
AN NEX G

Nyquist Criterion

Nyquist (1932) established the result which bears his name during his work on problems relating to the
development of the US telephone system. It is a wonderful yet simple general result, a relation among the
poles and zeros of a complex function, established by applying Cauchy's residue theorem. In Section G.5 we
repeat a standard proof to clarify what is implied by use of the criterion in applications to control theory.
We treat only linear single-input-single-output (SISO) systems in detail; at the end of this annex we make
a few remarks on multi-input-multi-output (MIMO) systems.

There are many books devoted to feedback control, but surprisingly few contain proofs of Nyquist's
Criterion. That's a pity because with a little e®ort one gains a great deal of understanding. Besides Bode's
book (1945) volumes that I have found helpful include Franklin et al. (2002), McFarlane and Glover (1992),
Ogata (1990), and DiStefano et al. (1990). For ¯ve years I shared with several faculty, a ¯rst course in
feedback control of dynamical systems. That experience was enormously helpful to me.

In practice, the system or plant dynamics, written in terms of the Laplace transfer variable s and
represented by its transfer function G(s), are known. To meet performance speci¯cations (such as steady-
state error for a step input), a controller is required, having dynamics H(s). Hence the open-loop transfer
function H(s)G(s) is known, practically always in factored form, so the open-loop performance and stability
are readily determined.1

Performance speci¯cations are often such that they cannot be met with open-loop operation. Feedback is
then added, the performance speci¯cations are placed on the closed-loop system, and we must be concerned
with stability of the system shown in Figure G.1, for which the transfer function is

P

F
=

H(s)G(s)

1 +H(s)G(s)

G(s)F 
+

Σ PH(s)
−

Figure G.1. The system G(s) with controller H(s) and negative unity feedback.

Stability now is determined by the zeros of 1 +HG and we are usually faced with two problems in the
analysis and design of a feedback system:

(1) given H(s)G(s), ¯nd the roots of 1 +H(s)G(s);
(2) for the given transfer function G(s) of the plant, ¯nd the transfer functionH(s) of a controller required

to meet the desired closed-loop performance.

1Unlike the convention followed in the remainder of this book, we assume in this annex that the time dependence for steady
waves is e+i! , instead of e¡i!, to be consistent with standard usage in control theory. Also, the complex variable, s = ¾ + i!,
which originates as the Laplace transform variable in control theory, takes the part of z = x+ iy.
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The actual performance depends on the zeros of 1 + HG, which cannot be determined until H(s) is
known. Hence there is clearly a design problem which can be solved only if methods of analysis are available,
the matter we now address. The design process involves some sort of `cut-and-try' or interactive process, at
each stage of which the methods of analysis are applied to check the actual performance and stability.

G.1. The Criterion Stated Without Proof

The closed-loop transfer function will often have the form of 1 plus a rational polynomial,

1 +HG = 1 +K

iQ
(s¡ zi)

s`
jQ
(s¡ pj)

;

where we allow for a pole of order ` at the origin in HG. Stability of the open-loop system depends on the
poles of HG, but the stability of the closed-loop system depends on the zeros of 1+HG. Hence it is possible
that the closed-loop system may be stable even if the open-loop system is unstable, one of the advantages
of feedback.

For practical purposes, it is usually di±cult to factor 1+HG, so closed-loop stability is not easily found.
The Nyquist Criterion allows one to determine without factoring 1 + HG, whether or not the closed-loop
system is stable, and, if it is unstable, the number of unstable poles (i.e., zeros of 1+HG in the right-half of
the s-plane). This remarkable result is based on a polar plot of the open-loop transfer function, proceeding
in the following steps:

(i) locate the poles of H(s)G(s) on the imaginary axis in the s-plane, including the origin;

(ii) construct the Nyquist path in the s-plane (Figure G.2), traversing the imaginary axis excluding the
poles of HG, and closed by a semi-circle in the right-half s-plane. Poles and zeros of HG within the
path are not excluded. Hence the interior of the closed ¯gure lies to the right of the path;2

iω

σ

s

Figure G.2. De¯nition of the Nyquist path excluding poles of HG on the imaginary axis.
Examples of poles and zeros within the path are not excluded.

2This is probably the most common de¯nition of the Nyquist path, excluding poles on Re(s) = 0. Alternatively, poles on
the imaginary axis can be explicitly included by closing the semi-circles to the left of those poles. The details of the following
argument would change, and the statement of Nyquist's Criterion would be di®erent, but the substance of the result would
remain.
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(iii) construct the Nyquist contour or polar plot, i.e. the mapping, of the Nyquist path by the open-loop
transfer function H(s)G(s);

(iv) count the number N of encirclements of the point ¡1 by the polar plot (N > 0 if ¡1 lies inside the
contour and N < 0 if ¡1 lies outside, i.e. the contour makes counter-clockwise encirclements of ¡1);

(v) let P be the number of poles of HG in the right-half s-plane (right-half s-plane [RHP] means
Re(s) > 0); P > 0 if the open-loop system is unstable; P = 0 if the open-loop system is stable,
so all poles are in the left-half s-plane, or if HG has poles on the imaginary axis. Thus P is either
zero or a positive integer.

(vi) then the Nyquist Criterion is:

(1) if N > 0, the number Z of zeros of 1 +HG in the right-half s-plane is

Z = N + P (G.1)

(2) the closed-loop system is stable if and only if the number of counter-clockwise encirclements
equals the number of poles in the right-half s-plane:

N = ¡P· 0 (G.2)

Note that the Nyquist Criterion gives information about the absolute stability of the closed-loop system but
provides no measure of relative stability|i.e., how stable or unstable it is. However, we will see in Section
G.7 that the Nyquist polar plot provides a clear basis for de¯ning measures of relative stability.

G.2. Some General Properties of Polar Plots

In the present context we view a polar plot as a mapping|in the cases which we deal with a conformal
transformation|of a contour in the s-plane to the image ¯gure in the G-plane by G(s). If the contour avoids
poles of G, the mapping is conformal and angles are preserved. In particular, a right angle in the s-plane of
the contour in the s-plane is mapped to the corresponding right angle in the G-plane:

The polar plot of G(s)+g, where g = gr+ igi, is a complex number, is the polar plot of G(s) with origin
shifted to ¡g. This property follows by direct calculation,

G+ g = (Gr + gr) + i(Gi + gi)

which can be interpreted with a sketch of a simple example. See Figure G.8 for a case when g = gr = 1.

For a time-invariant linear system the polar plot of G(s) antisymmetric about the real axis for s = i!,

ImG(¡i!) = ¡ImG(i!) (G.3)

To show this, suppose that G(s) is a rational polynomial with a pole of order ` at the origin,

G(s) =
K

s`
¦(s¡ zi)
¦(s¡ pj) =

K

s`
snN + aN¡1snN¡1 + ¢ ¢ ¢
snD + anD¡1snD¡1 + ¢ ¢ ¢

in which the coe±cient in the polynomials, as well as the constant K, are real. On the imaginary axis of s,

G(i!) =
K

(i!)`
¢ ¢ ¢ (i! ¡ zn)(i! ¡ z¤n) ¢ ¢ ¢
¢ ¢ ¢ (i! ¡ pn)(i! ¡ p¤n) ¢ ¢ ¢
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and the complex conjugate is

G¤(i!) = G(¡i!) = Gr ¡ iGi = K

(¡i!)`
¢ ¢ ¢ (¡i! ¡ z¤n)(¡i! ¡ zn) ¢ ¢ ¢
¢ ¢ ¢ (¡i! ¡ p¤n)(¡i! ¡ pn) ¢ ¢ ¢

Consider the pair of factors shown in the numerators of G and G¤,

G : (i! ¡ zn)(i! ¡ z¤n) = (jznj2 ¡ !2)¡ i(2!zrn)
G¤ : (¡i! ¡ z¤n)(¡i! ¡ zn) = (jznj2 ¡ !2) + i(2!zrn)

These are typical factors so we conclude that G(¡i!) has imaginary part having the same numerical value,
but opposite sign compared with that of G(i!) if we ignore the pole of order ` at the origin, i.e. take ` = 0.
In this case, G(i!) is antisymmetric about the real axis, as asserted by (G.1).

When ` = 1; 2; 3; : : : , G has the additional multiplying factor 1s ,
1
s2 ,

1
s3 , ¢ ¢ ¢ or 1

i! ,
1

(i!)2 ,
1

(i!)3 , ¢ ¢ ¢ , that
is 1

i! , ¡ 1
!2 , ¡ 1

i!3 , ¢ ¢ ¢ . Thus G¤ contains the corresponding factors ¡ 1
i! , ¡ 1

!2 ,
1
i!3 , ¢ ¢ ¢ . Hence, when ` is

even, the pole has no e®ect on the above argument and (G.1) still holds. But when ` is odd, the polar plot
of G is symmetric about the real axis and the values of G(¡i!) overlay those of G(i!).

G.3. Construction of Nyquist Contours (Polar Plots)

The Nyquist contour, or polar plot, is the mapping of the Nyquist path, Figure G.2, to the HG plane.
Poles on the path are avoided by indenting the path, as shown in Figure G.3, with a small semi-circle of
radius ½ (½! 0 eventually); the path is closed by the large semi-circle of radius R (R!1 eventually). The
indentations on the imaginary s-axis exclude poles representing undamped motions, for example, oscillations
of constant amplitude.

θ

iω

σ

θ

θ

θ

ρ

ρ

πiω

π− iω

R

s

Figure G.3. Indentations around poles on the imaginary axis. Poles and zeros within the
contour are supressed.
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As an aid to constructing the mapping, note that on the various portions of the Nyquist path, s assumes
the following values:

(i) on the positive imaginary axis: s = i!

(ii) on an indentation around a pole
on the positive imaginary axis: s = i!p = ½e

iμ ¡¼
2 · μ · ¼

2

(iii) on the large semi-circle: s = Reiμ ¼
2 · μ · ¡¼

2

(iv) on an indentation around a pole
on the negative imaginary axis: s = i!p + ½e

iμ ¡¼
2 · μ · ¼

2

(v) on the indentation around the origin: s = ½eiμ ¡¼
2 · μ · ¼

2

For simplicity in the following examples we set H = 1.3

(a) G(s) = 1
s+1

There are no poles on the Nyquist path and the polar plot is sketched below.

− 1

s

G(s)

ω      − oo

iGi

Gr

ω = −1

ω = 1

ω      + oo

ω      0 −

ω      0 +
0.5             1.0

G

(b) G(s) = 1
s(s+1)

This is example (a) plus a simple pole at the origin. The path in the s-plane must be indented
to avoid the pole. On this indentation we set s = ½eiμ and G is

G =
1

½eiμ(1 + ½eiμ)
¡!
½!0

1

½
e¡iμ

³
¡¼
2
· μ · ¼

2

´
=)

³¼
2
¸ Á ¸ ¡¼

2

´
Hence jGj ! 1 as the radius of the semi-circle shrinks, and the polar angle changes from
¡ ¡¡¼

2

¢
= ¼

2 to ¡¼
2 , traversing a large semi-circle in the counter-clockwise direction, as

sketched below. (Points A! A0, B ! B0, and C ! C 0.)

On the large semi-circle of the path, s = Reiμ and

G =
1

Reiμ (1 +Reiμ)
¡!
R!1

1

R2
e¡i2μ

³¼
2
¸ μ ¸ ¡¼

2

´
=) (¡¼ · Á · ¼)

3For the examples here and in Section G.6, I have relied heavily on DiStefano, Stubberud and Williams (1990), Franklin
et al. (2002) and Ogata (1990).
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For μ ! ¼
2 (! !1 on the positive imaginary axis), G! 1

R2 e
¡i¼; and for μ ! ¡¼

2 (! ! ¡1
on the negative imaginary axis), G! 1

R2 e
i¼. Hence we ¯nd the mapping of the Nyquist path

to the Nyquist polar plot shown below.

G(s)

ω − oo

Grω + oo ω 0 e i  (0)

G
iGi

C

A

B

'

'

'

θ

iω

σ
ρC

A

B

− 1

s

Compare this result with the ¯gure for example (a). The pole at the origin causes the Nyquist
contour to approach the origin along the negative real axis instead of tangent to the imaginary
axis, and a portion of the contour therefore lies in the left half-plane.

(c) G(s) = 1
s2(s+1)

Now we have a third-order pole at the origin, which will have a signi¯cant e®ect on the
Nyquist contour at in¯nity. The path in the s-plane is the same as in example (b). For s on
the indentation at the origin,

G =
1

½3ei3μ
1

(1 + ½eiμ)
» 1

½3
e¡i3μ

³
¡¼
2
· μ · ¼

2

´
Thus as μ increases from ¡¼

2 through zero to +
¼
2 , argG decreases from +

3¼
2 to ¡3¼

2 . However,
care is required to get the proper behavior. A clue is found by computing the total change of
argG for the change in μ, ¢μ = ¼:

¢(argG) = ¡3¢μ = ¡3¼
Hence the contour makes an encirclement of the origin, a result that is clari¯ed further by
constructing the following table for argG as a function of μ, plotted in the adjacent sketch.

The question now is|how does the contour close? For s on the large semi-circle, we have

G » 1

R4
e¡i4μ

³¼
2
¸ μ ¸ ¡¼

2

´
so argG changes from ¡2¼ for ! !1 on the positive imaginary axis, to +2¼ for ! ! ¡1 on
the negative imaginary axis. Hence the contour comes into the origin tangent to the positive
real axis, in the ¯rst quadrant (argG = ¡2¼) for ! ! ¡1 and in the fourth quadrant for
! ! ¡1.

The Nyquist plot has the form shown in the ¯gure, again with a few corresponding points
indicated in the s- and G-planes. The dashed line is completely the image of the portion of the
Nyquist path near the origin! Note especially that while the path in the s-plane is traversed
once, the image polar plot encircles the origin twice in the G-plane. This is an example of
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μ argG = ¡3μ

¡¼=2 3¼=2
¡¼=3 ¼
0 0
¼=3 ¡¼
¼=2 ¡3¼=2

(θ = π/2)

(θ = −π/3) (θ= π/3)

(θ = −π/2)

(θ = 0)
Gr

GiG

G(s)

iω

σ

C

A

B

− 1

s

E

D

C'

A'

B'
Gr

G
iGi

D'
F'

E'

the importance of the behavior of G(s) for s ! 0. In view of the ¯nal value theorem, this
re°ects the behavior that we can expect in the time domain for large times. So it may not be
surprising that encirclements by the contours should be closely related to stability, one aspect
of the long-time behavior of a system. In fact, stability is the only characteristic of long-time
behavior that is independent of the forcing function or input|and nothing we are doing here is
related to the input. These remarks suggest that we should be more precise with our de¯nition
of encirclement.

G.4. De¯nition of Encirclement

A closed contour in the HG plane is said to make N0 positive encirclements of the origin if a line drawn
from the origin to a point on the contour rotates clockwise through 2¼N0 radians as the point traverses
the contour. It is essential that the de¯nition of positive be maintained, as we shall see with the proof of
Nyquist's criterion, and emphasized in Figure G.4. The reason for this de¯nition of positive follows from the
chosen direction for positive traversal of the Nyquist contour in the s-plane.

As a practical matter, two points should be noted. First, polar plots for the systems we are concerned
with are symmetrical about the real axis. That is particularly to be kept in mind when drawing or viewing
contours making several encirclements of the origin|it is a matter of convenience in drawing that the portions
far from the origin seem not to satisfy that symmetry, as is the case for example (c).
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Gr
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iGi iGi G

Gr

POSITIVE                                               POSITIVE                                              NEGATIVE

Figure G.4. De¯nitions of positive and negative encirclements.

Second, an operational hint, another way of determining the number of encirclements of the origin by a
contour is to draw a line from the origin to in¯nity and count the net number of crossings of that line by
the contour, taking into account the de¯nition of `positive' (hence of `negative') given above.

G.5. Proof of Nyquist's Criterion

G.5.1. Principle of the Argument. We ¯rst establish an important relation among the numbers
of poles and zeros of a function by applying Cauchy's residue theorem.4 Consider a simple closed contour
C in the s-plane and a function f(s) analytic within C except for isolated poles, none of which are on C.
Moreover, we assume that f(s) may have zeros in the region enclosed by C but does not vanish on C. Now
apply Cauchy's residue theorem to the function f 0=f :

1

2¼i

I
C

f 0

f
ds =

X
Residues of

f 0

f

The residues of f 0=f are the coe±cients of 1=(s¡ sk) in the Laurent-series expansion. In this case, residues
are associated with both poles and zeros of f . First, near a zero of order mi of f , we can approximate f(s)
with the form

f(s) = (s¡ zi)mig(s)

where g(s) is non-zero and analytic at s = zi. Then

f 0

f
=

mi

s¡ zi +
g0

g

and the residue is mi at s = zi.

Similarly, near a pole of order nj ,

f(s) =
h

(s¡ pj)nj
where h is the analytic near pj ; the logarithmic derivative is

f 0

f
=

¡nj
s¡ pj +

h0

h

so the residue is ¡nj . Hence by the residue theorem we ¯nd

1

2¼i

I
C

f 0

f
ds =

X
mi ¡

X
nj (G.4)

4We assume for this discussion su±cient knowledge of functions of a complex variable, at the level of a well-educated
undergraduate. See, e.g., the Caltech undergraduate course ACM 95.
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This result is true independently of the direction in which the contour is traversed: there is no ambiguity of
sign.

If we regard each multiple pole (zero) as equivalent to nj(mi) simple poles (zeros) we can write

1

2¼i

I
C

f 0

f
ds = Z ¡ P (G.5)

where Z and P are the numbers of zeros and poles respectively within C.

Now carry out the integral explicitly:

1

2¼i

I
C

f 0

f
ds =

1

2¼i
[log f ]C

=
1

2¼i
[log jf j]C+

1

2¼
[arg jf j]C

The change of a quantity in one passage around the path C in the s-plane is denoted by the brackets. Hence
the ¯rst term vanishes, because jf j returns to its initial value, and the second term is the increment in the
argument of f , ¢c(arg f). When the value of s traverses the closed path once in the s-plane, the values
of f(s) will also trace a closed contour in the f -plane, which may be simple, or may intersect itself. If the
contour in the f -plane encircles the origin once, then the argument of f changes by 2¼; for N0 encirclements
of the origin, the change of argument is 2¼N0. Figure G.5 illustrates two possibilities (N0 = 0 and N0 = ¡2).

s f

N = 0  N = −2

f

0

Figure G.5. Illustrating no encirclement (N0 = 0) and two negative encirclements (N0 =
¡2) by f(s) when s executes a closed contour encircling the origin.

Therefore, the value of the integral may be written generally

1

2¼i

I
C

f 0

f
ds =

1

2¼
¢c(arg f) = N0 (G.6)

Equating the right-hand sides of (G.5) and (G.6), we have the principle of the argument:

N0 = Z ¡ P (G.7)

We emphasize that the result is independent of the direction in which the path C is traversed in the
s-plane, but the direction (i.e., the de¯nition of \inside" the path) must be consistently maintained in the
f -plane. Figure G.6 shows examples of the point, two cases of clockwise and counter-clockwise traversal of
the path in the s-plane each giving rise to two of the many possible cases in the f -plane. Which case arises
depends of course on the function f . The shading denotes the interior of a path: the interior of a path in
the s-plane maps to the interior of a contour in the f -plane because the mapping is conformal, preserving
both the magnitude and sense of angles locally.
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s G
Q

P

Q'

Q'

G

P'

P'

Clockwise Traversal

(a)                                                                        (b)                                                                           (c)

s
Q

Q'
Q'

P
P' P'

G G

Counter-clockwise Traversal

Figure G.6. Examples showing consistent maintenance of the de¯nition of `interior' of a
path under mapping from the s-plane to the G-plane.

The de¯nition of positive sense of a path is de¯ned in the s-plane. Either case in Figure G.6 is valid: if
the path is traversed in the clockwise sense, the interior is to the right, and if in the counter-clockwise sense
the interior is to the left. The chosen de¯nition is maintained in the G-plane, so the `interior' regions are
mapped as shown. Then an encirclement of a point in the G-plane is positive if that point belongs to the
image of the interior of the path in the s-plane and negative if the point belongs to the image of the exterior.
If the point lies outside the path in the G-plane, then the net phase change is zero for a vector drawn from
the point to a point executing the path. By de¯nition, the encirclement is then zero.

G.5.2. Proof of Nyquist's Criterion. Returning to the demonstration of Nyquist's criterion, we
set f = HG, the forward-path transfer function. Equation (G.7) has then established that the number of
encirclements of the origin by the Nyquist contour in the HG-plane is equal to the number of zeros of HG
minus the number of poles of HG in the right half-plane. Because we chose to execute the Nyquist path
in the clockwise direction in the s-plane, a positive encirclement in the HG- plane is also de¯ned as a 2¼
increase of argHG in the clockwise sense. Figure G.7 illustrates the result.

What we really want to determine is the number of zeros of 1 + HG in the right half-plane, a small
extension of the reasoning leading to equation (G.7) and achieved in the following steps.

(i) Let f(s) = 1 + HG. Then the origin for the mapping 1 + HG in the HG-plane is at HG = ¡1.
(Figure G.8 shows the process.)

(ii) Let N be the number of encirclements of ¡1 by the mapping of the Nyquist path by HG(s).

(iii) Then according to equation (G.7), N = Z ¡ P, where Z, P are the numbers of zeros and poles of
1 +HG enclosed by the Nyquist path in the s-plane (i.e., in the right-half s-plane).
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iω

σ

s

Poles of HG 

Zeros of HG

s

Gr

iGi

N = −2

Figure G.7. An example showing two negative encirclements of the origin by the path
obtained by mapping the Nyquist contour.

HG

Re (HG)− 1

i Im (HG)

Re HG)

i Im (1 + HG) 1 + HG

(1 + 

Figure G.8. Mappings of the Nyquist contour in the HG and 1 +HG planes.

(iv) The poles of 1 +HG are the same as the poles of HG. Hence the number of zeros Z of HG in the
right-half s-plane is

Z = N + P (G.8)

Z: number of zeros of 1 +HG in the right-half s-plane, i.e. the number of unstable
roots of the closed-loop system

N : number of encirclements of ¡1 by the mapping of HG of the Nyquist path

P: number of poles of HG (hence of 1 +HG) in the right-half s-plane

Thus we have shown how to determine the number of zeros of the closed-loop transfer function in the right
half-plane from a polar plot of the open-loop transfer function applied to the Nyquist contour.

Note that if the closed loop is stable, there are no zeros of 1 +HG in the right half-plane, Z = 0, and

N = ¡P¸ 0 (G.9)

ANNEX G – NYQUIST CRITERION 

RTO-AG-AVT-039 G - 11 

 

 



which is zero or negative because by de¯nition P is 0 or a positive number. Conversely, if N = ¡P, then
Z = 0 and the closed-loop system is stable. Hence (G.9) is the necessary and su±cient condition that the
closed-loop system be stable, where `stable' means that the transient motions are bounded for large times
(i.e., neutral stability is included). For N to be negative the point ¡1 is encircled negatively by the Nyquist
path and hence by de¯nition lies outside the path (see Figure G.6 and accompanying remarks). An equivalent
statement is: if the mapping of the right-half s-plane under 1 +HG(s) does not include the point ¡1, then
the system is stable.

If P= 0 (no poles of HG in the right half-plane), then the system is stable if and only if N = 0, for then
Z = 0.

If N > 0, then the point ¡1 lies inside the Nyquist contour and there must be at least one zero of 1+HG
in the right-half s-plane. Figure G.9 illustrates positive and negative encirclements of ¡1.

N  = 1 N  = 0 N = −2

s HG

−1

HG HG

−1 −1

Figure G.9. Examples of positive and negative encirclements of ¡1 by mappings of the
Nyquist contour.

As a ¯nal remark, we note that the portion of the Nyquist path for s ! 1 must map to the origin in
the HG-plane. Otherwise, the initial value theorem gives for the response near t = 0

F (t = 0+) = lim
s!1 sHGP (s)

and for an impulse of amplitude A, P (s!1) = A, so
F (t = 0+) = lim

s!1 sHGA

Thus the initial response becomes in¯nitely large even for in¯nitesimally small impulses, unlessHG » 1=s1+±,
where ± ¸ 0. Hence for any practically realizable system, the open-loop transfer function must have the
behavior

HG » 1

sn
(s!1; n ¸ 1) (G.10)

Thus HG ! 0 for s ! 1 and the Nyquist polar plot approaches the origin for ! ! +1 and leaves the
origin for ! decreasing from ¡1.

It follows that the character of the Nyquist polar plot (the mapping of the Nyquist path by HG) depends
heavily on the portion of the Nyquist path on the imaginary axis. But note that it is not only the array
of poles of HG on the axis that matters, for we are really using the mapping of the Nyquist path by the
function HG(s) so all poles and zeros matter. The behavior required by equation (G.10) is an example.
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G.6. Examples of Nyquist's Criterion

The procedure for applying Nyquist's criterion is straightforward, although the details may cause minor
di±culties. According to our discussion in the preceding sections, there are two preliminary tasks: (1) con-
struct the Nyquist plot as the mapping of the Nyquist contour; and (2) count the number N of encirclements
of the ¡1 point. If N is equal to the number P of poles of the open-loop transfer function in the right
half-plane and the encirclements are in the sense opposite to the traversal of the Nyquist contour, then the
closed-loop system is stable. Otherwise the closed-loop system is unstable, having N + P poles in the right
half-plane.

(a) HG = K
s(s+1) (K > 0)

The Nyquist polar plot sketched in example (b), Section G.3, is repeated here. The plot does

θ

iω

σ

ρ
C

A

B

− 1

s

not encircle the point ¡1, so N = 0; there are no open-loop poles in the right half-plane,
P= 0, and we have N = P = 0 = Z: the closed-loop system is stable for all K. This result is
easily con¯rmed from the closed-loop transfer function:

F

P
=

HG

1 +HG
=

K
s(s+1)

1 + K
s(s+1)

=
K

s2 + s+K

The roots of the denominator always have negative real parts if K > 0.

s1;2 = ¡1
2
§ 1
2

p
1¡ 4K (K · 1

2
)

= ¡1
2
§ i1
2

p
4K ¡ 1 (K ¸ 1

2
)

If K is negative, the plot actually closes in the left half-plane, always enclosing the point ¡1;
the direction of traversal is clockwise, and N = 1. Because P= 0, we then ¯nd correctly that
Z = 1.

(b) HG = K
s3(s+1) (K > 0)
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The Nyquist polar plot is sketched in example (c), Section G.3. The plot encircles ¡1 twice in
the positive direction, N = 2. There are no poles of HG in the right half-plane and the closed-
loop system is unstable with Z = N + P = 2 zeros in the right half-plane. The denominator
of the closed-loop transfer function is s4 + s3 +K, not easily factored, so we cannot con¯rm
the result directly.

(c) HG = K
s(s+p1)(s+p2)

(K > 0; p1; p2 > 0)

This transfer function may represent use of an integrator with a second-order system having
two real stable poles. Now we need to construct the Nyquist plot, sketched in Figure G.10.

We have assumed p1 and p2 positive. This assumption sets the position of the asymptote in
the left half-plane. To see this, write HG for ! ! 0 as

1

K
HG =

1

i!(i! + p1)(i! + p2)

= ¡ i
!

(p1 ¡ i!)(p2 ¡ i!)
!(p21 + !

2)(p22 + !
2)

= ¡ i
!

(p1p2 ¡ !2)¡ i!(p1 + p2)
(p21 + !

2)(p22 + !
2)

Now let ! ! 0 to ¯nd

p            p
12

s

s

p+ p
1 2

p  p
1 2

ω     + oo

i Im(HG)

Re(HG)0

HG

ω     − oo

2 2

Figure G.10. Forming the Nyquist plot for HG = K
s(s+p1)(s+p2)

.

1

K
HG! ¡(p1 + p2)

p21p
2
2

¡ i 1
!

1

p1p2
which shows the asymptote.

Whether or not the plot encircles ¡1 depends on where the point A is. We can ¯nd A by using
the condition that at A, the phase of HG, as ! is increasing from 0+, is ¡¼. Then from the
de¯nition of HG, we have

1

K
argHG ´ ¡ ¼

K
= ¡¼

2
¡ tan¡1 !A

p1
¡ tan¡1 !A

p2
(G.11)

where !A is the frequency at A. Given p1, p2 and K, we solve this equation for !A. Then
calculate jHG(!A)j to ¯nd the position of A; if jHG(!A)j > 1, then the plot makes one positive
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encirclement of ¡1. Hence Z = 1 + P = 1, because we assume that both poles lie in the left
half-plane (p1, p2 > 0 so the values of s1, s2 are negative at the poles). Hence the imaginary
part is

Im fHGg = ¡ K(p1p2 ¡ !2)
!(p21 + !

2)(p22 + !
2)

(G.12)

which vanishes when ! = !A =
p
p1p2. The magnitude of the real part is then

jHGj = K
¯̄̄̄ ¡(p1 + p2)
(p21 + !

2)(p22 + !
2)

¯̄̄̄
!A

= K
(p1 + p2)

p21 + p
2
2 + (p

2
1 + p

2
1)(p1 + p2) + p

2
1 + p

2
2

= K
p1p2

(p21 + 2p1p2 + p
2
2)

= K
(p1 + p2)

(p1p2)(p1 + p2)2

=
K

p1p2(p1 + p2)

Hence the system is unstable if
K

p1p2(p1 + p2)
> 1

or

K > p1p2(p1 + p2) (G.13)

G.7. Relative Stability; Gain and Phase Margins

A great advantage of the Nyquist method is that it suggests a quantitative assessment of relative stability
|i.e., how far is the closed-loop system from being unstable. This result appears in practice as a restriction
on the magnitude of the gain arising from the compensator or controller represented by H. We have already
seen in example (c) of the preceding section how increasing the gain can cause the Nyquist plot to expand
and enclose the ¡1 point, indicating that the system has become unstable.

To reiterate the point, consider the control system in which a plant having two stable poles at ¡1 is
subject to integral control, H = K=s, Figure G.11. The Nyquist plot is the same as Figure G.10, but now
with p1 = p2 = 1, and is re-drawn in Figure G.12. We have already shown, with equation (G.13), that the
plot encircles the point ¡1 if K > 2. To make quantitative statements about how close the system is to
being unstable (i.e., in this case when K < 2), consider the portion of the plot for positive ! and K < 2.

1

(s + 1 )2F(s) 
+

Σ K
s

−
P(s) 

Figure G.11. A stable second order system with an integrator.

The gain margin is de¯ned as a measure of the change of gain necessary to cause point A to reach ¡1. A
common `general' de¯nition is

GM =
1

jHGj¼ (G.14)
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(ω > 0)

HGi Im(HG)

Re(HG)0

2

(ω < 0)

Figure G.12. The Nyquist plot for the system shown in Figure G.11.

where jHGj¼, is the magnitude of HG when argHG = ¼. The meaning is clear if we set H = Kh, where h
is now independent of gain, and rewrite (G.14) as

(GM)KjhGj¼ = 1
Hence GM is the multiplier of the gain required to make jHGj¼ = 1, so the contour passes through the point
¡1 (i.e., when arg(HG) = ¼).

Another measure of relative stability is the phase margin de¯ned as the di®erence between ¼ and the
phase of HG where jHGj = 1; hence for the case drawn here (note that argHG is negative)

PM = argHG(i!1) + ¼ (G.15)

where !1 is the frequency at which jHGj = 1, the condition denoted jHGj¼ = 1.

−1
PM

arg (HG)

HGi Im(HG)

Re(HG)

HG   =
 1 

ω     + oo

Figure G.13. The Nyquist plot for `any' HG near jHGj¼, i.e., the magnitude of HG when
the phase or arg of HG is ¼.

For the example HG = K=s(s+ 1)2 giving Figure G.11, when s = i!,

HG =
K

!(1 + !2)
e¡i(

¼
2+2 tan

¡1 !) (G.16)

The contour crosses the axis when arg(HG) = ¡¼;
¡
³¼
2
+ 2 tan¡1 !

´
= ¡¼

or

2 tan¡1 ! =
¼

2
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Hence tan¡1 ! = ¼=4, or ! = 1. If we set arg(HG) = ¡¼, we ¯nd ! = ¡1, a result also immediately evident
from the symmetry of the contour about the real axis.

When ! = 1,

jHGj¼ = K

!(1 + !2

¯̄̄̄
!=1

=
K

2

Hence from the de¯nition (G.14) we have

GM =
2

K
which is less than unity, and the system is unstable if K > 2, the value given by equation (G.13) for
p1 = p2 = 1. That is, if K > 2, then jHGj¼ = K=2 is greater than 1 and the contour encloses 1.

It is more di±cult to determine the phase margin from the Nyquist plot, for we require the value of !
satisfying the transcendental equation

jHGj = 1 = K

!(1 + !2)
(G.17)

Here, ! is the solution to

!3 + ! ¡K = 0; (G.18)

and this is a simple example!

Consequently, while the ideas and de¯nitions of the gain and phase margins are suggested by the Nyquist
plot, their values are more easily found from Bode plots. To see how the procedure works we continue with
the example given in Figure G.11,

HG(i!) =
K

i!

1

(1 + i!)2

The Bode plot is the graphical representation of the magnitude and phase of HG for ! > 0:

20 log10 jHGj = 20 log10K ¡ 20 log10 ! ¡ 20 log10(1 + !2)
argHG = ¡

³¼
2
+ 2 tan¡1 !

´
These are sketched in Figure G.14; the magnitude is drawn for K = 1.

To compute the gain margin, ¯nd the value of jHGj for argHG = ¡¼, giving jHGj¼ = 0:5. Hence from
equation (G.14), GM = 1=jHGj¼ = 2, which is here the gain margin for K = 1. Similarly, to compute the
phase margin, ¯nd the value of argHG at which jHGj = 1, giving the value here PM = 22±. It should be
evident that Bode plots prepared with readily available computer programs can be used to ¯nd the gain and
phase margins.

The de¯nitions of phase margin and gain margin seemed quite natural for the simple example, Figure
G.11, treated here. One should wonder whether more complicated systems will have Nyquist polar plots
having such a character that the same ideas can be applied. The answer|perhaps surprisingly|is yes.
Although the entire Nyquist plot may be very complicated indeed, nevertheless, in the vicinity of the point
¡1, both the Nyquist plot and the Bode plots commonly behave much like this example.
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π
2

−

20

arg (HG)

HG

− 20

− 40

0 

0.1                                 1                                   10     

10

1

0.1

0.01

PM

HG
dB

GM

−2π

−π

−
2

3π

0.1         0.21                  1                     4.8         10     

PM = 22

GM
1

0.5 =

Figure G.14. The Bode plot for the system shown in Figure G.11, K = 1.
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