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Abstract
Over the last two decades, there has been an explosion in the ability of engineers to build numerical models (e.g. finite element models) to simulate how a complex product will perform. Moreover, the ability to quickly modify these simulation models to reflect design changes has also greatly increased and the potential for using optimization techniques to improve engineering design is now higher than ever before. However, one of the major obstacles to the use of optimization is the large running time of the simulations and the lack of gradient information in many complicated simulations. Due to these obstacles, long running times and lack of analytic gradients, almost any optimization method applied directly to the simulation will be slow.

An adequate and general answer to optimization based on long running and computationally intensive analysis lies in the exploitation of surrogate models. Surrogate models are educated guesses as to what an engineering function might look like, based on a few points in space where we can afford to measure the function values. Recent advances in Surrogate-Based Optimization (SBO) bring the promise of efficient global optimization to reality.  A review of the state-of-the-art constructing surrogate models and their use in optimization strategies is to be found in references 
 
 
. The present lecture aims at pointing out a series of complementary aspects with respect to the local and global optimization lectures regarding surrogates as the latter have become a fundamental element of our engineering thought processes.
Introduction
SBO uses surrogates or approximations in lieu of the expensive analysis results to contain the computational time within affordable limits. Surrogate models may be usefully exploited through optimization as they indeed seek to provide answers in the gaps between the necessarily limited analysis runs that can be afforded with the available computing power. They can also be used to bridge between various levels of sophistication afforded by varying fidelity physics based simulation code, or even between predictions and experiments. Their role is to aid understanding and decision taking by wringing every last drop of information from the analysis and data sources available to the design team and making it available in a useful and powerful way. The basic idea is for the surrogate to act as a curve fit to the available data so that the results may be predicted without recourse to the use of the primary source, the computationally intensive simulation codes.
The approach is based on the assumption that, once built, the surrogate will be many orders of magnitude faster than the primary source while still being usefully accurate when predicting away from known data points. This underlines the two key requirements of the approach: a significant speed increase in use and useful accuracy. Obviously these constitute two conflicting requirements and the compromise best suited to the application targeted will drive the choices set.

As has been underlined, the surrogates are used so as to augment the results coming from expensive simulation codes that need to be run for a range of possible inputs dictated by some design strategy. The latter could be a planned series of runs following an a priori Design of Experiments (DoE) or runs  suggested by a search process. In this respect, a most efficient practice to tackle industrial design applications based on computationally intensive simulations lies in continuous improvement of the surrogate models along the design, in a so-called online framework illustrated in Figure 1. 
[image: image1.emf]
Figure 1: Surrogate-based optimization typical workflow
Since the affordable design selections made to produce the initial set of data supporting the surrogate’s construction will almost inevitably miss certain features of the landscape, the construction of trustable surrogates often requires further, judiciously selected calls to the analysis codes. These additional calls, made all along the design, are termed infill points. These are typically made either in areas where the surrogate is thought to be inaccurate or, alternatively, where the surrogate model suggests that particularly interesting combination of variables lies, aiming for the Graal quest of optimum balance between exploration and exploitation. For a surrogate to be suited to some form of search-infill process, the surrogate must moreover have the capacity to modify its shape to fit any complex local behaviour the true function(s) may exhibit. 
As underlined in the preceding paragraph and although exact choice of SBO methodology may be problem dependent, one underlying trait that any SBO methodology must include is some form of repetitive search and infill process to ensure the surrogate is accurate in regions of interest. The performance of online SBO is known to be largely dependent on the following key elements:

· the underlying optimization algorithm(s),

· the surrogate model(s),

· their training (Design of Experiments (DoE) for the selection of the initial data and infill criteria), 

· the surrogate model(s) management scheme (global/local).

All these elements are critical and should not be considered nor tackled independently, optimization performance also essentially resulting from a coherent choice regarding all these aspects. Following the introductory lecture, outlining taxonomy and classification of problems and search methods, two dedicated lectures series have been devoted to local and global optimization respectively. The latter lecture has given some insight into powerful and generic interpolation/regression surrogate models such as neural networks or Kriging. The present lecture, meant as a support to the lecture slides, will give a broader overview of surrogate’s type and usage but also focus on key elements in terms surrogate training and management, whether in terms of initial sampling plan or infill criteria.
1. Exploiting Surrogates
Before proceeding to the description of sampling plans, it is worth underlining once again that exploiting surrogates means avoiding to invest one’s computation budget in answering the specific question at hand and instead invest in developing fast mathematical approximations to the long running computer codes, offering a wide potential for trade-offs exploration and physical insight gain. Besides optimization, another increasingly common use for surrogates is to act as calibration mechanism for predictive codes of limited accuracy.  It is indeed quite common when producing a software model of some physical process to have to simplify the approach taken so as to gain acceptable run times. For example in CFD, simulation approaches e.g. range from rapid potential flow solvers, through Euler codes to Reynolds-Averaged Navier-Stokes (RANS) methods to Large Eddy Simulations (LES) and on to Direct Numerical Simulation (DNS) of the full equations. A surrogate model may well be trained to bridge between such codes by being set up to represent the differences between a simple but somewhat inaccurate approach and a more accurate but slower approach, the idea being to gain the accuracy of the expensive code without the full expense. Such multi-fidelity approaches can be extended to deal with data coming from physical experiments and their correlation with computational predictions. A third exploitation of surrogate models is to deal with noisy or missing data. The small random errors affecting experimental measures need to be dealt with when the data are used. It is also commonplace that some experiments fail to yield usable results at all. On the other hand “computational noise” stems from the schemes used to set up the computational models. Hence similarly, most numerical schemes are rarely completely foolproof and may sometimes fail in unexpected ways. In such circumstances, the surrogate models can be used as filters and fillers to smooth data, revealing overall trends free of extraneous fine detail and spanning any gaps.
Last but not least, it is worth underlining that surrogate models may be thoroughly exploited in a form of data mining where the aim is to gain insight into the functional relationships between variables open to the design team and results of interest. If appropriate methods are selected and applied to sets of data, surrogates can be used to demonstrate which variables have most impact and what the forms of such effects appear to be. This can allow engineers to focus on those quantities that have most importance and also to understand such quantities with greater clarity. Sometimes, such understanding comes directly from the equations resulting from surrogate construction (e.g. weighting coefficients of the kernel functions); alternatively surrogates may be used to evaluate sensitivity indices (e.g. Monte Carlo based evaluation of the Sobol’ indices for global sensitivity analysis 
) or in visualization schemes to map and graph different projections of the data more rapidly than would be possible by repeated runs of the available analysis codes.
One example of such visualization schemes is Kohonen’s self organizing maps, described and illustrated in the global optimization lecture. On the other hand, the figure below illustrates the first order sensitivity coefficients obtained for the total pressure at inlet of a hypersonic mixed-compression air intake with respect to the geometrical parameters allowing to control the intake shape 
.  These coefficients, evaluated from a radial basis functions network built upon RANS simulations of the air intake, allowed to point out the parts of the air intake where added mass should be allowed in order to have a more stable and uniform total pressure to feed the combustion chamber. This work was performed in the frame of the FP6 European project LAPCAT, from which a detailed case study is also to be presented for system optimization.  
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Figure 2: Analysis of variance (ANOVA): Estimation of the first order sensitivity coefficients 

for the total pressure at inlet of a hypersonic mixed-compression air intake 

with respect to the geometrical parameters allowing to control the intake shape (FP6 LAPCAT project)  
In all cases, the basic steps of the surrogate modeling process remain essentially the same and have been illustrated in the flowchart presented in Figure 1. Firstly some form of data set relating a series of inputs and outputs is obtained, typically by sampling the design decision space, making use of the available and often expensive analysis codes. A number of possible candidate designs are generated and analyzed, using whatever computational or experimental means available at hand. Following this, a suitable surrogate model form must be selected and fitted to the available data. Its parameters must be estimated and it must be assessed for accuracy and a number of schemes can be used to do this, among which the simple and widely used Leave-One-Out (LOO) cross validation.
This underlines a key limitation of the surrogate approach as, if the problem being dealt with has many dimensions, the number of points needed to give reasonably uniform coverage rises exponentially, the so-called curse of dimensionality (see Section 2). Moreover, as the initial design selections made to produce the first set of data will almost inevitably miss certain features of the landscape, the construction of a useful surrogate often requires further, judiciously selected calls to the analysis codes, in an online approach, as introduced here above. These additional calls, termed infill points, are typically to be selected either in areas where the surrogate is thought to be inaccurate, or alternatively in regions where the surrogate model suggests that particularly interesting combinations of design variables lie, seeking for the optimum balance between exploitation and exploration. The selection of such points is often the result of the exploitation of an optimization-based search over the surrogates. The updating of the surrogate with infill points may be carried out a number of times until the surrogate is fit for purpose or perhaps the available budget of computing effort has been exhausted.

Having constructed (and hopefully assessed) a suitably accurate model, it can then be finally exploited for exploration of the search space, whether through optimization and/or visualization. As has already been underlined, the processes of surrogate model building, exploration, exploitation and updating may/should  essentially be closely interlinked. The present lecture will highlight some elements in terms of sampling and surrogate models management.
2. SAMPLING PLAN – DeSIGN OF EXPERIMENTS (DoE)
It is intuitively obvious that the higher the number of design variables in a modeling problem, the more objective function measuring locations we need if we are to build a reasonably accurate predictor. What is more striking is just how many more: if a certain level of prediction accuracy is achieved by sampling a one-variable space in N locations, to achieve the same sample density in a k-dimensional space, Nk observations are required. To get a better feel for why this is often referred to as the curse of dimensionality, let’s consider a case were ten one hour simulations give us a reasonably accurate predictor of the performances with respect to a given parameter variations, even considering that the response can be highly nonlinear. If we then decide to refine the model by including other variables, let’s say with eight variables and assuming the same sampling density, the computational budget requirement jumps to 108 runs, which would take more than 11 thousand … years simulation !
Evaluating the objective function for every possible combination of the design variables, which is referred to as a full factorial experiment, can hence become a very expensive undertaking. And the number of design variables has a massive impact on the number of experiments required. The question is how to identify the parameters that do not have a significant impact on the objective function and how to model the impact from the significant parameters with a minimum number of runs of the computationally intensive simulation ?  

Both physical and computational experiments may be used to obtain the objective function but they are not subject to similar types of errors. We will be focusing here on computational experiments, which besides “human errors” (e.g. wrong boundary conditions setting), are essentially subject to “systematic errors” (e.g. insufficient mesh resolution), i.e. deterministic errors adding a consistent bias to the results. The latter errors may be referred to as “noise” for computational experiments although they are not random. To avoid any confusion, it is important to stretch that for Gaussian process based approximation techniques (e.g. Kriging) the results of computer experiments, which are deterministic values, will be seen as realizations of a stochastic process in order to facilitate the mathematical process. 
The design of experiments techniques  are quite different for computational and physical experiments as for the latter replicating experiments (which is pointless for computational experiments) is typically exploited in order to mitigate the effects of random errors affecting the responses 
. 
The subject of design of experiments indeed has a long history and was originally studied in the context of designing physical experiments. The objective of DoE in such a context is to generate data that can be used to fit a regression model that reliably predicts the true trends of the input/output relationship. Classical DoE techniques include central composite design, Box-Behnken design, and full and fractional factorial designs, tending to place sample points at the extremes of the parameter space in order to alleviate the contaminating influence of measurement noise. There is also a wide class of DoE techniques based on optimality criteria suitable for cases when a linear or quadratic polynomial response surface model is employed. It has been underlined that, in contrast to physical experiments, observations made using computer experiments are not subject to random errors. Hence, to extract a maximum amount of information about the underlying input/output relationship, the sample points chosen should fill the design space in an optimal sense (hence such techniques are typically termed space-fill techniques) and it makes little sense to employ classical DoE techniques essentially placing points at the extremes of the design space.

It is possible to formulate DoE techniques that create N samples in one shot, also termed a priori DoE techniques, without using any information about the type of surrogate model being employed. But it is also possible to select/create the samples in a stage-wise procedure where at stage k+1, the trends of the input/output relationship observed from the data generated at stage k are exploited. Such adaptive techniques are also termed sequential sampling or capture/recapture techniques and may be very powerful in optimization. 
Only a limited number of well-know techniques are briefly recalled here before discussing the building of the surrogates. For a detailed account of DoE techniques appropriate for computer experiments, the book by Santner et al.
 provides a complete review of techniques while reference
 offers an interesting and detailed review of DoE techniques for physical experiments.
Monte Carlo techniques are perhaps the simplest of all DoE methods, wherein the basic idea is to use a random number generator to sample the design space.  In practice, their major disadvantage is that the points generated may not be space filling. Stratified variants, where the design space is divided into bins of equal probability and at least one point is placed within a bin, tend to generate points more uniformly.

One of the most well-known techniques is the Latin Hypercube Sampling (LHS) technique, which was proposed as an alternative to Monte Carlo techniques for design computer experiments. The basic idea is to divide the range of each design variable into n bins of equal probability and then to generate N samples such that, for each design variable, no two values should lie in a bin. Accordingly, when a one-dimensional projection of the design is taken, there will be one and only one sample in each bin. The space-filling characteristics of designs produced using LHS are not guaranteed to be good all the time, which has motivated the further development of optimal LHS designs yielding a more uniform coverage of the design space. A simple modification of LHS involves placing the sample at the center of its bin, which is referred to as lattice sampling. The so-called uniform designs additionally impose uniformity in the p-dimensional design space and Orthogonal Arrays may be seen as a generalization of LHS sampling whose one-dimensional projections are uniformly spaced. 
Let us also cite minimum discrepancy sequences (e.g. Hammersley, Halton, Sobol, … sequences), also often referred to as quasi-Monte Carlo methods, generate a deterministic sequence of points. Aimed at minimizing how much the distribution of the points deviates from an ideal uniform distribution, such sequences were originally conceived to develop space filling points for the purpose of efficient numerical integration of multidimensional functions. Finally, let us mention the wide family of DoE using optimality criterion in which a plan for conducting experiments can also be decided by maximizing or minimizing a suitable figure of merit, e.g. to minimize the posterior variance. Optimality criteria-based DoE approaches are suitable for generating points in irregular design spaces but their major disadvantage is that the computational effort can be significant compared to other DoE techniques briefly outlined earlier.  

Since design optimization studies are iterative in nature, a sequential or stage-wise DoE approach as defined above looks perhaps the most attractive. The essential distinction between a priori DoE and space-fill DoE has been introduced here above. Let us recall that the basic idea it to generate an initial design matrix to decide the location of the points at which the computer model must be run. A baseline surrogate model can then be constructed using the data thus generated. Subsequently, promising designs or insufficiently sampled regions can be identified exploiting this surrogate, leading to an augmentation of the original design matrix by a selection of points aiming for an optimum exploitation/exploration balance. This topic will be further detailed hereafter with some elements about infill criteria. 
To conclude, and as was already pointed out in the introduction, the DoE method must work synergistically with the surrogate modeling technique in use to ensure good generalization. It has been noted in a series of references to be found in the literature that in general, space-filling designs such as LHS and quasi-Monte Carlo sequences work best with models such as Radial Basis Functions (RBFs) networks and Gaussian processes. An interesting study of using data sets from computer experiments to compare how different DoE techniques (LHS, Hammersley sequences, orthogonal arrays, …) work in conjunction with a selection of surrogate modeling techniques commonly used in engineering practice (quadratic polynomials, Kriging, RBF approximations, … ) is to be found in Simpson et al.
 One of the major concluding recommendations from this study was to favour models with low values of root mean-square error with respect to models with low maximum error as the latter can always be reduced by employing a sequential model updating strategy. 
3. BUILDING A SURROGATE – SOME COMPLEMENTARY ELEMENTS
SBO approaches constitute an adequate engineering practice to tackle the complexity of multidisciplinary design optimization based on high fidelity simulations. The surrogate model is to be used most of the time, with occasional recourse to the high-fidelity model. More specifically, surrogate modeling techniques may be classified as 

· data-fitting models (interpolation or regression) which are non-physics-based approximations; such techniques are described and illustrated in details in the global optimization lecture and case studies,
· hierarchical models, also known as multi-fidelity, variable fidelity or variable complexity models, 
· reduced-order models which can use, for instance, modal analysis or proper orthogonal decomposition.

Data-fitting models are generic but they are not based on the physical properties of the behavior they are trying to represent. On the other hand, hierarchical models use corrected results from a low-fidelity model as an approximation to the results of a high-fidelity model. These models are physics-based but are of lower fidelity. Contrarily to traditional SBO methods with data-fitting models that use a sampling of high-fidelity calls to produce a low-fidelity surrogate model, variable-fidelity methods model the error between the higher and lower fidelity models and this error is used as a correction to the low-fidelity model, instead of a direct approximation to the high-fidelity model. 

Data-fitting models are covered in the global optimization lecture and several case studies, so the present lecture now rather focuses on reduced-order models, which also constitute an active area of research. The traditional reduced-order models are generated directly from a high-fidelity model through the use of a reduced basis and a projection of the original high-dimensional system down to a small number of generalized coordinates. This drastically reduces the number of degrees of freedom. While generic, it must be underlined that these surrogates are still physics-based (and may therefore have better predictive qualities than data-fitting models), but do not require multiple system models of varying fidelity (as required for model hierarchy). 
Reduced models typically allow to gain a deep physical insight into the leading phenomena. However, it is important to note that many of the existing reduced-order modeling and hierarchical modeling techniques require a priori knowledge of the structure of the high-fidelity model to be approximated. However, in many (surrogate-based) design optimizations, the CFD solvers are used as black-boxes and it is therefore difficult to derive low-order models by using classical model reduction approaches, which generally employ a Galerkin projection procedure requiring knowledge of the underlying high-fidelity model. In consequence, such techniques are considered as intrusive.
Non-intrusive reduced order models may also be derived e.g. by combining the use of Proper Orthogonal Decomposition (POD) and data-fitting techniques. Such an approach has the advantage of not requiring an intrusive or code-specific implementation. Such a procedure benefits from the POD to perform the space reduction of the model, whereas generic data-fitting approximations, like Radial Basis Functions (RBF) or Kriging, described in the global optimization lecture, can be used for the low-dimensional reconstruction in the design space. 
POD is a standard and powerful tool in data analysis aimed at obtaining low-dimensional approximate descriptions of high-dimensional processes. The POD, also known as the Karhunen-Loève Decomposition
 or the Principal Component Analysis (PCA)
, provides a simple way to reduce a complex data set to a lower dimensional one, which enables to reveal the sometimes hidden, simple underlying structures in complex structures by using analytical solutions from linear algebra. Since its introduction in 1901
, the POD method has received much attention as a tool to analyze complex non-linear systems. It has been applied in a wide range of fields, including image processing, signal analysis, data compression, process identification,… 

The goal of this mathematical procedure is to identify the most meaningful basis to re-express a data set. The basis resulting from the POD can also potentially filter out noise and reveal hidden structures. The POD analysis transforms a number of possibly correlated variables into a smaller number of uncorrelated variables which are called the principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. 

In this framework, the goal of the model reduction approach is to represent a set of data, called the snapshots, obtained from the original high-fidelity numerical simulations, in terms of an optimal coordinate system. Regarding terminology, it is worth underlining that selecting the snapshots amounts to a DoE exercise. The POD analysis detects correlation between the snapshots and yields a smaller set of orthogonal vectors, known as POD basis. An efficient method for computing PODs for large dimensional problems is the method of snapshots introduced by Sirovich
. This technique has been widely applied to CFD formulations to obtain reduced-order models for unsteady aerodynamic applications
. A set [image: image3.emf] of N observations, called snapshots, is obtained from accurate numerical simulations (e.g. the high-fidelity CFD simulations in the present setting).  The POD procedure computes a set of modes from these snapshots. This set of modes is optimal in the sense that, for any given basis size, the error between the original and the reconstructed data is minimized. Reduced-order models can then be obtained by projecting the CFD model onto the reduced space spanned by the POD modes. 

The goal of the POD procedure is to build a linear basis[image: image4.emf]such that 
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where 

· [image: image6.emf] is the mean vector of the set [image: image7.emf];

· N  is the number of snapshots;

· the[image: image8.emf] are the POD basis vectors;

· the [image: image9.emf] are the POD linear expansion coefficients.

The POD basis is built in several steps. First, the snapshot deviation matrix is constructed as

[image: image10.emf]
Then, the covariance matrix C is computed by [image: image11.emf]. The eigenvectors of C determine how to construct the N POD modes [image: image12.emf]. Newman
 noticed that the most important part of the energy contribution is concentrated in the first modes. Consequently the approximation based on the POD can be constructed by only conserving r modes corresponding to the largest singular values of C. A low-dimensional representation of [image: image13.emf]can then be given by

[image: image14.emf]
where r<<N is chosen to capture the desired level of accuracy. Therefore, the POD procedure can extract dominant features in data by decomposing the data into at set of optimal orthogonal base vectors of decreasing importance. The POD basis could be understood as an optimal basis which contains more information than any other one. 
The POD technique has shown its usefulness through different fields of application. It has been applied for the treatment of reconstruction of missing data. Everson and Sirovich
 have proposed a modification of the basic POD method that handles incomplete or “gappy” data sets in the context of image reconstruction, such as human faces, from partial data. An incomplete data vector can be reconstructed by representing it as a linear combination of known POD basis vectors. 

Non intrusive POD as a reduced order model/surrogate has already shown its effectiveness through various strategies and applications. Coelho et al.
 
 have proposed a bi-level model reduction technique in the context of multidisciplinary optimization. First, the discipline output variables are reduced by means of the POD. In a second step, an inexpensive surrogate model (based on the moving least squares method) is built in order to approximate the POD linear coefficients for cases not included in the initial database. This approach has been applied to the shape optimization of both a 2D airfoil and a 3D flexible wing. Toal et al.
 have recently developed an optimization strategy called geometric filtration. The geometric filtration strategy applies an initial Kriging response surface model optimization to the original problem. From the results of this optimization a number of good design points are selected to form a snapshot set for the purposes of proper orthogonal decomposition. The POD basis functions then act as a reparameterization of the original problem, filtering out badly performing designs and reducing the number of variables. A secondary Kriging based optimization is then carried out on the reparameterization. The geometric filtration strategy was tested on the optimization of a transonic airfoil and was found to outperform a traditional Kriging based optimization. 

The methodology for the computation of the POD modes requires the generation of a snapshot set. Following this DoE, it must be emphasized that the quality of the low-order POD-based models is mainly related to the good choice of the distribution of the snapshots in the design space. Selection of snapshots is the crucial ingredient for generation of a good POD basis and represents one of the major challenges for the successful exploitation of POD-based surrogates in optimization.

As has been described in the global optimization lecture, global explorers such as genetic algorithms or simulated annealing are good at leaving poor objective regions behind quickly, while simultaneously exploring several basins of attraction. The exploration capability of population based global searches is typically enhanced by the use of a space-filling sampling plan as described in Section 2. However, in comparison with local search methods, what these explorers sometimes lack is a high convergence speed (though this is much less of a problem in terms of searching a surrogate) and precision in the exploitation of individual local optima. Because the surrogate models are only an approximation of the true functions we wish to optimize, it is prudent to enhance the accuracy of the model using further function calls in addition to the initial space-fill plan. One may wish to improve the accuracy solely in the region of the optimum predicted by the surrogate in order to obtain an accurate optimal value quickly: local exploitation. One may however be unsure of the global accuracy of the surrogate and employ an infill strategy focused on enhancing the general accuracy of the model: global exploration. Each of these venues can be considered in turn, and several methods also combine both schools of thought.
Prediction based exploitation will apply infill points at the optimum predicted by the surrogates which will allow to quickly converge towards an optimum value. However, this may not be the global optimum. Interpolating models continually improve with the addition of infill points. However, in cases where the function is extremely multimodal, this can be a disadvantage and regression may be required. Clearly, for multimodal functions where the initial model does not approximate the whole function well, an infill strategy that can search away from the current minimum and explore other regions is required. Now regarding exploration, Gaussian process based models such as Kriging have a very interesting advantage: since such models permit the calculation of an estimated error in the model, it is possible to perform error based exploration and to use the estimated error to position infill points where the uncertainty in the predictions of the model is highest. For example, one could choose to maximize the predicted error as an infill criterion. However such as strategy would be tantamount to just filling the gaps and could be achieved by simply using a larger sampling plan. An important point to face would also be to decide when to stop adding error based exploration points and start exploiting the model. Instead of either exploiting or exploring the model, criteria which balance these options are most interesting. A wide variety exists, among which one can cite the well-known expected improvement criterion. For more details on infill criteria, which represent a key element of surrogate based designs, the excellent reference  
 can be consulted, as it covers all the core building blocks of surrogate model infill criteria. This is an active area of research and many permutations or hybrids of the criteria are worth looking at, striving for an optimal balance between exploitation and exploration. 
Before concluding this section, let us point out once again that a key benefit of a surrogate model based optimization is that the gradients of the objective function are not required. If gradient information is available, the designer may indeed choose to employ a localized gradient descent search of the objective function with no surrogate model. However, if the global optimum is thought, the gradient information can be used to enhance the accuracy of a surrogate model of the design landscape, which can then be searched with a global optimizer. Whether obtained through finite differencing or adjoint methods and algorithmic differentiation (as exposed in the local optimization lecture), the gradients or even higher order derivative information can be incorporated into the model. The use of derivative information adds considerable complexity to the model building, leading to lengthier parameter estimation but there is clearly the possibility of building more accurate predictions which could reveal particularly interesting in very high dimensional problems. 
Last but not least, it must be underlined that it is difficult to construct a global surrogate model that accurately captures the input/output relationship over the entire design space. Although infill criteria aim at improved global and local accuracy, effective coupling of a global search strategy and surrogate modeling often implies the use local surrogate models that are valid only over an evolutive subregion of the design space. This is especially key in high dimensional problems and again constitutes a research topic of its own, it remains an open issue especially for multi-objective optimization. For mono-objective optimization for example, as illustrated in the global optimization lecture, a move-limit 
 procedure based on effectiveness of approximations can be chosen to adapt the range of the variables along the design process, focusing the optimization search on smaller regions of the design space and exploiting local models. As the optimization proceeds, the idea is to enlarge or restrict the search space based on a heuristic rule in order to refine the candidate optimal region, in order to avoid generating design points in regions where the surrogates are not valid.
4. CONCLUSION 
In the context of optimization, the objective is to create a surrogate model that accurately captures the trends of the relationship between input and output and in particular over those regions where high performance designs lie. Rarely a completely fixed approach turns out to be appropriate in all cases of interest since the data itself will typically influence the directions taken. The best search methodology to exploit depends upon the type of design space that has been defined, whose characteristics are typically not known … until it has been explored. This calls for knowledge, care and experience from those constructing and using the surrogates. As will be shown in all case studies, a good understanding of the capabilities and limitations of the various techniques is key but the fundamental role of the optimization specification (parameterization, bounds definition, model simulations choice, cost functions/constraints definition) remains at the heart of the success of the design methodology. 
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