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1. Introduction

To describe the laminar-turbulent transition process in two-dimensional (2D) or three-dimensional (3D) flows in a low free-stream disturbance environment, it is usual to distinguish three successive steps. The first step, which takes place close to the leading edge, is called receptivity. Receptivity describes the means by which forced disturbances such as free-stream noise, free-stream turbulence, vibrations, small roughness elements… enter the laminar boundary layer and excite its eigenmodes. In the second phase, these eigenmodes take the form of periodic waves, the energy of which is convected in the streamwise direction. Some of them are amplified and will be responsible for transition. Their evolution is fairly well described by the linear stability theory. When the wave amplitude becomes finite, nonlinear interactions occur and lead to turbulence.

In 2D flows, the linearly growing waves are referred to as Tollmien-Schlichting (TS) waves. In 3D flows, for instance on a swept wing, the mean velocity profile has two components, see figure 1.1: a streamwise component u in the external streamline direction, and a crossflow component w in the direction normal to the previous one. The streamwise velocity profile is unstable in regions of zero or positive pressure gradient (decelerated flows, downstream of XM in figure 1.1). It generates waves similar to the 2D TS waves. For low speed flows, their wavenumber vector is nearly aligned with the free-stream direction. The crossflow velocity profile is highly unstable in negative pressure gradients (accelerated flows, upstream of XM). It generates crossflow (CF) waves with a wavenumber vector making an angle of 85 to 89º with respect to the free-stream direction. A peculiar feature of CF instability is that it amplifies zero frequency disturbances. This leads to the formation of stationary, corotating vortices practically aligned in the streamwise direction. In the experiments, CF vortices are observed as regularly spaced streaks, see figure 2.2. 
	[image: image84.jpg]




	Figure 1.1- Laminar boundary layer development on a swept wing. XM is the location of the inviscid streamline inflection point. 0 is the angle between the wall and potential streamlines.


As it will be explained in the next paragraphs, the receptivity process and the nonlinear interactions are very different for TS and CF disturbances. In the intermediate phase, however, the same linear stability theories are applicable for both TS and CF waves. Therefore this theory constitutes the basis for most of the current transition prediction methods. 

This Lecture is organized as follows. In paragraph 2, the practical problem of transition definition and detection is addressed. Paragraph 3 gives a survey of the prediction methods based on linear stability theory, either in its local or in its non-local formulation. This theory represents the main ingredient of the well known eN method. It is shown that the application of this method becomes more and more delicate with increasing mean flow complexity, as illustrated by several examples of application. Simpler and more complex prediction methods are described in paragraph 4 and 5, respectively. The simpler methods include data base methods and analytical criteria, while more complex approaches use the nonlinear PSE (Parabolized Stability Equations). The last paragraph illustrates the difficulty of implementing the previous methods into Navier-Stokes codes. 

As indicated in the title, this Lecture mainly focuses on subsonic and transonic applications. However, as most of the prevision methods described below remain valid at higher speeds, a limited number of supersonic applications will also be presented.   
2. Preliminary remarks : experimental transition detection

The practical transition prediction methods are aimed at estimating some “transition location”. As they are calibrated and validated by comparison with experimental data, this “transition location” needs to be defined; then the same definition must be adopted for practical applications.

2.1. Intermittency factor 

Transition starts when the first turbulent structures (the so-called Emmons spots) appear in the laminar boundary layer. In natural conditions, the spots originate in a more or less random fashion. Once created, they are swept along with the mean flow, growing laterally and axially, and finally covering the entire surface. The “transition region” is defined as the region where the spots grow, overlap and form a turbulent boundary layer. When a hot wire is placed near the wall (or when a hot film is mounted flush to the model surface), the fluctuations which are recorded in the transition region show the successive appearance of turbulent spots and of laminar region: it is the intermittency phenomenon. The intermittency factor  represents the fraction of the total time that the flow is turbulent. It is equal to 0 in laminar flow and 1 in fully turbulent flow (see figure 2.1). In principle, the transition prediction methods provide the abscissa where  starts to increase. Then the transition region can be modelled by some empirical “intermittency function”. 
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	Figure 2.1- Extent of the transition region

on a flat plate: shape factor and hot wire signals
	Figure 2.2- Example of visualization (sublimation) of the wall of a swept wing showing stationary vortices


As shown in figure 2.1, the extent x of the transition region is not negligible when compared to the length xT of the initial laminar region. For 2D low speed flows in zero or moderate pressure gradient, the ratio x/xT is of the order of 30 to 40%. It increases with increasing Mach number, as indicated, for example, by the empirical relationship proposed by Chen and Thyson (1971). 

2.2. Transition detection

When the chordwise evolution of the mean velocity profiles is measured by a Pitot tube or by a hot wire, the beginning of transition is often taken as the point of initial measurable deviation of a characteristic parameter from its natural evolution. This can be, for instance, the beginning of the decrease in the shape factor H or the minimum of the skin friction coefficient Cf. The rms value of the velocity fluctuations recorded near the wall starts to increase a short distance upstream, but, in practice, the definitions of the “transition location” from the mean values and from the fluctuating quantities are close together. 

In the transition region, quantities such as rms voltage, skin friction, wall heat flux… reach a maximum at nearly the same location and then decrease more or less slowly toward fully turbulent levels. The peak value of these quantities is sometimes used to define the “transition location”, because its position is easy to measure accurately. However, this position is located in the middle of the transition region, the intermittency factor being around 0.5. 

Very often, for instance in free flight conditions or in high speed wind tunnels, detailed measurements of the mean flow field are not possible, and transition is detected by global techniques such as infrared thermography. The infrared images are usually analyzed in a qualitative manner only, and transition is defined as the point where the colour changes significantly. In fact, quantitative analyses demonstrate that this point roughly corresponds to the middle of the transition region. The same kind of problem arises when using thermosensitive paints. The transition location determined by sublimation techniques (acenaphtene or naphthalene flow visualizations) moves slowly upstream when the wind tunnel running time increases.   

Up to now, it was assumed that the transition front is a straight line. This assumption is a good approximation for 2D flows, but it becomes questionable in 3D flows when stationary CF waves dominate the transition process. In this case, the transition front exhibits a saw-tooth pattern, which makes an accurate definition of the “transition location” difficult. In addition, the initial amplitude of the stationary waves depends on the leading edge surface polishing, which is not always uniform in the spanwise direction (Radeztsky et al, 1993). As a consequence, the waves do not break down at the same abscissa. The difficulty of defining an accurate transition location is illustrated in figure 2.2.

These observations can explain to a great extent the large scatter which is observed in transition data. They also explain why transition prediction is so difficult. Inconsistent choices of experimental criteria for the beginning of transition can lead to erroneous conclusions concerning the validity of the transition prediction methods.    

3. Prediction methods based on linear stability theory : eN method
3.1. Linear stability theory

The oldest method to characterise the boundary layer instabilities is based on the well-known linear Orr-Sommerfeld equation. The disturbances are written as:
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r’ is a velocity, pressure or density fluctuation. r is an amplitude function. y is normal to the surface. On a swept wing, x is often measured along the wing surface in the direction normal to the leading edge, z being the spanwise direction.  and  are complex numbers representing the wavenumber components in the x and z directions; in the framework of the spatial theory,  is real and represents the wave frequency. Assuming that the mean flow is parallel, the introduction of the previous expression into the linearized Navier-Stokes equations leads to ordinary differential equations for the amplitude functions. This implies that the stability of the flow at a particular station (x,z) is determined by the local conditions at that station independently of all others. Numerically, one has to solve an eigenvalue problem: when the mean flow is specified, nontrivial solutions exist for particular combinations of () only.

If it is assumed that there is no amplification in the spanwise direction z,  is real and the disturbances take the form:  
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where r and i are the real and imaginary parts of . In the following,  denotes the wave number angle, i.e. the angle between the external streamline and the wave vector (r, ) direction. Values of  between 85 and 90° correspond to the crossflow (CF) instability. The value of  for streamwise or Tollmien-Schlichting (TS) instability is close to 0° for low speed flows; it increases up to 30-40° for transonic flows. x= 2r and z= 2 are the chordwise and spanwise wavelengths of the considered disturbance. 

The linear PSE (Parabolized Stability Equations) approach provides an improvement to the Orr-Sommerfeld theory, see Herbert, 1993, Reed, 2008. The mean flow field and the amplitude functions now depend on both x and y, and  depends on x, so that the disturbances are expressed as:
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 is complex,  and  are real numbers. Substituting the previous expression into the linearized Navier-Stokes equations and assuming that the x-dependence of  and r is weak yield a partial differential equation of the form:
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where L, M and N are operators in y with coefficients that depend on x and y through the appearance of the basic flow profiles. When  is computed from a so-called normalization condition, the previous equation can be solved using a marching procedure in x (parabolic system) with prescribed initial conditions. As the results at a given x station depend on the upstream history of the disturbances, this approach is called non-local. The physical growth rate of any disturbance quantity Q is defined as:
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Usually, Q is taken to be u’, v’, w’, T’, (u)’ or the disturbance kinetic energy, either at some fixed y position or at the location where the considered quantity reaches its maximum value. In the general case, different disturbance quantities exhibit different growth rates, whereas they exhibit the same growth rate in the framework of the local theory. It is important to notice that the PSE make it possible to take into account not only the nonparallel effects but also the wall curvature effects. 

3.2. Application of the eN method using the local approach

In order to predict transition location, use is made of eN method, originally developed by Smith and Gamberoni (1956) and by van Ingen (1956) for low speed flows and then extended to compressible and/or three-dimensional flows, see Arnal (1993) for an overview at the beginning of the 90’s. This method is based on linear theory only, so that many fundamental aspects of the transition process are not accounted for. However, one has to keep in mind that there is no other practical method presently available for industrial applications.

The eN method can be used either with the local stability approach or with the non-local stability approach. The first possibility is examined in the present paragraph; the second one will be discussed in paragraph 3.3. 

3.2.1. Application to 2D, incompressible flows

In the simple case of a two-dimensional, incompressible flow, it can be demonstrated that it is sufficient to consider waves with  = 0 or  = 0. The disturbances are amplified or damped according to the sign of  = - i.  

The principle of the eN method can be understood from figure 3.1. Let us consider a wave which propagates downstream with a fixed frequency f1. This wave passes at first through the stable region. It is damped up to x0, then amplified up to x1, and then it is damped again downstream of x1. At a given station x, the total amplification rate of a spatially growing wave can be defined as:
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where A is the wave amplitude at any abscissa and A0 is the wave amplitude at the abscissa x0 where it becomes unstable (critical abscissa). After the total growth rate has been determined for a series of unstable disturbances (f1, f2, f3,…), it is easy to compute the so-called N factor:
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The eN method assumes that transition occurs for a predefined value of the N factor, denoted as NT. This means that the breakdown to turbulence is observed when the most amplified wave has been amplified by a critical ratio exp (NT). 
	[image: image10.png]) f
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	Figure 3.1- Principle of the

eN method
	
	Figure 3.2- Application of the eN method using 

Mack’s relationship (flat plate, low speed) 


As a first approximation, it can be assumed that transition occurs for a more or less “universal” value AT of the most amplified wave amplitude. AT and the initial amplitude A0 of the wave are linked together through the N factor at transition: AT = A0 exp(NT). This shows that increasing A0 (i.e. increasing the amplitude of the excitation) will reduce N at transition. In other words, NT is a measure of the quality of the disturbance environment. Mack (1977) proposed to relate NT to the free-stream turbulence level Tu by the following relationship:
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Figure 3.2 shows that this relationship correlates low speed wind tunnel data without pressure gradient. It can be applied with some confidence for 10-3 < Tu < 10-2. For Tu = 10-3 (typical value for a low disturbance subsonic wind tunnel), NT = 8.15. For Tu =10-2 (typical high disturbance environment), NT = 2.62. If Tu = 2.98 10-2, the N factor at transition becomes equal to zero, which means that transition occurs at the critical Reynolds number. Flight tests conducted at the DLR Braunschweig on an LFU aircraft equipped with a quasi-2D laminar glove showed transition N factors around 10 in a low speed range (see Horstmann et al, 1990). 

Mack’s relationship cannot be used, in principle, for Tu < 10-3, because noise becomes the dominant parameter and the excitation is frequency dependent. For Tu > 10-2, TS waves are not clearly discernable in the boundary layer, and the transition process is dominated by low frequency, 3D disturbances elongated in the streamwise direction (streamwise streaks, or Klebanoff modes). Nevertheless, Mack’s relationship is often used for moderate and high values of Tu, even if it does not represent the physical transition mechanisms. It can also be observed that relation (6) does not take into account the free-stream turbulence spectrum.

Another parameter acting on transition in 2D, incompressible flows is the streamwise pressure gradient. It is automatically taken into account in the eN method through the shape of the mean velocity profile. It is well known that a positive pressure gradient (decelerated flow) decreases the critical Reynolds number, increases the disturbance growth rate and thus reduces the transition Reynolds number. A negative pressure gradient (accelerated flow) increases the critical Reynolds number, decreases the disturbance growth rate and increases the transition Reynolds number. The transition movement on a given body in different flow conditions can be accurately predicted with a single value of NT, provided the free-stream disturbance environment remains the same. 
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	Figure 3.3- 

N factor at separation

(M0 = 0.22, Rc = 8.6 106)


At this point, it is important to emphasize the problem of calibrating the eN method from experimental data. This problem is illustrated in figure 3.3 which is related to flight tests performed on a Beechcraft aircraft equipped with a 2D laminar glove (Obara and Holmes, 1985). It shows the pressure distribution on the upper surface as well as the total growth rate of the most unstable TS waves. Due to the positive pressure gradient, the N factor curve is very steep downstream of the pressure peak: it can be seen that N increases from 10 to 17 between 36 and 40 percent chord. Because of the uncertainty in the experimental definition of the transition location, which occurs “in close proximity” of the laminar separation point (x/c ≈ 0.40), this kind of pressure gradient is not suitable for calibrating the eN method. For a rigorous calibration, the N factor curve must present a regular evolution (not too steep, not too flat) from the critical abscissa to the transition point. In this case, however, it is necessary to define accurately the “transition point”. As pointed out in paragraph 2, the extent of the transition region can represent 30 to 40% of the distance between the stagnation point and the onset of transition. As a consequence, the N factors at the first appearance of turbulent spots and at a position detected by infrared thermography (middle of the transition region) can differ by 15 to 20%. Obviously, the previous remarks also apply to compressible and 3D flows. 
3.2.2. Application to 2D, compressible flows

When compressibility begins to play a role, the problem becomes more difficult, because the most unstable waves are often oblique waves, even if the mean flow is 2D. As a consequence, a new parameter enters the dispersion relation: the angle  between the streamwise direction and the wavenumber vector (or the spanwise wavenumber r). It is still assumed that the amplification takes place in the x-direction only, i.e. i = 0, but  = r (or ) needs to be specified or computed. There are mainly two strategies allowing taking into account oblique waves. 

The first possibility is to use the envelope strategy. At a given streamwise position x and for a fixed value of f, the growth rate  is calculated as a function of  in order to determine the most unstable wavenumber direction, denoted as max. The total growth rate and the N factor are then computed by replacing  by max = (max) in (4).

A second solution is the fixed  strategy. Here the total growth rate is integrated by following waves with constant physical values of f and , and the final maximization is done with respect to both parameters. In other words, the N factor represents the envelope of several envelope curves (it is often denoted as EoE). As for the envelope strategy, transition is assumed to occur for some more or less “universal” value of N. It is interesting to notice that the fixed  strategy is consistent with the PSE formulation, whilst the envelope strategy is not.
Fortunately, the numerical results show that both strategies provide N factors which are very close together. The explanation is that, for a given frequency, the most unstable direction max and the most unstable spanwise wavenumber max, are practically constant in the streamwise direction.

In transonic wind tunnels, typical values of the transition N factor are 5-6 for noisy facilities (porous and/or slotted wall wind tunnels) and of the order of 8-10 for quieter facilities (solid-wall wind tunnels). As suggested by Bushnell et al (1988), an “equivalent free-stream turbulence level” can be deduced from the free-stream sound field and used to estimate NT according to Mack’s relationship. In free flight conditions, an extensive experimental data base was obtained from the well known AEDC cone experiments, see Fisher and Dougerthy (1982). The results in the transonic and low supersonic range were rather well correlated with N factors around 10, as for low speed flows.

The effects of the streamwise pressure gradient, of the free-stream Mach number Me and of the wall temperature Tw are automatically accounted for in the stability analyses through the changes in the shape of the mean velocity and mean temperature profiles:

· Positive (respectively negative) pressure gradients are destabilizing (respectively stabilizing);

· Increasing Me (on an adiabatic wall) exerts a strong stabilizing effect up to Me around 2;

· Wall cooling (respectively wall heating) is stabilizing (respectively destabilizing) in air.

The combined effects of pressure gradient and Mach number are illustrated in figure 3.4, which shows a comparison between experimental data and computations for a 2D airfoil (CAST10 airfoil) which was tested in transonic conditions by Blanchard et al (1985). The left hand part of the figure shows the free-stream Mach number distributions for different values of the angle of attack . The right hand part presents a comparison between measured and predicted transition locations, as a function of . Two values of N are used: 8 and 9. The agreement is satisfactory. The dotted curve was obtained with N = 8 from incompressible stability computations, i.e. the free-stream Mach number was set to zero in the stability equations. It can be seen that the compressibility effect in this Mach number range (around Me = 1) reduces the growth rates by a factor 2. On the other side, reducing the amplitude of the suction peak in the leading edge region reduces the intensity of the positive pressure gradient and moves transition downstream. This example demonstrates that the eN method is an efficient tool for parametric studies: for a given test model and for a given disturbance environment, this method is able to predict the movement of the transition location when the parameters governing the stability properties are changed. 
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	Figure 3.4- Transition N factors for 2D transonic experiments


3.2.3. Application to 3D flows

3.2.3.1. Receptivity mechanisms in 3D flows

As explained previously, transition in 3D flows can be triggered either by Tollmien-Schlichting (TS) waves or by crossflow (CF) waves. Before to discuss the application of the eN method, it is necessary to remind some basic features concerning the receptivity process in such configurations. 

As TS waves on a 3D body are similar to TS waves encountered in 2D flows, their initial amplitude is imposed by the free-stream disturbance environment (free-stream turbulence level Tu, free-stream noise). As a first approximation, it is still possible to use Mack’s relationship (6) to estimate the transition N factor. 

On the other side, two types of CF instabilities need to be distinguished: the stationary CF waves and the travelling CF waves. As stated by Crouch and Ng (2000), they must be considered as distinct families of modes, because they are generated by different receptivity mechanisms. Stationary CF disturbances are excited directly by steady surface variations (surface polishing or suction). Travelling CF waves require an unsteady source such as free-stream turbulence, but the receptivity mechanisms probably differ from those for TS waves. The relative importance of stationary and travelling CF modes depends on the relative importance of steady and unsteady excitations. The general idea for CF-induced transition is that stationary CF waves dominate in free flight conditions and in very low free-stream disturbance wind tunnels, while travelling CF waves play the major role in more classical wind tunnels. The link between the transition N factors of CF disturbances and the environmental conditions is discussed in paragraph 3.2.3.6.
3.2.3.2. Strategies for the N factor(s) computation

The extension of the eN method to three-dimensional flows is not straightforward. The first reason is that the assumption i = 0 (i.e. no amplification in the z direction) is not necessarily correct. Hence i must be assigned or computed. Several solutions have been proposed to solve this problem, see review by Arnal (1993). For instance it is possible to use the wave packet theory and to impose the ratio ∂/∂ to be real (Cebeci and Stewartson, 1980). A simpler solution is to impose that the growth rate direction is the group velocity direction or the potential flow direction. In the case of infinite swept wings, it is often assumed that there is no amplification in the spanwise direction. Usually these different possibilities do not result in significant differences in the N factor. For the sake of simplicity, it will be assumed that i = 0.
After one of the previous assumptions for i has been adopted, one has to integrate the local growth rates in order to compute the N factor. Several strategies are available:
· Envelope strategy: this approach was previously described for 2D, compressible flows.

· EoE strategies: these “Envelope of Envelopes” approaches include the fixed  strategy (also described previously), the fixed  strategy, the fixed  strategy ( is the physical disturbance wavelength). The N factor integrations are performed by following waves having a given dimensional frequency f and a constant value of ,  or . As the results are very close together, the following discussion will be restricted to the fixed  strategy.  

· NCF-NTS method: the principle is to compute separately two N factors, one for TS disturbances (the so-called NTS) and another for CF disturbances (the so-called NCF). Transition is assumed to occur for particular combinations of these parameters. 

As it can be expected, each strategy gives a different value of the N factor at the onset of transition. 

3.2.3.3. Comparison between the envelope and the fixed  strategies

Systematic comparisons between the envelope and the fixed  strategies were carried out for experimental data obtained in the transonic range and in free flight conditions in the framework of the ELFIN (European Laminar Flow INvestigation) project funded by the European Commission. The ELFIN project, ended in 1996, constituted a collaborative venture, bringing together the majority of European airframe manufacturers, research institutes and universities. In the first phase of the project, NLF (Natural Laminar Flow) experiments were conducted on a glove bonded to the original wing surface of a Fokker F100 aircraft (Voogt, 1996). This aircraft was instrumented with two infrared cameras for transition detection, one above and one below the wing. A series of flight tests was conducted in 1991 and analysed during the second phase of the project. The main objective of the numerical work was to apply different strategies of integration of the N factor in order to compare their capabilities and shortcomings, see Schrauf (1994) and Schrauf et al (1996, 1997). Additional computations were carried out more recently (2007). 

Two typical examples are discussed below in order to compare in detail the performances of the envelope and of the fixed  strategies. The flight conditions for these two cases are:

	
	M0
	Rc
	 (°)
	xT/C (%)

	Case 1
	0.719
	19.6 106
	22.5
	32-37

	Case 2
	0.719
	29.9 106
	20.2
	34-36


The free-stream velocity distributions are plotted in figure 3.5. Transition occurs in a negative pressure gradient in case 1 and around the point of minimum pressure in case 2.  
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	Case 1
	Case 2

	Figure 3.5- F100 experiments: free-stream velocity distributions

The arrows indicate the measured transition location


The numerical results are plotted in figures 3.6 and 3.7 for case 1. Here s is the curvilinear abscissa measured along the wing surface from the attachment line (s/C and x/C differs by 1 to 2% chord only). It can be seen in figure 3.6 that the transition N factor is in the range 18.5-19.5 for the envelope strategy and around 10 for the fixed  strategy. Let us recall that each curve in the left hand part of the figure is associated to a single parameter (the frequency), whilst each curve in the right hand part is associated to two parameters (the frequency and the spanwise wavenumber). The “wave” responsible for transition is f = 1 kHz with the envelope strategy; it is f = 1 kHz,  = 1000 m-1 with the fixed  strategy. 
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	Figure 3.6- F100 experiments, case 1: N factor


Figure 3.7 shows the variation of the wavenumber angle  for the unstable disturbances. The dotted curves are associated with the waves exhibiting the largest N factors at the measured transition location. The dominant instability is CF according to the fixed  strategy ( around 85°) and quasi-CF according to the envelope strategy ( decreasing from 86° to 80°). 
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	Envelope strategy
	Fixed  strategy

	Figure 3.7- F100 experiments, case 1: wavenumber angle


The same kind of result is presented in figures 3.8 and 3.9 for case 2. Transition N factors close to 21 and 7.5 are given by the envelope and the fixed  strategies, respectively. The  angle deduced from the fixed  strategy remains practically constant, whilst it decreases from CF values (close to 85°) to quasi-TS values (around 40°) according to the envelope strategy. 
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	Figure 3.8- F100 experiments, case 2: N factor
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	Envelope strategy
	Fixed  strategy

	Figure 3.9- F100 experiments, case 2: wavenumber angle




In fact, the envelope strategy does not make any distinction between TS and CF disturbances; waves with a fixed frequency are unstable first close to the leading edge due to CF instability and further downstream due to TS instability, so that the “final” transition N factor represents the cumulative effects of both phenomena. The fixed  strategy, on the contrary, implicitly separates the instability mechanisms, because a fixed value of  is associated to a practically constant value of : Large values of  (in the leading edge region) correspond to CF instability, lower values (when approaching the pressure peak) correspond to TS instability. The fact that CF and TS instability mechanisms are active successively is expressed in figure 3.9 by the existence of two groups of N factor curves, one for CF waves (starting at the leading edge), the second for TS waves (starting at s/C ≈ 0.1).     

From systematic analyses of the F100 data, the recommended values for the transition N factor can be summarized as follows:  

· Fixed  strategy: NT lies in the range 7-8 for TS induced transitions and in the range 8-10 for CF induced transition.

· Envelope strategies: NT lies in the range 15-20. It is close to the upper limit, or even larger, when transition is triggered by TS waves (these high values are explained by the cumulative effect of CF and TS disturbances). 

Let us recall that, because the transition location was determined from infra-red images, these values are relative to the middle of the transition region.

Similar investigations were performed at ONERA using an experimental set-up especially designed for this purpose (see Gasparian, 1998, Arnal et al, 1998). The experiments were carried out in the F2 wind tunnel at Le Fauga-Mauzac ONERA centre. The so-called DTP-B model was a swept wing with a chord (normal to the leading edge) of 0.7 m and a span of about 2.5 m. The pressure side was equipped with 7 independent suction chambers (in the chordwise direction) from 5 to 25% chord. Transition was detected on the pressure side by hot film sensors and by infrared thermography. The transition location was defined as the abscissa where the rms fluctuation level delivered by the hot films started to increase. A systematic variation of the suction velocity Vw and of the angle of attack  has been performed for wind tunnel speeds of 75 and 95 ms-1 and for sweep angles  of 40 and 50°. Variations of these parameters made it possible to generate different transition mechanisms, from the pure TS to the pure CF type. For a given configuration, the suction velocity was held constant in the different suction chambers.

Systematic stability calculations were then performed by using both the envelope and the fixed  strategies. As for the F100 experiments, large values of the transition N factor were found in some cases. The idea arose to consider the mean value of , denoted as 
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, for the waves leading to transition. This quantity is simply defined as: 
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where x0 denotes the critical abscissa for the “wave” which is the most amplified at the transition location xT. The values of the N factor at transition are plotted as function of 
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 in figure 3.10 (envelope strategy on the left hand side and fixed  strategy on the right hand side). 
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	Envelope strategy
	Fixed  strategy

	Figure 3.10- Local N factors at transition


The results obtained with the envelope strategy exhibit large values of N for 
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 between 40 and 80°, i.e. for cases where the N factor is the sum of a CF contribution close to the leading edge and of a TS contribution further downstream. When there is only one dominant instability mechanism (
[image: image32.wmf]y

 smaller than 40° and 
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 close to 90°), the N factor at transition is smaller and in the range 6-8. On the other side, the N factors given by the fixed  strategy take into account a single instability mechanism, which is either TS or CF (there is only one point at an intermediate value of 
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), and the scatter is smaller. In the present investigation, the values of N for “pure” TS and “pure” CF transition processes are not very different, but it cannot be claimed that this result is universal: a different wind tunnel with a different model could provide smaller transition N factors in the TS range and larger N factors in the CF range, or the contrary. However, the values plotted in figures 3.10 can be considered as rough guidelines for transition prediction on swept wing models with a good surface polishing, placed in subsonic wind tunnels with Tu ≈ 0.1%.    

In the range 80° < 
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 < 90°, the general trend of the fixed  strategy is a decrease of the transition N factor when the suction velocity Vw increases. This can be attributed to disturbances generated by the suction holes, which enhance the initial amplitude of the stationary vortices generated by the crossflow instability. 
3.2.3.4. The NCF-NTS strategy

  
      This strategy explicitly separates TS and CF disturbances. The criterion for transition is not a unique value of NTS or NCF, but a curve NCF (NTS) established from experimental data. Figure 3.11 shows three possible NCF - NTS diagrams (Redeker et al, 1990). The regions below and above the curves indicate laminar and turbulent boundary layers, respectively. The concave curve represents the case of a strong interaction between CF and TS instabilities: a small amount of CF instability coupled with a small amount of TS instability is sufficient for triggering transition. The straight line NCF + NTS = constant represents a moderate interaction, and the convex curve indicates that the interaction is weak: in this case, the breakdown to turbulence is induced either by TS waves or by CF waves. 
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	Figure 3.11-Different types of NCF-NTS
critical curves for transition prediction
	Figure 3.12- Principle of application

of the NCF-NTS strategy 


The practical use of this strategy is illustrated in figure 3.12. Let us assume that the critical curve NCF(NTS) has been established for a certain type of problems, for instance for transonic swept wings. For a given problem, NCF and NTS factors are determined simultaneously as the computation proceeds downstream. This allows defining a curve which intersects the critical curve at the transition point. 

The NCF-NTS strategy is systematically used in Europe by Airbus-Deutschland and at DLR for swept wing problems. NTS is defined as the envelope of the N factors computed for unstable frequencies with  = 0° (which is only an approximation for transonic flows because the most unstable direction for TS waves is around 40°). NCF is computed for stationary waves only (which is correct for free flight conditions but questionable for wind tunnel conditions). Figure 3.13 presents the values of NCF and NTS at transition computed by Schrauf (2001) for three series of flight experiments: 

· NLF (Natural Laminar Flow) experiments performed on an ATTAS aircraft (see Redeker et al, 1990, Horstmann et al, 1990), 

· NLF experiments performed on a Fokker F100 aircraft (ELFIN project, see above), 

· experiments with suction performed on an Airbus A320 fin (see Henke, 1999). 
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	Incompressible calculations
	Compressible calculations

	Figure 3.13- NCF and NTS factors for free flight data:

(: ATTAS (NLF)  ■: Fokker 100 (NLF)  ◊: A320 fin (suction)


The N factors on the left hand part of the figure were obtained from the incompressible stability theory, those on the right hand part from the compressible stability theory. As expected, compressibility exerts a more pronounced effect on TS waves than on CF waves. The fact that the NCF values for the ATTAS data are larger than those for the F100 data is attributed to differences in the surface polishing. The analysis also shows that the NTS values for the F100 and ATTAS data are larger than those for the A320 data; the reason could be the sound of the suction system installed in the fin. 

In spite of a large scatter, each set of data exhibits coherent trends. Referring to figure 3.11, it seems that the NCF - NTS data are of the “weak interaction” type. It can also be observed that the compressible NCF and NTS values for the F100 experiments are in the same range than those given by the fixed  strategy. 

3.2.3.5.  “Pathological” cases

Let us summarize the advantages and shortcomings of the N factor integration strategies:

· The envelope strategy is very simple and requires a small computing time. However, as the N factor for a given frequency sometimes represents the cumulative effects of CF and TS instabilities, it can reach very large (and unphysical) values at the transition location.

· The fixed  method implicitly separates CF waves (large values of ) and TS waves (small values of ) and is coherent with the linear PSE approach. As many combinations of f and  need to be considered, it requires some computational effort.

· The NCF-NTS strategy explicitly separates CF and TS waves. For compressible flows, the distinction between TS and CF waves is not always easy numerically due to the large values of the wavenumber angle  for TS disturbances. Its calibration requires establishing a complete critical (NCF-NTS) curve.   
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	Figure 3.14-A pathological case (Fokker 100): comparison between local (left) and non-local (right) 

N factors. Measured transition location at x ≈ 1 m


A common shortcoming of the fixed  and NCF-NTS strategies is the appearance of “pathological” cases. The example shown in the left hand side of figure 3.14 is related to a particular flight point of the F100 data (M0 = 0.746, geometrical sweep angle = 19.7°, chord Reynolds number ≈ 21 106, upper surface, outer wing) . It is analyzed using the fixed  strategy. As for the case shown in the right hand part of figure 3.8, two groups of (f, ) curves can be distinguished, one close to the leading edge corresponding to CF disturbances, with a maximum N factor between 8 and 9, the second further downstream corresponding to TS waves, with a maximum N factor around 7. Experimentally, transition is detected at x ≈ 1 m, i.e. at the location of the second maximum. However, assuming a transition N factor in the range 8-10 for CF disturbances would predict transition at the location of the first maximum. Schrauf et al (1997) experienced the same kind of problem with the NCF-NTS method. In general, the envelope strategy allows avoiding these pathological behaviours. 
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	Correlation proposed by Crouch and Ng (2000), low speed
	Correlation proposed by Archambaud et al (2004),

supersonic flows

	Figure 3.15- Variation of stationary CF-instability N factors with surface roughness 




3.2.3.6.  Transition N factor for “pure” CF transitions

Let us consider experimental conditions such that transition is dominated by pure CF disturbances. For a very low free-stream disturbance environment, stationary modes play the major role in the transition process. By using a simplified receptivity model, Crouch and Ng (2000) demonstrated that:

NSCF = NSCF0 - ln
NSCF is the stationary CF-instability N factor at transition, NSCF0 is a reference N factor and  is a measure of the surface roughness (or suction) variation which governs the initial amplitude of the stationary vortices. The left hand side of figure 3.15 shows the variation of NSCF as a function of  = hrms/* for the experiments performed by Radeztsky et al (1999) at a free-stream turbulence intensity Tu = 0.02%. The roughness height hrms is an integral rms level (between 0.25 and 3.3 m), * is the streamwise displacement thickness at the neutral point of the most amplified modes. A good correlation was found with NSCF0 = 2.3.  

When the previous relationship is applied to the experimental data of Deyhle and Bippes (1996), the correlation is not so good. As the free-stream turbulence level Tu in these experiments was 0.15%, it was conjectured that travelling waves may be more strongly linked to the occurrence of transition. Therefore Crouch and Ng propose to express the transition N factor for travelling waves (NTCF) as:

   NTCF = NTCF0 - ln
In this case, the reference N factor NTCF0 depends on Tu. A good correlation with the data of Deyhle and Bippes was achieved with NTCF0 = 9.4.  
Archambaud et al (2004) developed a correlation of the same type for supersonic experiments performed at Mach 3 on two swept models. The transition N factor for CF disturbances was fairly well correlated by a “surface polishing” Reynolds number Rk = Ukk/k. k is a measure of the surface polishing at the critical point (typically between 1 and 10 m), Uk and k are the mean velocity and the kinematic viscosity at the altitude y = k. This correlation is shown in the right hand side of figure 3.15. 
3.3. Application of the eN method using the nonlocal approach (PSE)
3.3.1. General features

Let us recall first the general expression of the disturbances described by the non-local (PSE) theory:
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where is complex,  and  being real numbers. 
By contrast with the local approach, it is no longer necessary to impose additional condition(s) for computing non-local N factors in compressible and/or three-dimensional flows. This is due to the fact that  is real and constant:

· because  is real, the amplification vector has only one component in the x direction;

· because  is constant, the N factor will be computed in a way which is similar to the fixed  theory described previously.

This does not mean that the non-local approach produces a unique N factor. As pointed out before, different disturbance quantities lead to different growth rates, which in turn produce different N factors, see relation (3). 
It is clear that the PSE equations must be solved in a coordinate system which is coherent with the assumptions made on the mathematical nature of . For the case of a swept wing of “infinite” span, the obvious choice is to consider x as the direction normal to the leading edge and z as the spanwise direction. It must be noted that the surface curvature of the body is taken into account by the PSE approach. Because the curvature effects are of the same order of magnitude as the non-parallel effects, it is not coherent to include curvature terms into the local stability equations, but these terms have to be accounted for in non-local stability computations. To summarize, PSE results with curvature can be compared only with local results obtained without curvature by using the fixed  local strategy.

From a numerical point of view, the computing times requested for solving the local and non-local equations are similar. The PSE approach does not present particular convergence problems, even in difficult cases, for instance when the Kp distribution presents wiggles or when a discontinuous suction is applied at the wall. The difficulty sometimes lies in the choice of the initial location, which must be located upstream of the non-local neutral point; some numerical transients can make the final results dependent on the starting point.   

3.3.2. Comparison between local and non-local results for swept wings

The experimental data base obtained at ONERA on the DTP B swept wing with and without suction (paragraph 3.2.3.3) has been used for the purpose of comparison between local and non-local approaches (Gasparian, 1998, Arnal and Casalis, 2000). The results demonstrated that non-parallel effects are strongly destabilizing in regions where CF disturbances are dominant, i.e. close to the leading edge. However, introducing curvature terms into the PSE equations reduce the difference between local and non-local N factors, i.e. curvature terms are stabilizing. The right hand side of figure 3.16 shows some non-local N factors at transition given by the non-local approach with curvature terms included (the N factors are computed using the disturbance kinetic energy integrated across the boundary layer). If these results are compared with those given by the local fixed  strategy without curvature terms (left hand side of figure 3.16), it can be observed that:

· The difference is negligible for TS dominated cases, because these waves start to develop “far” from the leading edge, in regions where non-parallel et curvature effects are small;

· For CF dominated cases, non-local effects lead to an increase N ≈ 2, which means that the non-parallel effects are more important than the curvature effects (this cannot be considered as a general rule). But the local and non-local values of  are close together, and the unstable frequency ranges are quite similar.

	
[image: image44]
	
[image: image45]

	Local theory
	Non-local theory

	Figure 3.16- Local and non-local N factors at transition


The problem of comparison between local and non-local results was also addressed within the EUROTRANS (EUROpean program for TRANSition prediction) project funded by the EC (1996-1999, see Arnal et al, 1996). The main objective was to extend the theoretical work previously performed within ELFIN by trying to improve the transition prediction methods. In particular, non-local computations were carried out for selected Fokker F100 test cases and also for some wind tunnel data obtained in the S1MA wind tunnel. 

The non-local computations with curvature terms included revealed that the N factors based on different quantities (maximum of the streamwise and spanwise fluctuating quantities, maximum of the mass flow disturbances, disturbance kinetic energy) could be significantly different at the measured transition point. In some cases, the difference N between the extreme values was up to 2 for mean values of N in the range 9-11. In general, the non-local theory (with curvature) gave higher values of N factors at transition point, compared to local theory (without curvature). However, the difference between both theories was of the same order as the difference due to the different definitions of the non-local N factor. As a consequence, the non-local approach did not reduce the scatter in the N factor for the considered series of 19 test cases. 

An interesting advantage of the non-local theory is its ability to eliminate some of the “pathological” cases appearing when using the local theory. Non-local results are plotted in the right hand side of figure 3.14 for the “pathological” case discussed in paragraph 3.2.3.5 and compared to the local results. Around the leading edge, the curvature effects reduce the N factor for CF disturbances. Further downstream, the nonparallel effects increase the N factor for TS disturbances, so that a critical N factor around 8 provides a correct prevision of the transition location. 

4. Simpler methods
As the use of the eN method is often time consuming, the development of simplified methods presents an unquestionable practical interest. The simplest solution is to apply analytical criteria expressing relationships between boundary layer integral parameters at the transition point; examples of such criteria will be provided in paragraph 4.2. Another possibility is to use simplified stability methods, the complexity of which is intermediate between analytical criteria and exact stability computations. These “data base” methods are presented below. 

4.1. Simplified stability methods (data base methods)

4.1.1. Overview

The general principle is to compute the disturbance growth rate from tabulated values or from analytical relationships which have been established from exact stability computations performed, in general, for self-similar mean velocity profiles (Falkner-Skan profiles in 2D, incompressible flows). For this reason, these methods are often referred to as “data base” methods. As soon as the growth rate is known, the N factor can be estimated in a classical way. 

Such methods have been proposed by Gaster and Jiang (1994), van Ingen (1996), Stock (1996). Drela (2003) incorporated a three-parameter data base into a viscous/inviscid flow solver, the boundary layer properties being determined from an integral method. The applications were restricted to 2D, low speed flows. A 3D, compressible data base method was developed by Langlois et al (2002). It is based on the stability properties computed for compressible Falkner-Skan-Cooke similar boundary layer profiles. The data base is a table containing the values of three stability parameters as functions of four mean flow parameters. The so-called “parabola method” developed at ONERA (Arnal, 1988, Casalis and Arnal, 1996) is described in the next paragraphs.

Crouch et al (2002) proposed an original approach using neural networks (which can be considered as data bases) in order to compute the TS and CF N factors for swept wings at low speed. The training set is based on exact stability solutions for the Falkner-Skan-Cooke mean velocity profiles. At each chordwise station, the input vector consists of 16 mean flow variables, and the network output provides the local TS and CF growth rates. Then the values of NCF and NTS are easily deduced.    

4.1.2. Parabola method for 2D flows

The parabola method was first established for 2D, incompressible and compressible flows (Arnal, 1988). The principle is the following. For a prescribed value of the dimensionless frequency F = 2f/ue2 and for a given mean velocity profile, the curve representing the evolution of the local growth rate  = -i as a function of R1 (displacement thickness Reynolds number) is approximated by two half-parabolas, see figure 4.1:
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with Rt = R0 if R1 < RM and Rt = R1 if R1 > RM. It was also observed that the variations of M, R0, R1 and RM with F could be represented by simple, algebraic relationships, for instance: 
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K, E and the other coefficients appearing in the corresponding expressions for M, R0 and R1 are then expressed as function of some relevant mean flow parameters. For 2D flows, exact stability results for self-similar velocity profiles showed that these parameters are the local Mach number Me and the incompressible shape factor Hi, which takes into account the pressure gradient effects. 

4.1.3. Extension to 3D flows

The method was then extended to the modelling of crossflow instability, Casalis and Arnal (1996). According to Squire’s transformation, the problem is reduced to a series of 2D problems (this is an approximation, because this transformation applies to the temporal theory only). For a given value of the  angle close to 90°, the growth rates are expressed by relationships similar to those developed for 2D flows, except that the coefficients K, E,… are now functions of two parameters which are representative of a pure inflectional instability, i.e. the mean velocity Ui and the shear stress Pi taken at the inflection point of the projected velocity profile. Compressibility effects are accounted for by replacing the inflection point by the generalized inflection point. 
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	Figure 4.1- Notations for the data base method

developed at ONERA
	Figure 4.2- Supersonic wing studied by JAXA:

free-stream Mach number distribution


General 3D problems can be treated by combining the 2D data base method (which is assumed to be valid for TS disturbances) and the crossflow data base method. In the framework of the ELFIN and EUROTRANS projects, validations were made by comparison with exact stability results for swept wing flows. 

More recently, the method was successfully applied to a fully 3D supersonic wing, as illustrated in figures 4.2 and 4.3. This test case corresponds to flight conditions at Mach 2, at an altitude of 18 km and for a chord Reynolds number of 14 106 (flight conditions for the demonstrator NEXST-1 launched by JAXA in October 2005, see Tokugawa and Yoshida, 2006, Fujiwara et al, 2006). The free-stream Mach number distribution, computed by JAXA, is shown in figure 4.2. Two wing sections are considered, one in the inner wing, the other in the outer wing, corresponding to streamlines 36 and 91 in figure 4.2. The stability results are plotted in figure 4.3. The exact stability computations and the data base results are in good agreement. Both of them use the envelope strategy. As expected, exact results using the fixed  strategy give lower N factors.      
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	Outer wing

	Figure 4.3- N factor computations for the supersonic wing studied by JAXA


Using the data base methods reduces the computing time by one or two orders of magnitude and provides an acceptable estimation of the N factor. It also allows automatic initializations for exact stability computations.  

4.2. Analytical criteria

Let us recall that the word criterion must be interpreted as a more or less empirical correlation between laminar boundary layer and flow parameters at the onset of transition. 

4.2.1. 2D criteria

Many empirical correlations have been proposed for 2D, incompressible flows, see review in Arnal, 1984. They were deduced from experimental data collected in low turbulence wind tunnel; they take into account the pressure gradient effects, for low values of Tu (which does not appear explicitly in the correlations). Michel, for example (1952) correlated the values of two Reynolds numbers at transition, R and Rx. Granville (1953) developed a correlation which takes into account two important parameters, namely the stability properties and the flow history. The stability is characterized by the difference RT – Rcr in momentum thickness Reynolds number from the neutral stability point to the transition location. The flow history is characterized by an averaged Pohlhausen parameter:
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In the 70’s and the 80’s, the influence of the free-stream turbulence level Tu was introduced in practical criteria. For example, Arnal et al, 1984, extended Granville’s correlation on theoretical bases (AHD criterion). Curves corresponding to several values of Tu are plotted in figure 4.4. It can be observed that the proposed criterion coincides practically with Granville’s one for Tu = 0.05 10-2 to 0.1 10-2. An analytical expression is:    
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with A = -206, B = 25.7, C = 16.8, D = 2.77. Rcr is the momentum thickness Reynolds number at the point where it becomes equal to Rcrf  defined as:
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This criterion applies for attached flows only. 
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	Figure 4.4- AHD criterion
	Figure 4.5- C1 criterion


Another criterion for separated flows was developed at the same period by Gleyzes et al, 1985. It is based on the observation that near separation and beyond, the growth rates of the unstable TS waves are almost independent on the frequency. Moreover it is assumed that the local N factor slope dN/dR depends on the local shape factor only. The relationship between dN/dR and H was determined from exact stability calculations for separated velocity profiles. This criterion, of course, cannot be used for negative, zero or slightly positive pressure gradients.    

Recent developments of the practical methods focused on two aspects:

· A composite criterion combining AHD and Gleyzes criteria was established in order to cover both attached and separated flows (Cliquet et al, 2007). It has been verified that there is an overlap between both criteria for a shape factor range corresponding to mild positive pressure gradients. The composite criterion has been implemented in the elsA Navier-Stokes solver, see paragraph 6.3.

· The AHD criterion was extended to compressible flows up to Mach 1.3 (Cliquet and Houdeville, 2007). The general expression remains the same, but A, B, C and D now depend on the free stream Mach number Me, and Rcr depends on Hi and Me.  

4.2.2. Crossflow criteria

As far as crossflow instability is concerned, some specific criteria have been developed, see survey in Arnal, 1992. As an example, the so-called C1 criterion, proposed by Arnal et al, 1984, is plotted in figure 4.5. It is an empirical correlation between the crossflow Reynolds number R2 and the streamwise shape factor at transition. For incompressible flows, the crossflow displacement thickness Reynolds number R2 is expressed as:
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It is important to keep in mind that the use of the C1 criterion is restricted to accelerated flows in the vicinity of the leading edge of swept wings. Large values of R2 can be reached in decelerated flows downstream of the point of minimum pressure, but the shear stress at the inflection point is usually too small for being able to trigger a powerful CF instability. The C1 criterion was recently improved in order to take into account compressibility effects; R2 was simply replaced by R2/(1+0.2 Me2).
For general 3D flows, the use of empirical criteria is based on the following rule: it is assumed that turbulence will appear either by TS instability or by CF instability, which means that there is no interaction between CF and TS waves. Criteria are applied separately for each one of these mechanisms, and it is assumed that the boundary layer will cease to be laminar as soon as one of them will be satisfied. The occurrence of TS instability is predicted by 2D transition criteria following external streamlines. 

5. Advanced methods : nonlinear PSE

5.1. Principle

As explained above, the linear stability theory together with the eN method provides practical prediction for the transition location. A major shortcoming is the fact that the nonlinear processes are ignored. This can explain the lack of efficiency of the eN method in many cases. Therefore advanced stability methods such as nonlinear PSE (see Herbert, 1993, Reed, 2008) are helpful for the understanding and the modelling of the nonlinear mechanisms leading to transition. In the nonlinear PSE approach, the disturbances are expressed as a double series of (n, m) modes of the form:
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nm is complex,  and  are real numbers. Each mode is denoted as (n, m); the integers n and m characterise the frequency and the spanwise wavenumber, respectively. As it has been done for the linear PSE, the x-dependence of the (n,m) modes is shared between the amplitude functions and the exponential terms. A normalization condition is still applied in order to ensure a weak chordwise variation of the amplitude functions. It is also assumed that the complex wavenumber nm varies slowly in the x direction (weakly nonlinear approach). When these disturbances are introduced into the Navier-Stokes equations, a system of coupled partial differential equations is obtained; it is solved by a marching procedure, as it was already the case for the linear PSE. Any non-linear PSE computation requires to choose the “most interesting” interaction scenario between particular modes (“major modes”) and to impose initial amplitudes Ain for these modes. 
The choice of the interaction scenario and of the initial amplitude represents the main difficulty of the nonlinear PSE approach. As for the linear PSE, no major numerical problem is encountered, even when the boundary conditions at the wall or in the free-stream exhibit rapid variations. 

5.2. Examples of application in 2D flows

For 2D, incompressible flows, for instance for the flat plate case, the nonlinear PSE computation is usually initialized with two modes. The primary mode is denoted as (2,0); n = 2 corresponds to the most dangerous frequency and m = 0 is imposed because of the two-dimensional nature of the primary instability ( = 0). Two types of secondary modes can be introduced: the (2,1) mode for the fundamental resonance (oblique mode with the same frequency as the primary mode) or the (1,1) mode for the subharmonic resonance (half frequency). An example of subharmonic resonance is given in the left hand side of figure 5.1 for a flat plate case. The mode amplitudes (plotted with a logarithmic scale) are made dimensionless with the free-stream velocity. The numerical results show first a linear evolution of the primary (2,0) mode up to the streamwise location where its amplitude reaches a maximum of the order of 1%. Then the secondary (1,1) mode exhibits a rapid increase followed by other resonance mechanisms acting on higher harmonics and on the (0,0) mode characterizing the mean flow distortion. The abscissa where the computation breaks down is considered as representative of the physical “transition point”. For compressible 2D flows, the major modes are in general two symmetrical oblique modes (1,1) and (1,-1). The nonlinear interactions generate strong (0,0) and (0,2) modes (“wave-vortex triad”). 

5.3. Examples of application in 3D flows (swept wings)

In 3D flows, interaction scenarios similar to the previous ones have been identified when transition is triggered by pure TS disturbances.
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	Figure 5.1- Examples of nonlinear PSE calculations


In the case of a pure CF instability, the stationary modes are linearly unstable. This implies that at least one stationary mode must be imposed at the initial abscissa as a major mode. In fact, two types of nonlinear PSE computations are usually performed: one with stationary modes only and one with a combination of stationary and travelling modes:

· in the first case, one or several stationary modes (0,M), with M = 1, 2 or more, are selected as major modes with the same spanwise wavenumber  (the value of  is chosen as the most dangerous one according to the linear stability properties) and the computation provides the evolution of the different (0,m) modes. This scenario is relevant when the free-stream turbulence level is very small (the initial amplitude of the travelling modes is assumed to be negligible), typically in free flight conditions or in “quiet” wind tunnels. 

· in the second case, in addition to the (0,1) primary mode, an unsteady (1,1) mode is introduced with the same spanwise wavenumber and with some “relevant” frequency. This corresponds to situations where both stationary and travelling CF waves play a role, typically in classical wind tunnels with moderate free-stream turbulence level.   

A typical result is shown in the right hand side of figure 5.1 for a swept wing case at low speed. Three stationary primary modes (0,1), (0,2) and (0,3) are chosen with a dimensionless initial amplitude equal to 10-3. Other stationary modes (0,m), with m > 3 are generated by nonlinear interactions. A nonlinear saturation appears at x/C ≈ 0.2 and the mode amplitudes remain practically constant up to the numerical breakdown at x/C ≈ 0.43. The corresponding maximum amplitude is rather large, about 15% of the free-stream velocity, in agreement with experimental results. Due to the quasi-equilibrium state of the disturbances from 20% to 43% chord, it is impossible to clearly identify the “physical” transition point. In fact, it is well know that for this kind of problem, transition is triggered by a secondary, high frequency instability, see for instance Kohama et al (1991), White (2000). In principle, this high frequency instability can be simulated by the nonlinear PSE by considering a large number of stationary and travelling modes, as demonstrated by Hein (2006). However, in order to limit the computational effort, the high frequency disturbances are not, in general, introduced into the nonlinear PSE computations, so that the last stages of the transition process are not simulated. It can only be guessed that transition in reality will occur “somewhere” between the beginning of the saturation and the numerical breakdown.   

It is also important to keep in mind that the abscissa corresponding to the resonance (for TS waves) or to the beginning of the saturation (for CF waves) depends on the initial amplitude Ain imposed to the major modes. Increasing Ain leads to an upstream movement of this abscissa and of the numerical breakdown location. In other words, the choice of the N factor, which constitutes the major difficulty of the linear eN method, is now replaced by the choice of Ain. 

 Although the nonlinear PSE cannot yet be considered as mature enough for practical transition prediction, they represent a very efficient tool for the understanding of fundamental transition phenomena. For instance, they were used in the framework of a GARTEUR working group (Arnal et al, 1999) to investigate the possibilities of nonlinear interactions between TS and CF waves in regions where they are simultaneously present, in particular around the pressure peak of swept airfoils. It turned out that the most efficient transition scenarios were the classical TS/TS and CF/CF scenarios. No interesting CF/TS scenario was identified. This confirms the shape of the NCF-NTS critical curve(s), which seems to be of the “weak interaction” type according to the results discussed in paragraph 3.2.3.4. This also justifies the use of separated TS and CF criteria as suggested in paragraph 4.2.    

6. Coupling between NS results and transition prediction

6.1. Requested mean flow accuracy for transition prediction

Any transition prediction requires the computation of the basic flow as a prerequisite. Depending on the complexity of the problem, this basic flow may be computed by using either the boundary layer equations or the Reynolds Averaged Navier-Stokes (RANS) equations. In any case, the numerical accuracy must be extremely high, because the transition prediction tools are very sensitive to any small departure of the mean flow field from its “exact” shape. The use of simple methods (data base or criteria) requires a very accurate computation of some integral parameters, such as the shape factor, the displacement thickness or the momentum thickness, while the use of the eN method requires a very accurate computation of the mean velocity and temperature profiles. For 2D, incompressible flows, for instance, the growth rates computed at R1 = 4000 are 50% larger for a shape factor H equal to 2.591 (Blasius profile) than for a shape factor equal to 2.53.

Inaccuracies in the linear stability results arise particularly when the instability is inflectional. In this case, the growth rate depends on two parameters: the height yi of the generalized inflection point and the value of the shear stress  dU/dy at this point. It follows that the basic flow computations must be highly accurate in the neighbourhood of yi, especially when the generalized inflection point is located away from the wall, in a region where the computational grid is usually coarser than near the wall. This occurs, for instance, in 2D compressible flows (at high Mach number, the generalized inflexion point is close to the boundary layer edge) and in 3D flows (the inflection point of the crossflow profile is typically located in the middle of the boundary layer thickness). 

The problem is illustrated in figures 6.1 and 6.2 for the case of a swept wing in transonic free flight conditions. The boundary layer properties have been deduced from boundary layer and from RANS computations. It can be seen in figure 6.1 that the agreement is satisfactory for the streamwise displacement and momentum thicknesses, as well as for the crossflow displacement thickness. At first sight, the differences in these quantities are acceptable, but they are sufficient to cause strong discrepancies in the N factor curves. Figure 6.2 shows that the N factors deduced from the boundary layer results are twice those deduced from the RANS results. For instance, a transition N factor equal to 8 results in a transition location s/c between 2 and 3% chord (boundary layer) or larger than 18% chord (Navier-Stokes).  
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	Figure 6.1- Boundary layer and Navier-Stokes mean flow fields: integral thicknesses

Left: incompressible streamwise displacement (1i) and momentum (i) thicknesses

Right: incompressible crossflow displacement (2i) thickness
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	From Navier-Stokes results
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	Figure 6.2- Boundary layer and Navier-Stokes mean flow fields: N factors

s is the curvilinear abscissa along the wing surface (s/c ≈ x/c + 0.01)




6.2. Strategies for transition prediction in RANS codes

 The use of CFD codes based on RANS solvers able to handle complex flows with laminar-turbulent transition in an automatic way is of primary importance in the world of aerospace industry. Practically, it is often necessary to determine the transition location in order to obtain reliable results for wing or airfoil design. However, as illustrated before, the numerical accuracy of the RANS results is not always sufficient for a meaningful application of the transition prediction methods.

Several attempts to include transition computation into RANS solvers were carried out in the recent years:

· Direct coupling of a RANS code with a stability code;

· Coupling of a RANS code with a boundary layer code which provides the appropriate mean flow field for transition prediction;

· Direct implementation of simple prediction methods (criteria) in RANS codes

· Direct transition prediction by transport equations, either low Reynolds number turbulence transport equations (Wilcox, 1994) or a specific equation for intermittency (Steelant and Dick, 1996, Suzen and Huang, 2000) and possibly for an additional quantity (Langtry and Menter, 2005). This topic will not be covered in the present lecture.  

6.2.1. Solution 1: direct coupling of a RANS code with a stability code

The RANS results are directly used for a linear stability analysis and the application of the eN method. This strategy was used for the example presented in figures 6.1 and 6.2. Due to the difficulties encountered for obtaining accurate mean flow fields, it is limited to rather simple geometries. 

6.2.2. Solution 2: coupling of a RANS code with a boundary layer code

RANS computations are first carried out, then the free-stream velocity distribution at the viscous layer edge  is determined. It is then used as input for a laminar boundary layer calculation; transition location is finally estimated by applying the eN method or simpler methods (for applications of this strategy, see for instance Krumbein, 2003). The interest is that the boundary layer results are in general accurate enough for transition prediction. But there are two major shortcomings. Firstly, the boundary layer approach is limited to attached flows; secondly, it is not always easy to define a viscous layer edge from RANS results, especially in regions of strong wall curvature. In addition, most of the boundary layer codes are restricted to simple geometries (2D flows, infinite swept wings, swept wings with conical flow assumption), which makes the analysis of fully 3D geometries difficult.  

A variant of Solution 2 is the coupling of an Euler code with a boundary layer code. Here, the Euler results provide the inviscid velocity at the wall, which can be directly used for boundary layer computations. A shortcoming is that viscous-inviscid interactions cannot be taken into account. 

6.2.3. Solution 3: direct implementation of simple prediction methods in RANS codes

This approach is used at ONERA for transition prediction with the elsA software, which solves the Navier-Stokes equations on structured meshes with a cell-centered finite-volume discretization technique (Cambier and Gazaix, 2002). The composite AHD-Gleyzes criterion and the C1 criterion have been implemented in this code. The major difficulty lies in the accurate computation of the integral parameters entering these criteria (shape factor, streamwise momentum thickness, crossflow displacement thickness), which requires first a correct definition of the viscous layer edge. In order to overcome this problem, the formulation of the criteria has been slightly modified. For instance, the shape factor has been replaced by the Pohlhausen parameter, which can be computed with a better accuracy. Examples of application are given in the next paragraph (see details in Cliquet et al, 2007, and Cliquet, 2007).

6.3. Examples of application using solution 3 (elsA software)

The first example deals with the well-known Somers 2D airfoil, which has been designed within the framework of Natural Laminar Flow researches for sailplanes. Figure 6.3 shows a comparison between measured and computed polar curves for a free-stream Mach number of 0.1 and a chord Reynolds number of 4 106. The experiments were performed in the Langley low-turbulence pressure tunnel (Somers, 1981). In the computations, the structured mesh contains 651(241 nodes and results from a convergence study. Transition is predicted by the composite AHD-Gleyzes criterion (denoted as “ahd+gh”), then an intermittency function allows a smooth evolution up to the fully turbulent state, which is modelled by the Smith k-l model. Fully turbulent curves are also plotted in figure 6.3 (“turb”). One can notice a significant improvement in the polar curve prediction using the transition criterion.
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	Figure 6.3- elsA computations for the Somers airfoil


The second example is the KH3Y configuration, which is a half plane model equipped with a modern type wing designed by Airbus Germany. This model was selected for use in the European EUROLIFT projects for wind tunnel tests in a number of configurations, from clean wing to advanced flap system with pylon and nacelle. A 97 blocks, 5.5 million points structured mesh, whose surface components are shown in figure 6.4, was created by Airbus Germany. 
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	Figure 6.4-

 KH3Y case. 

View of the complete 

surface mesh


Figures 6.5 and 6.6 show RANS results obtained by Cliquet and Houdeville (2007) for a landing configuration, with slat and flap settings of 26° and 32°, respectively, at an angle of attack  = 16°. The Mach number is 0.175, and the chord Reynolds number is 1.38 106. Transition location was detected by the empirical criteria described before. In figure 6.5, the laminar (respectively turbulent) regions are in blue (respectively red). The skin friction lines (figure 6.6) indicate that transition occurs due to TS disturbances on the main wing and through a separation bubble on the flap. The same kind of computations was carried out for several angles of attack. By comparison with fully turbulent calculations, the stall prediction is improved when transition is taken into account.  
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	Figure 6.5- KH3Y case. Intermittency function
	Figure 6.6- KH3Y case. Skin friction 

and friction lines


7. Conclusion

After more than fifty years, the eN method remains the most widely used method to estimate the transition location, although its deficiencies are well identified: the receptivity mechanisms are not accounted for, and the nonlinear phase is replaced by a continuous linear amplification up to the onset of transition. It seems, however, that the eN method can be applied with some confidence for 2D flows. The problem is more complex for 3D flows due to the possible coexistence of TS and CF waves, but systematic investigations carried out during the last ten or fifteen years resulted in a rather clear picture. The advantages and shortcomings of the different integration strategies have been identified, and values of the transition N factors for “standard” conditions are available. 

The non-local, linear approach can be used without any major numerical difficulties, even in cases of pressure distributions exhibiting wiggles. By contrast with the local theory, it takes into account wall curvature and nonparallel effects, but the main problem often lies in the choice of the initial chordwise station. The computing time is similar to that required by the local, fixed  strategy. As far as the values of the N factor at transition are concerned, the scatter observed by using the local methods is not reduced. However, the non-local theory is able to eliminate (some of) the pathological behaviours appearing when using the local approach. 

The nonlinear PSE equations also do not lead to major numerical problems, but some difficulties can be pointed out: computing time, selection of the most relevant interaction scenarios, choice of the initial amplitudes. However, the experience gained by using this approach for several years allowed identifying some  “standard” interaction scenarios. Although it cannot be used today for systematic practical applications, the weakly nonlinear theory helps to understand the basic phenomena leading to transition. It also provides “indirect” information on the initial disturbance amplitudes in general or in particular conditions.  

Simple methods present an unquestionable practical interest, essentially for complex 3D geometries where exact stability computations would require an enormous computational effort. The implementation of such methods in Navier-Stokes codes already provided encouraging results. The effort in the next years will be directed toward the implementation in these codes of more and more sophisticated prediction tools. 
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