
Solving Kinetic Equations on GPU’s

Aldo Frezzotti, Gian Pietro Ghiroldi and Livio Gibelli

Contents

1 Introduction 3

2 Mathematical Formulation 5

3 Outline of the numerical method 7

4 GPU Implementation 9
4.1 GPU and CUDATM overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Test case: driven cavity flow 13
5.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Conclusions 21

7 Acknowledgments 23

8 Appendix: CUDA pseudo-codes 27

∗Dipartimento di Matematica del Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

  

RTO-EN-AVT-194 7 - 1 

 

 



  

7 - 2 RTO-EN-AVT-194 

 

 

 



1 INTRODUCTION

1 Introduction

Non-equilibrium gas flows are met in several different physical situations ranging from
the re-entry of spacecraft in upper planetary atmospheres to fluid-structure interaction in
small-scale devices Cercignani (1988); Bird (1994). The correct description of nonequi-
librium effects requires replacing the traditional hydrodynamic equations with the Boltz-
mann equation which, in the absence of assigned external force fields, reads

∂f

∂t
+ v · ∇rf = C(f, f) (1)

In Eq. (1), the distribution function f(r,v|t) is the atomic number density at the single
atom phase space point (r,v) at time t. The symbols r and v denote atom position and
velocity, respectively. The left hand side of Eq. (1) represents the rate of change of f due
to the indipendent motion of gas atoms. Effects of collisions are accounted for by the
source term C(f, f) which is a non-linear functional of f whose precise structure depends
on the assumed atomic interaction forces. Obtaining numerical solutions of Eq. (1) for
realistic flow conditions is a challenging task because it has the form of a non-linear
integro-differential equation in which the unknown function, f , depends on seven variables.
Numerical methods used to solve Eq. (1) can be roughly divided into three groups:

(a) Particle methods

(b) Semi-regular methods

(c) Regular methods

Methods in group (a) originate from the Direct Simulation Monte Carlo (DSMC) scheme
proposed by G.A. Bird Bird (1994). They are by far the most popular and widely used
simulation methods in rarefied gas dynamics. The distribution function is represented by
a number of mathematical particles which move in the computational domain and collide
according to stochastic rules derived from Boltzmann equation. Macroscopic flow prop-
erties are usually obtained by time averaging particle properties. If the averaging time is
long enough, then accurate flow simulations can be obtained by a relatively small number
of particles. The method can be easily extended to deal with mixtures of chemically react-
ing polyatomic species Bird (1994) and to dense fluids Frezzotti et al. (2005). Although
DSMC (in its traditional implementation) is to be recommended in simulating most of
rarefied gas flows, it is not well suited to the simulation of low Mach number or unsteady
flows. Attempts have been made to extend DSMC in order to improve its capability
to capture the small deviations from the equilibrium condition met in low Mach number
flows Homolle and Hadjiconstantinou (2007); Wagner (2008). However, in simulating high
frequency unsteady flows, typical of microfluidics application to MEMS, the possibility of
time averaging is lost or reduced. Acceptable accuracy can then be achieved by increasing
the number of simulation particles or superposing several flow snapshots obtained from
statistically independent simulations of the same flow; in both cases the computing effort
is considerably increased.
Methods in groups (b) and (c) adopt similar strategies in discretizing the distribution
function on a regular grid in the phase space and in using finite difference schemes to
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1 INTRODUCTION

approximate the streaming term. However, they differ in the way the collision integral is
evaluated. In semi-regular methods C(f, f) is computed by Monte Carlo or quasi Monte
Carlo quadrature methods Frezzotti (1991); F. (2005) whereas deterministic integration
schemes are used in regular methods Aristov (2001). Whatever method is chosen to com-
pute the collision term, the adoption of a grid in the phase space considerably limits
the applicability of methods (b) and (c) to problems where particular symmetries reduce
the number of spatial and velocity variables. As a matter of fact, a spatially three-
dimensional problem would require a memory demanding six-dimensional phase space
grid. Extensions to polyatomic gases are possible Frezzotti (2007) but the necessity to
store additional variables associated with internal degrees of freedom further limits the
applications to multi-dimensional flows. Therefore, until now the direct solution of the
Boltzmann equation by semi-regular or regular methods has not been considered a viable
alternative to DSMC for simulating realistic flows, not even for low speed and/or unsteady
flows. The availability of low cost Graphics Processing Units (GPUs) has changed the sit-
uation. Although GPUs have been originally developed for graphics rendering, they have
became general purpose desktop supercomputers capable of delivering teraflops peak per-
formance at the price of conventional workstations. Mapping efficiently an algorithm on
the SIMD-like architecture of the GPUs, however, is a difficult task which often requires
the algorithm to be revised or even redesigned to both balance the hardware structure
benefits and meet the implementation requirements. For instance, preliminary tests, per-
formed within the framework of the research work described here, have shown that the
standard form of DSMC is not efficiently ported on GPU’s because of their SIMD archi-
tecture. On the other hand, we have shown in Ref. Frezzotti et al. (2010), that a regular
method of solution of the BGKW kinetic model equation is ideally suited for GPUs. The
main aim of the present paper is to translate efficiently a semi-regular method of solu-
tion of the full non-linear Boltzmann equation into a parallel code to be executed on a
GPU. The efficiency of the algorithm is assessed by solving the classical two-dimensional
driven cavity flow. It is shown that it is possible to cut down the computing time of the
sequential codes of two order of magnitudes. This paper is organized as follows. Sections
2 and 3 are devoted to a concise description of the mathematical model and the adopted
numerical method. In Section 4 the key aspects of the GPU hardware architecture and
CUDATM programming model are briefly described and implementation details are pro-
vided. Sections 5 is devoted to the description of the test problem and the discussion of
the results. Concluding remarks are presented in Section 6.
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2 MATHEMATICAL FORMULATION

2 Mathematical Formulation

The hard-sphere model is a good approximation for simple fluids, that is fluids whose
properties are largely determined by harshly repulsive short range forces. The hard-sphere
Boltzmann collision integral reads

C(f, f) = σ2

2

∫
(f∗f∗

1 − ff1) |k̂ · vr|dv1d
2k̂ (2)

In Eq. (2), σ is the hard sphere diameter, vr = v − v1 is the relative velocity between
two colliding atoms and f ∗ = f(r,v∗|t), f ∗

1 = f(r,v∗
1|t), f1 = f(r,v1|t). Here and in the

remainder of the paper, integration extends over the whole velocity space. Similarly, the
solid angle integration is over the surface of the unit sphere, whose points are associated
with the unit vector k̂. The pre-collisional velocities, (v∗,v∗

1), are obtained from the
post-collision velocities, (v,v1), and the unit vector on the sphere, k̂, by the relationships

v∗ = v +
(
vr · k̂

)
k̂ (3)

v∗
1 = v1 −

(
vr · k̂

)
k̂ (4)

In view of the applications to the study of low Mach flows, Refs. Homolle and Hadjicon-
stantinou (2007); Baker and Hadjiconstantinou (2008) will be followed to rewrite Eqs. (1)
and (2) in terms of the deviational part of the distribution function, h(r,v|t), defined as

f = Φ0 (1 + εh) (5)

where ε is a parameter that measures the deviation from equilibrium conditions and
Φ0(r,v|t) is the Maxwellian at equilibrium with uniform and constant density n0 and
temperature T0, i.e.,

Φ0 =
n0

(2πRT0)
3/2

exp

(
− v2

2RT0

)
(6)

The physical rationale behind this formulation is a proper rescaling of the (small) devia-
tion from equilibrium to reduce the variance in the Monte Carlo evaluation of the collision
integral and thus to capture arbitrarily small deviations from equilibrium with a compu-
tational cost which is independent of the magnitude of the deviation. By substituting
Eq. (5) into Eq. (1), we obtain

∂h

∂t
+ v · ∇rh = Q(h, h) (7)

where the collision integral takes the form

Q(h, h) = d2

2

∫
Φ0 Φ0,1

[
h∗ + h∗1 − h− h1 + ε (h∗h∗1 − hh1)

]
|k̂ · vr|dv1d

2k̂ (8)

Eq. (8) has been obtained by using the property Φ∗
0Φ

∗
01 = Φ0 Φ01 Cercignani (1988).

For later reference, we here report the expressions of dimensionless perturbed density,
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2 MATHEMATICAL FORMULATION

velocity, temperature and stress tensor

ρ =
n− n0

n0

1

ε
=

∫
Φ0 h dv (9)

u =
V√
2RT0

1

ε
=

1

1 + ε ρ

∫
Φ0 hv dv (10)

θ =
T − T0
T0

1

ε
=

1

1 + ε ρ

(1
3

∫
Φ0 hv

2 dv − ρ
)
− ε

3
u2 (11)

Πij =
pij − p0δij

p0

1

ε
=

∫
Φ0 h vivj dv − ε ui uj − ε2 ρ ui uj (12)

where p0 = n0RT0. At the boundaries, Maxwell’s completely diffuse boundary condition
is assumed. Accordingly, the distribution function of atoms emerging from walls is given
by the following expression

Φ0 + εΦ0 h = nw Φw (v − V w) · n̂ > 0 (13)

In Eq. (13), n̂ is the inward normal and Φw is the normalized wall Maxwellian distribution
function

Φw(r,v) =
1

(2πRTw)3/2
exp

[
−(v − V w)

2

2RTw

]
(14)

where V w the wall velocity and Tw the wall temperature. The wall density nw is deter-
mined by imposing zero net mass flux at any boundary point

nw

∫
c·n̂>0

|c · n̂|Φwdv =

∫
c·n̂<0

|c · n̂|Φ0dv + ε

∫
c·n̂<0

|c · n̂|Φ0 hdv (15)

where c = v − V w. It is worth noticing that when the perturbation is sufficiently small,
i.e., ε → 0, Eq. (7) reduces to the linearized Boltzmann equation and Eqs. (9)-(12) to
the linearized expression of the macroscopic quantities. The formulation in terms of the
deviational part of the distribution function, however, is not restricted to a vanishing
perturbation but it is valid in the non-linear case as well.
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3 OUTLINE OF THE NUMERICAL METHOD

3 Outline of the numerical method

The method of solution adopted to solve Eq. (7) is a semi-regular method in which a
finite difference discretization are used to evaluate the free streaming term on the left
hand side while the collision integral on the right hand side is computed by a Monte
Carlo technique. The three-dimensional physical space is divided into Nr = Nx×Ny×Nz

parallelepipedal cells. Likewise, the three-dimensional velocity space is replaced by a
parallelepipedal box divided into Nv = Nvx×Nvy ×Nvz cells. The size and position of the
“velocity box” in the velocity space have to be properly chosen, in order to contain the
significant part of h at any spatial position. The distribution function is assumed to be
constant within each cell of the phase space. Hence, h is represented by the array hi,j(t) =
h(x(ix), y(iy), z(iz), vx(jx), vy(jy), vz(jz)|t); x(ix), y(iy), z(iz) and vx(jx), vy(jy), vz(jz) are
the values of the spatial coordinates and velocity components in the center of the phase
space cell corresponding to the indexes i = (ix, iy, iz) and j = (jx, jy, jz).
The algorithm that advances hni,j = hi,j(tn) to hn+1

i,j = hi,j(tn + ∆t) is constructed by
time-splitting the evolution operator into a free streaming step, in which the right hand
side of Eq. (7) is neglected, and a purely collisional step, in which spatial motion is frozen
and only the effect of the collision operator is taken into account. More precisely, the
distribution function hni,j is advanced to hn+1

i,j by computing an intermediate value, h̃n+1
i,j ,

from the free streaming equation

∂h

∂t
+ v · ∇rh = 0 (16)

When solving Eq. (16), boundary conditions have to be taken into account. Eq. (16) is
discretized by a simple first order explicit upwind conservative scheme. For later reference,
we here report the difference scheme in the two dimensional case with vx > 0 and vy > 0

h̃n+1
ix,iy ;j

= (1− Cux − Cuy)h
n
ix,iy ;j + Cux h

n
ix−1,iy ;bj + Cuy h

n
ix,iy−1;j (17)

In Eq. (17), Cux = vx(jx)∆t/∆x and Cuy = vy(jy)∆t/∆y are the Courant numbers in
the x and y directions, respectively.
After completing the free streaming step, hn+1

i,j is obtained by solving the homogeneous
relaxation equation

∂h

∂t
= Q(h, h) (18)

where Q(h, h) is given by Eq. (8). In order to be solved, Eq. (18) is first integrated over
the cell of the velocity space Cj

dNi,j

dt
=

∫
Cj

Q(h, h)dv (19)

where Ni,j represents the deviation of the number of particles with position ri in the
velocity cell centered around the velocity node j with respect to its mean value at equilib-
rium, i.e., Ni,j w ∆Vj Φ0,j hi,j with ∆Vj the volume of the velocity cell Cj . The integral
in Eq. (19) is then transformed into an integral extended to the whole velocity domain V

dNi,j

dt
=

∫
V
χj Q(h, h) dv (20)
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3 OUTLINE OF THE NUMERICAL METHOD

where χj is the characteristic function of the cell Cj

χj(v) =

{
1 v ∈ Cj

0 v /∈ Cj

(21)

Making use of some fundamental properties of the collision integral Cercignani (1988),
Eq. (20) can be written in the following form

dNi,j

dt
=
d2

4

∫
dv dv1 Φ0(v) Φ0(v1)

∫ 1

−1

dkz

∫ 2π

0

dφ

[χj(v
∗) + χj(v

∗
1)− χj(v)− χj(v1)] [h(v) + h(v1) + εh(v)h(v1)] |k̂ · vr| (22)

The eight-fold integral in Eq. (22) is calculated by a Monte Carlo quadrature method,
since a regular quadrature formula would be too demanding in term of computing time.
The advantage of writing the rate of change of Ni,j in the above form is that the gaussian
distribution function Φ0 may be considered a probability density function from which
the velocity points are drawn to estimate the collision integral with lower variance. The
Monte Carlo estimate of the integral on the right hand side of Eq. (22) gives

dNi,j

dt
=
n2
0d

2π

Nt

Nt∑
l=1

[χj(v
∗
l ) + χj(v

∗
1l)− χj(vl)− χj(v1l)]

[h(vl) + h(v1l) + ε h(vl)h(v1l)] |k̂ · vr| (23)

where Nt is the number of velocity samples Frezzotti (1991). It is worth noticing that
the same set of collisions can be used to evaluate the collision integral at different space
locations. Once the collision integral have been evaluated, the solution is advanced from
the n-th time level to the next according to the explicit scheme

hn+1
i,j = h̃n+1

i,j +Qn
i,j ∆t (24)

where

Qn
i,j =

1

∆Vj Φj

dNi,j

dt
(25)

Although memory demanding, the method outlined above produces accurate approxima-
tions of the solution which do not require time averaging to provide smooth macroscopic
fields. A drawback of the technique is that, due to the discretization in the velocity space,
momentum and energy are not exactly conserved. The numerical error is usually small
but tends to accumulate during the time evolution of the distribution function. The cor-
rection procedure proposed in Ref. Aristov and G. (1980) has been adopted to overcome
this difficulty. At each time step the full distribution function is corrected in the following
way

Φ0,j

(
1 + ε hn+1

i,j

)
= Φ0,j

(
1 + ε h̃n+1

i,j

) [
1 + A+B · v + Cv2

]
(26)

where the constants A,B and C are determined from the conditions∫
ψ(v) Φ(v)hn+1(v) dv =

∫
ψ(v) Φ(v) h̃n+1(v) dv (27)

being ψ(v) = 1,v,v2. The correction procedure given by Eq. (26) involves the full
distribution function and not its deviational part in order the linear system (27) to be
well conditioned.
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4 GPU IMPLEMENTATION

4 GPU Implementation

4.1 GPU and CUDATM overview

NVIDIArGPU is built around a fully programmable processors array organized into a
number of multiprocessors with a SIMD-like architecture NVIDIA Corporation (2008), i.e.
at any given clock cycle, each core of the multiprocessor executes the same instruction but
operates on different data. CUDATM is the high level programming language specifically
created for developing applications on this platform.
A CUDATM program is organized into a serial program which runs on the host CPU and
one or more kernels which define the computation to be performed in parallel by a mas-
sive number of threads. Threads are organized into a three-level hierarchy. At the highest
level, all threads form a grid; they all execute the same kernel function. Each grid consists
of many different blocks which contain the same number of threads. A single multipro-
cessor can manage a number of blocks concurrently up to the resource limits. Blocks
are independent, meaning that a kernel must execute correctly no matter the order in
which blocks are run. A multiprocessor executes a group of threads beloging to the active
block, called warp. All threads of a warp execute the same instruction but operate on
different data. If a kernel contains a branch and threads of the same warp follow different
paths, then the different paths are executed sequentially (warp divergence) and the total
run time is the sum of all the branches. Divergence and re-convergence are managed in
hardware but may have a serious impact on performances. When the instruction has
been executed, the multiprocessor moves to another warp. In this manner the execution
of threads is interleaved rather than simultaneous.
Each multiprocessor has a number of registers which are dynamically partitioned among
the threads running on it. Registers are memory spaces that are readable and writable
only by the thread to which they are assigned. Threads of a single block are allowed to
synchronize with each other and are available to share data through a high-speed shared
memory. Threads from different blocks in the same grid may coordinate only via opera-
tions in a slower global memory space which is readable and writable by all threads in a
kernel as well as by the host. Shared memory can be accessed by threads within a block as
quickly as accessing registers. On the contrary, I/O operations involving global memory
are particularly expensive, unless access is coalesced NVIDIA Corporation (2008). Be-
cause of the interleaved warp execution, memory access latency is partially hidden, i.e.,
threads which have read their data can be performing computations while other warps
running on the same multiprocessor are waiting for their data to come in from global
memory. Note, however, that GPU global memory is still ten time faster than the main
memory of recent CPUs.
Code optimization is a delicate task. In general, applications which require many arith-
metic operations between memory read/write, and which minimize the number of out-of-
order memory access, tend to perform better. Number of blocks and number of threads per
block have to be chosen carefully. There should be at least as many blocks as multiproces-
sors in the device. Running only one block per multiprocessor can force the multiprocessor
to idle during thread synchronization and device memory reads. By increasing the num-
ber of blocks, on the other hand, the amount of available shared memory for each block
diminishes. Allocating more threads per block is better for efficient time slicing, but the
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4 GPU IMPLEMENTATION 4.2 Implementation details

more threads per block, the fewer registers are available per thread.
The computations that are shown below, have been performed on a commercially avail-
able GPU GeForce GTX 260 produced by NVIDIAr using CUDATM version 2.0. The
GTX 260 GPU model consists of 24 streaming multiprocessors with 8 streaming proces-
sors (SP) each for a total of 192 units. Each SP is clocked at 1.242 GHz and performs up
to 3 floating point operation (FLOP) per clock cycle, yielding a peak theoretical perfor-
mance of 715.4 GFLOPs (192 × 1.242 × 3). Each group of SP shares one 16 kB of fast
per-block shared memory while the GPU has 896 MB of device memory with a memory
bandwidth of 111.9 GB/s. The graphic processing unit has been hosted by a personal
computer equipped with 4 GB of main memory and an Intelr Core Duo Quad Q9300
CPU, running at 2.5 GHz. The host machine has also been used to run the sequential
version of the program to obtain the speed-up data. The host code has been compiled
using the gcc/g++ compiler with optimization option “-03”.

4.2 Implementation details

The code to numerically solve Eq. (7) is organized into a host program, which deals with
all memory management and other setup tasks, and three kernels running on the GPU
which perform the streaming and the collision steps. In the following, we report and
discuss the pseudo-codes of each kernel. Because of their different impact on the code
performance, we distinguish the slow global memory reads, ⇐, and writes, ⇒, from the
fast reads, ←, and writes, →, from local registers and shared memory.

Algorithm (1) reports the pseudocode of the two dimensional streaming kernel. The one-
dimensional case has been discussed in Ref. Frezzotti et al. (2010) whereas the extension
to three-dimensional geometries is straightforward. Moreover, for clarity of presentation,
the pseudo-code of the streaming kernel refers to one cell of the velocity space with vx > 0
and vy > 0. The other cases can be handled analogously. As shown by Eq. (17), for each
cell of the velocity domain, the streaming step involves the distribution function evaluated
at different space locations. Similarly to the one dimensional case, the key performance
enhancing strategy is to allow threads to cooperate in the shared memory. In order to
fit into the device’s resources, blocks are composed by a two dimensional grid of threads
with dimension Bx×By having each thread associated with one cell of the physical space.
When a block become active, each thread loads one element of the distribution function
from global memory, stores it into shared memory (line 5), updates its value according to
Eqs. (17) (line 21) and then saves it back to the global memory (line 22). This procedure
is repeated sequentially (Nx/Bx − 1) × (Ny/By − 1) times. To ensure non-overlapping
access, threads are synchronized at the onset of writing to the global memory (lines 20).
In order to obtain a coalesced access to the global memory, values of the discretized distri-
bution function of cells which are adjacent in the physical space are stored in contiguous
memory locations. However, not all the threads in a block can read data in a coalescent
manner. In fact, in order to update hi,j the values of the distribution function of two
upwind neighboring nodes, often referred to as “halo” nodes Micikevivius (2009), are re-
quired. The halos on one physical direction can be read in with coalesced access (line
13-19) while the others have to be read in with non-coalesced access (line 6-12). Threads
which update boundary points perform calculations which are slightly different to account
for the incoming Maxwellian flux from the boundaries of the domain (lines 8 and 15).
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4.2 Implementation details 4 GPU IMPLEMENTATION

The relaxation step is organized into two kernels whose pseudo-codes are listed in Algo-
rithms (2) and (3). The first kernel computes the sequence of Nt collisions used in the
Monte Carlo evaluation of the collision integral. The second kernel updates the discretized
distribution function, executes the correction procedure and computes the macroscopic
quantities of interest as well.
Algorithm (2) reports the pseudo-code of the sampling kernel. Here, there are as many
threads as the number of the collision samples, Nt. Firstly, each thread generates the
pre-collisional velocities v and v1 by sampling the maxwellian distribution function with
the Box-Muller algorithm (line 1-2) and the unit vector k̂ by sampling the uniform distri-
bution on the unit sphere (line 3). Afterwards, the post-collisional velocities are evaluated
(line 4-6) and the index of the velocity cells to which they belong are calculated and stored
in the vectors I, I1, I

∗ and I∗1 defined in the global memory (lines 7-11). Finally, for each
velocity cell, the values to be added and subtracted to these velocity cells are calculated
(lines 11-14) and stored (lines 15-18) in the vectors C, C1, C

∗ and C∗
1 defined in the

global memory. It is important to note that in order to maximize the performance all
the accesses to the global memory are done in a coalesced manner NVIDIA Corporation
(2008).
To update the discretized distribution function in a cell of the physical space according
to Eq. (24), no information from nearby space cells is required. This naturally fits for
the GPU, where one may define as many threads as the number of cells in the physical
space. Moreover, by having one thread for each cell of the physical space, potentially
dangerous conflicts between threads are avoided and the accesses to the global memory
may be coalesced. Firstly, each thread updates the discretized distribution function ac-
cording to Eq. (23), then executes the correction procedure to enforce the conservation
of momentum and energy, Eq. (26), and finally compute the macroscopic quantities of
interest. Algorithm (3) shows the pseudo-code of the relaxation kernel. The main part
of the algorithm is in between the lines 7 and 21 where the collision integral is evaluated
according to the Monte Carlo method, Eq. (23). Lines from 1 to 6 and from 22 to 30
evaluate the required moments of the distribution function before and after the collision
step, respectively. These moments are used in Eq. (27) to obtain the constants A,B and
C. The last loop over the velocity space (lines 32-39) corrects the distribution function
according to Eq. (26) and compute the macroscopic quantities of interest.
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5 TEST CASE: DRIVEN CAVITY FLOW

5 Test case: driven cavity flow

5.1 Formulation of the problem

The driven cavity flow is a classical benchmark problem. In spite of its simple geometry, in
fact, it contains most of the features of more complicated problems described by kinetic
equations Varoutis and Sharipov (2008). In the following, we restrict to the spatially
two-dimensional case. We thus consider a monatomic rarefied gas contained in a square
enclosure with lenght L. All the walls are kept at uniform and constant temperature T0.
Initially, the gas is supposed to be in equilibrium with density n0 and temperature T0.
The flow is driven by the uniform translation of the lid of the cavity with velocity Vw. We
describe the dynamics of the gas by Eq. (7) and assume that atoms which strike the walls
are re-emitted according to the Maxwell’s scattering kernel with complete accomodation,
Eq. (13).
We choose the reference mean free path λ0 to define a dimensionless position as x/λ0,
being

λ0 = µ0/p0(πRT0/2)
1/2

and µ0 is the viscosity of the hard sphere gas Chapman and Cowling (1990). Likewise
the characteristic time is given by λ0/V0, where V0 = (2RT0)

1/2. The cavity flow problem
has been solved for three values of the rarefaction parameter δ = 0.1, 1, 10, being δ the
reciprocal of the Knudsen number δ = L/λ0. Since the proposed method of solution is
particularly effective in capturing small deviations from equilibrium, we set the lid velocity
to Vw/V0 = 0.01. The computations described in below, hence, refer to very low Mach
number driven cavity flows. The square cavity has been divided into Nr = Nx × Ny

uniform square cells, with Nx = Ny. Likewise the velocity space has been divided into
Nv = Nvx × Nvy × Nvz with Nvx = Nvy = Nvz . Since the deviation form equilibrium
is supposed to be small, a cubic velocity space has been constructed by distributing the
velocity nodes along each velocity component in the interval [−3V0, 3V0]. In order to
achieve a faster convergence of the solutions in the velocity space, the lenghts of the cells
are uniformly stretched with a progression ratio rv according to the relations ∆vα(jα) =
rv∆vα(jα − 1), being the smaller cells located at the origin of the velocity space. More
precisely, it has been chosen Nv = 8000 and rv = 0.973 for δ = 0.1 and δ = 1 whereas
Nv = 5832 and rv = 0.986 for δ = 10 The number of collisions used in the Monte Carlo
evaluation of the collision integral have been varied with the rarefaction parameter. In
particular, it has been set Nt = 1024 for δ = 0.1, Nt = 6144 for δ = 1, Nt = 8192 for
δ = 10. Finally, the time step has been determined by requiring that Cux = Cuy = 0.5.

5.2 Results and discussion

In this section, we first carry out a convergence analysis of the method in the physical
space and then we investigate the parallel performances of the code.
In order to establish the convergence rate we compute two global flowfield properties,
namely the mean dimensionless shear stress on the moving wall, D, and the dimensionless
flow rate of the main vortex, G. The two quantities are defined as

D =
1

δ

∫ δ

0

Πxy(x, L|t) dx, G =
1

δ

∫ δ

0

|ux(L/2, y|t)| dy (28)
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Figure 1: Absolute relative error on (a) drag coeffi-
cient and (b) mean flow rate for δ = 0.1 (circles), δ = 1
(squares) and δ = 10 (triangles) versus the size h/δ of
the physical grid. Lines are the least-mean square fit
of the results. Nv = 8000, rv = 0.973, Nt = 1024 for
δ = 0.1; Nv = 8000, rv = 0.973, Nt = 6144 for δ = 1;
Nv = 5832, rv = 0.986, Nt = 8192 for δ = 10.

The absolute relative error in the stationary values of D and G are shown in Figs 1a and
1b, respectively, versus the spatial grid size, h/δ = 1/Nr, and for δ = 0.1 (circles), δ = 1
(squares) and δ = 10 (triangles). The exact values of D and G, which are referred to as De

and Ge, have been extrapolated from the linear fit of the results when h→ 0. The linear
behaviour of the absolute relative errors demonstrates that the results are in the asymp-
totic range of convergence and the method is first order accurate Salas (2006). The finest
physical grid size provides predictions which are accurate only within few percent. More
precisely, the largest error in D is of the order of 4% and is attained at δ = 10 whereas
the one in G is 2% at δ = 0.1. The error is mainly due to the physical and velocity
discretizations. As a matter of fact the statistical error associated with the finite sample
size used in the Monte Carlo evaluation of the collision integral does not affect the results
significantly. The standard deviation of D and G with respect to their averaged values in
stationary conditions, in fact, is negligible small. For instance, the standard deviation of
D at δ = 1 from its long-term mean value is less than 0.05%. The grid resolution in the
physical and the velocity domains are the more accurate discretization compatible with
the GPU global memory constraint, i.e., Nv = 8000 and Nr = 25600 for δ = 0.1, 1 and
Nv = 5832 and Nr = 36864 for δ = 10. Therefore, in order to improve the accuracy of the
numerical solutions, we have adopted a nonuniform grid in the physical space. The lenghts
of the physical cells are uniformly stretched according to the relations ∆xix = rx∆xix−1

and ∆yiy = ry∆yiy−1 with progression ratios that depend on the rarefaction parameter,
rx = ry = 0.990 for δ = 10 and rx = ry = 0.996 otherwise. The smaller cells are located
close to the upper corners of the cavity where severe gradients are anticipated. All the
results which follow have been obtained with this discretization. Table 1 compares the
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Figure 2: Profiles of the dimensionless (a) horizon-
tal mean velocity along the vertical line crossing the
center of the cavity, and (b) vertical mean velocity
component along the horizontal line crossing the cen-
ter of the main vortex. Solid and dashed lines: nu-
merical solutions obtained by solving Eq. (7) with the
semi-regular method for δ = 10 and δ = 0.1, respec-
tively. Circles and squares: numerical solutions re-
ported in Ref. Varoutis and Sharipov (2008) for δ = 10
and δ = 0.1, respectively. Nv = 8000, rv = 0.9994,
Nt = 1024, Nr = 25600, rx = ry = 0.996 for δ = 0.1;
Nv = 5832, rv = 0.970, Nt = 8192, Nr = 36864,
rx = ry = 0.990 for δ = 10.

predictions of the mean stationary values of D and G with the extrapolated exact values,
De and Ge, and the results reported in Ref. Varoutis and Sharipov (2008) where the lin-
earized BGKW equation has been solved with a discrete velocity method. The accuracy
of the numerical solution of the non-linear Boltzmann equation can be estimated to be
within 2%. The agreement with the BGKW results is good, which is not unexpected.
Since the velocity of the lid is small, in fact, the gas is in a weakly nonequilibrium state
and the solution of the non-linear Boltzmann equation approaches the solution of the
linearized BGKW equation. Figures 2a and 2b show the profiles of the dimensionless
horizontal component of the velocity, Vx/Vw, along the vertical line crossing the center of
the cavity and the dimensionless vertical component of the velocity, Vy/Vw, along the hor-
izontal line crossing the center of the main vortex which forms in the cavity, respectively.
Lines are the solutions of the non-linear Boltzmann equation, whereas symbols are the
results reported in Ref. Varoutis and Sharipov (2008). The results refer to two different
values of the rarefaction parameters: δ = 0.1 (dashed lines and squares) and δ = 10 (solid
lines and circles). The agreement is very good.
Although the convergence analysis has been performed by referring to quantities evalu-
ated in stationary conditions, it is important to point out that the proposed method of
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δ D De D∗ G Ge G∗

0.1 0.6712 0.6815 0.676-0.678 0.0955 0.0977 0.0973-0.0976
1 0.6266 0.6389 0.625-0.631 0.1017 0.1039 0.104-0.105
10 0.4096 0.4176 0.412-0.415 0.1427 0.1451 0.145-0.145

Table 1: Drag coefficient, D, and mean flow rate, G, versus the rarefaction parameter,
δ. De and Ge represent the estimated exact values; D∗ and G∗ are reference values from
Varoutis and Sharipov (2008).

solution provides accurate results in the unsteady regime as well. As an example, Figure
3 shows the evolution of D during the simulation for δ = 10. It is important to stress that
a similar result would be difficult to obtain with a particle method where computationally
expensive ensemble averanging are needed to provide smooth macroscopic fields. The
performance of the GPU implementation is compared against the single-threaded version
running on the CPU by computing the speed-up factor S = TCPU/TGPU, where TCPU and
TGPU are the times used by the CPU and GPU, respectively. Times are measured after
initial setup, and do not include the time required to transfer data between the disjoint
CPU and GPU memory spaces.
We analyse separately the streaming and the collision step, the latter comprising both
the sampling and the collision kernel. Figure 4 reports the obtained speed-up data as a
function of the number of spatial grid points Nr. The curve refers to δ = 1. The speed-up
grows rapidly with Nr and than levels up at about 450 if Nr approximately exceeds 104.
This behavior is the result of the parallel set up of the collision step in Nr independent
threads one for each cell of the physical space. As discussed below, the collision step
absorbs most of the computational resources and its execution strongly affects the overall
performances. As shown by the speed-up curve the GPU power is not fully exploited till
the number of concurrent threads reaches a threshold. Beyond, the speed-up saturates
and the computing time approximately behaves as a linear function of Nr. This behaviour
is similar to the one reported in Refs. Elsen et al. (2008); Anderson et al. (2008). Figure 5
shows the relative time which is spent on the streaming step (dark bar) and on the colli-
sion step (light bar) as well as the total execution time (numbers over the bars) for δ = 1.
As expected, the collision step is more time consuming than the streaming step which
takes at most 36% of overall computing time.
A strongly simplified evaluation of ideal performances of the streaming and collision step
can be carry out as follows. A single application of the upwind scheme requires the exe-
cution of 11 floating point operations and 2.3 accesses to the global memory. The GPU
delivers 715.4 GFLOPs but the transfer rate to/from the main memory is limited to 111.9
GB/s. Since in the case of streaming the ratio of number of floating point operations to
the number of bytes accessed is low (11 : 9.2), it is reasonable to obtain the number of
floating point operation per second from the transfer rate alone. Hence, the ideal number
of GFLOPs can be obtained by assuming that 11 floating point operations will be exe-
cuted in the time required to transfer 9.2 bytes from the main memory. Accordingly, this
simple argument yields an ideal performance of the streaming step of 133 GFLOPs. A
similar performance analysis can be applied to the collision step which encompasses both
the sampling and collision kernel. In order to update the distribution function and com-
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Figure 3: Drag coefficient over the moving wall, D,
versus dimensionless time, t/t0. δ = 1.

pute the macroscopic quantities of interest, the number of FLOPs that the GPU executes
at any given time step and for each cell in the physical space is the sum of two contribu-
tions. The first is proportional to the number of velocity cells, Nv, and the second one is
proportional to the number of collisions, Nt, used to evaluate the collision integral. The
resulting number of FLOPs for each time step are of the order of NxNy(80Nv + 12Nt).
Likewise the number of bytes accesses to the global memory per time step is of the order
of NxNy(8N

3
vα + 64Nt) Arguments similar to those above lead to estimate an ideal per-

formace of the collision step of about 174.7 GFLOP/s.
Timing the execution of the separate kernels and counting the number of associated float-
ing point operations provides the real performance. The results are reported in Fig. 6
where GFLOPs are shown as a function of the number of grid points, Nr. Solid line with
circles, dashed line with squares and dot-dashed line with triangles are the measured per-
formances of the streaming step, the collision step and the overall code. respectively. It
is possible to note that the performance of the streaming step grows with Nr and quickly
levels at about 30 GFLOPs, approximately one third of the estimated ideal performance.
The difference can be justified by observing that the real CUDA implementation of the
finite difference scheme is not free from thread divergence and ancillary tasks whose ef-
fects can be evaluated with difficulty Micikevivius (2009). The collision step performance
closely patterns the speed-up behavior, that is it rapidly grows in the range Nr < 104 and
then levels up at about 140 GFLOP/s, reasonably close to the theoretical estimate. The
collision kernel performs better than the streaming kernel due to its higher FLOP to mem-
ory operation ratio which, in turn, allows a more efficient use of GPU computing power.
The absence of thread divergence is also a feature which positively affects performances.
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Figure 4: Overall speed-up, S, versus number of cells
in the physical space, Nr; δ = 1, Nv = 8000, Nt =
6144, Nr = 25600
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8000, Nt = 6144, Nr = 25600.
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6 CONCLUSIONS

6 Conclusions

In this notes we have described the possibility of exploiting the computational power of
modern GPUs to simulate nonequilibrium rarefied gas flows. The full nonlinear Boltzmann
equation has been solved by means of a semi-regular method which combines a finite
difference discretization of the free-streaming term with a Monte Carlo evaluation of the
collision integral. This method of solution is ideally suited for the SIMD-like architecture
provided by the commercially available GPUs. The two dimensional driven cavity flow
has been used as a benchmark problem. The results lead to concluding that the porting
of the sequential code onto GPUs allows a reduction of the computing time of two orders
of magnitude, being the observed speed-up as high as 400. Although the test problem
examined here has clearly shown that the size of physical memory is the main obstacle
toward the application to complex two or three-dimensional flows, the numerical method
described above can be reformulated as a less memory particle scheme in many ways.
Hence, the present work and results are a first step toward the construction of a more
flexible and efficient method for the numerical solution of kinetic equations.
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8 APPENDIX: CUDA PSEUDO-CODES

8 Appendix: CUDA pseudo-codes

Algorithm 1 GPU pseudo-code of the two-dimensional streaming kernel
Require: Cux is Courant number along x direction
Require: Cuy is Courant number along y direction
Require: Bx is the number of threads in x direction
Require: By is the number of threads in y direction
Require: tx is the index of the thread in x direction
Require: ty is the index of the thread in y direction
Require: fsh is a matrix of dimensions (Bx + 1)× (By + 1) in the shared memory
1: for Iby = Ny/By − 1 to 0 do
2: for Ibx = Nx/Bx − 1to 0 do
3: ix ← tx +BxIbx
4: iy ← ty +ByIby
5: fsh(tx + 1, ty + 1)⇐ fn

ix,iy ;j

6: if ty == 0 then
7: if iy − 1 < 0 then
8: fsh(tx, ty)← boundaryFlux
9: else
10: fsh(tx, ty)⇐ fn

ix,iy−1,j

11: end if
12: end if
13: if tx == 0 then
14: if ix − 1 < 0 then
15: fsh(tx, ty)← boundaryFlux
16: else
17: fsh(tx, ty)⇐ fn

ix−1,iy ,j

18: end if
19: end if
20: syncthreads
21: frg ← (1−Cux −Cuy)fsh(tx + 1, ty + 1) + Cuy fsh(tx, ty + 1) + Cux fsh(tx + 1, ty)
22: frg ⇒ f̃n+1

ix,iy ,j

23: Ibx ← Ibx − 1
24: end for
25: Iby ← Iby − 1
26: end for
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Algorithm 2 GPU pseudo-code of the sampling kernel
Require: i is the global index of thread
1: v ←BoxMulller
2: v1 ←BoxMulller
3: k̂←UnitSphere
4: vr ← v1 − v
5: v∗ ← v + (vr · k̂)k̂
6: v∗

1 ← v1 − (vr · k̂)k̂
7: cells(v)⇒ I(i)
8: cells(v1)⇒ I1(i)
9: cells(v∗)⇒ I∗(i)
10: cells(v∗

1)⇒ I∗1 (i)
11: gj ← dtπd2n2

0(∆VjΦj)
−1|vr · k̂|

12: gj1 ← dtπd2n2
0(∆Vj1Φj1)

−1|vr · k̂|
13: gj∗ ← dtπd2n2

0(∆Vj∗Φj∗)
−1|vr · k̂|

14: gj∗1 ← dtπd2n2
0(∆Vj∗1Φj∗1)

−1|vr · k̂|
15: gj ⇒ C(i)
16: gj1 ⇒ C1(i)
17: gj∗ ⇒ C∗(i)
18: gj∗1 ⇒ C∗

1(i)
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Algorithm 3 GPU pseudo-code of the collision kernel
Require: i is the global x index of the thread inside the grid
Require: j is the global y index of the thread inside the grid
1: for all j do
2: h⇐ ĥn+1

i,j

3: ρ← ρ+ Φ0,j h
4: u← u+ vj Φ0,j h
5: e← e+ |vj|2 Φ0,j h
6: end for
7: for m = 1 to Nt do
8: h⇐ h̃n+1

i,I(m)

9: h1 ⇐ h̃n+1
i,I1(m)

10: h∗ ⇐ h̃n+1
i,I∗(m)

11: h∗1 ⇐ h̃n+1
i,I∗1 (m)

12: g ← h+ h1 + ε h h1
13: h← h− C(m) g
14: h1 ← h1 − C1(m) g
15: h∗ ← h∗ + C∗(m) g
16: h∗1 ← h∗1 + C∗

1(m) g
17: h⇒ h̃n+1

i,I(m)

18: h1 ⇒ h̃n+1
i,I1(m)

19: h∗ ⇒ h̃n+1
i,I∗(m)

20: h∗1 ⇒ h̃n+1
i,I∗1 (m)

21: end for
22: for all j do
23: h⇐ h̃n+1

i,j

24: a11 ← a11 + Φ0,j h
25: a12 ← a12 + vj Φ0,j h
26: a13 ← a13 + |vj|2 Φ0,j h

27:
...

28: // others moments of the distribution function

29:
...

30: end for
31: [A, ~B,C]=linearSolver(n,u, e, a11, a12, a13, . . .)
32: for all j do
33: h⇐ h̃n+1

i,j

34: h← 1/ε((1 + εh)(1 + A+ ~B · vj + Cv2
j − 1)

35: h⇒ hn+1
i,j

36:
...

37: // compute macroscopic quantities

38:
...

39: end for
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