
AN NEX A

Equations of Motion

Combustion systems commonly contain condensed phases: liquid fuel or oxidizer and combustion products
including soot and condensed metal oxides. Hence the equations of motion must account for two or three
phases and at least one species in each. For investigating the dynamics of combustors, it is entirely adequate
to represent each phase as its mass average over all member species. It is unnecessary to distinguish liquid
and solid material and we assume a single species in the condensed phase, devoted by subscript ( )l. For
some applications it is appropriate to extend the representation slightly to accommodate distributions of
particle sizes, not included in this annex. There is some advantage to treating the gas phase as a multi-
component reacting mixture. As the primitive conservation equations we therefore begin with the following
set:

A.1. General Equations of Motion

Conservation of Species, Gas Phase1

@½gi
@t

+r ¢ (½giugi) = wgi + w(l)gi + wgei (A.1)

Global Conservation of Mass, Gas Phase

@½g
@t

+r ¢ (½gug) = w(l)g + weg (A.2)

Global Conservation of Mass, Condensed Phase2

@½l
@t

+r ¢ (½lul) = ¡w(l)g + wel (A.3)

Global Conservation of Momentum

1Superscript ( )(l) on w
(l)
gi means that the source material is liquid. Thus w

(l)
gi is the rate at which species i of the gas

phase is produced from the liquid phase. The dimensions of w
(l)
gi are mass per unit volume of space, per unit time.

2Note that ½l represents the mass of condensed material per unit volume of chamber, not the density of the material itself.
Subscript ( )l denotes `liquid'; at the temperature prevailing in combustion chambers, most condensed materials are liquid.
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@t

Ã
iX
½giugi + ½lul

!
+r ¢

³X
½giugiugi + ½lul

´
+rp = r ¢$¿$¿$¿ v +meg +mel (A.4)

Global Conservation of Energy

@

@t

³X
½giegoi + ½leol

´
+r ¢

³X
½giugiegoi + ½luleol

´
+r ¢

³X
piugi

´
= r ¢

³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qe

(A.5)

Equation of State, Gas Phase

p = ½gRgTg (A.6)

For simpli¯cation, the above equations already contain some terms involving mass averaging over the

species comprising the gas phase, namely the viscous tensor
$
¿
$
¿
$
¿ v; the vector q representing heat conduc-

tion; and the equation, of state (A.6). For more complete derivations of the equations for multicomponent
mixtures, see for example Chapman and Cowling (1939); Hirschfelder, Curtis and Bird (1954); Toupin and
Truesdell (1960); and Williams (1985). Superscipt ( )(l) means that the liquid or condensed phase is the

source and subscript ( )e denotes an external source. Thus w
(l)
g represents the rate at which gas is generated

from liquid, and wge stands for the rate at which gas is generated by an external source. It follows from
repeated use of the Gibbs-Dalton law for mixtures of perfect gases that p is the sum of partial pressures; ½g
is the sum of the densities; and R is the mass average of the individual gas species, so for the gas phase we
have

p =
X

pi

½g =
X

½gi (A.7) a,b,c

Rg =
1

½g

X
½giRi

Subscript ( )i identi¯es the i
th gaseous species; and in all cases except Tg, ( )g means a mass average over

all gas species as, for example,

ug =
1

½g

X
½giugi =

X
Ygiugi (A.8)

where Ygi = ½gi=½g is the mass concentration of the i
th species.
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A.2. Mass, Momentum and Energy Transfer by Di®usion

The chief reasons for writing equations (A.1){(A.5) explicitly with sums over species is to show the way
in which di®usion of species arises; and to introduce the formula for the energy released by chemical reactions
written in the conventional fashion. When de¯nite problems are addressed, some approximations will be
made to eliminate explicit dependence on di®usion velocities, but here we retain di®usion explicitly. Let Vi

denote the di®usion velocity of the ith species with the de¯nition

ugi = ug +Vi (A.9)

Multiply by ½gi and sum: X
½giugi =

³X
½gi

´
ug +

X
½giVi

Thus with (A.7)b and (A.8), this relation becomes

X
½giVi = 0 (A.10)

With ½gi = ½gYgi and ugi = ug +Vi, and substitution of equation (A.2) for global conservation of mass, the
species equation (A.1) becomes

½g
@Ygi
@t

+ ½gug ¢ rYgi = ¡r ¢ (½gViYgi) + wgi + w
(l)
gi + wgei (A.11)

In the momentum equation,
P
½giugi = ½gug and with (A.10),

X
½giugiugi =

X
½gi (ug +Vi) (ug +Vi) =

X
½gi (ugug +Viugi + ugiVi +ViVi)

Hence (A.4) is

@

@t
(½gug + ½lul) +r ¢ (½gug + ½lul) +rp = r ¢$¿$¿$¿ v +meg +mel

¡
X

fr ¢ (½giViugi + ½giugiVi) +r ¢ (½giViVi)g
(A.12)

Di®usion in a multicomponent mixture generally involves coupling among all species, accounted for by
introducing a matrix of di®usion coe±cients and Fick's law relating the di®usion velocities to the gradients of
species concentrations. That representation introduces unnecessary complications in the present context. We
use the common approximation that the di®usion velocity of every species is proportional to the concentration
gradient of that species only, and obeys Fick's law of di®usion in a binary mixture,

½giVi = ¡½gDrYgi (A.13)

where D is the binary di®usion coe±cient assumed to have the same value for all species.
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Even with the simple law (A.13), the momentum equation (A.12) is formally coupled nonlinearly to the
species concentrations and to the total velocities ugi of the species. Let mD denote the terms involving
di®usion,

mD = ¡
X

fr ¢ (½giViugi + ½giugiVi) +r ¢ (½giViVi)g (A.14)

and the global momentum equation is

@

@t
(½gug + ½lul) +r ¢ (½gugug + ½lulul) +rp = r ¢$¿$¿$¿ v +me +mD (A.15)

where

me =meg +mel (A.16)

is the total momentum addition from external sources.

The viscous stress tensor
$
¿
$
¿
$
¿ v has a complicated form for a multicomponent mixture (Hirschfelder, Curtis

and Bird, 1954). When necessary we will use a simple approximation. Unless shock waves are present,
viscous e®ects internal to the °ow ¯eld are negligible for combustion instabilities; they cannot be ignored at
the boundaries.

Similar rearrangements of the energy equation (A.5) will lead to a form corresponding to (A.15). Sub-
stitute (A.8) in the ¯rst term of (A.5) and expand to give

X
½giegoi =

X
½gi

Ã
egi +

(ug +Vi)
2

2

!
= ½geog +

X
½gi
V2
i

2
(A.17)

where (A.10) has been applied and the mass averaged stagnation energy is

½geog =
X

½giegoi (A.18)

The term representing the total rate of work done by the partial pressures is

X
piugi =

X
pi (ug +Vi) = pug +

X
piVi (A.19)

and the net e®ect of convection of energy by the motions of the individual species can be written in the
form:
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X
½giugiegoi =

X
½giug

Ã
egi +

u2gi
2

!
+
X

½giViegoi

= ½gugeog + ug
X 1

2
½gi (ug +Vi)

2
+
X

½giViegoi

= ½gugeog + ug
X

½giug ¢Vi + ug
X 1

2
½giV

2
i +

X
½giViegoi

= ½gugeog + ug
X 1

2
½giV

2
i +

X
½giViegoi

(A.20)

Substitution of (A.17), (A.19) and (A.20) in (A.5) leads to

@

@t
(½geog) +r ¢ (½gugeog) + @

@t
(½leol) +r ¢ (½luleol) +r ¢ (pug) +

+

·
@

@t

μX 1

2
½giV

2
i

¶
+r ¢

½
ug
X 1

2
½giV

2
i +

X
(½giViegoi + piVi)

¾¸
=

= r ¢
³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qe

(A.21)

Let ÂD denote all terms depending explicitly on the di®usion velocities;

¡ÂD = @

@t

μX 1

2
½giV

2
i

¶
+r ¢

½
ug
X 1

2
½giV

2
i +

X
(½giViegoi + piVi)

¾
(A.22)

and the energy equation is

@

@t
(½geog) +r ¢ (½gugeog) + @

@t
(½leol) +r ¢ (½luleol) +r ¢ (½luleol) +r ¢ (pug) = r ¢

³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q

+Qe + ÂD
(A.23)

A.3. Construction of the Single Fluid Model

The discussion so far has been concerned with a medium consisting of two phases: the condensed phase
denoted by subscript ( )l and the gas phase, identi¯ed by subscript ( )g comprising many species. For a
broad range of conditions in practical propulsion systems, the volume fraction occupied by the condensed
phase is small compared with that for the gas phase, although the mass fraction may be large. For example,
if the propellant contains 19% aluminum, the combustion products in a solid rocket will contain about 38%
by mass of condensed aluminum oxide. In liquid fueled combustors (gas turbines, afterburners and liquid
rockets) limited regions may contain large volumetric fractions of liquid, but generally the volume occupied
by the gaseous species is the greater part.
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Under these conditions it is a valid approximation to use a `single-°uid model' of the medium, a rep-
resentation in which the density is the sum of the densities (mass per unit volume) of gas and condensed
phase, ½ = ½g+½l; the compressibility and pressure are those of the gas phase only; and the thermodynamic
properties are mass averages of the gas and liquid phases. The chief immediate consequence is that the speed
of sound for the single °uid correctly takes into account the primary individual e®ects of the gas and liquid
phases: The sound speed is reduced by the presence of condensed material. Furthermore, the °ow of the
medium is dominated by the gas phase, with perturbations of its motion arising from interactions between
the gas and condensed phases. We therefore seek a system of equations in which the density is the sum

½ = ½g + ½l : (A.24)

Eventually the primary dependent variables for investigating the dynamics of a combustor will be ½ and the
pressure, density and temperature of the gas.3

A.3.1. Equation for the Density. To ¯nd an equation for the density, add (A.2) and (A.3):

@½

@t
+r ¢ (½gug + ½lul) = we (A.25)

where ½ = ½g + ½l and the external source of mass is

we = weg + wel (A.26)

Add r ¢ (½lug) to both sides of (A.25) and rearrange to give the desired equation,

@½

@t
+r ¢ ½u = W (A.27)

where we have set u := ug and the source is

W = we ¡r ¢ (½l±u) (A.28)

The `slip velocity' is

±ul = ul ¡ ug (A.29)

3The basic idea of constructing a single-phase model seems to have originated in early work in two-phase °ow, e.g. Rannie
(1962) and Marble (1963, 1970)
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A.3.2. Equation for Momentum. The momentum equation for the single-°uid model may be found
by expanding the left-hand side of (A.15) and substituting equations (A.2) and (A.3); rearrangement gives

½g

·
@ug
@t

+ ug ¢ rug
¸
+rp = r ¢$¿$¿$¿ v +me +mD ¡ ¾¾¾e + ±ulw(l)g +Fl (A.30)

where

¾¾¾e = ugweg + ulwel (A.31)

Fl = ¡½l
·
@ul
@t

+ ul ¢ rul
¸

(A.32)

Now add ½l

·
@ug
@t

+ ug ¢ rug
¸
to both sides of (A.30) and combine terms on the right-hand side to give

½

·
@u

@t
+ u ¢ ru

¸
+rp = FFF (A.33)

where

FFF = r ¢$¿$¿$¿ v +me +mD ¡ ¾¾¾e ¡ ±ulw(l)g ¡ ½lD±ul
Dt

(A.34)

u := ug (A.35)

and u has been written for ug.

A.3.3. Equation for Energy. The energy equation must be handled somewhat di®erently in order
to introduce the conventional de¯nition of the heat of reaction and the mass-averaged thermodynamic prop-
erties. Denbigh (1961) provides good accessible discussions of these matters; it's a good reference for basic
chemical thermodynamics. First replace the energy eog by the enthalpy hog = eog ¡ p=½g in (A.21) and use
equation (A.2) to ¯nd

½g

·
@hog
@t

+ ug ¢ rhog
¸
¡ ½g

·
@

@t

μ
p

½g

¶
+ ug ¢ r

μ
p

½g

¶
+r ¢ (pug)

¸
= H (A.36)

where H stands temporarily for the remaining terms,

H = r ¢
³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q¡ (eogwg + eolwl)¡ ½l

·
@eol
@t

+ ul ¢ reol
¸
+Qe + ÂD
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The enthalpy of the mixture is

hg =
1

½g

X
½gihi =

X
Ygihi (A.37)

with

hi = h
(r)
i +

TZ
Tr

c½idT
0 = h(r)i + h

(T )
i (A.38)

and h
(r)
i is the enthalpy of the ith species at the reference temperature Tr; h

(T )
i is sometimes called the

`thermal enthalpy'. Because the h
(r)
i are constants here,

@hog
@t

+ ug ¢ rhog =
·
@hg
@t

+ ug ¢ rhg
¸
+

"
@

@t

Ã
u2g
2

!
+ ug ¢ r

Ã
u2g
2

!#

=
X

Ygi

"
@h

(T )
i

@t
+ ug ¢ rh(T )i

#
+

"
@

@t

Ã
u2g
2

!
+ ug ¢ r

Ã
u2g
2

!#

+
1

½g

X³
h
(r)
i + h

(T )
i

´h
¡r ¢ (½gViYgi) + wgi + w

(l)
gi + wgei

i
(A.39)

after (A.11) has been substituted in the last summation. The sum
P³

h
(r)
i + h

(T )
i

´
wgi is related to the

heat of reaction at the local temperature and pressure. The precise connection is not important here and
for simplicity we will de¯ne the heat of reaction Q and reaction rate w by

¡Qw =
X³

h
(r)
i + h

(T )
i

´³
wgi + w

(l)
gi + wgei

´
(A.40)

Substitution in (A.37) and de¯ning

h
(T )
0 = h(T ) +

u2g
2

(A.41)

we have

½g

·
@hog
@t

+ ug ¢ rhog
¸
= ½g

"
@h

(T )
og

@t
+ ug ¢ rh(T )og

#
¡Qw ¡

X
hir ¢ (½gViYgi) (A.42)

Consistent with the de¯nition (A.38), the thermal internal energy is e(T ) = h(T ) + p=½g and
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e(T )og = e(T ) +
1

2
u2g (A.43)

Substitution of (A.42) and (A.43) in (A.36) and use of (A.3) leads to the new form of the energy equation

½g

"
@e
(T )
og

@t
+ ug ¢ re(T )og

#
+ ½l

·
@el
@t
+ ug ¢ rel

¸
+r ¢ (pug) = r ¢

³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qw +Qe

¡ (eogwg + eolwl) + ÂD +
X

hir ¢ (½gViYgi)

(A.44)

where wl = wel ¡ w(l)g .

Now remove the kinetic energies of the gas and liquid phases from this equation by subtracting the scalar
products of ug with (A.31) and ul with (A.33). to give

½gCv

·
@Tg
@t

+ ug ¢ rTg
¸
+ ½lCl

·
@Tl
@t

+ ul ¢ rTl
¸
+ pr ¢ ug =

= r ¢
³$
¿
$
¿
$
¿ v ¢ ug

´
¡r ¢ q+Qw +Qe ¡ (eogwg + eolwl) + ÂD +

X
hir ¢ (½gViYgi)

¡u ¢FFF + ul ¢ Fl

(A.45)

where the speci¯c heats are de¯ned by

de(T )g = CvdTg

del = CldTl
(A.46) a,b

Rearrangement of (A.45) in a manner similar to that used for rewriting the momentum equation in the
form (A.34) produces the result

½Cv

·
@T

@t
+ u ¢ rT

¸
+ pr ¢ u = Q (A.47)

where the symbol Tg has been replaced by T
4 and

Q =
$
¿
$
¿
$
¿ v ¢ r ¢ u¡r ¢ q+Qw +Qe ¡ (eogwg + eolwl) + ÂD +

X
hir ¢ (½gViYgi)

¡ u ¢ (me +mD ¡¾¾¾e) + (u ¢ ±u)w(l)g + ±Ql + ±u ¢ Fl ¡ u ¢ (FFF ¡Fl)
(A.48)

±Ql = ¡½lCl
·
@±T

@t
+ ul ¢ r±T + ±ul ¢ rT

¸
(A.49)

with the de¯nitions

±T = Tl ¡ T ; m =me +mD (A.50)

Cv =
½gCv + ½lCl
½g + ½l

=
Cv + CmCl
1 + Cm

(A.51)

The mass fraction Cm = ½l=½g is often called the particle loading because it has commonly appeared in
problems involving °ows of gases containing small solid or liquid particles.

4Thus, in contrast with the density (equation A.25), the temperatures of the gaseous and condensed phases are not formally
combined and the temperature of the condensed phase must be calculated separately.
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A.3.4. Equation for the Pressure. Let Rg denote the gas constant for the mixture and add T times
(A.27) to C¡1v times (A.47) to ¯nd

@

@t
(½T ) + u ¢ r (½T ) +

μ
½T +

p

Cv

¶
r ¢ u = TW ¡ Tr ¢ (½l±u) + 1

Cv
Q (A.52)

The two-phase mixture behaves as a perfect gas having density ½g + ½l and mass averaged properties if we
assume that the mixture of gases only obeys the Gibbs-Dalton law, (A.6):

p = Rg½gT (A.53)

where Rg is the mass-averaged gas constant. Now multiply and divide the right side by ½g + ½l = ½ and set
Tg = T to give

p = R½T (A.54)

where

R =
Rg

1 + Cm
(A.55)

With (A.51), the last implies that the speci¯c heat at constant volume and °°° = Cp=Cv for the two-phase
mixture are:

Cv =
Cv + CmCl
1 + Cm

°°° =
Cp + CmCl
Cv + CmCl

(A.56) a,b

For several reasons clari¯ed in the main text, the theory of combustion instabilities discussed in this
book is based on the wave equation for the pressure derived in Chapter 3. The ¯rst order equation for the
pressure is derived by adding T times equation (A.27) to C¡1v times (A.48):

@

@t
(½T ) + u ¢ r (½T ) +

μ
p

Cv
+ ½T

¶
r ¢ u = T [W ¡r ¢ (½l±ul)] + 1

Cv
Q

Hence with (A.55) we ¯nd

@p

@t
+ °°°pr ¢ u+ u ¢ rp = P (A.57)

where

P=
R

Cv
Q+RT [W ¡r ¢ (½l±ul)] (A.58)

A.4. Muster of Equations

The set of equations forming the basis for all of the theory and analysis we discuss in this book is:

D½

Dt
= ¡½r ¢ u+ W (A.59)
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½
Du

Dt
= ¡rp+FFF (A.60)

½Cv
DT

Dt
= ¡pr ¢ u+ Q (A.61)

Dp

Dt
= ¡°°°pr ¢ u+ P (A.62)

Ds

Dt
=
1

T
S (A.63)

p = R½T (A.64)

where D
Dt =

@
@t + u ¢ r is the connective operator based on the mass-averaged velocity u of the gases.

For completeness we have also included the equation (A.63) for the entropy, obtained in familiar fashion
by applying the combined First and Second Laws of Thermodynamics to an element of °uid. That is, the
relation de = Tds¡ pdv can be written

Ds

Dt
=
1

T

μ
De

Dt
+ p

Dv

Dt

¶
=
1

T

μ
Cv
DT

Dt
+ p

Dv

Dt

¶ (A.65)

Substitution of (A.59) and (A.61) gives (A.63) with the source

S= Q¡ p

½2
W (A.66)

It is important to realize that this formulation contains all relevant physical processes, including those
representing the actions of external in°uences associated, for example, with active control of combustor
dynamics.

The source functions in (A.59){(A.63) are

W = we ¡r ¢ (½l±ul) (A.67)

FFF = r ¢$¿$¿$¿ v +me +mD ¡¾¾¾e ¡ ±ulw(l)g ¡ ½lD±ul
Dt

(A.68)

Q =
$
¿
$
¿
$
¿ v ¢ r ¢ u¡r ¢ q+Qw +Qe ¡ (eogwg + eolwl) + ÂD +

X
hir ¢ (½gViYgi)

¡ u ¢ (me +mD ¡ ¾¾¾e) + (u ¢ ±ul)w(l)g + ±Ql + ±ul ¢ Fl ¡ u ¢ (FFF ¡Fl)
(A.69)
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P=
R

Cv
Q+RT [W ¡r ¢ (½l±ul)] (A.70)

S= Q¡ p

½2
W (A.71)

Recall that Q and w are de¯ned together as the heat (and enthalpy) supplied per unit volume by chemical
reactions, equation (A.40). Also, we have set ug := u and Tg := T .

A.5. Expansions in Mean and Fluctuating Variables

Following the steps suggested in Section 3.3 to produce equations (3.22){(3.27) will give the expressions
for the brackets de¯ned there to simplify the appearance of the equations. As an intermediate step it is
helpful to introduce the de¯nitions:

f½g1 =
¹D½0

Dt
+ ¹½r ¢M0 + ½0r ¢ ¹M+M0 ¢ r¹½¡WWW 0

1 (A.72)

f½g2 =M0 ¢ r½0 + ½0r ¢M0 ¡WWW 0
2 (A.73)

fMg1 = ¹½
¹D ¹M

Dt
+ ¹½M0 ¢ rM0 +rp0 + ½0

¹D ¹M

Dt
¡FFF01 (A.74)

fMg2 = ½0
¹DM0

Dt
+ ½0M0 ¢ r ¹M+ ¹½M0 ¢ rM0 ¡FFF02 (A.75)

fMg3 = ½0M0 ¢ rM0 ¡FFF03 (A.76)

fTg1 = ¹½Cv
¹DT 0

Dt
+ ¹½CvM

0 ¢ rM0 +r ¹T + ¹prM0 + ½0Cv
¹D ¹T

Dt
¡ Q01 (A.77)

fTg2 = ½0Cv
¹DT 0

Dt
+ ½0CvM0 ¢ r ¹T + ¹½CvM0 ¢ rT 0 ¡ Q02 (A.78)

fTg3 = ½0CvM0 ¢ rT 0 ¡ Q03 (A.79)

fpg1 =
¹Dp0

Dt
+ °¹½r ¢M0 + °p0r ¢ ¹M¡ P01 (A.80)

fpg2 =M0 ¢ rp0 + °p0r ¢M0 ¡ P02 (A.81)

fsg1 = ¹½ ¹T
¹Ds0

Dt
+
¡
½0 ¹T + ¹½T 0

¢ ¹D¹s
Dt

+ ¹½ ¹TM0 ¢ r¹s¡S01 (A.82)
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fsg2 = ¡½0 ¹T + ¹½T 0¢ ¹D¹s
Dt

+ ¹½ ¹TM0 ¢ rs0 + ½0T 0 ¹M ¢ rs0

+
¡
½0 ¹T + ¹½T 0

¢
M0 ¢ r¹s¡ S02

(A.83)

fsg3 = ½0T 0
¹Ds0

Dt
+ ½0T 0 ¹M ¢ rs0 + ½0T 0M0 ¢ r¹s¡S03 (A.84)

fsg4 = ½0T 0M0 ¢ rs0 ¡S04 (A.85)

where D=Dt = @=@t+M ¢r as de¯ned in Chapter 3, equation (3.21), is the dimensionless convective operator
based on the steady mass-averaged velocity. Superscript f gn and subscript ( )n always mean here that
the indicated quantities are to be written to order n in the °uctuations of the °ow variables.

The °uctuations of the source functions W ; ¢ ¢ ¢ ;Swill be formed as required for particular applications
and cannot be written until literal models are constructed.

A.6. De¯nitions of the Ordering Brackets

The brackets introduced in equations (3.22){(3.27) are obtained by rearrangement of the sums of brackets
de¯ned in Section A.5:

f½g1 + f½g2 = f[½]g1 + f½g2 ¡WWW 0 (A.86)

fMg1 + fMg2 + fMg3 = f[M]g1 + fMg2 + f[M]g2 + fMg3 ¡FFF0 (A.87)

fTg1 + fTg2 + fTg3 = f[T ]g1 + fTg2 + f[T ]g2 + fTg3 ¡ Q0 (A.88)

fpg1 + fpg2 = f[p]g1 + fpg2 ¡ P0 (A.89)

fsg1 + fsg2 + fsg3 + fsg4 = f[s]g1 + fsg2 + f[s]g2 + fsg3 + fsg4 ¡S0 (A.90)

By identifying corresponding terms in these relations, we ¯nd5

5As in Chapter 3, bold symbols R, Cv and °°° are replaced here by the usual forms R, Cv, °, but the symbols continue to
represent mass-averaged properties.
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f[½]g1 = ¹M ¢ r½0 +M0 ¢ r¹½+ ½0r ¢ ¹M f[p]g1 = ¹M ¢ rp0 + °p0r ¢ ¹M+M0 ¢ r¹p

f½g2 =M0 ¢ r½0 + ½0r ¢M0 fpg2 =M0 ¢ rp0 + °p0r ¢M0

f[M ]g1 = ¹½
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢+ ½0 ¹D ¹M

Dt f[T ]g1 = ¹½Cv
¡
¹M ¢ rT 0 +M0 ¢ r ¹T¢+

+Cv½
0 ¹D ¹T
Dt + p

0r ¢ ¹M

fMg2 = ½0 @M
0

@t + ½
0( ¹M ¢ rM0 +M0 ¢ r ¹M) + ¹½M0 ¢ rM0 fTg2 = ½0Cv @T

0
@t + ¹½CvM

0 ¢ rT 0 + p0r ¢M0

f[M ]g2 = ½0
¡
¹M ¢ rM0 +M0 ¢ r ¹M¢ f[T ]g2 = ½0Cv

¡
¹M ¢ rT 0 +M0 ¢ r ¹T¢

fMg3 = ½0M0 ¢ rM0 fTg3 = ½0CvM0 ¢ rT 0

f[s]g1 = ¹½ ¹T
¡
¹M ¢ rs0 +M0 ¢ r¹s¢

fsg2 =
¡
¹½T 0 + ½0 ¹T

¢ @s0
@t
+ ¹½ ¹TM0 ¢ rs0 + ¡½0 ¹T + ¹½T 0¢+ (M0 ¢ r¹s) + ½0T 0 @¹s

@t

f[s]g2 =
¡
¹½T 0 + ½0 ¹T

¢
¹M ¢ rs0

fsg3 = ½0T 0 @s
0

@t
+
¡
¹½T 0 + ½0 ¹T

¢
M0 ¢ rs0 + ½0T 0 (M0 ¢ r¹s) + ¹M ¢ rs0

fsg4 = ½0T 0M0 ¢ rs0

fp¡R½Tg1 = p0 ¡R(½0 ¹T + ¹½T 0)

fp¡R½Tg2 = ¡R½0T 0

The subscript f gn on the curly brackets means that the contained quantities are written to order n in
the °uctuations of °ow variables. Similarly, the square brackets indicate that the terms are of ¯rst order in
the Mach number of the mean °ow. Higher order square brackets are not required, as explained in Section
3.3.1.
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