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ThelEquations/ for[One-Dimensionall Unsteady Motions

These are many problems for which the flow may be approximated as one-dimensional. Even when the
approximation may not seem as accurate as we might like, it is always a good beginning. The desired results
are usually obtained without real effect and often are inspiringly close to the truth. An elementary example
is computation of the normal modes for a straight tube having discontinuities, Section 5.7.2. Here we are
concerned with situations in which influences at the lateral boundary must be accounted for. The formulation
of the general problem is then essentially the counterpart of the constitution of the one-dimensional equations
for steady flow in ducts thoroughly discussed by Shapiro (1950) and Crocco (1958).

Accounting for changes of area in the one-dimensional approximation is a straightforward matter; fol-
lowing the rules applied to derivations appearing in the three-dimensional equations:

WV ) ua ()
Vi )= gaSl ) (B.1)

where the axis of the duct lies along the x-direction and S.(x) is the distribution of the cross-section area.

More interesting are consequences of processes at the lateral boundary, particularly when there is flow
through the surface. The most important applications arise in solid propellant rockets when burning pro-
pellant forms all or part of the lateral surface. Inflow of mass momentum and energy must be accounted
for (Culick 1971, 1973; Culick and Yang 1990). The equations have the same form as the three-dimensional
equations derived in Annex A, equations (A.59)—(A.63) but the rule (B.1) has been applied and only the
velocity component v along axis of the duct is non-zero:

Conservation of Mass

DL g (Se) + (W1 + W) (B.2)
Conservation of Momentum
p%‘ = ’gi + (T + Fy) (B.3)
Conservation of Energy
pOu D = —pg o (Seu) + (01 +01.) (B.4)
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Equation for the Pressure
Dp 1 0

D= —VPS—C%(SCU) + (P1 + P1s) (B.5)

Equation for the Entropy
Ds 1

o7 = 761481 (5.6)
where
D 0 0
Ht = 5 + U% (B.7)

The source terms Wi, F1, 91, P1 and 8; are the one-dimensional forms of (A.67)—(A.71) written for the
axial component of velocity only and with the rules (B.1) applied:

1 0
W = ———(5, B.
1 Sc ax (Scpléul) +wE ( 8)
oty Déu
¥, = (9; +me +mp — 0 — 5ulw§l) - Dtl (B.9)
0 0
Q) = 7_1)_u 4 +Quw + Qe — (6ogwg + eolwl)
Or Oz 5 (B.10)
+ xo0 + Em%(ng},Ygi) —u(me +mp — o)
+ (ubw)w + Q) + dw F — w(F1 — F)
R 0
P = C—le + RT |:W1 - %(pléul)} (Bll)
S =0 — 2w B.12
1= X1 = p_2 1 ( ’ )

and Fj is the one-dimensional form of (A.32).

In addition, sources of mass, momentum and energy associated with flow through the lateral boundary
are represented by the symbols with subscript ()5 (Culick 1973; Culick and Yang 1990):

1 1

Wls = S—c (/ médq = S_c (/ [msg + msl} dq (Bl?))
1

Fis = A / [(us — w)msg + (wrs — uy)mg] dg (B.14)
1

le = S_ / [(hOs — eo)msg + (elOs - elO)msl] dq (B15)
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R R 1
Pis = 0—le + RT W, = oA [(hos — e0)msg + (€105 — €10)mst + CyTmsg) dg (B.16)
815 = —91 - —Wls (B.17)
p P
A useful form for Py, is
1/, R 1
P = A (a® + YyRAT,)msqdq + o (e10s — €10)ms; dgq (B.18)

where ATy =T, — T. Terms containing u?m, or u*ms, are of higher order and therefore are negligible.

Superscripts ( )g and ( ); refer respectively to the gas and liquid phases and subscript (), denotes
values at the surface. The mass fluxes at the surface, ms, and mg; are of course computed as values normal
to the boundary and are positive for inward flow. Here ¢ stands for the perimeter of the local section normal
to the axis.

B.1. Equations for Unsteady One-Dimensional Motions

Forming the equations for the fluctuating motions within the one-dimensional approximation is done
in exactly the same way as for the general equations, Annex A. We need only apply the rules (B.1) and
add to the inhomogeneous functions h and f the contributions from processes at the boundary. As for the
general three-dimensional equations, we defer writing the fluctuations W7, 3/, ... until we consider specific
problems.

The procedure introduced in Section 3.3.3 for forming the systems of equations for a hierarchy of problems
applies equally to one-dimensional motions. As above, the equations are obtained from the three-dimensional
equations by applying the rules (B.1): the results can be constructed when needed. However, the contribu-
tions from processes at the lateral boundary are special. Written to first order in the fluctuations and the
Mach number of the mean flow, (B.13)—(B.17) become:

1
Wi, = A /m'sdq (B.19)

1
= A {(ué —a) /mggdq + (s — u) /m;ldq}

. (B.20)
+ 5 {(U —u /msgdq‘F Upg — /msldQ}
o 1 7 = l / d = = l / d C T l / d
s =g (hos — e0) [ mi,dq+ (€0s — €w0) | miydq+ C, myg,dq
T (B.21)
e {( oo = €t) [ Mg+ (e, — o) [mav 1 [ msgdq}
, R (- [, _ N -
Pl = g (hoS — eo) mg,dq + (€10s — €0) | mydg+ C,T m,dgq
o ) (B.22)

R ‘ ' '
ta g {(hgs - 66)/ Msgdq + (€19 — 6?0)/ Mg + OUT// msgdq}
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1
S/13 = EQIIS - %Wlls

(B.23)

The procedure for forming the wave equation in the one-dimensional approximation is the same as that

week in Chapter 4, with the results valid to second order in small quantities

1 / 1 2./

S.ox \"“ox ) @ ot
al
T=—f (@=0.L)
and
hoo L0 (gouw  u o 5oL
VT P8 92 "0 ) T @otor T @ ot S.
1 _,0u ,ou’
) SC(”“ oz " i
10 [ ,0p yop 1 9 ,
a26x<u 8x>+a2 [ 5oz o)

10
+ —=S.(F1 +F1,) —

S. Oz ot
o0, o 0
ho=pgp P W)+ puge+ 0

The normal modes for one-dimensional motions are found as the solutions to

Ld (od o
S—C% (Sc%) +]ilwl*0

iy

T =0 (z

and the basic expansions for the acoustic field are

M
Pt =p Ym0 (a)

M .
() dipj(x)
U/(Jf, t) — 03(2 J
= ki dx

(F) + F1s)

0 _
%(Scu)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)
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Orthogonality of the normal modes is expressed as

L
/ Y0 Sedr = EFSj (B.32)
0
L
B} = / VP Seda (B.33)
0
With a procedure similar to that leading to equation (4.36), we find the equations for the amplitudes:

d2
L

o / hithSedas + [f1oSo]E (B.35)
pEl s

Note that Fj here is not the one-dimensional form of the force found from (A.32). The current context
will distinguish the two symbols.

Development of the principal basic results for stability treated with the approximation of one-dimensional
motions is covered in Section 6.9.
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