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I. INTRODUCTION

Surface roughness can have a profound effect on boundary layer transition. The mechanisms associated with single roughness elements are only partially understood while those responsible for transition with distributed roughness are not yet known. This has led to a large body of empirical information in the literature that is not fully consistent. These dimensionless correlations are generally based on two-dimensional parameters such as 
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 whereas distributed roughness is inherently three-dimensional. The three-dimensionality is usually introduced by providing separate curves in the correlations for each three-dimensional shape and distribution. Nevertheless, these correlations are still the operative data base for incorporating the effects of distributed roughness in design. Because the fundamental mechanisms are not known, there is considerable uncertainty in the reliability and extrapolability of such correlations.

The present lecturer is one of a number of investigators who in the past have pursued a T-S explanation for the effects of roughness, both discrete and distributed. Only discrete two-dimensional roughness elements yield to a T-S explanation (Klebanoff & Tidstrom 1972). The attempts to find a T-S explanation for three-dimensional roughness, both discrete and distributed have failed. These attempts have been documented in Reshotko (1984) and Morkovin (1990a). 

Experimental studies by Reshotko & Leventhal (1981), Corke, Bar-Sever & Morkovin (1986) and Tadjfar et al (1985) have presented some of the physical observations of flow over distributed roughness. It is generally agreed that roughness displaces the mean flow outward affecting the profiles only within the roughness height. Subcritical amplification is observed principally at low frequencies and the growth can easily reach nonlinear levels quickly. It is suspected that in common with single 3D roughness elements, the distributed roughness gives rise to vortex structures emanating from the elements. These vortices are primarily streamwise. Papers summarizing these observations are by Reshotko (1984) and Morkovin (1990a, 1990b).

A possible unifying explanation for these observations lies in the mechanism of transient growth. 

Transient growth arises through the coupling between slightly damped, highly oblique (nearly streamwise) Orr-Sommerfeld and Squire modes leading to algebraic growth followed by exponential decay outside the T-S neutral curve. A weak transient growth can also occur for two-dimensional or axisymmetric modes since the Orr-Sommerfeld operator (also its compressible counterpart) is not self-adjoint, therefore its eigenfunctions are not strictly orthogonal.

Because transient growth factors can be extremely large in flows that are T-S stable or in parameter ranges that are T-S stable, transient growth is an attractive mechanism to consider with respect to distributed roughness effects. Recent works by Luchini (2000) and by Tumin & Reshotko (2001) show that for Blasius flow, maximum transient growth factors are for streamwise (stationary, zero frequency) disturbances. As the frequency increases, the growth factors are reduced. 
II. ROUGHNESS-INDUCED TRANSITION ON A FLAT PLATE 
As part of their study of transient growth applied to roughness-induced transition, Reshotko and Tumin (2004) computed the spatial transient growth factors for a flat plate (zero pressure gradient) in supersonic flow. The calculations are all for stationary disturbances (
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 = 0). As seen in Fig. 1, the growth factor is a function of both Mach number and surface temperature level. and scales with length Reynolds number or the square of a thickness Reynolds number. For 0.75 < 
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 < 1.0, the growth factors are essentially independent of Mach number while for colder walls, the lower the Mach number the higher the growth rate.  The corresponding optimal spanwise wavenumbers are shown in Fig. 2. For all cases, the optimal spanwise wavelengths are from 3 to 3.5 boundary layer thicknesses.
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Figure 1. Transient growth factors for a flat plate
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Fig. 2. Optimum spanwise wave lengths for flat plate flows.

These are incorporated into a transition model similar to that of Andersson et al.(1999) for freestream turbulence effects on transition. We assume that an energy norm at transition is related to an input energy through the transient growth factor G: 

Etr = GEin                        (1)

The input energy is in the form of a density times velocity squared where the roughness-induced disturbance velocities are assumed proportional to the roughness height, k. The momentum thickness θ is chosen as the reference length because it is the least sensitive to surface temperature level of any of the boundary layer scales. The resulting expression for Ein is

Ein = (ρw/ρe)(k/θ)2                                       (2)

which for a boundary layer can be approximated as

Ein = (Te/Tw)(k/θ)2                                       (3)

Again, the growth factor G scales with the length Reynolds number or the square of a thickness Reynolds number. Thus from Eqs. (1) and (3), we can write

(Etr)1/2 = (G1/2/Reθ) Reθ(k/θ)(Te/Tw)1/2            (4)

where (G1/2/Reθ )can be obtained from Fig. 2 using the following relation for a flat plate with μ~T and Pr =1 : 

(G1/2/Reθ)=1.506(G/ReL)1/2                           (5)

Assuming that transition occurs when Etr reaches some constant level, Reθ,tr can be written

Reθ,tr = const (G1/2/Reθ)-1(k/θ)-1(Tw/Te)1/2          (6)

or
              Reθ,tr(k/θ) =  Uek/νe = const (G1/2/Reθ)-1(Tw/Taw)1/2{1+r[(γ-1)/2]M2}      (7)

In the absence of better information, the const in Eq. 6 is evaluated from the experimental results of Feindt (1956) who found that Uek/νe is about 120 for incompressible flow with zero pressure gradient. Since G1/2/Reθ = 0.1021 for incompressible flat plate flow, const = 12.25. 

Fig. 3 shows Reθ,tr(k/θ) = Uek/νe vs. Mach number. Surprisingly the results plot as straight lines for M > 1.5 Note the dependence on surface temperature level and the inherent dependence on roughness height. Note also that for Tw/Taw just below 0.25, the line would go through the origin so that  Reθ,tr(k/θ)/Me  would be a constant. 
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Figure 3. Variation of roughness parameter Uek/νe with Mach number and 
                           surface temperature level.

Based on the above results for flat plates, it is recommended that roughness-induced transition data for other configurations be plotted as in Fig. 3, Uek/νe vs. Me, with wall temperature isotherms indicated. This will allow the relevant physics to be included the correlations. To be further noted is that cooling is destabilizing for transient growth, whereas for T-S disturbances, cooling stabilizes the first mode but destabilizes the second mode. 

III. ROUGHNESS-INDUCED TRANSITION IN STAGNATION POINT FLOW- 

            THE “BLUNT-BODY PARADOX” 

The ‘‘blunt body paradox’’ refers to the early transition on spherical forebodies (even those that are highly polished) observed at supersonic and hypersonic freestream speeds both in flight and in wind tunnels. This transition occurs usually in the subsonic portion of the flow behind the bow shock wave, a region of highly favorable pressure gradient that is stable to T–S waves. Surface cooling leads to even earlier transition. This phenomenon, identified in the mid-1950s, has defied clear explanation. It has always been prominent on Morkovin’s list of unsolved problems. The tentative suggestions are generally roughness related since stagnation point boundary layers are very thin. But no connection has been made between the microscopic roughness on the surface and the features of the observed early transition such as location, sensitivity to surface temperature level, etc. This has led to a search for an explanation through transient growth. This problem was recently examined by Reshotko and Tumin (2000, 2004) and this section summarizes their findings.

For the axisymmetric blunt body problem considered herein, the base mean boundary layer flow is the self-similar boundary layer for the Hartree parameter, 
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corresponding to axisymmetric stagnation point flow. The edge Mach number for the major results here presented, 
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, corresponds to a location of about 28° from the stagnation point, almost independent of flight Mach number (above 3) based on a modified Newtonian pressure distribution. The principal results here presented are for Reynolds number
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, where H is a measure of the boundary layer thickness. More specifically, 
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The linearized compressible Navier–Stokes equations for three-dimensional disturbances in a compressible gas were solved numerically for temporally and spatially growing disturbances. The temporal optimal growth analysis is that of Hanifi, Schmid, & Henningson(1996). The energy norm for compressible flow is that of Mack (1969) independently rederived by Hanifi et al.(1996). This energy norm has terms involving the density and temperature fluctuations in addition to the kinetic energy. Since for the Reynolds number considered, the subject flow has no growing T–S waves, the spatial analysis for the downstream domain (following Ashpis and Reshotko 1990) includes only the discrete and continuous spectra in the upper half of the complex 
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 =0, there is only a continuous spectrum.

III.1  Temporal results

From Reshotko & Tumin (2000), Fig. 4 shows the temporal transient growth factor as a function of dimensionless time for three levels of surface temperature. For adiabatic wall conditions, the maximum growth factor is about 1100, quite a large value. With the surface cooled to half the adiabatic wall temperature, the growth factor G is about 5300, and for 
Tw /Taw=0.2, the maximum growth factor is about 13500. Note that as the boundary layer becomes more T–S stable because of cooling, the transient growth factors become significantly larger. Also, because of the compressibility, it is important to consider all the terms in the energy norm and not just the kinetic energy. This is shown in Fig. 5 for the 
Tw /Taw=0.2 case. With just the kinetic energy considered, the maximum growth factor is about 5700 rather than the 13500 obtained using the full energy norm.
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Fig 4. Temporal transient growth factor for axisymmetric stagnation point flow

             at different surface temperature levels.  Me = 0.6, ReH = 1137, ,α= 0, βH = 0.762
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Fig. 5. Temporal transient growth factor based on different energy norms.

Me = 0.6, ReH = 1137, ,α= 0, βH = 0.762, Tw/Taw = 0.2.
III.2  Spatial results

Figure 6 shows the spatial transient growth factor G as a function of dimensionless distance for the same conditions as in Fig. 4. The peak values for the three surface temperature levels are about the same as for the temporal formulation. The peak values occur at a dimensionless distance of about 0.5, which for the Reynolds number of the calculation is about 600 boundary layer thicknesses downstream of the origin. The agreement in peak values is somewhat remarkable since the transient growth factor is the result of wave superposition and the temporal and spatial formulations involve different sets of waves. In the temporal [image: image19.png]a0,
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Fig. 6. Spatial transient growth factor for axisymmetric stagnation point flow at

different surface temperature levels. Me = 0.6, ReH = 1137, ,α= 0, βH = 0.762
formulation, the decaying temporal eigenvalues are for different frequencies corresponding to a single streamwise wave number. In the spatial formulation, the decaying spatial eigenvalues are for the different wave numbers corresponding to a single real frequency.

These calculations are relevant to the hypersonic sphere-cone nosetip configurations for which there is an extensive experimental data base and significant transition correlations (Batt & Legner 1980, 1983,  Reda 1981, 2002).  Since most of the Batt & Legner experimental data base is centered around 
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= 0.5, the results for this latter case will be emphasized here. Further, in contrast to the flat plate, curvature is a significant factor for the sphere. Curvature is included in the calculations and results to be presented.

For surface temperatures in the vicinity of 
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= 0.5, the transient growth results without curvature effects are shown in Figure 7. The optimal spanwise wavenumber is essentially 
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Fig.7. Optimal growth factors for axisymmetric stagnation point

                                 flow. 
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= 0.5.
constant over the Mach number range at 
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 = 0.28 which corresponds to about 3.2 boundary layer thicknesses. The curvature effects were included into the following correlations through the ratio 
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 of the energy growth factors with and without the curvature associated terms. At a prescribed temperature level, the result might depend on the radius of curvature, the Reynolds number and the local Mach number. For each combination of parameters, the optimization procedure has to be carried out with respect to the spanwise wave number, and the computations become very time-consuming. Initially, we computed the effect of local Mach number on the ratio at a prescribed Reynolds number, 
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 = 123. Because the results did not reveal any significant effect of the Mach number, simultaneous effects of curvature and the local Reynolds number were investigated at 
[image: image27.wmf]0.8

e

M

=

. In these evaluations, three Reynolds numbers, 
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 82, 123 and 410 were chosen for consideration at different curvature parameters, 
[image: image29.wmf]/

N

R

q

. Figure 8 illustrates simultaneous effect of the 


[image: image30.wmf]0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.982/(1+14.9 

´

 R

q

q

 /R

N

)

(G/G

0

)

1/2

R

q

 (

q

 / R

N

)

 R

q

= 82, 123 & 410

 Fit


Fig.8. Effect of curvature on optimal growth factor for axisymmetric
                                stagnation point flow 
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Reynolds number and the curvature parameter on the ratio 
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 The larger the curvature (smaller nose radius), the smaller the growth factor. This stabilizing effect agrees with previous experimental observations (Batt & Legner 1983). Figure 8 also illustrates a suggested curve fit for these data. Since most of the experimental runs had surface temperature level variations during the run, and since the growth factors are sensitive to surface temperature level, it has further been determined from a least squares fit of the peak values in Fig. 6 that G1/2 varies as 
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[image: image35.wmf]-0.77

0.944

1/2

Re

2

0.1

 

114.9Re

w

aw

e

N

T

T

M

G

R

q

q

q

æö

ç÷

ç÷

èø

=

+

                                              (8)

The influence of roughness on transition can be modeled in a manner similar to that used earlier for zero pressure gradient. We assume that an energy norm at transition is related to an input energy through the transient growth factor G.
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The input energy is in the form of a density times velocity squared where the roughness-induced disturbance velocities are assumed proportional to the roughness height, k. The momentum thickness, (, is chosen as the reference length since it is the least sensitive to surface temperature level of any of the boundary layer scales. For stagnation-point flow, ( is 

also constant with distance from the stagnation point. The resulting expression for Ein is
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For a boundary layer, eq. (10) can be approximated
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Again, the growth factor G scales with the square of a thickness Reynolds number or with length Reynolds number to the one power. Thus from Eqs. (9) and (11) we can write
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where 
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 is obtained from the transient growth results for the particular geometry and flow parameters. Transition is assumed to occur when, for the given flow, 
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 reaches a specific value, here taken as a constant.

According to Eq. (12), we have to extract the factor 
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 from the transient growth results. The calculations summarized by Eq. (8) are for parallel flows (
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 = const). However, for the stagnation point flow, the edge Mach number varies almost linearly with angle from the stagnation point. From Eq. (8), it is seen that
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Thus the growth factor is largest near the stagnation point and diminishes rapidly as the edge Mach number increases. An integration of the differential growth factors from the stagnation point to any downstream location shows that the integrated growth factor is essentially constant beyond 
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Thus, for the stagnation point in the vicinity of 
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= 0.5, the relation is:
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The last relation shows the trends of transition Reynolds number with roughness height and surface temperature level. For constant surface temperature level, 
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. This is consistent with Reda’s (1981, 2002) ballistic range data as shown in Fig.9. 
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Fig. 9.  Nosetip transition data from ballistic-range experiments; 3-D distributed

                  roughness.
The PANT wind-tunnel data15,16 shown in Figs. 10a and 11a display this trend as well. In addition, some of the PANT data were taken for nearly constant 
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= 0.5. For this case, Eq. (16) shows that Re(,tr should vary as 
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. This again is supported by the PANT data as shown by comparison of the data with lines of slope n = 1.27 in Figs. 10b and 11b. To be noted is that all of the nosetip transitions in the PANT data base take place well within the sonic point on the sphere (0.2 < 
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Fig. 10. Transient growth based transition correlations of PANT Series A data
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Fig. 11. Transient growth based transition correlations of  PANT Series J data.
In treating these data, only the “revised data” are used here. The revised data are based on the Batt & Legner protocol of identifying transition location. The roughness heights are those of the original PANT data (Batt & Legner 1980,1983). The present summary relation for the PANT data base is
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The curvature factor is ignored as it varies only within a narrow range for the whole data base. The numerical factor of 180 is for 
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= 0.5 and comes from averaging in only those points for which 0.45 < 
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 < 0.55. The broken lines on either side of the solid line in Figs. 10a and 11a show the expected data spread for 0.45 < Tw/Te < 0.55 according to Eq. 15. 

     While the Reda correlation (Fig. 5) and the present correlation of the PANT data (Eq. 15) both vary as (k/()-1 for constant surface temperature, Reda’s ballistic range data and the PANT wind tunnel data were taken at different temperature levels. Since ( appears in the numerator of both sides of Eq. 15, this relation can be rewritten as
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The left side of Eq. (16) is the same as Reda’s (1981, 2002) Reke,tr. For 
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= 0.33, Eq. (16) gives Reda’s value of 106 (See Fig. 9).  Reda estimates his surface temperature level to have been about 0.3.

IV. ROUGHNESS RECEPTIVITY
In the transient growth developments above, it was assumed that the disturbance velocity u’ is proportional to the roughness height k. This led to the (k/θ)-1 behavior as seen in the PANT and Reda data. This behavior is contradicted however by the experimental results of White & Ergin (2003) 

The White & Ergin experiment consisted of a flat plate model with a spanwise array of circular roughness elements located at 300 mm from the leading edge. The element spacing λo is 19 mm. The elements consist of 6.35 mm diameter, 95 μm thick adhesive labels that are stacked to give heights of 390, 475, 570 and 665 μm. At a tunnel speed of 10 m/sec, the roughness heights correspond to Rek of 53, 82, 119 and 162.  Fig. 9 shows the disturbance energy scaling with Rek at two different wavelengths. The data are taken at 60 mm downstream of the roughness
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Fig. 9. Disturbance amplitude scaling with roughness amplitude at x = 360 mm.20
array. The wavelength λo/3 is close to the optimal wavelength according to transient growth theory. The results for both wavelengths scale closely with Rek2. Since Rek2 ~ k4, this implies that u’ ~ k2.

The downstream evolution of modal energy for Rek = 119 is shown in Fig. 10. On the right are the experimental results of White & Ergin (2003) while on the left are the results of a DNS computation of the experiment by Fischer & Choudhari (2004).  The computation compares very well with the experiment. For λo/3 and λo/4, the growth begins
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Fig. 10.  Streamwise evolution of modal energy in dominant Fourier components.21
immediately at the roughness elements, peaks at about x = 360 mm and then decays as would be expected from transient growth theory. The longer wavelength λo component first decays quickly and then undergoes a slow growth. The model is not long enough to determine where the λo growth peaks or if it subsequently decays.

A linear calculation of this experiment (Fig. 11) was carried out by Tumin & Reshotko (2004). The roughness elements were modeled by an appropriate velocity boundary condition on the undisturbed boundary. The results shown, which correspond to λo/3 show transient growth beginning at x = 430mm. The behavior is in qualitative agreement with the experiment but the onset of the transient growth is significantly delayed.
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Fig. 11. Energy of the harmonic (l = 6.33 mm).

So for discrete roughness elements, the receptivity is nonlinear whereas the subsequent transient growth is linear. The assumption of linear receptivity overly elongates the receptivity zone. Receptivity may be linear if the roughness height is within the lower deck of the triple deck formulation, k < x(Rex)-5/8. These findings are however for discrete roughness elements. 

Might densely packed roughness give a different response than sparse discrete elements? There is no definitive data to answer this question. The closest is a study by Schlichting (1936) where he studied the effect of packing density on turbulent skin friction. He determined the effect of packing density on the additive constant in the turbulent law-of-the-wall and then determined the equivalent Nikuradse sand grain roughness height, ks. The result is shown in Fig. 12.
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Fig. 12. Effect of packing density on equivalent sand grain roughness for a turbulent boundary layer.

Note that as the packing becomes more dense, ks rises to a maximum significantly larger than k, and then at maximum packing, it is less than k. The implication is that at maximum packing, the effective roughness height can be less than the nominal roughness height.
V. CONCLUSIONS

Under parallel flow assumptions, transient growth calculations have been performed for zero pressure gradient and stagnation point flows over Mach number and surface temperature ranges that are relevant to slender and blunt supersonic and hypersonic configurations. In addition, a model for roughness-induced transition has been developed that makes use of the transient growth results.

For flat plate flows, the results depend on Mach number and surface temperature level and of course on the roughness height. Plots of Reθ(k/θ) at transition vs. Me are straight lines who’s level increases with surface temperature. Cooling leads to earlier transition. 

For nosetip transition, the dominant transient growth takes place in the near vicinity of the stagnation point so that the resulting correlation is independent of the local Mach number at the transition location. This yields transition relations that closely reproduce the trends of the Reda and PANT data, but with exponents for roughness and surface temperature effects obtained from the transition modeling and the transient growth theory.

Transient growth offers a useful approach to dealing with three-dimensional roughnesses that generate streamwise vortices. There is no meaningful T-S explanation. 

It is still not clear under what circumstances u’ varies as k2 and under what circumstances u’ is proportional to k. There is experimental evidence for both. Does the former apply only in the receptivity region and the latter in the transient growth region?  Clearly more experiments are needed with a fully distributed surface roughness to clarify receptivity issues and effects of packing density.
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