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1
LINEAR STABILITY ANALYSIS

In this chapter, the stability of steady, laminar, incompressible flows is considered. The notes concentrate on bounded shear flows that are characterized by plane Poiseuille flow and the Blasius boundary-layer flow. Inviscid free shear layers and wall jets are briefly discussed in Section 2.9. The experimental results of Nishioka et al. (1975, 1980, 1981) in plane Poiseuille flow, which compare with the classic results of Klebanoff et al. (1959, 1962) in the boundary layer, show that the basic instability and transition mechanisms in plane Poiseuille flow and the Blasius boundary layer are identical.

The analysis is initiated by formulating the stability problem for a general basic state and then simplifying the problem for one-dimensional (1‑D) basic states with linear three-dimensional (3‑D) disturbances. The role of 2‑D and 3‑D disturbances is described in Section 2.6. Energy methods are described in Section 2.7. Inviscid mechanisms are discussed in Sections 2.8 and 2.8. The rest of the Chapter is devoted to viscous mechanisms.

1.1
The General Basic State with Disturbances

Dimensionless quantities are introduced by using a suitable reference length, L, reference velocity, 
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. In terms of these normalizing variables, the incompressible Navier-Stokes equations with constant properties become:
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where the Reynolds number, R, is given by
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The normalizing length, L, will be defined for specific cases as the analysis proceeds.

Since we are considering the class of stationary basic states, we assume that each flow quantity 
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 and p(x,y,z,t) is the sum of a basic-state term, 
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and P(x,y,z), and a fluctuating term 
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(2.4)

Expressing each flow quantity in the form of Eq. (2.4) and substituting these expressions into Eqs. (2.1) and (2.2), gives
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(2.6)

The basic-state quantities are always solutions of the Navier-Stokes equations by themselves so Eqs. (2.5) and (2.6) can be separated into basic-state and disturbance-state equations.

Basic State
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Disturbance State
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(2.10)
The basic state is described by Eqs. (2.7) and (2.8) and reduces to whatever specific form is required to analyze the basic flow. The unsteady, nonlinear equations, Eqs. (2.9) and (2.10), illustrate that the disturbance state need not satisfy the Navier-Stokes equations. These equations are time-dependent and one could define a set of mean-flow equations that contain these terms along with Eqs. (2.7) and (2.8). However, for arbitrary disturbances, these equations become the time-averaged Navier-Stokes equations with "apparent" turbulent stresses. The lack of closure for this set of equations is well known and hence, the stability problem is not approached from this viewpoint. It will be assumed that the disturbance amplitudes can be ordered and that a unique basic state can be defined. Modifications to the time-dependent flow can be considered as a higher-order amplitude correction which can be determined in sequence.

These general equations are analyzed in Section 2.7. In the remainder of this section, the various classes of approximations that can be made for different basic states and different disturbances are presented.

1.2
Linear Disturbance Equations

For infinitesimal disturbances, products of the fluctuating quantities, i.e. the terms 

 are neglected in Eq. (2.10). A Cartesian coordinate system is introduced such that the y-axis is normal to the body surface and the x- and z-axes are in the plane of the body surface. The x-direction is usually called the chordwise or streamwise direction while the z‑direction is usually called the spanwise direction.

1.2.1
Three-Dimensional Basic States and Disturbance States

The basic-state equations (2.7) and (2.8) are written as
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where U, V, and W are the components of the basic-state velocity in the x, y, and z directions, respectively. For plane Poiseuille flow, only the last two terms of Eq. (2.12) will remain. If we wish to impose P = P(x,z) and the boundary-layer assumptions, Eq. (2.13) can be eliminated and 
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 in Eqs. (2.12) and (2.14). The usual boundary-layer equations will result.

For infinitesimal disturbances and the basic state given by Eqs. (2.11)‑(2.14), equations (2.9) and (2.10) are rewritten as
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(2.18)

Equations (2.11)‑(2.18) represent the linear stability equations for a general three-dimensional flow. In this form, they are not solvable, except perhaps on a huge computer, because the coefficients are functions of all three spatial variables. The next two sections describe a series of reasonable idealizations that permit an approximate analysis of (2.11)‑(2.18).

1.2.2
Two-Dimensional Basic States and Disturbance States

If the basic-state velocity field can be expressed in terms of two velocities and two independent variables, U(x,y) and V(x,y), the governing equations (2.11)‑(2.18) for two-dimensional disturbances reduce to
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where 

 and
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By defining the Lagrange streamfunctions, 

 and 

, with the following definitions
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equations (2.19) and (2.22) can be solved. By using Eqs. (2.25) and (2.26) in the disturbance equations and eliminating the pressure through cross-differentiation we arrive at:





(2.27)

Equation (2.27) is the general 2‑D equation which will be used in the discussion on non-parallel flows in Chapter 5. The justification for using 2‑D disturbances is not trivial and is discussed in Section 2.6.

The preceding result can be obtained directly by using the vorticity transport equations instead of the Navier-Stokes equations. The vorticity vector is defined as the curl of the velocity vector,





(2.28)

By taking the curl of the Navier-Stokes equations, Eq. (2.2), in order to eliminate pressure, these equations reduce to




(2.29)

the vorticity transport equation. For 2‑D flows with velocity vector v = (u, v, 0), where u = u(x,y,t) and v = v(x,y,t), the vorticity vector is reduced to 

, and Eq. (2.29) reduces to the scalar equation





(2.30)

Disturbances are introduced by letting
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,    


in Eq. (2.30), subtracting the basic-state solution, and linearizing to obtain





(2.31)

The streamfunction and the vorticity in an incompressible, 2‑D flow are related by





(2.32)

Combining Eqs. (2.31) and (2.32) gives Eq. (2.27) directly. The purpose of this exercise is to remind the reader that vorticity is the primary disturbance quantity in viscous flows.

1.3
One-Dimensional Basic States and Normal Modes

In this section, the stability analysis of three-dimensional disturbances in an incompressible parallel boundary-layer flow, without curvature, is presented. In this case, the convective acceleration terms vanish in Eqs. (2.12)  (2.14). These assumptions are introduced initially to simplify the exposition of basic stability ideas. The basic-state velocity vector, 
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(2.33)

where U is the chordwise velocity component, W is the spanwise velocity component, and y is the wall-normal coordinate.

It is, of course, an incongruity to speak of a parallel boundary-layer flow since no such thing can exist except under very special circumstances. However, the parallel-flow assumption is an important first approximation to the actual two-dimensional basic-state problem because the Reynolds number is very large. It is beyond the scope of this section to discuss non-parallel stability effects so the reader is referred to Mack (1984b) and Saric (1990) for a summary or Chapter 4 for the details. In spite of the fact that every year or so, someone makes some heavy weather over non-parallel effects, this is not the most important problem in boundary layer flows. Likewise, the role of compressibility in subsonic flows is minor and all of the essential physical ideas are represented in the flow of Eq. (2.33). However, compressibility is indeed important for supersonic flows and this will be discussed in Chapter 7.

The stability equations are obtained by superposing small dimensionless disturbances onto the basic state:
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where 
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 satisfy the complete dimensional Navier-Stokes equations and capital letters denote dimensionless basic-state quantities. Equation (2.34) is substituted into the unsteady Navier-Stokes equations which are made dimensionless by introducing the length scale L. The basic-state velocity components also satisfy the usual Navier-Stokes equations so that the basic-state solution drops out. Thus, equations in terms of the disturbance velocities result. These equations are further simplified by making the approximation that products of disturbance quantities are neglected (
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, etc.). This results in a set of linear disturbance equations. Hence Eqs. (2.15)  (2.18) reduce to
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where subscripts denote partial differentiation and the Reynolds number is given by 
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 for the time being. The question of stability is one of whether the solution set of Eqs. (2.35)‑(2.38) contain disturbances that grow or decay in space (or time).

1.3.1  Normal  Modes

The disturbance equations are linear and the coefficients are only functions of y. This suggests a solution in terms of separation of variables using normal modes (i.e. exponential solutions in terms of the independent variables (x, z, t) that would reduce Eqs. (2.35)‑(2.38) to ordinary differential equations. One possible normal mode is the single wave:
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where C.C. stands for complex conjugate, 
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 represents any of the disturbance quantities of Eq. (2.34), 
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 is the chordwise wavenumber, 
[image: image42.wmf]b

 is the spanwise wavenumber, and 
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 is the frequency. Here, 
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 are, in general, complex and are given by 
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 is real. The amplitude function q(y) is complex and 
[image: image49.wmf]q

¢

 is real because the Navier-Stokes equations are real. It can be rigorously shown that Eq. (2.39) is the result of Fourier Transforms in x and z and a Laplace Transform in t. Thus the representation is complete and the stability problem is addressed in the transform plane. The value of the complex notation is that both amplitude and phase are kept together. For example, when one wishes to compare with experimental results, an alternate form of Eq. (2.39a) is used:
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Where | | denotes absolute value and 
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 is the phase of q(y). Since the solution for the disturbances is usually obtained from an eigenvalue problem, the complex form of q(y) is arbitrary and only Eq. (2.39b) should be used for presentation of calculations.

Equation (2.39) is strictly valid only for a parallel flow. In a real boundary-layer flow, U, W, and R vary with the chord position,
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, and thus the problem changes at each location. In practice therefore, the parallel-flow assumption is essentially a local one in that, at each chord location, U and W are re-evaluated and L is chosen to be the boundary-layer reference length, i.e.  
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 and R depend on the chordwise position 
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. Therefore, the use of Eq. (2.39) is not rigorous.

A rigorous form of the normal mode is to assume
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where 
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is the phase function and depends weakly on x and z and has an O(1) dependence on t. Then the wavenumbers and frequency are given by
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One then formally transforms the dependent variables in the disturbance equations using the chain rule. Substitution of (2.40)‑(2.41) into Eqs. (2.35)‑(2.38) gives
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where 
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and the usual no-slip boundary condition applies at the wall.

Although Eqs. (2.42)  (2.45) look like a 6th-order system of equations, they can be easily combined into a single 4th-order equation. Multiply (2.43) by 
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What remains are two equations in two dependent variables, 
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 . The result is the famous Orr-Sommerfeld equation.
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with boundary conditions:
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The boundary conditions of 
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 at the wall give 
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 and we have assumed a boundary-layer type flow where the disturbances must die out far from the boundary.

The major consequence of the transformation from sixth-order to fourth-order is that u and w cannot be recovered independently. This separation may be of value when comparing with experimental data of 3‑D disturbances. In order to recover u and w, (2.43) is multiplied by 
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 and (2.45) is multiplied by 
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. They are added to give:
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Here, 
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 is the disturbance vorticity in the y-direction. The companion equation comes from the continuity equation, (2.42)
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when Eqs. (2.48) and (2.50) are solved after solving Eq. (2.47), Eqs. (2.49) and (2.51) are used to recover u and w, i.e. 
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. It is also easy to see from Eq. (2.47) that any of the other 2‑D forms of the Orr-Sommerfeld equation can be easily derived.

Thus, all of the 3‑D stability characteristics for the class of flows defined by Eq. (2.33) can be found by solving Eq. (2.47). 

1.3.2  Solution  of  The  Orr-Sommerfeld  Equation

Equation (2.47), represented by the differential operator 
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 is linear and homogeneous and, as such, forms an eigenvalue problem. Given the basic-state velocities, U(y) and W(y), solutions of Eq. (2.47) exist for only a specific combination of parameters of an equation such as 
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. Thus the eigenvalue problem is expressed as:
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Since the Orr-Sommerfeld equation is complex, Eq. (2.52) is complex.

1.3.3  Higher  Modes

In a well-posed eigenvalue problem such as plane Poiseuille flow, Eq. (2.52) represents an infinite discrete set of eigenvalues and a corresponding infinite discrete set of eigenfunctions. For boundary layers, there is a finite discrete set of eigenvalues and a continuous spectrum. That is to say, for each 
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 combinations that satisfy Eq. (2.47). The eigenfunctions are called modes and are superposed to construct an arbitrary disturbance profile. For the incompressible cases we will consider, the least stable mode is called the first mode. For incompressible streamwise instabilities, there is no more than one unstable mode so not much attention is paid to higher modes. For compressible and centrifugal instabilities, more than one mode can be unstable. These concepts are discussed again in Sections 3.2, 3.4, and 5.2.

1.3.4  Numerical  Techniques

Since the Reynolds number is large, Eq. (2.47) is stiff and care must be taken during its integration. If finite differences or spectral methods are used, accuracy is obtained by the appropriate mesh. With these methods, Eq. (2.52) is solved as an algebraic matrix problem. If shooting techniques are used, orthonormalization works best and Eq. (2.52) is an iteration solution with boundary conditions. The algebraic solution has advantages in that all of the eigenvalues are obtained at once. The disadvantage is that it is awkward to obtain the eigenfunctions and to do spatial stability. Finite differences seem to be the most popular these days. An excellent review of current methods of solving the Orr-Sommerfeld equation is given by Malik (1988) who emphasizes finite difference and spectral methods. Mack (1984b) gives a good summary of shooting techniques. An incompressible design code, SALLY (Srokowski and Orszag, 1977), and a compressible design code COSAL (Malik and Orszag. 1981), are generally available. They use as input, tabulated velocity profiles such as those generated by a Kaups and Cebeci (1977) boundary-layer code.

The details of numerical techniques and eigenvalue searches are given in Chapter 12.

1.4 
The Adjoint System

The integrating factor of the Orr-Sommerfeld equation is the adjoint eigenfunction. This is found from the solution of the adjoint differential equation of Eq. (2.47) which is derived by using the techniques described in Section 2.8.1. The adjoint eigenvalue problem given by:
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or



[image: image95.wmf](

)

(

)

(

)

(

)

(

)

2

2222

**

**22*0

DkiRUWDkDUDWD

f

fabwfabf

=

éù

--+--++=

ëû

L


(2.53a)

with boundary conditions (see Section 2.8.1)
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The adjoint solution will be useful later in the calculation of the group velocity. Since the eigenvalues of Eq. (2.53) are identical to those of Eq. (2.47), a check on 
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 is possible. Moreover, some eigenvalue iteration schemes seem to converge quicker with Eq. (2.53) since 
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 is not calculated directly.
1.5
Temporal and Spatial Stability:  Gaster's Transformation

Disturbances can be classified with respect to (1) spatial amplification, (2) temporal amplification, and (3) spatial and temporal amplification. In the spatial theory, 

 is assumed to be real, while 

 and 

 are assumed to be complex. There real parts represent the physical wavenumbers of the disturbances, while their imaginary parts represent the decay or growth rates in the x and z directions. In the temporal theory, 

 and 

 are assumed to be real, while 

 is assumed to be complex. The connection between the spatial and temporal theories is discussed in Section 2.5.4. For both temporal and spatial amplification, 
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 are assumed to be complex. 

1.5.1  Spatial  Stability

The local normal mode is given by Eq. (2.39). With 

, and 

 real, it can be rewritten as
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(2.55)

The spatial growth rates are given by 

 and 

 for obvious reasons. Thus disturbances can be grouped into three classes depending on the signs of 

 and 

, namely,




: amplified disturbances; unstable
(2.56a)




: no change in space; neutral
(2.56b)




: damped disturbances; stable
(2.56c)

The eigenvalue problem of Eq. (2.52) is expressed as 




(2.57)

where 

 is a complex map. Equation (2.57) yields a 

 pair when 

 and R are specified. Whereas 

 can be considered a parameter the problem, 

is one of the unknowns and another condition must be specified. Typically, the direction of disturbance growth, 

, is specified in order to complete the solution. Basically, it is assumed that the disturbances will propagate in the direction of the real group velocity.

For the wide class of flows for which the basic-state velocity, 
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, is given by 
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we initially assume that the direction of growth is in the stream direction and 
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. Then 
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 appears as a parameter in 
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Equation (2.59) represents a wide class of streamwise instabilities and thus is an important case to discuss as an illustrative example [it should be pointed out that Eq. (2.59) may not hold in the case of the localized 3‑D disturbances].

Instead of solving for 
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 in Eq. (2.59), one could specify 
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 and find 
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 and 

. This results in a locus of points called the neutral-stability curve as shown in Figure 2.17. If disturbances lie inside the neutral curve they are unstable 

. If they lie outside the curve they are stable. A curve such as Figure 2.17 exists for each value of 
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, the critical Reynolds number is the Reynolds number below which no amplification occurs. The minimum critical Reynolds number, 

, is the Reynolds number below which no amplification occurs, for all values of 
[image: image113.wmf]r

a

 and 
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The phase speed is
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in the direction 

, given by
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The situation of 
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 corresponds to 2‑D waves. The phase speed in this case is given by 
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 in the stream direction.

2.5.2  3‑D  Temporal  Stability

In this case, the local normal mode is still given by Eq. (2.39), except that 
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 and 
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 are real and positive while 
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 is complex.
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(2.62)

The temporal growth rate is given by 

 for obvious reasons. Thus disturbances can be grouped into three classes depending on the sign of 

, namely,





: amplified disturbances; unstable
(2.63a)





: no change in time; neutral
(2.63b)





: damped disturbances; stable
(2.63c)

The eigenvalue problem of Eq. (2.52) is expressed as 
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where 

 is a complex map. Equation (2.64) yields a 

 pair when 

 and R are specified. In this case there is no ambiguity as in the 3‑D spatial case. With 
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 and 
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 specified, a unique 

can be found from Eq. (2.64). The phase velocity vector is given by Eqs. (2.60) and (2.61) with 

 replacing 

 and 
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 replacing 
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. Unfortunately, most shear-layer problems of interest are spatial stability problems and not temporal stability problems.

2.5.3  2‑D  Temporal  Stability

The classical literature considers the important case of 

 and 

 real, along with the basic state of Eq. (2.58). In this 2‑D case, it is customary to introduce the complex phase speed, 
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, and write the normal mode as
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(2.65a)

where one can easily see the wave form of the disturbance. The growth rate can be found by splitting Eq. (2.65a) into real and imaginary parts.
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(2.65b)

The Orr-Sommerfeld equation is given by
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The temporal growth rate is given by 

 for obvious reasons. Thus disturbances can be grouped into three classes depending on the sign of 

, namely,





: amplified disturbances; unstable
(2.67a)





: no change in time; neutral
(2.67b)





: damped disturbances; stable
(2.67c)

The eigenvalue problem of Eq. (2.52) is expressed as 




(2.68)

where 

 is a complex map. Equation (2.68) yields a 

 pair when 

 and R are specified. The phase speed is simply 

 in this case. Because the eigenvalue, c, appears linearly in the temporal form of the differential equation, much of the early stability calculations concentrated on this case. However, the spatial theory corresponds more closely to certain physical situations such as boundary layers. With today's advanced computers, one needs a good excuse to do temporal stability in a boundary layer.

1.5.4  Conversion  From  Temporal  To  Spatial

For simplicity let us consider the case of 2‑D disturbances. In order to convert from temporal to spatial, one uses the now familiar Gaster transformation (Gaster, 1982). In a region where the disturbance growth rate is small, the weakly-dispersive wave-evolution equation can be written as:
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where 
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 is a complex wave amplitude, 
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 is a complex function that is zero for parallel flow, and 
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 is the group velocity. Since an explicit equation for the dispersion relationship, 
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, is not generally known for shear layers, it can be given locally by first differentiating the Orr-Sommerfeld equation with respect to 
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 as shown in Eq. (2.70) after some rearranging.
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(2.70)

A solution to Eq. (2.70) exists if and only if the right-hand-side is orthogonal to the solution of the homogeneous adjoint equation, 
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, given by Eq. (2.53). This is a standard solvability condition whose the details are given in Section 2.8.2. This procedure involves integration of the eigenfunction and its adjoint over the region to give:



[image: image140.wmf]g

d

c

d

w

a

==-

M

N


(2.71a)

where
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and
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For the case of a 2‑D wave, the approximate temporal growth rate is the product of the spatial growth rate and the real part of the group velocity.
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for small 

. For other cases, see Nayfeh and Padhye (1979). These types of conversions are useful if comparing with existing calculations.

2.6
2‑D  and  3‑D  Disturbances:  Squire's  Transformation

It is worthwhile to show that the problem of 3‑D disturbances is equivalent to a 2‑D problem for the case of the 1‑D basic states of Eq. (2.33) and that the minimum critical Reynolds number can be found from a 2‑D analysis. The following transformation is introduced into Eqs. (2.42)‑(2.45):





(2.74)





(2.74a)





(2.74b)





(2.74c)

The product of 

 and Eq. (2.43) is added to the product of 

 and Eq. (2.45) and the transformed equations become:





(2.75)
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If 
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 in Eqs. (2.42)  (2.45), the result is equations similar in form to Eqs. (2.75)  (2.77). Thus, the problem of 3‑D disturbances, Eqs. (2.42)  (2.45), is equivalent to the 2‑D problem. Hence, one needs only to solve the 2‑D problem of Eqs. (2.75)  (2.77) and supplement it with the transformation of Eq. (2.74). Moreover, the transformed 3‑D problem which is made into the equivalent 2‑D problem is associated with a lower Reynolds number since 
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. The minimum critical Reynolds number is that Reynolds number below which all disturbances are stable. Since 3‑D disturbances are associated with the stability characteristics at a lower Reynolds number, 2‑D disturbances are more unstable and the minimum critical Reynolds number is given directly by the 2‑D analysis. This is a statement of Squire's theorem.

In other words, Squire's theorem specifically states that insofar as determining the minimum critical Reynolds number, 2‑D disturbances are most important. It should be pointed out that Squire's theorem breaks down for compressible flows, nonparallel flows, non-minimum critical Reynolds numbers, and for spatially instead of temporally growing disturbances (i.e. it is necessary to define a complex Reynolds number). Moreover, we shall find later that although the minimum critical Reynolds number may be important from a fundamental viewpoint, it has nothing to do with the real problem of transition to turbulence. With these caveats, it is easy to see that Squire's theorem should be invoked with caution.
1.7
Energy Method:  Universal Criterion

The disturbance equations, in the form of Eqs. (2.9) and (2.10), are written for arbitrary nonlinear disturbances. It is worthwhile to analyze these equations using the energy methods introduced in Volume I of these notes.

The operator, 
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  is the total derivative for the basic state and is defined as
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Introducing Eq. (2.78) into the general disturbance equations (2.9) and (2.10) gives





(2.79)
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Equation (2.80) is multiplied by 
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using the scalar product. It is then integrated over the region, 

, with a volume integral to arrive at:
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(2.81)

where 

 and the limits of integration are assumed to be over a particular control volume, 

 (the term 

 is written as 

 in index notation). The left-hand-side of Eq. (2.81) can be rearranged to be
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In this case, E is related to the kinetic energy of the disturbance. The stability criterion will be as follows. If 

 as 

, 

, the flow is stable. If 

 constant as

, 

, then it is neutrally stable. If E is unbounded as 
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, then the flow is unstable.

Examining the rest of Eq. (2.81), with the use of the divergence theorem and the continuity equation (2.79), gives
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where 
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 is assumed to vanish on the boundaries of the region [as before, 

 in index notation]. Substituting the results of Eqs. (2.83)  (2.85) into Eq. (2.81) leaves the following:
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For general nonlinear disturbances on a general basic state, this is as far as one can go. However, if it assumed that the basic state is 1‑D, such as
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the first integral of Eq. (2.86) can be simplified and the disturbance energy equation can be written as
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The last term in Eq. (2.88) is obviously stabilizing and represents the diffusion effects of viscosity. The first term on the right-hand-side of Eq. (2.88) can be either stabilizing or destabilizing depending on the relative phase between the terms in the "Reynolds stress", 

. The Reynolds stress is usually defined as the average over a characteristic length in the x-direction of the product 

 as shown in Eq. (2.89).
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One could also define 

 as an average over a characteristic time. It is obvious that the destabilization mechanism for viscous flows must be the Reynolds stress term. Moreover, it is easy to see that the basic-state vorticity term, 

, is an essential part of the production term. Thus, a uniform flow will always be stable. Instabilities can only originate in the presence of a nonuniformity. These ideas are part of the real value of Eq. (2.88). Later, in section 2.10, the discussion on the nature of the instability mechanism will center on the Reynolds-stress term.

Because of the presence of sub-critical instabilities in the shear-layer problems, attempts to derive a minimum Reynolds number from Eq. (2.88) have not reached the success of this technique in closed systems. These methods have provided results so conservative that they are of little value for shear layers. Consequently, very little work has progressed in this area. 

1.8
Notes

1.8.1  The  Adjoint  Equation

In order to find an integrating factor for the linear differential equations that we encounter, the adjoint function is defined. This is the topic of this section. Additional details are given in Ince (1956).

The general form of a nth order, linear differential operator, 
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, is given as
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where 

.

The adjoint operator, 
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 , of (2.90) is defined as
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This definition of the adjoint equation, makes 
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when 

 is written as
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Equation (2.92) is known as the Lagrange Identity and 

 defined in Eq. (2.93) is known as the bilinear concomitant. The necessary and sufficient condition that u* is an integrating factor of 
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Hence, (2.93) shows that the order of the differential equation is reduced by one. When an equation is identical with its adjoint, it is said to be self-adjoint.

Whereas the second-order (inviscid) stability equations and some of the higher order (viscous) equations of classical hydrodynamic stability were found to be self adjoint, the Orr-Sommerfeld equation for boundary layers is not self adjoint.

For the Orr-Sommerfeld equation (2.47),
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The adjoint is 
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and 

 is 
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For the eigenvalue problem, 
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1.8.2  Solvability Conditions

We wish to consider the inhomogeneous equation made of the nth order differential operator, 
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, defined in Eq. (2.90) and an integrable function r(y) such that
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and discuss the conditions for obtaining a solution of Eq. (2.99).

Integration of the Lagrange identity, Eq. (2.92), between the boundaries y = a and y = b gives
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Equation (2.99) is substituted into the first term of Eq. (2.100). The second term of Eq. (2.100) vanishes from Eq. (2.94) and we see that
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Thus, Eq. (2.101) is a condition for obtaining solutions to Eq. (2.99).

When we restrict the analysis to the eigenvalue problem of the nth order differential operator L defined in Eq. (2.90)
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with homogeneous boundary conditions
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The necessary and sufficient condition that the inhomogeneous equation, 
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 have a solution is that the function, 

 be orthogonal to the solution of the homogeneous adjoint equation. That is
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where the boundary conditions on 

are such that the bilinear concomitant, 

, given in Eq. (2.93), satisfies
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The most complete tutorial treatment of solvability conditions is given by Nayfeh (1981). The reader is directed there for additional details, in particular for those cases that do not have homogeneous boundary conditions.

1.9
Streamwise Instabilities: Inviscid Instability Mechanism

Streamwise instabilities are characterized by streamwise traveling waves that appear in 2‑D boundary layers and in the mid-chord region of swept wings. They may also appear as secondary instabilities of a flow with stationary streamwise vortex structures. For tutorial purposes, the basic state is initially restricted to one component of velocity with 
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. We will consider cases of temporal or spatial stability as convenient. This will be sufficient to describe the basic streamwise instability mechanisms.

In the absence of viscosity, the Orr-Sommerfeld Equation for temporal stability, Eq. (2.66), reduces to:
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with 
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 on the boundaries. This inviscid limit of the Orr-Sommerfeld equation is known as the Rayleigh equation. In this case, 
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In order to investigate the stability of inviscid parallel flows, we restrict the role of viscosity to establishing the velocity profile, but neglect its effect on the disturbances. For example, the class of one-dimensional velocity profiles characterizing the exact solutions of the Navier-Stokes equations are shown in Figures 2.1 and 2.2 and the class of quasi one-dimensional velocity profiles shown in Figures 2.3 to 2.6.

The complex conjugate of the Rayleigh equation (2.106) is given by:
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Equation (2.107) is the same as Eq. (2.106) except that it is in conjugate form (
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. It will be shown later that the solution of the viscous equation (2.47) or (2.66), are solutions of Eq. (2.106) in the limit of
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 are not same as the decaying solutions of the viscous problem in the limit
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2.9.1 Rayleigh's Criterion

The conditions under which solutions exist when 
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 are the subject of the Rayleigh criterion. To show this, Eq. (2.106) is multiplied by
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where the limits of integration are implied. Integrating the first term by parts, splitting the wave speed, 
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 into real and imaginary parts in the third term, and imposing boundary conditions, gives
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Equating the real and imaginary parts of Eq. (2.109) to zero separately, gives





(2.110)

and





(2.111)

If either 

 throughout the flow or 

 throughout the flow, then 

. Therefore, Eq. (2.111) implies that a necessary condition for the existence of any unstable modes, (

), is that 

 somewhere in the flow. In other words, if the location in the region (a,b) where 

 is defined as 

, then





(2.112)

This is the well-known inflection-point instability of Rayleigh. That is, an inflection point must exist in the velocity profile for it to be unstable.

Experiments teach us that there are many viscous flows for which 

, yet instabilities exist. Boundary-layer and Poiseuille flows are examples. Obviously such flows are stable in the inviscid limit which implies that an increase in viscosity can be stabilizing.

1.9.2 Fjørtoft's Criterion

A stronger version of Rayleigh's criterion was developed by Fjørtoft (1950). Here it is instructive to follow the treatment by Drazin and Howard (1966). Define 

 as the value of the basic-state velocity at the inflection point located at 

. Then for 

, Eq. (2.111) is multiplied by 

 to obtain
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where the integration is taken over the region. Equation (2.113) is added to Eq. (2.110) to obtain





(2.114)

Thus we see that





(2.115)

somewhere in the region is necessary for instability. Furthermore, if U(y) is a monotonically increasing or decreasing function and 

 vanishes only once, then 

 throughout the region is necessary for instability, where the equality only holds at 

. This is the Fjørtoft criterion. This is equivalent to the absolute value of the basic-state vorticity,

, having a maximum inside the flow region (excluding the boundaries). This is a much stronger necessary condition than the Rayleigh criterion. Howard (1964) discusses the situation for multiple inflection points. Examples of the instability criterion are shown in Figures 2.7 to 2.10.

Figure 2.7 is an example of 
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 exist except perhaps at the boundaries. This is a model of the profiles in Figures 2.1 and 2.5 of Poiseuille and boundary-layer flows. Thus, these flows are stable in the inviscid limit.

Figure 2.8 is an example of 
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 throughout the flow. This velocity profile is also stable in the inviscid limit. This condition holds for the profile similar to Figure 2.2 which is plane Couette flow with a positive pressure gradient.

Figure 2.9 is an example of 
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. Therefore, the velocity profile is stable in the inviscid limit. This profile characterizes one type of wall-jet flows depicted in Figure 2.6.

Figure 2.10 is an example of 

 and 

 throughout the flow. The velocity profile may be unstable. This conclusion would hold for the velocity profiles of Figures 2.3 and 2.4 for the case of jets and wakes.

Lin (1955) showed that the Rayleigh criterion, Eq. (2.112) is sufficient for bounded shear flows. Drazin and Howard (1966) discuss the fact that, in general, Eqs. (2.112) and (2.115), are not sufficient conditions unless U(y) is symmetric or of the boundary-layer type. For example, 
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), but a solution of the stability equations shows that it is stable. However, experiment teaches us that for the physical shear layers of interest, the existence of an inflection point is a powerful harbinger of unstable motion.

1.9.3 Howard's Semi-Circle Theorem

Rayleigh showed that the values of the wave speed can be bounded. This is shown using the semi-circle theorem of Howard (1961, 1962).

Suppose 
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Equation (2.116) can be reduced to





(2.117)

Equation (2.117) is multiplied by the complex conjugate 

 and integrated over the region. After integration by parts the result becomes
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Equation (2.118) implies that c cannot be purely real when F is nonsingular. By assuming 

, the real and imaginary parts of Eq. (2.118) become
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and
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where
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Splitting Eqs. (2.119) and (2.120) gives
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and
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Since
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it is straightforward to write





(2.125)

Using Eqs. (2.122) and (2.123) in Eq. (2.125) gives





(2.126)

Since 
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,
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Thus, for unstable waves, c lies within the semicircle defined by





(2.128)

A graphical representation of Eq. (2.128) is shown in Figure 2.11. Any eigenvalue, c, must lie within or on the circle with center at 

 Thus,





(2.129)

1.9.4 Bounds on 
 EMBED "Equation" \* mergeformat  


Bounds on the order of magnitude of 

 can be found by following a procedure similar to Section 2.9.3.

Let 
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Multiplying Eq. (2.130) by 
[image: image231.wmf](

)

12

Uc

-

-

 carrying out the differentiation, and clearing terms gives
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Multiply Eq. (2.130) by 

 and integrate to get
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whose imaginary part is
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Equation (2.133) is rewritten as
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Equation (2.134) can be simplified by noting that
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Using Eq. (2.135) in Eq. (2.134) gives
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Finally we conclude
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Equation (2.136) shows that 
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 and that an inviscid instability should grow rapidly.

1.9.5 Physical Mechanism of Inflection Point Instabilities

Here we follow Lin (1945, 1955) who provided the details of the explanation and calculations. A one-dimensional inviscid flow is considered where each fluid element retains its vorticity along a streamline i.e. 

 and therefore, Kelvin's theorem is said to hold. For the types of flows to be considered, U = U(y) and the vorticity is in the z-direction and given by 

. However, only the absolute value of 

, given by 

, will be considered. Thus, lines of constant y are lines of constant 

, transverse to the flow. Consider first, a flow similar to Figure 2.7 with monotonic vorticity distribution that has been shown to be stable. Figure 2.12 gives the vorticity distribution and a sketch of the vortex filaments arranged vertically through the flow. It is seen that 

 throughout the flow.

Consider a vortex filament 
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 appears at 
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, it is in a region of lower vorticity. Hence, there is a net excess of vorticity at that point. This produces a positive vortical flow as shown in Figure 2.13a. This vortical flow entrains from the left of our displaced filament, vorticity from above which has a lower value of vorticity. It also entrains higher vorticity from below as shown in Figure 2.13b. This entrained vorticity causes an induced flow which is shown in Figure 2.13c. This induced motion tends to move the displaced filament back toward 
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 its original position, thus providing a stabilizing mechanism. Lin (1945) showed that this restoring motion produces an acceleration on the displaced vortex filament given by
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where 

 is the wall-normal disturbance velocity, 

 is the local vorticity gradient, 

 is the net circulation caused by the disturbance vorticity, and the integration is taken locally over the displaced vortex filament in its new position. For the case considered here, as the filament is displaced from 1 to 2, the net vorticity is positive, hence 

 and it is in a region where 

. Therefore, 

, i.e. in the direction of its original position. If we reverse the direction of the virtual displacement, we see the vortex filament move from 2 to 1. In this case, it is in a region of higher vorticity so that the net vorticity is negative and 

 and therefore 

 or in the direction of its original position.

Since the instability, if it exists, is associated with an extremum of vorticity, we consider the vorticity distribution shown in Figure 2.14 and the virtual displacements from 

, 

, 

, and 

. For the displacement 

, we have 

 and 

, which gives 

 i.e. an acceleration away from its original position. For the displacement 

, we have 

 and 

 which gives 

, i.e. a stabilizing acceleration. For displacements in the opposite direction, the reverse is true. Unlike previously studied physical mechanisms, not all virtual displacements are unstable, and we can only obtain a necessary condition for instability. Moreover, only the Rayleigh inflection-point criterion can be shown to be necessary and not the more powerful Fjørtoft criterion of Eq. (2.115).

If we assume normal-mode type solutions for the virtual displacements of vorticity, the previous explanation reduces to that given by Lighthill (1962) for air-over-water flows. This is given in Volume I of these notes.

1.9.6 Summary

The instability associated with an inflection point is a streamwise traveling wave called a Rayleigh wave whose wave speed, 

, is bounded between the maximum and minimum values of the basic-state velocity, i.e.

 for a bounded shear layer. The growth rate, 
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in this case.

Since this inviscid instability is strong, the appearance of inflectional profiles usually implies a rapid breakdown to turbulence.

1.10
Viscous Instability Mechanism: T‑S Waves

Consideration of a wide class of instability mechanisms can give the general impression that viscosity can only stabilize a flow. A boundary-layer velocity profile is, however, known to exhibit an instability and yet it has no inflection point.

1.10.1 Prandtl's Viscous Instability Mechanism

Prandtl (1921) first developed the fundamental ideas of a viscous instability mechanism and laid the groundwork for the understanding of bounded-shear-layer instabilities. The instability is called viscous because the boundary-layer velocity profile is stable in the inviscid limit and thus, an increase in viscosity (a decrease in Reynolds number) causes the instability to occur. Prandtl's basic idea (following the treatment by Mack, 1969) is that the distribution of the Reynolds stress through the shear layer is changed by viscosity in such a way as to destabilize the flow. The general energy analysis of Section 2.7 shows that the Reynolds stress is the production term for instabilities and that indeed, one must look there to find the source of the instability.

We begin by examining the solutions of the Orr-Sommerfeld equation outside the boundary layer. For 

, U(y) = 1, 
[image: image250.wmf]2

0

DU

=

, and Eq. (2.47) is written as
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Equation (2.138) has constant coefficients and solutions can be sought in terms of exponential functions. Four such exponential solutions can be found and the solution for 

 outside the boundary layer is a superposition of these solutions,
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where
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In order to satisfy the boundary condition far from the surface, 

. Then
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where
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The function 
 EMBED "Equation" "Word Object10" \* mergeformat  

 is called the inviscid solution and 
 EMBED "Equation" "Word Object11" \* mergeformat  

 is called the viscous solution. Obviously, 
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 is a solution of the Rayleigh equation in the case of U = 1 and
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. The solution of the Rayleigh equation, beginning with 
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 outside the boundary layer produces a 

 and 

 that are 90° out of phase with each other. In this case, the Reynolds stress term, which is the average of 

 over one wavelength in x, is given by
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is zero for inviscid disturbances (Mack, 1969).

For the viscous disturbance, we follow Prandtl's analysis. For large Reynolds numbers, R >> 1, the no-slip condition at the wall (y = 0) creates a narrow viscous region near the wall called the disturbance boundary layer. In this disturbance boundary layer, 

, 

, and the streamwise momentum equation is written as
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Outside this disturbance layer, the motion is inviscid and the streamwise momentum equation is
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We split the disturbance velocity into a viscous (

) and an inviscid (

) component whereby
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The inviscid component, 

, satisfies
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and the viscous component, 

, satisfies Eq. (2.144) minus Eq. (2.145)
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We substitute normal modes 
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 and note that the boundary conditions are written as:


u(0) = 0,  therefore  
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and 

 outside the disturbance boundary layer. The solution of Eq. (2.148) for the viscous component is
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This solution is obtained directly from the solution of the oscillating plate (Schlichting, 1979). Thus, the disturbance layer is analogous to the Stokes layer in an oscillating flow.

The presence of 

 induces the wall-normal velocity 

 which can be determined from the continuity equation to be
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Integration of Eq. (2.150) using Eq. (2.149) shows that this velocity does not vanish in the inviscid region (outside the disturbance boundary layer). Specifically, the wall-normal velocity is given by
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Since 

 is shifted in phase 135° with respect to 

 (due to the 1  i term), there is a Reynolds stress created by the wall viscous region. This stress exists throughout the flow and is given by
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The role of viscosity in this case establishes the no-slip boundary condition which in turn creates the Reynolds stress which may destabilize the flow. Therefore, a flow which is stable to purely inviscid disturbances may be unstable to viscous disturbances. The actual distribution of Reynolds stress throughout the boundary layer will determine whether a particular disturbance is stable or unstable.

1.10.2 T‑S Waves

All of the above discussion is contained within the framework of Eq. (2.47). Historically, the ideas of Prandtl were extended by Heisenberg (1924), Tollmien (1929), and Schlichting (1933) by the use of asymptotic solutions to the Orr-Sommerfeld equation. The existence of the viscous instability waves was confirmed experimentally by Schubauer & Skramstad (1943). Eventually the names of Tollmien and Schlichting were associated with the viscous instability mechanism and today this mechanism is called the Tollmien-Schlichting (T‑S) instability (which ignores the contributions of Prandtl and Schubauer). The historical development of this work is given in Mack (1984b). It should be mentioned that not all shear-layer instabilities are T‑S instabilities. We reserve the T‑S appellation for the viscous instability.

Since the Reynolds number is large, asymptotic analysis of the Orr-Sommerfeld equation was an active area of research for a number of years (see Drazin & Reid, 1981). Later we will describe developments in triple-deck asymptotic methods but for the most part, the existence today of decent computers obviates much of the need for asymptotic analyses. Thus we go back to the solution of Eq. (2.47).

Equation (2.47) is linear and homogeneous and forms an eigenvalue problem which consists of determining 
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, Reynolds number, R, and the basic state, U(y). The Reynolds number is usually defined as
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and is used to represent distance along the surface. In general, 
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 is the most straightforward reference length to use because of the simple form of Eq. (2.153) and because the Blasius variable, 
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, is the same as y in the Orr-Sommerfeld equation. The reader will still find the archaic use of 
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 and 
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 as reference lengths, so care must taken in comparing data since, in using these lengths, additional constants must be carried around.

When comparing the solutions of Eq. (2.47) with experiments, the dimensionless frequency, F, is introduced as
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where f is the frequency in Hertz and is conserved for single frequency waves. The parameter F is a constant for a given flow condition.

Experiments of naturally occurring transition in low disturbance environments always show 2‑D T‑S waves as harbingers of the transition process. These are streamwise traveling waves with a phase speed, 0.3 < 

 < 0.4 whose amplitude and phase vary according to the freestream environment. In order to conduct detailed measurements, controlled (phase-locked) disturbances are introduced into the boundary layer. It is worthwhile to describe such an experiment and in doing so, permit the reader to understand the nature of a T‑S wave.

Saric (2007) presents the requirements for conducting a stability experiment. Usually, an experiment designed to observe T-S waves and to verify the 2‑D theory is conducted in a low-turbulence wind tunnel (
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= 2.59 and not from pressure measurements) where the virtual-leading-edge effect is taken into account by carefully controlled boundary-layer measurements. Disturbances are introduced by means of a 2‑D vibrating ribbon using single-frequency, multiple-frequency, step-function, or random inputs (Pupator & Saric, 1989) taking into account finite-span effects (Mack, 1984a). Hot wires measure the 
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 component of velocity in the boundary layer and d-c coupling separates the mean from the fluctuating part. In comparing with the theory, 
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Figure 2.15 shows the data of the mean flow and disturbance flow measurements from a routine single-frequency experiment (Saric, 2007). These data are compared with the Blasius solution and a solution of the Orr-Sommerfeld equation (2.47) as shown with the solid lines. In comparing the disturbance measurements (of rms
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) and theory (of
[image: image285.wmf]y

f

¶¶

), both profiles are normalized by their respective maximum values. The agreement between theory and experiment is quite good and illustrates that the 2‑D problem is well understood. The fact that the wave amplitude is 1.5% 
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 while still remaining linear and 2‑D is discussed in Chapter 9. The disturbance signature of Figure 2.15 is a recognizable characteristic of T-S waves. The sharp zero and second maximum of 
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 occur because of a 180º phase shift in the region of the critical layer (where 
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, the phase speed). This shape is quite unlike a turbulence distribution or even a 3‑D, T‑S wave.

The data of Figure 2.15 show a first-mode eigenfunction (see Section 2.4.3) of Eq. (2.47). The higher modes are highly damped and are gone within a few boundary-layer thicknesses downstream of the disturbance source.

When the measurements of Figure 2.15 are repeated along a series of chordwise stations, the maximum amplitude varies as shown in the schematic of Figure 2.16. At constant frequency, the disturbance amplitude initially decays until the Reynolds number at which the flow first becomes unstable is reached. This point is called the Branch I neutral stability point and is given by 
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. The amplitude grows exponentially until the Branch II neutral stability point is reached which is given by 
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 points as a function of frequency gives the neutral stability curve shown in Figure 2.17. In order to compare the stability behavior of Figure 2.16 with theory, Eq. (2.40) is interpreted locally and Eq. (2.39) is rewritten in the following form:
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which shows 
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as the spatial growth rate. Depending on the sign of this term, the flow is said to be stable or unstable, i.e. if
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, the disturbances grow exponentially in the streamwise direction and the neutral points are determined by finding the R at which 
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. From the eigenvalues of Eq. (2.47), Figure 2.17 is
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. For R > 600 the theory and experiment agree very well for Blasius flow. For R < 600 the agreement is not as good because the theory is influenced by nonparallel effects and the experiment is influenced by a number of factors (Saric 2007). Virtually all problems of practical interest have R > 1000 in which case the parallel theory seems quite adequate (Saric & Nayfeh 1977). The whole theory has also been verified by direct Navier-Stokes simulations. These are reviewed by Spalart (1992).

1.11 The Smith-Van Ingen 
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One of the conjectures regarding the prediction of transition is that there exists a critical amplitude of the T‑S wave at transition. One means for predicting this is to assume that the exponential growth between Branch I and Branch II (predicted by linear theory) is largely responsible for achieving this critical amplitude. However, the best that linear theory can do is calculate an amplitude ratio, 
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 which is consistently called 
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 in the literature (the elusive ingredient, 
[image: image301.wmf]0

A

, the initial disturbance amplitude, is the soul of the receptivity process). Nevertheless, the calculation of 
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 is an important process for many different reasons and the method is described forthwith.

In order to calculate the amplitude ratio (within the quasi-parallel flow approximation) when 
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In this case, Eq. (2.41) is integrated along the steam direction to give:
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Since x and R are related through Eq. (2.153), Eq. (2.156) can be written as
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where 
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 is the starting point of the integration. Equation (2.157) is used in Eq. (8) in order to see how much the disturbance has changed from 
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 to R. The real part of  in Eq. (2.157) is just the phase and does not contribute to amplitude growth. Thus the change in amplitude of the disturbance is carried by the imaginary part of . This is shown in Eq. (2.158).
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(2.158)
Assume that the disturbances at x and at 
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 each have a norm given by A and
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(Saric 2007). In order to determine the relative amplitude ratio, 
[image: image317.wmf]0

AA

, or as most commonly done, the amplification factor, 
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[image: image319.wmf](

)

0

0

ln2

R

i

R

NAAdR

a

==

ò


(2.159)
where 
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is the Reynolds number at which the constant-frequency disturbance first becomes unstable (Branch I of the neutral stability curve), and A and 
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 are the disturbance amplitudes at R and 
[image: image322.wmf]0

R

. A typical calculation of Eq. (2.159) is shown in Figure 2.17. It illustrates the constant frequency growth of a disturbance and the envelope of maximum N at any R for a Blasius flow.

If the flow is not self-similar, integration with respect to 
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 may be more convenient. Mack (1984b) suggests:
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where 
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 is the local boundary-layer Reynolds number, and all lengths are made dimensionless with the reference length 
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The basic design tool is the correlation of N with transition Reynolds number, 
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, for a variety of observations. Equation (2.159) or (2.160) is integrated with respect to the known basic state. The correlation will produce a number for N (say 9), which is now used to predict 
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 for cases in which experimental data are not available. This is the celebrated 
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 method of Smith and Van Ingen (e.g. Arnal, 1984, 1992; Mack 1984b). As a transition prediction device, the 
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 method is certainly the most popular technique used today. It works within some error limits only if comparisons are made with experiments with identical disturbance environments. Since no account can be made of the initial disturbance amplitude, this method will always be suspect to large errors and should be used with extreme care. When bypasses occur, this method does not work at all. Reed, Saric, & Arnal (1996) review the efforts made in using linear stability theory to correlate transition.

The basic transition control technique endeavors to change the physical parameters and flow conditions in order to keep N within reasonable limits which in turn prevents transition. As long as laminar flow is maintained and the disturbances remain linear, this method contains all of the necessary physics to accurately predict disturbance behavior.

Mack (1984b) and Arnal (1984, 1992) give examples of growth-rate and 
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 calculations showing the effects of pressure gradients, Mach number, wall temperature, and three dimensionality for a wide variety of flows. However, before using this method, one should be cautioned by Morkovin & Reshotko (1990).
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Figure 2.1. Velocity profile of circular and plane Poiseuille flow.
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Figure 2.2. Velocity profile of plane Couette flow.
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Figure 2.3. Velocity profile of a jet.
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Figure 2.4. Velocity profile of a wake.
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Figure 2.5. Velocity Profile of a boundary layer.
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Figure 2.6. Velocity profile of a wall jet.
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Figure 2.7. Velocity and vorticity distributions of the Poiseuille flow of Figures 2.1 and 2.5.
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Figure 2.8. Velocity and vorticity distributions for the Couette flow of Figure 2.2 (with a positive pressure gradient)
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Figure 2.9. Velocity and vorticity distributions for the wall jet flows of Figure 2.6.
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Figure 2.10. Velocity and vorticity profiles of the wake and jet flows of Figures 2.3 and 2.4.
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Figure 2.11. Semicircle representation of eigenvalues (cr, ci).
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Figure 2.12. Vorticity distribution in the shear flow of Figure 2.7
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Figure 2.13. Sequence of events to establish induced vortical flow.
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Figure 2.14. A possible unstable vorticity distribution
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Figure 2.15. Mean Flow and Disturbance Velocity Profile: Theory & Experiment Saric (1990)
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Figure 2.16. Maximum Disturbance Amplitude vs x
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Figure 2.17. Neutral Stability Curve for Blasius Flow
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