
ANNEX E

Accommo dating Discont inuities i n t he Metho d of Spatial
Averaging

Especially in problem arising from unsteady behavior in gas turbine combustors and augmentors or after-
burners, representing the combustion ¯eld with one or more °ame sheets is a common strategy; see, for
example Marble and Candel (1978), Cumpsty (1979), Dowling and Bloxsidge (1984), and Dowling (1996).
Modeling with discontinuities requires a little care: not only are distributions of physical quantities a®ected|
in obvious ways|particularly the density, temperature, velocity, and energy release ¯elds, but there is also
a contribution arising with the formulation of the averaged equations. Figure E.1 illustrates several possi-
bilities. We shall examine only the simplest case of a °ame front normal to a one-dimensional °ow, shown
in Figure E.1(c).

Chu (1953) was ¯rst to examine in detail the transient behavior of a °ame treated as a discontinuity.
His analysis was based on equations derived by Tsien (1951) and Emmons (1958). In general, when subject
to a disturbance, the °ame speed, and therefore the position of the °ame, changes. Those perturbations
must be taken into account to obtain completely correct results (cf. the analysis in Section 2.1) but we will
ignore them here in favor of emphasizing certain aspects of the formalism. Our purpose is modest, to show
that spatial discontinuities must be treated carefully to account for all contributions, some of which arise
specially in the process of spatial averaging.

We can most clearly see the problem in the simplest situation of one-dimensional °ow sketched in Figure
E.2. For this calculation only we suppose that the velocity and pressure °uctuations are non-zero, but we
ignore all other contributions, notably density changes. The inhomogeneous equation for the pressure is

@2p0

@x2
¡ 1

¹a2
@2p0

@t2
= h1

@p0

@x
= ¡f1 (x = x1; x0; x2)

(E.1)a,b

with

h1 =
1

¹a2
@m

@t
¡ @M
@x

f1 = ¹½
@u0

@t
+ M

(E.2)a,b

and

M = ¹½

μ
¹u
@u0

@x
+ u0

du0

dx

¶
= ¹½

@

@x
(¹u0u0)

m = °p0
d¹u

dx
+ ¹u

@p0

@x

(E.3)a,b

 

RTO-AG-AVT-039 E - 1 

 

 



v's

u+

u−

n̂

v'
f

u+

u−

n̂

n̂

v'
f

u+

u−

u+

u−

n̂

v'
f

v's

n̂

u+

u−

v'
f

u+

u−

n̂

(a)  Shear Layer

(b)  Flame Sheet

(c)  Flame Sheet Normal to the Average Flow

Figure E.1. Three examples of discontinuities in a °ow ¯eld.
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Figure E.2. A discontinuity in a one-dimensional °ow.
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We assume the familiar separable forms for the pressure and velocity perturbations,

p0 = ¹½´`Ã` ; u0 =
_́`
°k2`

dÃ`
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(E.4)

Following the procedure worked out in Chapter 3 and applied in Section 6.7 to one-dimensional °ows, we
¯nd the equation for ´`,
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The last term containing the jump in Ã`f1 at the discontinuity is, at this stage, the only obvious evidence
of a discontinuity in the °ow. In three dimensions, a corresponding arises at a surface where the function f
is discontinuous. For f1 given by (E.2)a,b,
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¢u0 = ¹u(x0+)¡ ¹u(x0¡) (E.7)

The weighted integral of h1 has three parts:
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Each of the three pieces has special contributions at the discontinuity: Integration of the ¯rst term by parts
gives
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The last term can be simpli¯ed for the step change assumed for the mean velocity,
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With similar calculations, the last two integrals in (E.8) become
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Substitution of (E.9){(E.12) in (E.8) gives
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Finally, inserting (E.13) in (E.5) and using (E.2)a,b to evaluate the terms containing f1, gives the equation
for ´`:
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Only the terms arising at the discontinuity are shown. Note that because u00, the velocity °uctuation at the
discontinuity, is proportional to _́`, all such terms contribute to damping.

The calculations leading to (E.14) have been carried out only as an arti¯cial example to suggest what
may happen in the analysis when a discontinuity is present in the °ow. It should be clear that the result,
equation (E.14), is at best incomplete. Even proper `jump' conditions across the °ame have not been used;
correct conditions would, for example, set the value of ¢¹u in (E.14). One purpose of the analysis carried
out here has been to emphasize that in addition to jump conditions, or some sort of comparable formal
statement, special care is required carrying out integrals. The steps leading from (E.9) to (E.13) make the
point.
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