term of (6.157), which is the one-dimensional form of the `pumping' process, form the acoustic interaction
at a surface,
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This result is the one-dimensional counterpart of (49) in Flandro (1995)b, an identi¯cation we indicate here
without decoding the various de¯nitions of dimensionless quantities26:
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As an aid to recognizing that the correspondence noted is indeed true, four remarks are helpful:

(i) By Flandro's de¯nition, p0m does not contain any time dependence.
(ii) In the right-hand side of (6.159) specialized to one dimension, ~u(i) andrp0m both become proportional

to dÃ`
dx .

(iii) The mass °ux ¹msg = ¹½¹usg = ¹½¹a
¹usg
¹a = ¹½¹a ¹Msg, and ¹Msg is the same as Mb, the Mach number of the

average °ow departing the surface.
(iv) For the correspondence (6.160), we note that p0m » Ã` and n̂ ¢ ~u(r) » m̂PU

¹½ . To make equality hold in

(6.160), closer attention must be paid to the details.

24An example was treated in Section 6 of Culick's 1973 paper, but the generality of the process was not recognized; see
Annex C.

25It is referred to as \surface pumping" here, denoted ( )sp to distinguish it from subscript ( )p often used to identify

contributions from particulate material.
26Note that ~( ) denotes the rotational part of velocity, which cannot be distinguished for one-dimensional °ow.
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Verifying the exact correspondence, which is only implied in (6.159) and (6.160), is not germane here. (See
the following section.) The important point is that the one-dimensional approximation does in fact contain
both `°ow-turning' and `pumping'. The physical interpretation of °ow-turning, always a mechanism of
energy loss for °ow inward, has already been described with reference to Figure 6.16. Annex C explains the
pumping process which, the preceeding remarks show, must occur whether °ow issues from the surface, or
the surface is impermeable.

Much attention has been given these two processes because they can bring signi¯cant contributions to
the rate of change of acoustic energy in a combustion chamber. Incorporating the form of the ¤ term in
(6.153), written according to this discussion, we have
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(6.161)

The terms in the ¯rst line contain the principal sources of driving due to combustion at the end of the chamber
and on the lateral boundary; and attenuation due to the exhaust nozzle. Flow-turning and pumping are
represented by the next two terms. The last line contains the e®ects of volumetric heat addition and the
term representing the e®ect of unsteady mass addition when the temperature di®erence ¢ ¹Ts = ¹Ts ¡ ¹T is
non-zero.

Flandro (1995)a has given an example showing clearly the e®ects of °ow-turning and pumping in data
taken by Harris (1994) for unstable oscillations in the laboratory motors sketched in Figure 6.17. Figure 6.18
shows the result reported by Flandro. The dashed line is the locus representing exact agreement between
predicted and measured values of the growth rate. Flandro carried out calculations according to the Standard
Stability Program, SSP (Nickerson et al. 1983) which did not contain the pumping term; and SSP with the
pumping term added, giving points labeled \SSP with Vorticity." These results seem clearly to show that
the pumping term is a positive (`driving') contribution improving the agreement between the experimental

results and theoretical values. The latter were computed with Q̂
(r)
1 = ¢¹Ts = 0 and assumed values for the

propellant response.

The test program conducted by Harris (1994) produced very useful data carefully reduced. Results for
the decay rates shown in Figure 6.18 were obtained by measurements of the waves generated by pulses having
amplitudes approximately 1% of the chamber pressure. In the reference cited, results are given for two grain
diameters; three grain lengths; four grain con¯gurations; three HTPB/AP propellants; and three chamber
pressures. Figure 6.19 shows the decay of the fundamental mode in one test, the raw signal having been
processed by a bandpass ¯lter. In this case, the motor had a cylindrical grain, 2.55 inch diameter and 30.6
inches long. The data reported by Harris cover fairly broad conditions and can probably be used for wider
checks of theoretical results than carried out to date.
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Figure 6.17. Grains used in laboratory motors for which data were taken for unstable
oscillations (Harris 1994).
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with Q1 = ¢¹Ts = ¢T̂
(r)
s = 0. Ac-

counting for the `pumping' process gives
closer agreement between theory and ex-
periment (Flandro 1995b).
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6.9.3. Stability of a Simple T -Burner. Since its invention, the T -burner has been widely used a
device for measuring the dynamics of a burning solid propellant. For a number of reasons, largely associated
with experimental di±culties, it has never ful¯lled its great promise. Yet despite the appearance of several
other promising methods (see Section 2.2.3), the T -burner remains generally the primary means considered
for determining|at least qualitatively|the unsteady behavior of a new propellant. Another method may
ultimately prove to be superior for a particular application, but ¯rst understanding the T -burner, how it
works, and its practical de¯ciencies is usually the proper strategy to follow.

Two documents, \the T -Burner Manual," CPIA Publication 191 (1969) and \T -Burner Testing of Metal-
lized Solid Propellants," Air Force Rocket Propulsion Laboratory Report AFRPL-TR-74-28, cover virtually
all practices existing in the 1970s. Both volumes incorporated the experiences and contributions of all practi-
tioners in the U.S. Two decades later, extended test programs involving groups in the U.S., France, Canada,
and Australia collaborated in test programs based primarily on the \Pulsed T -burner," to re¯ne the methods
mainly for treating metallized propellants (Blomshield et al. 1991, 1992 and 1997).

In this section, we reproduce the simplest analysis of the T -burner, including comparison with early
test data, to show some of the di±culties the method presents (Beckstead and Culick, 1971). Unresolved
problems still remain. If we ignore the possibility that combustion produces particles in the °ow, and we
assume that combustion occurs only on the surfaces of discs having the diameter of the tube,27 the square
of the wavenumber of longitudinal oscillations is

k2 = k2` ¡ 4i
k`
L
(Ab +Mb) + ®®

³k`
¹a

´
(6.162)

where ®® is the decay constant representing all losses in the system during a period of steady oscillations.

With k2 = (! ¡ i®)2=¹a2 ¼ (!=¹a)2 ¡ i(2®!)=¹a2 ¼ (!=¹a)2 ¡ i(2®!`=¹a2) ¼ (!=¹a)2 ¡ i(2®`¼¹a=L) and
k` = `¼=L,

³!
¹a

´
¡ i(2®`¼) 1

L¹a
=
³`¼
L

´2
¡ i4`¼

L2
(Ab +M¹b) + ®®

³k`
¹a

´
The real and imaginary parts are³!L

¹a

´2
= (`¼)2 + 4(`¼)A

(i)
b = (`¼)2 + 4`¼°MR

(i)
b (6.163)

®L

¹a
= 2(A

(r)
b +Mb)¡ ®dL

¹a
= 2(°MbR

(r)
b )¡ ®dL

¹a
(6.164)

The admittance function can be replaced by the response function with the de¯nitions given in Section 6.7.2,

Ab = °
¹p

¹a

¹u

p0
³m0

m
¡ p

0

¹p

´
= °Mb

³m0=m
p0=¹p

¡ ½
0=p
p0=p

´
= °MbRb ¡M b

in which the last equality rests on the approximation that the wave propagation is isentropic. Then (6.163)
and (6.164) can be written

R
(i)
b =

1

4°`¼Mb

h³!L
¹a

´2
¡ (`¼)2

i
(6.165)

R
(r)
b =

1

2°Mb

(®+ ®d)L

¹a
(6.166)

27Extension of the analysis to other grain con¯gurations can be accomplished, but attention must be paid to the form of
the average °ow¯eld and to the e®ects of edges of the grains.
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According to (6.165) and as observed experimentally, the frequency of oscillation is close to the classical
longitudinal value, almost always the fundamental mode (` = 1), so

³!L
¹a

´2
¡ (`¼)2 =

³!L
¹a
+ `¼

´³!L
¹a
¡ `¼

´
¼ 2`¼

³!L
¹a
¡ `¼

´
and (6.165) becomes

R
(i)
b =

1

2°M b

³!L
¹a
¡ `¼

´
(6.167)

Equations (6.166) and (6.167) correspond to (6.25) and (6.26) for an L¤ burner. Hence if we assume the
result found by Denison and Baum for the response function, we ¯nd the solutions (6.126) and (6.127) for
the parameters A and B, but with

k1 =
1

2°Mb

³!L
¹a
¡ `¼

´
; k2

1

2°Mb

(®+ ®®)L

¹a
(6.168)a,b

It has been common practice to interpret T -burner data using only equation (6.126), justi¯ed with
the observation that the frequency of the oscillations has very closely the classical value, ! ¼ `¼ ¹aL so
equation (6.127) can be ignored. Then, for example, if Denison and Baum's formula is used, correlations of
experimental results are carried out with the two parameters A and B. In fact, one should use only one. Just
as for data taken with an L¤ burner, there are two parameters and two equations. If one equation is dropped
then, in some sense, so should one parameter! Otherwise, the ¯t or no-¯t to data cannot be interpreted as
truth or falsity of Denison and Baum's result.

On the other hand, strictly one has the basis, equations (6.126) and (6.127), for a two-parameter family
corresponding to equations (6.25) and (6.26), and Figure 6.8 for the L¤-burner. Assume that the T -burner os-
cillates in the lowest mode, the fundamental or ¯rst harmonic, and let ³ = (2°Mb)

¡1. Then equations (6.126)
and (6.127) are

R
(r)
b = ³(®d¿c + ®¿c) = ³®t¿c

R
(i)
b = ³

³!L
¹a
¡ ¼

´
= ³(!¿c ¡ ¼) (6.169)a,b

Beckstead and Culick chose to construct the two-parameter A;B family of curves in the ®t¿c;− plane rather
than the !¿¤c ;− plane used for the L¤ burner (¿¤c = L¤c¤=RT , ¿c = L=¹a). Figure 6.20 shows the result
they found, with data taken for A-13 propellant. This interpretation of the dynamical behavior is clearly
unsuccessful. The data for a given value of chamber pressure should lie on a vertical line; that is they should
be independent of frequency.

The authors tried|unsuccessfully|to rationalize the result. It seems unlikely that the data is so wildly
poor as the chart may suggest. The analysis is straightforward and transparent; the viewpoint taken seems
to be correct, and unlikely to be deeply °awed in any event. Probably the source of the evident inaccuracy is
the special form of the response function. While the Denison and Baum formula captures an important part
of the behavior, the two-parameter formula is apparently an over-simpli¯cation. Several modi¯cations are
discussed brie°y in Section 2.2. There seem to be no subsequent e®orts to use data in the manner suggested
by Beckstead and Culick. However, the approach taken in the present section, and in Section 6.2 with results
produced by low frequency burners still appears to be worthwhile.
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Figure 6.20. A T -burner chart for determining the parameters A and B; data are shown
for the propellant A-13 (Beckstead and Culick 1971).

6.10. Combined Three-Dimensional and One-Dimensional Results

There remains a signi¯cant gap in the formal treatment of stability. In Section 6.7 we have deduced
the formula (6.90) for the wavenumber and (6.94) for the growth or decay rate, of three-dimensional distur-
bances. Separately in Section 6.9 we have found the approximations (6.151) and (6.161) to the corresponding
quantities for one-dimensional motions. For easy comparison, we repeat the results here, preceded by their
origins. The reasoning begins with the precise correspondence between (6.90) and (6.138):

3-D Equation (6.90)

k2 ¡ k2n = ¡i
kn
¹aE2n

½ZZ
°
·
°
û

´n
¢ n̂+ ¹u ¢ n̂Ãn

¸
ÃndS + (° ¡ 1)

Z
Ã2nr ¢ ¹udV

¾
¡ 1

¹pE2n

Z "
F̂̂F̂F

^́n
¢ rÃn + ikn

¹a

P̂

^́n
Ãn

#
dV

(6.170)

1-D Equation (6.138)

k2 ¡ k2` = ¡i
k`
¹aE2`

8<:
·μ
°
û

´`
+ ¹uÃ`

¶
Ã`Sc

¸L
0

+ (° ¡ 1)
LZ
0

Ã2`

·
1

Sc

d

dx
(Sc¹u)

¸
Scdx

9=;
¡ 1

¹pE2`

LZ
0

"Ã
F̂1 + F̂1s
´`

!
+ i
k`
¹a

Ã
P̂1 + P̂1s

^́̀

!
Ã`

#
Scdx

(6.171)

As the development in Section 6.9 showed, the term containing F̂1s leads to the formula for `°ow-turning',
which is therefore a consequence of momentum transfer between the °ow entering at the boundary and the
°ow in the chamber. Then (6.138) becomes (6.143); if we retain the possibility for momentum addition
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within the volume, F̂1 is non-zero, and (6.138) is

k2 ¡ k2` = ¡i
k`
¹aE2`

8<:
·μ
°
û

´`
+ ¹uÃ`

¶
Ã`Sc

¸L
0

+ (° ¡ 1)
LZ
0
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·
1
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d

dx
(Sc¹u)

¸
Scdx

9=;
¡ 1

¹pE2`

Z
F̂1

´`

dÃ`
dx
Scdx¡ i k`

¹½¹aE2`

LZ
0

"
1

k2`

μ
dÃ`
dx

¶2#Z
¹msgdqdx+ i

k`
¹a

1

¹pE2`

LZ
0

Ã
P̂1 + P̂1s

^́̀

!
Ã`Scdx

(6.172)

This is (6.145) with the addition of the integral containing F̂1 and (6.144) used in the ¯rst integral.

The `pumping' term in k2 arises from P̂1s while P̂1 produced the term containing heat release, equation

(6.146). If we do not write P̂1 as the heat release, and ignore the cancellation noted just before (6.151),
equation (6.172) is

k2 = k2` ¡ i
k`
¹aE2`

264μ° û
^́`
+ ¹uÃ`

¶3D
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L

0
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¹½¹aE2`

LZ
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"
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¶2#FT Z
¹msgdqdx
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1

¹pE2`
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0
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Z h¡
¹a2 + °R¢¹Ts

¢
m̂sg + °R

³
T̂ +¢T̂s

´
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isc+PU ¢T is ¢T
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(6.173)

The symbols above the terms in this equation are only for identi¯cation according to the following discussion.

With the de¯nition (6.144) for the mass addition in steady °ow, the ¯rst integral corresponds to the
integral

R
Ã2nr ¢ ûdV and there is precise correspondence between all of (6.170) and (6.173) without the

last two integrals. Those two integrals represent, within the approximations used here, the entire di®erence
between the three-dimensional formulation and the one-dimensional `approximation.'

`Approximation' is set o® by quotes because it is a little surprising that the one-dimensional `approxi-
mation' possesses more information than the three-dimensional formulation. The term in (6.173) containing

1
k2`

³
dÃ`
dx

´2
is pure imaginary and gives the °ow-turning contribution to ®; hence de¯ne

k2FT = ¡i
k`
¹½¹aE2`

LZ
0

"
1

k2`

μ
dÃ`
dx

¶2#Z
¹mgsdqdx (6.174)

Write
1

Sc

d

dx
(Sc¹u) = (r ¢ ¹u)1

as the one-dimensional divergence of ¹u; the ¯rst integral in (6.173) and the integral containing °RT̂ in the
last line are28

k2is = ¡i
k`
¹aE2`

(° ¡ 1)
LZ
0

Ã2` (r ¢ ¹u)1Scdx+ i
k`
¹a

1

¹pE2`

LZ
0

Ã`(°RT̂ ) ¹msgdqdx (6.175)

28The °ow through the surface corresponding to the second term in (6.175) is accounted for in the boundary conditions
in three-dimensions.
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The calculation immediately preceding (6.151) showed that these two terms together vanish if we assume

that T̂ is a consequence of an isentropic motion. This is the one-dimensional counterpart of the statement
that r ¢ u = 0 in three dimensions, eliminating the ¯rst volume integral in (6.170). There is no surface
contribution corresponding to the second term of (6.175) in three dimensions. We therefore ignore these
terms in the following discussion, k2is = 0.

The terms dependent upon ¢ ¹Ts and ¢T̂s will have values dependent on the thermodynamics of the °ow
through the surface. Flandro and Majdalani have not considered such processes. Write

k2¢T = i
k`
¹a

1

¹pE2`

LZ
0

Ã`

Z h
(°R¢¹Ts) ¹msg + (°R¢T̂s) ¹msg

i
qdx (6.176)

As we de¯ned with (6.156) the sum of °uctuations m0
sc due unsteady combustion and m

0
PU produced by

unsteady °ow, so m0
sg = m

0
sc +m

0
PU , we can write the remaining term in (6.173) as

k2PU + k
2
sc = i

k`
¹a

1

¹pE2`

LZ
0
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Z
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k`
¹a

1

¹pE2`

LZ
0

Ã`

Z
¹a2m̂PUdqdx+ i
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1
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LZ
0

Ã`

Z
¹a2m̂scdqdx

(6.177)

Finally, let k23D denote those terms in (6.173) which have precise correspondences in the perturbed
three-dimensional problem,

k23D = ¡i
k`
¹aE2`

·μ
°
¹u

^́̀
+ ¹uÃ`

¶
Ã`Sc

¸L
0

¡ 1

¹pE2`
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^́`
Ã`Scdx (6.178)

Substituting (6.174), (6.176), (6.177) and (6.178) into (6.173) with the combination (6.175) dropped, gives

k2 = k2` + k
2
3D + k

2
FT + k

2
PU + k

2
sc + k

2
¢T (6.179)

Equation (6.179) is the most general form obtained to date for the wave number of motions represented
by the one-dimensional approximation. By suitable interpretation, according to comparison of (6.170) and
(6.172), of the ¯rst two terms on the right-hand side, (6.179) also contains the purely three-dimensional
formula for which the last four terms on the right-hand side are absent.

Then (6.179) evidently serves as the basis for constructing a formula for three-dimensional wavenumber
including °ow-turning, pumping, and the unsteady processes generating the wavenumbers k2sc and k

2
¢T . The

recipe implies replacing k2` by k
2
n; calculating k

2
3D with the right-hand side of (6.170); and retaining k

2
FT ,

k2PU , k
2
sc and k

2
¢T given by their de¯nitions quoted above as surface integrals:

k2 = k2n + k
2
3D + k

2
FT + k

2
PU + k

2
sc + k

2
¢T (6.180)

No results are available to con¯rm or deny the truth of this conjecture.

6.11. An Example of Linear Stability for a Solid Rocket

Results for a simple example, a longitudinal mode for a solid propellant rocket, are shown in Figures
6.21{6.23 (Culick and Yang 1992). It is a common problem encountered particularly in the development of
tactical motors. The calculations were carried out with linear and nonlinear gasdynamics. The example was
¯rst covered by Culick and Yang (1992, pp. 769{774).

Linear contributions from the exhaust nozzle, small particles (inert Al2O3) coupling with the mean °ow,
and unsteady burning were included. The e®ects of `°ow-turning' and `pumping' were not considered. At

LINEAR STABILITY OF COMBUSTOR DYNAMICS 

6 - 48 RTO-AG-AVT-039 

 

 



(a) approximate analysis (b) numerical simulation

Figure 6.21. Growth of unstable motions according to (a) the approximate analysis; and
(b) a numerical simulation of the same problem (Culick and Yang 1992).

the time, the authors did not realize that those contributions in fact sum to zero for this special case, a
result that explains the quite good agreement between the approximate and numerical results. That the
di®erence between the two calculations was not much greater was a puzzling conclusion at the time, but now
constitutes a marvelous vindication of the one-dimensional approximation. Remarks concerning the e®ects
of `°ow-turning' in calculations for a `complete' problem, Culick and Yang (1992), must be ignored. See
Section 6.12.

The e®ects of the exhaust nozzle are represented by the ¯rst bracketed terms in (6.161),

®nozzle ´ ®N = ¡
1

2!`E2`

μ
¹½¹a2

°¹p

¶
(¹ak`)

·μ
û(r)

° ^́̀
Ã` + ¹uÃ

2
`

¶
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¸
z=L

= ¡ 1

2E2`

·μ
°
û(r)

^́`
Ã` + ¹uÃ

2
`

¶
Sc

¸
z=L

(6.181)

in which E2` =
LR
0

Ã2`Scdz = ScL=2. At z = L, Ã
2
` = cos

2(k`L) = 1 for k` = `¼=L and with (6.181) written

for z = L, so ¡(Ab + ¹Mb)! (AN + ¹MN ),

®N = ¡ ¹a
L

³
A
(r)
N + ¹MN

´
(6.182)

For the approximation (6.204) quoted later, valid if the nozzle is `short',

A
(r)
N + ¹MN = ¹MN

μ
° ¡ 1
2

+ 1

¶
= ¹MN

° + 1

2
(6.183)

and

®N = ¡° + 1
2

¹a

L
¹MN (6.184)

Note that, according to the derivations of (6.94) and (6.181), the term ¹MN in (6.182) represents part of the
net e®ects of the acoustics/mean °ow interactions.

We will ¯nd in Section 6.14.3 that under quite broad realistic conditions in solid rockets, the presence
of Al2O3 as liquid drops in motors, can be the source of substantial attenuation of oscillations. If all the
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particles are spherical and have the same diameter, the attenuation constant is given by (6.152)a below, with
X1 and X2 represented by the formulas (6.211)a,b:

®` = ¡1
2

Cm
1 + Cm

·
X1 + (° ¡ 1) C

Cp
X2

¸
(6.185)

where subscript ( )` stands for `liquid.'

Least well-known are the contributions from unsteady combustion. For this example, the simplest result
was used, the formula (6.103) for Denison and Baum's response function. We use the relation (6.102) and

assume ¢T̂s = 0. The corresponding formula for the contribution of surface combustion to the growth
constant is

®e =
¹vb
rc
R(r)p (6.186)

Table 6.1 is a list of the property values required is the calculations of the instability. Calculations were
done both with numerical solution to the one-dimensional equations (the method of Baum and Levine 1982)
and using the results of the approximate analysis. Figures 6.21{6.23. Table 6.2 contains the linear growth
constants and frequency shifts, ! ¡ !n = ¡μ, calculated with the results of the approximate analysis.
Table 6.3 contains the total values of the growth constants and frequency shifts.

Table 6.1. Values of the Geometrical, Combustion and Physical Properties (used in the
example discussed in Section 6.7.1).

Geometrical properties:

length L = 0:5969m
radius of cylindrical port rc = 0:0253m
throat radius rt = 0:00936m
Combustion properties:

mean pressure ¹p = 1:06£ 107 Pa
linear burning rate ¹rb = 0:0078[¹p=(3:0£ 106)]0:3 = 0:01145m/s
parameters in the A = 6:0
combustion response B = 0:55

chamber temperature ¹T = 3539K
mass particles/mass gas Cm = 0:36
particle diameter ¾ = 2£ 10¡6m
Physical properties:

Prandtl number Pr = 0:8
thermal di®usivity of
propellant ·p = 1:0£ 10¡7m2/s

speci¯c heat of gas Cp = 2020 J/kg K
speci¯c heat of condensed
material C = 0:68Cp

viscosity ¹ = 0:8834£ 10¡4(Tc=3485)0:66 =
8:925£ 10¡5 kg/m-s

particle density ½s = 4:0 g/cm3 = 4£ 103 kg/m3

propellant density ½p = 1; 766 kg/m3

gas density ¹½g = 7:97 kg/m3

° (gas only) ° = 1:23
¹° (mixture) ¹° = [°(1 + CmC=Cp)]=(1 + Cm°C=Cp)

= 1:18
gas constant R = (° ¡ 1)Cp=° = 377:72 J/kg K
speed of sound in gas/

particle mixture ¹a =
p
(¹°RTc)=(1 + Cm) = 1075m/s

speed of combustion
products at the burning
surface ¹vb = (½p=½)¹rb = 1:86m/s

Mach number at the
burning surface ¹Mb = 0:00173
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Table 6.2. Linear Growth Constants and Frequency Shifts.

Mode ®c μc ®N μN ®P μP
1 288.1 32.2 ¡160:1 0 ¡46:6 2.6
2 28.5 80.5 ¡160:1 0 ¡184:8 20.5
3 16.7 48.5 ¡160:1 0 ¡417:7 69.1
4 13.6 36.0 ¡160:1 0 ¡727:4 160.5
5 12.0 29.3 ¡160:1 0 ¡1107:5 305.5

Table 6.3. Total Values of the Linear Growth Constants and Frequency Shifts.

Mode ®n μn
1 81:4 34.8
2 ¡316:4 100.9
3 ¡561:1 117.6
4 ¡873:9 196.6
5 ¡1255:6 334.8

Table 6.4. Frequencies and Amplitudes of Acoustic Pressures.

Frequency, Hz Amplitude, jp0=¹pj
Mode 1 2 3 4 5 1 2 3 4 5

Numerical 926 1824 2698 3595 4491 0.151 0.042 0.0234 0.0203 |
Approximate 895 1785 2683 3571 4449 0.151 0.0478 0.0280 0.0153 0.0188

For direct comparison of the numerical and approximate results, Table 6.4 contains the values of the
frequencies and amplitudes computed for the ¯rst two modes. A few cycles of the limiting waveforms are
plotted in Figure 6.21 showing results for both the approximate and numerical computations: Figure 6.22 is
the spectrum for the numerical results.

Figure 6.22. Spectrum for the calculated waveform shown in Figure 6.21(b) (Culick and
Yang 1992).

The approximate analysis produces quite accurate values of the frequencies (within 3%) and the approx-
imate total waveform is reasonably close to the \exact" result except for some rippling due to the absence
of higher frequencies. Even so, the amplitudes of the individual modes found with the approximate analysis
agree well with those computed with the numerical analysis except for the highest (n = 5) mode. The reason
for the high value (even larger than that for n = 4) is that there is no transfer of energy to higher modes.
Because the rate of energy dissipation from the highest mode considered, represented by its attenuation
constant, must be such that the total energy loss equals the total rate of energy gain, the amplitude of
the highest mode must be such as to satisfy this condition. Even with only two modes accounted for, the
frequencies and total waveform are quite well predicted. The frequencies are the same as for the case of ¯ve
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modes; Figure 6.23 shows the waveforms. However, according to Table 6.4, the approximate amplitudes of
the individual modes di®er considerably from the exact values. The phases of the two modes in the approxi-
mate solution apparently assume values that compensate for the consequences of the inaccurate amplitudes.
Figure 6.15a,b

Figure 6.23. E®ect of truncation in the waveforms (Culick and Yang 1992).

6.12. Vorticity and Stability in Solid Propellant Rockets

Vorticity appears in combustion chambers chie°y on three forms: random motions associated with
turbulence; large `coherent' vortices growing out of unstable shear layers; and waves of vorticity generated
by interactions between the acoustic ¯eld and a °ow entering the chamber through the lateral boundary. In
Section 7.6 we regard all random motions together as noise and show how the net pressure may a®ect the
acoustic pressure ¯eld. Here we are concerned only with distributed vorticity, either as waves carried by the
mean °ow or as large vortices.

Probably the ¯rst observations of possible consequences of vorticity29 in a combustor are those reported
by Boys and Scho¯eld (1942). Some features of recorded pressure histories and of grain erosion caused them
to speculate the presence of \ : : : some abnormal °ow on oscillation : : : as if the gas were swirling with a
high velocity." (Quoted by Flandro 1967). Since that time, many examples of scoured lateral boundaries
have been reported, both in liquid rockets and in solid rockets, all for laboratory tests or static ¯rings of
full-scale motors. Green (1958) reported visual observations of swirling °ows in a solid rocket.

By conservation of angular momentum, exhaust of a swirling or vortex °ow from a combustor must
be accompanied by a roll torque (of the opposite sign) exerted about the axis of symmetry. Substantial
roll torques were ¯rst observed in °ight tests of the Sergeant motor (Flandro 1964). An extreme example
occurred in the ¯rst °ight test of the Scout space probe which failed when the control system was unable to
compensate large roll motions (Mayhue 1962).

Swithenbank and Sotter (1963; 1964a,b) were ¯rst to attempt a theoretical explanation of the generation
of roll torques by adapting an analysis of ¯nite amplitude transverse waves by Maslen and Moore (1956).
Partly due to errors in the latter paper, and partly due to some misinterpretations, the results by Swithenbank
and Sotter are incomplete. The main idea is that acoustic streaming generated by the transverse waves carries
angular momentum causing the roll torque.

29We refer to the e®ects of streamwise vorticity or vortices. The discussion in Section 6.12.1 and subsequently is concerned
primarily with azimuthal vorticity generated by processes associated with nonuniform °ow inward at the lateral boundary. The
two kinds of vortices are illustrated in Figure 6.24.
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AZIMUTHAL  VORTICITY

STREAMWISE  VORTICITY

Figure 6.24. Stylized rendition of azimuthal and streamwise vortices in a solid propellant
rocket chamber.

In a ¯ne piece of work, Flandro (1967) corrected the de¯ciencies of Swithenbank and Sotter's work and
produced what is essentially the correct explanation for the generation of roll torques in solid propellant
rockets. That work probably makes unnecessary any further theory of the phenomenon. The details of
Flandro's work need not be covered here. Its importance in the present context is that the analysis is
the ¯rst application of the scheme developed here in Chapters 4 and 5, in which vorticity is explicitly
accommodated in a calculation of the acoustic ¯eld. The most signi¯cant technical point in the analysis
is proper satisfaction of the no-slip boundary condition at the boundary. When a tangential or transverse
acoustic mode is present, which necessarily has a velocity component parallel to the surface, a second
contribution to the velocity is required to cancel the acoustical motion. That second component arises with
generation of vorticity convected into the chamber. Eventually, the vorticity combined with a travelling
transverse wave mode produces the angular moment in the °ow. The reaction to the loss of that angular
momentum appears as a roll torque. Further discussion of the possible °ow ¯elds and the connection with
acoustic streaming are discussed brie°y in Chapter 7.

It's a beautiful model of the problem and successfully explains the observed behavior. Technically, the
essential result was making explicit the basic connection between acoustics and vorticity, the vehicle for the
connection being the mean °ow, and the consequence being generation of angular momentum experienced
as a roll torque. The analytical procedure served as a precursor to Flandro's later analysis of waves of
vorticity generated in response to the presence of longitudinal acoustic instabilities in solid propellant rockets.
(Flandro 1995). That work has several times been misinterpreted and consequently has been unjusti¯ably
and incorrectly criticized.

6.12.1. Generation of Large Vortices; Parietal Vortex Shedding. Oscillations found in large
solid rocket motors, developed as boosters for launching spacecraft, have presented problems somewhat
di®erent from those discussed in most of this book. The primary examples are the Space Shuttle booster
(Mason, Folkman and Behring 1979; Mathes 1980; Blomshield and Mathes 1993); the Titan solid rocket
(Alden 1980; Brown et al. 1981); and the Ariane 5 MPS P230 (Scippa et al. 1994). All these motors have
had relatively low-level pressure, and thrust, oscillations at frequencies suggesting that the ¯rst longitudinal
mode is unstable. Yet estimates based on the ideas developed in Chapters 3 and 4, or similar arguments,
led to the conclusion in each case that the longitudinal mode should be unquestionably stable. For example,
such a conclusion was reached by Kumar and Culick (1977) before the ¯rst test ¯ring of the SRM in the late
1970s. When the motor was ¯red, vibrations at approximately 15 Hz were detected at levels high enough
to cause concern, both in respect to oscillatory accelerations of some structural components and motions of
the pilots' cabin. The existing stability analysis could not explain the observation because, as it turned out,
a contribution was missing. That missing contribution was due to vortex shedding from inhibitor material
exposed at the joints of the segmented motor.
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Figure 6.25. Some con¯gurations used in observations of vortex shedding and instabilities
(adapted from Schadow 2001).

The earlier suggestion by Flandro and Jacobs (1975) that vortex shedding could couple to acoustic
modes of the motor was recalled. That prompted the simple laboratory tests by Culick and Magiawala
(1979) followed later by the extended work of Nomoto and Culick (1982), and Aaron and Culick (1985). The
last contains a simple approximation to the excitation of acoustic waves by the impingement of vortices on
an obstruction. Meanwhile the idea was pursued vigorously in the Titan program, with convincing results
published by Dunlap and Brown (1981) and Brown et al. (1981). At about the same time, Byrne (1981,
1983) suggested vortex shedding in dump combustor con¯gurations as the mechanism for oscillations found
in ramjets (Culick 1980; Culick and Rogers 1980). Thus by 1981, vortex shedding had been established as
a fundamental mechanism of instabilities in combustion systems.

Subsequently, vortex shedding was found to be even more widespread than previously considered. It was
well-established experimentally, especially by the work of Schadow and his colleagues at the Naval Weapons
Center, China Lake, to be a potentially signi¯cant mechanism for oscillations in laboratory dump combustors;
a good summary of the matter was given by Schadow and Gutmark (1992). In his lecture, part of the Short
Course \Active Control of Engine Dynamics" held at the von Karman Institute (VKI), Schadow (2001)
gave a useful tutorial emphasizing vortex shedding in damp combustors. Figure 6.25 summarizes the main
con¯gurations that have been studied; and locations of principal experimental e®orts. The Short Course
given at the Glenn Research Center (Culick 2001) also includes as Section 9 a summary of the subject, with
references. Section 8.6 contains a discussion of vortex shedding and its modi¯cation as a means of passive
control.

A quite di®erent form of vortex shedding as a driving mechanism for oscillations in a combustor was
discovered in series of ¯ne experimental and theoretical works by French investigators motivated by the
Ariane 5 problem. Put most succinctly, they found that unlike all previous demonstrations, and (therefore)
contrary to general expectations, neither obstacles nor edges are required to generate large vortices in a
stream. Lupoglazo® and Vuillot (1996) named the phenomenon \parietal vortex shedding" because the vor-
tices formed in the region close to a wall through which °uid was injected. They discovered the phenomenon
experimentally while carrying out a lengthy series of tests devoted broadly to clarifying the coupling between
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vortex shedding and acoustic modes. The investigations began in the early 1990s, driven by serious practical
considerations. The payload of the Ariane 5 might be reduced (it eventually was) by the mass of devices
added to the solid rocket boosters as protection against the oscillatory accelerations. For example, Pr¶evost
et al. (1996) cited a maximum amplitude of 0.28 bar (14.5 psi) at 20 Hz); the mean chamber pressure is
around 50 bar. Oscillations of this magnitude have persisted in the motor and the Ariane 5 has consequently
su®ered a reduction of payload equal to several hundred pounds.30 Hence the primary goal of the work was
evidently elimination of the vortex shedding or the coupling between the vortices and the acoustic modes.

The problem of oscillations produced by the formation of large vortices was apparently encountered
quite early in the development of the Ariane 5 (c. 1990 in subscale work and during the ¯rst full-scale tests
beginning in 1993). It was the subject of serious concern in the early 1990s; the French work was summarized
in the informative paper by Vuillot (1995) written just prior to the discovery of parietal vortex shedding,
reported by Lupoglazo® and Vuillot (1996). A series of tests was carried out in 1/15 scale laboratory motors,
named LP3A-E shown in Figure 6.26. The results are reported in several places, but the contribution of
Vuillot and Casalis (2002) to the VKI Short Course \Internal Aerodynamics in Solid Rocket Propulsion"
(2002) is the best summary.

There was no °ow visualization of the hot ¯rings in the LP3 test series. Careful interpretation of the
data, and numerical simulation established conclusively that parietal vortex shedding had been shown. Direct
con¯rmation was provided by Avalon et al. (2001) using PLIF with acetone. Figure 6.27 reproduces a picture
they obtained with the ONERA VECLA31 apparatus.

Casalis and coworkers have carried out analyses establishing conclusively the origin of parietal vortex
shedding. (Vuillot and Casalis 2002 Part II, and references there to the original work.) As background, recall
that vortex shedding from edges or obstacles is initiated by an instability of a shear layer. Parietal vortex
shedding occurs because the °ow itself is unstable. Figure 6.28 shows some results of numerical simulations
for the three cases. The case has been established for the pro¯le in a cylindrical cavity closed at one end
having a uniform porous lateral boundary passing a uniform °ow (Taylor 1956, Culick 1966b). The analysis
shows, as observed, that the vortex shedding begins some distance from the closed end of the cylinder where
the pro¯le in question is unstable to small disturbances (Urgutas et al. 2000).

Figure 6.26. The ¯ve two-dimensional con¯gurations of the LP3 test motors. Parietal
vortex shedding was discovered in model D. (Vuillot et al. 1993; Pr¶evost et al. 1996).

30The payload of the Space Shuttle also was reduced in the late 1980s, by an even larger amount due to design changes
following the loss of the Challenger. In that case, parietal vortex shedding was not an issue.

31Veine d'Etude de la Couche Limit¶e Acoustique. The test device operated with air injection through the porous sidewalls,
to allow the °ow visualization shown in Figure 6.27.
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Figure 6.27. Upper image: °ow visualization of parietal vortex shedding, using PLIF with
acetone; Lower image: result of numerical calculations (Avalon et al. 2001).

Figure 6.28. The three kinds of vortex shedding (Fabignon et al. 2003).

Pr¶evost, Godon, and Innegrave (2005) have reported the most recent tests supporting the view that
parietal vortex shedding may be a signi¯cant contribution to the problem of oscillations in the Ariane 5.
Three series of sub-scale tests have been carried out, a total of seventy-six ¯rings in con¯gurations identi¯ed
as LP6(1/15 scale), LP9(1/35 scale) and LP10(1/35 scale). In the series LP6, the propellant was changed to
a non-metallized form during the series. In all tests having no restrictors at the ends of propellant segments,
parietal vortex shedding occurred. Figure 6.29 is a drawing of the test device; Figure 6.30 shows typical
results.

Figure 6.29. A sketch of the LP6 test device (Pr¶evost et al. 2005).

Test series for the LP9 and LP10 con¯gurations showed the presence of oscillations apparently due
to parietal vortex shedding. Accompanying analysis by Chedevergne and Casalis (2005) supports that
explanation. No direct con¯rmation by °ow visualization was reported, but that may be an unnecessary
step. An interesting comment was made in connection with Figure 17 of the paper by Chedevergne and
Casalis, that \...all the instabilities begin at the burnout of the propellant around the submerged nozzle."

The signi¯cance of the parietal form of vortex shedding may be great indeed. If this really is the source
of the acoustic waves (modes) excited in the Ariane 5 or other large boosters), then there are signi¯cant
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Figure 6.30. Experimental results for a test in the LP6 con¯guration showing parietal
vortex shedding (Pr¶evost et al. 2005).

implications for design of new motors to avoid the problem. However, despite the extensive and impressive
accomplishments by the French research program for the Ariane 5, it seems that available evidence doesn't
prove conclusively that familiar vortex shedding originating with an unstable shear layer formed at an edge
is eliminated is a (the?) potential cause in the full-scale motor. Direct con¯rmation is di±cult. However,
it is not clear at this time that the more familiar formation of vortices at the joints of the segments of the
grain can be dismissed as the primary cause, even in the Ariane 5.

6.13. Predictions of Stability Boundaries for Liquid Rockets

Stability boundaries were apparently ¯rst treated systematically for liquid rockets, in the early 1950's. In
1956 Crocco and Cheng completed their book treating one-dimensional motions, with the n¡¿ representation
of the unsteady conversion of liquid to combustion products. That idea, introduced a few years earlier by
von Karman and Summer¯eld (1950) achieved an enormous simpli¯cation of the actual processes. Combined
with signi¯cant approximations to the spatial extent of the unsteady combustion, the model was the basis
for much work in the theory of combustion instabilities in liquid rockets. Attempts to extend application
of the n¡ ¿ model to solid propellant rockets (Cheng 1954a) and other liquid-fueled systems (e.g., Reardon
1983) seem to have had few useful consequences.

From the early 1950s through the 1980s in the U.S. the n¡ ¿ model dominated the views and practical
considerations of unsteady combustion in liquid-fueled systems. First linear behavior and then, beginning in
the early 1960s, nonlinear combustion instabilities were investigated. It is important to appreciate that, as
discussions in Chapter 2 and in the next chapter show clearly, the geometries of combustion chambers treated
in those works were all quite simple variations of a cylindrical chamber with a sonic exhaust nozzle. Thus
the basic °ow ¯elds in all cases shared nearly the same characteristics, di®erences arising from the absence
or presence of a shock wave and the spatial extent of the combustion processes. The general methods used
are cumbersome to apply to distributed combustion. Consequently, most of the analyses were restricted to
concentrated combustion. For example a common choice, perhaps a reasonable approximation to combustion
of fast burning propellants, was combustion in a plane located at the head end of the chamber. One exception
was examination of distributed combustion by Crocco and Cheng (1956; pp. 103®). The practical di±culties
with a formulation based on di®erential equations become apparent fairly soon.

Probably the apex of the Princeton work on linear stability was reached with Crocco's long paper given
at the Tenth Combustion Symposium (1965). Crocco spent at least half of the paper on explicit modeling of
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combustion processes and on nonlinear behavior, virtually signaling the conclusion of their research dealing
with linear problems.

The way in which stability boundaries were treated with the n ¡ ¿ representation has been explained
in Section 2.4.2. It is important to realize that apart from estimates, no work seems to have been done to
predict values of n and ¿ , so there really are no true predictions of stability boundaries using the n ¡ ¿
model. The usual approach in applications has been based on the assumption that all other contributions
to the formula for the growth constant are known. Then setting ® = 0 gives a relation between n and ¿ on
the stability boundary. Or, if one more correctly uses both the real and imaginary parts of the eigenvalue
for wave motions, then there are two relations. These have the forms (2.127)a,b which can, in principle be
used to de¯ne a stability boundary and the variation of the frequency along the boundary.

However, no true predictions of stability boundaries are available without knowledge of n and ¿ . Conse-
quently, for applications to a real system, and to obtain some understanding of the way in which its stability
may depend on important parameters and operating conditions, experimental data are required. Examples
are given in Section 2.4.2; extended discussions may be found in Harrje and Reardon (1972).

Theorists in Russia took a very di®erent approach not married so tightly to a simple representation
of the principle mechanism for instabilities in liquid rockets. Natanzon (1984, 1999) has written the best
known treatise on instabilities in liquid rockets. The work covers several methods not well-known in the West
and includes a summary of some experimental work on hysteresis. Since it is based entirely on di®erential
equations, Natanzon's work has little overlap with the methods covered in this book.

6.14. Contributions to the Growth Constant for Linear Stability

It is one of the great bene¯ts of the linear analysis that the in°uences of the processes causing or
discouraging instabilities are displayed additively. Their relative importance is therefore easily assessed and
the basis is given for determining where most e®ort should be expended to provide good predictions of
stability in actual systems. Consequently much expense and e®ort in the ¯eld of combustion instabilities
generally has been planned according to the formal organization of the subject suggested by the results
(6.94) and (6.161) for the linear growth constant. In this section we will discuss several contributions which
are important mainly in solid propellant rockets. The subjects of Section 6.14.1 and 6.14.2 arise in all types
of propulsion systems.

6.14.1. Mean Flow/Acoustics Interactions. Of the many processes participating in combustion
instabilities those that are purely °uid-mechanical are best known, mainly for two reasons: Their founda-
tions are understood; and usually they can be investigated experimentally with laboratory tests at room
temperature. It is a fortunate peculiarity of the °uid mechanics that the formal results are relatively simple
to ¯rst order in the amplitude and in the mean °ow speed. For internal °ows, the ¯rst order interactions
combine in such a way that the net result appears as convection through the boundary, the surface integral
containing (¹u ¢ n̂)Ãn in (6.87), (6.90) and (6.94).

Thus, to lowest order, the mean °ow/acoustics interactions are simple both in form and interpretation.
As the manipulations leading to (6.87) show, the surface integral in fact accounts for some contributions
occurring in the volume. It is a fortunate accident that for a ¯nite volume, their net contribution turns out
to be represented as a surface e®ect only.

On the other hand, when viscous e®ects and especially °ow separation occur, the situation becomes
immeasurably more complicated. For example, all of the phenomena associated with shear layers and vortex
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shedding enter the picture. We have discussed them elsewhere in this book. It is best to treat them in the
physical contexts where they arise.

6.14.2. Attenuation by a Choked Exhaust Nozzle. Liquid and solid propellant rockets, ramjets
and augmentors for gas turbines all exhaust through choked nozzles. In a gas turbine, the combustor supplies
the turbine directly and the exit °ow from the combustor has traditionally been well below sonic speeds.
In modern gas turbines the exit Mach number is larger, approaching unity in some cases. Combustion
instabilities have become troublesome in gas turbines in recent years, mainly a consequence of the need
to operate at lower fuel/air ratios as part of the strategy to minimize the generation of nitrogen oxides.
Otherwise, undesirable oscillations have been relatively infrequent in such systems.

On the basis of those observations|crude but nevertheless valid|one is tempted to o®er the general-
ization that any combustion system possessing a choked exhaust is liable to exhibit combustion instabilities.
Is there any reason why such a simple characterization might contain some truth? In fact there is, broadly,
a reason: A system having a choked exhaust nozzle in general will have lower acoustic losses than it would
if the exhaust °ow were not choked. The main purpose of this section is to clarify how this result comes
about; and to show how those losses are determined theoretically and experimentally. A useful consequence
is that with the solution we discover how to obtain a good estimate for the length of chamber to use for
approximate calculation of the frequency of an instability.

The essential idea is quite simple, as sketched in Figure 6.31. An acoustic wave is incident from the
left on an axisymmetric sonic nozzle, Figure 6.31(a), or two-dimensional nozzle, Figure 6.31(b). The wave
propagates in the direction parallel to the axis of the nozzle but in general has an unspeci¯ed distribution
of variables in planes normal to the axis. For this analysis we assume the °ow upstream of the entrance to
the nozzle is uniform. Because we consider only linear behavior, it is consistent with the analysis of motions
in the chamber to assume the ¯rst-order representation of the incident wave in the radial and azimuthal
coordinates,32

Jm(·mnr) cosnμ (standing waves)

Jm(·mnr)e
§inμ (travelling or \spinning" waves)

(6.187)

For the two-dimensional case, the incident waves have amplitude independent of y de¯ned in Figure 6.31(b)
and dependence on cos(kl x) upstream of the nozzle. A source of the steady incident waves is assumed to
exist somewhere far to the left (upstream) of the nozzle and is ideal in the sense that it perfectly absorbs
any waves travelling after re°ection from the nozzle.

A large fraction of the incident waves passes through the nozzle and the remainder is re°ected back
to the chamber. That is the result of complicated interactions between the waves, the mean °ow and the
nozzle itself. The last introduces explicit dependence of the re°ected waves on the shape of the nozzle. Most
available calculations of the nozzle admittance function rest partly on the approximation that the nozzle is
slender;33 that restriction eliminates explicit dependence on the shape, where `shape' means the variation of
cross section with position.

Re°ection of a portion of the incident waves therefore occurs because the average °ow is non-uniform
in the streamwise direction. Without the shape of the nozzle appearing in the problem, satisfying any
conditions on a lateral boundary is unnecessary|indeed not possible. The form of a wave having structure

32We use dimensionless coordinates, r standing for r=R and z for z=L where R is the radius of the nozzle at its entrance

and L is the length from the entrance to the throat. For the two-dimensional nozzle, R is replaced by W=2; see Figure 6.31.
33`Slender' means that the slope of the nozzle boundary, the rate of change of the diameter of the cross section with

position, along the axis is small. We will not try to make this statement more precise. See the cited references for somewhat
closer estimates.
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Figure 6.31. Idealized axisymmetric and two-dimensional nozzles for calculating admit-
tance functions.

in transverse planes is set by its form at the entrance. As a result of these approximations we have described
only qualitatively, determining the wave system produced in the nozzle by its action on the planar incident
wave, comes down to ¯nding the variation of one quantity in the °ow through the nozzle. Usually that
quantity has been chosen to be the density, or the pressure, of the wave system.

In his seminal work, Tsien (1952) assumed that the oscillations in the nozzle are isothermal, an approx-
imation corrected by Crocco (1953). Crocco's analysis of purely longitudinal waves for which the velocity
°uctuations are parallel to the axis of the nozzle in included as Appendix B of Crocco and Cheng (1956).
That is probably the best place to become acquainted with analysis of the problem; we follow Crocco's anal-
ysis with little change. The linearized continuity and momentum equations for one-dimensional unsteady
motions can be written
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We assume that the entropy of an element of °uid does not change in passage through the nozzle, so the
linearized equation is μ
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= 0 (6.190)

Note that the averaged quantities ¹½, ¹p, ¹u are all functions of position. They are assumed known from the
shape of the nozzle.

The last equation is integrated to give

s0

Cv
=
p0

¹p
¡ ° ½

0

¹½
= F

0@t¡ zZ
ze

dz0

¹u(z0)

1A (6.191)

in which the function F is determined by the (presumed known) time dependence of the entropy at ze, the
entrance plane of the nozzle. To make the connection with Crocco's analysis easy to follow, we assume
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harmonic time dependence34 and introduce the de¯nitions of '(z), ¾(z), and º(z)

p0

¹p
= '(z)e¡i!t ;

½0

¹½(z)
= ¾(z)e¡i!t ;

u0

¹u(z)
= º(z)e¡i!t (6.192)

Then (6.191) becomes

'(z)¡ °¾(z) = "e
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zR
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dz0
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(6.193)

where " is C¡1V times the amplitude of the entropy oscillation.

With (6.192), equations (6.188) and (6.189) are now
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Tsien (1952) ¯rst noticed that this pair of equations could be solved to give ¾ and º in terms of a known
function for the special case in which the mean velocity increases linearly with distance from the entrance
plane. To simplify the discussion and results even further we will not account for entropy changes and set
" = 0.

To specify a linear velocity pro¯le, take the slope to be constant, written as

d¹u

dz
=
¹u

z
=
¹a¤
z¤
=
¹a¤ ¡ ¹ue
(z¤ ¡ ze) (6.196)

where ( )¤ denotes values at the throat and, as earlier, ( )e identi¯es values at the entrance.
35 Thus z¤¡ze

is the length of the subsonic section of the nozzle. Tsien introduced the new variable ³,
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The relation between the speed of sound and the Mach number,

T
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may be used to give the formula μ
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Finally de¯ne a dimensionless or \reduced" angular frequency ¯,

¯ =
z¤!
¹a¤

=
!(z¤ ¡ ze)
¹a¤ ¡ ¹ue (6.199)

Substitution of the preceding de¯nitions and combination of (6.194) and (6.195) eventually produces the
equation with which ¾ may be computed:
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34Recall that we use the convention e¡i!t whereas Crocco uses e+i!t.
35Except MN (not Me) denotes the Mach number of the °ow entering the nozzle.
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The point ³ = 0 lies upstream of the entrance to the nozzle, but ³ = 1 is at the throat ( ¹M = ¹M¤ = 1).
Hence we must choose the solution to (6.200) which is non-singular at ³ = 1, known as the hypergeometric
series (Morse and Feshbach 1953). Expanded in powers of 1¡ ³, the solution is

F (a; b; c; 1¡ ³) = 1 + ab
c
(1¡ ³) + a(a+ 1)b(b+ 1)

c(c+ 1)

(1¡ ³)2
2!

+ ¢ ¢ ¢ (6.201)

with

c = a+ b+ 1 = 2

μ
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μ
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2

¶ (6.202a,b)

Crocco and Cheng (1956) noted that the convergence of (6.201) is slow for 1¡ze near one (i.e. when ze is
small, as the case is for small Mach number at the nozzle entrance) and have given alternative representations
for ze small. Thus the problem of calculating the admittance function is solved, subject to the limitations
of the analysis discussed above. Using the relation for isentropic °ow assumed here, we ¯nd the admittance
function for a nozzle36

AN = ¡(û ¢ n̂)=¹a
(p̂=°¹p)

=
û=¹a

½̂=¹½
= ¹MN

ºe
¾e

(6.203)

where ¹MN stands for the Mach number of the average °ow entering the nozzle.

A particularly important limit of (6.201) is that for very slow or \quasi-static" conditions, the value
assumed for ! ! 0 (i.e. ¯ ! 0). This condition is equivalent to that existing in a \short" nozzle, that is
when the wavelength of the oscillation is long compared with the length of the nozzle. Evidently the same
result can therefore be obtained with at least two arguments. Under these conditions, the °uctuation of
velocity at the nozzle entrance is in phase with the imposed pressure °uctuation. The admittance function
for short nozzles was ¯rst obtained by Crocco (1953, p. 52, ¯ = 0) and subsequently by several others,
including Zinn (1972), the result being

AN = ¹MN
° ¡ 1
2

(6.204)

This is of course the value of the nozzle admittance function for ¯(i.e. !) = 0.

Figure 6.32 shows some results for realistic ranges of ¯ and ¹MN . For example, for a rocket having a
nozzle entrance 15 cm long and with ¹a = 1500 m/s, ¯ = 0:3 when ! = 3000s¡1 (f ¼ 500s¡1). This estimate
shows that for practical purposes, since ¯ is quite small, the approximation (6.204) is in fact quite good.

Experimental results have shown that for the conditions supposed, the theory worked out by Tsien and
Crocco gives accurate results: The action of a choked exhaust nozzle on small amplitude sinusoidal oscillations
may be assumed accurately known. Crocco, Monti and Grey (1961) reported the ¯rst test results, in which
the velocity was measured with a hot wire. Data were obtained for relatively high values of ¯ because the
speed of sound in cold-°ow test is much lower than the values in hot ¯rings. Figures 6.33 and 6.34 show that
their experimental results seem to agree quite well with the theory described above. However, the authors
expressed some reservations since they were forced to apply signi¯cant adjustments to the raw data, owing
in large part to inaccuracies in the results for the velocity °uctuations.

Bell (1972) has obtained the best data for the nozzle admittance function; his experimental results
were included in the papers by Zinn, Bell, Daniel and Smith (1973) and by Bell, Daniel and Zinn (1973).
The data were obtained using the method based on an impedance tube as recommended by Culick and

36Sometimes the density replaces the pressure, giving a quantity di®ering from (6.204) by a factor °. Then (6.204), for
example, becomes ¹MN (° ¡ 1)=2°.
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Figure 6.32. Numerical values for the admittance function of a nozzle exposed to isentropic
oscillations, equation (6.203): (a) real part; (b) imaginary part. (Crocco and Cheng 1956)
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Figure 6.33. Results for the real part of the admittance function for a nozzle. Open
symbols represent uncorrected data; ¯lled symbols represent the same data corrected for
closer agreement with Crocco's theory (Crocco, Monti, and Grey 1961).
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Figure 6.34. Results for the imaginary part of the admittance function for a nozzle
(Crocco, Monti, and Grey 1961).
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Dehority (1969).37 Figures 6.35{6.37 show the experimental results and the predictions according to the
theory described by Crocco and Sirignano (1967). The agreement with the theory is clearly quite good.38

Results are shown for purely longitudinal modes, but Bell reported equally good agreement between theory
and his data for the lowest longitudinal/tangential modes.39
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Figure 6.35. Comparison of the theoretical and experimental admittance results for nozzle
15-08-2.5, longitudinal modes (Bell 1972).

Some related data were taken in tests at the Naval Weapons Center (at that time the Naval Ordnance
Test Station, usually called NOTS), reported by Bu®um, Dehority, Slates and Price (1967); see also cited
documents by the same authors. Those works are useful for a comparison of three methods of measuring the
losses: the decay of pulses produced by small explosive charges; decay of steady oscillations; and properties
of the resonance curve. The last seems to have been the best at that time although the results given are not
useful for other applications.

37The general features of the method and its most e®ective realization, including best experimental procedure, have been
described by Baum (1980).

38The independent variable is the dimensionless frequency, s = !rc
¹a
, where rc is the radius of the impedance tube; rcc is

the radius of the throat of the nozzle.
39Still not ¯rmly established experimentally is the result predicted by the analyses (Culick 1961, Crocco and Sirignano

1967) that under some conditions, tangential modes are ampli¯ed by passage through a choked nozzle.

LINEAR STABILITY OF COMBUSTOR DYNAMICS 

6 - 64 RTO-AG-AVT-039 

 

 



Δ    Experiment, Test No.2

M   =  0.08

rcc/rc   =  0.44

o      Experiment, Test No.1

θ    =  45E

Theory

−
−3

1.81.61.41.21.00.80.60.40.20

1

2

4

s

0

1

1

1.81.61.41.21.00.80.60.40.20

-1

0

2

s

-2

A
N

(r)

M

1

N

A
N

(i)

M

1

N

−

−

N

Figure 6.36. Comparison of the theoretical and experimental admittance results for nozzle
45-08-2.5, longitudinal modes (Bell 1972).
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Figure 6.37. Comparison of the theoretical and experimental admittance results for nozzle
45-16-2.5, longitudinal modes (Bell 1972).
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6.14.3. Attenuation of Acoustic Energy Due to Condensed Products of Combustion. Par-
ticularly in solid propellant rockets using metallized propellants, but in other systems as well, some of the
combustion products are formed as liquid or solid particles. The viscous interactions between the particles
and the gas may, under conditions, provide signi¯cant dissipation of energy. In the context of this chapter,
that means that the corresponding contribution to ® must be taken into account. It is often the case that
the Reynolds number based on the particle diameter and the relative gas/particle velocity is outside the
range for which Stokes' law|i.e. linear behavior|is a valid approximation. It is then necessary to use a
more realistic nonlinear representation of the drag force. However, the linear approximation to attenuation
tends in a sense to be conservative, so it is a good basis for an approximation. It is conservative in the
sense that the curve of attenuation as a function frequency is broader, for a given particle size, for nonlinear
behavior. Thus, over a frequency range centered at !n¿ = 1, (Figure 6.38), the linear approximation is an
over-estimate of the actual value one might expect would be the actual value.

In this section we discuss a contribution that is well-established as an important factor in the stability of
solid propellant rockets, the energy loss and damping of acoustic waves caused by small-amplitude motions of
small liquid droplets. By far the most important example is the attenuation of instabilities by liquid droplets
of aluminum oxide (Al2O3) produced in the combustion of aluminized propellants.

40 The fact that (due to
the high temperatures) the particles are liquid does not explicitly enter the following analysis. Internal
motions of the droplet material are not accounted for.

The amount of damping provided by condensed material (liquid or solid) depends principally on three
quantities: the mass fraction Cm = ½`=½g of condensed material; the size of the particles; and the frequency
of the oscillations. Perhaps the most signi¯cant practical consequence of the analysis summarized here is the
result that, for a given frequency, there is a particle size (diameter) for which the attenuation per particle
is maximum. That conclusion has been con¯rmed in practice and is the basis for one important means of
treating instabilities in solid propellant rockets.

Attenuation of sound by suspended particles in a gas was ¯rst treated theoretically more than 85 years
ago. The modern theory began with the work of Epstein and Carhart (1953). A simpli¯ed analysis and
experimental con¯rmation of the results have been provided by Temkin and Dobbins (1966)a,b. The calcula-
tions discussed here constitute an alternative method ¯tting naturally in the approximate analysis. Extensive
work by Dehority and Kraeutle (1976) and by Kraeutle et al. (1976) has shown that this approach works in
practice.

The linear gas/particle interactions arise from equations (A.34) and (A.49) written to ¯rst order in the
°uctuations:

±F0l = ¡¹½l
@±u0l
@t

±Q0l = ¡¹½lC
@±T 0l
@t

(6.205a,b)

The parts of F0F0F0 and P0 due to these terms only are found from the linearized forms of equations (A.68) and
(A.70):

FFF0l = ±F
0
l = ¡¹½l

@±u0l
@t

P0 =
R

CV
±Q0l = ¡¹½lR

C

CV

@±T 0l
@t

(6.206)a,b

40The discussion in this section is a slightly revised form of Section IVD of the article by Culick and Yang (1992)
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Thus, equations (6.93) and (6.94) give the contributions to the frequency shift and the growth constant:

(! ¡ !n)l ´ ±!l = ¡¹a2
2!n¹pE2n

(
kn
¹a

R

CV
C ¹½l

Z
1

´n

μ
@±T 0l
@t

¶(i)
ÃndV

¡¹½l
Z

1

´n

μ
@±u0l
@t

¶(r)
¢ rÃndV

) (6.207)

®l =
¡¹a2

2!n¹pE2n

(
kn
¹a

R

CV
C ¹½l

Z
1

´n

μ
@±T 0l
@t

¶(r)
ÃndV

+¹½l

Z
1

´n

μ
@±u0l
@t

¶(i)
¢ rÃndV

) (6.208)

We have assumed, a good approximation in most practical cases, that the mass of particles per unit volume,
½l, and the mass fraction are nearly independent of position in the chamber and constant in time.

To ¯nd ±u0l and ±T
0
l , we treat the motions as locally one-dimensional and solve the problem of single

particle motion, u0l(t) and Tl(t) being the velocity and temperature, respectively, of a particle located in a
gas having oscillatory velocity u0(t) and T 0(t). Temperature gradients within a particle are ignored. See, for
example, Rangel and Sirignano (1989) for a discussion of problems in which this assumption is not made.
Moreover, for the following calculations we also ignore the e®ects of vaporization and combustion of the
particles. In the absence of combustion, condensation or vaporization may cause increased attenuation of
acoustic waves; the matter is addressed at the end of this section. We assume tentatively that the motions are
such that the Reynolds number based on the relative speed, ju0l ¡ uj, is less than unity. The approximation
of Stokes' °ow then applies, and the equations of motion are

du0l
dt

= ¡ 18¹
½s¾2

(u0l ¡ u)
dT 0l
dt

= ¡ 12k

½sC¾2
(T 0l ¡ T )

where u0l is the velocity in the same direction as u
0, and ¾ is the particle diameter. These equations can be

rewritten as

du0l
dt

+
1

¿d
±u0l = ¡

du0

dt

dT 0l
dt

+
1

¿t
±T 0l = ¡

dT 0

dt

(6.208)a,b

The relaxation times are

¿d = ¡½s¾
2

18¹

¿t =

μ
3

2

C¹

k

¶
¿d

(6.209)a,b

With u0 = ( _́n=°k2n)rÃn and T 0= ¹T = (° ¡ 1)´nÃn=°, the steady-state solutions (t ! 1) to equations
(6.208)a,b are

±u0l = X1(´n ¡ ¿d _́n)
1

°k2n
rÃn

±T 0l = ¡X2
μ
¿t´n +

_́n
!2n

¶
° ¡ 1
°

¹TÃn

(6.210)a,b
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Dependence on frequency and particle properties is contained chie°y in the two functions X1 and X2:

X1 =
!n−d
1 + !2d

X2 =
!n−t
1 + !2t

(6.211)a,b

where −d = !n¿d and −t = !n¿t. For use in equations (6.207) and (6.208), the time derivatives of equations
(6.210)a,b are required. This produces terms containing _́n and Ä́n. To be consistent, we replace Ä́n by
¡!2n´n and, after setting ´n = ^́nei!nt, we eventually ¯nd the results

®l = ¡1
2

Cm
1 + Cm

"
X1

1

E2n

ZZ
°
μrÃn
kn

¶2
dV + (° ¡ 1) C

Cp
X2

#

±!l =
1

2

Cm
1 + Cm

"
−dX1

1

E2n

ZZ
°
μrÃn
kn

¶2
dV + (° ¡ 1) C

Cp
−tX2

# (6.212)a,b

Equations (6.212)a,b, normalized to the angular frequency !n, are plotted in Figures 6.38 and 6.39 for
longitudinal oscillations. The independent variable is !n¿d, 2¼ times the ratio of the relaxation time for
relative motion [see equation (6.137)a] to the period of the motion. According to equation (6.137)a, the
dominant in°uence on the relaxation time is the particle diameter ¿d » ¾2. For typical solid propellants and
operating conditions, the diameters of particles may range from fractions of a micron to tens of microns.
The results shown in the ¯gures have been computed for longitudinal oscillations in a chamber of constant
cross section, so Ãn = cos knz = cos(¼nz=L). In this case, equations (6.212)a,b reduce to

®l = ¡1
2

Cm
1 + Cm

·
X1 + (° ¡ 1) C

Cp
X2

¸
±!l =

1

2

Cm
1 + Cm

·
−dX1 + (° ¡ 1) C

Cp
−tX2

¸ (6.213)a,b

The most striking feature of the curves in Figure 6.38 is that, for a ¯xed value of mass loading Cm,
the dimensionless attenuation constant has a maximum value. That is, according to the interpretation
expressed by equation (6.96), the number of cycles of oscillation required to reduce the amplitude by 1=e
is minimum. Thus, for a ¯xed frequency, there is a best value of relaxation time, that is, particle size, for
obtaining maximum attenuation. This result has served as a successful practical guide to treating combustion
instabilities in motors. Addition of inert particles having appropriate sizes, or altering the propellants in
other ways to a®ect the sizes of particular produced, has reduced the amplitudes of oscillations in actual
examples (e.g. Derr et al. 1979), discussed in Section 8.4.

If, as usually is the case, there is a distribution of particle sizes, (6.212)a,b become sums over the
contributions from di®erent sizes:

®` = ¡1
2

Cm
1 + Cm

mX
s=1

Ks

·
x1s + (° ¡ 1) C

Cp
x2s

¸

±!` =
1

2

Cm
1 + Cm

mX
s=1

Ks

·
−dsx1s + (° ¡ 1) C

Cp
−tsx2s

¸ (6.214)a,b

The result (6.145)a was used by Dehority and Kraeutle (1976) to compute the damping for the exper-
imentally determined distribution shown in Figure 6.40. These data were obtained as measured values for
the residue produced in a T-burner ¯ring. The process is extremely tedious and time-consuming. Details
are given in the reference cited and other works. Table 6.5 is a list of the measured mass fractions used in
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Figure 6.40. Mass distribution of subfractions of the combustion residue of NWC Mix
No. 10. The total mass distribution was obtained by recombination of the distributions of
subfractions. The total number distribution was calculated from the total mass distribution.
(Dehority and Kraeutle 1976).

the preparation of Figure 6.40. The main parameter values used in the calculations of the particle damping
are given in Table 6.6.

To check the validity of the theory over a realistic range of frequency, data were used from tests with
T-burners of di®erent lengths. The frequencies of the oscillations were about 290Hz, 640Hz and 1920Hz.
Table 6.7 is a list of the attenuation coe±cients computed for intervals of particle size varying from 0.4 ¹m
to 3 ¹m.
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Table 6.5. Mass Fractions of NWC Mix No. 10 Residue for Particles Smaller than 43 ¹m.

Diameter, Residue in Center of Interval, % residue Mass fraction
¹m % of weight interval, ¹m ¹m in interval in interval
0.5 0.0
0.9 1.9

0.7
0.4 1.9 0.016891

1.3 11.0
1.1

0.4 9.1 0.080899
1.7 24.0

1.5
0.4 13.0 0.115570

2.1 34.5
1.9

0.4 10.0 0.088900
2.5 40.3

2.3
0.4 6.0 0.053340

3.5 49.0
3.0

1.0 8.7 0.077343
4.5 54.4

4.0
1.0 5.4 0.048006

5.5 58.5
5.0

1.0 4.1 0.036449
6.5 61.6

6.0
1.0 3.1 0.027559

7.5 65.0
7.0

1.0 3.4 0.030226
8.5 68.0

8.0
1.0 3.0 0.026670

9.5 70.5
9.0

1.0 2.5 0.022225
10.5 73.0

10.0
1.0 2.5 0.022225

11.5 75.3
11.0

1.0 2.3 0.020447
12.5 77.5

12.0
1.0 2.2 0.019558

13.5 79.7
13.0

1.0 2.2 0.019558
14.5 81.8

14.0
1.0 2.1 0.018669

15.5 83.7
15.0

1.0 1.9 0.016891
16.5 85.4

16.0
1.0 1.7 0.015113

17.5 86.8
17.0

1.0 1.4 0.012446
18.5 88.2

18.0
1.0 1.4 0.012446

19.5 89.5
19.0

1.0 1.3 0.011557
20.5 90.7

20.0
1.0 1.2 0.010668

23.5 93.7
22.0

3.0 3.0 0.026670
26.5 96.0

25.0
3.0 2.3 0.020447

29.5 97.5
28.0

3.0 1.5 0.013335
32.5 98.6

31.0
3.0 1.1 0.009779

35.5 99.3
34.0

3.0 0.7 0.006223
38.5 99.7

37.0
3.0 0.4 0.003556

41.5 99.9
40.0

3.0 0.2 0.001778

Table 6.6. Parameters Used in the Particle Damping Calculations.

C 0.3396 cal/g±C
Cm 0.48 (obtained from propellant composition)
Pr 0.75
° 1.2
½l 3.0 g/cc
¹ 0.00065 poise

The ¯nal results of this work are given in Table 6.8, the measured and calculated values of the attenuation
coe±cient for the three frequencies. The close agreement is actually vary surprising and is probably fortu-
itous. Nevertheless, it is really a testimony to two factors: the careful experimental work by Dr. Kraeutle41

and the apparent accuracy of the approximate theory.

Figure 6.38 shows a strong dependence of the frequency shift on both particle mass loading and on
!n¿d or, as reasoned earlier, on particle size. The behavior is better understood by recognizing that, in a
¯xed geometry (here a tube of length L), the wavelength is ¯xed so that, from the fundamental relation
a = f¸ = !¸=2¼, a frequency shift is equivalent to a change in the speed of sound:

±!

!
=
±a

a
(6.215)

Note especially in Figure 6.39 that, as !n¿d approaches unity, when the attenuation constant is maximum,
the change in the speed of sound is not a small perturbation if the particle mass loading is greater than 0.5.
The mass loading as a function of aluminum content ¹ in the solid propellant is given by the formula

Cm =
1:89¹

1¡ 1:89¹ (6.216)

41Dr. Karl Kraeutle worked at the Naval Air Warfare Center for 40 years and produced many results of fundamental
and practical value. He was widely known and highly respected for his dogged and precise experimental work on problems
associated with solid propellants and hazardous materials. He su®ered a premature death due to cancer in 2003.
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Table 6.7. Damping Coe±cients Measured, NWC Mix No. 10, for Particle Sizes Smaller
than ¹m.

Center of Interval, Damping (sec¡1) for interval
interval, ¹m ¹m 290Hz 640Hz 1,920Hz

0.7 0.4 ¡0:01 ¡0:06 ¡0:56
1.1 0.4 ¡0:15 ¡0:73 ¡6:59
1.5 0.4 ¡0:40 ¡1:94 ¡17:44
1.9 0.4 ¡0:49 ¡2:39 ¡21:37
2.3 0.4 ¡0:43 ¡2:09 ¡18:53
3.0 1.0 ¡1:07 ¡5:14 ¡43:58
4.0 1.0 ¡1:17 ¡5:57 ¡41:68
5.0 1.0 ¡1:38 ¡6:37 ¡38:61
6.0 1.0 ¡1:48 ¡6:51 ¡30:06
7.0 1.0 ¡2:16 ¡8:82 ¡30:55
8.0 1.0 ¡2:41 ¡8:90 ¡23:64
9.0 1.0 ¡2:42 ¡7:95 ¡16:87
10.0 1.0 ¡2:80 ¡8:10 ¡14:36
11.0 1.0 ¡2:88 ¡7:29 ¡11:26
12.0 1.0 ¡2:99 ¡6:63 ¡9:23
13.0 1.0 ¡3:14 ¡6:19 ¡7:97
14.0 1.0 ¡3:07 ¡5:44 ¡6:62
15.0 1.0 ¡2:79 ¡4:51 ¡5:26
16.0 1.0 ¡2:46 ¡3:68 ¡4:15
17.0 1.0 ¡1:97 ¡2:76 ¡3:04
18.0 1.0 ¡1:90 ¡2:51 ¡2:72
19.0 1.0 ¡1:68 ¡2:13 ¡2:27
20.0 1.0 ¡1:48 ¡1:80 ¡1:89
22.0 3.0 ¡3:28 ¡3:78 ¡3:92
25.0 3.0 ¡2:09 ¡2:28 ¡2:33
28.0 3.0 ¡1:13 ¡1:20 ¡1:21
31.0 3.0 ¡0:69 ¡0:72 ¡0:73
34.0 3.0 ¡0:35 ¡0:35 ¡0:36
37.0 3.0 ¡0:17 ¡0:17 ¡0:17
40.0 3.0 ¡0:08 ¡0:08 ¡0:08

Table 6.8. Measured and Calculated Damping Coe±cients for NWC Mix and 10.

NWC Frequency, Measured Calculated
mix No. Hz damping (sec¡1) damping (sec¡1)
10 290.7 ¡46:1 ¡48:52
10 640.6 ¡115:0 ¡116:09
10 1927.3 ¡364:2 ¡367:05

If the propellant contains 15% aluminum (¹ = 0:15), Cm = 0:4, substantial shifts in the speed of sound occur.
That is why this e®ect of particles was included in the formulation of the conservation equations derived
in Annex A and discussed further in Chapter 3. The speed of sound given by equation ¹a = (°RT )1=2 =h

°
1+Cm

³
p
½g

´i1=2
, has the value implied by Figure 6.39 for !n¿d !1.

The dependence of the frequency shift on !n¿d may be interpreted as follows. According to equation
(6.148)a, the relaxation time is proportional to the square of the particle diameter, and so !n¿d » !n¾

2.
For low frequencies or small particles, !n¿d ! 0; according to Figure 6.39, the frequency shift and change
in the speed of sound, equation (6.215), vanish. In either case|slow unsteady motions with ¯nite particle
sizes or vanishingly small particles exposed to unsteady motions|the viscous losses in the °ow about the
particles become negligible. Hence, there can be no frequency shift, a result to be expected by analogy with
the behavior of the resonant frequency of a classical mass/spring/dashpot system.

On the other hand, if the frequency is high enough, even for small particles, or if the particles are large,
the viscous stresses cause substantial motions of the particles. When !n¿d is su±ciently small, the particles
follow the gas motion very closely. The gas/particle mixture then behaves as a single °uid having density
equal to the sum of the mass of gas and condensed material per unit volume, ½ = ½g + ½` = ½g(1 + Cm),
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but the compressibility is provided by the gas. Hence, the speed of sound assumes the equilibrium value,h
°

1+Cm

³
p
½g

´i1=2
with mass-averaged values for the thermodynamic properties.

The preceding results rest crucially on the assumptions of Stokes' °ow and rapid decay of transient
motions so that equations (6.208)a,b apply. It is an easy calculation to show that the Reynolds number
based on the relative velocity exceeds unity for realistic particle sizes (1¹ ¡ 10¹) even for quite modest
amplitudes of oscillation. Hence, it appears that a nonlinear analysis of gas/particle interactions is required
to cover conditions arising in practice. However, in all current applications, including the SSP program
(Nickerson et al. 1983) the linear results are used. Dehority and Kraeutle (1976) based their experimental
con¯rmations on the assumption of linear behavior, and it is likely that nonlinear e®ects cannot be detected
within the experimental uncertainties.

Calculations of the attenuation constant including nonlinear e®ects have shown that the linear results
tend to be conservative. That is, for a ¯xed frequency, increasing the amplitude of oscillation broadens
the curves in Figure 6.38 and moves the peak to slightly larger particle size; the maximum value of the
attenuation is practically constant with amplitude. Levine and Culick (1972, 1974) have produced some
interesting results for the damping of nonlinear waves but with linear gas/particle interactions. The problem
of nonlinear attenuation probably merits careful analysis, but the prospects for experimental veri¯cation are
not especially promising at this time. Probably the best relevant reference for calculations is Korman and
Micheli (1971).

6.15. Distributed Combustion

It may seem somewhat strange to identify `distributed combustion' as a distinguished topic. All of the
systems we have been discussing involve combustion distributed in space. In treatment of liquid rockets one
must in fact take care to specify when the burning processes are idealized to be so rapid that they occur
in thin sheets, in the limit having no volume. The early works at Princeton described in Sections 6.1 and
7.1 are well-known examples. Distributed combustion has therefore become a term and a subject referring
virtually always to solid propellant rockets. The discussion in this chapter has illustrated some advantages
of the realistic approximation that combustion is then con¯ned to the boundary. This section is a brief essay
on some problems arising with the presence of combustion distributed in space away from the surface.

In the context of an analysis based on spatial averaging, however, there is hardly any di®erence in
the computational di±culties presented by processes concentrated or distributed in space. The important
distinctions between combustion in a thin zone and distributed combustion are associated mainly with the
modeling required: Attention is forcibly directed to the aspects of the subject where it will produce the
greatest bene¯ts.

Combustion processes in virtually all gas- and liquid-fueled systems are spread out in space and are
logically referred to as distributed, except when approximated as isolated °ame sheets. It is a matter of
convention that the term `distributed combustion' has come to refer to combustion within the volume of a
solid rocket, removed from the boundary where most of the conversion solid ¡! products occurs. Moreover,
at the usual chamber pressures, if distributed combustion occurs, it probably is primarily the oxidation of
aluminum to aluminum oxide. That is the subject of this section.

The principal motivation to study distributed (sometimes referred to as `residual') combustion has been
the burning of aluminum. It's a subject which has received much attention, for several reasons, in connection
with the formation of `slag', relatively large collections or coalescences, of aluminum oxide (liquid Al2O3). So
far as combustion instabilities are concerned, the central questions are directed to the dynamics. Particularly,
do the dominant processes depend on frequency, or are they essentially quasi-static?
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Although the idea that combustion of aluminum continues far from the primary burning surface of a
metallized solid propellant, it had been considered mainly a matter of steady burning until the late 1970s. For
example, in 1977 Geisler (1977) chaired a workshop on aluminum combustion in which the topic of residual
combustion, re°ected as distributed combustion in a chamber, received considerable attention. General
characteristics of aluminum combustion, including behavior far from a propellant burning surface, was at
that time a topic of fairly active research (e.g., see Derr et al. 1974, Micheli and Schmidt 1977, and a later
comprehensive report by Price et al. 1982) which is especially interesting for its photographic evidence.

Beckstead (1987) ¯rst proposed that unsteady combustion of aluminum might not be negligible in the
interpretation of T-burner data. His reasoning was based on unusually large values of the velocity-coupled
response function inferred for metallized propellants, as much as ten times the values normally measured for
the pressure-coupled response. The velocity-coupled T-burner has test grains on the lateral walls. Hence
when a longitudinal mode is unstable, as suggested in Figure 6.41, the velocity °uctuation acts to `scour'
aluminum particles from the test propellant. Then the aluminum burns as it moves with the °ow away from
burning surface. Any °uctuations in the burning rate of the aluminum may contribute to the instability of
waves in the chamber, but should not be attributed to the response of surface combustion.

ACOUSTIC

VELOCITY

ACOUSTIC

PRESSURE

DRIVER

GRAIN

TEST
GRAIN

EXHAUST

BURNING

Al PARTICLES

Figure 6.41. A possible explanation of increased growth rate due to distributed combustion
of aluminum in a T-burner.

Consequently, the distributed combustion of aluminum could conceivably give falsely increased values
of the surface response if the traditional interpretation is used. This idea seems not to have been pursued
further. There have been other, isolated and brief, speculations concerning the possible importance of
distributed combustion of aluminum in laboratory test devices but no incontrovertible evidence is available
and the matter remains open.

The term involving combustion in the volume of a chamber is explicit in the general equations developed
in Annex A and Chapter 3. Formally, then, it is quite easy in a linear analysis to treat distributed combustion.
Beckstead and Brooks (1990) noted that the Standard Stability Program (SSP, Nickerson et al. 1984) contains
the term, therefore providing a means of investigating the possible e®ects of distributed combustion on
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stability. They had only an elementary model of the combustion processes so the results are probably too
over-simpli¯ed to be of great value. However, the strategy is correct and merits further development.

Professor Beckstead and his students reported some interesting work based on use of a Rijke tube to
investigate combustion of aluminum under unsteady conditions. Measurements of distributed combustion
were carried out by Braithwaite et al. (1984) and Beckstead et al. (1985). Results of experimental work
with the Rijke tube were summarized by Finlinson et al. (1987) and Raun and Beckstead (1993); a useful
general review of Rijke tubes was provided by Raun et al. (1993). The main ¯nal results of the program
are summarized in the paper by Brooks and Beckstead (1995) in which they give a good list of references.
Much of the paper is devoted to some aspects of the steady combustion of aluminum and is not of immediate
interest here. So far as the unsteady behavior is concerned, perhaps the main conclusion in the present
context is that the e®ects of aluminum combustion on acoustics are indirect, in the words of the authors,
\... a signi¯cant part of the acoustic growth with the addition of aluminum is due strictly to the change
in the gas temperature pro¯le." The e®ects observed are therefore, apparently, speci¯c to the device. It
does not seem possible to draw any conclusions or guidelines generally helpful to understanding the role of
aluminum combustion in problems of unsteady combustion in solid propellant rockets.

In contrast to the situation in the U.S., there was a signi¯cant e®ort in France devoted to distributed
combustion of aluminum from the mid-1990s to 2002. As true of much of the French work on unsteady
behavior in solid propellant rockets in the 1990s and later, motivation was related to signi¯cant di±culties
associated with an instability of the fundamental longitudinal mode in the Ariane 5 booster motor (P230).
The program devoted to two-phase °ow in that motor apparently began with the doctoral thesis by Dupays
(1996), who remained a central ¯gure in the work until it ended in »2002. Work on distributed combustion
was a logical development in the broader program formed to treat problems in the Ariane motor P230.

Early concern with oscillations in the Ariane 5 led to the integrated e®ort with the broader program
ASSM, Aerodynamics of Segmented Solid Motors. The Pressure Oscillations Program (POP) has been
devoted to obtaining numerical and experimental results for subscale tests (1/15th scale) of the P230. Much
e®ort has been appended on validating numerical tools for predicting the frequencies and amplitudes of
oscillations. Fabignon et al. (2003) gave a very informative overview of the principal results for oscillations
studied in ASSM and POP. A general view of the three-segment motor in question is shown in Figure 6.42.

Figure 6.42. General view of the Ariane 5 strap-on booster motor P230 (Fabignon et al. 2003).

Evidence of a serious problem is reproduced in Figure 6.43, based on measurements taken during static
quali¯cation tests of the full-scale motor performed sometime in 1993{1995. The maximum amplitude of the
oscillatory pressure is about 0.5% of the mean pressure but the thrust oscillation has maximum amplitude 5%
which causes practical problems due to oscillatory accelerations. That is the main reason that the programs
ASSM and POP have existed.42 Recall that the propellant in the Ariane 5 contains 18% aluminum. Vortex
shedding leads to interactions between the vortices and either the internal structural surfaces of the motor,
or the mean °ow ¯eld. There are two potentially troublesome consequences: Acoustic waves may be excited
and sustained; and the accompanying °uctuations of thrust are liable to be unacceptably large.

42The greater thrust oscillations, for roughly the same amplitude of pressure oscillations, in the Ariane 5 than in the
Shuttle, are due to geometrical and phase relations (Vuillot and Casalis 2002).
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Already by the early 1990s, subscale ¯rings of motors related to the P230 con¯guration had caused
concern about the prospects for oscillations in the full-scale motor. The possible amplitudes were of course
unknown, but more worrisome for the program, as were the causes. For the range of low frequencies charac-
terizing the ¯rst few longitudinal modes, weak pressure and velocity-coupled driving (nearly quasi-steady),
combined with the large damping associated with the nozzle and convective °ow acoustic losses, to give
stable modes according to widely accepted procedures based on the ideas developed in this chapter. How-
ever, known experience with the Shuttle SRMs and the Titan had shown that vortex shedding in segmented
motors could drive the fundamental mode to relatively low amplitudes. (See discussion in Sections 1.3.3,
2.2.7, and 6.12.1. The process of vortex shedding is not included in the systematic treatment of unsteady
motions based on the ideas and equations developed in the framework suggested by classical acoustics.

Figure 6.43. Results for the unsteady pressure measured in a static test ¯ring of the Ariane
5, P230 motor (Fabignon et al. 2003).

We have already discussed the developments beginning with the suggestion by Flandro and Jacobs (1973)
followed by the sequence of analytical and experimental works establishing the importance of the process in
particular cases (Dunlap and Brown 1981, Dotson et al. 1997) and in general (Flandro 1995, Vuillot 1995).
Vortex shedding from edges exposed as propellant burned away from inhibitor material installed between
segments in the Shuttle SRM was con¯rmed in the 1980s as the source of low-level oscillations (Blomshield
2001, Blomshield and Mathis 1993). Reproducibly present during a predictable interval of every ¯ring, the
oscillations have never become a practical problem.

It was therefore logical to investigate vortex shedding as a possible, if not likely, cause of oscillations
in the Ariane 5 booster motor. The ¯rst report of this cause was the paper by Scippa, Pascal and Zanier
(1994). For the next eight years, researchers at ONERA especially, but at several other organizations in
France as well, collaborated in a broadly based program directed to solving the problem of vortex shedding.
The immediate motivation of course came from the Ariane 5; the research has, however, been su±ciently
general to be of value much more generally. Progress in understanding the phenomenon of vortex shedding,
particularly the discovery of parietal vortex shedding, has been discussed in Section 6.12.1.

As noted above, the work was coordinated in the ASSM program which began with de¯nition of two
phases (Fabignon et al. 2003):

(1) demonstration of numerical tools to predict instabilities excited and sustained by vortex shedding;
(2) development of physical models including the propellant combustion response with two-phase °ow

accounted for.
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The second item bears directly on the subject of distributed combustion. A report of results obtained
in the ¯rst half of the program was published by Dupays et al. (2000). Various aspects of two-phase °ows,
with emphasis on slag accumulation and, relevant here, interactions associated with acoustic oscillations as
well as vortex shedding. It was in this work that, based on earlier results obtained by Dupays and Vuillot
(1998), the suggestion was made that distributed combustion is potentially an important contribution to
instabilities.

Subsequent calculations by Lupoglazo® et al. (2000) showed that with distributed combustion accounted
for, oscillations in the Ariane 5 boosters seem to be ampli¯ed by combustion of small aluminum drops
and attenuated by combustion of large drops (> 125¹m). The situation is in fact more complicated than
this simple conclusion suggests. Simulations were carried out for the full-scale P230 motor with a rough
approximation to the particle size distribution and combustion. An important factor is interaction between
parietal vortex shedding and vortices shed from the vicinity of the joint between segments. Figure 6.44 is
a sketch of the grain geometry used in the simulations. It is an interesting example of how far simulations
have progressed in treating realistic con¯gurations. Compare Figure 6.44 with the actual shape shown in
Figure 6.42; there is little di®erence. The paper by Lupoglazo® et al. is really a progress report, but their
conclusion that distributed combustion was essential for successful simulation of unsteady °ow in the Ariane
5 must be taken into account in formulating simulations for other large boosters.

Figure 6.44. Shape of the grain used in simulations of two-phase unsteady °ow in the
Ariane 5, P230 motor (Lupoglazo® et al. 2000).
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