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Abstract
The present lecture focuses on surrogate-based optimization applied to the design of a non axisymmetric hub endwall for an HP compressor single-row rotor blade. The objective was to improve its performance at nominal conditions. The non axisymmetric hub surface is parameterized under CATIA v5 with 16 design parameters that can create circumferential 3D bumps and hollows of variable amplitude and width.

A first mono-point optimization was conducted, with the objective to maximize the isentropic efficiency of the compressor at design point. No additional constraints were imposed in order to let the optimizer free to search the conception space before judging the optimum according to its feasibility in terms of manufacturing and operability. Based on this experience, a second two-point optimization was then conducted with the aim to maximize the isentropic efficiency at the design point while also preserving the total-to-total pressure ratio at a second point closer to stall and limiting the mass flow variations within 0.5%.  The amplitude of the designed hollows had to be limited as well for manufacturing purposes. While satisfying the stability, mass flow and manufacturing constraints, the optimized non axisymmetric hub designs highlighted the global search capabilities of the optimization carried out and yielded a 0.4% increase of the isentropic efficiency compared to the axisymmetric case by adequately altering the shock and reacceleration pattern close to the wall rather than reducing the secondary flow features. 
NOMENCLATURE
· AXI       Axisymmetric Endwall 
· CFD       Computation Fluid Dynamics 
· DoE       Design of Experiments 
· LHS       Latin Hypercube Sampling 
· EA         Evolutionary Algorithm 
· HP         High Pressure 
· LE         Leading Edge 
· L-O-O    Leave One Out 
· NAXI     Non Axisymmetric Endwall 
· RBF       Radial Basis Functions 
· SBO       Surrogate Based Optimization
· TE         Trailing Edge 
· 3D         Three Dimensional  
1. INTRODUCTION
The present practical case study fits into the frame of the ongoing 6th Framework European Project NEWAC (NEW Aero engine Core concepts), which targets the development of alternative engine configurations in order to achieve significant reduction of pollution. More specifically, new engine core configurations with heat management and active systems as well as advanced combustion technology are developed to reduce CO2 and NOx emissions. The present case study, published in References [19]

 REF _Ref267291974 \r \h 
[20], more particularly falls within the flow controlled core subproject lead by Snecma: various flow control technologies, including tip injection, aspiration and advanced 3D aerodynamics are to be investigated to achieve an increase in HP compressor efficiency, additional surge margin and reduced in-service deterioration.

1.1  Physics Background

The loss mechanisms in turbomachinery may be generally classified into three main categories: the tip clearance losses, the profile losses and the losses due to the secondary flows next to the endwalls. All these mechanisms may be eventually better controlled by altering the blade shape as well as the endwall geometry. For example, casing circumferential grooves applied to compressor blades may increase their stall margin, squealer tip turbine blades may reduce the high heat transfer due to hot tip leakage flow impingement and 3D non axisymmetric hub endwalls typically tackle the origin of the secondary flows. Designing the blade shape and the endwall geometries constitutes an interesting challenge to be tackled with surrogate-based optimization. 
Up to now several studies have demonstrated the positive effect of endwall contouring in turbomachines. A non axisymmetric endwall interferes with the secondary flows and may significantly decrease the local losses by either weakening the secondary vortex system and/or the shock formation close to the wall (as highlighted in numerical studies on compressor blades[1], experimental studies on compressor blades[2]

 REF _Ref267217688 \r \h 
[4], numerical studies on turbine blades[5]

 REF _Ref267218904 \r \h 
[6], experimental studies on turbine blades[7]

 REF _Ref267218940 \r \h 
[11]. The design of the endwall shape highly depends on the specific features of the flow around the blade. A thorough understanding of the flow physics is required in order to adequately define the optimization specification (parameterization and associated bounds, objective(s)/constraint(s)) as well as the computational chain setup.
In the Reference[12], Harvey et al. generated a systematic set of perturbations to the parameterized hub geometry of a turbine blade that created 36 new endwalls. Their design was a product of two curves in axial and circumferential directions. The same author[13] further investigated several designs: a sinusoidal endwall shape was specified in terms of height and phase angle at 6 axial control points. More about the design methodology is also to be found in Reference [14]. A 38% reduction of the overall secondary kinetic energy was achieved for the non axisymmetric vane, while this reduction reached 28% for the non axisymmetric rotor downstream. The equivalent improvement of 0.9% on the stage efficiency was also experimentally verified. The cost function exploited in these studies was the secondary kinetic energy multiplied by the helicity, more information about its definition can be found in Reference[37]. A similar design methodology was applied for the first time to a subsonic compressor blade by Harvey et al.[32] in order to control the secondary flows and demonstrate the possibility of suppressing hub corner stall by 3D profiling. A 3D endwall optimization was conducted by Harvey and Offord [33] applied to a compressor blade that exhibited extensive stator hub corner stall at off-design conditions. Their best designs showed as effective as the 3D blading (blade sweep and lean) to improve the compressor surge margin. 

Saha and Acharya[15] also generated several combinations of two curves that defined the endwall design of a turbine blade, one in streamwise and one in pitchwise direction. The heat transfer on the endwall and  the turbine blade surface was locally reduced by  15 to 25%; the average Nusselt number decreased by 8% and the average losses were reduced by 3.2%. Nowadays with the increasing computational power, an automatic optimization procedure that searches for the best combination of the geometrical parameters is possible. Surrogate-Based Optimization reveals a very efficient tool to do so and numerous recent examples are to be found in the literature. Before proceeding to the case study, a couple examples both related to compressors and turbines are given hereafter.

Dorfner et al.[16] improved the efficiency of a compressor blade by around 1% by using a single objective optimization procedure with 30 parameters (a grid of 5 times 8 control points was selected) to describe the hub endwall geometry. Nagel and Baier[17] optimized both the blade shape and the endwall of a symmetrical turbine vane. Due to the symmetry, the calculations were performed only in half of the channel. Based on the modification of 43 parameters (2D airfoil shapes and stacking axis, endwall), the integral losses in total pressure of the optimized geometry were reduced by 22% with respect to the starting cascade.

Germain et al.[35] exploited an extended endwall parameterization in order to allow more complex surfaces definitions, they also additionally modelled the fillet radii in their CFD evaluations performed with the TRACE solver. An optimization was carried out both on the hub and tip of the first stator and on the hub of the rotor of a high work one and a half turbine stage configuration (the cost function was the secondary kinetic energy defined by Germain et al. in Reference [34]). The efficiency was improved by about 1% and the design achieved not only a reduction of the secondary losses but also a strong weakening of the midspan losses. Time-resolved flow comparisons between the axisymmetric and the optimized geometries (see Reference[36]) explained that this reduction of midspan losses resulted from the reduction of the trailing shed vorticity. Praisner et al. [18] also exploited a gradient-based optimization algorithm with a 3D CFD RANS solver to adjust an endwall parameterized by five equally spaced axial control points with five pitchwise points per axial row. The number of design iterations reached 1000. The method was applied to three different turbine blades and decreased the losses by 4 to 12% depending on the reference blade. Experimental validation showed an even higher decrease, between 10 to 25%, for the same blade endwall geometries.

 1.2  Context and outline
This lecture [20]
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[19] presents the surrogate-based optimization chain and methodology that has been set up to maximize the isentropic efficiency of a high pressure compressor rotor blade by modifying its 3D parameterized hub. More specifically,  the framework of the present case study is the following: 

·  the non axisymmetric endwall design is strictly limited between the leading edge and the trailing edge of the blade and therefore it facilitates its implementation in a real engine (where the axial gap between rotor-stator is only a few millimeters); 

·  the parameters that describe the highly 3D non axisymmetric surface are limited to 16; this parameterization is carried out under CATIA v5; 

·  an evolutionary algorithm combined with a surrogate model is exploited to globally search the conception space;
·   the optimization platform developed in-house at Cenaero, Minamo, is coupled with CATIA v5, the Autogrid5 meshing tool and the elsA code [28]
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[29] that has been exploited for the flow analysis. 
This lecture is structured as follows. First, the parameterization of the hub endwall is discussed, with particular focus on CAD neutral integration within the optimization framework. Then Cenaero's optimization platform and its capabilities are described. The hub endwall surrogate-based optimization of an HP compressor single-row rotor blade is then presented in details. Both mono-point and multi-point optimizations have been performed. First, the Design of Experiments (DoE) and the optimization convergence history are commented, along with the monitoring of the reliability of the response surfaces. Comparative analysis of the mono-point and multi-point optimized designs with respect to the axisymmetric reference will then be provided, with focus not only on the global performances but also on the detailed flow features. Finally, some conclusions will be drawn.

2. DESCRIPTION OF THE OPTIMIZATION CHAIN
2.1  Parameterization and CAD-access
CAD systems have become an integral and critical part of the design process in various fields, and in particular in the field of turbomachinery design. A major advantage of CAD systems today is that design intent can be incorporated into the CAD model using the master model concept: it consists of  features and parameters that can be used to modify and regenerate a new, altered, instance of the CAD model.

However, most CAD integration strategies rely on translators and geometry kernels. In such a framework, complete access to the native CAD model including its features and parameters is not available to the simulation environment, which may result in both loss of information and robustness. In addition, the manual intervention that may be required to heal the CAD model in such situations results in a procedure that is neither general nor automated enough to be directly incorporated into an industrial shape optimization process. In order to minimize the bookkeeping and to avoid translation and manipulation/regeneration errors, it is, therefore, of prime importance to use the native CAD system and CAD model directly within the design loop.

In this research, the CAPRI [21] CAD integration middle-ware has been exploited in order to provide direct CAD access without manual interventions in the CAD system during the optimization loops. Based on CAPRI, an object-oriented framework has been developed to: 
·  interact with the underlying CAD system transparently,
·  modify the shape design variables, 
·  regenerate the CAD model and 
·  provide an updated native geometry representation to be used for the analyses (see Figure 1).

In the present work, the hub endwall is parameterized under CATIA v5 using a series of B-spline curves and holds 16 parameters in all. Respectively 6 parameters axially, 6 ones radially, and 4 ones azimuthally permit to adjust the surface. The locations of the B-spline control points have been chosen such as to provide 

·  surface flexibility,

·  surface periodicity in the azimuthal direction,

·  surface continuity,

·  surface slope continuity.

More specifically, four control sections were employed:

·  Two of them are axial sections, one at the blade LE and one  at the blade TE, defining the limits of the non axisymmetry within the blade channel. 
·  The other two sections are located inside the blade channel and are responsible for the generation of the non axisymmetric surface. Each one is defined by three control points that can move in axial and circumferential directions independently. These six points can also move radially. The movements of these points with respect to the axisymmetric geometry are the main degrees of freedom that are to be exploited by the optimizer.

[image: image1.png]
Figure 1: Native CAD access with CAPRI
2.2  Optimization platform
Minamo, Cenaero’s optimization platform exploited here, implements mono- and multi-objective Evolutionary Algorithms (EAs) using real coded variables. These methods are stochastic, population-based search techniques and are widely used as efficient global optimizers. Such zero-order optimization techniques are indeed robust and able to cope with noisy, discontinuous, non-differentiable, highly non-linear and uncomputable functions. Most importantly, they also permit to simultaneously handle multiple physics as well as large numbers of design variables and multiple objectives. 
However one drawback of EAs is that they may suffer from slow convergence due to their probabilistic nature, such as stochastic recombination operators. As a consequence, for engineering applications involving expensive high-fidelity simulations, the CPU time required for a pure EA is usually not practical. This highlights the importance to reduce the number of calls to the high-fidelity simulations. Therefore, as detailed in the theoretical lectures, the optimization process in Minamo is significantly accelerated by the use of cheap-to-evaluate surrogate models, also known as meta-models or response surface models.

2.2.1 Surrogate-Based Optimization

The heart of the proposed methodology consists of a surrogate modeling optimization strategy. As already underlined, SBO refers to the idea of accelerating optimization processes by exploiting surrogates for the objective and constraint functions [26]
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[23]. An SBO design cycle consists of several major elements as shown in Figure 2.

[image: image2.emf]
Figure 2: Online Surrogate-Based Optimization framework
It is worth underlying the major importance of the first step, namely the problem definition and optimization specification, which includes, for instance, the parameterization, the definition of the bounds, the objectives and the constraints. The second step consists in building an initial database by choosing a set of points in the design space and conducting high-fidelity simulations at the selected sample points. This exercise is called the Design of Experiments (DoE). Based on this DoE, surrogate models are constructed in order to build an analytical relationship between the design parameters and the expensive simulation responses. This phase provides cheap responses to be used by an optimizer. Using the surrogate models to evaluate the objective and constraint functions, an optimization is then carried out to identify the optimum, at least in the sense of the surrogates. The accurate simulation is used to evaluate the real objective function and constraint values for this optimum in order to check the accuracy of the surrogates at the optimal solution. The new simulation result (and possibly simulation results at other infill points) is (are) added to the database which is therefore continuously improved with new design points, leading to increasingly accurate approximate models all along the design. This design loop is repeated until the maximum number of optimization cycles specified by the user is reached. 

In this case study, an EA is employed because this optimizer choice allows any kind of surrogate models without particular properties such as differentiability of the surrogates.  It is important to note that this SBO scheme can incorporate the derivative information, when it is available, in different ways without any major modifications. For instance, the derivatives could be exploited directly in the construction of the

meta-models. The periodic retraining of the surrogates ensures that the meta-models continue to be representative of the newly-defined search regions. Furthermore, in order to obtain a better approximated solution, a framework for managing surrogate models is used. Based on effectiveness of approximations, a move-limit procedure adapts the range of the variables along the design process, focusing the optimization search on smaller regions of the design space and exploiting local models. As the optimization proceeds, the idea is to enlarge or restrict the search space based on a heuristic rule in order to refine the candidate optimal region. The main advantage of this scheme is that it ensures that the optimization does not generate design points in regions where the surrogates are not valid. 

In order to guarantee diversity in the population, Minamo also exploits a merit function which is combined with the objective function of each candidate solution [25]. This function takes into account the average distance of a candidate with the other candidate solutions, and favors the solutions far away from their neighbours. A good approach for SBO seeks a balance between exploitation and exploration search, or refining the approximate model and finding the global optimum. Our strategy also allows to add several new design points evaluated in parallel at each cycle. Typically, the design point coming from the optimization of the surrogate(s) is added and other update points may be appended to the database as well. Using several research criteria per iteration allows to combine exploitation (optimization of the approximate function) and exploration (to systematically aim for a better global capture) within a single iteration, speeding up the restitution time of the optimization.  In other words, although most of the optimizers based on the Kriging model use one single refinement criterion per iteration (the Expected Improvement criterion), Minamo is capable to proceed by iteratively enhancing with more than one point per iteration by using a balancing between model function minimization and uncertainty minimization.  

Furthermore, particular attention has been paid to handling simulation failures, i.e. experiments where the simulation fails to converge. Indeed, when optimization is carried out using high-fidelity numerical simulations, it is an inevitable fact that not all simulations provide reliable results (due to an inappropriate mesh, failed geometry regeneration, etc.). The best practice is to try to make the simulation chain as robust as possible, and let the optimizer take care of the simulation failures. In Minamo, the simulation failures are recorded for every sample point through a Boolean response, called the success/failure flag. Two separate surrogate models are maintained simultaneously, namely the response model(s) and the failure prediction model. When the EA performs on the dual surrogate models, it uses the response model for the evaluation of objective and constraint functions, whereas for the evaluation of the simulation failure, it uses the failure prediction model.  The idea is to bias the search away from failed sample points by penalizing, via a constraint, regions containing simulation failures.

2.2.2 Design of Experiments

The DoE, which is the sampling plan in the design parameter space, is a crucial ingredient of the optimization procedure, especially when the function evaluations are expensive, because it must concentrate as much information as possible. Indeed, the quality of surrogate models are mainly related to the good choice of the initial sample points. The challenge is in the definition of an experiment set that will maximize the ratio of the model accuracy to the number of experiments, as the latter is severely limited by the computational cost of each sample point evaluation.
Minamo features various DoE techniques aiming at efficient and systematic analysis of the design space. Besides classical space-filling techniques, such as Latin Hypercube Sampling (LHS), Minamo's DoE module also offers Centroidal Voronoi Tessellations (CVT) and Latinized Centroidal Voronoi Tessellations (LCVT) [24].  A drawback of LHS is that sample points could cluster together due to the random process by which the points are generated. CVT efficiently produces a highly uniform distribution of sample points over large dimensional parameter spaces. However, a CVT dataset (in a hypercube) has the tendency for the projections of the sample points to cluster together in any coordinate axis. LCVT technique tries to achieve good dispersion in two opposite senses: LHS and CVT senses. The idea is to compute a CVT dataset and then apply a Latinization on this set of points. Latinizing a set of points means transforming it into another set of neighbouring points that fulfills the Latin hypercube property. The aim of this Latinization of CVT sample points is to improve the discrepancy of the set of points. LCVT technique has both lower discrepancy than pure CVT and higher volumetric uniformity than pure LHS, it was exploited in the present case study. All these space-filling techniques, independent of the design space dimensionality and of the type of surrogates, constitute good first choices to generate an a priori sample set in large dimensions. The DoE can be generated quickly by making use of massively parallel computers.

Since the computation of the response functions can typically take several hours on tens of computational cores, next to LCVT implementation, further research effort has been put to achieve a good accuracy of approximate models with a reasonable number of samples by incorporating function knowledge. In order to further tailor the sampling and to better capture the responses underlying physics, Minamo also incorporates an auto-adaptive DoE technique. The idea is to locally increase the sampling intensity where it is required, depending on the response values observed at previous sample points. The aim is to automatically explore the design space while simultaneously fitting a response surface, using predictive uncertainty to guide subsequent experiments. 

2.2.3 Surrogate Modeling

The challenge of the surrogate modeling is similar to that of the DoE: the generation of a surrogate that is as good as possible, using as few expensive evaluations as possible.  Polynomial fitting surfaces are generally not well-suited for high dimensional and highly multimodal problems. Several non-linear data-fitting modeling techniques can be used to build the surrogates, e.g. artificial neural networks, Radial Basis Functions (RBF) networks, Kriging or support vector machines [22]. Contrary to polynomial response surface models, these techniques have the advantage of decoupling the number of free parameters with respect to the number of design parameters. Furthermore, they can describe complex and multimodal landscapes. The Minamo surrogate module offers several generic interpolators such as RBF networks, ordinary and universal Kriging. In the training process, a trade-off must be attained between the accuracy of the surrogates and their computational cost. For our RBF network, the surrogate models are generated without the user's prescription of the type of basis function and hyperparameter values. Our method autonomously chooses the type of basis functions and adjusts the width parameter of each basis function in order to obtain an accurate surrogate model; it was exploited in the present case study.
In the optimization studies presented in this lecture, mono-objective optimization is carried out to minimize an aggregate objective function function composed as the sum of the RBF multiquadrics fitting of  the isentropic efficiency at design point plus a series of weighted penalization terms accounting for the aerodynamic and manufacturing constraints. The EA will be applied at each design iteration in order to search for the extremum of this aggregate objective function. The satisfaction of multiple constraints can not be ensured. It has to be underlined that besides the penalty terms taken into account in the global objective function definition, the constraints are also directly handled by the EA with a tournament procedure. This means that feasible individuals will be unconditionally preferred [31] .

For industrial applications, the computational cost of one optimization iteration mainly depends on the cost of the simulation employed, which will be detailed in the next section devoted to the mesh generator and flow solver. In general the cost for building the approximate model and running the  EA is from a few seconds to a few minutes, depending on the number of training examples and the number of input and output variables.

3. NON AXISYMMETRIC HUB ENDWALL OPTIMIZATION
As already mentioned in the introduction, the optimization platform has been coupled with the AutoGrid5 mesh generation tool and the elsA code, developed at ONERA and exploited for the flow analysis. elsA (Ensemble Logiciel de Simulationen Aerodynamique) is a cell-centered, finite volume, multi-block structured solver. In the optimization studies conducted in the present work, RANS simulations with the two additional transport equations turbulence model k-l by Smith have been performed, without resorting to wall law functions. Backward Euler pseudo-time integration with 3-grid V-cycling multigrid acceleration has been employed to reach steady state.

A grid convergence analysis was first conducted in order to adequately define the mesh to capture the flow physics to be tackled. This analysis lead to the definition of a 2.2 million grids points mesh. When considering endwall profiling, the flow changes may indeed be performed quite locally, which not only requires adequate discretization of the boundary layers but also sufficient axial resolution to be well captured. The hub and blade meshing is illustrated in Figure 3. The blade surface is discretized with 185 points, 25 of them are concentrated at the LE and 25 at the TE. The y+  value was checked to remain below 1 everywhere at wall. The number of the span wise layers is equal to 124 (among which 24 cell layers in the tip gap),  while the cell expansion ratio is kept below 1.2 for the growing of the boundary layers. 

[image: image3.png]
Figure 3: Hub and blade surface mesh for the non axisymmetric hub optimizations 

 Close up in the hub region
The hub parameterization is quite efficient because although the number of parameters is fairly small (16 in total), it can define complex 3D surfaces that follow the blade curvature. Moreover, discontinuities or local high gradient areas are avoided by construction. In order to decrease the computational cost, only one operating point was considered for the first optimization conducted. The objective was to maximize the isentropic efficiency of the compressor while imposing no additional operational or manufacturing constraints. The idea was to let the optimizer free to search in the design space before judging the optimum according to its feasibility in terms of manufacturing and operation in real engines, which could also reveal suitable constraints for a next optimization. 
Spanwise distributions of absolute total temperature and pressure as well as the velocity direction and the values of the two turbulence variables are given as boundary conditions at the inlet of the computational domain that is taken one axial blade chord upstream the blade LE. The static pressure at the hub endwall of the outlet defines then the operating point of the rotor, which corresponds to both subsonic inlet and outlet. The outlet boundary of the computational domain is located one axial chord downstream the blade TE. 

The definition of the bounds of the parameters was of prime importance as they had to be as broad as possible (so that a large design space was explored), while providing a sufficient overall (including CATIA v5 surface regeneration, AutoGrid mesh generation and elsA simulation convergence) success rate of the experiments to create a reliable response surface with the database to start the optimization. Because of the relatively high non linearity of the objective function with respect to the parameters, the choice was set to require a number of converged experiments included in the dabase at least equal to 4 times the number of parameters. The initial DoE holds 97 sampled points (6 times the number of parameters). The resulting overall success rate was 76 % (74 experiments). 
The Leave-One-Out (L-O-O) test was used to assess the reliability of the response surfaces [30]. This test indeed provides an estimate of the accuracy of the surrogate model without the need of creating additional data. To this end, 73 experiments are used in fitting the surrogate model and one experiment is left out. Its actual value from the fine CFD analysis is then compared with its predicted value calculated with the above surrogate model. The same procedure is repeated for all the experiments. The matching and the correlation coefficient between these two output sets, actual and predicted values, is then calculated and is shown in Figure 4 for the isentropic efficiency. The correlation coefficient was found equal to 0.91 which demonstrates that the predicted values from the surrogate models match closely and regularly the fine analysis results and that the response surface constitutes a sound basis for the subsequent optimization.
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Figure 4: Leave-One-Out Assessment of the isentropic efficiency response surface 

built based on the initial DoE results (74 converged experiments)
The next step set was then the mono-point optimization: another 79 experiments were generated. The optimization converged after less than 50 experiments. With this first mono-point optimization, a non axisymmetric surface was found that yielded and isentropic efficiency gain of about 0.4%. This increase may be seen as quite important, when considering that the geometry changes very locally, only at the hub endwall. The blade operates in the transonic regime all along the span and the shock generates losses in the whole channel. In addition, there are also the tip clearance losses that are not at all negligible. As more detailed flow analysis will show hereafter, the optimized design appears to tackle essentially one out of three mechanisms of losses, the shock/acceleration structure, from the hub endwall to approximately midspan. One can also note that the overall mass flow of the optimized geometry at the design point increased only by 0.4% compared to the axisymmetric case. It is positively surprising that the mass flow of the optimized geometry was very close to the reference case, although no active constraints on the mass flow were used during the optimization. The mass flow values of the DoE experiments  varied by more than 1% around the mass flow value of the reference with axisymmetric hub.

It can be noted that for this first mono-point optimization, the optimized parameter values of the control points were not located at the bounds of the conception space, except for one parameter value, close to its limit. Accordingly, in order to check wether the originally chosen bounds did not constrain the design too severely, the database was further enriched with additional experiments considering slightly wider bounds of the design space. The optimization that followed lead to a very similar non axisymmetric surface.

However, the total-to-total pressure ratio decreased by 0.4%. This clearly illustrates that the optimizer will naturally exploit any flaw in the optimization specification as there was in this preliminary exploratory phase no constraint on stability/operability. This observation then lead to the specification of a second optimization, now accounting for two operating points, the design point and a second point closer to stall in order to better represent the perfomance map of the compressor and aim for a more robust design. 
The first operating point was again chosen close to peak efficiency (design point) and the second point considered was chosen closer to the stall region (stall point). The objective was to maximize the efficiency at the design point while preserving at least the same total-to-total pressure ratio at the stall point. The mass flow at design point was also constrained to remain within 1% of the reference axisymmetric flow value. 
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Figure 5: Design convergence history of the two-point optimization 

(green dots: DoE points - red dots: Optimization points)
In order to reexploit the meshes that had already been generated for the mono-point optimizations, the same conception space was defined, although for manufacturing purposes, an axisymmetric reference surface below the hub would now limit the amplitude of the hollows creation, which ruled out a couple surfaces. The overall (CATIA v5 regeneration - AutoGrid5 meshing - elsA simulation convergence) success rate achieved for this two-point DoE was again arount 70%, leading to 67 converged experiments. 

The most interesting point of this new DoE appeared to be the hereafter noted individual 13, which yielded an increase in terms of isentropic efficiency of about 0.39% with respect to the axisymmetric case, while it increased the total-to-total pressure ratio by 0.31% at stall without exceeding the limit on the mass flow at design point. Let us note that the mass flow at stall was also found to remain within 0.5% of the corresponding reference axisymmetric flow value.
A series of promising individuals were then found along the optimization phase in itself. The design convergence history is illustrated in Figure 5, complete stabilization of the optimization was obtained in about 40 design cycles. FiguresFigure 6 and Figure 7 illustrate the evolution of the L-O-O correlation coefficient after the DoE and at the end of the optimization. These figures show that the optimizer favours increased stability and essentially highlight the increase of the reliability of the surrogates along the design. Some of promising designs obtained following the optimization phase were quite close in terms of performance and shape to the best DoE experiment pointed out in the above paragraph. However, most interestingly, a second family of promising designs, quite different and somewhat smoother in terms of 3D surface definition, was found. This illustrates the ability of the EAs to globally search the conception space and possibly offer a panel of solutions to the designer. Let us point out one design in this second family, hereafter noted as individual 144, which yields an increase of efficiency of 0.35 % with respect to the reference axisymmetric case, while increasing the total-to-total pressure ratio of 0.1 % at stall without exceeding the limit on the mass flow at design point. Interestingly also, the 144 individual appeared quite close in shape to the interesting designs found from the mono-point optimizations (termed hereafter experiment 134). The isentropic efficiency curves of the rotor with the optimized non axisymmetric hub endwalls and with the baseline axisymmetric hub are shown in 
Figure 8
. 
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Figure 6: Leave-One-Out Assessement of the close to stall total-to-total pressure ratio 
RBF model following the DoE
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Figure 7: Leave-One-Out Assessment of the close to stall total-to-total pressure ratio
 RBF model following optimization
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Figure 8: Isentropic efficiency (orange: baseline - yellow/green: two-point optimized designs) 
(distance between two tics:  reduced mass flow scale: 0. 6% – isentropic efficiency scale: 0.25%)
4. NON AXISYMMETRIC HUB COMPRESSOR FLOW DESCRIPTION
A comparison between the local flow features resulting from the optimized hub geometries and the reference axisymmetric flow can offer more information about the loss mechanisms that were tackled by the design. The purpose of the present section is hence to further provide comparative analysis.

The relative total pressure downstream the blade clearly indicates the higher losses regions. Figure 9 presents an axial cut about 30% hub axial chord downstream the TE. The optimized individuals typically decrease the losses up to 50% span while on the contrary, one can note an increase of losses in a small region very close to the endwall, in the boundary layer. However, in this region, the mass flow is much lower than at higher spanwise positions and, as a consequence, this loss increase can be considered as less important. These observations remain valid for the different optimized geometries of the two-point optimization. It is essentially very close to the endwall in the boundary layer that the slight differences between the distinct design families can be noted while, as will be shown further, the global action on the flow and its shock structure remains similar although the 3D contoured endwalls are quite different.  
The main loss mechanism results from the shock and acceleration system along the blade suction side. The static pressure distribution along the blade profile at design point at 23.6% span is shown in Figure 11 a). The different optimized geometries mainly considerably decreased the acceleration along the suction side of the blade, without decreasing the total blade loading. The same conclusion can be drawn from the relative Mach number in blade-to-blade view in Figure 10 plotted at the same spanwise position. For this transonic flow, the non axisymmetric hub design influences the shock mechanism and reacceleration pattern close to the wall rather than the secondary flows. The resulting reduction of the profile losses to be observed up to a little less than 50% span is clearly visible in Figure 10.
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Figure 9: Relative total pressure 30% hub axial chord dowstream the trailing edge 

Optimized design (mono-point optimization selected case 134 -  left) vs baseline (right)
[image: image10.png]
Figure 10: Relative Mach number blade-to-blade view at 23.6% span

Optimized design (two-point optimization selected case 144 - left) vs baseline (right)
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Figure 11: Static pressure distribution along the blade profile at design point
The static pressure distribution along the blade profile at 3.7% span is displayed in Figure 11 b). The shock is clearly reinforced for all the optimized geometries at this low spanwise position. However, the reinforcement of the shock tends to diminish for higher spanwise locations. In any case, very close to the wall, the losses due to the shock are increased. In addition, a small additional recirculation region is formed for the non axisymmetric cases very close to the wall. This additional recirculation increases the losses close to the wall as well. However, the decrease of the losses at higher spanwise locations due to the reduction of the flow acceleration is much higher than the increase of the losses close to the wall. As a consequence, the total losses along the blade span are decreased with the non axisymmetric optimized hub endwalls.

Interestingly, the loss reduction close to the hub endwall is achieved without significantly interfering with the absolute exit flow angle. The average absolute exit flow angle difference with respect to the axisymmetric case is smaller than 0.8 degrees for all the optimized geometries. This may be considered as an additional advantage of the designs produced, since this tends to indicate that the performance gain  should be preserved when considering a stage environment and this statement was indeed verified with a stage computation, confirming the preservation, both qualitatively and quantitatively, of the 3D profiling gain in a stage environment. 
As a last comment, let us note that the behaviour of the flow at the stall point for the non axisymmetric optimized hub endwalls resulting from the two-point optimization is similar to the behaviour at design point. As displayed in Figure 12, the shock gets stronger close to the wall (see the left plot, at 3.7% span) with respect to the axisymmetric reference, while it moves slightly upstream  for higher spanwise positions (see right plot at 23.6% span). The isentropic efficiency at stall point did not improve but, following the constraint imposed, the total-to-total pressure ratio at stall was more than preserved with respect to the axisymmetric reference value for the different families of promising geometries identified.
As a general conclusion, the shock loss mechanism appears markedly dominant with respect to the secondary losses for this HP compressor rotor blade and the optimization chain set up showed its ability to identify a panel of promising designs by directly tackling the main loss mechanism.

[image: image12.emf]
Figure 12: Static pressure distribution along the blade profile close to stall point
5. CONCLUSION
The exploitation of surrogate-based optimization for an HP mobile row 3D endwall profiling has been presented. To this end the automated computational chain setup developed coupled the multi-functional CAD tool CATIA v5, the AutoGrid5 meshing tool, and the elsA code, driven by Minamo, the optimization platform developed in-house at Cenaero, implementing surrogate model assisted mono- and multi-objective evolutionary algorithms and a direct CAD neutral integration to the CAD system based on the CAPRI middleware.
Emphasis has been set on the optimization methodology, from the adequate definition of the optimization specification (parameterization and associated bounds, objectives and constraints) to the choices regarding design of experiments, surrogate modeling, constraints and failure handling. Mono-point and multi-point hub endwall optimization results for a HP compressor single-row rotor blade have been presented. The design histories and detailed flow features have been analyzed and compared. 
Both mono- and two-point optimizations have been conducted with the aim to maximize isentropic efficiency at an operating point close to peak efficiency. For the mono-point optimization first performed, no additional constraints have been imposed in order to let the optimizer search the conception space as freely as possible, independently of operational and manufacturing requirements. In a second phase, two operating points were chosen in order to better represent the performance map of the compressor. The first

operating point was again chosen close to peak efficiency (design point) and the second point considered was chosen closer to the stall region (stall point).

The objective of the two-point optimization was to maximize the efficiency at the design point while preserving at least the same total-to-total pressure ratio at the stall point. The mass flow at design point was also constrained to remain within 0.5% of the reference axisymmetric flow value and for manufacturing purposes, an axisymmetric reference surface below the hub would limit the amplitude of the hollows creation. Several sets of parameters that increased the isentropic efficiency by about 0.4% with respect to the axisymmetric reference were identified while satisfying the constraints. This performance gain is quite large, considering that the geometry changed very locally, only at the hub endwall. Interestingly, two different families of promising designs resulted from the two-point optimization, illustrating the ability of EAs to globally search the conception space and possibly offer a panel of solutions to the designer. One of these two families was moreover close to the mono-point optimizations designs obtained.

A more detailed investigation of the flow features showed that, for all the 3D promising designs identified, the non axisymmetric hub influenced more the shock mechanism close to the wall rather than the secondary flows. The shock loss mechanism appears markedly dominant with respect to the secondary losses for this HP compressor rotor blade and the optimization chain set up showed its ability to identify a panel of promising designs by directly tackling the main loss mechanism. Although local differences and losses increase could be noted very close to the endwall, in the boundary layer, the positive impact of the two different 3D profiling families identified appeared similar. Interestingly also, the loss reduction close to the hub endwall was achieved without significantly interfering with the absolute exit flow angle, and the performance gain was showed to be preserved in a stage environment.
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Figure 13: Assessment of the aerodynamic fillet impact

Truncated modelling (left) vs “true” fillet (bi-tangency, right) mesh
The optimizations performed in the present work were performed without modelling the fillet. However, as the fillet radius to be applied appeared in the order of magnitude of the perturbation heights of the 3D hub profiling, verification of the fillet impact has also been performed. Modelling the bi-tangency (platform/fillet and fillet/blade junctions) of a “true” constant radius fillet requires a major grid topology change for multi-block structured grid simulations with respect to the classical OH4 topology exploited here so as to avoid the creation of flat cells. In order to obtain a preliminary estimation of the fillet impact while preserving the simple grid topology and low computational cost, truncated fillet simulations have hence been performed first. The computational domain was modified so as to ensure a finite angle in the order of 15 degrees instead of a tangency condition at the fillet/blade junction, somehow integrating the fillet into the endwall definition and allowing to keep an OH4 topology with acceptable grid quality (see Figure 13, left). 

As a reference, modeling of the “true fillet”, with tangency at both fillet/endwall and fillet/blade junctions, was also achieved by modifying the grid topology in order to include a quarter of a butterfly mesh around the blade root into the reference mesh without fillet (see Figure 13, right). Although the fillet deteriorates the overall performances, the relative performance gain achieved with 3D profiling also appeared preserved, both qualitatively and quantitatively when considering the fillet and the truncated modelling. The latter moreover showed to be a reliable substitute for the “true” fillet modelling, more demanding in terms of mesh generation, in the present context.
In the long run, as the shock loss mechanism appears dominant in the present HP compressor framework, the hub endwall optimization strongly depends on the reference axisymmetric flow and therefore, an aero-mechanical optimization of both the blade and the endwall(s) possibly including fillet modelling should be considered as the goal.  
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