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1. Introduction

In the lectures devoted to the practical transition prediction methods (Arnal et al, 2008), the instability mechanisms responsible for the final breakdown to turbulence took place some distance downstream of the leading edge, in regions where the external streamlines are roughly parallel to the incoming flow. In addition, it was assumed that the wall was as smooth as possible. The present lecture provides a summary of the information available for two particular problems of great practical interest, the attachment line phenomena and the surface imperfections.

The attachment line is a streamline which is particular to swept bodies. On an airfoil wing, it starts at the root and ends at the wing tip. This particular topology makes the attachment line sensitive to the contamination by the fuselage turbulent flow arriving at the wing-wall junction. If this contamination is avoided, transition is likely to occur due to a special class of unstable modes. These problems are addressed in paragraph 2.

On classical geometries, the ability to predict transition critically depends on the surface quality. In practice, small defaults (steps, gaps, rivets,…) can have a large impact on transition. As many surface imperfections are unavoidable, it is necessary to estimate their effects. Paragraph 3 gives an overview of the possible sources of premature transition as well as a summary of the existing methods aimed at predicting their influence on transition location.   
2. Attachment line problems

It is not easy to give an accurate definition of the attachment line, except for simple geometries such as symmetrical bodies of constant chord and infinite span: in this case, it is the spanwise line along which the static pressure is maximum. More intuitively, the attachment line represents a particular streamline which divides the flow into one branch following the upper surface and another branch following the lower surface. As a first approximation, the boundary layer flow along this line is either laminar, or turbulent. For a swept wing of infinite span, the boundary layer properties (physical thickness, displacement or momentum thicknesses, shape factor, skin friction) are constant along the attachment line. The mean flow characteristics are summarized in paragraph 2.1. Then two types of attachment line phenomena are discussed and described: the leading edge contamination (paragraph 2.2) and the “natural” transition (paragraph 2.3).       
2.1. Attachment line flow

Let us consider first the simple case of a swept cylinder of infinite span (figure 2.1).  is the sweep angle. The free-stream velocity Q( has a component U( = Q( cos normal to the leading edge and a component W( = Q( sin parallel to the leading edge. Z is the spanwise direction, X is the direction normal to it, X = 0 corresponding to the attachment line. U and W designate the projections of the mean velocity along X and Z, respectively. Along the attachment line, W represents the streamwise velocity, whilst U is the crossflow component. The free-stream velocity components Ue and We around the attachment line are given by:

Ue = kX    and     We = W( = constant                 (1)

For a circular cylinder of radius R, the free-stream velocity gradient k can be expressed as: 


[image: image99.png],   where R is the leading edge radius.
The attachment line flow at low speed is characterised by the Reynolds number 
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 defined as:
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wheree is the kinematic viscosity. For a swept cylinder, 
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 is simply expressed by:
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          (3)

If the attachment line flow is laminar, the mean velocity profile (invariant in the Z direction) can be obtained as an exact solution of the Navier-Stokes equations, not just the boundary layer equations. This solution is a generalization of the classical 2D Hiemenz flow. The velocity field is expressed as follows:
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Assuming that the spanwise derivatives of velocity and pressure are equal to zero, 
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U

,

and 
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are solutions of a system of ordinary differential equations with respect to 
[image: image11.wmf]h

. Along the attachment line (X = 0), the ratio U/Ue has non zero values, but U = 0 from the wall to the free-stream because Ue = 0: there is no crossflow component along the attachment line. As it can be seen in figure 2.2, the streamwise mean velocity profile W/We resembles the Blasius solution for 2D flat plate flow. Its main characteristics are: 

H = 2.54 (Blasius: H = 2.59);   R = We/ = 0.404
[image: image12.wmf]R

;   Cf = 0.461/R   (Blasius: Cf = 0.441/R)  (5)

It is important to keep in mind that 
[image: image13.wmf]R

 and R have different physical meanings: R is related to the laminar boundary layer properties, while 
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 characterizes the potential flow distribution around the leading edge. 
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	Figure 2.1- Attachment line flow on a cylinder 
	Figure 2.2- Attachment line and flat plate 

mean velocity profiles 


If the attachment line flow is turbulent, a self-similar solution no longer exists. Most of our knowledge comes from experimental studies performed by Cumpsty and Head (1967, 1969), Gaster (1967) or Poll (1978, 1981). The measurements have shown that the streamwise mean velocity distribution W/We is similar to that of a classical flat plate turbulent boundary layer. Depending on the value of 
[image: image17.wmf]R

, the value of the shape factor lies between 1.7 and 1.4. For a fixed value of 
[image: image18.wmf]R

, the ratio between the turbulent and laminar skin friction coefficients is of the order of 2 to 3 only. This ratio is 3 to 4 times larger for flat plate boundary layers. This explains why transition detection along (or close to) an attachment line by infra-red thermography is often difficult.    

2.2. Leading edge contamination

2.2.1. Contamination criterion and validation

Leading edge contamination is likely to occur when a swept body is attached to a solid wall (fuselage, wind tunnel wall…). This problem has been widely studied for low speed flows and a simple criterion based on the value of 
[image: image19.wmf]R

 was developed, see Pfenninger (1965), Poll (1978):

· If 
[image: image20.wmf]R

 is lower than 250, the burts of turbulence convected along the wall are damped and vanish as they travel along the attachment line. 
· For 
[image: image21.wmf]R

 > 250, these bursts are self-sustaining. They grow, overlap and the leading edge region becomes fully turbulent. This phenomenon, which is fully nonlinear, constitutes a typical example of “bypass”, in the sense that the linear mechanisms which control “natural” transition do not play any role. 

Many investigations have validated this criterion for many years. These studies include wind tunnel experiments, flight experiments and Direct Numerical Simulations, see overview in Arnal, 1992.   
Poll extended the leading edge contamination criterion to high speed flows by introducing a modified length scale * and a modified Reynolds number 
[image: image22.wmf]*

R

which have the same definition as 
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 and 
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, except that e is replaced by *. The latter quantity is the kinematic viscosity computed at a reference temperature T* which may be estimated from an empirical relationship (Poll, 1985a):

T* = Te +A (Tw - Te)+B (Taw - Te)

where Te is the boundary layer edge temperature, Tw is the wall temperature and Taw is the adiabatic wall (recovery) temperature. The original values of the empirical constants (A = 0.1 and B = 0.6) have been modified by Dietz et al (2000) in order to account for wall cooling effects. Correlation of existing data suggested that the onset of contamination occurred for 

* = 245 ± 35. 

Two series of experiments have been performed at ONERA in order to assess the validity of this criterion, one on a swept cylinder at Mach 3, the other on a swept wing at Mach 2 and 2.5 (Arnal and Reneaux, 2001). In the first case, the Mach number normal to the leading edge was supersonic, while it was subsonic in the second case. Despite this difference, both series of experiments provided similar results. For 

* < 200 the attachment line boundary layer was laminar. For 

* ~ 200 turbulent spots appeared on the leading edge and for 

* > 250 the attachment line boundary layer was fully turbulent. However, more recent results obtained in the framework of the European SUPERTRAC project at Mach 1.7 and 2.7 led to quite different conclusions: leading edge contamination started at 

* ≈ 270 and the fully turbulent state was reached for 

* ≈ 330 (Arnal, 2007). Such a scatter in the leading edge contamination Reynolds number in supersonic conditions is certainly too large for practical applications.     

2.2.2. Practical calculation of 
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In order to compute 
[image: image26.wmf]R

 for real swept airfoils in the subsonic-transonic range, the cylinder formula (3) is often used, R being taken as the local leading edge radius at the attachment line. This procedure often underestimates 
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 by 10 to 20%, which can lead to erroneous conclusions concerning the risk of leading edge contamination when the attachment line Reynolds number is close to the critical value. A more rigorous procedure consists in the following steps:

Step 1: the Kp distribution around the leading edge is either measured or computed. In the latter case, it is necessary to perform fully 3D computations in order to take into account the end effects (wing-wall junction and wing tip); 

Step 2: after the maximum value of Kp, denoted as Kpmax, and the attachment line location have been identified, the effective sweep angle eff is computed. For low speed flows, it is given by:

eff = cos-1 (Kpmax)1/2                 (5)
Step 3: the free-stream velocity distribution Ue(x) around the leading edge is computed by using a locally infinite swept wing assumption, i.e. it is assumed the that free-stream velocity component parallel to the leading edge is equal to Q∞ sineff;

Step 4: the velocity gradient and then 
[image: image28.wmf]R

 are deduced from the previous computations.
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	Effective sweep angle
	Leading edge Reynolds number 

	Figure 2.3- Example of spanwise variations of attachment line characteristic parameters


Typical results are presented in figure 2.3 for the so-called “DTP A” model tested at ONERA in the subsonic F2 wind tunnel at Le Fauga-Mauzac centre (Arnal et al, 1997). This constant chord (C = 1.2 m) swept wing model was generated from a symmetrical airfoil with a diameter D = 0.4 m at the leading edge, see figure 2.6. In the present case, it is fixed to the wind tunnel floor at a geometrical sweep angle equal to 50°. The span is about 5D. The measured and 3D inviscid flow computations show that the effective sweep angle exceeds the geometrical sweep angle by 6° at mid-span (left hand part of figure 2.3). Even for this simple geometry, it can be seen in the right hand part of the figure that the “real” values of 
[image: image31.wmf]R

 are 10% larger than those deduced from the cylinder formula. The values obtained from the inviscid flow computations are in good agreement with the experimental data.    
2.3.  “Natural” transition

If the swept model is not in contact with a solid wall, as sketched in figure 2.4, a laminar boundary layer starts to develop at point A, then possibly becomes turbulent further downstream in the spanwise direction Z: this is the so-called “natural” transition. First experimental observations of this phenomenon were made by Pfenninger and Bacon (1969) and by Poll (1978,1985b), see also Bippes (1990). These authors observed the occurrence of regular, quasi sinusoidal oscillations in the form of modulated wave packets. As these wave packets are convected along the leading edge, their amplitude increases and turbulent spots appear. In this case, a part of the leading edge is laminar, another part is transitional (intermittent) and a third part is turbulent. As these mechanisms present strong similarities with those observed in a flat plate boundary layer with a low free-stream turbulence level, it is possible to develop a linearized stability theory to obtain more quantitative information.

	[image: image32.png]
	
	Figure 2.4-

“Natural” transition

along the attachment

line of a swept wing 


2.3.1. Classical linear stability theories for attachment line flow (low speed)

For the sake of simplicity, we consider the attachment line boundary layer at large distances from its origin. In these conditions the basic flow no longer depends on the spanwise location and is described by the swept Hiemenz flow solution described in paragraph 2.1. The simplest idea is to introduce small disturbances having the same expression as the Tollmien-Schlichting (TS) waves. In the framework of the spatial theory:
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     (6)

This relationship represents periodic fluctuations of wavenumberand frequency , growing ( > 0) or decaying ( < 0) in the spanwise direction Z. Introducing this expression in the Navier-Stokes equations, linearizing in u, v, w  and using the parallel flow approximation lead to the classical fourth-order Orr-Sommerfeld equation written for the attachment line mean velocity profile W/We. 

The parallel flow approximation implies that the vertical mean velocity component V and the X and Z-derivatives of the basic flow are neglected. These assumptions are not correct for the attachment line flow: although the mean flow field is uniform in the Z direction, the vertical velocity component takes non-zero values, and U at a fixed altitude y is a linear function of X. It is possible to follow a more rigorous approach by considering a special class of small disturbances, first introduced by Görtler (1955) and Hämmerlin (1955). These Görtler-Hämmerlin (GH) disturbances are of the form:  
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         (7)
Introducing (7) into the Navier-Stokes equations and linearizing lead, as usual, to an eigenvalue problem, but, by contrast with the Orr-Sommerfeld approach, the system of ordinary differential equations is obtained without using the parallel flow approximation. In other words, the GH disturbances are exact solutions of the linearized Navier-Stokes equations. This system is of sixth-order, while the Orr-Sommerfeld equation is fourth-order.

Figure 2.5 presents a comparison between the neutral curves computed for the TS-type disturbances (6) and for the GH disturbances (7). In both cases, the mean velocity profile is the attachment line flow described in paragraph 2.1. Two series of computations are presented for the GH waves, one obtained by Hall et al (1984), the other at ONERA (reported by Arnal, 1993). The critical Reynolds numbers 
[image: image35.wmf]cr

R

are 662 and 582 for the TS and for the GH disturbances, respectively. According to relation (5), these values correspond to Rcr = 267 (TS) and 235 (GH). Inside the unstable region, the growth rates of the GH waves are significantly larger than those of the TS waves.

	[image: image36.png]
	
[image: image37]

	Figure 2.5- Neutral curves for TS and GH

disturbances. Symbols: Hall et al (1984),

lines: ONERA 
	Figure 2.6- Cross-section of the

DTP A model (normal to the leading edge)
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	Neutral curve without suction/blowing
	Suction/blowing effect on the critical 
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	Figure 2.7- Comparison between theory and measurement for GH disturbances 


2.3.2. Comparison with experiments

As previously mentioned, Pfenninger and Bacon (1969) and Poll (1978, 1985b) observed naturally occurring disturbances along the attachment line of swept models. It was found that such disturbances existed above a critical value of R close to 230, in excellent agreement with the linear stability results for GH disturbances. More recently, low speed experiments were conducted at ONERA (see Arnal et al, 1996) in the F2 wind tunnel at the Le Fauga-Mauzac centre using the DTP A model described in paragraph 2.2.2, see figure 2.6. In the present case, the apex of the model was displaced 300 mm above the wind tunnel floor in order to avoid leading edge contamination. Six independent suction chambers were fitted along the leading edge. The sweep angle  was 50°. 

Without suction, regular waves travelling along the attachment line were detected by hot film measurements. The results are plotted in the left hand side of figure 2.7, in the (
[image: image41.wmf]R

,  = 2f) plane and compared to the neutral curve computed for the GH disturbances. The data published by Pfenninger and Bacon (1969) and Poll (1978, 1985b) are also shown. For the three series of measurements, the measured frequency range is close to the lower branch of the neutral curve, i.e. below the theoretical range of the most amplified disturbances. Several investigations using weakly nonlinear approaches or DNS have been devoted to the understanding of this behaviour (see Hall and Malik, 1986, Jimenez et al, 1990, Joslin, 1996a, Theofilis, 1998). 

With suction (or blowing), the minimum value of 
[image: image42.wmf]R

 at which the waves are observed increases (decreases) rapidly. It can be seen in the right hand side of figure 2.7 that the experimental data are in qualitative agreement with the theoretical curve which gives the variation of the critical Reynolds number as a function of the dimensionless suction parameter K defined as:
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where Vw is the suction velocity.

2.3.3. Application of the eN method

The application of the eN method for the attachment line flow is straightforward if one assumes that the laminar boundary layer is uniform from its origin to transition, i.e. if R is constant from point A of figure 2.4 to transition. In this case, the calculation of the total amplification rate A/A0 for a given frequency is very simple. Since R does not depend on Z, this quantity is expressed by:
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where Z = 0 corresponds to point A. If ln (A/A0) is plotted as a function of Z, a straight line is obtained for each frequency, as shown in figure 2.8. Therefore the envelope curve is reduced to the line associated with the most unstable frequency (the frequency associated to the maximum value max of  at the considered Reynolds number). By applying the eN rule, the transition location ZT is: 
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where NT is the value of N at transition. By considering TS-type disturbances, Poll (1978) found that the value of NT providing the best correlation with the existing experimental data was around 6. The agreement was improved with values from 8 to 10 for GH disturbances (reported by Arnal, 1993).
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	Figure 2.8- Growth rates of the

attachment line laminar boundary layer  
	Figure 2.9-  Application of the eN method

(DTP A model)


An attempt was made to use the eN method to predict the onset of transition along the attachment line of the DTP A model described above (Arnal et al, 1996). Figure 2.9 shows the spanwise evolution of the integrated growth rates for a case with 
[image: image48.wmf]R

≈ 740 and K = 0 (no suction). Z = 0 corresponds to the apex (stagnation point) of the model where the attachment line starts to develop. The pressure distribution around the model was first determined from inviscid computations, then accurate boundary layer computations along the leading edge were performed by using a fully 3D code. Two N factors were computed, one for TS waves, the other for GH disturbances. In the latter case, the N factor computed using the infinite swept wing assumption (
[image: image49.wmf]R

= 740 all along the attachment line) is compared with the N factor computed with the real 
[image: image50.wmf]R

 distribution (
[image: image51.wmf]R

is equal to 0 at the stagnation point then increases up to the asymptotic value). Experimentally, transition was found to occur at Z ≈ 0.6 m. This leads to the following remarks:

· When the infinite swept wing assumption is used for the GH disturbances, the transition N factor is close to 10, in agreement with previous investigations based on the same assumption;

· The N factor of the GH disturbances is reduced to 3 when the flow history is accounted for;

· The N factor for the TS waves is close to zero. 

This example illustrates the difficulty to obtain accurate values of the N factor along the attachment line. Therefore the prediction of natural transition along this line remains an open question.  

2.3.4. Biglobal linear stability approach (low speed)

A more general approach to the stability of the attachment line flow was first developed by Lin and Malik (1996) and then used by Heeg (1998), Theofilis et al (2003) and Robitaillié-Montané (2005). By contrast with the GH approach, there is no a priori assumption on the mathematical expression of the disturbances, which are now written as:
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       (8)

where x and y play roles of equal importance. When this expression is introduced into the linearized Navier-Stokes equations, a system of partial differential equations is obtained. As these equations are homogeneous with homogeneous boundary conditions, one has to solve a generalized eigenvalue problem in a (x,y) plane normal to the wall. The computational domain is sketched in figure 2.10. This approach is called the biglobal approach (the word biglobal used here has no connection with the usual global instability). Numerically, the values of  and 
[image: image53.wmf]R

 are imposed, and the calculation provides the real and imaginary parts of c, cr and ci, such that cr is the frequency and ci the temporal growth rate. 
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	Figure 2.10- Computational domain

for biglobal analysis 

around the attachment line.

x is the chordwise direction normal

to the attachment line, y is normal

to the wall
	

	
	Figure 2.11- Eigenvalue spectrum for
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 = 800,  = 0.255 


When the biglobal approach is applied to the incompressible swept Hiemenz flow, eigenmodes identified as the classical GH modes are computed, but other modes also exist. These modes are alternatively symmetrical and asymmetrical, the GH mode being the symmetrical mode associated with the highest growth rate. Depending on the value of 
[image: image57.wmf]R

 and , the other modes can be stable or unstable. An example of eigenvalue spectrum is shown in figure 2.11 for 
[image: image58.wmf]R

 = 800 and  = 0.255. The results of Robitaillié-Montané are in excellent agreement with those of Lin and Malik (1996) for the four unstable modes S1, A1, S2 and A2 (S stands for symmetrical, A for antisymmetrical) appearing at nearly the same phase velocity cr ≈ 0.36. The S1 mode is identified with the GH mode. The first asymmetrical mode A1 has also been found in the DNS performed by Joslin (1996b). The modes around ci = 0 at lower values of cr are spurious modes. At a low subsonic Mach number (M ≈ 0.3), the biglobal results obtained by Robitaillié-Montané (2005) were in satisfactory agreement with the DNS results published by Le Duc (2001).  

The existence of the additional modes has important implications. Even if they are linearly stable, their combination can lead to a transient growth or to nonlinear interactions explaining some experimental features in the vicinity of the linear neutral curve.   

2.3.5. Extension to compressible flows

When compressibility effects become significant, it could be assumed that the expression of the waves is similar to that of the GH disturbances, with an additional component  of the wavenumber in the X-direction in order to take into account oblique waves:
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Unfortunately, it is no longer possible to derive a system of ordinary differential equations from the linearized compressible Navier-Stokes equations. Therefore the only possibility is to use the biglobal approach described in the previous paragraph. Results have been published by Lin and Malik (1995), Heeg (1998), Robitaillié-Montané (2005).
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	Phase velocity 
	Temporal growth rate (divided by )

	Figure 2.12- Mach number effect of the S1, A1 and S2 modes (
[image: image61.wmf]R

 = 1500,  = 0.19)


Figure 2.12 shows the variation of the phase velocity cr and of the temporal growth rate ci as a function of the Mach number M parallel to the leading edge, for a boundary layer developing on an adiabatic attachment line. The values of 
[image: image62.wmf]R

 and  are equal to 1500 and 0.19, respectively (Robitaillié-Montané, 2005). Three modes are considered: the first symmetrical mode S1 (corresponding to the GH mode at M = 0), the first asymmetrical mode A1 and the second symmetrical mode S2. One can observe that compressibility exerts a stabilizing influence up to M ≈ 1.5. Other calculations were carried out at Mach 0.75 for different surface temperatures. As for 2D flows, a stabilizing (destabilizing) effect of cooling (heating) was found. 

2.4. Summary and conclusions

As far as leading edge contamination is concerned, the well known criterion 
[image: image63.wmf]R

 ≈ 250 can be applied with confidence for subsonic and transonic flows, but additional investigations are needed at higher Mach numbers. In any case, the velocity gradient around the attachment line must be accurately computed for a correct estimation of 
[image: image64.wmf]R

, and the use of simplified formulas can lead to large errors. On aircraft wings, the critical value of this Reynolds number if often exceeded, at least in the inner part of the wing. Practical solutions for preventing leading edge contamination are described in the Lecture devoted to Laminar-turbulent transition control (Arnal and Archambaud, 2008).  

When leading edge contamination is avoided, transition is likely to occur due to the amplification of unstable waves. The GH approach provides the characteristics of the most dangerous disturbances at low speed. The more recent (and more complex) biglobal approach shows that other unstable modes also exist. By contrast with the GH theory, it can be extended to compressible problems, but its use requires a non negligible computational effort.   

3. Surface imperfections

Many surface imperfections exist in practical problems. They include waviness and bulges, steps and gaps, screws and rivets. On aircraft wings, environmental factors such as ice crystals, insects, dirt… can create localized surface irregularities. Because many imperfections cannot be avoided, it is necessary to study their effects on transition and to develop appropriate models in order to estimate these effects. In this paragraph, distinction will be made between two-dimensional and three-dimensional surface imperfections. 
3.1. 2D imperfections: steps, gaps, waviness

These imperfections are parallel to the span direction (they are normal to the main flow for 2D problems) and their spanwise extent is assumed to be infinite (no end effects). Typical examples are bumps, waviness, gaps or steps. These surface irregularities have two effects:

· They create a localized receptivity which makes the flow more sensitive to the free-stream acoustic disturbances;

· They strongly amplify the unstable waves due to the local modification of the mean flow field, with the appearance of separated or nearly separated regions around the obstacle, as demonstrated for the first time by Klebanoff and Tidstrom (1972). 

For practical purposes, it is assumed that the second effect is predominant and that it can be analyzed by using the linear stability theory. 

To predict the influence of 2D surface imperfections, empirical criteria have been proposed for many years. Most of these criteria are still used for industrial applications. More recently at least a part of the phenomena occurring on and around the surface imperfections has been modelled, and more advanced prediction methods have been developed. Both aspects are now discussed. 

3.1.1. Old (and still useful) criteria 

Waviness. Fage (1943) analyzed wind tunnel experiments in order to determine the effect of 2D surface waviness installed on a flat plate. The shape of the considered imperfections is sketched in the left hand side of figure 3.1.  is the length of the deformation, the height h can be either positive (bulges) or negative (hollows). Fage correlated the experimental data by the following criterion:
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xT is the surface length to transition. Ue represents the boundary layer edge velocity at the location of the center of the waviness for the undistorted surface. The effects of compressibility and sweep are not taken into account.  

Compressibility and sweep angle effects are accounted for in another waviness criterion proposed by Carmichael (1959) for sinusoidal bulges, the shape of which is sketched in the right hand side of figure 3.1. This correlation was deduced from experimental results (wind tunnel and flight) for waves located on airfoils more than 25 percent chord downstream of the leading edge, in regions of flow acceleration. It gives the allowable waviness amplitude h, i.e. the maximum amplitude which does not strongly modifies the transition location:
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, C,  and Rc represent the wavelength, the streamwise chord, the leading edge sweep angle and the chord Reynolds number, respectively. Relation (9) shows that the sweep angle effect is not very important: the allowable waviness is reduced by about 10 percent from  = 0° to  = 25°. 
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	From Fage
	From Carmichael

	Figure 3.1- Shapes of the bumps studied by Fage and Carmichael 


Gaps. These surface imperfections produce localized boundary layer separations which strongly increases the growth rate of the unstable waves. Let us consider 2D rectangular gaps normal to a 2D laminar mean flow, see figure 3.2 (left). h and b denote the depth and the width of the cavity, respectively. Depending on the ratio h/b, different type of recirculating flows are observed inside the cavity. To estimate the critical value of the width b which moves the transition onset towards the gap, a simple criterion was proposed (Nenni and Gluyas, 1966):  
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The gap depth h is not included in this correlation. A limited amount of low speed data (Olive and Blanchard, 1982) demonstrated that relation (10) provided satisfactory predictions for h/1 > 5 (1 is the displacement thickness), but for smaller values of this ratio, the measurements revealed a strong influence of the gap depth.

For gaps aligned with the mean flow, it is recommended to divide the critical width deduced from (10) by a factor 7, i.e. streamwise gaps are much more efficient than spanwise gaps for boundary layer tripping and must be avoided. Little is known about the effects of gaps which are non normal to the external streamlines, in particular about gaps parallel to the leading edge of swept wings.  

Backward and forward facing steps. If a square step of height h (figure 3.3) is placed in a 2D mean flow, the allowable height is given by (Nenni and Gluyas, 1966):
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      for backward facing steps       (11)


[image: image72.wmf]1800

=

º

¥

n

h

U

Rh
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These relationships show that the laminar flow is more sensitive to backward facing steps than forward facing steps, because the extent of the separated flow is larger in the first case. Holmes et al (1985) reported flight experiments with artificial forward facing steps located at 5 percent chord of an unswept glove, in a slightly favourable pressure gradient. They noticed that the tolerances for a step with a rounded corner was at least 50 percent larger than for a square step. 
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	Figure 3.2- Gaps
	Figure 3.3- Backward (left) and forward (right) facing steps


3.1.2. Linear stability results and N methods

During the last 20 years, several authors used the linear stability theory in order to characterize the effects of 2D surface imperfections on transition, see for instance:

· Nayfeh et al (1988), Cebeci and Egan (1989), Masad and Iyer (1994), Wie and Malik (1998), Wörner et al (2002), Bonaccorsi (2002), Perraud et al (2004, 2005) for waviness;

· Wörner et al (2002), Perraud et al (2004) for steps.  

In these investigations, the localized receptivity due to the surface imperfections is not taken into account. For small obstacles without separation, the mean flow can be computed from the direct boundary layer equations, but as soon as separation occurs, it becomes necessary to use an interacting boundary layer solution or to solve the Navier-Stokes equations. 
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	Backward facing steps
	Forward facing steps

	Figure 3.4- N factor computations around backward and forward facing steps


Steps. To illustrate the influence of 2D steps, figure 3.4 shows the evolution of the N factor on a flat plate with backward (left) or forward (right) facing steps, the height of which is characterized by the Reynolds number Rh (Perraud et al, 2004). In the case of a backward step, the N factor rises rapidly at the step location, then the envelope curves remain more or less parallel to that of the unperturbed case. Consequently, with the assumption that the N factor at transition remains constant, it can be deduced that the transition location moves progressively toward the step when Rh increases. For forward facing steps, the N factor curves also rises rapidly then returns to the Blasius envelope by keeping a nearly constant value. In that case, small heights do not cause any modification of transition location, but as soon as the N factor at the step location becomes close to its critical value, transition moves rapidly upstream. 

The curves plotted in the left hand part of figure 3.4 suggest a simple procedure for taking into account backward facing steps without computing the complex mean flow field in the presence of the obstacles:

· A classical linear stability theory is performed on the surface without default. 

· An increment N is computed at default location; for 2D flows with zero or mild pressure gradients, Perraud et al (2004) proposed: N = 0.0025 Rh, while Crouch et al (2006) suggested N = 4.4 h/1, where 1 is the displacement thickness.    

· A corrected N factor = N (smooth) + N allows to determine the new transition location, assuming an unchanged transition N factor on the corrected envelope. 

In case of forward facing steps, Crouch et al (2006) proposed: N = 1.6 h/1. According to Perraud et al (2004), N can be expressed as a function of Rh, R0 and R, where R0 is the momentum thickness Reynolds number at forward facing step location. 

Waviness. Linear stability results with waviness indicate that the N factor curves resemble qualitatively those obtained with backward facing steps: the N factor exhibits a jump at the waviness location, then the envelope curves with and without waviness are more or less parallel. The difficulty now is the increasing number of geometrical parameters: in addition to the waviness height h, the wavelength  and the waviness shape must be taken into account. 

Wie and Malik (1997) performed a series of computations for a wavy wall with four successive sine waves. Under certain conditions, the following relationship for N was deduced from linear PSE computations:
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where n is the number of waves, Re is the unit Reynolds number. This empirical equation can be used for subsonic compressible flow without pressure gradient or suction. 

The same kind of relationship was obtained by Bonaccorsi (2002), see also Perraud et al (2005), by solving the local stability equations around waves of different cross-sections. For the zero pressure gradient case, N for a single waviness is expressed as:
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K is a coefficient characterizing the shape of the hump. It is equal to 1 for waviness of triangular cross-section and equal to 1.15 for a sinusoidal cross-section. By contrast with relation (13), relation (14) shows a linear dependence of N on the local displacement thickness Reynolds number R1. 

3.1.3. Example of experimental results

Experiments were conducted in the F2 wind tunnel on an swept and unswept wing model at low speed (Perraud et al, 2004). Backward and forward facing steps of various heights, parallel to the leading edge, were manufactured by using adhesive films glued on the model surface at 25 % chord. Figure 3.5 shows the normalized variation of the transition location as a function of Rh for backward (left hand side) and forward (right hand side) steps. xt, xt0 and xR denote the actual transition location, the transition location without step and the step location, respectively. Several values of the angle of attack  and of the sweep angle  were considered.
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	Figure 3.5- Transition movement on a swept wing with backward and forward facing steps 


In most of the cases, the upstream transition movement is significantly more abrupt with forward steps than with backward steps, as conjectured from the N factor curves plotted in figure 3.4. For  = 50°,  = - 6°, the transition movement with backward steps is also very rapid; this could be an indication that CF instability, which is predominant in this case, plays a role in the transition process. The N methods were able to reproduce the details of the transition movement with a good accuracy (Perraud et al, 2004). As shown in figure 3.5, the Rh criteria roughly estimate the step heights which provoke a significant displacement of the transition point. Other experiments in 2D transonic conditions did not demonstrate a clear effect of compressibility on the N functions.

Crouch et al (2006) conducted low speed experiments on 2D flat plates with movable leading edges which created backward- and forward facing steps. The results were used to establish relationships between N and h/1, as reported in paragraph 3.1.2.    
3.2. 3D imperfections: isolated roughness elements

Transition phenomena involved with 3D irregularities (rivets, insects, dirt…) are completely different from those involved with 2D roughness elements. A common feature, however, is that 3D roughness elements also enhance the receptivity to external disturbances. The results presented in this paragraph apply to isolated 3D roughness elements or to spanwise arrays of 3D roughness elements with a spacing equal or larger to 3 times the diameter of the elements; in this case, each element acts as an isolated element, as suggested by von Doenhoff and Braslow (1961).

For isolated 3D roughness elements of height k, it has been assumed for many years that the relevant parameter is a characteristic Reynolds number Rk defined as:
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Uk and k denote the mean velocity and the kinematic viscosity at the altitude y = k, these values being computed in the undisturbed flow. 

When a protuberance of increasing size is introduced into a 2D boundary layer, the transition location is at first unaffected. However, as soon as Rk exceeds some critical value Rkcrit, the transition location moves rapidly upstream. A turbulence wedge is formed, the vertex of which is located close to the protuberance. The turbulence wedge comprises a fully turbulent core separated from the surrounding laminar flow by edges of intermittent flow. Typical values of the vertex angle range from 10 to 15°. Although the physical mechanisms are completely different, the sudden transition movement when Rk exceeds some critical value offers some similarities with the transition movement due to forward facing steps.

Many fundamental studies have been devoted to the understanding of the phenomena occurring in the wake of isolated roughness elements for subcritical and supercritical values of Rk. An excellent review of the experimental investigations has been given by Ergin and White (2006). The pioneering flow visualizations by Gregory and Walker (1951) established that the flow about an isolated 3D element consists of a steady horseshoe vortex wrapped around the upstream side of the obstacle, with two steady counter-rotating legs trailing downstream. These steady disturbances undergo suboptimal transient growth and evolve downstream into low- and high-speed streaks (Fransson et al, 2005, White et al, 2005; the topic of transient growth is covered in detail in this Lecture Series by Reshotko, 2008). The “pre-streaky” phase has been analyzed numerically by Piot et al (2008). Other studies demonstrated that streaks of moderate amplitude are able to reduce the TS growth rates and hence to delay the onset of transition, see Lecture on Laminar-turbulent transition control (Arnal and Archambaud, 2008).

At sufficiently high values of Rk, unsteady disturbances (often associated with hairpin vortices) originate from the separated region just aft of the roughness element. Their spatial location corresponds to local inflection points in the y and z directions. Their growth rate increases with increasing values of Rk. For Rk < Rkcrit, these disturbances stabilize before transition can occur. For Rk > Rkcrit, the growth rate becomes so large that nonlinear phenomena appear and that the breakdown to turbulence is observed a short distance downstream of the roughness element. The role of the unsteady mechanisms in the boundary layer tripping process has been investigated in detail by Ergin and White (2008).  

It is often assumed that the critical value of Rk for which transition moves up to the roughness element depends essentially of the ratio d/k, where d is a measure of the spanwise or chordwise extent of the protuberance (for circular cylinders normal to the wall, d is the diameter). Figure 3.6 shows the well known criterion proposed by von Doenhoff and Braslow (1961). The critical value of Rk scales roughly as (d/k)-2/5, meaning that transition occurs for progressively lower values of Rkcrit when the roughness diameter is increased for a given height. Rkcrit is of the order of 500-600 for d/k = 1 and 200-250 for d/k = 10. 
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	Figure 3.6-

Criterion for isolated

roughness elements

in 2D or 3D mean flows

(Braslow, 1999) 


The range of application of this criterion is rather large. De Bruin (1990) reported measurements in 2D, low speed flow with negative pressure gradient and concluded that both the critical value of Rk and the turbulence wedge spreading angle were unaffected by the flow acceleration. 

Braslow (1999) found that the criterion plotted in figure 3.6 remained valid for roughness elements placed on swept wings in regions of strong CF instability. He concluded that the adverse effect of CF occurred for 2D rather than for 3D roughness elements. From measurements at Mach 3 on a swept and unswept wing, Arnal et al (2004) found that the criterion correlated rather well the experimental data without and with CF instability. Saric et al (1998) demonstrated that, in certain circumstances, spanwise arrays of small roughness elements placed on the leading edge of a swept wing can delay transition due to nonlinear interaction between the stationary vortices generated by the obstacles. This happens for particular roughness height and particular spacing between the elements. If these parameters are not optimized, the classical boundary layer tripping is likely to occur.    
3.3. From 3D to 2D roughness elements

As already mentioned, the previous results are valid for isolated roughness elements and for spanwise arrays with z/d > 3, where z is the spanwise spacing of the roughness elements and d their diameter. For z/d  < 3, the critical value of Rk increases. It follows that 2D roughness elements are less efficient than 3D roughness elements for boundary layer tripping, as illustrated by the experimental results plotted in figure 3.7 (Séraudie, 2002). Isolated 3D roughness elements (arrows of vertical small cylinders) and 2D roughness elements (strips of rectangular cross-section) were placed at 10 percent chord on an airfoil with sweep angles  from 0 to 60°. The figure shows the minimum height h necessary for immediate boundary layer tripping as a function of . This height is around 0.15 mm for 3D obstacles and around 0.20 mm for 2D obstacles. The sweep angle effect seems to be more pronounced in the first case. 

In practice, 2D roughness elements have a finite spanwise length. It is usually observed that turbulence wedges start to develop at the extremities (which act as 3D obstacles) at a lower Reynolds number than in the central (2D) part of the roughness element. 
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	Figure 3.7-

Comparison between

critical heights for

2D and 3D

roughness elements 


3.4. Roughness elements on the attachment line of a swept wing

The attachment line behaves as a special streamline for the problem of boundary layer tripping by roughness elements. As long as 
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 is lower than 250, no tripping is possible. The flow is locally disturbed by the obstacle and reverts to the laminar state further downstream in the spanwise direction. The critical value 
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 ( 250 thus appears as the minimum Reynolds number for self-sustaining turbulence (Morkovin, 1984). This value applies to leading edge contamination by a turbulent boundary layer as well as to boundary layer tripping by roughness elements.

Let us assume that the attachment line boundary layer is free of leading edge contamination. When the Reynolds number is just above the limit 
[image: image86.wmf]R

 ( 250, a roughness element placed on the attachment line makes the boundary layer immediately turbulent for a height h close to two times the displacement thickness 1 (Poll, 1978). For increasing values of 
[image: image87.wmf]R

, the roughness height requested for boundary layer tripping decreases. However, a roughness element which provokes transition when placed on the attachment line looses its efficiency as soon as it is displaced slightly off the attachment line. In other words, the attachment line is the most sensitive location for boundary layer tripping on a leading edge (Arnal and Reneaux, 2001). 
3.5. Summary and conclusions

The physical mechanisms by which 2D roughness elements accelerate transition have been known for a long time, but the role of isolated 3D surface imperfections is not as well understood. However substantial efforts have focused on this subject in the recent years, and a rather clear picture of the complex phenomena occurring downstream of the roughness element begins to appear. 

From a practical point of view, simple criteria were developed fifty to sixty years ago in order to estimate the height of 2D or 3D surface imperfections which move significantly the onset of transition upstream of its “natural” position. These criteria are still useful as rough guidelines for surface tolerances. A part of the physics is now included in the more recent N-type methods applicable to waviness and steps, but the effect of these imperfections on localized receptivity is not taken into account today. As pointed out by Wie and Malik (1998), the extreme cases where the waviness wavelength tends to the TS wavelength also needs to be investigated. Concerning 3D roughness elements, it is hoped that the recent progress in the understanding of the physical mechanisms will help to improve the Rk criterion in the next future.  
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