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ORGANIZATION

ANNEXTA

Equationslof/Motion

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer and combustion products
including soot and condensed metal oxides. Hence the equations of motion must account for two or three
phases and at least one species in each. For investigating the dynamics of combustors, it is entirely adequate
to represent each phase as its mass average over all member species. It is unnecessary to distinguish liquid
and solid material and we assume a single species in the condensed phase, devoted by subscript ( );. For
some applications it is appropriate to extend the representation slightly to accommodate distributions of
particle sizes, not included in this annex. There is some advantage to treating the gas phase as a multi-
component reacting mixture. As the primitive conservation equations we therefore begin with the following
set:

A.1. General Equations of Motion

Conservation of Species, Gas Phase!

8p i l
8—? + V- (pgiug:) = wg; + wéi) + Wgei (A1)
Global Conservation of Mass, Gas Phase
%y v ( =l A2
ot : Pgug) = Wy Tt Weg ( : )
Global Conservation of Mass, Condensed Phase?
0y g S—s A3
2 TV () = —wy? +we (A.3)

Global Conservation of Momentum

@

gt

O]

means that the source material is liquid. Thus w P is the rate at which species 7 of the gas

@

phase is produced from the liquid phase. The dimensions of w_,/ are mass per unit volume of space, per unit time.
2Note that p; represents the mass of condensed material per unit volume of chamber, not the density of the material itself.
Subscript ( ); denotes ‘liquid’; at the temperature prevailing in combustion chambers, most condensed materials are liquid.

ISuperscript () on w
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0 (< -
g (Z Pgilgi + plul> + V- (Z Pgilgilg; + plul) +Vp=V 7T, +mg +mgy (A4)

Global Conservation of Energy

% <Z PgiCgoi + ple‘”) V- (Z Pgillgi€qoi + pzuzeol) +V- (ZPmm) =V. (%, .ug> —V q+Q.
(A.5)

Equation of State, Gas Phase

p = pgRyTy (A.6)

For simplification, the above equations already contain some terms involving mass averaging over the
species comprising the gas phase, namely the viscous tensor ?U; the vector q representing heat conduc-
tion; and the equation, of state (A.6). For more complete derivations of the equations for multicomponent
mixtures, see for example Chapman and Cowling (1939); Hirschfelder, Curtis and Bird (1954); Toupin and
Truesdell (1960); and Williams (1985). Superscipt ( )) means that the liquid or condensed phase is the
source and subscript ( ). denotes an external source. Thus wél) represents the rate at which gas is generated
from liquid, and wgye stands for the rate at which gas is generated by an external source. It follows from
repeated use of the Gibbs-Dalton law for mixtures of perfect gases that p is the sum of partial pressures; p,
is the sum of the densities; and R is the mass average of the individual gas species, so for the gas phase we
have

p:sz'

Pg = Zpg’i (A.7) abc
1
Ry=— Z pgili
Pg

Subscript ( ); identifies the i'" gaseous species; and in all cases except Ty, ( ), means a mass average over
all gas species as, for example,

Uy = pingiugi = ZYgiugi (A.8)

g9

where Y,; = pgi/pg is the mass concentration of the it" species.
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ANNEX A — EQUATIONS OF MOTION

A.2. Mass, Momentum and Energy Transfer by Diffusion

The chief reasons for writing equations (A.1)—(A.5) explicitly with sums over species is to show the way
in which diffusion of species arises; and to introduce the formula for the energy released by chemical reactions
written in the conventional fashion. When definite problems are addressed, some approximations will be
made to eliminate explicit dependence on diffusion velocities, but here we retain diffusion explicitly. Let V;
denote the diffusion velocity of the i!” species with the definition

Multiply by pg; and sum:

Z Pgilgi = <Z pgi) ug + Z pgiVi

Thus with (A.7)b and (A.8), this relation becomes

> pVi=0 (A.10)

With pgi = pgYyi and ug; = uy + V;, and substitution of equation (A.2) for global conservation of mass, the
species equation (A.1) becomes

Yy,
Py a: + pgug - VY = =V - (pgViVy;) + wy; + wgli) + Wgei (A.11)

In the momentum equation, ) pgiug; = pgu, and with (A.10),

Z Pgilgilgi = Z Pgi (Ug + Vi) (ug + V) = Z Pgi (Ugug + Viug; +ug; Vi + Vi Vy)

Hence (A.4) is

0 o
= (pgug + prug +V'Pu + piy +Vp:v’7'v+me + myg;
at( g=g ) ( 9=y ) g (A12)

=Y AV (pgiVitgi + pgiugi Vi) + V- (i ViVi)}

Diffusion in a multicomponent mixture generally involves coupling among all species, accounted for by
introducing a matrix of diffusion coefficients and Fick’s law relating the diffusion velocities to the gradients of
species concentrations. That representation introduces unnecessary complications in the present context. We
use the common approximation that the diffusion velocity of every species is proportional to the concentration
gradient of that species only, and obeys Fick’s law of diffusion in a binary mixture,

pgiVl- = —pg‘DVYgi (Al?))

where D is the binary diffusion coefficient assumed to have the same value for all species.
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Even with the simple law (A.13), the momentum equation (A.12) is formally coupled nonlinearly to the
species concentrations and to the total velocities ugy; of the species. Let mp denote the terms involving
diffusion,

and the global momentum equation is

0 o
57 (Palg + o) + V- (pguguy + pruyw) + Vp = V- T + me +mp (A.15)

where

m, = M.y + mg (A.16)

is the total momentum addition from external sources.

The viscous stress tensor T, has a complicated form for a multicomponent mixture (Hirschfelder, Curtis
and Bird, 1954). When necessary we will use a simple approximation. Unless shock waves are present,
viscous effects internal to the flow field are negligible for combustion instabilities; they cannot be ignored at
the boundaries.

Similar rearrangements of the energy equation (A.5) will lead to a form corresponding to (A.15). Sub-
stitute (A.8) in the first term of (A.5) and expand to give

(u, + V;)? \'%&
Z PgiCgoi = Z Pgi (69’11 + % = Pg€og + Z Pgi7 (A.17)

where (A.10) has been applied and the mass averaged stagnation energy is

PgCog = D Pyi€qoi (A.18)

The term representing the total rate of work done by the partial pressures is
Y opivgi =Y pi(ug+ Vi) =puy+ Y p;Vi (A.19)

and the net effect of convection of energy by the motions of the individual species can be written in the
form:
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ANNEX A — EQUATIONS OF MOTION

2

u<.
Z Pgilgi€goi = Z Pgilg <egi + %) + Zpgiviegoi

1
= PgUgCog + Uy Z 5Pgi (ug + Vi)2 + Zpgiviegoi (A.20)
1
= PgUg€oq + Uy Z Pgilg * V; + u, Z §szVZ2 + Z pgiviegoi

1
= PgUg€og 1+ Ug Z §pgivi2 + Z Pgi Vi€goi

Substitution of (A.17), (A.19) and (A.20) in (A.5) leads to

0 o}
ot (pgeog) +V- (Pgugeog) + ot (pieot) +V - (prwieor) + V- (pug) +

B 1, 1,
+ {a <Z §pgivi> +V- {ug Z §pgiVi + Z (pgi Viegoi +ini)}:| = (A.21)

ZV-<?y-ug>—V-q+Qe

Let xp denote all terms depending explicitly on the diffusion velocities;

0 1 1
XD =& <Z §ng1sz> +V- {ug > §Pgin + ) (pgiViegoi + pivi)} (A.22)

and the energy equation is

0 0 -
5 (Pgog) +V - (pgugeog) + 5 (preor) + V- (prwieqr) + V- (prweo) + V- (puy) = V- ("‘v 'ug) -V-q

+Qe + XD
(A.23)

A.3. Construction of the Single Fluid Model

The discussion so far has been concerned with a medium consisting of two phases: the condensed phase
denoted by subscript ( ); and the gas phase, identified by subscript ( ), comprising many species. For a
broad range of conditions in practical propulsion systems, the volume fraction occupied by the condensed
phase is small compared with that for the gas phase, although the mass fraction may be large. For example,
if the propellant contains 19% aluminum, the combustion products in a solid rocket will contain about 38%
by mass of condensed aluminum oxide. In liquid fueled combustors (gas turbines, afterburners and liquid
rockets) limited regions may contain large volumetric fractions of liquid, but generally the volume occupied
by the gaseous species is the greater part.
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Under these conditions it is a valid approximation to use a ‘single-fluid model’ of the medium, a rep-
resentation in which the density is the sum of the densities (mass per unit volume) of gas and condensed
phase, p = pg + pi; the compressibility and pressure are those of the gas phase only; and the thermodynamic
properties are mass averages of the gas and liquid phases. The chief immediate consequence is that the speed
of sound for the single fluid correctly takes into account the primary individual effects of the gas and liquid
phases: The sound speed is reduced by the presence of condensed material. Furthermore, the flow of the
medium is dominated by the gas phase, with perturbations of its motion arising from interactions between
the gas and condensed phases. We therefore seek a system of equations in which the density is the sum

p=pgtp. (A.24)

Eventually the primary dependent variables for investigating the dynamics of a combustor will be p and the
pressure, density and temperature of the gas.?

A.3.1. Equation for the Density. To find an equation for the density, add (A.2) and (A.3):

0
8_[; + V- (pgug + prug) = we (A.25)

where p = p, + p; and the external source of mass is

We = Weg + Wey (A.26)

Add V - (pjuy) to both sides of (A.25) and rearrange to give the desired equation,

15)
—p—l—V-pu:W (A.27)
ot
where we have set u := u, and the source is
W =w, — V- (pbu) (A.28)
The ‘slip velocity’ is
bw =w; —uy (A.29)

3The basic idea of constructing a single-phase model seems to have originated in early work in two-phase flow, e.g. Rannie
(1962) and Marble (1963, 1970)
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ANNEX A — EQUATIONS OF MOTION

A.3.2. Equation for Momentum. The momentum equation for the single-fluid model may be found
by expanding the left-hand side of (A.15) and substituting equations (A.2) and (A.3); rearrangement gives

0 o
Py {% +ug- Vug} +Vp=V-T,+m.+mp—o.+owu) +F (A.30)
where
Oc = UgWeqg + WWe; (A31)
0
F=—p |:ﬂ +u; - Vul} (A32)
ot
Now add p; {% +u,- Vug} to both sides of (A.30) and combine terms on the right-hand side to give
ou
p E-Fu-Vu +Vp=%F (A.33)
where

D(SU[
Dt

F=V-. ?v +m,+mp-—o, — 6ulw§l) -l (A.34)

u:=u, (A.35)
and u has been written for u,.

A.3.3. Equation for Energy. The energy equation must be handled somewhat differently in order
to introduce the conventional definition of the heat of reaction and the mass-averaged thermodynamic prop-
erties. Denbigh (1961) provides good accessible discussions of these matters; it’s a good reference for basic
chemical thermodynamics. First replace the energy eoq by the enthalpy hog = €59 — p/py in (A.21) and use
equation (A.2) to find

dh, 9
P { Lty Vhog} — 1y {& (,%) tu, -V (£> +V- (pug)} -H (A.36)

Pg

where H stands temporarily for the remaining terms,

8eol

ot

H=V- <?v'ug) -V.-q- (eogwg +6olwl) — Pl { +ul'veol} + Qe+ XD
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The enthalpy of the mixture is

1
Pg
with
T
hi = h" + / cpidT’ = " 4 piP) (A.38)
T,

(T) is sometimes called the

9 U3 Ug
by 0 (ug Uy A.
=> gll +u, - VA" 8t< )+ug v<7>] (A.39)

+% S (07 4 B) [V (g ViYye) + wgs + wly) + wged]

and hl(- ") is the enthalpy of the i*" species at the reference temperature T h;

(r)

‘thermal enthalpy’. Because the h;"’ are constants here,

Ohog

Oh
T +u, - Vhey = {8—;+ug-th} +

after (A.11) has been substituted in the last summation. The sum <h§r) + hET)> wy; is related to the

heat of reaction at the local temperature and pressure. The precise connection is not important here and
for simplicity we will define the heat of reaction ) and reaction rate w by

—Qu =" (A" + 1) (wgi + ) + wyes) (A.40)

Substitution in (A.37) and defining
T u
ho't =M 4 L (A.41)
we have

Oh, onLL)
o T Vh“} e l o

VR = Qu = hiV - (pgViYy:) (A.42)

Consistent with the definition (A.38), the thermal internal energy is e(™) = h(T —|—p/pg and
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o) — o)

og u

; (A.43)

N =

Substitution of (A.42) and (A.43) in (A.36) and use of (A.3) leads to the new form of the energy equation

0 o
+p {%—i—ug-Vq} +V-(pug):V-(’rv-ug>—V-q+Qw+Qe

dely)
Pg l 68; +ug - Veg)

(A.44)

— (eogwy + eqwy) + xp + Z hiV - (pgViYyi)
Q)

where w; = we; —wy’ .

Now remove the kinetic energies of the gas and liquid phases from this equation by subtracting the scalar
products of u, with (A.31) and u; with (A.33). to give

oT, o7,

ng’U |:(9—tg + ug - VTQ} + PlCl {8_15[ +u;- vT’l:| +pV- u, =
- A.45
=V <T1, 'ug> -V-q+Quw+ Q¢ — (eog/wg+6olwl)+XD+Zhiv’ (ngngz) ( )

—u-F+u - F

where the specific heats are defined by
delT) = C,dT,

9 vi'g (A.46) a,b

del = CldTl

Rearrangement of (A.45) in a manner similar to that used for rewriting the momentum equation in the
form (A.34) produces the result

pC, {%—f—ku-VT}—ka-u:Q (A.4T)

where the symbol Tj; has been replaced by T4 and

Q:?v-V-u—V-q—l—Qw—i—Qe—(eogwg—i—eolwl)—i—xp—i—ZhiV-(ngZ-Ygi)

(A.48)
—u- (me+meae)+(u~6u)w;l) +6Qi+éu-F—u- (F-F))
6T
0Q, = —p1Cy 88—7,‘ +u; - VOT + buy - VT:| (A49)
with the definitions
ST=T,—T ; m=m,+mp (A.50)
Pg + Pt 1+Ch

The mass fraction Cp, = p;/py is often called the particle loading because it has commonly appeared in
problems involving flows of gases containing small solid or liquid particles.

4Thus, in contrast with the density (equation A.25), the temperatures of the gaseous and condensed phases are not formally
combined and the temperature of the condensed phase must be calculated separately.
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A.3.4. Equation for the Pressure. Let R, denote the gas constant for the mixture and add 7" times
(A.27) to C, ! times (A.47) to find

0 1
E(pT)—i—u-V(pT)—i— <pT+C£>V-u:TW—TV-(pléu)—i—C—Q (A.52)

The two-phase mixture behaves as a perfect gas having density p, + p; and mass averaged properties if we
assume that the mixture of gases only obeys the Gibbs-Dalton law, (A.6):

p = RgpyT (A.53)

where R, is the mass-averaged gas constant. Now multiply and divide the right side by p, + p; = p and set
T, =T to give

p=RpT (A.54)
where
R
R = g A.55
1+Cp ( )

With (A.51), the last implies that the specific heat at constant volume and y = C,/C, for the two-phase
mixture are:

C, + CnC
Co = 1+Cp
(A.56) a,b
G+ G
LENCRNENG)

For several reasons clarified in the main text, the theory of combustion instabilities discussed in this
book is based on the wave equation for the pressure derived in Chapter 3. The first order equation for the
pressure is derived by adding 7' times equation (A.27) to C, ! times (A.48):

9 P 3 1
E(PT)‘FU'V(PT)-&-(C—U—i—pT)V-u—T[W_v.(pl(sul)]_,_c_vg

Hence with (A.55) we find
dp

a+’ypV~u+u~Vp:iP (A.57)
where
R
P= C—Q + RT [W -V (pléul)] (A.58)

A.4. Muster of Equations

The set of equations forming the basis for all of the theory and analysis we discuss in this book is:

Dp

A-10 RTO-AG-AVT-039



ANNEX A — EQUATIONS OF MOTION

D
pﬁ‘; - Vp+F (A.60)
DT
D
F]Z =—ypV -u+? (A.62)
Ds 1
p=RpT (A.64)

where % = % + u -V is the connective operator based on the mass-averaged velocity u of the gases.

For completeness we have also included the equation (A.63) for the entropy, obtained in familiar fashion
by applying the combined First and Second Laws of Thermodynamics to an element of fluid. That is, the
relation de = T'ds — pdv can be written

Ds 1 (De n Dv
Dt~ T\ Dt " IDt
(A.65)
_1(gDr, Do
“T\ "Dt D
Substitution of (A.59) and (A.61) gives (A.63) with the source
s=0-Lw (A.66)
p? '

It is important to realize that this formulation contains all relevant physical processes, including those
representing the actions of external influences associated, for example, with active control of combustor
dynamics.

The source functions in (A.59)—(A.63) are

W = We — V- (pléul) (AG?)
o Dé

5":V~T7j+me+mD—ae—5ulw§l)—pl hl (A68)
Dt

Q=7,-V-u-V- q+ Quw+ Q¢ — (eogwy + eoqiwy) + XD + Z hiV - (pgViYyi) (4.69)

—u-(me—i-mD—ae)—|—(u-6ul)w§l)—|—6Ql+6ul-Fl—u-(f}'—Fl)
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P= QL RTW -V (prow)] (A.70)
§=0~— %W (A.71)

Recall that @ and w are defined together as the heat (and enthalpy) supplied per unit volume by chemical
reactions, equation (A.40). Also, we have set ugy :=u and T, :=T.

A.5. Expansions in Mean and Fluctuating Variables

Following the steps suggested in Section 3.3 to produce equations (3.22)—(3.27) will give the expressions
for the brackets defined there to simplify the appearance of the equations. As an intermediate step it is
helpful to introduce the definitions:

{p}' = ; +pV -M' +pV-M+M - Vp—-W, (A.72)
{p}2=M-Vp' +pV-M —-W, (A.73)
(MY = ﬁ% +pM' - VM’ +Vp' +p % -7 (A.74)
(M2 =) ’év[ + M - VM +pM' - VM’ — F, (A.75)
{M}? =pM - VM’ - F, (A.76)
{T}!' = pCy—— DT +pC M’ - VM’ + VT + pVM' + p'C, D—T 94 (A.77)
{Ty? =p'C, %’; 'C,M’ - VT + pC M’ -VT' - Q, (A.78)
(T} =p'C,M' - VT —Q (A.79)
{p}' = ; +7pV - M +p'V-M - P} (A.80)
{p}> =M'-Vp' +yp'V-M' - P, (A.81)
{s}' = ﬁT%; + (T + pT") g—f +pTM' - Vs — 8 (A.82)
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_ D3 _ _
{5}2 = (p/T + ﬁT’) Ft —+ ﬁTM/ . VS/ =+ plT/M . VS/

(A.83)
+ (p'T+pI")M' - Vs -8,
3 _ 7 /DS/ %ala\V / 1 NA! = !
{s} —pTE—i-pTM-VS +p'T'"M' - V5 -8} (A.84)
{s}* = p'T'M' - Vs -8, (A.85)

where D/Dt = 3/0t+M -V as defined in Chapter 3, equation (3.21), is the dimensionless convective operator
based on the steady mass-averaged velocity. Superscript { }™ and subscript (), always mean here that
the indicated quantities are to be written to order n in the fluctuations of the flow variables.

The fluctuations of the source functions W, --- |8 will be formed as required for particular applications
and cannot be written until literal models are constructed.

A.6. Definitions of the Ordering Brackets

The brackets introduced in equations (3.22)—(3.27) are obtained by rearrangement of the sums of brackets
defined in Section A.5:

{o}' + 4o} = {lpl}1 + {p}2 =W (A.86)

{M} + {M}? + {M}* = {[M]}1 + {M}> + {{M]}2 + {M}; - F' (A.87)
(T} AT + {7V = {[TTh +{TY2 +{[TT}2 + {T}5 - Q' (A.88)

o} +{py? = {lplh + {p}2 - ¥ (A.89)

{s} + {s1? + {s}’ + {s}* = {[s]h + {s}a + {[s]}2 + {s}s + {s}s = & (A.90)

By identifying corresponding terms in these relations, we find®

5As in Chapter 3, bold symbols R, C, and « are replaced here by the usual forms R, Cy, 7, but the symbols continue to
represent mass-averaged properties.
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{lh =M-Vp'+M'-Vp+pV-M {Pl}y =M-Vp +9p'V-M+M - Vp
{p}2 =M'-Vp' +pV-M {p}a =M Vp +p'V-M
{{M}h =p (M- VM +M - VM) + o' B {1}y =pC, (M-VT'+ M -VT) +
+Cp' 2L +pV-M

(M} =p AL 4 /(M- VM +M - VM) +pM - VM’  {T}, =pC, 2% +pC,M - VT +p'V - M
{IM]}2 = (M-VM + M - VM) ([T} =p/C, (M- VT + M - VT)
(M} =pM VM (T}ys =pCM -VT'

{[s]} =pT (M- Vs'+ M’ - V5s)

! —
{s}2 = (pT" + p'T) aa_st +pIM' - Vs' + (p'T +pI") + (M- Vs) + p’T’%
{[s]}2 = (PT" + p'T) M - V&'

os'

{shs =0T 5

+ (pT" + pT)M' - Vs' + p'T' (M- V5) + M - Vs’
{sta=p'T'M'- Vs
{p—RpT} =p' — R('T + pT")

{p— RpT}s = —Rp'T’

The subscript { },, on the curly brackets means that the contained quantities are written to order n in
the fluctuations of flow variables. Similarly, the square brackets indicate that the terms are of first order in

the Mach number of the mean flow. Higher order square brackets are not required, as explained in Section
3.3.1.
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