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ABSTRACT 

It is well known that flow instabilities called rotating stall and surge may occur in non-cavitating 
turbomachines at flow rates smaller than design. Rotating stall is a local instability at the turbomachinery 
which is basically not dependent on the hydraulic system in which the turbomachine is installed. The 
stalled region rotates faster than impeller. Surge is a system instability in a hydraulic system which 
includes a turbomachinery and a capacitance (tank) which stores the working fluid depending on the 
pressure at the capacitance. For pumps, if a certain quantity of air is trapped in the pipeline it serves as a 
capacitance and a surge may occur even if the pipeline does not include exernalt capacitance.  Both 
rotating stall and surge occur at smaller flow rates where the performance curve has a positive slope. 

On the other hand, cavitation instabilities called rotating cavitation and cavitation surge may occur even 
at the design flow rate.  Rotating cavitation is a local instability in which the cavitated region rotates, for 
the most cases, faster than impeller.  Cavitation surge is a system instability caused by cavitation.  For 
cavitation surge, the cavitation at the inlet of turbomachinery serves as a capacitance and it can occur in 
a system without any external capacitance. 

The present lecture is intended to explain the mechanisms of the instabilities, rotating stall, surge, rotating 
cavitation, and cavitation surge, as well as the characteristics of those instabilities, based on one [1] and 
two [13][14] dimensional stability analyses.       

1.0 IMPELLER PERFORMANCE AND CAVITATION CHARACTERISTICS 

To be used for a one dimensional stability analysis of the instabilities, the impeller performance and the 
cavitation characteristics are modelized in this section. 

1.1 Impeller Performance 
We consider a cascade as shown in Fig.1, rotating with the velocity of TU  in a uniform axial velocity of 
U .  The blade spacing h  is assumed to be sufficiently small as compared with the blade length l  and the 
flow in the cascade is perfectly guided by the blades.  The axial and tangential velocity disturbances are 
represented by  1uδ and 1vδ , respectively, at the inlet, and the axial velocity disturbance 2uδ  at the outlet.  
The cavity of volume cV  per blade appears at the inlet.  The velocity triangle at the inlet is shown in Fig.1. 
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Figure 1: Rotor Cascade and Inlet Velocity Triangle. 

It is assumed that all of the cavitation can be lumped into the volume Vc , upstream of the blade passage, 
and that the subsequent rotor flow can be modeled as single-phase incompressible liquid flow (the more 
complex blade passage model of Brennen [2] suggests that this is a good first approximation).  Then the 
unsteady Bernoulli’s equation applied to the relative flow in the rotor yields 
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is a time derivative in a frame rotating with the rotor. If *β is the average blade angle, as shown in Fig.1, 
the difference of the velocity potential can be approximated by 
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The total pressure loss tp∆  in the impeller is represented by two coefficients, Qζ  and Sζ :  
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1 )()(/ VuUp SQt ∆++=∆ ζδζρ                                                                                                              (2) 

where V∆  is the incidence velocity as shown in Fig.1 and can be expressed as  

*)tan)(tan( 111 ββδ −+=∆ uUV  

Thus, Qζ  represents the hydraulic loss in the blade passage, and Sζ  the incidence loss at the inlet.  The 
differences between pressure fluctuations upstream and downstream of the impeller are obtained by 
considering Eqs.(1) and (2) after linearization to yield 
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where uL  and vL  are given by 
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In general, cavitation instabilities appear at larger cavitation number than those which brings about 
significant deterioration in the pressure performance.  Therefore, the effect of cavitation on the pressure 
rise across the rotor has been omitted from the present analysis and is not included in Eq.(3). 

1.2 Cavitation 
The cavity volume cV  per blade and per unit span is normalized using the blade spacing h  and represented 
by a . 

)1/(),( 2
1 ×≡ hVa cασ                                                                                                                                 (4) 

Under quasi-steady conditions, the non-dimensional cavity volume a  is considered to be a function of the 
incident angle 1α  and the inlet cavitation number σ  defined as follows. 
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where vpp ,1  and 1W  are the inlet pressure, the vapor pressure, and the inlet relative velocity, 
respectively.  Then, as originally suggested by Brennen and Acosta [3], the change of cavity volume, cVδ , 
is related to the deviations 11, pW δδ , and 1αδ  by 
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From the velocity triangle shown in Fig.1, the deviations 1Wδ  and 1δα  can be represented in terms of the 
deviations 1uδ  and 1vδ  from the uniform axial velocity.  Then Eq.(6) may be written as 
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M  and K  are the mass flow gain factor and cavitation compliance, respectively.  For the evaluation of 
these factors, see Brennen [4], Ng and Brennen [5], and Otsuka et al.[6].   

The continuity relation across the impeller is 

cVtuuh δ∂∂δδ *)/*()( 12 =−                                                                                                                        (9) 

where subscripts 1 and 2 indicate the inlet and outlet of the impeller.  

By combining Eqs.(7) and (9), the continuity equation can be expressed as follows: 
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2.0 SURGE 

For surge, we consider a system composed of an inlet pipe with the length L  and the cross sectional area 
f , a rotor shown in Fig.1, a surge tank with the surface area A , and the discharge valve with the cross 

sectional area f , as shown in Fig.2.  The inlet pipe is connected to a large space with a constant pressure.  
By applying unsteady Bernoulli equation to the inlet pipe, we can evaluate the pressure disturbance at the 
rotor inlet: 

111 )/( udtdLuUp δρδρδ −−=                                                                                                                   (11) 
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Figure 2: Hydraulic System for Surge Analysis. 

For surge, we assume no cavitation at the inlet and the continuity relation across the rotor is, 

012 =− uu δδ                                                                                                                                            (12) 

Only axial flow disturbance occurs for surge and hence 01 =vδ .  Then, the pressure increase across the 
rotor, Eq.(3) , is reduced to: 
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The continuity equation across the surge tank can be written as: 

)/()/)(/( 2232 tdpdCtdpdfgAuu δδρδδ ==−                                                                                     (14) 

where g  is the gravitational acceleration constant and fgAC ρ/= is the compliance of the tank.  The 
valve downstream of the tank discharges the flow into a contant pressure region and has the following 
characteristics: 
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The unknowns in the above formulation are 32211 ,,,, upupu δδδδδ and Eqs(11)-(15) are used to obtain 
the following differential equation for 1uδ .  Completely the same differential equation is obtained for 
other unknowns. 
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where 

TULCB ρ=                                                                                                                                          (17) 

is Greitzer’s B factor [7],[8] and 1tan/ βφ == TUU  is the mean flow coefficient.  Here we define the inlet 
total to outlet static pressure coefficient of the impeller )(φψ ts and the characteristic curve of the exit valve 

)(φψ T : 
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Equation (16) and (16’) are the same as the equation of motion of a mass supported by a spring and a 
damper. Two types of instability are known to occur: static and dynamic instabilities.   

The static instability occurs when the stiffness of the system (the coefficient of the third term) is negative.  
This occurs when 
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and the operating point diverges exponentially with time from the balancing point.  This suggests that the 
operating point is statically unstable.  This is equivalent to the divergence of a wing or the buckling of a 
strut subjected to axial compression. 

The dynamic instability occurs when the damping coefficient (the coefficient on the second term) is 
negative and the amplitude of vibration increases exponentially with time. This is “surge” and the onset 
condition can be expressed as 
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This shows that the surge occurs more easily when the B-factor TULCB ρ=  ( fgAC ρ/= ) or the 
resistance of the exit valve φφψ Rdd T =/  is larger.  We should note that a surge can occur at higher speed 
even in the same system where surge is not found at a lower speed, since the B-factor is proportional to 
the tip speed TU .  The destabilizing effect of exit valve resistance may be caused by the fact that surge is 
basically the oscillation of the mass of fluid in the inlet pipe with the compliance of the surge tank as the 
spring element.  This is clearer if we consider that the frequency determined from Eq.(16’) can be 
expressed as follows: 
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The first part ( )2/(1 CLρπ ) shows the resonant frequency of the system with the inlet pipe with the 
length L  and the surge tank with the compliance C , and the second the effects of the rotor and the exit 
valve.  Thus the surge frequency is basically the resonant frequency of the system and does not depend on 
the rotor speed. 

3.0 CAVITATION SURGE 

It has been shown for normal surge, that a tank or a compliant element is needed to constitute a vibration 
system.  With cavitation, it serves as a compliant element and it is not needed to have an explicit 
compliant element.  As the simplest model of cavitation surge, we consider a system composed of an inlet 
pipe with the length L , the rotor described in section 1.1, and an outlet pipe with infinite length.  The last 
simplifying assumption suggests that there would be no flow rate fluctuation downstream of the rotor: 

02 =uδ .  In addition to this, we can apply the momentum equation of the fluid in the inlet pipe, Eq.(11), 

111 )/( udtdLuUp δρδρδ −−=                                                                                                                   (11) 

the continuity equation across the rotor, Eq.(9) with tt ∂∂=∂∂ /*/* , 

cVtuuh δ∂∂δδ )/()( 12 =−                                                     

and the cavitation characteristics of Eq.(7) with 01 =vδ  
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By combining these equations, we obtain the following result. 
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Since 0cos2 1
2

3 <−= βKF , negative damping occurs when 031 <− FF and this leads to the onset 
condition of cavitation surge 
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Equation (21) gives the cavitation surge frequency 
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where the last expression is obtained with )/(sin2)/( 2
1

22
3 TUKhUhFC ρβρ =−= .  This shows that the 

frequency is the natural frequency of the inlet pipe-cavitation compliance system and is proportional to the 
impeller speed, caused by the fact that the compliance C is correlated with the tip speed.  This is quite 
different from the frequency of normal surge (Eq.20), which is fixed to the natural frequency of the 
system. The above results were obtained not by using the pressure performance of the impeller (Eq.3) but 
by using only the continuity across the rotor (Eq.9) and the cavitation characteristics (Eq.7). 

The criterion for normal surge, Eq.(19), shows that the positive slope of the pressure performance, 
0/ >φψ dd ts , is the cause of normal surge.  If the flow rate is increased, the pressure difference across the 

pump is increased and this accelerates the flow through the pump. This positive feedback through the 
performance is the cause of normal surge.  On the other hand, the criterion for cavitation surge, Eq.(22) 
shows that positive mass flow gain factor, 0>M , is the cause of cavitation surge.  When the flow rate is 
increased, the incidence angle 1α  to the rotor blade is decreased.  If 1/)/( α∂∂= hVM c is positive, the 
cavity volume cV  is decreased. Then the upstream flow rate is increased to fill up the space once occupied 
by the cavity.  This positive feed back through the continuity relation is the cause of cavitation surge.  So, 
the mechanisms of normal surge and cavitation surge is totally different. 

4.0 ROTATING STALL 

For two-dimensional instabililies of rotating stall and rotating cavitation we assume that the inlet conduit 
length, L , is much larger than the circumferential wavelength, s , of the disturbance. A stationary frame is 
used for the analysis.   The upstream flow disturbance produced by the flow instabilities is expressed by 
the following velocity potential. 

[ ] [ ]xssyntjus )/2(exp)/(2exp~)2/( 1 πππφ −=                                                                                              (24) 

where ,, ns  and j  are the wavelength in the y  direction, the frequency, and the imaginary unit, 
respectively.  Real parts are considered to have physical meanings.  Then the velocities u  and v  in the x  
and y  directions are written as 
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where the amplitude of velocity fluctuation ˜ u 1  is assumed to be much smaller than the uniform velocity 
U .  From the linearized momentum equation we obtain the following pressure fluctuation. 

[ ]xssyntjujkUp )/2(exp)/(2exp~)1( 11 ππρδ −+−=                                                                                    (27) 

where Usnk /≡  is the reduced frequency.  In general, k  is complex and expressed by  IR jkkk +=  and 
the following expression can be used. 
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where )tan/( 1βRTRp kUUkV == is the propagation velocity in y direction and φβ /1/tan 1 == UU T  with 
the flow coefficient φ .  For two-dimensional disturbances shown by Eqs. (25)-(27), the time derivative in 
the rotating frame reduces to 
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The flow disturbance at the impeller inlet ( 0=x  ) can be expressed from Eqs.(25) - (27) as: 
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The pressure rise across the rotor is given by Eq.(3).  The continuity equation that neglects the effect of 
cavitation is 

12 uu δδ =                                                                                                                                                  (28) 

For the sake of simplicity, it is assumed that the flow from the impeller is delivered from the rotor to a 
reservoir in which the pressure is constant.   

02 =pδ                                                                                                                                                     (29) 

Substituting Eqs.(25’)-(29) into the pressure rise equation (3), we obtain 
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In order that we have non-trivial solution the term in [ ]  should equal to zero.  This gives the characteristic 
equation in terms of k .  Substituting k = kR + jkI , we obtain the following relations from the real and 
imaginary parts of the characteristic equation: 
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Because kI  is the damping rate of the disturbance, the onset condition of rotating stall is given by 

0>
∂φ
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Equation (33) states that rotating stall occurs if the curve of the pressure rise in the rotor (calculated using 
the outlet static pressure and inlet total pressure) has a positive slope.  This result is precisely the 
conventional one described by Greitzer [7].  By comparison of Eqs.(33) and (19), it is clear that rotating 
stall occurs more easily than surge.  Because the flow coefficient )/cot( 1 TUU== βφ satisfying Eq.(33) 
is generally less than the incidence free flow coefficient *)cot(* 1βφ = , Eq.(32) yields 1/ <Tp UV , which 
indicates that the stalled region rotates with an angular speed lower than that of rotor. 

Note that Eqs.(32) and (33) were obtained under the assumption that the rotor discharged to a constant 
pressure reservoir.  Alternatively, if the flow downstream were semi-infinite and two dimensional, the 
term [ ])/*)(cos/2(1 slβπ+  in Eqs.(31) and (32) would be replaced by [ ])/*)(cos/2(2 slβπ+ .  The term 1 or 
2 represents the effect of inertia of the fluid in the upstream or upstean+downstream flow fields of the 
rotor. 

5.0 ROTATING CAVITATION 

As with cavitation surge, we consider the circumstances in which there are no velocity fluctuations 
downstream of the impeller.  The characteristics of the flow upstream of the rotor are given by Eqs.(25)-
(27), the cavitation characteristics by Eq.(10).  By putting Eqs.(25)-(27) into Eq.(10) and assuming 

02 =uδ , we obtain the following equation. 

{ }[ ] 0)/()1()tan)(/(21 13211 =+−−−+ UuFjkjFFkshj δβπ                                                                          (34) 

This results in a quadratic chasracteristic equation for k .  From the imaginary part of Eq.(34) we obtain 
the onset condition of rotating cavitation: 

KM φσ )1(2 +>                                                                                                                                          (35) 

The criterion for rotating cavitation (35) is identical to Eq.(22), the onset condition of cavitation surge. 
The occurrence of rotating cavitation can be explained by almost the same argument as cavitation surge.  
For rotating cavitation, we simply need to consider the increase of flow rate at a specific circumferential 
location.  Therefore, rotating cavitation can be considered to be a two-dimensional instability that is 
caused by the destabilizing effect of the positive mass flow gain factor.  As with cavitation surge, rotating 
caviotation can occur even at a design point, independently of the flow rate and the characteristics of the 
rotor.  This feature of rotating cavitation is quite different from that of rotating stall.  From the real part of 
Eq.(34), we obtain the following relation: 

)2/()/)(tan( 3321 hFsFFkk πβ −=+−              
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When 1tan// βkUV Tp =  and the expressions (7’) for 2F  and 3F  are used, the above equation may be 
written in the following form: 

{ } )sin4)(/()2/(/)1/( 1
2

1 βπφσ KhsKMUVUV TpTp =++−                                                                       (36) 

From this expression, we find that Eq.(34) has the following two solutions : 

1/ >Tp UV                                                                                                                                                 (37) 

{ })2/(/ 1 KMUV Tp φσ +−<                                                                                                                        (38) 

Thus, rotating cavitation has two modes.  One of them rotates faster than rotor and the other rotates in the 
opposite direction.  We term these forward and backward rotating cavitation, respectively.  Earlier 
experimental results (for example, Kamijo et al. [9]) had noted the forward-rotating cavitation 
phenomenon.  More recently, Hashimoto et al., [10] have also observed the backward form of rotating 
cavitation.  It has not been clarified why forward rotating cavitation is more often observed than backward 
mode, although the onset conditions of both modes are theoretically the same.  

6.0 MUTUAL RELATION OF FLOW INSTABILITIES 

6.1 Rotating Stall and Rotating Cavitation 

For rotating stall we have used the conditions of 12 uu δδ =  and 02 =pδ . Corresponding relations for 
rotating cavitations are cavitation characteristics and 02 =uδ .  If we combine the cavitation 
characteristics of Eq.(10), the impeller performance of Eq.(3) and 02 =pδ with the inlet flow 
characteristics of  Eqs.(25)-(27), we obtain the following characteristic equation which can express both 
rotating cavitation and rotating stall: 
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As before, this is based on the assumption that the rotor discharges to a constant pressure reservoir.  If we 
assume the case 2/*2 πβ →  or ∞→sl / , Eq.(39) reduces to 

{ }[ ] 0)/()1()tan)(/(21 13211 =+−−−+ UuFjkjFFkshj δβπ  

which is the same as Eq.(34), the result for rotating cavitation.  This can be explained as follows.  The 
negative slope of the head-flow rate curve becomes infinite in the limit of 2/*2 πβ → , and the inertia of 
fluid in the rotor also becomes infinite in the limit ∞→sl / , and as a result 2uδ  tends to zero.  Rotating 
stall is suppressed due to the condition of 012 == uu δδ .  When the influence of cavitation is extremely 
small, 21, FF  and 3F  approach zero.  In this case Eq.(39) agrees with Eq.(30), the result for rotating stall. 

When rotating stall and rotating cavitation coexist, Eq.(39) must be solved, and it is cubic in k .  When it 
is assumed that a two-dimensional flow continues downstream of the rotor, the term [ ])/*)(cos/2( slβπ  
should be replaced with [ ])/*)(cos/2(1 slβπ+ in Eq.(39):   
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Under this condition, the following three solutions of k  have been obtained (Tsujimoto et al., 1993). 

1)tan/(Re)/( 111 >= βkUV Tp  

0)tan/Re()/( 122 <= βkUV Tp  

1)tan/Re()/( 133 <= βkUV Tp  

Furthermore, the following interesting features of 21,kk  and 3k  emerge: 

• The values of 1k  and 2k  are close to those obtained by Eq.(34), that is, 1k  and 2k  represents 
rotating cavitation.  On the other hand, 3k  is close to that from Eq.(30), showing that 3k  
represents rotating stall. 

• The value of 3k  depends on the flow coefficient φ  and loss coefficients, Qζ and Sζ  , whereas the 
influence of these coefficient on 1k  and 2k  is small. 

• The mass flow gain factor M  and cavitation compliance K  have a substantial influence on 1k  
and 2k , but not on 3k . 

• The roots, 21,kk  and 3k , can coexist, amplify, and damp independently of each other, which 
indicates that rotating cavitation and rotating stall are independent phenomena.  Most 
interestingly, Murai [11] observed rotating stall with cavitation (represented by 3k  root) in 
experiments on an axial flow pump.  

This will be discussed in detail in sections 7.1 and 7.2. 

6.2 Surge and Cavitation Surge 
As in the preceding section, we can investigate the case of co-existence of surge and cavitation surge by 
replacing the relation of 12 uu δδ =  in the surge analysis with the cavitation characteristics Eq.(10) .  Then, 
the characteristic equation becomes 
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When *2β approaches 2/π  or Ll /  becomes infinite, Eq.(40) yields Eq.(21) with 
LkLUjnjtdd )/(2/ == π for cavitation surge.  When the influence of cavitation is extremely small, 1F  

and 3F  are extremely small and Eq.(40) reduces to Eq.(16) for surge. Because Eq.(40) is a biquadratic 



Flow Instabilities in Cavitating and Non-Cavitating Pumps  

7 - 12 RTO-EN-AVT-143 

equation with real coefficients for Lkj  , there are two sets of complex conjugate solutions for Lkj , that is, 
jba 2,12,1 ±  .  Therefore, Lk  is expressed as jabk L 2,12,1 −±= .  Since the difference of the sign on the real 

part 2,1b (frequency ) has no meaning for the present case, Eq.(40) represents two types of oscillations 
corresponding to surge and cavitation surge.  It can be shown numerically that the roots of Eq.(40) are 
quite close to those of Eq.(16) and (21), with the values of parameters typical for inducers.  One of them 
corresponding to surge and mainly depends on the value of φ  but not on the value of M , and the other 
corresponds to cavitation surge and mainly depends on the value of M   but not on the value of φ .  This 
shows that surge and cavitation surge behave quite independently when they co-exist. 

Table 1 shows the onset conditions and the frequency of surge, rotating stall, cavitation surge, and rotating 
cavitation, obtained in the present section.  The results are summarized as follows: 

• Surge and rotating stall are one- or two-dimensional flow instabilities caused by a positive slope 
of the head-flow rate performance curve. 

• Cavitation surge and rotating cavitation are also one- or two-dimensional flow instabilities caused 
by a positive mass flow gain factor M . 

• The frequency of surge depends substantially on the characteristics of the hydraulic system.   

• The rotational frequency of rotating stall depends on the performance and the geometry of the 
rotor.  It is proportional to and smaller than the rotational speed of the rotor. 

• The frequencies of cavitation surge and rotating cavitation are proportional to the rotating speed 
of the impeller.  

• The frequency of cavitation surge is the resonant frequency of the system caused by the 
compliance provided by cavitation.   

• Rotating cavitation has two modes: One rotates faster than the rotor and the other rotates in the 
opposite direction to the rotor. 

Table 1: Onset Condition and Frequency of Cavitation Instabilities 

 

7.0 EXAMPLES OF ROTATING STALL AND ROTATING CAVITATION. 

In order to illustrate the results more practically and to compare them with experimental results, numerical 
examples are shown for rotating stall and rotating cavitation.  For the comparison with experiment, it is 
assumed that two-dimensional flow extends to downstream infinity (Tsujimoto et al., [12]).  Moreover, it is 
assumed that the height of the two-dimensional flow channel in the downstream of the cascade is decreased 
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to 1/b  of that in the upstream.  However, the characteristics of rotating stall and rotating cavitation are not 
influenced by these additional assumptions.  Numerical calculations are made for an inducer tested by 
Kamijo et al. [9] for which the first detailed observation of rotating cavitation has been made.   

7.1 Examination of Three Roots of Eq.(39’)  

Figure 3 shows three roots 1tan/* βkk =  of Eq.(39’), assuming two-dimensional downstream flow. The 
real part gives the propagation velocity ratio TpR UVk /* = .  The values of parameters used for the 
calculations are shown in the figure.  Here, it is defined that 

2/*)*(),cos2/()1(2 21 ββββπ +=+=Ω bslbl and shh /2π=Ω .  The static performance of the inducer is 
shown in Fig.4, from which the values of Qζ  and Sζ  are obtained.  In this figure, *φ  and *ψ  are the flow 
and pressure coefficients normalized by using the inducer tip speed.  *thψ  is the Euler’s head at the mean 
radius, *tψ is the total head and *tsψ  is the inlet total to outlet static pressure coefficient. 

 

Figure 3: Three Roots of Eq.(39’). 

 

Figure 4: Static Performance of the Inducer. 
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Figure 3 (b)-(j) show the three roots, 3,1*),*,(* == ikkk IiRii , of the characteristic equation corresponding 
to Eq.(39’), with the value of parameters which is different from the standard values shown in (a).  They 
are assigned to **, 21 kk  and *3k  following the criteria ( 1*,0*,1* 321 <<> RRR kandkk ) mentioned 
in section 6.1. The values in the lower line of *1k  and *2k in (a) are the values for the rotating cavitation 
obtained from Eq.(34), and the values in the lower line of *3k in (a)-(g) are the values for rotating stall, 
given by Eq.(30). 

As shown in Fig. 3(a), the values of *1k  and *2k are close to those obtained from Eq.(34) and *3k  is 
close to those obtained from Eq.(30).  This suggests that *1k  and *2k represent the rotating cavitation and 

*3k  the rotating stall, and that they can be approximately treated by the method outlined in sections 5.0 
and 4.0, respectively.  For the standard case (a), the imaginary parts of **, 21 kk  and *3k are all negative, 
showing that both rotating cavitation and rotating stall can occur simultaneously.  The fact that the root 

*3k , which represents rotating stall estimated under the effect of cavitation, is close to the non-cavitating 
rotating stall solution of Eq.(30) means that the rotating stall is not affected largely by the existence of 
cavitation.  As shown in (b)-(g), the rotating stall is damped ( 0*3 >Ik ) when *φ  increases or Sζ  is 
neglected, which can be explained by Fig.4 and Eq.(33).  On the other hand, the values of *1k  and 

*2k are almost independent on the values of SQ ζζφ ,*,  and σ , so long as the values of M  and K  are 
kept constant.  Rotating cavitations are amplified even with a negative slope of *tsψ at larger *φ or with 

0=Sζ , which is quite different from the case of rotating stall.   

From these numerical results, we can conclude that rotating cavitation and rotating stall are, practically, 
mutually independent and completely different phenomena, in the sense that their causes are different and 
that they behave differently, although both can be treated and deduced from the same characteristic 
equation (39’). 

Table 2 shows the relative amplitudes of the pressure and axial velocity fluctuations at the inlet and outlet 
of the cascade, for the case of Fig.3(a) and corresponding to 1/ 2

11 =Up ρδ .  For each case 2pδ  is much 
smaller than 1pδ .  For rotating cavitation ( *1k  and *2k ), 2uδ  is small compared with 1uδ , showing 
that the fluctuation at the inlet is almost absorbed by the change of cavity volume. This is caused by the 
fact that the blade angle *2β is close to 2/π , and supports the experimentally obtained conclusion 
(Kamijo et al., [9]) that “rotating cavitation is related mainly to the inlet flow conditions.”  On the other 
hand, for rotating stall ( *3k ), 2uδ  is nearly equal to 1uδ , with a small effect of cavity volume change. As 
shown above, direct effects of *φ  and σ  on *1k  and *2k are small.  It has been shown that *1k  and 
k2 *are mainly dependent on M  and K .  Since M  and K  are functions of *φ and σ , rotating cavitations 
are affected by *φ and σ  through M  and K . 
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Table 2: Relative Amplitudes of Pressure and Axial Velocity Fluctuations 

 

7.2 Rotating Cavitation 
Contour maps of *1k  and *2k in the M - K  plane are shown in Figs.5 and 6.  Values of parameters not 
specified in the figures are the same as those in Fig.3(a).  The solid lines are obtained from the equation 
corresponding to Eq.(39’), while the broken lines are determined from Eq.(34).  The difference between 
these results is small, showing that Eq.(34) simulates rotating cavitation very well.  The neutral stability 
curve is shown by the solid line of 0* =Ik , which is close to the criterion of Eq.(35).  The rotating 
cavitation is amplified in the region with 0*<Ik , under the neutral stability curve.   

 

Figure 5: Contour Map of *
1k .                                 Figure 6: Contour Map of *

2k . 

In order to make comparisons with experimental results, calculations were also made for 06.0=σ  and 
02.0 .  It was found that the contour maps are almost unchanged.  Hence, the ranges of M  and K  for three 

values of σ  are shown in the figures, estimated from Brennen et al., [5]. For *1k  shown in Fig.5, the 
propagation velocity ratio for 02.0=σ  is 4.11.1* −=Rk , which is close to the experimental value of 

16.1* =Rk  (Kamijo et al., [9]).  As we reduce the cavitation number, the estimated ranges of M  and K  
shifts to the location with smaller propagation velocity ratio *Rk . The experiments show a similar 
tendency.  Figure 7 shows the supersynchronous shaft vibration of LE-7 LOX turbopump caused by the 

*1k  rotating cavitation.  The reduction of the supersynchronous frequency with time is caused by the 
reduction of the inlet pressure with time, showing the above-mentioned tendency. 
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Figure 7: Supersynchronous Shaft Vibration Caused by Forward Rotating Cavitation. 

Since 0*2 <Rk , the characteristic root *2k corresponds to a rotating cavitation which propagates in the 
direction opposite that of the impeller rotation.  This backward rotating cavitation was found later by 
Hashimoto et al. [10].  The propagation velocity ratio Tp UV /  observed was –1.36 at 072.0=σ , which 
agrees with the result in Fig.6, 25.1* −≈Rk  for 06.0=σ .   

Usually, only forward rotating cavitation corresponding to *1k is observed and the observation of the 
backward rotating cavitation corresponding to *2k  is limited to a few cases.  This contradicts to the 
results of Figs.5 and 6, in which the amplifying rate *Ik−  is much larger for the backward rotating 
cavitation *2k . 

8.0 TWO-DIMENSIONAL FLOW STABILITY ANALYSIS WITH A CLOSED 
CAVITY MODEL 

The analysis in the preceding section is basically one-dimensional and only the effect of total cavity 
volume fluctuation is included.  The stability analysis of two-dimensional cavitating flow using a closed 
model of blade surface cavitation is presented in this section. 

8.1 Method of Stability Analysis   
We consider a cascade as shown in Fig.8 (Horiguchi et al., [13],[14]). For simplicity, we assume that the 
downstream conduit length is infinite and no velocity fluctuation occurs there.  The upstream conduit 
length is assumed to be finite, L, in the x -direction and connected to a space with constant total pressure 
along the inlet AB.   
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Figure 8: Cascade Geometry for Two Dimensional Cavitating Flow Stability Analysis. 

We assume small disturbances with time dependence e jωt where ω =ωR + jωI  is the complex frequency 
with ωR  the frequency and ω I  the damping rate, to be determined from the analysis.  The velocity 
disturbance is represented by a source distribution q(s1)  on the cavity region, vortex distributions γ1(s1)  
and γ 2(s2) on the blades, and the free vortex distribution γ t (ξ)  downstream of the blades, shed from the 
blades associated with the blade circulation fluctuation.  We divide the strength of those singularities and 
the cavity length into steady and unsteady components, and represent the velocity with steady uniform 
velocity (U,Uα ), the steady disturbance ( us, vs ), and the unsteady disturbance ( ˜ u , ˜ v ). We assume that 
α <<1, ˜ u , ˜ v << u s , vs << U and neglect higher order small terms. 

The boundary conditions are:  

(1) The pressure on the cavity should equal vapor pressure.  

(2) The normal velocity on the wetted blade surface should vanish.  

(3) The cavity should close at the (moving) cavity trailing edge (closed cavity model).  

(4) The pressure difference across the blades should vanish at the blade trailing edge (Kutta’s condition).  

(5) Upstream and downstream conditions: the total pressure along AB is assumed to be constant and the 
downstream velocity fluctuation is assumed to be zero. 

By specifying the strength of the singularity distributions at discrete points on the coordinates fixed to the 
fluctuating cavity as unknowns, the boundary conditions can be represented by a set of linear equations in 
terms of those unknowns.  If the unknowns are separated into steady and unsteady components, the steady 
boundary conditions result in a set of non-homogeneous linear equations.  This set of equations can be 
used to show that the steady cavity length ls  normalized by the blade spacing h , hls /  is a function of 
σ / 2α .   

On the other hand, the unsteady component of the boundary conditions results in a set of homogeneous 
linear equations.  For non-trivial solutions to exist, the determinant of the coefficient matrix should be 
zero.  This gives the characteristic equation which determines the complex frequency.  Since the 
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coefficient matrix is a function of the steady cavity length and the complex frequency, the complex 
frequency ω =ωR + jωI  is determined from this relation as a function of the steady cavity length hls / , or 
equivalently of σ / 2α .  This shows that the frequency ω R  and the damping rate ω I , as well as possible 
modes of instability, depend only on the steady cavity length hls / , or equivalently on σ / 2α , once the 
geometry and other flow conditions are given. This is the most important finding of the analysis and 
applies also for more fundamental case of single hydrofoil.  

8.2 Results of Stability Analysis 
The steady cavity length obtained by assuming equal cavity on each blade is plotted in the upper part of 
Fig.9 (a) (Horiguti et al., [13]), for a cascade with the stagger β = 80 deg and the chord-pitch ratio 
C /h = 2.0, typical for turbopump inducers. In this calculation, a periodicity of disturbances over 4 blades 
is assumed and hence it corresponds to the case of a 4-bladed inducer.  It is well known that alternate 
blade cavitation, in which the cavity length differs alternately, may occur for inducers with an even 
number of blades.  The cavity lengths of alternate blade cavitation are shown in the upper part of Fig.9 (b).  
Alternate blade cavitation starts to develop when the cavity length, ls , of equal cavitation exceeds 65% of 
the blade spacing, h .   

 

Figure 9: Steady Cavity Length (upper figures) and Strouhal Number (lower figures) of Various 
Modes of Cavitation Instabilities, for a 4-Bladed Inducer with the Solidity 0.2/ =hC ,  

Stagger o80=β and the Inlet Duct Length 1000/ =CL . 

Figure 10 shows the flow field around alternate blade and equal length cavitations.  Near the trailing edge 
of cavities, we can observe a region where the flow is inclined towards the suction surface.  In this region 
the incidence angle to the neighboring blade on the suction side is smaller.  This region starts to interact 
with the leading edge of the next blade when the cavity length becomes about 65% of the blade spacing.  
If the cavity length on one blade becomes longer than 65% of the blade spacing, the incidence angle to the 
next blade on the suction side becomes smaller and hence the cavity length on the next blade will 
decrease.  This is the mechanism of the development of alternate blade cavitation. 
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Figure 10: Alternate Blade and Equal Cavitation in a Cascade with the Solidity 0.2/ =hC , 

Stagger o80=β and the Inlet Duct Length 1000/ =CL .  The Incidence Angle is o4=α . 

Strouhal numbers St = ωR ls / 2πU  of various amplifying modes are shown in the lower part of Fig.9 (a) and 
(b) for equal length cavitation and alternate blade cavitation.  The symbol θn ,n+1 shows the phase advance 
of the disturbance on the upper blade (n+1) with respect to that on the lower blade (n) by one pitch, which 
is obtained as a result of the stability analysis.  Here we focus on Mode I.  For Mode I, the frequency is 
zero and the phase difference θn ,n+1 is 180 deg, corresponding to exponential transitions between equal 
and alternate blade cavitation. This mode appears for equal cavitation longer than 65% of the blade 
spacing, h , which shows that longer equal cavitation is statically unstable to a disturbance corresponding 
to the transition to alternate blade cavitation.  Alternate blade cavitation does not have this mode and 
hence it is statically stable. 

We now return to Fig.9 (a). Mode II is a surge mode oscillation without interblade phase difference: 
θn ,n+1 = 0.  It was found that the frequency of this mode correlates with 1/ L  where L is the length of the 
upstream conduit.  So this mode represents normal cavitation surge.  Mode II is system dependent while 
all other modes are system independent.  Mode IX is also a surge mode oscillation with no interblade 
phase difference but has higher frequency.  This mode is herein called “higher order surge mode 
oscillation”.  Figure 11 shows the shape of cavity oscillations for these modes. The cavity volume 
fluctuation of Mode IX is much smaller than that of conventional cavitation surge, Mode II.  For this 
reason the frequency does not depend on the inlet conduit length.  In addition, the frequency of this mode 
does not depend on the geometry of the cascade and this mode occurs also for single isorated hydrofoils 
(Watanabe et al. [15]). This mode starts to appear at much larger values of σ / 2α  than other modes.  
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Figure 11: Oscillating Cavity Shape under (a) Cavitation Surge ( Mode II) and  
(b) Higher Order Surge Mode Oscillation (Mode IX). 0.22/ =ασ  and o0.4=α . 

Modes III-VI are various modes of rotating cavitation with various interblade phase differences. Observed 
from a stationary frame, the disturbance of Mode III rotates around the rotor with an angular velocity 
higher than the impeller speed. This is conventional rotating cavitation. Mode IV represents one-cell 
rotating cavitation propagating in the opposite direction of the impeller rotation and is called “backward 
rotating cavitation”. Mode V represents 2-cell rotating cavitation.  Mode VI is one-cell forward rotating 
cavitation with a larger propagating speed than Mode III and this mode is called “higher-order rotating 
cavitation”. All modes except for Mode IX start to occur when the cavity length exceeds 65% of the 
spacing.  So, those modes might be caused by the interaction of the local flow near the cavity trailing edge 
with the leading edge of the opposing blade, as for alternate blade cavitation.  Mode IX occurs for much 
shorter cavities and no physical explanation has been given so far. 

By the two-dimensional stability analysis, various types of higher order modes are predicted in addition to 
cavitation surge, forward and backward propagating modes of rotating cavitation.  These higher order 
modes are experimentally observed less frequently compared to cavitation surge and forward rotating 
cavitation but they do occur (Tsujimoto et al., [16]).  Since the frequencies of those higher order modes 
are high enough, resonance with blade bending mode vibration is possible (Tsujimoto et al., [17]).  So, it 
is important to confirm that those instabilities are adequately suppressed by testing the inducer under all 
conditions encountered in real flight.  It is also important to identify the reason why they occur in some 
cases and not in others. 

Figure 12 compares the propagation velocity ratio of rotating cavitation observed in 3 and 4 bladed 
inducers with the results of stability analysis, plotted against the cavitation number.  The propagation 
velocity ratio decreases as we decrease the cavitation number and it has larger values for 4-bladed 
inducers as compared to the case of 3-bladed inducers.  These characteristics are predicted by the stability 
analysis.  The stability limit determined from the analysis is shown in terms of cavitation number σ  and 
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the steady cavity length hls / .  The analysis gives much larger onset cavitation number as compared with 
experiments but the critical cavity length is close to 65.0/ =hls .  Figure 13 shows the steady cavity length 
at the tip and the region with rotating cavitation plotted against cavitation number, for a 3-bladed inducer.  
This shows that rotating cavitation occurs when the tip cavity length is larger than about 65% of the blade 
spacing, which agrees well with the result of 2-D cavitating flow stability analysis.  

 

Figure 12: Propagation Velocity Ratio of Rotating Cavitation in 3- and 4-Bladed Inducers. 

 

Figure 13: Cavity Length and the Region of Rotating Cavitation for a 3-Bladed Inducer. 
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The one-dimensional criterion KM φσ )1(2 +>  is satisfied under the condition ls = 0.65h .  So, the two-
dimensional analysis gives more useful guideline for the prediction of cavitation instabilities although the 
one-dimensional criterion is more useful in considering the effects of various types of cavitation. 

9.0 CONCLUSION 

Causes and characters of  non-cavitating and cavitating flow instabilities, surge, rotating stall, cavitation 
surge and rotating cavitation are discussed based on one dimensional stability analysis.  Results of a two 
dimensional cavitating flow stability analysis are shown to illustrate that various modes of cavitation 
instabilities may occur.  The results are summarized as follows. 

(1) Normal surge occurs when the slope of the performance curve is larger than a certain value 
which is smaller when the compliance of a surge tank and the tip speed of the rotor are larger.  
The frequency of normal surge is basically the resonant frequency of the system composed of 
the inlet pipe and the surge tank and does not depend on the rotor speed. 

(2) Rotating stall occurs when the performance curve has a positive slope and the stalled region 
rotates slower than the rotor. 

(3) Cavitation surge occurs when the mass flow gain factor is larger than a certain value which is 
proportional to the cavitation compliance.  The frequency of cavitation surge is identical to the 
resonance frequency of a system composed of the inlet pipe and the cavitation at the inlet of the 
pump. It is proportional to the rotor speed because the compliance of the cavitation is correlated 
with the rotor speed. 

(4) The onset condition of rotating cavitation is the same as for cavitation surge.  Both cavitation 
surge and rotating cavitation can occur even at the design flow rate and the region where the 
cavitation does not affect the pressure performance of the impeller.  The one dimensional 
stability analysis predicts two modes of rotating cavitation.  With one of them, the cavitated 
region rotates faster than the rotor (forward rotating cavitation), and with the other mode it 
rotates in the direction opposite to the rotor (backward rotating cavitation). 

(5) A two-dimensional cavitating flow stability analysis shows that the most important parameter 
for the cavitation instability is the steady cavity length hls /  or ασ 2/ .   

(6) Various modes of cavitation instabilities including cavitation surge, forward and backward 
rotating cavitation and their higher order modes start to occur when the steady cavity length sl  
becomes larger than 65% of the spacing h .  

(7) The above condition can be easily met even at the design flow rate and without significant head 
decrease. So, it is required to confirm the absence of cavitation instabilities, whenever the 
turbomachine is required to be operated with cavitation. 

An extensive review on the stability of pumping systems has been made by Greitzer [18].  It includes 
practical examples of rotating stall and surge as well as other types of instabilities including pressure drop 
and thermal instabilities.  The readers are recommended to refer to this excellent article. 
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