
AN NEX F

Basis Functions Satisfying Homogeneous Boundary Conditions

The purpose of this annex is to clarify an important point that has been misunderstood by several critics
of the methods followed in this book. It's a di±culty whose source is readily identi¯ed but a bit of e®ort is
required to resolve the matter. The issue is perhaps best captured by the general question:

How is a true solution satisfying inhomogeneous boundary conditions represented
accurately by an expansion in basis functions satisfying homogeneous boundary
conditions?

In the problems treated in this book, we are concerned often with the unsteady pressure ¯eld governed by
the inhomogeneous wave equation (3.53) with the inhomogeneous boundary condition (3.55),

r2p0 ¡ 1

¹a2
@2p0

@t2
= h (F.1)

n̂ ¢ rp0 = ¡f (F.2)

The approximate method of solution has been based on expansion of the unsteady pressure and velocity
¯elds expressed in the basis functions Ãn taken as normal modes satisfying the problem

r2Ãn + k2nÃn = 0 (F.3)

n̂ ¢ rÃn = 0 (F.4)

Then the pressure and velocity ¯elds are approximated by the classical forms with amplitudes ´n(t) to be
determined:

~p 0(r; t) = ¹p
NX
n=1

´n(t)Ãn(r) (F.5)

~u0(r; t) =
NX
n=1

_́n(t)

°k2n
rÃn(r) (F.6)

where N may become in¯nite; see Section 4.3.

With the representation (F.5), spatially averaging the di®erence between the actual problem. (F.1),
(F.2), and the normal mode problem (F.3), (F.4), gives the equations (4.36) for the amplitudes ´n(t):

d2´n
dt

+ !2n´n = ¡
¹a2

¹p

1

E2n

½Z
hÃndV +

ZZ
° fÃndS

¾
(F.7)

For reasons explained in Section 4.6, we require in this book only the classical formulas for the pressure
and velocity because we compute all quantities|notably the amplitudes ´n and, if necessary, the pressure|
to ¯rst order in the expansion parameter ¹Mr, a measure of the mean °ow Mach number. That is, with only
a modest (but tedious) extension of the apparatus we have covered, we could calculate p0 and u0 to ¯rst
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order,

p0(r; t) = ¹p
NX
n=0

´n(t)Ãn(r)
£
1 + ¹MrP(r; t)

¤
(F.8)

u0(r; t) =
NX
n=0

_́n(t)

°k2n

£rÃn(r) + ¹MrU(r; t)
¤

(F.9)

We will avoid the calculations necessary to prove that the approximate solution, the expansions (F.5) and
(F.6) really do solve the problem (F.1), (F.2) to the order required. To carry through the `proof' would
require ¯nding P and U which the developments in the main text have shown are not needed for useful
results. Therefore we make the point with a much simpler model problem.

y

x

b

a0

u = 0

u = 0

u (x,0) = f (x)

u = 0

Figure F.1. The problem de¯ned for determining p(x; y).

The example was apparently ¯rst worked out by Friedman (1956, pp. 269{272). I learned the lesson,
as well as useful explanation, from Professor D.S. Cohen, who clari¯ed the problem in class notes. The
following is an extended and paraphrased version of those notes as well as including what I learned from
private conversations.

We consider the two-dimensional steady problem of ¯nding u(x; y) satisfying Laplace's equation with
non-zero boundary condition only on the x-axis where u(x; 0) = f(x). Solution is found in the rectangle
0 < x < a, 0 < y < b, Figure F.1. Symbolically we have

@2p

@x2
+
@2p

@y2
= 0

μ
0 < x < a
0 < y < b

¶
(F.10)

p(x; 0) = f(x)
p(x; b) = 0

¾
0 · x · a (F.11)

p(0; y) = 0
p(a; y) = 0

¾
0 · y · b (F.12)

Corresponding to the zeroth order form (F.5) for the pressure ¯eld, we assume the solution to (F.10) which
seemingly cannot satisfy the boundary condition (F.11),

p(x; y) =
1X
n=1

cn(x) sin
n¼y

b
(F.13)
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so

cn(x) =
2

b

bZ
0

p(x; y) sin
n¼y

b
dy (F.14)

The series (F.13) may be regarded as an expansion in the eigenfunctions sin n¼yb corresponding to Ãn in
(F.5). Spatial averaging of the governing equation (F.10) over y, weighted by the basic function, gives

2

b

bZ
0

@2p

@x2
sin

n¼y

b
dy +

2

b

bZ
0

@2p

@y2
sin

n¼y

b
dy = 0

Then substitution of the assumed form (F.13) and integration of the second term by parts leads to

d2cn
dx2

+
2

b

(·
@p

@y
(x; y) sin

n¼y

b

¸y=b
y=0

¡ 2n¼
b2

bZ
0

@p

@y
cos

n¼y

b
dy = 0

The second term is zero and integration of the third term gives

d2cn
dx2

¡ 2n¼
b2

h
p(x; y) cos

n¼y

b

iy=b
y=0

+
2

b

³n¼
b

´2 bZ
0

p(x; y) sin
n¼y

b
dy = 0

After substitution of the boundary condition on y = 0 in the ¯rst term, and the de¯nition (F.14) in the last,
the equation for cn(x) is

d2cn
dx2

¡
³n¼
b

´2
cn = ¡2n¼

b2
f(x) (F.15)

with the end conditions

cn(0) = cn(a) = 0 (F.16)

Solution for cn(x) is conveniently constructed using a one-dimensional Green's function. Hildebrand
(1952, pp. 388®) has given a particularly clear discussion of the calculation which, with only minor changes,
is directly applicable here. The Green's function G(xj») satis¯es the same di®erential equation as cn(x)
does except that the inhomogeneous right-hand side is non-zero at a single point » which lies in the range
a < » < b,

d2G(xj»)
dx2

¡ ·2G(xj») = ±(x¡ ») (F.17)

where · = n¼=b and ±(x¡ ») has the property,
x>»Z
x<»

±(x¡ »)d» = 1 (F.18)

Without additional justi¯cation, we require G to have the four properties:

(i) G is composed of two parts, f and g, which because of the de¯ning property (F.17) satisfy the same
homogeneous equation:

d2g

dx2
¡ ·2g = 0 (0 · x < »)

d2h

dx2
¡ ·2h = 0 (» < x · a)
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and

G =

8<:g(x) 0 · x < »

h(x) » < x · a
(F.19)

(ii) G satis¯es the prescribed homogeneous boundary conditions (F.16),

G(0j») = G(aj») = 0 (F.20)

which imply

g(0) = 0 ; h(a) = 0 (F.21)

(iii) G is continuous at x = »,

g(») = h(») (F.22)

(iv) the derivative of G has discontinuity equal to ¡1 at the point x = »:
dh

dx
¡ dg

dx
= ¡1 (x = »)

Conditions (i) and (ii) are satis¯ed by the functions

g(x) = A sinh·x

h(x) = B sinh·(a¡ x) (F.23)a,b

Conditions (iii) and (iv) then become

A sinh·» ¡ B sinh·(a¡ ») = 0 (F.24)

A cosh·» + B cosh·(a¡ ») = 1

·
(F.25)

The constants A and B are therefore

A =
1

¢

¯̄̄̄
0 ¡ sinh·(a¡ »)
1
· +cosh·(a¡ »)

¯̄̄̄
=

1

·¢
sinh·(a¡ »)

B =
1

¢

¯̄̄̄
sinh·» 0
cosh·» 1

·

¯̄̄̄
=

1

·¢
sinh·»

(F.26)a,b

where

¢ = sinh·» cosh·(a¡ ») + cosh·» sinh·(a¡ ») = sinh·a (F.27)

Thus A = sinh·(a ¡ »)=· sinh·a, B = sinh·»=· sinh·a and the Green's function for this problem follows
from (F.19):

G(xj») =

8>><>>:
sinh·x sinh·(a¡»)

· sinh·a =
sinh n¼x

b sinh n¼
b (a¡»)

n¼
b sinhn¼ a

b
0 · x · »

sinh·» sinh·(a¡x)
· sinh·a =

sinh n¼»
b sinh n¼

b (a¡x)
n¼
b sinhn¼ a

b
» · x · a

(F.28)

Solution for cn(x) is found in familiar fashion by combining (F.15) and (F.17). Multiply (F.17) by cn(x),
(F.15) by G(xj»), subtract the results and integrate over the range of the solution:

aZ
0

·
cn(x)

d2G(xj»)
dx2

¡G(xj»)d
2cn
dx2

¸
dx¡

aZ
0

·
·2cn(x)G(xj»)¡

³n¼
b

´2
G(xj»)cn(x)

¸
dx

=

aZ
0

·
cn(x)±(x¡ ») + 2n¼

b2
f(x)G(xj»)

¸
dx

(F.29)
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The ¯rst term is integrated by parts with the boundary conditions (F.16) and (F.20) applied:

aZ
0

·
cn(x)

d2G(xj»)
dx2

¡G(xj»)d
2cn(x)

dx2

¸
dx =

·
cn
dG

dx
¡Gdcn

dx

¸a
0

¡
aZ
0

·
dcn
dx

dG

dx
¡ dG
dx

dcn
dx

¸
dx = 0

Because · = n¼=b, the integrand of the second integral in (F.29) is zero, giving

aZ
0

cn(x)±(x¡ »)dx = ¡2n¼
b2

aZ
0

f(x)G(xj»)dx

With the property (F.18),

cn(») = ¡2n¼
b2

aZ
0

f(x)G(xj»)d»

Interchange x and », and use the symmetry property which can be con¯rmed with (F.27)1, G(xj») = G(»jx),
the solution cn(x) is

cn(x) = ¡2n¼
b2

aZ
0

f(»)G(xj»)d» (F.30)

Thus with (F.28) we have

cn(x) = ¡2n¼
b2

xZ
0

f(») [G(xj»)]0·»·x d» ¡
2n¼

b2

aZ
x

f(») [G(xj»)]x·»·a d»

= ¡2
b

sinh n¼b (a¡ x)
sinhn¼ ab

xZ
0

f(») sinh
n¼»

b
d» ¡ 2

b

sinh n¼xb
sinhn¼ ab

aZ
x

f(») sinh
n¼

b
(a¡ »)d»

(F.31)

Substitution into (F.13) gives the solution for p(x; y) in terms of its boundary values p(x; 0) = f(x) on the
side of the rectangular region on the x-axis:

p(x; y) = ¡2
b

1X
n=1

sin n¼yb
sin n¼ab

8<:sinh n¼b (a¡ x)
xZ
0

f(») sinh
n¼»

b
d» + sinh

n¼x

b

aZ
x

f(») sinh
n¼

b
(a¡ »)d»

9=;
(F.32)

This result gives p(x; 0) = 0 on the side of the rectangle on the x-axis|where we have already speci¯ed,
and presumably satis¯ed, the condition p(x; 0) = f(x). We therefore have the paradoxical situation quite
analogous to that prevailing for the acoustic ¯eld treated with the method described in Chapter 4: The
solution (F.32) has been constructed to satisfy the boundary condition (F.11) on y = 0, but because sin n¼yb
is zero on y = 0, the speci¯ed boundary condition is obviously not satis¯ed.

Owing to the relative simplicity of the formulas arising in this problem, we can resolve the apparent
paradox explicitly and quite easily. The key to doing so is to show that (F.32) is not a continuous function
of y as y ! 0, expressed by the statements

(i) p(x; 0) = 0, which follows immediately from (F.32); but

(ii) lim
y!1 p(x; y) = f(x), the required boundary condition (F.11)

1Because the di®erential operator de¯ned by (F.15) is self-adjoint, the associated Green's is symmetric (Morse and Feshbach
1948, for example).
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Another way of stating this result is: \the limit of the sum is not equal to the sum of the limits"
R P6=PR

.

We already know by inspection that
PR

= 0 for (F.32), the result following because sin n¼yb = 0 for
y = 0 in all terms of the ¯nite sum, and then letting the sum become in¯nite. So we have only to show that
statement (ii) follows from the solution (F.32). Write (F.32) in the form (F.13),

p(x; y) =
1X
n=1

cn(x) sin
n¼y

b

where cn(x) is given by (F.31). Integrate by parts, the two terms in cn(x),

xZ
0

f(») sinh
n¼»

b
d» =

b

n¼

·
f(») cosh

n¼»

b

¸x
0

¡ b

n¼

xZ
0

df

d»
cosh

n¼»

b
d»

aZ
x

f(») sinh
n¼

b
(a¡ »)d» = ¡ b

n¼

h
f(») cosh

n¼

b
(a¡ »)

ia
x
¡ b

n¼

aZ
x

df

d»
cosh

n¼

b
(a¡ »)d»

The result of substituting into the formula (F.30) can be put in the form

cn(x) = ¡ 2

n¼
f(x) + Cn(x) (F.33)

where

Cn(x) =
2

n¼

1

sinh n¼ab

nh
f(a) sinh

n¼x

b
¡ f(0) sinh n¼

b
(a¡ x)

i
+

24 xZ
0

df

d»
cosh

n¼»

b
d» ¡

aZ
x

df

d»
cosh

n¼

b
(a¡ »)d»

359=;
(F.34)

We take advantage of a result used by Friedman (1956, p. 271) and assumed here without proof. For
the Fourier series

S =
1X
n=1

An sinny;

suppose that for n large,

An =
a1
n
+
a2(n)

n2

where a, is constant and a2(n) is bounded. If a1 6= 0,

S = a1

1X
n=1

sinny

n
+

1X
n=1

a2(n)

n2
sinny
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The second sum tends to zero as y ! 0 and the ¯rst sum is a1(¼ ¡ y)=2 for 0 < y < ¼. Hence, for y ! 0,

S =
1X
n=1

An sinn¼ ¡!
y!1 a1

¼ ¡ y
2

+
1X
n=1

a2(n)

n2
y =

y=0 a1
¼

2
(F.35)

Therefore, p(x; y) given by (F.13) with cn(x) expressed as (F.33) is

p(x; y) =
2

¼
f(x)

1X
n=1

sinny

n
+

1X
n=1

Cn(x) sinny

For y ! 0,

p(x; y ! 0) =
2

¼
f(x)

μ
¼ ¡ y
2

¶
+

1X
n=1

Cn(x) sinny

which for y = 0 becomes

p(x; 0) = f(x) (F.36)

This then demonstrates that with su±cient care, the representation (F.13) which apparently cannot satisfy
the boundary condition p6= 0 on y = 0, in fact does if the in¯nite series is properly summed.

We have not, and will not here, prove the corresponding property for our case summarized by equations
(F.1){(F.7), but throughout this book, whenever necessary, we assume its truth.
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