
AN NEX D

Accounting for Waves o f Vorticity and Entropy

In Chapters 3 and 4, the equations of motion have been written in dimensionless variables, mainly as the
basis for the two-parameter expansion. It is often preferable to use dimensionless variable, for example,
in modeling some of the physical processes treated in special problems. In this annex, the main results of
Chapter 3 are reproduced, and extended to show explicitly the formal consequences of including unsteady
vorticity and entropy in the method of spatial averaging developed in Chapter 4.

The basis for the calculations in the set of equations1 (A.59){(A.64)
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Following the procedure explained in Chapter 3, expansion of (D.1)a-f to third order in the °uctuations.
Problem III de¯ned in Section 3.3.3 leads to the equations governing the unsteady ¯eld. To simplify the

1Here bold symbols for the mass-averaged °uid properties R, Cp, Cv and °°° are replaced by R, Cp, Cv and °
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results we assume that the average values ¹½, ¹p, ¹T are constant and uniform to give:
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Combination of (D.2)b and (D.2)d gives the nonlinear wave equation for the pressure °uctuations and
its boundary condition
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with
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The brackets are de¯ned similarly to those in Annex A.6:
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A system of oscillator equations is formed as in Chapter 4. Expand the pressure °uctuation in normal
modes:

p0(r; t) = ¹p
MX
m=0

´m(t)Ãm(r) (D.6)

Spatial averaging leads to the result (4.36) with n replacing N ,
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With some use of familiar vector identities, for h and f given by (D.6)a,b, Fn can eventually be written
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It is important that both the steady and unsteady velocity ¯elds have not been assumed to be irrotational.

Note also that in (D.9) there is only one surface term, involving the acceleration @u0
@t . However, for irrotational

acoustic motions some of the integrands combine to form a divergence which by Gauss' theorem leads to a
surface integral representing convection of mechanical energy throughout the surface.

These results establish the formal basis for investigating in°uences of vorticity and entropy waves on
an acoustic ¯eld in a chamber. We emphasize again that the expansion (D.6) of the pressure ¯eld is only
the zeroth order approximation. The oscillator equations govern the time-evolution of the amplitudes of
the chosen basis functions, the mode shapes, but the spatial distributions to higher order require further
computations, as explained in Section 4.6. The dependent variables in h and f are not to this point restricted.
Hence in particular, following the idea discussed in Section 4.1 that generally a disturbance in a compressible
°owing medium may be synthesized of three modes of propagation, we write the variables as sums of three
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parts labeled ( )a for acoustic, ( )− for vorticity, ( )s for entropy; the second column of Table D.1 shows
the de¯ning properties of the contributions from the three modes in their zeroth approximation.

Table D.1. De¯nition of Splitting a Disturbance in the Three Modes of Propagation (Chu
and Kovasznay, 1958).

Splitting Variables Basic Properties

Pressure p0 = p0a + p0− + p
0
s p0a 6= 0 ; −0− = −

0
s = 0

Vorticity −0 = −0− +−
0
s + −

0
a −0−6= 0 ; −0s = −

0
a = 0

Entropy s0 = s0s + s0a + s0− s0s 6= 0 ; s0a = s0− = 0

The zeroth approximations (small amplitude; no mean °ow) to the °ow variables in the three modes are
given in Table D.2.

Table D.2. Zeroth Approximation for the Flow Variables in the Three Modes.

Pressure Velocity

Acoustic Mode p0a = ¹p
MP
m=1

´m(t)Ãm(r) u0a =
MP
m=1

_́m
°k2m

rÃm

Vorticity Mode p0− = 0 r£ u0− = 0 ; r ¢ u0− = 0

Entropy Mode p0s = 0 r£ u0s = 0 ; r ¢ u0s = 1
cp
@s0
@t

Thus the total velocity °uctuation to zeroth order is

u0(r; t) = u0a + u0− + u0s (D.11)

The density °uctuation contains a contribution from the entropy °uctuation (related to the temperature);
from the formula for the entropy of a perfect gas,

s¡ s0 = cp log (p=p0)
1=°

(½=½0)
(D.12)

We ¯nd, to second order in the pressure °uctuations,
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The next step is substitution of (D.11) in the integrals (D.10)a-e and rearrangement to give the formulas
for the ¯rst and second order contributions:

I1 = I
a
1 + I

−
1 + I

s
1
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a
2

I3 ! Iij3

I4 = I
aa
4

(D.14)a-d
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The elements Iij3 forming I3 =
3P
j=1

3P
i=1

Iij3 are
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Equation (D.13) gives the two parts of the density °uctuation:
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The remaining integrals in (D.14)a-d are de¯ned as
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Because the integrals Ii are additive in (D.9), we can set down the parts which involve only acoustic,
vorticity or entropy °uctuations, and the interactions; it is more physically appealing to write Fn, equation
(D.9), as the sum:
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with the de¯nition

Iaa = ¹½k2n
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Substitution of the acoustic approximations to the acoustic pressure and velocity (see Table D.2) leads
eventually to the simpler formula for Iaa:
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Note that the surface integral contains the entire velocity °uctuation, u0 = u0a + u0− + u0s.

Without modeling the relevant physical processes, the remaining integrals in (D.19) cannot be simpli¯ed
further than their primitive de¯nition written as the sums appearing in (D.9), the individual contributions
being given in (D.15) and (D.17):
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