
ANNEX C

The Acoustic Boundary Layer

Consider an impermeable rigid wall exposed to a °ow of gas oscillating parallel to the surface but having
no average motion. The gas is viscous and heat conducting. At the surface, the velocity is zero and the
temperature is maintained constant. Far from the surface all °ow properties oscillate sinusoidally and the
motion is isentropic. The values of the velocity and temperature vary from their ¯xed values at the surface
to their sinusoidal values far from the surface through a two-dimensional boundary layer. For the following
analysis we assume that there is no communication parallel to the surface. That is, we assume that °ow
within the boundary layer at any position x depends only on the conditions imposed locally by the external
°ow. This assumption is valid because the °ow is oscillating with no mean velocity. Figure C.1 is a sketch
of the °ow.
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Figure C.1. Sketch of the °ow in an acoustic boundary layer showing the velocity ¯eld at
two instants separated by one-half period.

We assume that the oscillations are sustained by some external actions far from the region under con-
sideration. Moreover, for small viscosity|high Reynolds number based on the amplitude of the velocity
outside the boundary layer, and the `thickness' of the layer, found as part of the solution|the boundary
layer is thin. We may assume this to be the case, and check the assumption later. Then according to the
principles of boundary layer theory, we take the pressure constant in the direction normal to the surface.
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The linearized mass, momentum and energy equations, (5.7){(5.9) written for incompressible °ow with
viscous stresses and heat combustion included, are
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It is convenient for this problem to replace the energy by the enthalpy, h = e+ p=½, so
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For incompressible °ow, ½0 is zero and (C.1)a gives r ¢ u0 = 0. By de¯nition, dh = CpdT , and the energy
equation (C.1)c becomes
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Under the conditions supposed here, the contributions from viscous and heat conduction are (see, e.g.,
Schlicting 1960):
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Hence the momentum and energy equations for this problem are1
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It is an important feature of this formulation that the coordinate x along the surface appears only paramet-
rically in u0e(x; t) and p

0
e(x; t). Later we discuss application and interpretation of this feature.

We assume sinusoidal time dependence and write
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Equations (C.4)a,b become

d2û
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where the characteristic thickness of the boundary layer is
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(C.6)

1We have replaced the pressure gradient in the momentum equation by the rate of change of acoustic momentum. That
follows because the pressure doesn't change through this layer and therefore obeys the acoustic momentum equation for the
external °ow.
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and º = ¹=¹½ is the kinematic viscosity and Pr = Cp¹=¸c is the Prandtl number. The solutions to the
boundary layer equations can be written as sums of homogeneous and particular solutions
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and ûh, T̂h satisfy
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The solutions (C.7)a,b must satisfy the boundary conditions
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(C.9)

Homogeneous solutions to (C.8)a,b are
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with ¸ satisfying the equation
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The value of ¸ having positive real part is chosen so ûh ! 0 as y !1; replacing (C.10)a,b in (C.7)a,b, we
have
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To satisfy the boundary conditions at the surface, c1 and c2 are assigned the values
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Hence the solutions for the distributions of velocity and temperature within the boundary layer are
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where we have assumed isentropic motion in the external °ow:
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Although we have assumed the °ow to be incompressible in the above analysis, the boundary layer is
usually referred to as the `acoustic boundary layer'. The °ow near the surface is dominated by inertial
and viscous forces so compressible e®ects are ignored. However, the result can (and usually is) used with a
compressible, i.e. acoustic, ¯eld external to the boundary layer.
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Mechanical energy of motion is dissipated within the acoustic boundary layer, causing acoustic waves
incident on a wall to be attenuated. That process is analyzed in Section 5.9. For the calculations we need a
formula for the rate of dissipation of energy within the acoustic boundary layer. The general form is (A.63)
with the sources given by (A.66) and the de¯nitions (A.67) and (A.69) for W and Q:
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For the conditions here, the only terms surviving in Q and W are those due to viscous stresses and heat
conduction; then W = 0 and

Q = ¿¿¿v ¢ r ¢ u¡r ¢ q
For the one-dimensional °ow in the acoustic layer,
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The last term can be rewritten and for this °ow (C.15) becomes
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To understand this result, consider an element of the °ow extending between the planes y1 and y2 and
having unit area. The right hand side of (C.17) represents the rate of entropy production per unit volume
associated with this element. There are two contributions which can be interpreted with the following
calculation. First integrate (C.17) over the volume of the element; for one dimensional °ow, only the integral
over y remains:
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This result represents the total entropy production associated with the volume element. The bracketted terms
under the integral must be interpreted as the entropy production per unit volume arising from dissipation
of energy. The ¯rst term is due to action of viscous stresses and the second is due to conduction of heat.

The last term in (C.18) is the net entropy production due to conduction of heat through the two faces
of the element at y = y1; y2. This part of the entropy production must be assigned to the environment of
the element, for the following reason. Now apply (C.18) to the acoustic boundary layer with y1 = 0 at the
wall, and y2 !1 so the entire layer is included in the integration. Then @T=@y = 0 in y2 and (C.18) is
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Suppose that the temperature increases with y. Then heat is transferred from the element to the wall,
causing a loss of entropy of the element and an increase of entropy of the wall. That heat °ow is non-zero
because of the temperature rise due to energy dissipation within the element. Therefore, if we are concerned

ANNEX C – THE ACOUSTIC BOUNDARY LAYER 

C - 4 RTO-AG-AVT-039 

 

 



only with the consequences of processes within the element, we may drop this term. Hence the formula for
the rate of entropy production per unit volume within the element is
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