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Abstract

The paper deals with the formulation of a consistent set of governing equations apt to de-
scribe the physical phenomenology comprising the hypersonic flow field of an ionized gas
mixture and the electromagnetic field. The governing equations of the flow field and those
of the electromagnetic field are revisited in sequence and differences or similarities with
past treatments are pointed out and discussed. The equations governing the flow field hinge
on the customary balance of masses, momenta and energies. The equations governing the
electromagnetic field are introduced both directly in terms of the Maxwell equations and
by recourse to the scalar and vector potentials. The theory of linear irreversible thermody-
namics based on the entropy-balance equation is also revisited for the purpose of obtaining,
consistently with the presence of the electromagnetic field, the phenomenological relations
required to bring the governing equations into a mathematically closed form. Old problems,
such as the influence of the medium compressibility on chemical-relaxation rates or the im-
portance of cross effects among generalized fluxes and forces, are re-discussed; additional
problems, such as the necessity to consider the tensorial nature of the transport properties
because of the presence of the magnetic field, are pointed out. A non-conventional choice
of first-tensorial-order generalized forces and corresponding fluxes is proposed which ap-
pears to offer more simplicity and better convenience from a conceptual point of view when
compared to alternative definitions customarily used in the literature. The applicability do-
main of the present formulation is clearly outlined and recommendations for further work
are given.
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Nomenclature

A vector potential
Ak affinity of k-th chemical reaction
B magnetic induction
C constant (in Arrhenius law)
c speed of light in vacuum, 299792458 m·s−1

Dij diffusion tensor
DT

i thermodiffusion tensor
Dik diffusion tensor (Fick law)
dj diffusion vector (kinetic theory)
E electric-field intensity
Ea activation energy (in Arrhenius law)
e electronic charge, 1.602176462 · 10−19 C
em matter energy per unit total mass
ėm,v matter-energy production
ėem,v electromagnetic-energy production
F i external force (kinetic theory)
Fi generalized force [Eq. (127)]
fiδ Helmholtz potential of δ-th molecular degree of

freedom of i-th component
G generic extensive variable
g generic-variable density (mass)
gv generic-variable density (volume)
ġ generic-variable production (mass)
ġv generic-variable production (volume)
hi enthalpy of i-th component per its unit mass
JG generic-variable diffusive flux
JEm matter-energy diffusive flux
Jmi

component-mass diffusive flux
Jm∗j element-mass diffusive flux
JQ electric-charge diffusive flux or conduction-current density
Jq heat flux (see text)
JU internal-energy diffusive flux
JUiδ

diffusive flux of Uiδ (see below)
JS entropy diffusive flux
j electric-current density
KB Boltzmann constant, 1.3806503·10−23 J·K−1

K c
k chemical-equilibrium constant (concentrations)

`i number of molecular degrees of freedom of i-th component
M magnetization
M gas-mixture average molar mass
Mi component molar mass
Ma

j element molar mass
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n number of components
NA Avogadro number, 6.02214199 · 1023

Ni component particle number
N a

j element particle number
P polarization
p pressure
pi partial pressure of i-th component
Qi component molar electric charge
q electric charge per unit mass
RG universal gas constant, 8.314472 J·K−1

r number of chemical reactions
s number of elementss entropy per unit total masss i entropy of i-th component per its unit massṡv entropy productionṡv,0,1,2 entropy production related to tensorial order 0, 1, 2
T temperature (thermal equilibrium)
Tiδ temperature associated with δ-th molecular degree

of freedom of i-th component
t time
U unit tensor
U internal energy of the gas mixture
Uiδ internal energy distributed over δ-th molecular degree

of freedom of i-th component
u internal energy per unit total mass
uiδ internal energy distributed over δ-th molecular degree

of freedom of i-th component per unit mass of i-th component
u̇v internal-energy production
u̇v,iδ production of Uiδ

v velocity vector
(∇v) s

o traceless symmetric part of velocity gradient
(∇v) a antisymmetric part of velocity gradient
v specific volume
vi specific volume of i-th component
v̇v volume production
wi component diffusion velocity
xi molar fraction of i-th component
αi component mass fraction
αa

j element mass fraction
ε0 dielectric constant of vacuum, 8.854187817 · 10−12 F·m−1

η temperature exponent (in Arrhenius law)
κf

k,κb
k reaction constant (forward, backward)

le scalar electrical conductivity
le electrical-conductivity tensor
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lp
ej pressoelectrical-conductivity tensor

lT
e thermoelectrical-conductivity tensor

l′ thermal-conductivity tensor (see text)
µi chemical potential of i-th component
m dynamic-viscosity tensor
mv bulk-viscosity coefficient
νki global stoichiometric coefficient
ν (r)

ki, ν
(p)
ki stoichiometric coefficient (reactant, product)

ξ̇k chemical-reaction rate
π normal mean stress
ρ total-mass density
ρc electric-charge density
ρi component partial density
ρa

j element partial density
σij formation-matrix coefficient
τ stress tensor
τ s

o traceless symmetric part of stress tensor
τM Maxwell stress tensor
ΦG generic-variable flux
φ scalar potential
Xi generalized force [Eq. (111)]
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1 Introduction

Interest in theoretical investigations [1–26] aimed at the understanding of the fluid
dynamics and the thermodynamics of flows subjected to the action of electric and/or
magnetic fields can be traced back, at least, to the first half of the past century. The
main driving motivation that justifies such an interest was probably best expressed
by Resler and Sears [9] in 1958:

If a fluid is a conductor of electricity, the possibility arises that an electric body
force may be produced in it that will affect the fluid flow pattern in a significant
way . . . The attractive thing about the electric body force . . . is that it can be
controlled, insofar as the current and the magnetic field can be controlled, and
perhaps made to serve useful purposes such as acceleration or deceleration of
flow, prevention of separation, and the like.

Since those pioneering years, the scientific/engineering discipline in question has
been going through a continuous process of maturation. This process, however,
has been continuously and systematically marked in time by researchers’ com-
plaints about the unsatisfactory state-of-the-art of the theory. Indeed, notwithstand-
ing many efforts, and the voluminous literature generated by them, to confer the
discipline the status of being firmly established on physically rigorous and consis-
tent foundations freed from ad hoc assumptions, progress to achieve convergence
to that goal appears today not completed yet.

The study presented here was carried out in the context of a research activity mo-
tivated by renewed interest in investigating the influence that electric and/or mag-
netic fields can exert on the thermal loads imposed on a body invested by a hyper-
sonic flow [18,27–34]. In this regard, spacecraft thermal protection during planetary
(re)entry represents the driving engineering application. The contents of the study
should be considered, to a certain extent, a systematic reexamination of past work
complemented with somewhat innovative ideas. The aim concentrates on the for-
mulation of a consistent set of governing equations in open form apt to describe the
physical phenomenology comprising the hypersonic flow field of an ionized gas
mixture and the presence of the electromagnetic field. The discourse opens with
stoichiometric considerations that are important to comprehend how specific para-
meters of electromagnetic nature, namely electric-charge density and conduction-
current density, can be expressed in terms of variables of fluid-dynamics nature.
Subsequently, the governing equations of the flow field and those of the elec-
tromagnetic field are revisited in sequence; differences or similarities with past
treatments are pointed out and discussed. The equations governing the flow field
hinge on the customary balance of masses, momenta and energies. The equations
governing the electromagnetic field are introduced both directly in terms of the
Maxwell equations and by recourse to the scalar and vector potentials. In the latter
case, the convenience of adopting the Lorentz gauge, rather than the magnetosta-
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tic gauge, in order to obtain field equations with favorable mathematical symmetry
is adequately pointed out. Features, limitations and approximations implied in the
open-form governing equations are explicitly addressed. Thermodynamics aspects
associated with the necessity to assign the thermodynamic model of the gas mix-
ture are described and discussed. The theory of linear irreversible thermodynamics
[20,21,23,35–37] based on the entropy-balance equation is examined for the pur-
pose of obtaining, consistently with the presence of the electromagnetic field, the
phenomenological relations required to bring into a mathematically closed form the
governing equations. Old problems, such as the influence of medium compressibil-
ity on chemical-reaction rates or the importance of cross effects among generalized
fluxes and forces, are re-discussed; additional problems, such as the necessity to
take into account the tensorial nature of the transport properties because of the
anisotropy introduced by the magnetic field, are pointed out. A non-conventional
choice of first-tensorial-order generalized forces and corresponding fluxes is pro-
posed which appears to offer more simplicity and better convenience from a con-
ceptual point of view when compared to alternative definitions customarily used in
the literature.

Polarization and magnetization have not been considered in this study. Setting aside
their expected negligibility in hypersonic flows, there is an important reason behind
that choice. The inclusion of polarization and magnetization effects in the Maxwell
equations is conceptually (almost) straightforward. That, however, would constitute
only a unilateral approach to the physical phenomenology. Indeed, the important
fact should not be overlooked on the fluid-dynamics side that not only body-force
distributions but also torque distributions exist [21,38] within a polarized and mag-
netized medium subjected to the action of the electromagnetic field. Under these
circumstances, the velocity vector is not the sole kinematic unknown that charac-
terizes the flow field; the specific angular momentum [21,23,38] of matter may not
identically vanish throughout the flow field, as it usually happens in the absence of
polarization and magnetization, and must necessarily be taken into account as an
additional kinematic unknown. The appearance of the corresponding balance equa-
tion in the set of the governing equations is inescapable. A non-vanishing specific
angular momentum in matter can have far reaching consequences. For example,
the stress tensor loses its symmetry; its antisymmetric part, conjointly with the an-
tisymmetric part of the velocity-vector gradient, contributes to produce entropy and
the familiar Newton law does not suffice anymore to characterize the tensional state
in the medium. Implications of energetic nature should also be expected because
there is energy associated with specific angular momentum; in addition, the polar-
ization and magnetization vectors belong to the set of the thermodynamic indepen-
dent state parameters [19,20]. These and similar aspects cannot be ignored at the
moment of constructing a physically rigorous theory, even if the mentioned effects
may turn out to be negligible under specific flow circumstances. The complexity
of the physical phenomenology in the presence of polarization and magnetization
increases enormously and its study presupposes a degree of difficulty which can be
adequately tackled only after that acquisition of solid understanding of the coupling
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between fluid dynamics and pure electromagnetic field has been secured. The latter
constitutes the main target of the present study and the motivation to postpone to
future investigations the behaviour of polarized and magnetized media.

2 Stoichiometric aspects

The chemical constituents that compose an ionized gas mixture can be subdivided
in neutral components, ionized components and free electrons. The knowledge of
how many and which components intervene within a given flow problem relies
on experimental evidence complemented with the judicious choice dictated by the
researcher’s expertise. The acquisition of such knowledge is sometimes straightfor-
ward, sometimes rather involved; in any case, it constitutes a problem of its own.
When the n components are identified then it is possible to recognize the s (s ≤ n)
reference elements that participate in their formation. There is, obviously, a cer-
tain arbitrariness in the qualification of the reference elements. For example, either
the molecule N2 can be considered formed by putting together two N atoms or,
vice versa, the atom N can be considered formed by breaking the N2 molecule; the
role of reference element is played by N or N2 in the former or latter case, respec-
tively. For reasons of convenience, the reference elements are enumerated in such
a way that the first (s − 1) are the true atoms/molecules E1, E2, ..., Es−1 and the
last one Es is the electron ‘e’ responsible for building the electric charge carried
by the ionized components (if any). The formation concept is formalized in the
chemical formula E1

σi1
E2

σi2
· · ·Es

σis
of the generic component. The coefficient σij

represents the number of Ej atoms/molecules required to form the i-th chemical
component; if σij = 0 then the j-th element does not intervene in the formation of
the i-th component and the corresponding symbol (Ej) is dropped from the chemi-
cal formula. The non-vanishing coefficients σij (j = 1, . . . , s− 1) are necessarily
positive, even integers if the elements are monatomic. For a neutral component, the
coefficient σis is identically zero. For an ionized component, the coefficient σis is
positive or negative for exceeding or missing electrons and its opposite gives the
electric charge carried by the component molecule as an integer multiple of the
electronic charge. In a more common formalism, Es

σis
is replaced by superscripting

the chemical formula with ‘+’ signs, if σis < 0, or ‘−’ signs, if σis > 0, in number
equal to | σis |. The coefficients σij can be grouped together to compose the (n× s)
formation matrix. The rightmost column (j = s) of the matrix is the electric-charge
column which appears and acquires significance exclusively when ionized compo-
nents are present in the mixture. The coefficients σij permit to express the molar
masses Mi of the components as linear combinations

Mi =
s∑

j=1

σijM
∗
j (1)
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of the molar masses M∗
j of the elements (M∗

s = 5.48579911 · 10−7 kg is the mass
of one mole of electrons) intervening in their formation. The molar electric charges
Qi require only the coefficients in the electric-charge column

Qi = −σiseNA (2)

in combination with the electronic charge e = 1.602176462 · 10−19C and the Avo-
gadro number NA = 6.02214199 · 1023. An explicit example of formation matrix
relative to a seven-component high-temperature air mixture reads

N O e

N 1 0 0

O 0 1 0

e− 0 0 1

NO 1 1 0

N2 2 0 0

O2 0 2 0

NO+ 1 1 -1

or

N2 O2 e

N 1/2 0 0

O 0 1/2 0

e− 0 0 1

NO 1/2 1/2 0

N2 1 0 0

O2 0 1 0

NO+ 1/2 1/2 -1

depending whether atoms or molecules are chosen as reference elements. In this
case, there are n = 7 components formed by s = 3 elements.

Another important construct is the stoichiometric matrix connected with the r chem-
ical reactions

n∑

i=1

ν (r)
ki [CF]i ⇀↽

n∑

i=1

ν (p)
ki [CF]i k = 1, 2, · · · , r (3)

that can occur in the gas mixture; ν (r)
ki, ν

(p)
ki are the stoichiometric coefficients of reac-

tants and products, respectively. The processes formalized in Eq. (3) are subjected
to component-mass conservation

n∑

i=1

ν (r)
kiMi =

n∑

i=1

ν (p)
kiMi (4)

After defining the global stoichiometric coefficients νki = ν (p)
ki − ν (r)

ki, Eq. (4) can be
recast into the form

n∑

i=1

νkiMi = 0 (5)
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The coefficients νki are integer numbers and are conveniently assembled in a (r ×
n) stoichiometric matrix. The combination of the formation concept embodied in
Eq. (1) and the component-mass conservation enforced by Eq. (5) allows to ob-
tain important conditions to which formation and stoichiometric matrices are sub-
jected and that express physically the element-mass conservation. The substitution
of Eq. (1) into Eq. (5) and the permutation of the sum operators yields

s∑

j=1

M∗
j

n∑

i=1

νkiσij = 0 (6)

Given the (mathematical) arbitrariness of the molar masses M∗
j , the solution

n∑

i=1

νkiσij = 0 (7)

is the sole possibility left to have Eq. (6) identically satisfied. It is interesting to
notice that when j = s, and taking in account Eq. (2), Eq. (7) yields the electric-
charge conservation

n∑

i=1

νkiQi = 0 (8)

across the given chemical reaction. The conservation of the electric charge is, there-
fore, not an independent statement but follows from the mass conservation relative
to the electron as reference element.

The formation matrix permits to express composition parameters, and their proper-
ties, related to the elements in terms of those related to the components. The basic
relation, in this regard, is the one that connects particle number of the elements with
particle number of the components

N ∗
j =

n∑

i=1

Ni σij (9)

From Eq. (9), for example, one obtains similar expressions for mass fractions

α∗j =
n∑

i=1

αi

Mi

σijM
∗
j (10)

and partial densities

ρ∗j =
n∑

i=1

ρi

Mi

σijM
∗
j (11)
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The electric charge per unit mass also follows from Eq. (9) after setting j = s and
multiplying by −e; it reads

q = −eNA

α∗s
M∗

s

= −eNA

n∑

i=1

αi

Mi

σis (12)

In turn, multiplication of Eq. (12) by the total-mass density ρ provides the expres-
sion for the electric-charge density

ρc = ρq = −eNA

ρ∗s
M∗

s

= −eNA

n∑

i=1

ρi

Mi

σis (13)

Equation (13) is an important relation. It establishes a first necessary link between
the electromagnetic side (ρc) of the physical phenomenology and its fluid-dynamics
counterpart (ρ∗s or all ρi). It also endorses the idea that the electric-charge density
should not be looked at as a basic field unknown because it can be straightforwardly
calculated when the gas mixture composition has been determined.

3 Physical significance of the balance equations

In view of the analysis in the following sections, it appears appropriate to dwell
preliminarily upon an important aspect related to the physical significance of the
balance equations which becomes manifest when the presence of the electromag-
netic field has to be considered.

It is a recurrent occurrence in the mechanics of continuous media that important
equations governing the dynamic evolution of a system, namely the portion of the
medium contained in a specified control volume, are developed from the idea of
balancing the variations of the extensive properties (mass, momentum, energy, etc)
that characterize the macroscopic state of the system. If G is any generic extensive
variable owned by the system and gv, ΦG, ġv are respectively its density, flux and
production, then the typical balance equation

∂gv

∂t
= −∇ ·ΦG + ġv (14)

is the translation in mathematical language of the basic principle [35,36,39] affirm-
ing that the variable G can vary in time t only for two specific reasons: a) an ex-
change with the external environment and b) an internal production. Equation (14)
constitutes the local formulation of such a principle and establishes a formal link
between time variation and reasons of change. Density and production in Eq. (14)
carry the subscript v to emphasize that they are referred to unit volume. Feynman
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provided a very interesting disquisition in his famous lectures [40] concerning the
physics behind Eq. (14); his reasoning, although expounded in didactic style, is
certainly one of the most lucid accounts the present author ever had the opportunity
to read.

The aspect related to Eq. (14) that is meant to be pointed out here regards the possi-
bility for the quantities gv,ΦG and ġv of being attached directly to space instead of
being associated with the matter occupying that same space. Such an occurrence is
somewhat forgotten in traditional fluid dynamics because the physical variables are
all associated with matter in that case. Indeed, customary practice proceeds one step
further from Eq. (14) by introducing density g = gv/ρ and production ġ = ġv/ρ
referred to unit mass and by separating the flux

ΦG = ρvg + JG (15)

in a convective part, associated with the flow velocity v, that takes care of the trans-
port associated with the macroscopic motion of matter and a diffusive part JG which
takes care of everything else. Accordingly, Eq. (14) becomes

∂ρg

∂t
+ ∇ · (ρvg) = −∇ · JG + ρġ (16)

Equation (16) is the stencil that embeds all the governing equations belonging to
traditional fluid dynamics. It comes to no surprise, therefore, that the mathematical
structure of Eq. (16) has stood as the starting point in computational fluid dynam-
ics (CFD) from which all efforts towards the development of numerical algorithms
have originated. In this sense, Eq. (16) has undoubtedly contributed to forging the
way of thinking in the CFD community. Yet, things may be looked at from a dif-
ferent perspective in the presence of the electromagnetic field. Obviously, the ap-
plicability of the convection-diffusion separation [Eq. (15)], pertaining to the flux
ΦG, and of Eq. (16) still survives when the fluid-dynamics field and the electromag-
netic field have to coexist. However, Eq. (14) can also play a role if the definition
of global variables, namely momentum and energy, are adequately generalized in
a manner that relaxes the unnecessary conceptual habit of matter association; then
the ensuing equations become statements of conservation (ġv = 0) and, in so doing,
they assume a mathematical structure that, in principle, may favorably lend itself
to a more simplified numerical analysis.

In the following sections, the formal balance-equation concept will be explicited
in relation to the fundamental physical quantities mass, momentum and energy
in order to formulate a consistent set of governing equations. Concerning the lat-
ter two quantities, the programme will be carried out in a comparative fashion by
confronting the fluid-dynamics habitual approach with the novel perspective just
discussed and brought to surface by the presence of the electromagnetic field.
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4 Mass-balance equations

The standard equations balancing the component masses

∂ρi

∂t
+ ∇ · (ρiv) = −∇ · Jmi

+
r∑

k=1

ξ̇kνkiMi i = 1, · · · , n (17)

are available for the determination of the gas-mixture composition. The component-
mass diffusive fluxes Jmi

and the chemical-reaction rates ξ̇k require the assignment
of phenomenological relations (Secs. 8 and 9). Other variables with same require-
ment will be encountered in the sequel; they should be viewed as windows through
which models, describing the physical behaviour of the medium, manifest their
influence on the open-form governing equations. The component-mass diffusive
fluxes are linked to the corresponding diffusion velocities

Jmi
= ρiwi (18)

and are subjected to the condition

n∑

i=1

Jmi
=

n∑

i=1

ρiwi = 0 (19)

Equation (19) enforces the physical fact that total mass cannot diffuse. In other
words, there are only n − 1 independent diffusive fluxes or diffusion velocities.
Taking into account Eq. (5), Eq. (19) and mass additivity

ρ =
n∑

i=1

ρi (20)

the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 (21)

follows from the summation of Eq. (17) on the subscript i. There are two options
for the determination of the n + 1 unknowns ρi, ρ. The most straightforward way
would seem to consist in the selection of Eqs. (17) and (20) because the use a
very simple algebraic equation, as Eq. (20) is, is appealing, of course. There is,
however, a risk in doing so because potential inconsistencies carried into Eq. (17)
by phenomenological relations for component-mass diffusive fluxes and chemical-
reaction rates would produce inaccurate partial densities which, in turn, would pass
on their inaccuracy to the total-mass density via Eq. (20). The alternative way to
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proceed could be to replace Eq. (20) with Eq. (21). In this manner, the effect of
the previously mentioned inconsistencies is somewhat contained because neither
partial densities nor phenomenological relations are explicitly required in Eq. (21).
As a matter of fact, Eq. (20) could be used aside, once the unknowns ρi, ρ have
been obtained, as a sort of error verifier. The drawback of this approach consists in
the necessity to solve an additional differential equation [Eq. (21)].

The chemical-reaction rates are known to be numerically stiff properties to deal
with. It is, therefore, desirable to make them appear as sparingly as possible in the
governing equations. To this aim, simplification can be achieved to some extent if
the element-composition parameters are brought into the picture. Taking into ac-
count the definition of element partial densities [Eq. (11)], the balance equations of
the element masses are obtained by multiplying Eq. (17) by σijM

∗
j /Mi and sum-

ming on the subscript i; they read

∂ρ∗j
∂t

+ ∇ · (ρ∗jv) = −∇ · Jm∗j j = 1, · · · , s (22)

The element-mass diffusive flux on the right-hand side of Eq. (22) turns out to be
expressed in terms of the component-mass diffusive fluxes as

Jm∗j =
n∑

i=1

1

Mi

Jmi
σijM

∗
j (23)

The production term is absent in Eq. (22) because Eq. (7) makes it vanish iden-
tically. Thus, the element masses are conservative: they cannot be either created
or destroyed, regardless of the reactive mechanisms at work in the gas mixture.
This occurrence suggests an advantageous manoeuvre to limit the appearance of
the chemical-reaction rates. The idea is to relinquish as unknowns the last s partial
densities ρi and replace them with the partial densities ρ∗j ; at the same time, the last
s equations of the set (17) are replaced with the set (22). In this way, the number of
differential equations is unchanged but the chemical-reaction rates appear only in
n − s equations. The s relinquished partial densities ρi can be expressed in terms
of the first n − s partial densities ρi and of the s partial densities ρ∗j from Eq. (11)
after expanding

ρ∗j =
n−s∑

i=1

ρi

Mi

σijM
∗
j +

n∑

i=n−s+1

ρi

Mi

σijM
∗
j j = 1, · · · , s (24)

and re-arranging

n∑

i=n−s+1

ρi

Mi

σijM
∗
j = ρ∗j −

n−s∑

i=1

ρi

Mi

σijM
∗
j j = 1, · · · , s (25)
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Equation (25) represents an algebraic system of s equations for the s relinquished
partial densities ρi. It can be formally solved in the following manner. First, intro-
duce for brevity the (s× s) coefficient matrix

σ̂ij = σij

M∗
j

Mi

i = n−s+1, · · · , n; j = 1, · · · , s (26)

and the (1× s) known-term array

ρ̂∗j = ρ∗j −
n−s∑

i=1

ρi

Mi

σijM
∗
j j = 1, · · · , s (27)

so that Eq. (25) can be recast in the standard form

n∑

i=n−s+1

ρiσ̂ij = ρ̂∗j j = 1, · · · , s (28)

The matrix σ̂ij can be inverted once and forever when the formation matrix σij and
the element molar masses are known. Then, the formal solution of Eq. (28) is

ρi =
s∑

j=1

ρ̂∗j σ̂-1
ji i = n−s+1, · · · , n (29)

Another important aspect to look at in connection with the elements is the balancing
of the electric charge. The electric-charge balance equation is not an independent
statement but is embedded in Eq. (22) when particularized to the case of the electron
element. Indeed, setting j = s in Eq. (22) and multiplying it by −eNA/M

∗
s [see

Eq. (13)] yields the fluid-dynamics styled equation

∂ρc

∂t
+ ∇ · (ρcv) = −∇ · JQ (30)

in which, taking into account Eq. (23) with j = s, the electric-charge diffusive flux
turns out to be expressed by the following linear combination

JQ = −eNAJm∗s
1

M∗
s

= −eNA

n∑

i=1

1

Mi

Jmi
σis (31)

of the component-mass diffusive fluxes of the electrically charged components
(σis 6= 0). It is important to notice that Eqs. (30) and (31) warn against any pre-
sumptive imposition of charge neutrality (ρc = 0) throughout the flow field; even
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if there are zones in which the gas mixture is electrically neutral, the mass diffu-
sion of ionized components and free electrons works towards the removal of such
a condition. Rephrasing Eq. (30) in electromagnetic-theory style

∂ρc

∂t
+ ∇ · (ρcv + JQ) = 0 (32)

leads to the identification of, in the corresponding parlance, the electric-current
density

j = ρcv + JQ (33)

and to the recognition of its separability in convection-current (ρcv) and conduction-
current (JQ) densities. These are the sole contributions that need to be accounted
for in the absence of polarization and magnetization. Equation (31) represents the
other important relation that establishes a second, and final, necessary link between
electromagnetism (JQ) and fluid dynamics (all Jmi

). Both Eq. (13) and Eq. (31)
converge into the definition provided by Eq. (33) and, in so doing, enforce the
unambiguous assertion that the electric-current density is specified entirely in terms
of variables of fluid-dynamics nature. Also, the dependence expressed in Eq. (31)
clearly shows that it is not necessary to pursue an independent phenomenological
relation for the conduction-current density because the latter descends naturally
from the knowledge of the phenomenological relations for the component-mass
diffusive fluxes. It will be seen in Sec. 9.4 how the famous Ohm law and additional
effects of thermodynamic origin arise naturally in this way.

5 Electromagnetic-field equations

The essence of electromagnetism finds its deepest representation in the differential
equations that govern the electromagnetic field, namely the well known Maxwell
equations. The body of didactic literature on this subject matter is enormous and the
theory can very well be considered consolidated on solid foundations. The contents
of this section take advantage mainly from Feynman’s lectures [40]; Maxwell’s fun-
damental treatise [41,42] together with the textbooks written by Møller [43], Lor-
rain and Colson [44], Persico [45], Tolman [46], and Pauli [47] were also helpful.
Notwithstanding the satisfactory state-of-the-art of the theory, there is one peculiar
aspect of electromagnetism that always deserves extreme care and attention: the
choice of the physical units. In SI units, the Maxwell equations read

∇ · E =
ρc

ε0

(34)

∇ · B = 0 (35)
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∇× E =−∂B
∂t

(36)

ε0c
2∇× B = j + ε0

∂E
∂t

(37)

The electric-charge and electric-current densities represent the channels through
which the coupling between fluid-dynamics field and electromagnetic field be-
comes manifest [recall Eq. (13), Eq. (31) and Eq. (33)]. The constants c and ε0

are respectively the velocity of light (299792458 m·s−1) in and the dielectric con-
stant (8.854187817·10−12 F·m−1) of vacuum. In principle, Eqs. (36) and (37) are all
that is required to associate with the fluid-dynamics equations in order to determine
simultaneously electric-field intensity E and magnetic induction B. However, their
mathematical structure is substantially distinct from the habitual fluid-dynamics
stencil [Eq. (16)]. A widespread practice [34,48–55] that aims to derive and use an
equation with more CFD-suitable form is based on the adaptation of Eq. (36) fol-
lowing the neglect of the displacement-current density (ε0∂E/∂t) in Eq. (37) and
the assumed validity of the generalized Ohm law

JQ = le (E + v× B) (38)

although with a scalar electrical conductivity le. The method leads to an algebraic
relation for the electric field

E =
ε0c

2

le

∇× B− ρc

le

v− v× B (39)

and to the so-called magnetic-induction equation

∂B
∂t

+ ∇ · (vB) = ∇ · (Bv) +
ε0c

2

le

∇2B +
ε0c

2

l 2
e

∇le × (∇× B)

+
ρc

le

∇× v− v×∇
(

ρc

le

)
(40)

The details of the derivation of Eq. (40) are given in appendix A. Further simpli-
fied forms in the event of electric-charge neutrality (ρc ' 0) or uniform electrical
conductivity (le 'const) are easily deduced. Equation (40) looks certainly attrac-
tive from a numerical point of view because its structure reflects perfectly that of
Eq. (16). In this way, the solution of the electromagnetic field is brought within the
reach of familiar algorithms in CFD. At the same time, the idea of magnetic-field
convection is favoured to find its way into the picture of the physical phenomenol-
ogy. The computational fluid dynamicist is most likely satisfied with this situation
because he is provided with an additional instrument [Eq. (40)] which features the
same mathematical characteristics of familiar tools, namely the flow-field equa-
tions without the electromagnetic field. He can, then, proceed to calculate. Seen
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from the perspective of the hard efforts and time invested in the development of
numerical schemes, this attitude is comprehensible. Yet, the theoretical fluid dy-
namicist would feel concerned about the same situation because Eq. (40) and its
associated interpretation are very much in contrast with the physical fact that the
electromagnetic field is attached to space regardless of the matter flowing through
that same space. In this regard, he may ponder about the physical significance of
Eq. (40), asking important questions such as: can the vector B be interpreted as the
volume density of some extensive property of the matter moving in the space oc-
cupied by the electromagnetic field? If there is such a property then can the diadic
tensor Bv and the remaining terms on the right-hand side of Eq. (40) be interpreted
as, respectively, its diffusive flux and production? The difficulty in finding con-
vincing answers suggests a critical scrutiny of the assumptions on which Eq. (40)
is built. The neglect of the displacement-current density is justifiable in circum-
stances of not rapidly varying electric field but it is still an undesirable limitation at
the moment of constructing a general theory. The generalized Ohm law [Eq. (38)]
is more prone to criticism. Concern about its applicability is not a novelty and was
explicitly raised long time ago by Maxwell [41,42] and emphasized in more recent
times by Napolitano [11,16], Pai [18] and Sedov [21]. The major hurdle to accept
is the fact that the applicability of Eq. (40), which is a governing equation, is subju-
gated to the validity of Eq. (38), which is a phenomenological relation. This levies
a serious toll on the generality of the ensuing theory because the latter becomes
medium-dependent. Equation (17), for example, is medium-independent because it
remains applicable regardless of the phenomenological relations assumed for the
component-mass diffusive fluxes and chemical-reaction rates. This is not the case
for Eq. (40). What happens if the tensorial nature of the electrical conductivity, a
feature already discussed by Maxwell in 1873, cannot be neglected or, worst, if the
medium does not comply with Eq. (38)? Indeed, and just to mention an example,
Ohm law [Eq. (38)] becomes meaningless for a polarizable and magnetizable neu-
tral gas. There can be no electrical conduction (JQ = 0) in such a gas because free
electric charges are absent; yet there is an electrical-current density

j =
∂P
∂t

+ ∇×M (41)

produced by the polarization P and magnetization M of the gas. In this case, the
whole edifice built on the magnetic-induction equation [Eq. (40)] must be thrown
away because absolutely inapplicable and a new theory must be constructed afresh.
These arguments may appear irrelevant to the computational fluid dynamicist who
is interested mainly in numerical algorithms but for the theoretical fluid dynamicist
they are strong reasons of concern that originate from the awareness of operating
on the basis of a theory whose solidity may be compromised in unforeseeable and
uncontrollable particular situations.

Another exploitable method takes advantage of the scalar and vector potentials
φ, A often used in electromagnetism. The knowledge of the potentials implies that
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of electric-field intensity and magnetic induction because the latter vectors follow
from the definitions

E = −∇φ− ∂A
∂t

(42)

B = ∇× A (43)

The substitution of Eqs. (42) and (43) into Eqs. (36) and (37) leads to the following
nicely symmetrical field equations

1

c2

∂2φ

∂t2
=∇2φ +

ρc

ε0

(44)

1

c2

∂2A
∂t2

=∇2A +
1

ε0c2
j (45)

The details of the derivation are provided in appendix B. The mathematical sym-
metry of Eqs. (44) and (45) is strongly dependent on the adoption of the condition

1

c2

∂φ

∂t
+ ∇ · A = 0 (46)

known as Lorentz gauge [40,47]. A similar approach was already pursued by Burg-
ers [14] and Pai [18] who, however, opted for the typical magnetostatic gauge

∇ · A = 0 (47)

Instead of Eqs. (44) and (45), they obtained two much more complicated highly
cross-coupled field equations in which terms involving φ and A appear simultane-
ously in both equations.

Equations (44) and (45) indicate explicitly the wave-like evolution taking place in
the electromagnetic field and how that is influenced by the presence of matter
through the electric-charge and electric-current densities. The equations reduce to
the Poisson equation in steady-state circumstances. It may be asked what is the
gain of using Eqs. (44) and (45) rather than Eqs. (36) and (37) or Eq. (40). First
of all, Eqs. (44) and (45) are four scalar differential equations instead of the six
represented by Eqs. (36) and (37). Moreover, they are general and independent of
the medium in so far as they are unaffected by arguments related to importance or
disregard of the displacement-current density and as they need no appeal to any
phenomenological relation to provide reason for their existence. It is true that, once
again, Eqs. (44) and (45) do not reflect the structure of Eq. (16) and, therefore,
they presuppose the necessity to develop new numerical algorithms for their simul-
taneous solution with the fluid-dynamics equations. On the other hand, they are
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equations of the mathematical physics which have been studied numerically since
long time and for whose properties a huge body of knowledge and understanding
has been accumulated.

6 Momentum-balance equations

The determination of the velocity-vector field occurs via the equation balancing the
momentum associated with the matter flowing in the control volume. For reasons
that will appear evident soon, it is appropriate to emphasize the association to mat-
ter by systematically referring to this quantity with the term matter momentum. In
the presence of the electromagnetic field, its balance equation assumes the form

∂ρv
∂t

+ ∇ · (ρv v) = ∇ · τ + ρcE + j × B (48)

As in traditional fluid dynamics, the matter-momentum diffusion is characterized
by the stress tensor τ which requires the assignment of a phenomenological re-
lation and, as anticipated in Sec. 1, preserves its feature of being a symmetrical
tensor in the absence of polarization and magnetization. The gravitational contri-
bution to the body force on the right-hand side of Eq. (48) has been omitted for
compatibility with the typical circumstances settling in in hypersonic regime that
presuppose the negligibility of gravitational effects with respect to those due to the
tensional state of the medium. As a matter of fact, the inclusion in the discourse of
a (Newtonian) gravitational field is conceptually straightforward because the grav-
itational body-force term can be treated similarly to the electric counterpart (ρcE)
and made fit smoothly in the equation framework described in the sequel. On the
other hand, the emphasis of the present context addresses the importance of the
electromagnetic field; the presence of a gravitational field would only burden the
equations with unnecessary additional terms whose inclusion would not change at
all the considerations that will follow and the conclusions that will be drawn.

The electromagnetic field produces matter momentum through the body force

ġv = ρcE + j × B (49)

This is the term to which the statement of Resler and Sears [9] quoted in the in-
troduction refers to and that is responsible for a variety of new effects substantially
inimaginable in traditional fluid dynamics. Under the action of the electromagnetic
field, for example, the mass diffusion of the electrically charged components takes
an active role in affecting the motion of the fluid particles because it enters ex-
plicitly into the equation of their motion [Eq. (48)] via the electric-current density
[see Eqs. (31) and (33)]. Without the electromagnetic field, mass diffusion produces
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only an indirect effect on the dynamics of the flow field through a thermodynamic
pathway that involves the gas-mixture composition and, subsequently, the pressure
distribution; the latter, in turn, represents a substantial contribution to the build-up
of the stress tensor.

Equation (48) is a necessary and sufficient equation qualified for inclusion in the
governing set; one could be satisfied with its availability. Nevertheless, there are
more interesting features of the physical phenomenology that await to be unrav-
elled. Whether it may, perhaps, appear a somewhat fortuitous circumstance or it
could be looked at as the manifestation of something of deep physical significance,
it is certainly interesting that the Maxwell equations [Eqs. (34) and (37)] allow a
very useful transformation [43,45–47] of the electromagnetic body force (49). In a
single stroke, this transformation provides evidence of the existence of momentum
associated with the electromagnetic field, namely the electromagnetic momentum,
and leads to the formulation of its balance equation. The mathematical details are
given in appendix C. The final outcome from the mentioned transformation pro-
vides the electromagnetic body force in the form

ρcE + j × B = ∇ · τM − ∂

∂t
(ε0E× B) (50)

In Eq. (50), the tensor τM represents the following combination

τM = ε0(EE− 1

2
E2U) + ε0c

2(BB− 1

2
B2U) (51)

of electric-field intensity, magnetic induction and unit tensor U. It is, therefore, a
symmetric tensor. Equation (50) can be simply overturned as

∂

∂t
(ε0E× B) = ∇ · τM − (ρcE + j × B) (52)

to match exactly the structure of Eq. (14). Hence, Eq. (52) is a balance equation.
It shows unequivocally the existence of electromagnetic momentum distributed in
space with density ε0E×B and transported through space with flux−τM. The sym-
metric tensor τM plays in Eq. (52) the same role fulfilled by the stress tensor in
Eq. (48) and, for this reason, it is suggestively named as Maxwell stress tensor.
Equation (52) highlights in an evident manner also that the transport of electro-
magnetic momentum takes place through space exclusively in consequence of the
presence of the electromagnetic field and bears no relation whatsoever with the
matter transported through that same space. It is important to keep in mind that,
although very useful, Eq. (52) is not a new independent equation. In principle, it
can replace one of Eqs. (36) and (37) but it does not say anything more that is not
already contained in the Maxwell equations. The nice features of Eq. (52) consist
in its balance-equation structure and that it fulfills the task of permitting a deep
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insight towards the understanding of the existence of important properties of the
electromagnetic field that are not immediately recognizable from the equations of
electromagnetism as given by Maxwell.

Another aspect worth of attention is that all the electromagnetic momentum that
disappears locally turns out to reappear as matter momentum or viceversa. This is
the obvious conclusion ensuing from the appearance of the electromagnetic body
force both in Eq. (48) and, with changed sign, in Eq. (52). In other words, the sum of
the two forms of momentum cannot be produced, either created or destroyed. Thus,
the global momentum ρv+ε0E×B is a conservative property of the physical system
composed by the conjoint fluid-dynamics and electromagnetic fields. This profound
characteristic of the physical phenomenology is brought to surface by summing
together Eqs. (48) and (52) to obtain the balance equation of total momentum

∂

∂t
(ρv + ε0E× B) = −∇ · (ρv v− τ− τM) (53)

Equation (53) is equivalent to Eq. (48) and constitutes a valid and, perhaps, more
convenient alternative at the moment of performing numerical calculations because
it is not burdened by the presence of any production term.

7 Energy-balance equations

7.1 Preliminary considerations

The prerequisite steps in the formulation of balance equations related to the concept
of energy, in its entirety and in its variety of kinds, are the identification of the forms
that play a role within a specific physical phenomenology and the recognition of
the sum of those forms as the total energy. In turn, the subduing of the latter’s
production ėv per unit volume and time to the famous principle of conservation
(ėv = 0) leads to the deduction and, at the same time, the physical interpretation
of interesting and important features related to the possible mechanisms of energy
conversion.

In the absence of electromagnetic fields, the typical forms of energy that intervene
in hypersonic regime are the kinetic energy possessed by the fluid particles as a
consequence of their macroscopic motion and the internal energies distributed over
the molecular degrees of freedom of the components. Energy ascribed to intermole-
cular interactions is systematically neglected. Gravitational energy is not admitted
in the picture for the same reason of negligibility adduced in Sec. 6 to justify the
omission of the gravitational-field contribution to the body force on the right-hand
side of Eq. (48). Under the assumed circumstances, the sum of kinetic energy and
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internal energies constitutes the total energy and, as such, that sum acquires the
prerogative of being conservative. The situation changes drastically in the presence
of the electromagnetic field. The kinetic energy and the internal energies associated
with matter are still part of the scene but their sum, which will be referred to as mat-
ter energy for consistency with the terminology introduced in Sec. 6 when dealing
with momentum, does not exhaust the totality of forms. The electromagnetic field
possesses energy in the same way as it does for momentum. It turns out, therefore,
that there is a further kind of energy to account for: the electromagnetic energy. It is
the sum of matter energy and electromagnetic energy to provide the total energy in
this case and to be characterized by a vanishing production. It will be shown in the
sequel that, once again, the Maxwell equations [Eqs. (36) and (37)] and their ade-
quately manipulated blend with the balance equations of kinetic energy and internal
energies play a fundamental role in the achievement of the outlined understanding
of the physical situation.

7.2 Kinetic energy

The kinetic-energy balance equation

∂

∂t
(ρ

v2

2
) + ∇ · (ρv2

2
v) = ∇ · (τ · v)− τ : ∇v + ρcv · E− JQ · v× B (54)

descends straightforwardly from that of matter momentum simply by scalar-multi-
plying both sides of Eq. (48) by the velocity vector and by rearranging the resulting
right-hand side to reflect the structure of Eq. (16). Inspection of Eq. (54) indicates
at once kinetic-energy diffusive flux and production. The latter comprises the ha-
bitual contribution that includes the combined action of medium deformation and
tensional state, and a contribution originating from the existence of the electromag-
netic field. With regard to this additional contribution, the magnetic part contains
only the conduction-current density. This is the obvious consequence of the or-
thogonality [v · (ρcv×B) = 0] between the velocity vector and the part of the body
force in Eq. (49) containing the convection-current density that appears explicitly
after expanding the electric-current density according to Eq. (33). Equation (54) is,
clearly, not an independent equation; it merely represents the projection of Eq. (48)
along the local direction of the instantaneous streamlines of the flow field.

7.3 Internal energy

From a thermodynamic point of view, the ionized gas mixture of interest in the
present context has to be considered as a composite system whose subsystems, rep-
resented by the molecular degrees of freedom possessed by the components, are in
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disequilibrium with respect to mass exchanges (chemical reactions) and energy ex-
changes (thermal relaxations) [39]. In other words, the internal energies distributed
over the molecular degrees of each component must be introduced and accounted
for separately. In general, the i-th component owns `i independent molecular de-
grees of freedom (δ = 1, · · · , `i) and the δ-th degree of freedom features its private
internal energy Uiδ. It appears worthwhile, incidentally, to mention that the prob-
lem of the explicit separation of the molecular degrees of freedom in independent
entities at the level of the internal Schrödinger equation of the molecules is still an
open issue in demand of satisfactory resolution and is systematically glossed over
by making recourse to the poor, and incorrect, classical separation in electronic,
vibrational, rotational (and etc) molecular degrees of freedom. This is certainly
a gap that calls for enhancement of basic understanding achievable only through
advanced research. The pointed-out limitation, however, does not prevent the de-
velopment of a formal equation framework. The independence of the degrees of
freedom implies the additivity of the internal energies

U =
n∑

i=1

`i∑

δ=1

Uiδ (55)

Equation (55) gives the internal energy of the gas mixture and can be conveniently
rephrased in terms of specific quantities as

ρu =
n∑

i=1

`i∑

δ=1

ρiuiδ (56)

The specificity of uiδ refers to the unit mass of the i-th component while the speci-

ficity of u refers to the unit total mass. On the fluid-dynamics side, the
n∑

i=1

`i specific

internal energies uiδ are unknowns of the flow field and their determination can be

achieved through the following
n∑

i=1

`i balance equations

∂ρiuiδ

∂t
+ ∇ · (ρiuiδv) = −∇ · JUiδ

+ u̇v,iδ

δ = 1, · · · , `i; i = 1, · · · , n

(57)

The diffusive fluxes and productions appearing on the right-hand side of Eq. (57)
require the assignment of phenomenological relations. With regard to the produc-

tions, it will be shown in Sec. 7.4 that only
n∑

i=1

`i − 1 of them are independent in

consequence of the principle of total-energy conservation. On the thermodynam-
ics side, the specific internal energies uiδ are linked to the Helmholtz potentials
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fiδ(Tiδ, vi) that describe the thermodynamic behaviour of the molecular degrees of
freedom via their dependence on the corresponding temperatures Tiδ and on the
specific volumes vi of the components. The link takes the form

uiδ = −T 2
iδ

(
∂fiδ/Tiδ

∂Tiδ

)

vi

= uiδ(Tiδ, vi)

δ = 1, · · · , `i; i = 1, · · · , n

(58)

Each of the
n∑

i=1

`i thermodynamic relations (58) provides the functional dependence

to obtain the temperature Tiδ for prescribed specific internal energy uiδ and specific
volume (vi = 1/ρi) of the i-th component. The set of the functions fiδ(Tiδ, vi) char-
acterizes the global thermodynamic model [39] of the gas mixture. Their explicit
determination presupposes the knowledge of appropriate partition functions [56,57]
whose construction, in turn, belongs to the domain of statistical thermodynamics
(Refs. [56–59] and references therein). It ought to be remarked that the described
equation scheme is founded on the assumption that the population distributions
over the quantum-energy states associated with the molecular degrees of freedom
can be represented in analytical form, the Boltzmann distribution being a particular
case. This assumption is critical for the effectiveness of Eq. (57) and the validity
of Eq. (58). Circumstances cannot be excluded in which this assumption becomes
untenable. In that case, a deeper characterization of the thermal relaxations, with
repercussions on the chemical kinetics of the gas mixture, becomes necessary be-
cause the quantum-state populations are themselves unknowns subjected to balance
equations that deal with state-to-state exchanges of energy and mass. A substantial
body of works (Refs. [60–64] and references therein) addressing the state-to-state
phenomenology has been growing recently but the methods elaborated so far are
not yet completely free from difficulties of conceptual and computational nature.
However, these difficulties notwithstanding, experimental and computational evi-
dence (Refs. [65,66] and references therein) of the existence of non-analytical dis-
tributions of the quantum-state populations points towards the conclusion that the
avenue of state-to-state thermal kinetics certainly deserves to be explored with vig-
orous effort for reasons of both scientific and engineering interest. This topic will
not be elaborated further here because it is beyond the scope of the present context.
Interested readers are referred to the cited literature.

Taking into account the additivity [Eq. (56)] of the internal energies, the balance
equation of the gas-mixture internal energy

∂ρu

∂t
+ ∇ · (ρuv) = −∇ · JU + u̇v (59)

Hypersonic-Flow Governing Equations with Electromagnetic Fields  

1 - 26 RTO-EN-AVT-162 

 

 



is easily deduced from the summation of Eq. (57) on the subscripts i, δ. The internal-
energy diffusive flux and production on the right-hand side of Eq. (59) read respec-
tively

JU =
n∑

i=1

`i∑

δ=1

JUiδ
(60)

u̇v =
n∑

i=1

`i∑

δ=1

u̇v,iδ (61)

Equation (59) is not in its final form. There is more to say about the internal-energy
production in consequence of the principle of total-energy conservation. The com-
pletion will be done in Sec. 7.4.

Thermal equilibrium prevails when all temperatures Tiδ equalize to a common
temperature T . This situation should arise as a particular solution of the multi-
temperature scheme embodied in Eqs. (57) and (58), assuming that the component
internal-energy diffusive fluxes and productions are correctly prescribed. An al-
ternative approach, possible when there is sufficient (experimental) evidence that
supports the idea as a useful approximation accurate enough to reflect realism, con-
sists in the presumptive imposition of thermal equilibrium as a shortcut to spare the
numerical costs of dealing with the mathematical complexity of Eqs. (57) and (58).
In this manner, the details associated with Eq. (57) are given up and Eq. (59) is used
directly for the determination of the gas-mixture specific internal energy with the
provision that, now, a phenomenological relation is needed for the internal-energy
diffusive flux appearing on the left-hand side of Eq. (60). A phenomenological re-
lation for the internal-energy production appearing on the left-hand side of Eq. (61)
is not needed because its expression is fixed by the imposition of total-energy con-
servation (see Sec. 7.4). Obviously, the thermodynamic relations (58) are still ap-
plicable with Tiδ = T ; thus, the temperature of the gas mixture follows from the
resolution of

ρu =
n∑

i=1

`i∑

δ=1

ρiuiδ(T, vi) (62)

7.4 Matter energy

According to the considerations of Sec. 7.1, specific matter energy is defined as the
sum

em = u +
v2

2
(63)
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of kinetic energy and gas-mixture internal energy. The corresponding balance equa-
tion

∂ρem

∂t
+ ∇ · (ρemv) =−∇ · (JU − τ · v)

+ u̇v − τ : ∇v + ρcv · E− JQ · v× B (64)

follows, therefore, from the sum of Eqs. (54) and (59). The inspection of the right-
hand side of Eq. (64) provides the matter-energy diffusive flux

JEm = JU − τ · v (65)

and production

ėm,v = u̇v − τ : ∇v + ρcv · E− JQ · v× B (66)

In the presence of the electromagnetic field, one is not entitled to assume the matter-
energy production as unconditionally vanishing. The further addendum to account
for is the production of the electromagnetic energy

ėem,v = −j · E (67)

Its expression derives from arguments related to the work done by the electromag-
netic field when electric charges are displaced within it [40]. So, for consistency
with the physical phenomenology, the principle of total-energy conservation must
be enforced as

ėm,v + ėem,v = 0 (68)

The substitution of Eqs. (66) and (67), the latter expanded according to Eq. (33),
into Eq. (68) leads to the following important, full of physical significance, expres-
sion of the internal-energy production

u̇v = τ : ∇v + JQ · (E + v× B) (69)

The Joule effect appears naturally in Eq. (69) and is represented by the electro-
magnetic term linked exclusively to the conduction-current density. With regard
to this point, it seems worth mentioning that sometimes the electromagnetic term
on the right-hand side of Eq. (67) is erroneously confused as being responsible
for the Joule effect. An important conclusion to be drawn from Eq. (69), with a
view to Eq. (61), is that not only the combined action of medium deformation and
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tensional state but also the flowing of a conduction current through the electromag-
netic field concurs to induce non-equilibrium excitation of the molecular degrees of
freedom. How the repartition of the converted amount of energy takes place among
the molecular degrees of freedom can be ascertained only when the expressions of
the productions u̇v,iδ are explicitly known. In any case, Eqs. (61) and (69) together

indicate that in multi-temperature circumstances, only
n∑

i=1

`i − 1 productions need

the assignment of phenomenological relations, and that such a necessity does not
exist in the event of thermal equilibrium.

The availability of Eq. (69) leads to recast Eq. (64) into the final form

∂ρem

∂t
+ ∇ · (ρemv) = −∇ · (JU − τ · v) + j · E (70)

and to the completion of the balance equation [Eq. (59)] of the gas-mixture internal
energy which now reads

∂ρu

∂t
+ ∇ · (ρuv) = −∇ · JU + τ : ∇v + JQ · (E + v× B) (71)

Equation (70) or Eq. (71) can replace anyone of Eq. (57) in the set of the governing
equations.

7.5 Electromagnetic energy

The recognition of the existence of the electromagnetic energy and the derivation of
its associated balance equation are achieved by following a procedure very similar
to the one worked out for the electromagnetic momentum, that is, through a skillful
transformation [40,43,46,47] of the electromagnetic-energy production [Eq. (67)]
by taking advantage of the Maxwell equations [Eqs. (36) and (37)]. Appendix D
provides the mathematical details. The final result already cast in accordance with
Eq. (14) reads

∂

∂t
[
ε0

2
(E2 + c2B2)] = −∇ · (ε0c

2E× B)− j · E (72)

Equation (72) indicates explicitly that the electromagnetic field contains energy dis-
tributed in space with density

ε0

2
(E2 + c2B2), transported through space with flux

given by the Poynting vector ε0c
2E × B, and exchanged with the energy of mat-

ter with the production rate −j · E. Once again, Eq. (72) is not an independent
equation; there is no new physical information in it that is not already contained in
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the Maxwell equations. The considerations made in this regard with respect to the
balance equation of electromagnetic momentum [Eq. (52)] apply here unvaried.

Equation (72) reflects the structure of Eq. (14) but there have been attempts [13,14]
to adapt it for the purpose of fitting the structure of Eq. (16). The adaptation is based
on the transformation of electric-field intensity and magnetic induction between
two reference systems in the non-relativistic approximation

E′ = E + v× B (73)

B′ = B− 1

c2
v× E (74)

The primed reference system is identified with the one attached to the generic fluid
particle during its motion. The basic step is the evaluation of the Poynting vector in
the primed reference system [13,14,20]

ε0c
2E′ × B′ = ε0c

2E× B− ε0

2
(E2 + c2B2)v + τM · v (75)

by taking advantage of the transformations (73) and (74). Appendix E contains the
mathematical details. It is then a simple matter to solve Eq. (75) for ε0c

2E× B and
to substitute the resulting expression into Eq. (72) to obtain an alternative balance
equation of the electromagnetic energy

∂

∂t
[
ε0

2
(E2 + c2B2)] + ∇ · [ε0

2
(E2 + c2B2)v] =

−∇ · (ε0c
2E′ × B′ − τM · v)− j · E (76)

Equation (76) reflects the structure of Eq. (16) and shows an interesting and re-
markable similarity with Eq. (70). From its perspective, electromagnetic energy
is convected with matter and diffused with flux ε0c

2E′ × B′ − τM · v. This view-
point shares many analogies with the one discussed in Sec. 5 in relation to the
magnetic-induction equation [Eq. (40)]. In this case also, there is a conceptual ob-
jection, already hinted at by Napolitano [16], that obscures the appeal of this adap-
tation and of its consequent interpretation. The transformations (73) and (74) are
rigorously valid only between two reference systems in uniform rectilinear mo-
tion with respect to each other. Thus, they are not complete if the primed refer-
ence system is attached to the generic fluid particle because the latter is acceler-
ated (a = ∂v/∂t + v ·∇v). As explicitly emphasized by Feynman [40], transfor-
mations of electric-field intensity and magnetic induction between two reference
systems in relative accelerated motion do depend on the acceleration. One may
wonder whether or not the terms connected with acceleration that should appear in
Eqs. (73) and (74) are negligible in the non-relativistic approximation. Besides the
fact that general transformations including acceleration seem to be found nowhere
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in the literature, the question appears to be a moot argument not worth grappling
with because even if a positive answer is found, one cannot reconcile Eq. (76) with
the physical fact that the electromagnetic field and its properties momentum and
energy are attached to space.

7.6 Total energy

According to Eq. (68), all the electromagnetic energy that disappears locally reap-
pears as matter energy or viceversa, exactly in the same guise of what happens to
momentum. The sum of Eqs. (70) and (72), therefore, provides the balance equa-
tion of total energy

∂

∂t
[ρem +

ε0

2
(E2 + c2B2)] = −∇ · (ρvem + JU − τ · v + ε0c

2E× B) (77)

For the purpose of numerical calculations, Eq. (77) is perfectly equivalent to either
Eq. (70) or Eq. (71) but, on the contrary of the latter equations, it does not present
any burdensome production term.

7.7 Mechanisms of energy conversion

A summary of the productions relative to kinetic energy, internal energy and elec-
tromagnetic energy is illustrated in Table 1. The electromagnetic-energy production
[Eq. (67)] has been expanded according to Eq. (33). The tabulation gives a visual
representation of the possible mechanisms of energy conversion. Thus, electromag-
netic energy is converted partly in kinetic energy (ρcv ·E) through the action of the
electric field on the convection current and partly in internal energy (JQ ·E) through
the action of the electric field on the conduction current. In turn, kinetic energy
is converted in internal energy via the interplay between medium deformation and
tensional state (τ : ∇v), and through the combined action of the conduction cur-
rent and the magnetic induction (JQ · v × B). The Joule effect [JQ · (E + v × B)]
is the conjoint manifestation of two different conversion mechanisms of, respec-
tively, electromagnetic and kinetic nature. A more complete characterization of the
energy-conversion schematism illustrated in Table 1 covering aspects of reversibil-
ity and irreversibility presupposes the explicit knowledge of the entropy production.
By definition, the latter identifies the irreversible processes and, being subdued
to the second law of thermodynamics that guarantees its non-negativity, imposes
an inviolable direction arrow on some of the conversion pathways existing among
the corresponding terms in Table 1.The entropy production will be dealt with in
Sec. 9.2.
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Table 1
Mechanisms of energy conversion.

energy form production

kinetic −τ : ∇v + ρcv · E −JQ · v× B

internal +τ : ∇v +JQ · E +JQ · v× B

electromagnetic −ρcv · E −JQ · E

8 Concluding considerations related to the governing equations in open form

The governing equations in open form surveyed in the preceeding sections embrace
the physical phenomenology comprising the hypersonic flow field of an ionized,
but not polarized and magnetized, gas mixture and the presence of the electromag-
netic field. For quick reference, they are summarized in Tables 2–5 according to
several alternative but physically equivalent options. Regardless of the selected op-
tion, the set of equations is not operative yet because it contains the variables requir-
ing the assignment of phenomenological relations. These variables identify the
fundamental disciplines that converge into the foundational framework on which
hypersonics rests, namely thermodynamics (fiδ), chemical kinetics (ξ̇k), thermal
kinetics (u̇v,iδ), diffusion theory (Jmi

,τ, JUiδ
), and call for the selection of models

apt to represent in an as accurate as possible manner the physical behaviour man-
ifested by a given real medium under the specific circumstances characteristic of
a given application. The latter requirement materializes through the assignment of
the thermodynamic model (all fiδ) for the gas mixture and of the phenomenologi-
cal relations establishing the link between the unknowns ξ̇k, u̇v,iδ, Jmi

, τ, JUiδ
and

the basic unknowns, and/or their gradients, of the flow field. Only then, the equa-
tions in the governing set acquire the prerequisite closed form necessary to proceed
towards the achievement of their mathematical solution. It seems appropriate at
this point to emphasize that the seemingly incomplete character of the governing
set in open form should not hinder at all the development of algorithms for the
numerical solution of the differential equations that belong to the set. On the con-
trary, such a development is highly desirable. As a matter of fact, it will never be
stressed enough how much convenient it is for the efficient resolution of the flow
field that algorithm-development studies would concentrate on the governing set in
open form as main target. This is a proposition that certainly implies an ambitious
programme but the prospective benefits are too appealing to be ignored and the
idea to be hurriedly dismissed. If such a programme succeeds then the phenom-
enological relations become relegated to the role of subroutines, interchangeable
according to the specific necessities of a given application, and the architecture of
the numerical kernel will feature the extraordinary useful flexibility of being gen-
erally applicable and independent from the specific physical behaviour of the real
medium.
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Table 2
Governing equations relative to gas-mixture composition

equations Eq. unknowns
no. of equations

or sub. range

∂ρi

∂t
+ ∇ · (ρiv) = −∇ · Jmi +

r∑

k=1

ξ̇kνkiMi (17) ρi i = 1, · · · , n− s

∂ρ∗j
∂t

+ ∇ · (ρ∗jv) = −∇ · Jm∗j (22) ρ∗j j = 1, · · · , s

Jm∗j =
n∑

i=1

1
Mi

JmiσijM
∗
j (23) Jm∗j j = 1, · · · , s

ρ̂∗j = ρ∗j −
n−s∑

i=1

ρi

Mi
σijM

∗
j (27) ρ̂∗j j = 1, · · · , s

ρi =
s∑

j=1

ρ̂∗j σ̂-1
ji (29) ρi i = n−s+1, · · · , n

∂ρ

∂t
+ ∇ · (ρv) = 0 (21) ρ 1

ρc = −eNA

n∑

i=1

ρi

Mi
σis (13) ρc 1

JQ = −eNA

n∑

i=1

1
Mi

Jmiσis (31) JQ 3

j = ρcv + JQ (33) j 3

The construction of the thermodynamic model is a task belonging to the realm of
statistical thermodynamics (see Sec. 7.3). There are a few options available con-
cerning the derivation of the phenomenological relations for the unknown produc-
tions and diffusive fluxes. One can seek recourse to irreversible thermodynamics
[20–24,35–37,67–70], to the more sophisticated kinetic theory of gases [71–77] or
to experimental investigation. In practice, the phenomenological relations emerge
as the outcome of a concerted effort involving all three options to different degrees
of depth. The approach relying on irreversible thermodynamics is preferable to get
started in the derivation endeavour because, although its findings may have some-
times narrow limits of validity from a quantitative point of view, it proceeds in a
conceptually straightforward manner from the exploitation of the entropy produc-
tion and of the second law of thermodynamics, it is not affected (not to the same
extent, at least) by the overwhelming mathematical cumbersomeness and complex-
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Table 3
Governing equations relative to momentum

equations Eq. unknowns no. of equations

∂ρv
∂t

+ ∇ · (ρv v) = ∇ · τ + ρcE + j × B (48) v 3

or

∂

∂t
(ρv + ε0E× B) = −∇ · (ρv v− τ− τM) (53) v 3

τM = ε0(EE− 1
2
E2U) + ε0c

2(BB− 1
2
B2U) (51) τM 6

ity of the detailed kinetic theories and, above all, it offers a depth of insight that
goes a long way in the direction of understanding the transport processes at work
in the flow field and of recognizing the associated driving forces.

9 Linear irreversible thermodynamics

9.1 Preliminary remarks

The linear theory of irreversible thermodynamics will be revisited in the follow-
ing sections in conformity with the prescription of thermal equilibrium. The as-
sumption that thermal equilibrium prevails among the molecular degrees of free-
dom of the components is a recurrent characteristic shared by authors that follow
the irreversible-thermodynamics approach. Some [23,37] even go further and as-
sume mechanical equilibrium. Thermal equilibrium implies the possibility of deal-
ing with one single temperature and, obviously, brings in great simplification; on
the other hand, it restricts the applicability domain of the ensuing phenomenolog-
ical relations. The sole attempts the present author is aware of that ventured into
a thermal-disequilibrium analysis were made by Woods [22], Napolitano [35,36],
and Morro and Romeo [78–80]. However, the treatments proposed by Woods and
by Napolitano share similarities that contain elements, bearing on the definition of
the driving forces connected with the occurrence of multiple temperatures, appar-
ently not yet completely freed from conceptual objections. Similarly, Morro and
Romeo did not consider the internal structure of the molecules; in other words,
they implicitly assumed for each component the thermal equilibrium among its
molecular degrees of freedom. More work is certainly needed to improve knowl-
edge in this department of irreversible thermodynamics. The motivation justifying
the choice adopted here resides mainly in the intention to put the emphasis on
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Table 4
Governing equations relative to energy

equations Eq. unknowns
no. of equations

or sub. range

∂ρiuiδ

∂t
+ ∇ · (ρiuiδv) = −∇ · JUiδ

+ u̇v,iδ (57) uiδ
δ = 1, · · · , `i

i = 1, · · · , n

uiδ = −T 2
iδ

(
∂fiδ/Tiδ

∂Tiδ

)

vi

= uiδ(Tiδ, vi) (58) Tiδ
δ = 1, · · · , `i

i = 1, · · · , n

vi = 1/ρi vi i = 1, · · · , n

ρu =
n∑

i=1

`i∑

δ=1

ρiuiδ (56) u 1

em = u +
v2

2
(63) em 1

or

∂ρu

∂t
+ ∇ · (ρuv) =

− ∇ · JU + τ : ∇v + JQ · (E + v× B) (71) u 1

JU =
n∑

i=1

`i∑

δ=1

JUiδ
(60) JU 3

∂ρiuiδ

∂t
+ ∇ · (ρiuiδv) = −∇ · JUiδ

+ u̇v,iδ (57) uiδ

n∑

i=1

`i − 1

ρu =
n∑

i=1

`i∑

δ=1

ρiuiδ (56) uiδ 1

uiδ = −T 2
iδ

(
∂fiδ/Tiδ

∂Tiδ

)

vi

= uiδ(Tiδ, vi) (58) Tiδ
δ = 1, · · · , `i

i = 1, · · · , n

vi = 1/ρi vi i = 1, · · · , n

em = u +
v2

2
(63) em 1

the peculiarities of the physical phenomenology connected with the existence of
the electromagnetic field and, for that purpose, to keep the mathematical analysis
relieved from tangential or, even, unnecessary complexity. Nevertheless, the multi-
temperature phenomenology is quantitatively important in hypersonic applications
and should not be forgotten.
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Table 4
Continued

equations Eq. unknowns
no. of equations

or sub. range

or

∂ρem

∂t
+ ∇ · (ρemv) =

− ∇ · (JU − τ · v) + j · E (70) em 1

JU =
n∑

i=1

`i∑

δ=1

JUiδ
(60) JU 3

∂ρiuiδ

∂t
+ ∇ · (ρiuiδv) = −∇ · JUiδ

+ u̇v,iδ (57) uiδ

n∑

i=1

`i − 1

ρu =
n∑

i=1

`i∑

δ=1

ρiuiδ (56) uiδ 1

uiδ = −T 2
iδ

(
∂fiδ/Tiδ

∂Tiδ

)

vi

= uiδ(Tiδ, vi) (58) Tiδ
δ = 1, · · · , `i

i = 1, · · · , n

vi = 1/ρi vi i = 1, · · · , n

em = u +
v2

2
(63) u 1

or

∂

∂t
[ρem +

ε0

2
(E2 + c2B2)] =

−∇ · (ρvem + JU − τ · v + ε0c
2E× B) (77) em 1

JU =
n∑

i=1

`i∑

δ=1

JUiδ
(60) JU 3

∂ρiuiδ

∂t
+ ∇ · (ρiuiδv) = −∇ · JUiδ

+ u̇v,iδ (57) uiδ

n∑

i=1

`i − 1

ρu =
n∑

i=1

`i∑

δ=1

ρiuiδ (56) uiδ 1

uiδ = −T 2
iδ

(
∂fiδ/Tiδ

∂Tiδ

)

vi

= uiδ(Tiδ, vi) (58) Tiδ
δ = 1, · · · , `i

i = 1, · · · , n

vi = 1/ρi vi i = 1, · · · , n

em = u +
v2

2
(63) u 1
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Table 5
Governing equations relative to the electromagnetic field

equations Eq. unknowns no. of equations

∂B
∂t

+ ∇× E = 0 (36) B 3

ε0

∂E
∂t

− ε0c
2∇× B = −j (37) E 3

or

1
c2

∂2φ

∂t2
= ∇2φ +

ρc

ε0

(44) φ 1

1
c2

∂2A
∂t2

= ∇2A +
1

ε0c2
j (45) A 3

B = ∇× A (43) B 3

E = −∇φ− ∂A
∂t

(42) E 3

9.2 Entropy-balance equation and entropy production

The thermodynamics of the irreversible processes hinges on the entropy balance
equation

∂ρs
∂t

+ ∇ · (ρvs) = −∇ · JS + ṡv (78)

Equation (78) represents a formal balance involving entropy density s, diffusive
flux JS, and production ṡv, and acquires operational character only after that entropy
diffusive flux and production are given more explicit expressions. This is achieved
by taking advantage of the thermodynamic fundamental relation [24,39,68,81] of
the gas mixture in the entropic formulation which, under the assumption of thermal
equilibrium, reads formally

s = s (u, v, α1, α2, . . . , αn) (79)

In Eq. (79), v = 1/ρ is the specific volum of the gas mixture. In view of the forth-
coming analysis, it is appropriate to recall that the first derivatives of the function
(79) represent the state equations in the entropic scheme and define, respectively,
temperature, pressure and chemical potentials
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1

T
=

(
∂s
∂u

)

v,α

(80)

p

T
=

(
∂s
∂v

)

s,α

(81)

−µi

T
=

(
∂s
∂αi

)

u,v,αj 6=i

i = 1, · · · , n (82)

of the gas mixture. Also, for reasons of simplicity in the notation, it is convenient to
work out the mathematical details with the aid of the substantial-derivative operator
D/Dt = ∂/∂t+ v ·∇, whose intervention in the balance equations stems from the
equivalence [recall also Eq. (16)]

∂ρg

∂t
+ ∇ · (ρvg) = ρ

Dg

Dt
(83)

Equation (83) is a direct consequence of total-mass conservation [Eq. (21)]. Taking
into account the definitions (80)–(82), the application of the substantial-derivative
operator to the function (79) leads to

ρ
Ds
Dt

=
1

T
ρ
Du

Dt
+

p

T
ρ
Dv

Dt
−

n∑

i=1

µi

T
ρ
Dαi

Dt
(84)

The steps to achieve the explicit form of the entropy-balance equation appear now
evident. The first step consists in obtaining the volume-balance equation. The quick-
est way is to set g ≡ v in Eq. (83) and to take into account that ρv = 1; hence

ρ
Dv

Dt
= ∇ · v (85)

Counterintuitively as it may appear at first sight, the term on the right-hand side of
Eq. (85) does not represent the divergence of the diffusive flux of volume because,
by its very definition, a diffusive flux cannot depend on the velocity vector [see
Eq. (15)]; this inescapable requirement suggests that a volume-production (v̇v =
∇ · v) interpretation is the sole possible for the term in question. An alternative
explanation reaching the same conclusion can be found in Ref. [19]. The second
step involves the substitution of the component-mass balance equations [Eq. (17)],
the internal-energy balance equation [Eq. (71)] and the volume-balance equation
[Eq. (85)] into Eq. (84), and the consequent rearrangement to reflect the structure
of Eq. (78). This brings to the identification of the entropy diffusive flux

JS =
1

T
JU −

n∑

i=1

µi

T
Jmi

(86)

and of the entropy production
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ṡv =
1

T
τ : ∇v

− 1

T 2
(JU −

n∑

i=1

µiJmi
) ·∇T − 1

T

n∑

i=1

Jmi
·∇µi +

1

T
JQ · (E + v× B)

+
p

T
∇ · v− 1

T

r∑

k=1

ξ̇kAk (87)

The affinities of the chemical reactions are defined as linear combinations

Ak =
n∑

i=1

νkiMiµi (88)

of the chemical potentials. The entropy production [Eq. (87)] is not in its final form
but must be furtherly refined for the purpose of the present context. The refinement
consists in performing the standard expansion of the stress and velocity-gradient
tensors to bring forth their isotropic, traceless-symmetric (or deviatoric) and anti-
symmetric parts. This operation presupposes some familiarity with tensor analysis;
extensive help, in this regard, is provided in Refs. [22,23,37,71,74]. The stress ten-
sor separates in the sum

τ = πU + τ s
o (89)

of the isotropic part, which contains the (scalar) mean normal stress built as the
arithmetic average (π = 1/3τ : U) of the diagonal terms of the stress tensor, and of
the traceless-symmetric part τ s

o . The antisymmetric part of τ vanishes identically
because the stress tensor remains symmetric in the absence of polarization and
magnetization. The same expansion performed on the velocity gradient yields

∇v =
1

3
(∇ · v)U + (∇v) s

o + (∇v) a (90)

The isotropic part [1/3(∇ · v)U] describes volume deformation of fluid particles,
the traceless symmetric part [(∇v) s

o] describes their shape deformation, and the an-
tisymmetric part [(∇v) a] describes their rigid rotation with 1/2 ∇× v as angular
velocity. With the help of relatively simple tensor algebra, it can be shown that, tak-
ing into account Eqs. (89) and (90), the first term on the right-hand side of Eq. (87)
becomes

τ : ∇v = π(∇ · v) + τ s
o : (∇v) s

o (91)

The substitution of Eq. (91) and of the expression of the conduction-current density
in terms of the component-mass diffusive fluxes [Eq. (31)] into Eq. (87) leads to
the desired final form of the entropy production
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ṡv =
1

T
τ s

o : (∇v) s
o

− 1

T 2
(JU −

n∑

i=1

µiJmi
) ·∇T − 1

T

n∑

i=1

Jmi
· [∇µi + eNA

σis

Mi

(E + v× B)]

− 1

T
[−(π + p)]∇ · v− 1

T

r∑

k=1

ξ̇kAk (92)

In irreversible-thermodynamics parlance, Eq. (92) shows the generalized fluxes and
the generalized forces that produce entropy and, in so doing, identifies the processes
responsible for promoting irreversibility in the flow field. In addition to the habit-
ual effects, namely shape [(∇v) s

o] and volume (∇ · v) deformation of the medium,
nonequilibrium chemical reactions (Ak 6= 0), thermal (∇T ) and chemical-potential
(∇µi) disuniformities, also the electromagnetic field enlists in the category of the
irreversible processes through contributions that add to the chemical-potential gra-
dients and connect to the mass diffusive fluxes of the electrically charged compo-
nents. Generalized fluxes and forces are summarized in Table 6.
Table 6
Generalized fluxes and forces contributing to the entropy production [Eq. (92)]

flux force tensorial order subscript range

τ s
o (∇v) s

o 2

1
T

(JU −
n∑

i=1

µiJmi) ∇T 1

Jmi ∇µi + eNA

σis

Mi
(E + v× B) 1 i = 1, · · · , n

−(π + p) ∇ · v 0

ξ̇k Ak 0 k = 1, · · · , r

The core of irreversible thermodynamics is the exploitation of the expression of the
entropy production [Eq. (92)] and of the second law of thermodynamics

ṡv ≥ 0 (93)

which endorses its unconditional non-negativity as an ineluctable fact of nature, for
the purpose of obtaining suitable expressions of the generalized fluxes in terms of
the generalized forces. In this regard, the validity of the Curie postulate is assumed
here. The postulate affirms that generalized fluxes of a given tensorial order can
depend only on generalized forces of the same tensorial order. This is a simplifica-
tion because the postulate is rigorously applicable only for isotropic media; that is
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not the case in the presence of the electromagnetic field because the existence of
the magnetic induction removes the medium isotropy. Thus, the assumption of the
postulate validity implies the negligibility of the couplings among each generalized
flux and all the generalized forces of different tensorial order. The motivation be-
hind this choice is the same adduced at the end of Sec. 9.1 to justify the assumption
of thermal equilibrium, namely the intention to emphasize the essential characteris-
tics due to the presence of the electromagnetic field and, at the same time, minimize
mathematical complexity. Readers interested in the general case that includes the
neglected cross effects are referred to the specialized literature mentioned in Sec. 8
(Refs. [22,23] in particular). To compensate to some extent for the limitations en-
suing from the Curie postulate, the anisotropy imposed on the medium by the mag-
netic induction will be taken into account in the tensorial nature of the transport
coefficients [22,23,71,74,75,77,82–90].

In compliance with the invoked Curie postulate, it is convenient to emphasize the
subdivision of the entropy-production terms with same tensorial order by rephras-
ing Eq. (92) as

ṡv = ṡv,2 + ṡv,1 + ṡv,0 (94)

in which

ṡv,2 =
1

T
τ s

o : (∇v) s
o (95)

ṡv,1 =− 1

T 2
(JU −

n∑

i=1

µiJmi
) ·∇T

− 1

T

n∑

i=1

Jmi
· [∇µi + eNA

σis

Mi

(E + v× B)] (96)

ṡv,0 = − 1

T
[−(π + p)]∇ · v− 1

T

r∑

k=1

ξ̇kAk (97)

Given the independence of the three groups (95), (96) and (97), the non-negativity
property of the entropy production [Eq. (93)] is passed on to each of them. They
will be dealt with separately in the following sections.

9.3 Tensorial (second-order) generalized force

The traceless symmetric part of the velocity gradient is the sole generalized force
of second tensorial order that, conjointly with the traceless symmetric part of the
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stress tensor, participates in the entropy production [Eq. (95)]

ṡv,2 =
1

T
τ s

o : (∇v) s
o ≥ 0 (98)

The application of the Curie postulate leads to the relatively simple phenomeno-
logical relation [22,23,74]

τ s
o = 2 m : (∇v) s

o (99)

that resembles the more familiar Newton law. The dynamic viscosity m in Eq. (99)
is a fourth-order tensor due to the anisotropy introduced by the magnetic induction.
Its determination is beyond the reach of irreversible thermodynamics and it must be
considered an import either from the kinetic theory of gases or from experiments.
A thorough analysis of the dynamic-viscosity tensor is beyond the purpose of the
present context. Here, it is sufficient to recall that most of the 81 scalar coefficients
required to compose the tensor turn out to vanish and that its complete characteri-
zation is limited to the knowledge of only five scalar coefficients. The sign of some
of them must be necessarily positive for compliance with the non-negativity of ṡv,2.
References [22,23,74] provided detailed descriptions of structure and properties of
the dynamic-viscosity tensor.

9.4 Vectorial generalized forces

Phenomenological relations for vectorial generalized forces arise from the entropy
production related to the first tensorial order

ṡv,1 =− 1

T 2
(JU −

n∑

i=1

µiJmi
) ·∇T

− 1

T

n∑

i=1

Jmi
· [∇µi + eNA

σis

Mi

(E + v× B)] ≥ 0 (100)

In this regard, one has to confront a multifaceted situation because the combination
of generalized fluxes and forces appearing in Eq. (100) is not unique. Different,
although equivalent, forms of ṡv,1 exist in consequence of transformations to which
fluxes and forces can be subjected, a peculiarity due to the occurrence of mass dif-
fusion and recognized long time ago. The equivalence of the several forms stems
from the expectable, and provable, invariance of the phenomenological relations
for internal-energy diffusive flux and component-mass diffusive fluxes with respect
to the mentioned transformations. On the other hand, the multiplicity of forms im-
plies the non-uniqueness of the heat-flux definition. This fact should not come as
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a surprise or be perceived as the manifestation of some inconsistency in the theory
because, as appropriately remarked by Napolitano [35,36] in 1969, the

. . . arbitrariness in the definition of heat flux stems from the fact that any time
there is a flux of matter . . . there is also a flux of energy . . . and it is only a mat-
ter of convention (or of convenience) to single out one or more of these fluxes of
energy and call them heat flux. . . . Any possible definition obviously leaves all
physical results unchanged and one should only pay attention in using it consis-
tently, i.e. in associating to it the pertinent expression for the entropy production
. . .

For a given selection of generalized forces, the heat flux is identified with the gen-
eralized flux associated with the temperature gradient. Thus

J′q = JU −
n∑

i=1

µiJmi
= TJS (101)

is the heat-flux definition compatible with the generalized forces that appear in
Eq. (100). Equation (101) is somewhat reminiscent of the classical-thermodynamics
relation dQ = TdS but it has received scant attention and its implications on the
derivation of the phenomenological relations have rarely been pursued in detail
[23,24,68]. Another form of ṡv,1 encountered in the literature [21,23,35–37] is ob-
tained by contracting the terms with the component-mass diffusive fluxes

µi

T 2
Jmi

·∇T − 1

T
Jmi

·∇µi = −Jmi
·∇µi

T
(102)

in Eq. (100). In this way, the latter becomes

ṡv,1 = − 1

T 2
JU ·∇T − 1

T

n∑

i=1

Jmi
· [T∇µi

T
+ eNA

σis

Mi

(E + v× B)] (103)

and yields the heat-flux definition

J′′q = JU = TJS +
n∑

i=1

µiJmi
(104)

The overwhelmingly preferred form [23,35–37] of ṡv,1, however, is the one arrived
at from the assumption according to which the components of the gas mixture be-
have as perfect gases. Indeed, in this case the chemical potential can be expressed
in terms of specific enthalpy hi and entropy s i of the i-th component

µi = hi − T s i (105)
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and its gradient depends on those of temperature and partial pressure pi

∇µi = −s i∇T + vi∇pi (106)

The substitution of Eqs. (105) and (106) into Eq. (100) leads to the form

ṡv,1 =− 1

T 2
(JU −

n∑

i=1

hiJmi
) ·∇T

− 1

T

n∑

i=1

Jmi
· [vi∇pi + eNA

σis

Mi

(E + v× B)] (107)

with the corresponding heat-flux definition

J′′′q = JU −
n∑

i=1

hiJmi
= TJS − T

n∑

i=1

s iJmi
(108)

The instances considered so far by no means exhaust the list of possibilities. Other
choices [37] of the generalized fluxes and forces, together with the identification of
the correspondig heat flux, are possible. On the other hand, it is neither necessary
nor intended in the present context to embark in an exhaustive survey. The three
described forms of ṡv,1 suffice to portray the manifoldness of the heat-flux concept.
The irrelevance of its arbitrariness, pointed out in Napolitano’s remark, becomes
mathematically evident and comprehensible by overturning Eq. (101), Eq. (104)
and Eq. (108) as

JU = J′q +
n∑

i=1

µiJmi
= J′′q = J′′′q +

n∑

i=1

hiJmi
(109)

and by keeping in mind that the internal-energy diffusive flux is invariant with
respect to any possible selection of generalized fluxes, forces and corresponding
heat-flux definition. Indeed, it is the internal-energy diffusive flux to be the physical
flux that really matters in order to evaluate the thermal energy transferred from the
flow field into a body or viceversa.

The derivation of the phenomenological relations of first tensorial order pursued
here differs from the habitual treatments found in the literature. It proceeds along a
pathway that, starting from a slight adaptation of Eq. (107), establishes a strong par-
allelism with the Chapman-Enskog method [71–77,82,84–88] of the gas-kinetics
theory and enormously facilitates the import of the transport coefficients provided
by that method. The transformation that takes care of bringing ṡv,1 into the appropri-
ate form presupposes the temporary replacement of the component-mass diffusive
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flux in the term

Jmi
· [vi∇pi + eNA

σis

Mi

(E + v× B)] (110)

with the intermediate appearance of the diffusion velocity defined in Eq. (18). After
substituting the latter into Eq. (110), taking into account that ρivi = 1, and setting
for brevity

Xi = ∇pi + eNAρi
σis

Mi

(E + v× B) (111)

Eq. (107) can be rephrased as

T ṡv,1 = −(JU −
n∑

i=1

hiJmi
) ·∇ ln T −

n∑

i=1

wi ·Xi (112)

The advantage of using Eq. (112) rather than Eq. (107) is that the former leads to
operate with the central ingredients [71,72,74] of the Chapman-Enskog method,
namely the vectors wi,Xi and ∇ ln T . The application of the Curie postulate to
Eq. (112) provides the phenomenological relations

wi =−
n∑

j=1

Lij ·Xj − LiT ·∇ ln T (113)

JU −
n∑

i=1

hiJmi
=−

n∑

i=1

LTi ·Xi − LTT ·∇ ln T (114)

in which the phenomenological coefficients Lij,LiT,LTi and LTT are second-order
tensors due to the presence of the magnetic induction. Equations (113) and (114)
mirror exactly the expressions intervening in the Chapman-Enskog method and, in
consequence of that, the tensors Lij,LiT,LTi and LTT can be directly and explicitly
related as

Lij =−1

p

ρ

ρi

MiMj

M2
Dij (115)

LiT =
1

ρi

DT
i (116)

LTi =
1

ρi

D̃
T

i(−B) (117)

LTT = T l′ (118)
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to the tensors of diffusion Dij , of thermal diffusion DT
i and to the primed thermal-

conductivity tensor l′. The prime attached to the thermal-conductivity tensor in
Eq. (118) is important: it represents the definition of thermal conductivity consis-
tent with the scalar one that does not include the thermodiffusion ratios [72,74].
The latter tensors are styled according to the (scalar) notation of Hirschfelder, Cur-
tiss and Bird [72] only for reasons of convenience related to flow calculations.
Yet, the diffusion tensors Dij in Eq. (115) must be consistent with the conven-
tion adopted by Chapman and Cowling {Eqs. (18.2,9) and (18.3,4) in Ref. [71]}
and Ferziger and Kaper {Eq. (6.3-24) in Ref. [74]} to fix the indeterminacy of the
diffusion-related coefficients appearing in the first-order perturbation of the distri-
bution function in order to make Eq. (113) operational. The diffusion tensors con-
sistent with the indeterminacy-fixing convention adopted by Hirschfelder, Curtiss
and Bird {Eq. (7.3-31) in Ref. [72]} are incompatible with Eq. (113) because of the
presence in it of the vectors Xj rather than the vectors {Eq. (18.2,6) in Ref. [71]}

dj = ∇xj + (xj − ρj

ρ
)∇ ln p− ρj

ρp
(ρF j −

n∑

k=1

ρkF k) (119)

habitually employed in kinetic theory and based mainly on the gradients of the
molar fractions xj . In the present case, the external forces in Eq. (119) arise from
the electromagnetic field

F i = −eNA

σis

Mi

(E + v× B) (120)

Another important reason that justifies this choice was expressed by Ferziger and
Kaper [74]

We remark that there is a considerable variation among authors in the nomen-
clature and definition of the multicomponent diffusion and thermal diffusion co-
efficients. The definition [adopted by Ferziger and Kaper, as well as Chapman
and Cowling] of the multicomponent diffusion coefficients is consistent with
Onsager’s reciprocity relations of irreversible thermodynamics ... This consis-
tency is of particular importance if one desires to generalize the kinetic theory
of gas mixtures to systems in which the number density of each species is not
a conserved quantity — e.g., in gas mixtures in which chemical reactions occur
between constituents or in polyatomic gases in which transition occur between
states with different internal degrees of freedom ... It has been shown ... that, in
these cases, it is of importance to choose the definition of the transport coeffi-
cients in such a way that they are consistent with Onsager’s reciprocity relations
and that the definition of the multicomponent diffusion coefficients given [here]
is therefore to be preferred to, e.g., the definition given by Hirschfelder, Curtiss
and Bird ... Recently, J. Curtiss ... has supported this point of view.
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In Eq. (115), M is the average molar mass

M =

(
n∑

i=1

αi

Mi

)−1

=
n∑

i=1

Mixi (121)

of the gas mixture. Equation (117) is an Onsager reciprocal relation. The tilde in-
dicates matrix transposition and the attached functional dependence reminds the
necessary inversion of the sign of the magnetic induction. Similar reciprocal re-
lations apply also to the diffusion and thermal-conductivity tensors. However, al-
though important, reciprocity details are not of specific relevance in the present
context; interested readers are referred to the specialized literature, particularly the
textbooks by Woods [22] and De Groot and Mazur [23].

The phenomenological relations

Jmi
=

ρ

p

Mi

M

n∑

j=1

Mj

M
Dij ·Xj − 1

T
DT

i ·∇T (122)

for the component-mass diffusive fluxes follow from the substitution of Eqs. (115)
and (116) into Eq. (113) and of the resulting diffusion velocities into Eq. (18). The
kinetic-theory result

n∑

i=1

MiDij = 0 (123)

n∑

i=1

DT
i = 0 (124)

makes the condition (19) identically satisfied. In the same guise, the substitution
of Eqs. (117) and (118) into Eq. (114) yields the phenomenological relation for the
internal-energy diffusive flux

JU =
n∑

i=1

hiJmi
−

n∑

i=1

1

ρi

D̃
T

i ·Xi − l′ ·∇T (125)

In Eq. (125), the functional dependence (−B) has been dropped from the trans-
posed thermal-diffusion tensor in order to simplify the notation; nevertheless, this
peculiarity should always be kept in mind.

In order to derive phenomenological relations analogous to Eqs. (122) and (125),
several authors [23,35–37] followed an alternative procedure starting directly from
Eq. (107). In their analyses, the term vi∇pi appears as the isothermal gradient of
the chemical potential whose definition descends from the following rearrangement

vi∇pi = ∇µi + s i∇T = ∇Tµi (126)
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of Eq. (106). Then, the generalized forces associated with the component-mass
diffusive fluxes in Eq. (107) appear as

Fi = ∇Tµi + eNA

σis

Mi

(E + v× B) (127)

The ensuing phenomenological relations for the component-mass diffusive fluxes
and the internal-energy diffusive flux are further manipulated to bring forth the gra-
dients of mass fractions (Fick law) and pressure. The drawback of this procedure
resides in the fact that the intervening tensorial phenomenological coefficients, say
L′ij,L

′
iT,L

′
Ti,L

′
TT, are not expressible in terms of the kinetic-theory tensors Dij,D

T
i , l

′

as simply as in Eqs. (115)–(118) but, in order to obtain the required correlation,
necessitate an elaborate manipulation involving the resolution of cumbersome al-
gebraic systems of equations.

The phenomenological relations (122) and (125) are operational equations that, to-
gether with Eq. (111) and with adequate input from the kinetic theory, qualify to
complement the set of governing equations in open form for the purpose of nu-
merical calculations. However, noticeable insight towards the understanding of the
transport processes can be gained if the role played by the contributions compos-
ing the generalized force Xi is made explicit. The substitution of Eq. (111) into
Eq. (122) yields

Jmi
=

ρ

p

Mi

M

n∑

j=1

Mj

M
Dij ·∇pj + Fm

i · (E + v× B)− 1

T
DT

i ·∇T (128)

with the tensorial coefficients

Fm
i = eNA

ρ

p

Mi

M2

n∑

j=1

Dijρjσjs (129)

Equation (128) shows explicitly how the electromagnetic field participates to the
build-up of the component-mass diffusive fluxes at the same footing of the partial-
pressure and temperature gradients. The appearance of the mass-fraction gradients
is one step away from Eq. (128) and is produced by expanding the partial pressures
with the aid of the perfect-gas relations pi = xip and xi = αiMi/M . Accordingly,
Eq. (128) becomes

Jmi
= −

n−1∑

k=1

Dik ·∇αk + Pm
i ·∇p + Fm

i · (E + v× B)− 1

T
DT

i ·∇T (130)

with the tensorial coefficients
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Dik = (
Mi

Mk

− Mi

Mn

)(
n∑

j=1

Dijρj)− ρ
Mi

M
(Dik −Din) (131)

Pm
i =

1

p

Mi

M

n∑

j=1

Dijρj (132)

Equation (130) warns against the uncareful practice of limiting the expressions of
the component-mass diffusive fluxes to the sole Fick law, namely the first term on
the right-hand side. Even in the event of negligible thermodiffusion and vanishing
electromagnetic field, that widely assumed law may not be sufficient to charac-
terize completely the component-mass diffusive fluxes because the tensorial coef-
ficients Pm

i , being constructed according to combinations of the diffusion tensors
very similar to those that appear in Eq. (131), could have magnitudes compara-
ble to the tensorial coefficients Dik. Thus, it seems safer not to discard a priori
the pressure-gradient contribution in Eq. (130) but to let its negligibility, if any,
arise spontaneously during the course of numerical simulations. Equation (131) il-
lustrates the sometimes forgotten fact that the diffusion coefficients appearing in
Fick law must be obtained from appropriate adaptation of those provided by the
Chapman-Enskog method.

The substitution of Eq. (128) into Eq. (31) leads to a more explicit and meaningful
expression of the conduction-current density

JQ =
n∑

j=1

lp
ej ·∇pj + le · (E + v× B) + lT

e ·∇T (133)

and to the recognition of the pressoelectrical-conductivity tensors

lp
ej = −eNA

ρ

p

Mj

M2

n∑

i=1

σisDij (134)

the electrical-conductivity tensor

le = −(eNA)
2 ρ

pM2

n∑

i=1

n∑

j=1

σisDijρjσjs (135)

in rigorous agreement with the expression derived by Chapman and Cowling [71],
and the thermoelectrical-conductivity tensor

lT
e = eNA

1

T

n∑

i=1

σis

Mi

DT
i (136)

Equation (133) evidences unambiguously that the generalized Ohm law alone may
not be sufficient to characterize the conduction-current density in an ionized gas
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mixture because, even in the event of negligible thermodiffusion, the contributions
associated with the partial-pressure gradients may not be negligible with respect to
the diffusion promoted by the electromagnetic field. These considerations have a
negative impact on the applicability of the magnetic-induction equation discussed
in Sec. 5. At the same time, Eq. (135) casts skepticism about the physical mean-
ingfulness of (actually, it severely admonishes against) undertaking flow-field sim-
ulations in the presence of the electromagnetic field in which the gas mixture is
assimilated to a perfect gas without electrically charged carriers but still with a
finite (scalar) electrical conductivity. This is a flagrant infringement of physical
coherence because the electrically-conductivity tensor vanishes identically in the
absence of electrically charged components, as Eq. (135) unconditionally indicates
(σis = σjs = 0).

An expression structured in the same style of Eq. (128) can be obtained also for the
internal-energy diffusive flux by substituting Eqs. (111) and (128) into Eq. (125);
the final outcome reads

JU =
n∑

j=1

Pu
j ·∇pj + Fu · (E + v× B)− lu

T ·∇T (137)

with the tensorial coefficients

Pu
j =

n∑

i=1

(δij
1

ρj

D̃
T

j +
ρ

p
hi

MiMj

M2
Dij) (138)

Fu = eNA

n∑

i=1


D̃

T

i

σis

Mi

+
ρ

p
hi

Mi

M2

n∑

j=1

Dijρjσjs


 (139)

lu
T = l′ +

1

T

n∑

i=1

hiD
T
i (140)

There are two aspects related to Eq. (137), usually not encountered in traditional
hypersonic-flow theory, that may have implications for spacecraft thermal protec-
tion during planetary reentry. As clearly shown in Eq. (137), there is a direct con-
tribution arising just from the mere existence of the electromagnetic field. In par-
ticular, the influence of the magnetic induction disappears on the wall (v = 0) of a
reentry body but the influence of the electric field could still play a role. Moreover,
Eq. (137) indicates also that, on the contrary of the widespread habitude acquired
within the realm of a scalar transport theory, the component of JU normal to the
wall of a reentry body depends not only on the normal gradients of partial pres-
sures and temperature but also on their tangential gradients [23]. With the goal in
mind of achieving a controlled mitigation of the internal-energy diffusive flux, this
occurrence gives cause for the necessity to produce an accurate assessment of the
importance of the off-diagonal terms in the transport tensors. More specifically,
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a thorough understanding of the anisotropic character of the transport tensors un-
der the influence of the electromagnetic field appears to be a worthwhile target.
Chapman and Cowling [71] pioneered the study of this subject but the cases they
considered were subdued to simplifications (steady states, slight or full ionization,
binary mixtures, absence of chemical reactions, mixtures macroscopically at rest,
and the like) which appear (sometimes very) restrictive when looked at from the
perspective of hypersonics applications. Chapman and Cowling’s findings and con-
clusions have reverberated throughout the literature [11,22,74]; unfortunately, the
accompanying simplifications seem to have been somehow diluted during the rever-
beration process. Thus, central issues are still in demand of attention. For example,
it is important to identify the circumstances according to which the anisotropy pos-
sessed by the transport tensors is or is not negligible, to recognize if the anisotropy
works against or in favor of the sought mitigation, to investigate the existence of
potential ways to enhance the anisotropy effects and drive them towards the sought
mitigation. The work already done [71,74,75,77,82–90] requires improvement in
the generality of the findings and, if necessary, in their adaptation to routine use in
numerical calculations.

9.5 Scalar generalized forces

The derivation of the phenomenological relations relative to the scalar generalized
forces is based on the entropy production related to the zero tensorial order

ṡv,0 = − 1

T
[−(π + p)]∇ · v− 1

T

r∑

k=1

ξ̇kAk ≥ 0 (141)

The application of the Curie postulate to Eq. (141) provides the phenomenological
relations

−(π + p) =−
r∑

k=1

lvkAk − lvv∇ · v (142)

ξ̇k =−
r∑

j=1

lkjAj − lkv∇ · v (143)

The scalar phenomenological coefficients lvk, lvv, lkj, lkv form an [(r + 1) × (r +
1)] matrix which must be positive definite in order to have the inequality (141)
identically satisfied. Onsager reciprocal relations exist also for these coefficients;
plenty of information is available in the specialized literature. The scalar phenom-
enological coefficients appearing in Eqs. (142) and (143) have not been investi-
gated with the same attention devoted to the kinetic-theory tensors encountered
in Secs. 9.3 and 9.4 because it was soon recognized [23,35,36,69] that the linear
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combinations of the affinities in Eqs. (142) and (143) have very narrow limits of
validity. The coefficient lvv is better known as the bulk-viscosity coefficient

lvv = mv (144)

and is the only one which has received attention because it characterizes the direct
effect of the medium compressibility (∇ · v) on the generation of normal stresses.
Even with the limitation imposed by their restricted applicability, Eqs. (142) and
(143) retain importance from a theoretical point of view because they reveal unam-
biguously the existence of cross effects between chemical reactions and medium
compressibility [21,35–37]. This aspect has been systematically ignored by au-
thors concerned with CFD applications. Notwithstanding a few daring attempts
[91–93] towards theoretical progress on the subject matter, the concern expressed
by Napolitano [35,36] in 1969 that

Not much is known nor is done . . . to ascertain the order of magnitude of this
type of coupling . . .

is, unfortunately, still applicable today.

The disregard of cross effects brings Eq. (142) into the simplified form

π = −p + mv∇ · v (145)

which finds widespread use in the applications, most often accompanied by the
ulterior approximation of vanishing bulk viscosity (mv = 0). In the same guise,
Eq. (143) would become

ξ̇k = −lkkAk (146)

However, chemical-reactions rates are never used in the form (146) but, rather, in
the non-linear form

ξ̇k = κf
k

n∏

i=1

(
ρi

Mi

)ν (r)
ki −κb

k

n∏

i=1

(
ρi

Mi

)ν (p)
ki

(147)

that features explicit dependence on the component partial densities and that some-
times is referred to as the law of mass action [23,35,36]. Equation (147) arises from
a blend of theoretical considerations and (mainly) experimental evidence [76,94–
99]. The reaction constants κf

k,κb
k are in reality functions of the temperature, cus-

tomarily assumed in accordance with a modified version

κf,b = CT ηe−Ea/KBT (148)
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of the Arrhenius law, and are related to each other through the chemical-equilibrium
constant defined in terms of the component concentrations

κf
k

κb
k

= K c
k(T ) (149)

A theoretical justification for Eq. (148) can be produced only in particularly sim-
ple cases. In it, KB is the Boltzmann constant (1.3806503·10−23 J·K−1) while the
constant C, the temperature exponent η, and the activation energy Ea are derived,
in practice, by utilizing that expression as an interpolation formula constructed on
experimentally determined data and, then, collected in databases [100,101] readily
available to serve the needs of the applications. The reliability of Eq. (148) becomes
weak in the high-temperature range due to serious difficulties encountered in carry-
ing out accurate measurements. The uncertainties of the reaction constants at high
temperatures is a well known and long standing problem in demand of resolution.
In the chemical-equilibrium limit [(Ak → 0) ⇒ Ak/RGT<<1], Eq. (147) reduces
[35–37,69] to Eq. (146) with the phenomenological coefficient given by

lkk =
κf

k

RGT

n∏

i=1

(
ρe

i

Mi

)ν (r)
ki

=
κb

k

RGT

n∏

i=1

(
ρe

i

Mi

)ν (p)
ki

(150)

The subscript “e” attached to the partial densities in Eq. (150) indicates chemical-
equilibrium values corresponding to a local couple of thermodynamic parameters
[(T, v) or (T, p)]; RG is the universal gas constant (8.314472 J·K−1).

Notwithstanding the widespread use of Eq. (147) in CFD, it is important to keep
in mind that the premises on which it is constructed reflect the chemical kinetics
of a perfect-gas mixture contained in a constant volume, macroscopically at rest,
without spatial disuniformities, and whose population distributions over the quan-
tum energy states associated with the molecular degrees of freedom can still be
sufficiently assimilated to a Boltzmann distribution [35,36]. The chemical-kinetics
phenomenology described by Eq. (147) is, therefore, substantially simpler than the
more complex one accompanying hypersonics situations. For example, some un-
resolved, but of extreme relevance, issues are the failure of Eq. (147) to bring into
account the influence of the medium compressibility, the intrinsic difficulty to adapt
it to multitemperature situations, and its incompatibility with quantum-state popu-
lations that do not follow a Boltzmann distribution.

10 Conclusions

The understanding of the coupling between the hypersonic flow field of an ionized
gas mixture and the electromagnetic field is conceptually straightforward in the ab-
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sence of polarization and magnetization effects. The recognition of the weaknesses
affecting the assumptions on which the derivation of the largely used magnetic-
induction equation is based indicates that the adoption of either directly the Maxwell
equations [Eqs. (36) and (37)] or the field equations for the electromagnetic scalar
and vectorial potentials [Eqs. (44) and (45)] represents a better choice reflecting a
more consistent physical description of the electromagnetic field. The cost to pay is
the development of appropriate numerical algorithms that, especially in the case in
which the field equations of the potentials are chosen, may turn out to be substan-
tially different from those in use since many years in computational fluid dynam-
ics. Obviously, the coverage of the physical phenomenology relative to polarization
and magnetization is desirable for reasons of both scientific interest and engineer-
ing necessity. Thus, the open-form governing equations should be extended for that
purpose. The extension should be accomplished in a bilateral manner, that is, not
only by using the appropriate Maxwell equations but also by introducing the re-
quired ingredients on the fluid-dynamics side such as, for example, the specific
angular momentum, its associated energy, their respective balance equations, and
so on. Subsequently, the formalization of state-to-state thermal kinetics and radia-
tion together with their integration in the open-form governing equations represent
a wishful endeavour towards completion.

The open-form governing equations must be complemented with phenomenolog-
ical relations. In this respect, the method of irreversible thermodynamics, based
on the analysis of the entropy production, proves useful to recognize generalized
fluxes and generalized forces at work in the flow, achieves deep insight into the
physics of their cross couplings, and provides linear phenomenological relations
that, although with the exception of the chemical-reaction rates, go rather far in
satisfying the needs of engineering applications. The method straightforwardly re-
veals how the influence exerted by the electromagnetic field on the diffusion of
(electrically-charged) component masses and internal energy becomes manifest.
There is a novelty with respect to more habitual fluid-dynamics situations without
electromagnetic field: the presence of the magnetic induction destroys the isotropy
of the flow. The introduced anisotropy calls for particular attention to the possibility
of cross coupling between generalized fluxes and forces of different tensorial order
and to understand the importance of the tensorial nature of the transport coefficients
with the goal in mind of exercising control over the distributions of internal-energy
diffusive flux imposed on the surfaces of a body during planetary reentry. Multi-
temperature circumstances should not be underestimated. There have been efforts
to bring the multitemperature phenomenology within the reach of irreversible ther-
modynamics but the actual status of the theory demands further improvements.
This appears a mandatory task to pursue in order to incorporate correctly the ef-
fects originating from the thermal disequilibrium among the molecular degrees of
freedom of the components.

The final goal of the theoretical fluid dynamicist is the construction of an ade-
quate mathematical apparatus with the proper physics built in it. According to the
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previous considerations, there is plenty of work in the theoretical arena awaiting
investigation and understanding. New problems join old ones, some of which were
identified and formulated long time ago but are still unresolved today. In this re-
spect, it can be safely maintained that two antithetical approaches emerge. The
minimalist approach consists in throwing into the equations a simplified physics,
most of the times even stretched beyond its domain of applicability, and rushing
to the computer in the hope that the discarded physics is unimportant and that ei-
ther numerically predicted flows match experimental evidence within an acceptable
approximation or sensitivity analyses produce conservative results. This is a risky
approach. For one thing, accurate experimental evidence in hypersonic regime may
be difficult to gather; in addition, the necessity imposed by engineering applications
to produce results within awfully short time limits induces to yield at the temptation
of numerically fine-tuning the physical models, an exercise that sometimes is cam-
ouflaged under the epithet of validation. The maximalist approach is characterized
by an attitude of thoroughness towards the physics translated into the equations;
conceptual difficulties are not avoided but are confronted without hesitation in or-
der to push further ahead the comprehension of the phenomenology dealt with.
This is a lengthy approach, certainly incompatible with the shortness of the time
limits mentioned above. On the other hand, it is inescapable when the minimalist
approach leads into a situation of stagnating failure. The choice between the two
approaches is a matter of personal taste. The last years have seen an unquestionable
unbalance towards the former approach sponsored by an unjustified rush to compu-
tational fluid dynamics. Probably, the most convenient way to go about is the one
that takes advantage of both. When dealing with new physical complexities, the
minimalist approach is acceptable to start with but resources should also be allo-
cated to promote a parallel line of development following the maximalist-approach
philosophy. In the author’s opinion, the latter is a sine qua non condition to achieve
progress in such a complex discipline as hypersonics is.
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Appendices

A Magnetic-induction equation

Neglecting the displacement-current density ε0∂E/∂t, Eq. (37) becomes

j = ε0c
2∇× B (A.1)

Expanding the electric-current density in Eq. (A.1) according to Eq. (33) gives the
conduction-current density

JQ = ε0c
2∇× B− ρcv (A.2)

The presumed applicability of the generalized Ohm law [Eq. (38)] brings Eq. (A.2)
into the form

le (E + v× B) = ε0c
2∇× B− ρcv (A.3)

from which the electric field

E =
ε0c

2

le

∇× B− ρc

le

v− v× B (A.4)

can be obtained. The substitution of Eq. (A.4) into Eq. (36) and the subsequent
expansion of the terms affected by the curl operator leads to Eq. (40).

B Field equations for scalar and vector potentials

Taking into account that the divergence of a curl and the curl of a gradient give
always a null result, Eq. (35) implies that the magnetic induction can be expressed
in terms of a vector potential and of an arbitrary function of space and time as

B = ∇× (A′ + ∇ψ) (B.1)

The replacement of three scalar quantities, namely the components of the vector B,
with four scalar quantities, namely the components of the vector A′ and the scalar
function ψ, introduces an arbitrariness about the vector potential A = A′ + ∇ψ
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which, in order to be resolved, requires the assignment of a conveniently chosen
scalar condition. With this provision, Eq. (B.1) can be simply rephrased as

B = ∇× A (B.2)

The field equation for the vector potential derives from Eq. (37). Performing the
curl on both sides of Eq. (B.2) yields

∇× B = ∇× (∇× A) = ∇(∇ · A)−∇2A (B.3)

The substitution of Eq. (B.2) into Eq. (36) provides the form

∇× E +
∂

∂t
∇× A = 0 (B.4)

which, after permutation of the time derivative with the gradient operator, turns into

∇× (E +
∂A
∂t

) = 0 (B.5)

The quantity in brackets is, thus, irrotational and can be expressed as the gradient
of a scalar potential

E +
∂A
∂t

= −∇φ (B.6)

From Eq. (B.6), the electric-field intensity is obtained in terms of the potentials as

E = −∇φ− ∂A
∂t

(B.7)

The substitution of Eqs. (B.3) and (B.7) into Eq. (37) leads to

ε0c
2[∇(∇ · A)−∇2A] = j − ε0

∂

∂t
(∇φ +

∂A
∂t

) (B.8)

which can be rearranged as

1

c2

∂2A
∂t2

−∇2A + ∇(∇ · A +
1

c2

∂φ

∂t
) =

1

ε0c2
j (B.9)

Inspection of Eq. (B.9) suggests that the gauge transformation

1

c2

∂φ

∂t
+ ∇ · A = 0 (B.10)
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rather than the gauge ∇ · A = 0, customarily imposed in magnetostatics, is the
most convenient choice to resolve the arbitrariness about A. The condition (B.10) is
known as the Lorentz gauge [40,47]. Following it, Eq. (B.9) reduces to the simpler
Eq. (45).

The field equation for the scalar potential derives from Eq. (34). The substitution
of Eq. (B.7) into Eq. (34) gives

−∇ · (∇φ)−∇ · ∂A
∂t

=
ρc

ε0

(B.11)

Equation (B.11) is equivalent to

−∇2φ− ∂

∂t
∇ · A =

ρc

ε0

(B.12)

The term ∇ · A is obtained from the Lorentz gauge [Eq. (B.10)]

∇ · A = − 1

c2

∂φ

∂t
(B.13)

and substituted into Eq. (B.12) to obtain Eq. (44).

C Transformation of the electromagnetic body force and derivation of the
balance equation of electromagnetic momentum

The electric-charge density and the electric-current density can be obtained from
Eqs. (34) and (37) as

ρc = ε0∇ · E (C.1)

j = ε0c
2∇× B− ε0

∂E
∂t

(C.2)

and substituted into Eq. (49) to yield

ġv = ε0E∇ · E + ε0c
2(∇× B)× B− ε0

∂E
∂t

× B (C.3)

At the same time, one can take advantage of Eqs. (35) and (36) to construct the
identity

0 = ε0c
2B∇ · B + ε0(∇× E +

∂B
∂t

)× E (C.4)

Hypersonic-Flow Governing Equations with Electromagnetic Fields 

RTO-EN-AVT-162 1 - 65 

 

 



and to expand it into the expression

0 = ε0c
2B∇ · B + ε0(∇× E)× E + ε0

∂B
∂t

× E (C.5)

somewhat symmetrical with respect to Eq. (C.3). The sum of Eqs. (C.3) and (C.5)
yields

ġv = ε0c
2[B∇ · B + (∇× B)× B]

+ ε0[E∇ · E + (∇× E)× E]− ∂

∂t
(ε0E× B) (C.6)

Taking into account that the terms in squared brackets can be contracted as

B∇ · B + (∇× B)× B = ∇ · (BB− 1

2
B2U) (C.7)

E∇ · E + (∇× E)× E = ∇ · (EE− 1

2
E2U) (C.8)

Eq. (C.6) can be rephrased in the final form

ġv = ∇ · [ε0c
2(BB− 1

2
B2U) + ε0(EE− 1

2
E2U)]− ∂

∂t
(ε0E× B) (C.9)

which, considering the definitions (49) and (51), coincides with Eq. (50).

D Transformation of the electromagnetic-energy production and derivation
of the balance equation of electromagnetic energy

Equation (37) can be resolved to express the electric-current density as

j = ε0c
2∇× B− ε0

∂E
∂t

(D.1)

Taking into account Eq. (D.1), the electromagnetic-energy production becomes

j · E = ε0c
2E ·∇× B− ε0E · ∂E

∂t
= ε0c

2E ·∇× B− ε0

∂E2/2

∂t
(D.2)

The first term on the right-hand side of Eq. (D.2) can be easily transformed

E ·∇× B = −∇ · (E× B) + B ·∇× E (D.3)
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to bring forth the curl of the electric-field intensity. The substitution of Eq. (36) into
Eq. (D.3) yields

E ·∇× B = −∇ · (E× B)− B · ∂B
∂t

= −∇ · (E× B)− ∂B2/2

∂t
(D.4)

so that Eq. (D.2) finally takes the form

j · E = −∇ · (ε0c
2E× B)− ∂

∂t
[
ε0

2
(E2 + c2B2)] (D.5)

that coincides with Eq. (72).

E Poynting-vector transformation

From Eqs. (73) and (74), the vector product between E′ and B′ can be expanded as
follows

E′ × B′ = E× B− 1

c2
E× (v× E)− B× (v× B)

− 1

c2
(v× B)× (v× E) (E.1)

The second term on the right-hand side of Eq. (E.1) expands as

E× (v× E) = (E · E)v− (E · v)E = (E2U− EE) · v

=
E2

2
v + (

E2

2
U− EE) · v (E.2)

Similarly, the third term on the right-hand side of Eq. (E.1) expands into

B× (v× B) =
B2

2
v + (

B2

2
U− BB) · v (E.3)

The fourth term on the right-hand side of Eq. (E.1) is a little bit more complicated.
It expands as

(v× B)× (v× E) = (v× B) · Ev = E · (v× B)v = v · (B× E)v

= −v · (E× B)v (E.4)
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In the non-relativistic approximation, therefore, the term

1

c2
(v× B)× (v× E) = − 1

c2
v · (E× B)v (E.5)

is negligible with respect to E×B and can be disregarded in Eq. (E.1). Taking into
account the definition [Eq. (51)] of the Maxwell stress tensor, the substitution of
Eqs. (E.2) and (E.3) into Eq. (E.1) and the subsequent multiplication by the factor
ε0c

2 leads to Eq. (75).
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