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ABSTRACT 

Present lecture describes some of the techniques that are available, to speed up the convergence to the 
optimum geometry when using Evolutionary Strategies. They are: optimum parameter setting of the 
evolutionary search mechanism, the use of a surrogate mode and improvement of the database. The 
different ways to accelerate the convergence are described and illustrated by some practical 
examples. A last section shortly discusses the influence of the coding technique   

1.0 INTRODUCTION 

One of the major problems in optimization is the large computer effort that is often required to 
reach an optimum geometry [1, 2]. One way to reduce it, is by improving the convergence of the 
search mechanism to the optimum geometry. An optimization of the parameters of the Evolutionary 
Algorithm (EA) may not only reduce the computational effort, i.e. the number of performance 
evaluations that are needed to find that optimum (efficiency), but also improve the value of the 
optimum (effectiveness). 

Another way to reduce the problem is by using a metafunction or surrogate model to make a 
two level optimization (Fig.1). The EA is driven by surrogate models of the accurate solvers and only 
the optimized geometry is verified by the accurate analysis tools. Different metafunctions are 
available. Only a few of them will be presented and their characteristics discussed. 

 

 
 

Fig. 1  Optimization scheme with metafunction 
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The accuracy of the metafunction strongly depends on the quality of the database used for the 
learning of it. The more general and complete this information, the more accurate the ANN can be and 
the closer the first optimized geometry will be to the real optimum. Hence a good database may 
considerably speed up the convergence to the optimum. 

The way of coding the geometrical parameters may also have an impact on convergence 
 

2.0 EA OPTIMAL PARAMETER SETTING 

The advantage of using optimized parameters of the EA algorithm is illustrated here for the GA 
software developed by David L. Carroll [3]. It is known that the “optimum parameter setting” is 
problem dependent and that a correct setting has an impact on the convergence. The optimal 
parameters have been defined here by means of a systematic study on two typical design cases: one 
geometry defined by 7 parameters and one defined by 27 parameters [4]. These values result from the 
experience with typical turbomachinery optimizations. Conclusions are based on the solution quality 
Q, i.e. the degree to which the GA optimum approaches the real one within a given effort (5000 
function evaluations). It is defined by: 
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where: OFAV is the average of the objective function over the complete design space, OFmin  is the 
global minimum value of the objective function obtained from a systematic (numerically very 
expensive) scanning of the whole design space, OFEA is the minimum value of the objective function 
obtained from the EA optimization. A Q value of 100% indicates that the GA has found the global 
minimum value.  

The function evaluations for the numerical experiments are made by means of an ANN 
approximation of the NS solver based. Other possibilities to verify the optimum GA parameter setting 
is by means of an analytical test function as shown on Fig. 2. 
 

 
 

Fig. 2  Six hump camel back test function 
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2.1  Optimum Substring Length 
In a standard binary-coded GA, the n real-valued design parameters xi, defining a geometry, are jointly 
represented by one binary string: 

 
 

 
Fig. 3  Impact of substring length 

 
The substring length, denoted by l (number of bits per variable), determines the total number of values 
(2l) that each design parameter can take. Fig. 3 shows how the minimum substring length li  for the ith 
design variable depends on the upper and lower bound respectively xmin and xmax, as well as on the 
desired resolution (εi) for this variable: 
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Fig. 4  Impact of substring length on solution quality 
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Very short substrings (l< 3) result in a too low resolution and the GA may not be able to accurately 
approach the global minimum. Longer substrings (3 < l < 10) enable a sufficiently high resolution but 
cause a larger search space and make it difficult to find the complete optimal binary string. Systematic 
testing has shown that l = 5 is the optimum substring length independent of the number of unknown 
parameters (Fig. 4). 

2.2  Selection scheme 
Different selection schemes can be used. The roulette and tournament selection have been presented in 
another lecture [1]. The criteria for the selection of the main parameters relate to the convergence rate 
and the risk to get stuck in a local minimum. 

2.3  Population size 
Fixing the total number of function evaluations at 5000, the number of generations t is a consequence 
of the population size N (N*t = 5 000). Fig. 5 shows the evaluation of the solution quality at the end of 
the GA run for different values of the population size. The solution quality is maximum for N = 11 to 
20. Small populations (N<10) converge prematurely to suboptimal solutions, due to a lack of diversity 
and high performing samples in the initial population. Larger populations (N>25) have a sluggish 
convergence to the optimal geometry because less generations are allowed 

 
 

Fig. 5   Dependence of GA solution quality on population size for the 27 parameter test case 
 

2.4  Crossover probability 
In a single-point crossover operator, both parent strings are cut at a random place and the right-side 
portions of both strings are swapped. In case of a uniform crossover, the value of pc defines the 
probability that crossover is applied per bit of the complete parent string. High values of pc increase 
mixing of string parts and at the same time, increase disruption of good string parts. Low values limit 
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the search to combinations of samples in the existing design space. Experiments confirm that a single 
point crossover is optimal (Fig. 6). 

 
Fig. 6  Impact of cross over on convergence 

2.5  Mutation probability  
The mutation operator creates new individuals by changing a “1” to a “0” or vice versa in the off-
spring string. The mutation probability pm is defined as the probability a bit of a string is flipped. 
Systematic numerical experiments confirm that the optimum setting for the mutation probability is 
pm=1/(l.N) for all optimizations (Fig. 7). This corresponds to changing on average only one bit at 
every generation. 

 
 

Fig. 7  Optimal mutation probability 
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2.6  New generation 
 

The convergence is also influenced by the way the new generation is defined. The (N,ch) 
definition means that the N best of ch offspring's replace the old population. In this procedure the best 
individuals of the previous generation are lost, even if they are better that the best of present 
generation. 

The (N+ch) generation means that the N best of the ch offspring's and the N members of the old 
population replace the old population (elitism). Members of the old and new generation are in full 
competition. This system has the characteristic of elitism and favors the convergence. Ther best 
samples are never lost. 

The (N/i+ch) generation definition means that only the N/i best of the previous generation 
contribute to new generation. This limits the elitism. 
 

Fig. 8 shows how an optimization of the GA parameter settings can lead to a more efficient and 
more effective GA convergence. 

 

 
 

Fig. 8  GA convergence for a 27 parameter test case (standard versus optimized parameter setting). 
 

 

3.0 METAFUNCTIONS 

Meta-functions need to be fast (to limit the time required to analyze a large number of samples) 
but also accurate to drive the optimizer to the real optimum. Different types of meta-functions have 
been proposed. Only a few of them (ANN, RBF, Kriging) are presented here. 
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Fig. 9  Artificial Neural Network architecture 

An ANN (Fig. 9) is composed of several elementary processing units called neurons or nodes. 
These nodes are organized in layers and joined with connections (synapses) of different intensity, 
called the connection weight (W) to form a parallel architecture. Each node performs two operations: 
the first one is the summation of all the incoming signals and the second one is the transformation of 
the signal by using a transfer function (TF) after a bias bi has been added. 

∑
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=  are mostly used as transfer function (Fig. 10). These 

functions introduce power series (given implicitly in the form of an exponential term) and do not 
require any hypotheses concerning the type of relationship between the input and the output variables. 
In order to avoid saturation of the function, it is important to verify that the variation takes place in the 
central non zero slope part of the curve. 

 

 
Fig.10  Sigmoid activation function 

The coefficients (weights and bias) are defined by a LEARNING procedure relating for all the 
samples of the database the output (performance i.e.: η, β2 and the Mach number distribution Mi 
,i=1,nM to the input (boundary conditions and geometry parameters xi ,i=1,n ). The purpose is not to 
reproduce the existing database with maximum accuracy but to predict the performance of new 
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geometries i.e. to generalize. This is illustrated on Fig. 11 showing how overfitting can result in a 
higher degree curve with large oscillations between the input data (x) and predict incorrect values (o) 
for the intermediate and extrapolated points (generalization). 

  

 
 

Fig. 11  Properly generalized ___ and overfitted _ _ _ data 
 
Three conditions are necessary, although not sufficient, for good generalization [5]: 
• The first one is that the inputs to the ANN contain sufficient information pertaining to the target, 

so that one can define a mathematical function relating correctly outputs to inputs with the desired 
degree of accuracy. The designer should select design parameters that are relevant, i.e. that have 
an influence on performance 

• The second one is that the function to be learned (relating inputs to the correct outputs) is smooth 
and well defined. In other words, a small change in the inputs should, produce a small change in 
the outputs. Most physical problems are well defined in this respect. 

• The third one requires that the training set is a sufficiently large and a representative sample of all 
cases that one wants to generalize (the "population" in statistical terminology). One should avoid 
that the ANN predictions are extrapolations instead of the more accurate interpolations. As will be 
shown later this condition is more or less taken into account when defining the database.  

 
Generalization of the ANN learning is favored by dividing the available samples into "training", "test" 
and "validation" sets. Each of them has its own purpose. 

The Training set contains the samples used for LEARNING; that is to fit the parameters (i.e., 
weights and bias) of the classifier.  

The Test set contains the samples used only to assess the performance (generalization) of a fully-
specified ANN (given weights and architecture).  

The Validation set contains the samples used to tune the parameters (i.e., architecture, not the 
weights) of a classifier, for example to choose the number of hidden units in a neural network.  

The learning process results in a rapid initial decrease of the training set error and then continues 
to decrease slowly as the network makes its way to a minimum on the error surface (Fig. 12). Good 
generalization can be achieved by the use of cross-validation by the test set. In this procedure, the 
training is periodically stopped (i.e., every so many training epochs), and the network is tested on the 
Test Set. The learning is stopped when the minimum error of the Test Set is reached. 
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Fig. 12   Early stopping method 

A complete design cycle including ANN learning, GA optimization and verification by a Navier 
Stokes solver requires typically 35% more time than a Navier Stokes analysis. 

The Radial Basis Function (RBF) network is a three layer network with a non-linear mapping 
from the input layer to the hidden layer and a linear mapping from the hidden layer to the output layer 
(Fig. 13). The hidden neurons are associated with the so-called RBF centers, which are points in the n-
dimensional space. 

The output of each hidden neuron is computed by a Gaussian function  
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Fig. 13  Radial Basis Function Network Topology 
 

The vector xr  represents the input to the neuron, the vector ir
r

 is the RBF center and σi is the amplitude 

of neuron i. The  operator computes the Euclidian distance between the input vector xr  and the 

RBF center ir
r

 (Fig. 14). The output of an RBF neuron is thus proportional to the distance between the 
input and the RBF center. The amplitude σi determines the activation range, i.e. the distance over 
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which the neurons are active and have a significant output. The weight factor of a sample decreases 
with increasing distance from the RBF center. The weighted sum of all outputs of the hidden neurons 
is the RBF output: 
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Training of the RBF network consists of finding the RBF centers ir
r

, the amplitude σi and the weight 
ωi for each neuron, such that the error on the prediction of the database the samples is minimal. The 
resilient backpropagation (RPROP) [6] is used to train the RBF.  

 
Fig. 14  A 2D RBF interpolation (network mapped on RBF space) 

 
The accuracy of the Metafunctions (ANN and RBF) depends on the information (number 

of samples and distribution of samples) stored in the database and on the structure of the 
networks (number of hidden layers and nodes per layer) as illustrated in Fig. 15. 

 

 
ANN with 2 hidden layers and 10 hidden neurons 

 
RBF with 1 hidden layer and 5 hidden neurons 

 
Fig. 15   Comparison between ANN and RBF predictions of De Jong 2D test function 
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Both the ANN and the RBF have been used for the multi-objective optimization of the cooling 
holes in a HP turbine [1]  where the comparison between the approximate and the accurate predictions 
are shown on Fig. 34). Both optimizations are run for 30 iterations, after which a synchronization of 
the databases is made i.e. all existing samples are put together in one unified database. An additional 
20 optimization iterations are then performed restarting with this extended database.  

Figure 16 shows a different convergence for both metafunctions during the first 30 iterations 
and after merging. The RBF (open circles) shows for the first 30 iterations an almost straightforward 
convergence (red line) to an optimum whereas the ANN shows a more scattered convergence to a 
better optimum (lower value of the OF). Continuing the optimization on the extended database 
(iteration 31-50) shows no further improvement for the ANN (same OF). However the RBF shows a 
further improvement of the optimum to the same level as the ANN one. It is believed that this is the 
consequence of a more monotonic convergence of the RBF towards the optimum by giving more 
weight to the database geometries that are closer (within the activation range) to the geometry for 
which the performance (lifetime and mass flow) has to be predicted. This results in a more accurate 
prediction in the region near to known solution which is similar to what happens in a local gradient 
method. However this increases the risk of getting stuck in a local optimum. Extending the database 
by adding the more randomly distributed geometries defined by the better converged ANN reduces 
that risk and allows reaching a better optimum.  

 

 
 

Fig. 16  Pareto front 
 
Kriging is a model developed by geologists to estimate the concentration of minerals based on 

very scarce data that are available [7, 8]. The main advantage of this technique is the estimation of the 
uncertainty of the prediction as illustrated on Fig. 17 This allows a better judgment of the geometry 
proposed by the optimizer. A detailed evaluation is recommended for optimal geometries (low OF). 
The same applies for geometries with a high OF and high uncertainty because it could well be that 
they are not as bad as predicted by the metamodel. 
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Fig. 17  1D Kriging interpolation with exact prediction of data-points and uncertainty between them 
 

4.0  DATABASE 

The main purpose of the DATABASE is to provide information to the metafunction about the relation 
between the geometrical changes and performance. The more general and complete this information, 
the more accurate may be the metafunction and the closer the first optimum geometry, defined by the 
GA, will be to the real optimum. Hence a good database may considerably speed up the convergence 
to the optimum. 

Making a database is an expensive operation because it requires a large number of expensive 
performance analyses (NS, FEA etc.). Hence one is interested in making the smallest possible 
database containing the maximum amount of information about the whole design domain. This means 
relevant information with a minimum of redundancy, including the impact of every design parameter, 
but only once.  

Any information missing in the database may introduce an erroneous metafunction that could 
drive the GA into a geometry that is not optimum. This is not a problem because the detailed 
performance analysis of that geometry will provide the missing information when it is added to the 
database. However the worst case is when an incomplete database results in an erroneous 
extrapolation by the metafunction predicting a low performance (large OF) in that part of the design 
domain where in reality the OF is low. As a consequence, the corresponding geometry will never be 
selected by the GA and the error may never been detected and corrected. This second shortcoming is 
more difficult to remediate because no mechanism is build-in to correct for it and the error may persist 
during the whole optimization. It is therefore important to assure that the initial database covers the 
whole design domain.  

Design Of Experiment (DOE) refers to the process of planning an experiment so that the 
appropriate data, when analyzed by statistical methods, result in valid and objective conclusions. The 
advantages of using DOE to construct the database have been evaluated in detail in [9].  

4.1  Factorial Design 
Factorial designs are widely used in experiments where it is necessary to study the effect of the 

different factors on a response. The most important one is where each of the k factors has only two 
values corresponding to the “high” or “low” level of a design variable. A complete replicate of such a 
design requires 2k observations/analyses and is called full factorial design. 

Consider a design with 3 design parameters A, B and C. Each of them can be at two levels, 
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indicated by +1 or –1 in Fig. 18. Evaluating all possible geometries requires 23 = 8 Navier Stokes 
evaluations. The 2k factorial designs with each design parameters at two levels, includes k main effects 

(A, B and C ), 
!2)!2(

!
−k
k

 two-factor interactions (AB, BC and AC ),  and one k-factor interaction 

(ABC)  . 
 

 
 

 
 

 
Fig. 18 Full 23 factorial design 

For an increasing number of factors, the number of analyses required for a complete replicate of 
the design, rapidly outgrows the resources of most designers. It reaches 128 or even more than 107 
runs for respectively the 7 and 27 parameter design space. Information on the main effects and low-
order interactions can be obtained by running only a fraction of the complete factorial experiment if 
one can assume that certain high-order interactions are negligible or redundant with lower order 
interactions. This is illustrated on Fig. 18 showing that the same combination of A and B are repeated 
for different value of C. Idem for the combinations B and C but for different values of A. Hence some 
lines can be eliminated without losing much information. 

Reducing the number of samples in the database reduces the information stored in it and hence 
the accuracy of the ANN based on that information. In what follows one will evaluate the loss of 
information by comparing the ANN predictions, based on different fractional factorial designed 
databases, with the exact values for the following test function with 6 variables: 
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The results of the databases defined by DOE are compared to those of a database in which the 

geometrical parameters are randomly generated between the prescribed boundaries. The values, 
attributed in present test to each of the 6 parameters A, B, C, D, E, and F are listed in Table 1.  
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Table 1 Variables and limits 
 

variable variable limits 
high low 

A 5. 1. 
B 3. 2. 
C 5. 4. 
D 4. 3. 

E 3. 2. 
F 6. 2. 

 
 
The full factorial design requires 26 = 64 runs to estimate all possible parameter combinations. The 
loss of information is measured by the following error term, expressing the difference between the 
exact function and the predictions by an ANN trained on the different databases. The error is defined 
by the following formula:  
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The results of those calculations are shown on Fig. 19 . The number on top of each column 
indicates the global error obtained with the respective database. 

 

 
Fig. 19   ANN’s global error for different number of training samples 

Comparing the error obtained by means of the DOE technique and by means of randomly selected 
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samples, it becomes clear that the DOE based predictions are consistently more accurate for the same 
number of samples in the database. This is particularly true if the predictions are based on 64 training 
samples resulting in a very high accuracy. The values obtained from the prediction based on 32 
training samples, are still reasonably accurate. Less accurate results are obtained with 16 and 8 
samples, respectively.  

Randomly generated databases are all different and so is the accuracy of the ANN predictions. The 
four randomly generated cases with 8 samples in the database, show an error that varies between 105 
(the same as with the DOE defined database) up to an error that is almost 3 times larger (First 
randomly generated 8 sample database).  

The database quality can be further improved during the design process by adding geometries 
selected on the basis of a merit function. This intends to add information where the uncertainty is 
largest i.e. in those regions where the information is scarce. The merit function m(x) = f(x) -ρm dm(x) is 
minimized, in a way similar to the OF, when defining new geometries that should be analysed and 
added to the database (Fig. 20). 

   

  
 

Fig. 20  Definition of new geometries based on merit function 
 

5.0 CODING 

Binary coding mimics the natural evolution whereby the digits can be assumed to stand 
for the genes. Other methods such as Multi-Objective-Differential-Evolution directly work 
with the discrete digital values. One possible disadvantage of binary coding is the fact that 
design parameters that are almost the same may show very large changes when binary coded 
(Fig. 21). The GA could consider them as very different geometries although they are very 
similar. Other coding techniques, such as gray coding, allow avoiding this. Experiments with 
both coding techniques did not show a noticeable difference between the two in terms of 
convergence. 
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Fig. 21   Binary versus gray coding 

6.0 CONCLUSIONS 

It is shown how the computational effort of an optimization can be reduced by a tuning of the 
parameters of the GA and selecting an appropriate metafunction trained on a representative database 
and that this can be achieved without compromising on the quality of the optimum.  

The availability of powerful parallel computers allows handling large computational effort and 
one could conclude from it that these acceleration techniques are less relevant. However one should 
keep in mind that the optimization jobs become more and more complex (multistage optimization) 
with an increasing number of design parameters. Any gain in computer capacity is quickly absorbed 
by the increasing complexity of the problems and an improved convergence remains attractive. 
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