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1 Introduction and motivation

In the last three decades, computer simulation tools have achieved wide
spread use in the design and analysis of engineering devices. This has
shortened the overall product design cycle and it has also provided bet-
ter understanding of the operating behavior of the systems of interest. As
a consequence numerical simulations have lead to a reduction of physical
prototyping and to lower costs.

In spite of this considerable success, it remains difficult to provide objec-
tive confidence levels in quantitative information obtained from numerical
predictions. The complexity arises from the amount of uncertainties related
to the inputs of any computation attempting to represent a physical system.
As a result, especially in the area of reliability and safety, physical testing
remains the dominant mechanism of certification of new devices. Rigor-
ous quantification of the errors and uncertainties1 introduced in numerical
simulations is required to establish objectively their predictive capabilities.

Procedures to establish the quality of numerical simulations have been
organized within the framework of Verification and Validation (V&V) ac-
tivities [34]. Verification is a mathematical process that aims at answering
the question: “are we solving the equations correctly?”. The objective is
to quantify the errors associated to the algorithms employed to obtain the
solution of the governing equations. Validation, on the other hand, aims at
answering the question “are we solving the correct equations?”. The goal
is to identify the appropriateness of the selected mathematical/physical for-
mulation to represent the device to be analyzed. Validation always involves
comparisons of the numerical predictions to reality, whereas verification only

involves numerical analysis and tests.
There is a growing recognition of the fact that validation cannot be car-

ried out without explicitly accounting for the uncertainties present in both
the measurements and the computations. Experimentalists are typically re-
quired to report uncertainty bars to clearly identify the repeatability and the
errors associated to the measurements. Validation must be carried out ac-
knowledging the nature of the experimental uncertainties and by providing
a similar indication of the computational error bars. One of the objective
of uncertainty quantification methods is to construct a framework to esti-
mate the error bars associated to given predictions. Another objective is to
evaluate the likelihood of a certain outcome; this obviously leads to better
understanding of risks and improves the decision making process.

1The difference between errors and uncertainties will be given later
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2 Definitions and basic concepts

The uncertainty quantification community has introduced precise definitions
to characterize various types of uncertainties.

2.1 Errors vs. uncertainties

The American Institute of Aeronautics and Astronautics (AIAA) ”Guide
for the Verification and Validation of CFD Simulations” [35] defines errors

as recognisable deficiencies of the models or the algorithms employed and
uncertainties as a potential deficiency that is due to lack of knowledge.

This definition is not completely satisfactory because does not precisely
distinguish between the mathematics and the physics. It is more useful to
define errors as associated to the translation of a mathematical formulation
into a numerical algorithm (and a computational code).

Errors are typically also further classified in two categories: acknowl-
edged errors are known to be present but their effect on the results is deemed
negligible. Examples are round-off errors and limited convergence of certain
iterative algorithms. On the other end, unacknowledged errors are not rec-
ognizable2 but might be present; implementation mistakes (bugs) or usage
errors can only be characterized by comprehensive verification tests and
procedures.

Using the present definition of errors, the uncertainties are naturally as-
sociated to the choice of the physical models and to the specification of the
input parameters required for performing the analysis. As an example, nu-
merical simulations require the precise specification of boundary conditions
and typically only limited information are available from corresponding ex-
periments and observations. Therefore variability, vagueness, ambiguity and
confusion are all factors that introduce uncertainties in the simulations. A
more precise characterization is based on the distinction in aleatory and
epistemic uncertainties.

2.2 Aleatory uncertainty

Aleatory uncertainty3 is the physical variability present in the system being
analysed or its environment. It is not strictly due to a lack of knowledge

2In principle, using the AIAA definition, unacknowledged errors could be considered
uncertainties because they are associated to lack of knowledge

3Aleatory uncertainty is also referred to as variability, stochastic uncertainty or irre-
ducible uncertainty.
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and cannot be reduced. The determination of material properties or operat-
ing conditions of a physical system typically leads to aleatory uncertainties;
additional experimental characterization might provide more conclusive ev-
idence of the variability but cannot eliminate it completely. Aleatory uncer-
tainty is normally characterized using probabilistic approaches.

2.3 Epistemic uncertainty

Epistemic uncertainty4. is what is indicated in the AIAA Guide (AIAA
1998) as ”uncertainty”5, i.e. a potential deficiency that is due to a lack of
knowledge. It can arise from assumptions introduced in the derivation of
the mathematical model used or simplifications related to the correlation or
dependence between physical processes. It is obviously possible to reduce the
epistemic uncertainty by using, for example, a combination of calibration,
inference from experimental observations and improvement of the physical
models. Epistemic uncertainty is not well characterized by probabilistic ap-
proaches because it might be difficult to infer any statistical information
due to the nominal lack of knowledge. A variety of approaches have been
introduced to provide a more suitable framework for these analysis. Typi-
cal examples of sources of epistemic uncertainties are turbulence modeling
assumptions and surrogate chemical kinetics models.

2.4 Sensitivity vs. uncertainty analysis

Sensitivity analysis (SA) investigates the connection between inputs and
outputs of a (computational) model; more specifically, it allows to identify
how the variability in an output quantity of interest is connected to an
input in the model and which input sources will dominate the response of
the system. On the other hand, uncertainty analysis aims at identifying the
overall output uncertainty in a given system. The main difference is that
sensitivity analysis does not require input data uncertainty characterization
from a real device; it can be conducted purely based on the mathematical
form of the model. As a conclusion large output sensitivities (identified
using SA) do not necessarily translate in important uncertainties because
the input uncertainty might be very small in a device of interest.

SA is often based on the concept of sensitivity derivatives, the gradient of
the output of interest with respect to input variables. The overall sensitivity

4Epistemic uncertainty is also called reducible uncertainty or incertitude
5Aleatory uncertainty is not mentioned in the AIAA Guidelines
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is then evaluated using a Taylor series expansion, which, to first order, would
be equivalent to a linear relationship between inputs and outputs.

3 Predictions under uncertainty

Computer simulations of an engineering device are performed following a
sequence of steps.

Initially the system of interest and desired performance measures are
defined. The geometrical characterization of the device, its operating condi-
tions, the physical processes involved are identified and their relative impor-
tance must be quantified. It is worthwhile to point out that the definition of
the system response of interest is a fundamental aspect of this phase. The
next step is the formulation of a mathematical representation of the system.
The governing equations and the phenomenological models required to cap-
ture the relevant physical processes need to be defined. In addition, the pre-
cise geometrical definition of the device is introduced. This step introduces
simplification with respect to the real system; for example small geometrical
components are eliminated, or artificial boundaries are introduced to reduce
the scope of the analysis. With a well defined mathematical representation
of the system, the next step if to formulate a discretized representation.
Numerical methods are devised to convert the continuous form of the gov-
erning equations into an algorithm that produces the solution. This step
typically requires, for example, the generation computational grid, which is
a tessellation of the physical domain. Finally the analysis can be carried
out.

The introduction of uncertainty in numerical simulations does not alter
this process but introduces considerable difficulties in each phase. It is useful
to distinguish three steps: data assimilation, uncertainty propagation and
certification.

3.1 Data assimilation

Data assimilation consists of a study of the system of interest that aims at
identifying the properties, physical processes and other factors required to
fully characterize it. The analysis is typically focused on the specific in-
puts required by the mathematical framework that will be applied in the
simulations. As an example, the boundary conditions required in numeri-
cal simulations should be inferred from observation of the device of inter-
est or specific experiments. Given the limited degree of reproducibility of
experimental measurements and the errors associated to the measurement
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techniques, these quantity are known with a certain degree of uncertainty
(typically specified as an interval, x ± y%). Probabilistic approaches treat
these quantities, that overall characterize the aleatory uncertainty, as ran-

dom variables assuming values within specified intervals. In mathematical
terms this is equivalent to define random variables with a specified probabil-
ity distribution functions (PDF) [13]. The obvious choice is to use random
variables defined using analytical distributions (Gaussian, uniform, etc.). It
is difficult to justify this choice [5] solely from experimental evidence be-
cause of the limited amount of data typically available6; in many situation
the only data available are obtained from expert opinions and can lead to
ambiguous or conflicting estimates. Alternative approaches have been de-
vised to provide a more flexible framework to handle this situation, evidence
theory is one such approach [37, 38].

In the context of probabilistic approaches, the objective of data assimila-
tion is to define PDFs of each of the input quantity used in the computational
tool.

3.2 Uncertainty propagation

Once probability distributions are available for all the input quantities in
the computational algorithm, the objective is to compute the PDFs of the
output quantities of interest. This step is usually the most complex and
computationally intensive for realistic engineering simulations. A variety of
methods are available in the literature, from sampling based approaches (e.g.
Monte Carlo) to more sophysticated stochastic spectral Galerkin approaches.
In the next section these methods are described in detail.

3.3 Certification

Once the statistics of the quantity of interest have been computed, various
metrics can be used to characterize the system output, depending on the
specific application. The most common use of such statistical information
is a reliability assessments, where the likelihood of a certain outcome is es-
timated and compared to operating margins. In a validation context, the
PDF (or more typically the cumulative distribution function) is compared to
experimental observation to extract a measure of the confidence in the nu-
merical results. The characterization of these measures, so-called validation

6Note that the specification of an interval is not equivalent to a specification of a
uniform probability distribution. An interval formally does not contain probabilistic in-
formation!
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metrics, is an active area of research [33].

4 Probabilistic uncertainty propagation

Within a probabilistic framework, the problem of uncertainty propagation
consists of the generation of PDFs of the outcomes given (known) distri-
bution of all the input parameters. Several classes of methods have been
developed to solve this problems; in this section three popular approaches
are described.

Consider the vector x = (x1, ...xD) containing the input quantities to
the computational model; assume that y = g(x) is the output of interest; g
is possibly the result of a complex fluid dynamic simulation.

In probabilistic uncertainty quantification approaches the stochastic, in-
put quantities x are represented as independent continuous random vari-
ables xi(ωi)

7 mapping the sample space Ωi to real numbers, xi : Ωi → R.
This assumption in practical terms increases the dimensionality of the prob-
lem: the original deterministic outcome y = f(x1, ..., xi, ...xD) becomes a
stochastic quantity y = f(x1, ..., xi, ...xD : ω1, ..., ωi, ..., ωD). The objective
is to compute the PDF of y, fy, in order to evaluate the likelihood of a
certain outcome, or, in general, statistics of y. The expected value E[y] and
the variance V ar[y] are defined as:

E[y] =

∫

∞

∞

zfy(z)dz (1)

V ar[y] =

∫

∞

∞

(z − E[y])2 fy(z)dz = E[y2] − (E[y])2 . (2)

Note that y is a stochastic variable while the expected value and the variance
are deterministic quantities.

4.1 Sampling techniques

Sampling-based techniques are the simplest approaches to propagate un-
certainty in numerical simulations: they involve repeated simulations (also
called realizations) with a proper selection of the input values. All the results
are then collected to generate a statistical characterization of the outcome.
In the following the Monte Carlo approach and the Latin Hypercube sam-
pling strategy are described.

7The assumption of independence is mathematically stated as fx1,...,xD
= fx1

· · · fxD
,

where fx1,...,xD
the joint PDF is the product of the marginals
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Figure 1: Equally probability intervals defined on the input parameter space
for a Gaussian PDF. Each of the interval is sampled in the Latin hypercube
method.

4.1.1 Monte Carlo method

The Monte Carlo method [31] is the oldest and most popular sampling ap-
proach. It involves random sampling from the space of the random variables
xi according to the given PDFs. The outcome is typically organized as a
histogram and the statistics are readily computed from Eq. (2) by replac-
ing the integrals with sums over the number of samples. The method has
the advantage that it is simple, universally applicable and does not require
any modification to the available (deterministic) computational tools. It is
important to note that while the method converges to the exact stochastic
solution as the number of samples goes to infinity, the convergence of the
mean error estimate is slow. Hence thousands or millions of data samples
may be required to obtained accurate estimations. However, the conver-
gence does not directly depend on the number of random variables in the
problem. In this form the Monte Carlo methods always give the correct
answer, but a prohibitively large number of realizations may be required to
accurately estimate responses that have a small probability of occurrence.
On the other hand, the convergence of the low order statistics (expected
value and variance) require much smaller number of samples.
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Figure 2: Sampling based techniques with two uncertain inputs. (left) Monte
Carlo; (center) Latin Hypercube; (right) Lattice based

4.1.2 Latin Hypecube approach

Several methods have been developed to accelerate the Monte Carlo ap-
proach. One of the most successful is the Latin Hypercube sampling (LHS)
[29] approach. The range of each input random variable xi is divided in
M intervals with equal probability. In Fig. 1 this is illustrated for a single
input Gaussian random variable. M random samples are drawn, one from
each of the intervals and the convergence is faster than Monte Carlo because
the occurrence of low probability samples is reduced. The construction is
especially effective in multiple dimensions; in Fig. 2 an example of samples
generated using Monte Carlo and Latin Hypercube for two uniform ran-
dom variables is reported. The LHS samples projected on each of the axis
provide optimal coverage of the parameter space [30]. On the other hand,
the Monte Carlo samples show clusters and holes that eventually lead to
the slower convergence. In Fig. 2 another strategy is illustrated: Lattice-
based sampling. In this approach, the parameter space is discretized using
regularly spaced points (lattice); once the solution is evaluated at those lo-
cations a random shift is applied to the lattice and another set of solutions
are computed[31]. The choice of the lattice is related to the distribution of
the input variables similarly to the LHS approach and the objective is again
to reduce the occurrence of clusters and holes in the samples.

4.2 Quadrature methods

One of the objective of UQ propagation methods is the computation of
the statistics of an outcome of interest, such as its expectation and the
variance. As shown earlier, these require the evaluation of integrals (over
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the parameter space) and it is therefore natural to employ conventional

numerical integration techniques8.
Let’s consider a problem with one uncertain parameter ξ; the objective

is to compute integrals of y(ξ). A class of quadrature rules are based on in-
terpolating basis functions that are easy to integrate, typically polynomials.
The integral is expressed as a weighted sum of the integrand y evaluated
in a finite number of locations on the ξ-axis (abscissas). The choice of the
polynomial basis defines the weights and the corresponding abscissas.

The simplest example is the midpoint rule in which a sequence of M
equally spaced values ξ(i) in the interval [a, b] (x1 = a and xM = b) is
considered. The function y is evaluated at M − 1 abscissas as y((ξ(i) +
ξ(i+1))/2) = yi+1/2. The integral is simply obtained as the sum of the M −1
values yi+1/2 times the size of the interval (b − a). In this case the basis
functions are piecewise constant and the weights are all equal to (b− a)/M .
Quadratures based on equally spaced abscissas include the commonly used
trapezoidal and Simpson rules and are, in general, referred to as Newton-
Cotes formulas.

4.2.1 Stochastic collocation

Stochastic collocation refers to quadrature methods used to compute in-
tegrands of random variables, thus over a stochastic domain. Although
Newton-Cotes formulas are applicable in this context, it is usually prefer-
able to consider more general approaches, in which the abscissas are not
equally spaced. Gaussian quadratures are popular in the field of uncertainty
analysis because of their high accuracy9; the general format is:

∫ b

a
y(ξ)f(ξ)dξ =

M
∑

k=0

w(ξk)y(ξk) + RM (y) (3)

where the abscissas ξk are associated with zeros of orthogonal polynomials
and wk are weights and f(ξ) is a weighting function; in the present context,
f represents a PDF. RM is the remainder term which determines the order
of accuracy of the integration. In particular, the formula (3) is said to have
polynomial degree of exactness p if RM (y) = 0 when y(ξ) is a polynomial
of degree ≤ p. Newton-Cotes formulae have p = M − 1 whereas Gaussian

8Numerical integration and quadrature are typically synonym for one dimensional func-
tions. In higher dimensions the term cubature is often used instead of quadrature

9High order polynomial interpolating functions constructed on equally spaced grids
also suffer from the Runge’s phenomenon.
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Figure 3: (Legendre (left) and Hermite (right) polynomials.

quadratures achieve higher p with the same number of function evaluations
(M + 1), specifically p = 2M + 1. This is the main advantage of Guassian
quadrature and is accomplished by virtue of the orthogonality condition of
the interpolating basis functions[24] [4], which is in general stated as:

〈pm, pn〉 =

∫ b

a
pm(ξ)pn(ξ)f(ξ)dξ = δnm (4)

where δnm is the Kroneker symbol.
The most commonly used form of Guassian quadrature is the Gauss-

Legendre integration formula which is based on Legendre polynomials ℓk(ξ).
In Fig. 3 the first few polynomials are reported. These are constructed
using the three term recurrence relation (with ℓ0(ξ) = 1 and ℓ1(ξ) = ξ):

(n + 1)ℓn+1(ξ) = (2n + 1)ξℓn(ξ) − nℓn−1(ξ)

The weight function in Eq. (3) is simply f(ξ) = 1; the integration
weights are computed as

wk =

∫ b

a
ℓk(ξ)dξ

and the abscissas ξk for an M -point quadrature rule are the zeros of the
ℓM+1 polynomial. As an example the computation of expectation of an
output in the presence of an uncertain input defined in a interval [a, b] (as
a uniform random variable) can be computed as:

E(y) =

∫ b

a
y(ξ)fy(ξ)dξ =

M
∑

k=0

y(ξk)wk (5)
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For uncertain parameters defined on unbounded domains such as ran-
dom variables described by Gaussian probability distributions, the Gauss-
Hermite quadrature is used [19]. In this case the three term recurrence
relation is (h0(ξ) = 1 and h1(ξ) = ξ):

hn+1(ξ) = 2ξhn(ξ) − 2nhn−1(ξ)

and the weight function is f(ξ) = e−ξ2

. In this case the integration weights
wk are expressed as:

wk =

∫

∞

−∞

hk(ξ)e
−ξ2

dξ

and the expectation can be computed as before just evaluating the outcome
at M + 1 abscissas that correspond to the zeros of the Hermite polynomial
hM+1.

There is an obvious connection between the choice of the polynomial
and the probability distribution of the input variables: the orthogonality
condition (Eq. 4). In the present context, in order to achieve the polyno-
mial exactness of Gaussian quadratures for computing the expectation, the
polynomials have to be orthogonal with respect to the weight function that
corresponds to the PDF of the input variable.

The two Gauss quadrature rules described above require the computation
of a new set of abscissas (and corresponding function evaluations) for each
desired order M ; alternative approaches have the property that the abscissas
are nested, e.g. different accuracy formulas share abscissas. A popular
nested formulation rule is the Clenshaw-Curtis quadrature[17].

In practical terms, collocation methods for uncertainty propagation re-
quire the evaluation of zeros and weights for a family of orthogonal basis
functions; these can be computed and stored in advance. A set of M + 1
independent computations are performed and the results are combined to
obtain the statistics of the output of interest. Collocation can therefore
be interpreted as a sampling technique; it retains the main advantage of
the Monte Carlo method because it does not require modifications to the
existing computational tool.

The evaluation of the PDF of the output quantities is somewhat more
complicated for stochastic collocation methods than the computations of
the output statistics. The first step is the construction of the polynomial
interpolant of the solution y(ξ) in the parameter space which involves the
use of the M +1 solutions y(ξ(i)). At this point, the interpolant is used as a
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Figure 4: Tensor (left) and sparse (right) grid quadrature rules for two-
dimensional functions.

replacement for the original function10 and Monte Carlo sampling is used.

4.2.2 Extension to multiple dimensions

The natural extension of interpolation techniques to multiple dimensions
is a tensor product of one-dimensional interpolants. Let G(ξ1, . . . , ξD) be
the outcome of interest, expressed as a function of D random variables.
The set of points for the multi-dimensional interpolant is the tensor prod-
uct of the abscissas for the one-dimensional interpolants; in the case that
the polynomial order is the same in every direction, the total number of
abscissas is (M + 1)D. Although the tensor product extension of the one-
dimensional quadrature rules is simple and accurate, it clearly suffers from
the exponential increase in the number of abscissas - and consequently re-
quired function evaluations - as the number of dimensions increases [20]. To
combat this, some have proposed using an alternative extension based on
the sparse grid construction, attributed to Smolyak [15]. In this case the
multi-dimensional product is constructed as a linear combination of tensor
product interpolants, each with relatively few points in its respective point
set. This greatly reduces the total number of abscissas - particularly as
the dimension D increases - while retaining the accuracy and convergence

10The approximated function is typically called a surrogate response surface
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properties of one-dimensional interpolants.
Fig. 4 illustrates the extension of Gauss-Legendre quadrature in two-

dimensions using tensor products and sparse grid rules. Different set of
abscissas (M is varied from 1 to 11) are reported to illustrate how, for
sparse grids, the number of points and corresponding function evaluations
remains relatively low even for high order polynomial interpolants.

Sparse grid constructions reduce the curse of dimensionality and con-
verge very rapidly if the function of interest is smooth. Precise convergence
results and comparisons to Monte Carlo methods are reported in [9]. Exten-
sions of this approach to construct anisotropic grids are currently an active
area of research; the objective in this case is to increase the order of the
interpolating polynomials only in selected directions to further reduce the
computational cost.

Other integration methods in high dimensions are also available in the
literature, for example Stroud formulae [10] although have not yet been
explored in the area of uncertainty quantification.

4.3 Spectral methods

The third class of methods for uncertainty propagation is based on spectral
methods in which the solution is expressed using a suitable series expansion.
These approaches are intrusive in the sense that the mathematical formula-
tion requires modification of the existing deterministic codes - in contrast to
the sampling approaches and the stochastic collocation methods described
before. For this reason, spectral methods have to be described with reference
to a given mathematical problem; in the following the Burgers equation is
used.

4.3.1 Stochastic Galerkin approach

In this approach the unknown quantities are expresses as an infinite series of
orthogonal polynomials defined on the space of he random input variable11.
This representation has its roots in the work of Wiener [23] who expressed a
Gaussian process as an infinite series of Hermite polynomials. Ghanem and
Spanos [22] truncated Wiener’s representation and used the resulting finite
series as a key ingredient in a stochastic finite element method.

As an example, consider the 1D Burgers equations

ut + uux = 0

11Stochastic Galerkin methods based on polynomial expansions are often referred to as
Polynomial Choas approaches [22]
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and assume that the initial condition is uncertain and characterized by one
parameter, ξ a Guassian random variable.

u(x, t = 0) = ξ ∗ sin(x)

In stochastic Galerkin approaches the (unknown) solution u = u(x, t, ξ)
is expressed as a spectral expansion as

u(x, t, ξ) =

∞
∑

i=0

ui(x, t)Ψi(ξ) (6)

where the coefficients ui(x, t) are independent of the random variable and,
therefore, deterministic (they are still function of the physical dimensions).
The Ψi(ξ) are Hermite polynomials and form a complete orthogonal set of
basis functions.

The expansion (6) is truncated to a certain order M and the approxi-
mated expression for u is inserted in the governing equation:

M
∑

i=0

∂ui

∂t
Ψi(ξ) +





M
∑

j=0

ujΨj(ξ)





(

M
∑

i=0

∂ui

∂x
Ψi(ξ)

)

= 0

Multiplying by Ψk(ξ) and integrating over the probability space - Galerkin
projection - we obtain a system of M coupled & deterministic equations for
the coefficients ui:

M
∑

i=0

∂ui

∂t
〈ΨiΨk〉 +

M
∑

i=0

M
∑

j=0

ui
∂uj

∂x
〈ΨiΨjΨk〉 = 0 for k = 0, 1, ...,M. (7)

Note that in Eq. (7) the double and triple products of the Hermite
polynomials are simply numbers [24] (cfr. Eq. 4):

〈ΨiΨj〉 = δiji!

〈ΨiΨjΨk〉 = 0 if i + j + k is odd or max(i, j, k) > s

〈ΨiΨjΨk〉 =
i!j!k!

(s − i)!(s − j)!(s − k)!
otherwise

and s = (i + j + k)/2.
The statistics of the solutions can be readily computed from the expansions

coefficients. In particular the expectation is
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E[u] = E

[

M
∑

k=0

ukΨk

]

= u0E[Ψ0] +

M
∑

k=1

ukE[uk] = u0

for the orthogonality of the polynomial basis. The variance is computed as:

V ar[u] = E
[

(u − E[u])2
]

= E





((

M
∑

k=0

ukΨk

)

− u0

)2


 =

E





(

M
∑

k=1

ukΨk

)2


 =

M
∑

k=1

u2
kE
[

Ψ2
k

]

=

M
∑

k=1

u2
k(k!)2

As an example, the polynomial chaos formulations for the Burgers equations
can be written explicitly. For M = 2 the expansion (6) is u(x, t, ξ) = u0 + ξu1 and
the governing system of equations is:

∂u0

∂t
+ u0

∂u0

∂x
+ u1

∂u1

∂x
= 0

∂u1

∂t
+ u1

∂u0

∂x
+ u0

∂u1

∂x
= 0

For M = 3 the expansion (6) is u(x, t, ξ) = u0 + ξu1 + 2(ξ2 − 1)u2 and the
governing system of equations is:

∂u0

∂t
+ u0

∂u0

∂x
+ u1

∂u1

∂x
+ 2u2

∂u2

∂x
= 0

∂u1

∂t
+ u1

∂u0

∂x
+ (u0 + 2u2)

∂u1

∂x
+ 2u1

∂u2

∂x
= 0

∂u2

∂t
+ u2

∂u0

∂x
+ u1

∂u1

∂x
+ (u0 + 4u2)

∂u2

∂x
= 0

It is worth to note that the choice of the polynomial basis is again connected
to the distribution of the input random variables. As for stochastic collocation
approaches Hermite and Legendre polynomials are used for Gaussian and uniform
random variables respectively. A general formulation based on the Askey polyno-
mials is presented in [21].

While the stochastic Galerkin technique has been shown to produce highly ac-
curate statistics, it does requires extensive modifications to existing computational
methods to solve for the coefficients of the expansion.

4.3.2 Extension to multiple dimensions

The presence of multiple uncertain parameters increases considerably the computa-
tional complexity of the stochastic Galerkin approach although it does not change
the overall formulation.
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It is formally possible to formulate the basis polynomials in terms of a full
tensor product of one-dimensional polynomials similarly to what considered for the
stochastic collocation approach. Ghanem and Spanos [22] introduced a different
expansion. For example for a problem with two uncertain parameters expressed in
terms of Gaussian random variables the first few bi-variate Hermite polynomials
are:

Φ0(ξ1, ξ2) = 1 (8)

Φ1(ξ1, ξ2) = ξ1

Φ2(ξ1, ξ2) = ξ2

Φ3(ξ1, ξ2) = ξ2
1 − 1

Φ4(ξ1, ξ2) = ξ1ξ2

Φ5(ξ1, ξ2) = ξ2
2 − 1

In multiple dimensions the number of coefficients M is determined by the num-
ber of dimensions D and the highest polynomial order P :

M =
(D + P )!

D!P !
(9)

As in stochastic collocation approach, the stochastic Galerkin method suffers
from the curse of dimensionality. Smolyak-type constructions have not been at-
tempted for the polynomial basis used in the spectral expansions but offer a possible
remedy.

5 Examples

The examples reported in the following offer indications of the relative computa-
tional cost of the uncertainty propagation approaches illustrated before. In these
test cases the uncertainty is assumed as part of the problem specification.

5.1 Steady Burgers equation

The first test problem is based on the 1D viscous Burgers equations [36]:

1

2
(1 − u)

∂u

∂x
= µ

∂2u

∂u2

where the convective flux is modified so that an exact solution can be obtained
(manufactured solution [34]):

u(x) =
1

2

[

1 + tanh

(

x

4µ

)]
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Figure 5: Expectation of the solution for the Burgers steady state problem
with uncertain viscosity. Monte Carlo sampling with different number of
realization. A numerical solution computed using 32 cells (left) is compared
to the exact solution (right).

In this case it is assumed that the viscosity is uncertain, for example as a
consequence to an unknown fluid temperature. A Gaussian random variable is
considered with mean and variance given by E[µ] = 0.25 and var[µ] = 0.002512

Calculations have been performed using a finite volume discretization on the
domain [-3:3]; boundary conditions are derived from the exact solution. Monte
Carlo sampling is initially used as the uncertainty propagation technique. The
expectation of the velocity is reported in Fig. 5.1 and has been computed using
a different number of samples ranging from 10 to 10,000. The results shows only
small dependency on the number of realization; in the same figure the statistical
convergence is also evaluated using the exact solution of the deterministic problem.
In Fig. 5.1 the solution variance is reported. In this case it is clear that 10 samples
are not sufficient and converged results are only obtained for 1,000 and 10,000
samples. Note that the variance is zero at x = 0 to satisfy the symmetry constraint.

As a second step the stochastic Galerkin method has been implemented and
tested. In this case the expansion is based on Hermite polynomials. Computations
have been performed using the same discretization used in the deterministic code
[36]. Fig. 5.1 shows results obtained using different order of expansions, from 1 to 3;
the comparisons to Monte Carlo show that for this simple problem - characterized by
small variability - even the low order expansion provide a reasonable representation

12It should be noted that a Gaussian distribution for the viscosity implies that there is
a non-zero probability of having very low - or even negative - values of the viscosity. In
this case the high mean value and the small variance reduce the occurrence of negative
viscosity to virtually zero.
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Figure 6: Variance of the solution for the Burgers steady state problem
with uncertain viscosity. Monte Carlo sampling with different number of
realization. A numerical solution computed using 32 cells (left) is compared
to the exct solution (right).
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Figure 7: Expectation (left) and variance (right) of the solution for the Burg-
ers steady state problem with uncertain viscosity. The Stochastic Galerkin
method is used and the results are compared to Monte Carlo sampling.
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Figure 8: Computational grid for the flow around an array of cylinders with
uncertain surface heat flux

of the variance of the solution.

5.2 Heat transfer computations under uncertainty

In this problem the goal is the computation of the wall temperature for an array of
cylinders in crossflow under uncertain free stream conditions and surface heat flux.
The mathematical framework is based on the two-dimensional Reynolds-averaged
Navier-Stokes equations and the computational domain is a channel with a specified
inflow, periodic boundary conditions on the top and bottom boundaries, and an
outflow. An unstructured grid is used, see Fig. 5.2.

We assume that the sources of uncertainty are the specification of the velocity
boundary condition on the incoming flow and the definition of the thermal condition
on the surface of the cylinder. The inlet velocity profile is constructed as a linear
combination of two cosine functions:

Uinlet(y) = 1 + 0.25(ξ1 cos(2πy) + ξ2 cos(10πy)). (10)

where ξ1 and ξ2 are two uniform random variables in the interval [-1:1]; this inflow
specification ensures that the amplitude of the random fluctuations did not cause
the velocity to be negative. The wave numbers 2 and 10 were chosen to give one
low and one high frequency fluctuation while maintaining symmetry in the problem.
The heat flux is specified as an exponential function of ξ3 over the cylinder, namely

∂T

∂n cylinder
(x) = e−(0.1+0.05ξ3)(x−0.5) (11)

where n is the normal to the cylinder surface. The heat flux is slightly greater
at the left side of the cylinder at the stagnation point; the value of ξ3 determines
precisely how much greater. Again ξ3 is a uniform random variable in [-1:1].

We employed Monte Carlo sampling and stochastic collocation to solve this
problem. In particular, we used both tensor product and sparse grid formalism to
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l # tensor grid points # sparse grid points

2 27 25
3 125 111
4 729 351
5 2187 1026

Table 1: Number of function evaluation required to achieve a certain degree
of polynomial exactness using tensor product and sparse grid formulations.
The parameter l is called the level and is directly connected to the accuracy
of the interpolant on tensor grids; on sparse grids the relationship is more
complex.

construct quadrature rules in the three-dimensional parameter space (ξ1, ξ2, ξ3). In
Table 1 the number of function evaluations (abscissas) required to achieve a certain
order of polynomial exactness are reported.

The expectation and variance of the wall temperature are reported in Fig. 5.2
and 5.2, respectively.

In this application, it is clear that accurate temperature statistics can be ob-
tained efficiently using stochastic collocation with respect to Monte Carlo sampling.
The difference between tensor product and sparse grid formulations is very small.

5.3 Shock dominated problems

Uncertainty propagation algorithms based on polynomial basis are particularly ef-
fective when the output of interest are smoothly varying with respect to the input
uncertainties. The presence of discontinuities in the response surface poses a chal-
lenge; in physical terms, these discontinuities represent sharp system transitions
such as the occurrence of flow separation or shock interactions.

Consider the problem governed by the non-homogenous Burgers equations [27]:

∂u

∂t
+

∂

∂x
(
u2

2
) =

∂

∂x
(
sin2 x

2
), 0 ≤ x ≤ π, t > 0

with the initial condition u(x, 0) = β sin x, and boundary conditions u(0, t) =
u(π, t) = 0. β represents the uncertainty in the initial condition and is defined
as

β =
−1 +

√

1 + 4σ2ξ

2σ2ξ

where ξ is a Gaussian random variable and σ is used to control the amount of
uncertainty.

The exact steady solution contains a shock located at xs = f(β) and the desired
output is the PDF of the shock location. The response surface u as a function of β
is reported in Fig. 12.
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Figure 9: Expectation of the wall temperature. Tensor product (left) ver-
sus sparse grids (right). Monte Carlo (MC) statistics are based on 10,000
samples; multiple quadrature formulas are reported for different levels (see
Table 1).
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Figure 10: Variance of the wall temperature. Tensor product (left) versus
sparse grids (right). Monte Carlo (MC) statistics are based on 10,000 sam-
ples; multiple quadrature formulas are reported for different levels (see Table
1).
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Figure 11: Probability distribution function of the wall temperature at the
stagnation point. Tensor product (left) versus sparse grids (right). Monte
Carlo (MC) statistics are based on 10,000 samples; multiple quadrature
formulas are reported for different levels (see Table 1).

Figure 12: Solution of the in-homogeneous Burgers equations with uncertain
initial condition. The sharp transition corresponds to a shock whose location
is a function of the input uncertainty.
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Figure 13: Probability distribution of the shock location for the inhomo-
geneous Burgers equations with uncertain initial condition. Low , σ = 0.1
(left) and high input variability, σ = 0.6 (right). Results obtained using
high-order stochastic Galerkin expansions [28]

Hestevan et al. [25] have applied the stochastic Galerkin approach to study
this problem; high order expansions in Hermite polynomials were used to compute
the PDF of the shock location. The availability of exact PDFs allows to identify
the limitation of the numerical approach. In Fig. 5.3 the solution is reported for
low and high degree of input variability (σ set to 0.1 and 0.6 respectively). For
the low variability case the computed results are in reasonable agreement with
the exact PDF, but some oscillations are present. For the high variability case,
the oscillations are the dominant feature and the shape of the PDF is completely
misrepresented. In this case, the problem is that the solution is discontinuous and
the polynomial basis (underlying the stochastic expansion) is highly oscillatory -
Gibbs phenomenon.

An alternative response reconstruction has been developed to handle strong
non-linear or discontinuous surfaces. The method is based on a Pade-Legendre
interpolatory formula [32]; it is a stochastic collocation approach that eliminates
the Gibbs phenomenon. Assume N solution evaluations are available; given the
integers M and L, the pair of Legendre polynomials P and Q of order less or
equal than M and L, respectively, are said to be the solution of the (N, M, L)
Pade-Legendre interpolation problem [26] of u if

〈P − Qu, φ〉 = 0 (12)

and the rational function R(u) := P/Q is defined as the approximation of u. The
details of the construction of R are reported in Chantrasmi et al. [32]; here it is
sufficient to observe that if u is discontinuous, the polynomial Q can be regarded
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Figure 14: Probability distribution of the shock location for the inhomo-
geneous Burgers equations with uncertain initial condition. Low , σ = 0.1
(left) and high input variability, σ = 0.6 (right). Results obtained using the
Pade-Legendre stochastic collocation approach [32]

as a preconditioner (or a filter) such that u ·Q is smooth and can be efficiently and
accurately interpolated by the polynomial P .

Results obtained using the Pade-Legendre stochastic collocation approach are
reported in Fig. 5.3 in terms of the PDF of the shock locations. In this case the
accuracy is preserved even for high input variability.

6 Conclusions and outlook

The growing interest in uncertainty quantification has motivated the development
of a variety of mathematical approaches. In particular, probabilistic uncertainty
propagation methods have received considerable attention.

The choice of the appropriate method to use for a specific application is not
obvious. For typical fluid mechanics simulations some common considerations are:

• expensive function evaluation: sampling based methods are typically not ap-
propriate because they might require several thousand full computations to
build the statistics of the outputs;

• large number of uncertainties: boundary conditions, material properties, ge-
ometry specification, etc. introduce many independent input parameters that
have to be characterize. Methods that suffer from curse of dimensionality
quickly become unfeasible;

• non-linear system responses: transitions and bifurcations are typical of fluid
mechanics, especially for compressible flows. Methods that strictly require a
smooth dependency between inputs and outputs can be ineffective.

Quantification of Uncertainty in Flow 
Simulations Using Probabilistic Methods 

17 - 26 RTO-EN-AVT-162 

 

 



In spite of these difficulties, probabilistic UQ is naturally amenable to mathe-
matical and numerical analysis and, therefore, is expected to achieve a high level
of maturity in the near future.

In addition to the methods presented here several other methods have been
applied especially in the field of structural mechanics. It is also worth mentioning
that alternative approaches not based on probabilistic reasoning have been proposed
and used with some success. It is not generally clear when probabilistic methods
fail or are insufficient; the treatment of epistemic uncertainty remains difficult and
possibly the greatest challenge in uncertainty quantification.
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