
ANNEX B

The Equations for One-Dimensional Un steady Motions

These are many problems for which the °ow may be approximated as one-dimensional. Even when the
approximation may not seem as accurate as we might like, it is always a good beginning. The desired results
are usually obtained without real e®ect and often are inspiringly close to the truth. An elementary example
is computation of the normal modes for a straight tube having discontinuities, Section 5.7.2. Here we are
concerned with situations in which in°uences at the lateral boundary must be accounted for. The formulation
of the general problem is then essentially the counterpart of the constitution of the one-dimensional equations
for steady °ow in ducts thoroughly discussed by Shapiro (1950) and Crocco (1958).

Accounting for changes of area in the one-dimensional approximation is a straightforward matter; fol-
lowing the rules applied to derivations appearing in the three-dimensional equations:

u ¢ r( )! u
@

@x
( )

r ¢ ( )! 1

Sc

@

@x
Sc( )

r2( )! 1

Sc

@

@x
Sc
@( )

@x

(B.1)

where the axis of the duct lies along the x-direction and Sc(x) is the distribution of the cross-section area.

More interesting are consequences of processes at the lateral boundary, particularly when there is °ow
through the surface. The most important applications arise in solid propellant rockets when burning pro-
pellant forms all or part of the lateral surface. In°ow of mass momentum and energy must be accounted
for (Culick 1971, 1973; Culick and Yang 1990). The equations have the same form as the three-dimensional
equations derived in Annex A, equations (A.59){(A.63) but the rule (B.1) has been applied and only the
velocity component u along axis of the duct is non-zero:

Conservation of Mass

D½

Dt
= ¡½ 1

Sc

@

@x
(Scu) + (W 1 + W 1s) (B.2)

Conservation of Momentum

½
Du

Dt
= ¡@p

@x
+ (F1 + F1s) (B.3)

Conservation of Energy

½Cv
DT

Dt
= ¡p 1

Sc

@

@x
(Scu) + (Q1 + Q1s) (B.4)

 

RTO-AG-AVT-039 B - 1 

 

 



Equation for the Pressure
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Equation for the Entropy
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The source terms W 1, F1, Q1, P1 and S1 are the one-dimensional forms of (A.67){(A.71) written for the
axial component of velocity only and with the rules (B.1) applied:
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and Fl is the one-dimensional form of (A.32).

In addition, sources of mass, momentum and energy associated with °ow through the lateral boundary
are represented by the symbols with subscript ( )s (Culick 1973; Culick and Yang 1990):
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A useful form for P1s is
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where ¢Ts = Ts ¡ T . Terms containing u2smsg or u
2msg are of higher order and therefore are negligible.

Superscripts ( )g and ( )l refer respectively to the gas and liquid phases and subscript ( )s denotes
values at the surface. The mass °uxes at the surface, msg and msl are of course computed as values normal
to the boundary and are positive for inward °ow. Here q stands for the perimeter of the local section normal
to the axis.

B.1. Equations for Unsteady One-Dimensional Motions

Forming the equations for the °uctuating motions within the one-dimensional approximation is done
in exactly the same way as for the general equations, Annex A. We need only apply the rules (B.1) and
add to the inhomogeneous functions h and f the contributions from processes at the boundary. As for the
general three-dimensional equations, we defer writing the °uctuations W 0

1, F
0
1, : : : until we consider speci¯c

problems.

The procedure introduced in Section 3.3.3 for forming the systems of equations for a hierarchy of problems
applies equally to one-dimensional motions. As above, the equations are obtained from the three-dimensional
equations by applying the rules (B.1): the results can be constructed when needed. However, the contribu-
tions from processes at the lateral boundary are special. Written to ¯rst order in the °uctuations and the
Mach number of the mean °ow, (B.13){(B.17) become:
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The procedure for forming the wave equation in the one-dimensional approximation is the same as that
week in Chapter 4, with the results valid to second order in small quantities
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The normal modes for one-dimensional motions are found as the solutions to
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and the basic expansions for the acoustic ¯eld are
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Orthogonality of the normal modes is expressed as
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With a procedure similar to that leading to equation (4.36), we ¯nd the equations for the amplitudes:

d2´l
dt2

+ !2l ´l = Fl (B.34)

Fl = ¡ ¹a2

¹pE2l

8<:
LZ
0

h1ÃlScdx+ [f1ÃlSc]
L
0

9=; (B.35)

Note that Fl here is not the one-dimensional form of the force found from (A.32). The current context
will distinguish the two symbols.

Development of the principal basic results for stability treated with the approximation of one-dimensional
motions is covered in Section 6.9.
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