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Introduction

In this lecture notes we review some recent results concerning the numerical solution of
nonlinear collisional kinetic equation. The most well-known example is represented by the
Boltzmann equation of rarefied gas dynamics (Cercignani, 1988; Cercignani et al., 1994).
Besides other classical examples, like the Landau equation of plasma physics (Landau,
1981), kinetic equations play an important role in modelling granular gases (Bobylev et al.,
2000), charged particles in semiconductors (Markowich et al., 1989), neutron transport
(Jin et al., 2000) and quantum gases (Escobedo et al., 2003b). More recently applica-
tions of kinetic equations have been considered for car traffic flows (Klar and Wegener,
1997), chemotactical movements (Chalub et al., 2004), tumor immune cells competition
(Bellomo and Bellouquid, 2004), coagulation-fragmentation processes (Escobedo et al.,
2003a), population dynamics (Desvillettes et al., 2004), market economies (Cordier et al.,
2005), supply chains (Armbruster et al., 2007), flocking dynamics (Ha and Tadmor, 2008)
and many other. For a recent introduction to the Boltzmann equation and related kinetic
equations we refer the reader to Degond et al. (2004); Villani (2002), recent applications
to biology and socio-economy can be found in Naldi et al. (2010).

Although the scope of our insights is wider, here we will focus mainly on the classical
Boltzmann equation of rarefied gas dynamics. This is motivated not only by its relevance
for applications but also because it contains all major difficulties present in other kinetic
models and represents the most challenging case for the development of numerical schemes.

Approximate methods of solution for the Boltzmann equation have a long history
tracing back to Hilbert, Chapmann and Enskog (Cercignani, 1988) at the beginning of
the last century. The mathematical difficulties related to the Boltzmann equation make
it extremely difficult, if not impossible, the determination of analytic solutions in most
physically relevant situations. Only in recent years, starting in the 70s with the pioneering
works by Chorin (1972) and Sod (1977), the problem has been tackled numerically with
particular care to accuracy and computational cost.

Most of the difficulties are due to the multidimensional structure of the collisional
integral, since the integration runs on a highly-dimensional unflat manifold. In addition
the numerical integration requires great care since the collision integral is at the basis
of the macroscopic properties of the equation. Further difficulties are represented by the
presence of stiffness, like the case of small mean free path (Gabetta et al., 1997) or the
case of large velocities (Filbet and Pareschi, 2003).

For such reasons realistic numerical simulations are based on Monte-Carlo techniques.
The most famous examples are the Direct Simulation Monte-Carlo (DSMC) methods by
Bird (Bird, 1994) and by Nanbu (Nanbu, 1980). These methods guarantee efficiency and
preservation of the main physical properties. However, avoiding statistical fluctuations in
the results becomes extremely expensive in presence of non-stationary flows or close to
continuum regimes.

Among deterministic approximations one of the most popular method is represented
by the so called Discrete Velocity Models (DVM) of the Boltzmann equation. These meth-
ods (Martin et al., 1992; Rogier and Schneider, 1994; Bobylev et al., 1995; Buet, 1996;
Panferov and Heintz, 2002) are based on a Cartesian grid in velocity and on a discrete
collision mechanism on the points of the grid that preserves the main physical proper-
ties. Unfortunately DVM are not competitive with Monte Carlo methods in terms of
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computational cost (typically O(n(2dv+1)/dv), where n is the total number of discretization
parameters in velocity and dv is the dimension of the velocity space) and their accu-
racy seems to be at most first order in velocity (Palczewski et al., 1997; Palczewski and
Schneider, 1998; Panferov and Heintz, 2002).

Another important class of numerical methods is based on the use of spectral tech-
niques in the velocity space. The methods were first derived in Pareschi and Perthame
(1996), inspired by previous works on the use of Fourier transform techniques (see Bobylev
(1988) for instance). The numerical method is based on approximating the distribution
function by a periodic function in velocity space, and on its representation by Fourier
series. The resulting scheme can be evaluated with a computational cost of O(n2).

The method was further developed in Pareschi and Russo (2000b,c) where evolu-
tion equations for the Fourier modes were explicitly derived and spectral accuracy of the
method was proved. Strictly speaking these methods are not conservative, since they
preserve mass, whereas momentum and energy are approximated with spectral accuracy.
This trade off between accuracy and conservations seems to be an unavoidable compromise
in the development of numerical schemes for the Boltzmann equation.

Recently in Mouhot and Pareschi (2006, 2004); Filbet et al. (2006), using a suitable
representation of the collision operator, the computational cost of spectral methods has
been reduced from O(n2) to O(n log2 n) without loosing the spectral accuracy thus making
the methods competitive with Monte Carlo. These fast algorithms are restricted to a
certain class of particle interactions including pseudo-Maxwell molecules (for dv = 2) and
hard spheres (for dv = 3). This kind of approach has been extended recently to construct
fast algorithms for DVM models (Mouhot and Pareschi, 2011). Another class of fast
solvers for the case of radially symmetric distribution functions has been constructed in
Markowich and Pareschi (2005).

We recall here that the spectral method has been applied also to non homogeneous
situations (Filbet and Russo, 2003), to the Landau equation (Filbet and Pareschi, 2003;
Pareschi et al., 2000, 2003), where fast algorithms can be readily derived, to the case of
granular gases (Naldi et al., 2003; Filbet et al., 2005) and more recently to the case of
a quantum gas (Filbet et al., 2011). Let us mention that algorithms based on a Fourier
transform approximation of the distribution function have been constructed in Bobylev
and Rjasanow (1997, 1999) and more recently in Gamba and Tharkabhushanam (2009,
2010). Other fast algorithms for kinetic equations can be found in Buet et al. (1997);
Lemou (1998).

An additional problem in the numerical solution of the Boltzmann equation is the time
step restriction in regions close to the fluid dynamic limit, i.e. for very small Knudsen
number. In such a cases, in fact, the mean collision time is so small that an explicit solver
would require a very small time step, thus degrading the performance of the method.

If the Knudsen number is uniformly small, then one usually does not need a kinetic
treatment, and the gas can be very well described by the Euler or Navier-Stokes equations.
There are cases, however, in which the local Knudsen number varies over several orders
of magnitude. Several authors have tackled the problem in the past, and there is a large
literature on the subject (see Bennoune et al. (2008); Caflisch et al. (1997); Degond et al.
(2005); Gabetta et al. (1997); Filbet and Jin (2010); Tiwari and Klar (1998) and the
references therein).

One possibility is to resort to the so called domain decomposition techniques: one
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could divide the computational domain into two complementary domains, let us denote
them by A[erodynamics] and B[oltzmann]; in A the gas is well described by either Euler
or Navier-Stokes equations, while in B the gas needs a kinetic description. In some cases
the subdivision into such two subdomains may be known a priori, for example from the
geometry of the domain of from previous approximate calculations of the flow, but in most
cases the two regions are themselves unknown, and therefore they have to be computed and
evolved as part of the solution. Examples of Euler-Boltzmann coupling can be found, for
example, in Bourgat et al. (1992); Tiwari and Klar (1998); Tiwari (1998), while Navier-
Stokes-Boltzmann coupling is considered in Bourgat et al. (1996). More recent works,
including hybrid methods, can be found in Schwartzentruber et al. (2007); Degond et al.
(2007); Dimarco and Pareschi (2010b).

The coupling between aerodynamics and kinetic description is very appealing, because
one could gain maximum efficiency by treating with continuum equations the region in
which a kinetic description is not strictly necessary. However, it presents several difficul-
ties, and it is still an open problem to asses what is the best coupling strategy.

In these notes we shall consider system which is treated by kinetic equations in the
whole computational domain. We shall discuss what strategies can be used to treat
regions with small Knudsen number avoiding unnecessary restrictions on the time step.
When the mean collision time is much smaller that typical length scales of the problem,
the Boltzmann equation becomes stiff. Usually stiff systems governed by time dependent
equations can be effectively treated by implicit schemes. The interested reader may consult
the monograph by Hairer and Wanner on numerical solution of stiff problems (Hairer and
Wanner, 1996). A direct time discretization of the Boltzmann equation seems not possible
in such stiff regimes due to the high dimensionality and the nonlinearity of the collision
operator which makes unpractical the use of implicit solvers.

Here we present two classes of methods which avoid the solution of systems of non-
linear equations. The first one is based on operator splitting approach combined with
the use of exponential techniques, and will be applied to the Boltzmann equation itself
(see Gabetta et al. (1997); Dimarco and Pareschi (2010a)). The second class is based on
non splitting approaches. We focus our attention on implicit semilagrangian schemes (see
Santagati (2007); Russo and Santagati (2011)) and Implicit-Explicit Runge-Kutta meth-
ods (see Pareschi and Russo (2005); Pieraccini and Puppo (2007)); such methods will
be constructed for the BGK model of the Boltzmann equation and then their extension
to the full Boltzmann equation discussed (Filbet and Jin, 2010; Dimarco and Pareschi,
2011). We refer the reader to Bennoune et al. (2008) for a related approach.

In addition to other deterministic methods that will not be discussed in the notes, such
as finite difference methods (Ohwada, 1993; Sone et al., 1989), there are several important
aspects that we shall not be able to discuss in the present paper, namely:

• Numerical treatment of boundary conditions. In most applications reflective or
absorbing boundary conditions should be considered, or a suitable combination of
the two. However a detailed treatment of boundary conditions depends on the
geometry of the domain, and on the detail of the space discretization (Carrillo
et al., 2006).

• Large departure from (global) equilibrium. One of the weak points of deterministic
methods based on a fixed grid in velocity space is that a huge grid in velocity would
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1 THE BOLTZMANN EQUATION

be necessary to treat flows with a large variation of macroscopic mean velocity and
temperature. Effective schemes for the treatment of such cases have to be based on
the use of grid in velocity domain which change from one space location to another
(Filbet and Russo, 2006; Heintz et al., 2008).

• Multiple space regimes. Most realistic flows present strong non homogeneities, with
small regions of large gradients in the moments. Even the region requiring kinetic
treatment may present several space scales. An effective treatment of such problems
would require adaptivity of the grid in space (Cai and Li, 2010).

• Effective techniques for stationary flows. These notes provide a review of deter-
ministic methods for the time dependent Boltzmann equation. In fact, thanks to
averaging procedures, the stationary case is usually computed efficiently with Monte
Carlo methods (Bird, 1994). However, one may be interested in accurate determin-
istic computations of the stationary solutions, which may be treated by schemes
aimed to capture the stationary state (Greenberg and Leroux, 1996; Botchorishvili
et al., 2003).

• Diffusion limits. In several circumstances the space-time scaling of the kinetic equa-
tion leads asymptotically to the corresponding diffusion system. These problems
present additional difficulties compare to the standard fluid scaling since also the
transport terms are strongly stiff (Jin et al., 2000; Lemou and Mieussens, 2008).

1 The Boltzmann equation

1.1 The model

The model is characterized by a density function f(x, v, t) describing the time evolution
of a monoatomic rarefied gas of particles which move with velocity v ∈ IR3 in the position
x ∈ Ω ⊂ IR3 at time t > 0 which satisfies the Boltzmann equation (Cercignani, 1988;
Cercignani et al., 1994)

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f), (1)

with initial data
f(x, v, 0) = f0(x, v). (2)

The parameter ε > 0 is called Knudsen number and is proportional to the mean free
path between collisions. The bilinear collision operator Q(f, f) which describes the binary
collisions of the particles acts over the velocity variable only

Q(f, f)(v) =

∫
IR3

∫
S2

B(v, v∗, ω)[f(v′)f(v′∗)− f(v)f(v∗)] dω dv∗. (3)

In the above expression, ω is a unit vector of the sphere S2 and (v′, v′∗) represent the
collisional velocities associated with (v, v∗). The collisional velocities satisfy microscopic
momentum and energy conservation

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2. (4)
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1.1 The model 1 THE BOLTZMANN EQUATION

The above system of algebraic equations has the following parametrized solution

v′ =
1

2
(v + v∗ + |v − v∗|ω), v′∗ =

1

2
(v + v∗ − |v − v∗|ω) (5)

where v − v∗ is the relative velocity.

The collision kernel B(v, v∗, ω) is a nonnegative function which characterizes the details
of the binary interactions and depends only on |v−v∗| and the scattering angle θ between
relative velocities v − v∗ and v′ − v′∗ = |v − v∗|ω

cos θ =
(v − v∗) · ω
|v − v∗|

.

The kernel has the from

B(v, v∗, ω) = |v − v∗|σ(|v − v∗|, cos θ), (6)

where the function σ is the scattering cross-section.

Example 1

• In the hard sphere model the particles are assumed to be ideally elastic spheres of
diameter d > 0 and thus

σ(|v − v∗|, cos θ) =
d2

4
, B(v, v∗, ω) =

d2

4
|v − v∗|, (7)

since the total cross section is πd2 = 4π(d2/4).

• In the case of inverse k-th power forces between particles, the kernel has the form

σ(|v − v∗|, cos θ) = bα(cos θ)|v − v∗|α−1, B(v, v∗, ω) = bα(cos θ)|v − v∗|α, (8)

with α = (k − 5)/(k − 1). For k > 5 we have hard potentials, for k < 5 we have
soft potentials.

• The special situation k = 5 gives the Maxellian model with

B(v, v∗, ω) = b0(cos θ). (9)

• For numerical purposes, a widely used model is the Variable Hard Sphere (VHS)
model, corresponding to bα(cos θ) = Cα, where Cα is a positive constant, and hence

σ(|v − v∗|, cos θ) = Cα|v − v∗|α−1, B(v, v∗, ω) = Cα|v − v∗|α. (10)

 

RTO-EN-AVT-194 8 - 7 

 

 



1 THE BOLTZMANN EQUATION 1.1 The model

v v* 

v'* 

v' 

v-v* 

|v
-v *|

ω 

Figure 1: The collision sphere

The collision integral Q(f, f) can be written in different equivalent forms, according
to the parametrization used for the collisional velocities. Using the identity∫

S2

(u · n)+φ(n(u · n)) dn =
|u|
4

∫
S2

φ

(
u− |u|ω

2

)
dω (11)

obtained by the transformation ω = e− 2(e · n)n, we get the frequently used form

Q(f, f)(v) =

∫
IR3

∫
S2

B̃(v, v∗, ω)[f(v′)f(v′∗)− f(v)f(v∗)] dω dv∗ (12)

with
v′ = v − ((v − v∗) · ω)ω, v′∗ = v∗ + ((v − v∗) · ω)ω, (13)

and
B̃(v, v∗, ω) = 2|v − v∗|| cos θ|σ(|v − v∗|, 1− 2| cos θ|). (14)

The hard sphere case corresponds to

B̃(v, v∗, ω) =
d2

2
|v − v∗|| cos θ|, (15)

whereas the Maxwellian molecules case gives

B̃(v, v∗, ω) = 2| cos θ|b0(cos θ). (16)

Remark 1
For the Maxwellian case the collision kernel B(v, v∗, ω) is independent of the rela-

tive velocity. This case has been widely studied theoretically, in particular exact analytic
solutions can be found in the space homogeneous case where f = f(v, t) (Bobylev, 1975).
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1.2 Physical properties 1 THE BOLTZMANN EQUATION

A simplified one-dimensional space homogeneous Maxwell model is given by the Kac
equation (Kac, 1957). It reads

∂f

∂t
=

∫
IR

∫ 2π

0

1

2π
[f(v′∗)f(v′)− f(v)f(v∗)] dθ dv∗ (17)

where the collisional velocities are characterized by rotations in the collisional plane

v′∗ = v cos θ − v∗ sin θ, v′∗ = v sin θ + v∗ cos θ. (18)

For this model we have only microscopic conservation of energy (v′)2 +(v′∗)
2 = v2 +v2

∗.

1.2 Physical properties

During the evolution process, the collision operator preserves mass, momentum and en-
ergy, i.e., ∫

IR3

Q(f, f)φ(v) dv = 0, φ(v) = 1, vx, vy, vz, |v|2, (19)

and in addition it satisfies Boltzmann’s well-known H-theorem∫
IR3

Q(f, f) ln(f(v))dv ≤ 0. (20)

The above properties are a consequence of the following identity that can be easily proved
for any test function φ(v)∫

IR3

Q(f, f)φ(v) dv = −1

4

∫
IR6

∫
S2

B(v, v∗, ω)[f ′f ′∗ − ff∗][φ′ + φ′∗ − φ− φ∗] dω dv∗ dv.

where we have omitted the explicit dependence from v, v∗, v
′, v′∗ to simplify the expression.

In order to prove this identity we used the micro-reversibility property B(v, v∗, ω) =
B(v∗, v, ω) and the fact that the Jacobian of the transformation (v, v∗)↔ (v′, v′∗) is equal
to 1.

A function φ such that

φ(v′) + φ(v′∗)− φ(v)− φ(v∗) = 0

is called a collision invariant. It can be shown that a continuous function φ is a collision
invariant if and only if φ ∈ span{1, v, |v|2} or equivalentely

φ(v) = a+ b · v + c|v|2, a, c ∈ IR, b ∈ IR3.

Assuming f strictly positive, for φ(v) = ln(f(v)) we obtain∫
IR3

Q(f, f) ln(f)dv

= −1

4

∫
IR6

∫
S2

B(v, v∗, ω)[f ′f ′∗ − ff∗][ln(f ′) + ln(f ′∗)− ln(f)− ln(f∗)] dω dv∗ dv

= −1

4

∫
IR6

∫
S2

B(v, v∗, ω)[f ′f ′∗ − ff∗] ln

(
f ′f ′∗
ff∗

)
dω dv∗ dv ≤ 0,
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1 THE BOLTZMANN EQUATION 1.3 Fluid limit

since the function z(x, y) = (x− y) ln(x/y) ≥ 0 and z(x, y) = 0 only if x = y.
In particular, the equality holds only if ln(f) is a collision invariant, that is

f = exp(a+ b · v + c|v|2), c < 0.

If we define the density, mean velocity and temperature of the gas by

ρ =

∫
IR3

f dv, u =
1

ρ

∫
IR3

vf dv, T =
1

3Rρ

∫
IR3

[v − u]2f dv, (21)

we obtain that the distribution function has the form of a locally Maxwellian distribution

f(v, t) = M(ρ, u, T )(v, t) =
ρ

(2πRT )3/2
exp

(
−|u− v|

2

2RT

)
.

The constant R = KB/m is called the gas constant, KB is the Boltzmann constant and m
the mass of a particle. Boltzmann’s H-theorem implies that any equilibrium distribution
function, i.e. any function f for which Q(f, f) = 0, has the form of a locally Maxwellian
distribution.

If we define the H-function

H(f) =

∫
IR3

f ln(f) dv,

we obtain immediately the inequality

dH(f)

dt
=

∫
IR3

Q(f, f) ln(f) dv ≤ 0. (22)

Thus theH-function is monotonically decreasing until f reaches the equilibrium Maxwellian
state for which we have

H(M) = ρ

(
ln

(
ρ

(2πRT )3/2

)
− 3

2

)
.

1.3 Fluid limit

If we multiply the Boltzmann equation by its collision invariants and integrate the result
in velocity space we obtain

∂

∂t

∫
IR3

fφ(v) dv +∇x

(∫
IR3

vfφ(v) dv

)
= 0, φ(v) = 1, v1, v2, v3, |v|2.

These equations describe the balance of mass, momentum and energy. The system of five
equations is not closed since it involves higher order moments of the distribution function
f .

As ε→ 0, from (1) we have formally Q(f, f) → 0, and thus f approaches the local
Maxwellian. In this case the higher order moments of the distribution function can be
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1.4 Boundary conditions 1 THE BOLTZMANN EQUATION

computed as function of ρ, u, and T and we obtain the closed system of compressible
Euler equations

∂ρ

∂t
+∇x · (ρu) = 0

∂ρu

∂t
+∇x · (ρu⊗ u+ p) = 0

∂E

∂t
+∇x · (Eu+ pu) = 0

p = ρT, E =
3

2
ρT +

1

2
ρu2

where p is the gas pressure and ⊗ denotes the tensor product.
The rigorous passage from the Boltzmann equation to the compressible Euler equations

has been investigated by several authors. Among them we mention references Caflisch
(1980); Nishida (1978). Higher order fluid models, such as the Navier-Stokes model,
can be considered using the Chapmann-Enskog and the Hilbert expansions. We refer
to Levermore (1996) for a mathematical setting of the problem and to Golse and Saint-
Raymond (2004) for recent theoretical results.

1.4 Boundary conditions

The Boltzmann equation is complemented with the boundary conditions in space for
v · n ≥ 0 and x ∈ ∂Ω, where n denotes the unit normal, pointing inside the domain Ω.
Usually the boundary represents the surface of a solid object (an obstacle or a container).
The particles of the gas that hit the surface interact with the atoms of the object and are
reflected back into the domain Ω.

Mathematically, such boundary conditions are modelled by an expression of the form
(Cercignani, 1988)

|v · n|f(x, v, t) =

∫
v∗·n<0

|v∗ · n(x)|K(v∗ → v, x, t)f(x, v∗, t) dv∗. (23)

This is the so-called reflective boundary condition on ∂Ω.
The ingoing flux is defined in terms of the outgoing flux modified by a given boundary

kernel K. This boundary kernel is such that positivity and mass conservation at the

∂ Ω 
v

n

v
*

∂ Ω 

v

n

v
*

v

v

v

v

Figure 2: Reflection and diffusion at the solid boundary
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boundaries are guaranteed,

K(v∗ → v, x, t) ≥ 0,

∫
v·n(x)≥0

K(v∗ → v, x, t) dv = 1.

Commonly used reflecting boundary conditions are the so-called Maxwell’s conditions.
From a physical point of view, one assumes that a fraction α of molecules is absorbed by
the wall and then re-emitted with the velocities corresponding to those in a still gas at
the temperature of the wall, while the remaining fraction (1− α) is specularly reflected.

This is equivalent to impose for the ingoing velocities

f(x, v, t) = (1− α)Rf(x, v, t) + αMf(x, v, t), (24)

in which x ∈ ∂Ω, v · n(x) ≥ 0. The coefficient α, with 0 ≤ α ≤ 1, is called the
accommodation coefficient and

Rf(x, v, t) = f(x, v − 2n(n · v), t), Mf(x, v, t) = µ(x, t)Mw(v). (25)

If we denote by Tw the temperature of the solid boundary, Mw is given by

Mw(v) = exp(− v2

2RTw
),

and the value of µ is determined by mass conservation at the surface of the wall

µ(x, t)

∫
v·n≥0

Mw(v)|v · n|dv =

∫
v·n<0

f(x, v, t)|v · n|dv. (26)

For α = 0 (specular reflection) the re-emitted molecules have the same flow of mass,
temperature and tangential momentum of the incoming molecules, while for α = 1 (full
accommodation) the re-emitted molecules have completely lost memory of the incoming
molecules, except for conservation of the number of molecules.

More complex boundary conditions for rarefied gas dynamics (RGD) can be imposed
using the boundary conditions of Cercignani and Lampis (Cercignani and Lampis, 1971).
These can be written as

f(x, v, t) =

∫
P (v, v′)f(x, v′, t)dv′ (27)

where

P (v, v′) = (2v/α)I ′(2(1− α)1/2vv′/α) exp (v2 − (1− α)v′2)/α (28)

in which v and v′ are the normal components of the outgoing and incoming velocities
respectively, and I ′ is the modified Bessel function. This satisfies the reciprocity (detailed
balance) condition

vP (−v′,−v)Mw(v) = −v′P (v, v′)Mw(v′). (29)

A consequence of the reciprocity condition is that the Maxwellian distribution Mw is
preserved by this boundary condition.
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1.5 Other collision operators 1 THE BOLTZMANN EQUATION

In the case of inflow boundary conditions, one assumes that the distribution function
of the particles entering the domain is known, i.e.

f(x, v, t) = g(v, t), x ∈ ∂Ω, v · n > 0,

A typical example of such condition is used in shock wave calculations, where one as-
sumes that the distribution function at the boundary of the computational domain is a
Maxwellian M(v) and that the incoming flux of particles at the boundary is distributed
according to the Maxwellian flux (v · n)M(v), v · n > 0.

1.5 Other collision operators

1.5.1 BGK models

A simplified model Boltzmann equation is the so-called BGK model introduced by Bhat-
nagar et al. (1954). In this model the collision operator is replaced by a relaxation operator
of the form

QBGK(f, f)(v) =
1

τ
(M [f ]− f), (30)

where M [f ] = M(v; {ρ, u, T}) is the local Maxwellian computed by the moments of the
distribution function f

M(v; {ρ, u, T}) =
ρ

(2πRT )3/2
exp

(
−|v − u|

2

2RT

)
. (31)

where ρ = ρ(x, t), u = u(x, t) and T = T (x, t) denote the macroscopic fields, namely:
density, mean velocity and temperature, corresponding to the function f .

Conservation of mass, momentum and energy as well as Boltzmann H-theorem are
readily satisfied. The equilibrium solutions are clearly Maxwellians

QBGK(f, f) = 0⇔ f = M [f ].

The relaxation time τ is in general inversely proportional to the density, and depends on
the temperature:

τ−1 = A(T )ρ

Numerical computations, as well as the analytic theory, for such model are much simpler
then for the full Boltzmann equation.

Furthermore, as a consequence of conservation of mass, momentum and energy, in the
fluid dynamic limit the moments (ρ,
rhou, and E), i.e. mass density, momentum density, and total energy density, satisfy the
compressible Euler equations for a monoatomic gas, therefore the model describes the
correct fluid dynamic limit.

But in the Chapman-Enskog expansion, the transport coefficients obtained at the
Navier-Stokes level are not satisfactory. The relaxation time could be adjusted so that at
the Navier-Stokes level the model provides the correct value of one transport coefficient,
say the viscosity. However, the Prandtl number Pr (the ratio between heat conductivity
and viscosity) is equal to 1. For most gases, we have Pr < 1. In particular, the hard-sphere
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1 THE BOLTZMANN EQUATION 1.5 Other collision operators

model for a monoatomic gas leads to a Prandtl number very close to 2/3, therefore only
one transport coefficient can be correct, but not both. The correct Prandtl number can
be recovered using more sophisticated BGK models, as the velocity dependent collision
frequency BGK models and the Ellipsoidal Statistical BGK (ES-BGK) models (Bouchut
and Perthame, 1993; Holway, 1966).

1.5.2 Landau models

The Landau model (Landau, 1981) is a common kinetic model in plasma physics charac-
terized by the following collision operator

QL(f, f)(v) = ∇v ·
∫
IRd
A(v − v∗)[f(v∗)∇vf(v)− f(v)∇v∗f(v∗)] dv∗

where A(z) = Ψ(|z|)Π(z) is a d × d nonnegative symmetric matrix and Π(z) = (πij(z))
is the orthogonal projection upon the space orthogonal to z,

πij(z) =

(
δij −

zizj
|z|2

)
.

We have Ψ(|z|) = Λ|z|α+2 for inverse-power laws, with α ≥ −3 and Λ > 0. The case
α = −3 is the so-called Coulombian case, of primary importance for applications. In
such case the Boltzmann collision operator has no meaning, due to the divergence of the
integral, even for smooth functions (a cut-off angular approximation is then used and the
Landau equation can be derived in the so called grazing collision limit (Villani, 2002)).

Since conservation of mass, momentum, and energy, as well as H-theorem for the
entropy are satisfied, equilibrium states are Maxwellians.

1.5.3 Additional models

• Enskog model: takes into account the nonlocality of the interactions induced by
the diameter of the interacting spheres (accurately describes the behavior of dense
gases). The collision operator is delocalized in space (regularization effect).

• Quantum-Boltzmann models: the nonlinear interactions f ′f ′∗ − ff∗ is replaced by

f ′f ′(1± f)(1± f∗)− ff∗(1± f ′)(1± f ′∗).

The minus sign corresponds corresponds to fermions (such as alectrons), and the
plus sign to bosons (such as photons). The collision operator are called Pauli oper-
ator and Bose-Einstein operator respectively.

• Semiconductor-Boltzmann models: the linear Boltzmann equation for semiconduc-
tor devices has the form

QS(f,M) =

∫
σ(v, v∗){M(v)f(v∗)−M(v∗)f(v)} dv∗,

where M is the normalized equilibrium distribution (Maxwellian, Fermi-Dirac) at
the temperature θ of the lattice. The function σ(v, v∗) describes the interaction of
carriers with phonons.
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1.6 The splitting approach 1 THE BOLTZMANN EQUATION

• Granular gas models: particles undergo inelastic collisions. Energy is dissipated
by the model and the steady states are Dirac delta function centered in the mean
velocity.

More recently kinetic modelling has been applied to new fields as vehicular traffic flows,
biomathematics (chemotaxis, inhalation of sprays, flocking), finance (modelling income
distributions, price formation), coagulation-fragmentation processes, supply chains, and
so on.

1.6 The splitting approach

The most common approach to solve numerically the full Boltzmann equation is based on
an operator splitting (Desvillettes and Mischler, 1996).

The solution in one time step ∆t may be obtained by the sequence of two steps. First
integrate the space homogeneous equation for all x ∈ Ω,

∂f̃

∂t
=

1

ε
Q(f̃ , f̃), (32)

f̃(x, v, 0) = f0(x, v),

for a time step ∆t (collision step) to obtain f̃ = C∆t(f0), and then the transport equation
using the output of the previous step as initial condition,

∂f

∂t
+ v · ∇xf = 0, (33)

f(x, v, 0) = f̃(x, v,∆t).

for a time step ∆t (transport step) to get f = T∆t(f̃) = T∆t(C∆t(f0)).
After computing an approximation of the solution at time ∆t, the process may be

iterated to obtain the numerical solution at later times. Although this splitting scheme
(simple splitting) described above is first order accurate in time it is very popular because
it has several nice properties.

• The collision step acts only on v whereas the transport step acts on x. This makes
the implementation of the resulting scheme simpler (it allows the use of any existing
code designed to solve the free transport equation) and highly parallelizable.

• It makes simpler to design schemes which preserves the physical properties of the
equation (conservations, positivity, H-theorem), since these properties essentially
depends on the treatment of the collision step.

It is then clear, that after this splitting almost all the main numerical difficulties are con-
tained in the collision step. The discretization of the resulting equations can be performed
in a variety of ways (finite volume, finite difference, Monte Carlo methods and so on). The
choice of the discretization mainly depends on the method that is used for the solution
of the space homogeneous Boltzmann equation. Higher order splitting formulas can be
derived in different ways (see Hairer et al. (2002)). For example the well-known second
order Strang splitting (Strang, 1968) can be written as

C∆t/2(T∆t(C∆t/2(f0))). (34)
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Unfortunately for splitting methods of order higher then two it can be shown that it’s
impossible to avoid negative time steps both in the transport as well as in the collision
(Hairer et al., 2002). As an example we report here a symmetric fourth order formula
(McLachlan, 1995)

Ta1∆t(Cb1∆t(Ta2∆t(Cb2∆t(Ta3∆t(Cb2∆t(Ta2∆t(Cb1∆t(Ta1∆t(f0))))))))), (35)

where

b1 =
6

11
, b2 =

1

2
− b1 ≈ −0.045, (36)

a1 =
642 +

√
471

3924
≈ 0.169, a2 =

121

3924
(12−

√
471) ≈ −0.299, a3 = 1−2(a1+a2). (37)

Higher order formulas which avoid negative time stepping can be obtained as suitable
combination of splitting steps (Dia and Schatzman, 1996). For example a third order
approximation is given by

2

3
[T∆t/2(C∆t(T∆t/2(f0))) + C∆t/2(T∆t(C∆t/2(f0)))]− 1

6
[T∆t(C∆t(f0)) + C∆t(T∆t(f0))], (38)

which corresponds to take a combination of symmetrized Strang and first order splitting,
whereas a fourth order scheme reads

4

3
C∆t/4(T∆t/2(C∆t/2(T∆t/2(C∆t/4(f0)))))− 1

3
C∆t/2(T∆t(C∆t/2(f0))). (39)

Clearly all the above splitting methods admit the symmetric formulation obtained by
switching the transport and the collision operators. Note, however, that the appearance
of negative coefficients or negative time steps in high order formulas may lead to some
drawbacks in practical applications like the lack of positivity of the solution which makes
very difficult their use in Monte Carlo schemes.

1.7 Asymptotic preserving methods

Even if it is difficult to give a rigorous definition of asymptotic preserving scheme since
the concept has been used for a long time in the physics and mathematics literature and
may refer to different discretization parameters (see Figure 3), here following Jin (1995)
and Pareschi and Russo (2005), we formalize this notion for the time discretization of
equation (1).

Definition 1 A consistent time discretization method for (1) of stepsize ∆t is asymptotic
preserving (AP) if, independently of the initial data (2) and of the stepsize ∆t, in the limit
ε→ 0 becomes a consistent time discretization method for the reduced system (23).

Note that this definition does not imply that the scheme preserves the order of accuracy
in t in the stiff limit ε→ 0.

In the case of operator splitting we can reformulate the asymptotic preserving property
and prove that
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P ε

P ε
h

h→ 0 h→ 0

ε→ 0

ε→ 0

6

-

P 0

P 0
h

6

-

Figure 3: The AP diagram. Here P ε is the original singular perturbation problem and
P ε
h its numerical approximation characterized by a discretization parameter h. The AP

property corresponds to the request that P ε
h is consistent with P ε as ε→ 0 independently

of h.

Proposition 1 A sufficient condition for a consistent time discretization method of step-
size ∆t applied to the operator splitting approximation of (1), given by (32)-(33), to be
AP is that the time discretization of step (32), independently of the initial data (2) and
of the stepsize ∆t, in the limit ε → 0 projects the solution f over the local Maxwellian
equilibrium M(ρ0, u0, T0).

The proof of the above proposition is an immediate consequence of the fact that as
ε → 0 step (32) degenerates into the projection C∆t(f0) = M(ρ0, u0, T0) which coupled
with the transport step (33) originates a so-called kinetic approximation (Coron and
Perthame, 1991) to the Euler equation (23) given by T∆t(M(ρ0, u0, T0)). We omit further
details.

In other words, Proposition 1 states that if the relaxation step (32) is AP then the
whole splitting (32)-(33) is AP. Analogous results hold true for the higher order splitting
methods (34), (35), (38) and (39). Let us point out that degradation to first order
accuracy when ε→ 0 is observed for most splitting methods like the one reviewed here. A
possible way to overcome this drawback is based on the use of Implicit-Explicit (IMEX)
Runge-Kutta methods for the full problem (1). We will discuss this aspect in Section 4.3.

For the sake of completeness we finally introduce the notion of entropic stability,
namely schemes that preserve at a discrete level the entropy inequality (22). Let us
denote by fn, n ≥ 1 the numerical solution at t = n∆t obtained with a given time
discretization method applied to (32) with initial data f0.

Definition 2 A time discretization method for (32) is called unconditionally entropic if
H(fn+1) ≤ H(fn), where H(f) =

∫
R3 f log f dv, independently of the step size ∆t.

As pointed out in Dimarco and Pareschi (2010a) and Higueras (2005), except for first
order implicit Euler, the entropy inequality is not satisfied by high order implicit Runge-
Kutta schemes applied to (32) unless a suitable time step restriction is considered. At
variance exponential methods permits to construct unconditionally entropic methods at
any order of accuracy (Gabetta et al., 1997).
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2 FAST BOLTZMANN SOLVERS

In the next section we will focus on the solution to the space homogeneous Boltzmann
equation (32). It is clear, in fact, that most computational challenges related to the
behavior of the full equation depend on the way we approximate the collision operator.

2 Fast Boltzmann solvers

In this section we shall approximate the collision operator starting from a representation
which somehow conserves more symmetries of the collision operator when one truncates
it in a bounded domain. This representation was used in Bobylev and Rjasanow (1997),
Bobylev and Rjasanow (1999), Bobylev and Rjasanow (2000), Ibragimov and Rjasanow
(2002) and it’s close to the classical Carleman representation (cf. Carleman (1932)). As we
will see it is an essential step for the derivation of fast algorithms. The presentation here
follows the line developed in Mouhot and Pareschi (2006), Mouhot and Pareschi (2004),
Filbet et al. (2006), Mouhot and Pareschi (2011).

2.1 Restriction to bounded domains

The basic identity we shall need is

1

2

∫
Sd−1

F (|u|ω − u) dω =
1

|u|d−2

∫
Rd
δ(2x · u+ |x|2)F (x) dx, (40)

and can be verified easily by completing the square in the delta Dirac function, taking
the spherical coordinate x = r ω and performing the change of variable r2 = s.

Setting u = v − v∗ we can write the collision operator in the form

Q(f, f)(v) =

∫
v∗∈Rd

{∫
ω∈Sd−1

B(cos θ, |u|)

[
f
(
v∗ −

|u|ω − u
2

)
f
(
v +
|u|ω − u

2

)
− f(v∗) f(v)

]
dω

}
dv∗

and thus equation (40) yields

Q(f, f)(v) = 2

∫
v∗∈Rd

{∫
x∈Rd

B

(
x · u
|x||u|

, |u|
)

1

|u|d−2
δ(2x · u+ |x|2)

[
f(v∗ − x/2) f(v + x/2)− f(v∗) f(v)

]
dx

}
dv∗.

Now let us make the change of variable x→ x/2 in x to get

Q(f, f)(v) = 2d+1

∫
v∗∈Rd

∫
x∈Rd

B

(
x · u
|x||u|

, |u|
)

1

|u|d−2
δ(4x · u+ 4|x|2)

[f(v∗ − x) f(v + x)− f(v∗) f(v)] dx dv∗
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and then setting y = v∗ − v − x in v∗ we obtain

Q(f, f)(v) = 2d+1

∫
y∈Rd

∫
x∈Rd

B

(
x · u
|x||u|

, |u|
)

1

|u|d−2
δ(−4x · y)

[f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy

where now u = −(x+ y). Thus in the end we have

Q(f, f)(v) = 2d−1

∫
x∈Rd

∫
y∈Rd

B

(
−x · (x+ y)

|x||x+ y|
, |x+ y|

)
1

|x+ y|d−2
δ(x · y)

[f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy.

Figure 4 sums up the different geometrical quantities of the usual representation and the
one we derived from Carleman’s one.

x

y

*v

*v’
v

v’

θ

σ

Figure 4: Geometry of the collision (v, v∗)↔ (v′, v′∗).

Now let us consider the bounded domain DT = [−T, T ]d (0 < T < +∞). There are
two possibilities of truncation to reduce the collision process in a box. From now on let
us write

B̃(x, y) = 2d−1 B

(
−x · (x+ y)

|x||x+ y|
, |x+ y|

)
|x+ y|−(d−2).

One can easily see that on the manifold defined by x · y = 0, a simpler formula is

B̃(x, y) = B̃(|x|, |y|) = 2d−1 B

(
|x|√

|x|2 + |y|2
,
√
|x|2 + |y|2

)
(|x|2 + |y|2)−

d−2
2 . (41)

First one can remove some physical collisions connecting with some points out of the box.
This is the natural preliminary stage for deriving conservative schemes. In this case there
is no need for a truncation on the modulus of x and y since we impose them to stay in
the box. It yields

Qtr(f, f)(v) =

∫ ∫{
x, y ∈Rd | v+x, v+y, v+x+y ∈DT

} B̃(x, y) δ(x · y)

[f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy
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defined for v ∈ DT . One can easily check that the following weak form is satisfied by this
operator∫

Qtr(f, f)ϕ(v) dv =
1

4

∫ ∫ ∫{
v, x, y ∈Rd | v, v+x, v+y, v+x+y ∈DT

} B̃(x, y) δ(x · y)

f(v + x+ y) f(v) [ϕ(v + y) + ϕ(v + x)− ϕ(v + x+ y)− ϕ(v)] dv dx dy (42)

and this implies conservation of mass, momentum and energy as well as the H-theorem
on the entropy. Note that at this level this formulation gives no advantage with respect
to the usual one obtained from (3) by restricting v, v∗, v

′, v′∗ ∈ DT . The problem of this
truncation is that it corresponds to change the collision kernel by adding some artificial
dependence on v, v∗, v

′, v′∗. In this way convolution-like properties are broken.

A different approach consists in periodizing the function f on the domain DT . Here
we have to truncate the integration in x and y since periodization would yield infinite
result if not. Thus we set them to vary in BR, the ball of center 0 and radius R. Then a
geometrical argument (see Pareschi and Russo (2000b)) shows that using the periodicity
of the function it is enough to take T ≥ (3+

√
2)R/2 to prevent intersections of the regions

where f is different from zero.

The operator now reads

QR(f, f)(v) =

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)

[f(v + y)f(v + x)− f(v + x+ y)f(v)] dx dy (43)

for v ∈ DT (the expression for v ∈ Rd is deduced by periodization). The interest of this
representation is to preserve the real collision kernel and its properties.

By making some translation changes of variable on v (by x, y and x + y), using the
changes x→ −x and y → −y and the fact that

B̃(−x, y) δ(−x · y) = B̃(x, y) δ(x · y) = B̃(x,−y) δ(x · −y)

one can easily prove that for any function ϕ periodic on DT the following weak form is
satisfied∫

DT
QR(f, f)ϕ(v) dv =

1

4

∫
v∈DT

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)

f(v + x+ y)f(v) [ϕ(v + y) + ϕ(v + x)− ϕ(v + x+ y)− ϕ(v)] dv dx dy. (44)

About the conservation properties one can shows that if f has compact support in-
cluded in BR with T ≥ (3+

√
2)R/2 (no aliasing condition, see Pareschi and Russo (2000b)

for a detailed discussion), then no unphysical collisions occur and thus mass, momentum
and energy are preserved. Obviously this compactness is not preserved with time since
the collision operator spreads the support of f by a factor

√
2. In the rest of the paper

we will focus on the periodized truncation QR.
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2)R(2+

0-

R

T T 3T2T

Figure 5: Periodization in 2D

2.2 Spectral methods

Now we use the representation QR to derive new spectral methods. The spectral methods
for kinetic equations originated in the works of Pareschi and Perthame (1996), Pareschi
and Russo (2000b), and were further developed in Pareschi and Russo (2000c) and Filbet
and Russo (2003). Before they had a long history in fluid mechanics, see Canuto et al.
(1988).

To simplify notations let us take T = π. Hereafter we use just one index to denote
the d-dimensional sums of integers.

The approximate function fN is represented as the truncated Fourier series

fN(v) =
N∑

k=−N

f̂ke
ik·v,

f̂k =
1

(2π)d

∫
Dπ
f(v)e−ik·v dv.

The spectral equation is the projection of the collision equation in PN , the (2N + 1)d-
dimensional vector space of trigonometric polynomials of degree at most N in each direc-
tion, i.e

∂fN
∂t

= PNQR(fN , fN)

where PN denotes the orthogonal projection on PN in L2(Dπ). A straightforward compu-
tation leads to the following set of ordinary differential equations on the Fourier coefficients

f̂ ′k(t) =
N∑

l,m=−N
l+m=k

β̂(l,m) f̂l f̂m, k = −N, ..., N (45)

where β̂(l,m) are the so-called kernel modes, given by

β̂(l,m) =

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)
[
eil·x eim·y − eim·(x+y)

]
dx dy.
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The kernel modes can be written as

β̂(l,m) = β(l,m)− β(m,m)

where

β(l,m) =

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y) eil·x eim·y dx dy.

Therefore in the sequel we shall focus on β, and one easily checks that β(l,m) depends
only on |l|, |m| and |l ·m|.

Finally let us compare the new kernel modes with the ones in Pareschi and Russo
(2000b). The usual kernel modes written in the x and y variables reads

β̂usual(l,m) =

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)χ{|x+y|≤R}
[
eil·x eim·y − eim·(x+y)

]
dx dy.

Thus the usual representation contains a strong coupling between x and y which makes
it very hard the construction of fast algorithms.

2.3 Discrete-velocity models

The representation QR of this section can also be used to derive fast solvers for discrete
velocity models (DVM). Historically these methods were among the first deterministic
methods for discretizing the Boltzmann equation in velocity space. The discretization
is built starting from physical rather then numerical considerations. We assume the gas
particles can attain only a finite set of velocities

VN = {v1, v2, v3, . . . , vN}, vi ∈ IR3.

Any DVM can be written as a product quadrature formula for (3) in the general form

Di =
∑

j,k,l∈Zd
Γk,li,j
[
fkfl − fifj

]
,

where Di denotes the discrete Boltzmann collision operator and the integer indexes refer
to the points in the computational grid. In order to keep conservations the coefficients
Γk,li,j are defined by

Γk,li,j = 1(i+ j − k − l) 1(|i|2 + |j|2 − |k|2 − |l|2)B(|k − i|, |l − j|)wk,li,j

where 1 denotes the function on Z defined by 1(z) = 1 if z = 0 and 0 elsewhere, and
wk,li,j > 0 are the weights of the quadrature formula, which characterize the different DVM.
B > 0 is the discrete collision kernel. One can check on this formulation that the scheme
satisfies the usual conservation laws and entropy inequality (see Platkowski and Illner
(1988) and the references therein).

We can write at the discrete level the same representation as in the continuous case

Di =
∑
k,l∈Zd

Γ̃k,l
[
fi+kfi+l − fifi+k+l

]
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Figure 6: Sketch of a planar model based on a cartesian grid. Note that in general few
grid points will belong to the collision circle.

with

Γ̃k,l = 1(k · l) B(|k|, |l|)
|k + l|

wk,l.

This is coherent with the DVM obtained by quadrature starting from the Carleman rep-
resentation in Panferov and Heintz (2002).

Now again when one is interested to compute the DVM in a bounded domain there
are two possibilities. First as in the case of Qtr one can force the discrete velocities to
stay in a box, which yields for i = −N, . . . , N (again using the one index notation for
d-dimensional sums)

Dtr
i =

∑
k,l

−N≤ i+k, i+l, i+k+l≤N

Γ̃k,l
[
fi+kfi+l − fifi+k+l

]
.

This new discrete operator is completely conservative but the collision kernel is not in-
variant anymore according to i, which breaks the convolution properties.

The other possibility is to periodize the function f over the box and truncate the sum
in k and l. It yields for a given truncation parameter Ñ ∈ N

DÑ
i =

∑
−Ñ≤k,l≤Ñ

Γ̃k,l
[
fi+kfi+l − fifi+k+l

]
, (46)

for any i = −N . . .N .
It is easy to see that DÑ satisfies exactly a discrete weak form and conservation proper-

ties similar toQR. Moreover one can derive the following consistency result from (Panferov
and Heintz, 2002, Theorem 3) in the case of hard spheres collision kernel
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Theorem 1 Assume that f, g ∈ Ck(R3) (k ≥ 1) with compact support BS. The uniform
grid of step h is constructed on the box DT with the no aliasing condition T ≥ (3+

√
2)S/2.

Then for Ñ = [S/h] (where [ · ] denotes the integer value) and h > 0 sufficiently small,

‖Q(g, f)−DÑ
h (g, f)‖L∞(Zh) ≤ C hr

where DÑ
h is the DVM operator defined in (46) (for the precise quadrature weights derived

in Panferov and Heintz (2002)) on the grid above-mentioned, and fi = f(ih). Here
r = k/(k + 3) and the constant C is independent on h.

Remark 2 As can be seen from Theorem 1, the periodized DVM presented in this subsec-
tion is expected to have a quite low accuracy. On the contrary the spectral method will be
proven to be spectrally accurate, i.e. of infinite order for smooth solutions. Nevertheless
this periodized DVM has some interesting features compared to the spectral method. In-
deed, one can prove that if the quadrature weights wk,l are non-negative, then the scheme
is stable in the sense that if one starts from a non-negative initial data, then the solution
remains non-negative and has thus constant L1 norm. Concerning the spectral method
we refer to Filbet and Mouhot (2011) for an analysis of its stability and convergence
properties.

2.4 Fast spectral algorithms

As soon as one is searching for fast deterministic algorithms for the collision operator, i.e
algorithm with a cost lower than O(N2d+ε) (which is the cost of a usual discrete velocity
model, with typically ε = 1), one has to find some way to compute the collision operator
without going through all the couples of collision points during the computation. This
leads naturally to search for some convolution structure (discrete or continuous) in the
operator. Unfortunately, as discussed in the previous sections, this is rather contradictory
with the search for a conservative scheme in a bounded domain, since the boundary
condition needed to prevent for the outgoing or ingoing collisions breaks the invariance.

Here we search for a convolution structure in the equations (45). The aim is to
approximate each β̂(l,m) by a sum

β̂(l,m) '
A∑
p=1

αp(l)α
′
p(m).

This gives a sum of A discrete convolutions and so the algorithm can be computed in
O(ANd log2N) operations by means of standard FFT techniques (Canuto et al., 1988;
Cooley and Tukey, 1965). Obviously this is equivalent to obtain such a decomposition
on β. To this purpose we shall use a further approximated collision operator where the
number of possible directions of collision is reduced to a finite set.
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2.4.1 A semi-discrete collision operator

We write x and y in spherical coordinates

QR(f, f)(v) =
1

4

∫
e∈Sd−1

∫
e′∈Sd−1

δ(e · e′) de de′{∫ R

−R

∫ R

−R
ρd−2 (ρ′)d−2 B̃(ρ, ρ′) [f(v + ρ′e′)f(v + ρe)− f(v + ρe+ ρ′e′)f(v)] dρ dρ′

}
.

(47)

Let us take A a discrete set of orthogonal couples of unit vectors (e, e′), which is even:
(e, e′) ∈ A implies that (−e, e′), (e,−e′) and (−e,−e′) belong to A (this property on the
set A is required to preserve the conservation properties of the operator). Now we define
QAR to be

QR,A(f, f)(v) =
1

4

∫
(e,e′)∈A

{∫ R

−R

∫ R

−R
ρd−2 (ρ′)d−2 B̃(ρ, ρ′)

[
f(v + ρ′e′)f(v + ρe)−

f(v + ρe+ ρ′e′)f(v)
]
dρ dρ′

}
dA

where dA denotes a discrete measure on A which is also even in the sense that dA(e, e′) =
dA(−e, e′) = dA(e,−e′) = dA(−e,−e′). Using again translation change of variable on v
by ρe, ρ′e′ and ρe+ρ′e′ and the symmetries of the set A one can easily derive the following
weak form on QAR. For any function ϕ periodic on DT ,∫

DT
QR,A(f, f)ϕ(v) dv =

1

16

∫
v∈DT

∫
(e,e′)∈A

∫ R

−R

∫ R

−R
ρd−2 (ρ′)d−2 B̃(ρ, ρ′)

f(v + ρe+ ρ′e′)f(v) [ϕ(v + ρ′e′) + ϕ(v + ρe)− ϕ(v + ρe+ ρ′e′)− ϕ(v)] dρ dρ′ dA dv.

This immediately gives the same conservations properties as QR.

2.4.2 Expansion of the kernel modes

We make the decoupling assumption that

B̃(x, y) = a(|x|) b(|y|). (48)

This assumption is obviously satisfied if B̃ is constant. This is the case of Maxwellian
molecules in dimension two, and hard spheres in dimension three (the most relevant kernel
for applications). Extensions to more general interactions are discussed in Mouhot and
Pareschi (2006).

First let us deal with dimension 2 with B̃ = 1 to explain the method. Here we write
x and y in spherical coordinates x = ρe and y = ρ′e′ to get

β(l,m) =
1

4

∫
e∈S1

∫
e′∈S1

δ(e · e′)
[∫ R

−R
eiρ(l·e) dρ

] [∫ R

−R
eiρ
′(m·e′) dρ′

]
de de′.
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Let us denote by

φ2
R(s) =

∫ R

−R
eiρs dρ,

for s ∈ R. It is easy to see that φ2
R is even and we can give the explicit formula

φ2
R(s) = 2R Sinc(Rs)

with Sinc(θ) = (sin θ)/θ.
Thus we have

β(l,m) =
1

4

∫
e∈S1

∫
e′∈S1

δ(e · e′)φ2
R(l · e)φ2

R(m · e′) de de′

and thanks to the parity property of φ2
R we can adopt the following periodic parametriza-

tion

β(l,m) =

∫ π

0

φ2
R(l · eθ)φ2

R(m · eθ+π/2) dθ.

The function θ → φ2
R(l · eθ)φ2

R(m · eθ+π/2) is periodic on [0, π] and thus the rectangular
quadrature rule is of infinite order and optimal. A regular discretization of M equally
spaced points thus gives

β(l,m) =
π

M

M−1∑
p=0

αp(l)α
′
p(m)

with
αp(l) = φ2

R(l · eθp), α′p(m) = φ2
R(m · eθp+π/2)

where θp = πp/M .
More generally under the decoupling assumption (48) on B̃, we get the following

decomposition formula

β(l,m) =
π

M

M−1∑
p=0

αp(l)α
′
p(m)

where
αp(l) = φ2

R,a(l · eθp), α′p(m) = φ2
R,b(m · eθp+π/2)

and

φ2
R,a(s) =

∫ R

−R
a(ρ) eiρs dρ, φ2

R,b(s) =

∫ R

−R
b(ρ′) eiρ

′s dρ′

with θp = πp/M .

Remark 3 In the symmetric case a = b (for instance for hard spheres) it is possible to
parametrize β(l,m) as

β(l,m) = 2

∫ π/2

0

φ2
R,a(l · eθ)φ2

R,a(m · eθ+π/2) dθ

and the function θ → φ2
R,a(l ·eθ)φ2

R,a(m ·eθ+π/2) is periodic on [0, π/2]. Thus the decompo-
sition can be obtained by applying the rectangular rule on this interval. At the numerical
level it yields a reduction of the cost by a factor 2.
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Now let us deal with dimension d = 3 with B̃ satisfying the decoupling assump-
tion (48). First we change to the spherical coordinates

β(l,m) =
1

4

∫
e∈S2

∫
e′∈S2

δ(e · e′)
[∫ R

−R
ρ a(ρ) eiρ(l·e) dρ

] [∫ R

−R
ρ′ b(ρ′) eiρ

′(m·e′) dρ′
]
de de′

and then we integrate first e′ on the intersection of the unit sphere with the plane e⊥,

β(l,m) =
1

4

∫
e∈S2

φ3
R,a(l · e)

[∫
e′∈S2∩e⊥

φ3
R,b(m · e′) de′

]
de

where

φ3
R,a(s) =

∫ R

−R
ρ a(ρ) eiρs dρ.

Thus we get the following decoupling formula with two degrees of freedom

β(l,m) =

∫
e∈S2

+

φ3
R,a(l · e)ψ3

R,b

(
Πe⊥(m)

)
de

where S2
+ denotes the half-sphere and

ψ3
R,b

(
Πe⊥(m)

)
=

∫ π

0

sin θ φR,b
(
|Πe⊥(m)| cos θ

)
dθ,

(this formula can be derived performing the change of variable de′ = sin θ dθ dϕ with the
basis (e, u = Πe⊥(m)/|Πe⊥(m)|, e× u)).

Again in the particular case where B̃ = 1 (hard spheres model), we can compute
explicitly the functions φ3

R (in this case a = b = 1),

φ3
R(s) = R2

[
2Sinc(Rs)− Sinc2(Rs/2)

]
, ψ3

R(s) = 2R2 Sinc2(Rs/2).

Now the function e→ φ3
R,a(l ·e)ψ3

R,b

(
Πe⊥(m)

)
is periodic on S2

+ and so the rectangular
rule is of infinite order and optimal. Taking a spherical parametrization (θ, ϕ) of e ∈ S2

+

and uniform grids of respective size M1 and M2 for θ and ϕ we get

β(l,m) =
π2

M1M2

M1,M2∑
p,q=0

αp,q(l)α
′
p,q(m)

where
αp,q(l) = φ3

R,a(l · e(θp,ϕq)), α′p,q(m) = ψ3
R,b(Πe⊥

(θp,ϕq)
(m))

and

φ3
R,a(s) =

∫ R

−R
ρ a(ρ) eiρs dρ, ψ3

R,b(s) =

∫ π

0

sin θ φ3
R,b(s cos θ) dθ

and
(θp, ϕq) =

(p π
M1

,
q π

M2

)
.

From now on we shall consider this expansion with M = M1 = M2 to avoid anisotropy in
the computational grid.
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Remark 4
For any dimension, we can construct as above an approximated collision operator

QR,AM with

AM =
{

(e, e′) ∈ Sd−1 × Sd−1 | e ∈ Sd−1
M,+, e′ ∈ e⊥ ∩ Sd−1

}
where Sd−1

M,+ denotes a uniform angular discretization of the half sphere with M points in
each angular coordinate (the other half sphere is obtained by parity). Let us remark that
this discretization contains exactly Md−1 points. From now on we shall denote

QR,M = QR,AM =
Md−1∑
p=1

QR,M
p .

2.4.3 Spectral accuracy

In this paragraph we are interested in computing the accuracy of the scheme according
to the three parameters N (the number of modes), R (the truncation parameter), and
M (the number of angular directions for each angular coordinate). Instead of looking at
the error on each kernel mode it is more convenient to look at the error on the global
operator. Here the Lebesgue spaces Lp, p = 1 . . . +∞, and the periodic Sobolev spaces
Hk
p , k = 0 . . .+∞ refer to Dπ.

So in order to give a consistency result, the first step will be to prove a consistency
result for the approximation of QR by QR,M (see Mouhot and Pareschi (2006) for details).

Lemma 1 The error on the approximation of the collision operator is spectrally small,
i.e for all k > d− 1 such that f ∈ Hk

p

‖QR(g, f)−QR,M(g, f)‖L2 ≤ C1

Rk‖g‖Hk
p
‖f‖Hk

p

Mk
.

For the second step we shall use the consistency result (Pareschi and Russo, 2000b,
Corollary 5.4) on the operator QR, which we quote here for the sake of clarity.

Lemma 2 For all k ∈ N such that f ∈ Hk
p

‖QR(f, f)− PNQR(fN , fN)‖L2 ≤ C2

Nk

(
‖f‖Hk

p
+ ‖QR(fN , fN)‖Hk

p

)
.

Combining these two results, one gets the following consistency result

Theorem 2 For all k > d− 1 such that f ∈ Hk
p (Dπ)

‖QR(f, f)− PNQR,M(fN , fN)‖L2 ≤ C1

Rk‖fN‖2
Hk
p

Mk
+
C2

Nk

(
‖f‖Hk

p
+ ‖QR(fN , fN)‖Hk

p

)
.

Now let us focus briefly on the macroscopic quantities. First with Lemma 1 at hand
one can establish the estimate

‖QR,M(g, f)‖L2 ≤ C ‖g‖Hd
p
‖f‖Hd

p
,
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for a constant uniform in M . Then following the method of (Pareschi and Russo, 2000b,
Remark 5.4) and using this estimate we obtain the following spectral accuracy result∣∣〈QR,M(f, f), ϕ〉 − 〈PNQR,M(fN , fN), ϕ〉

∣∣
L2 ≤

C3

Nk
‖ϕ‖L2

(
‖f‖Hk+d

p
+ ‖QR,M(fN , fN)‖Hk

p

)
where ϕ can be replaced by v, |v|2. Indeed there is no need to compare the momenta
of PNQR,M(fN , fN) with those of QR(f, f) since QR,M is also conservative, and so they
can be compared directly to those of QR,M . Thus the error on momentum and energy is
independent on M and is spectrally small according to N even for very small value of the
parameter M .

2.4.4 Implementation aspects

The final spectral scheme depends on the three parameters N , R, and M . The only
conditions on these parameters is the no-aliasing condition that relates R and the size of
the box T (here π). A detailed study of the influence of the choices of N and R has been
done in Pareschi and Russo (2000b). Here we are interested only in the influence of M
over the computations, since M controls the computations speed-up.

The method of the previous subsections yields a decomposition of the collision opera-
tor, which after projection on PN gives the following decomposition

PNQR,M =
Md−1∑
p=1

PNQR,M
p . (49)

Each PNQR,M
p can be computed with a cost O(Nd log2N). Thus for a general choice of

M and N we obtain the cost O(Md−1Nd log2N). The decomposition (49) is completely
parallelizable and thus the cost can be strongly reduced on a parallel machine (formally
up to O(Nd log2N)). One just has to make independent computations for the Md−1 terms
of the decomposition.

Moreover the formula of decomposition is naturally adaptive (that is the number M
can be made space dependent), which can be quite useful in the inhomogeneous setting,
where some regions deserve less accuracy than others. Since it relies on the rectangular
formula, whose adaptivity property is well known, one can easily double the number of
directions M if needed, without computing again those points already computed.

Finally the decomposition can be also interesting from the storage viewpoint, as the
classical spectral method requires the storage of a Nd × Nd matrix whereas the fast
method requires the storage of 2Md−1 vectors of size Nd. In dimension 2 the classical
method requires a storage of order O(N4) and the fast method requires a storage of order
O(MN2). In dimension 3 the classical method requires a storage of order O(N4) (thanks
to the symmetries of the matrix of kernel modes, see Pareschi and Russo (2000b)), and
the fast method requires a storage of order O(M2N3).

2.5 Fast DVM’s algorithms

The fast algorithms developed for the spectral method can be in fact extended to the
periodized DVM method. The method that originates is in some sense related to the
direct FFT approach proposed in Bobylev and Rjasanow (1997, 2000, 1999).
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2.5.1 Principle of the method: a pseudo-spectral viewpoint

We start from the periodized DVM in [| −N,N |]d with representation (46) and as in the
continuous case we set, for −Ñ ≤ k, l ≤ Ñ ,

B̃(|k|, |l|) =
B(|k|, |l|)
|k + l|d−2

= 2d−1 B

(
|k|√
|k|2 + |l|2

,
√
|k|2 + |l|2

)
(|k|2 + |l|2)−

d−2
2 .

With this notation
Γ̃k,l = 1(k · l) B̃(|k|, |l|)wk,l,

and thus the DVM becomes

f ′i =
∑

−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)wk,l
[
fi+kfi+l − fifi+k+l

]
.

Now we transform this set of ordinary differential equations into a new one using the
involution transformation of the discrete Fourier transform on the vector (fi)−N≤i≤N .
This involution reads

f̃I =
1

2N + 1

2N∑
i=0

fi e−I(i), fi =
N∑

I=−N

f̃I eI(i)

where eK(k) denotes e
2iπ K·k
2N+1 , and thus the set of differential equations becomes

f̃ ′I =
N∑

K,L=−N

(
1

2N + 1

2N∑
i=0

eK+L−I(i)

)
[ ∑
−Ñ≤k,l≤Ñ

1(k·l) B̃(|k|, |l|)wk,l
(
eK(k)eL(l)− eL(k + l)

)]
f̃K f̃L

for −N ≤ I ≤ N . We have the following identity

1

2N + 1

2N∑
i=0

eK+L−I(i) = 1(K + L− I)

and so the set of equations is

f̃ ′I =
N∑

K+L=I
K,L=−N

β̃(K,L) f̃K f̃L

with

β̃(K,L) =
∑

−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)wk,l
[
eK(k)eL(l)− eL(k + l)

]
= β(K,L)− β(L,L)

where
β(K,L) =

∑
−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)wk,l eK(k)eL(l).
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Let us first remark that this new formulation allows to reduce the usual cost of compu-
tation of a DVM exactly to O(N2d) (as with the usual spectral method). Note however
that the (2N + 1)d × (2N + 1)d matrix of coefficients (β(K,L))K,L has to be computed
and stored first, thus the storage requirements are larger with respect to usual DVM.

Now the aim is to give an expansion of β(K,L) of the form

βK,L '
M∑
p=1

αp(K)α′p(L)

to get a lower cost by the use of discrete convolution.

2.5.2 Expansion of the discrete kernel modes

We make a decoupling assumption as in the spectral case

B̃(|k|, |l|)wk,l = a(k) b(l).

Remark 5 Note that the DVM constructed by quadrature, in dimension 3 for hard spheres,
in Panferov and Heintz (2002) satisfies this decoupling assumption with a(k) = h4/gcd(k1, k2, k3)
and b(l) = 1 (see (Panferov and Heintz, 2002, Formula (2.8))), and gcd(k1, k2, k3) denotes
the greater common divisor of the three integers.

The difference here with the spectral method, which is a continuous numerical method,
is that we have to enumerate the set of {−Ñ ≤ k, l ≤ Ñ | k⊥ l }. This motivates for a
detailed study of the number of lines passing through 0 and another point in the grid. To
this purpose let us introduce the Farey series and a new parameter 0 ≤ N̄ ≤ Ñ for the
size of the grid used to compute the number of directions. The usual Farey serie is

F1
N̄ =

{
(p, q) ∈ [|0, N̄ |]2 | 0 ≤ p ≤ q ≤ N̄ and gcd(p, q) = 1

}
where gcd(p, q) denotes again the greater common divisor of the two integers (more details
can be found in Hardy and Wright (1979)). It is straightforward to see that the number
of lines A1

N̄
passing through 0 in the grid [| − N̄ , N̄ |]2 is A1

N̄
= 4 |F1

N̄
|. In fact symmetries

often allow to reduce the number of directions needed. Similarly one can define

F2
N̄ =

{
(p, q, r) ∈ [|0, N̄ |]3 | 0 ≤ p ≤ q ≤ r ≤ N̄ and gcd(p, q, r) = 1

}
and the number of lines A2

N̄
passing through 0 in the grid [| − N̄ , N̄ |]3 is A2

N̄
= 16 |F2

N̄
|.

The exponents of the Farey series refer to the dimension of the space of lines (which is
d− 1). Now let us estimate the cardinal of F1

N̄
and F2

N̄
(see Mouhot and Pareschi (2011)

for details).

Lemma 3 The Farey series in dimension d = 2 and d = 3 satisfy the following asymptotic
behavior

|F1
N̄ | =

N̄2

2 ζ(2)
+O(N̄ log N̄) =

3N̄2

π2
+O(N̄ log N̄)

|F2
N̄ | =

N̄3

4 ζ(3)
+O(N̄2)

where ζ denotes the usual zeta function.
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Now one can deduce the following decomposition of the kernel modes

β(K,L) =
∑

−Ñ≤k,l≤Ñ

1(k·l) a(|k|) b(|l|) eK(k)eL(l)

'
∑
e∈AN̄

[ ∑
k∈eZ,−Ñ≤k≤Ñ

a(|k|) eK(k)

][ ∑
l∈e⊥,−Ñ≤l≤Ñ

b(|l|) eL(l)

]

with equality if N̄ = Ñ . Here AN̄ denotes the set of primal representants of directions of
lines in [|− N̄ , N̄ |] passing through 0. After indexing this set, which has cardinal Ad

N̄
, one

gets

βK,L '
Ad
N̄∑

p=1

αp(K)α′p(L) (50)

with

αp(K) =
∑

k∈ep Z,−Ñ≤k≤Ñ

a(|k|) eK(k), α′p(L) =
∑

l∈e⊥p ,−Ñ≤l≤Ñ

b(|l|) eL(l).

2.5.3 Implementation aspects

The method yields a decomposition of the discrete collision operator

DÑ ' DÑ,N̄ =

Ad
N̄∑

p=1

DÑ,N̄ ,p

with equality if N̄ = Ñ . EachDÑ,N̄ ,p(f, f) is defined by the p-th term of the decomposition

of the kernel modes (50). Each term DÑ,N̄ ,p of the sum is a discrete convolution operator
when it is written in Fourier space.

Thus one can see that even if we take N̄ = Ñ = N , i.e we take all possible directions
in the grid [|−N,N |]d, we get the computational cost O(N2d log2N) which is better than
the usual cost of the DVM, O(N2d+1) (but slightly worse than the cost O(N2d) obtained
by solving directly the pseudo-spectral scheme, thanks to a bigger storage requirement).

More generally for a choice of N̄ < N we obtain the cost O(N̄dNd log2N). The same
remarks we did for the fast spectral algorithms about the parallelization and adaptivity
(and storage interest) of the method hold true in this case: a parallel algorithm could
reduce the computational cost up to O(Nd log2N).

Moreover we expect that for DVM one can strongly reduce the parameter N̄ in order
to improve the cost of the scheme, without damaging the accuracy of the scheme. The
justification for this is the low accuracy of the method (the reduction of the number of
direction has a small effect on the already poor accuracy of the scheme).

2.6 Numerical results

In this section we will present several numerical results for the space homogeneous equation
which show the improvement of the fast spectral algorithms with respect to the classical
spectral methods. The time discretization is performed by standard explicit Runge-Kutta
methods.
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2.6 Numerical results 2 FAST BOLTZMANN SOLVERS

2.6.1 2D Maxwell molecules

Comparison to exact solutions

We consider 2D pseudo-Maxwell molecules (i.e., the VHS model with γ = 0). In this case
we have an exact solution given by

f(t, v) =
exp(−v2/2S)

2π S2

[
2S − 1 +

1− S
2S

v2

]
with S = 1−exp(−t/8)/2, which corresponds to the well known“BKW”solution (Bobylev,
1975). This test is performed to check spectral accuracy, by comparing the error at a
given time, when using nv = 8, 16 and 32 Fourier modes for each coordinate. We present
the results obtained by the classical spectral method and the fast spectral method with
different numbers of discrete angles.

Figure 7 shows the relative L∞, L1, and L2 norms of the difference between the nu-
merical and the exact solution, as a function of time. We refer to Filbet et al. (2006) for
a more detailed discussion about the different source of error.

Concerning the comparison between the classical and fast spectral methods, we observe
that for a fixed value of nv, the numerical error of the classical spectral method and of
the fast algorithm is of the same order. Moreover, the influence of the number of discrete
angles is very weak. In Table 1, we give a quantitative comparison of the numerical error
E1 at time Tend = 1. We can also observe the spectral accuracy for the classical and
fast methods: the order of accuracy is about 3 between 8 and 16 grid points, whereas it
becomes 7 between 16 to 32 points.

Efficiency and accuracy

Now, we still consider 2D pseudo-Maxwell molecules (i.e., γ = 0) with the following initial
datum

f(0, v) =
1

4 π

[
exp

(
−|v − v0|2

2

)
+ exp

(
−|v + v0|2

2

)]
, v ∈ R2,

where v0 = (1, 2). In this case, we do not know the exact solution but we want to study
the influence of the number of discrete angles on a non-isotropic solution. Thus, this test
is used to check the energy conservation and the evolution of high-order moments of the
solution. Simulations are performed with nv=16, 32 and 64 points.

Number of Classical Fast spectral Fast spectral Fast spectral
points spectral with M = 4 with M = 6 with M = 8

8 0.02013 0.02778 0.02129 0.02112
16 0.00204 0.00329 0.00238 0.00224
32 1.405E-5 2.228E-5 1.861E-5 1.772E-5

Table 1: Comparison of the L1 error in 2D between the classical spectral method and the
fast spectral method with different numbers of discrete angles and with a second-order
Runge-Kutta time discretization at time Tend = 1.
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Figure 7: Evolution of the numerical L1 and L∞ relative error of f(t, v).

In Figure 8 the relaxation of the entropy and the temperature components for the fast
and classical spectral methods is shown. Finally, we plot in Figure 9 the time evolution
of high-order moments of fN(t, v) given in discrete form by

Mk(t) = ∆v2

N∑
l=−N

|vl|k fN(t, vl).

High-order moments give information on the accuracy of the approximate distribution
function tail. Once again, we observe that the number of angles does not affect the
results even if the solution is non-isotropic.
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Figure 8: Relaxation of the entropy and the temperature components for the fast and
classical spectral methods with respect to the number of modes per direction nv and the
length box T .
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Figure 9: Time evolution of the variations of high order normalized moments M4, M5

and M6 of f(t, v) for the fast and classical spectral methods with respect to the number
of modes per direction nv and the length box T .

2.6.2 3D Hard Spheres

In this section we consider the 3D Hard Sphere molecules (HS) model. The initial condi-
tion is chosen as the sum of two Gaussians

f(v, 0) =
1

2(2πσ2)

[
exp

(
−|v − v0|2

2σ2

)
+ exp

(
−|v + v0|2

2σ2

)]
with σ = 1 and v0 = (2, 1, 0). The final time of the simulation is Tend = 3 and corresponds
approximatively to the time for which the steady state of the solution is reached. The
time step is ∆t = 0.1 and the length box is taken as T = 12 when nv = 16 and T = 15
when nv = 32.

This test is used to check the evolution of moments and particularly the stress tensor
Pi,j, i, j = 1, · · · , 3 defined as

Pi,j =

∫
R3

f(v)(vi − ui) (vj − uj) dv, (i, j) ∈ {1, 2, 3}2,

where (ui)i are the components of the mean velocity. In Figure 10, we propose the evolu-
tion of the temperature for the two methods using 32 grid points in each direction. The
solution is also compared with the solution obtained from a standard Direct Simulation
Monte-Carlo method. We remark that in dimension d = 3 the speed-up of the methods
becomes really evident for large values of N . For example, for N = 64 and M = 4 the
fast method is more than 14 times faster then the direct algorithm.

3 Asymptotic preserving splitting methods

In this section we will consider the problem of numerically solving the full nonhomoge-
neous equation. The approximation of the velocity space has been extensively discussed
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Figure 10: Comparison between the fast and classical spectral methods and the Monte-
Carlo methods for the temperature components relaxation.

in Section 2, thus here we will focus on the space and time discretizations. Besides the
solution of the transport part, when dealing with the full problem the main difficulty is
the construction of schemes which are robust in the fluid limit, or, as defined in Sec-
tion 1.7, which are asymptotic preserving (AP). Of course AP is an important property
strictly related to the stability of the time discretization scheme in stiff regimes. Here we
will treat separately methods based on operator splitting from other time discretizations
which avoid operator splitting. First we start from operator splitting methods which have
been introduced in Section 1.6. In the next paragraphs we will focus on the space-time
approximation of the transport step and on the time discretization of the collision step.

3.1 Transport step

The solution of the transport equation can be obtained in a variety of ways accordingly
to the particular application considered (see for example LeVeque (1992); Filbet et al.
(2001); Roe and Sidilkover (1992) and the references therein). A review of such a broad
field is above the scope of this paper. Here we give the details of the methods developed
originally in Filbet et al. (2001) which has several nice properties, among which to allow
the use of large time steps even for large velocities.

3.1.1 Positive and Conservative schemes

Let us consider the transport equation written as

∂tf +∇x (v f) = 0, ∀(t, x) ∈ IR+ × IRd. (51)

Then, the solution of the transport equation at time tn+1 reads

f(tn+1, x) = f(tn, x− v∆t), ∀x ∈ IRd.
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Figure 11: Time evolution of the kinetic entropy H and high-order momentsM4,M6 and
M8 of f(t, v) for the fast and classical spectral methods, and the Monte-Carlo methods.
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For simplicity, let us restrict ourselves to a one dimensional problem and introduce a finite
set of mesh points {xi+1/2}i∈I on the computational domain. We will use the notations
∆x = xi+1/2 − xi−1/2, Ci = [xi−1/2, xi+1/2] and xi the center of Ci. Assume the values of
the distribution function are known at time tn = n∆t on cells Ci, we compute the new
values at time tn+1 by integration of the distribution function on each sub-interval. Thus,
using the explicit expression of the solution, we have∫ xi+1/2

xi−1/2

f(tn+1, x)dx =

∫ xi+1/2−v∆t

xi−1/2−v∆t

f(tn, x)dx,

then, setting

Φi+1/2(tn) =

∫ xi+1/2

xi+1/2−v∆t

f(tn, x)dx,

we obtain the conservative form∫ xi+1/2

xi−1/2

f(tn+1, x)dx =

∫ xi+1/2

xi−1/2

f(tn, x)dx + Φi−1/2(tn) − Φi+1/2(tn). (52)

The evaluation of the average of the solution over [xi−1/2, xi+1/2] allows to ignore fine
details of the exact solution which may be costly to compute. The main step is now to
choose an efficient method to reconstruct the distribution function from the cell average
on each cell Ci. We will consider a reconstruction via primitive function preserving pos-
itivity and maximum values of f (Filbet et al., 2001). Let F (tn, x) be a primitive of the
distribution function f(tn, x), if we denote by

fni =
1

∆x

∫ xi+1/2

xi−1/2

f(tn, x)dx,

then F (tn, xi+1/2)− F (tn, xi−1/2) = ∆x fni and

F (tn, xi+1/2) = ∆x
i∑

k=0

fnk = wni .

First we construct an approximation of the primitive on the small interval [xi−1/2, xi+1/2]
using the stencil {xi−3/2, xi−1/2, xi+1/2, xi+3/2}

F̃h(t
n, x) = wni−1 + (x− xi−1/2)fni +

1

2∆x
(x− xi−1/2)(x− xi+1/2)[fni+1 − fni ]

+
1

6∆x2
(x− xi−1/2)(x− xi+1/2)(x− xi+3/2)[fni+1 − 2 fni + fni−1],

where we use the relation wni − wni−1 = ∆x fni . Thus, by differentiating F̃h(x), we ob-
tain a third order accurate approximation of the distribution function on the interval
[xi−1/2, xi+1/2]

f̃h(t
n, x) =

∂ F̃h
∂x

(tn, x) = fni +

+
1

6 ∆x2

[
2 (x− xi)(x− xi−3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni+1 − fni )

− 1

6 ∆x2

[
2 (x− xi)(x− xi+3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni − fni−1).
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Unfortunately, this approximation does not preserve positivity of the distribution function
f . Then, in order to satisfy a maximum principle and to avoid spurious oscillations we
introduce slope correctors

fh(t
n, x) = fni + (53)

+
ε+
i

6 ∆x2

[
2 (x− xi)(x− xi−3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni+1 − fni )

− ε−i
6 ∆x2

[
2 (x− xi)(x− xi+3/2) + (x− xi−1/2)(x− xi+1/2)

]
(fni − fni−1),

with

ε±i =


min

(
1, 2 fni /(f

n
i±1 − fni )

)
if fni±1 − fni > 0,

min
(

1,−2 (f∞ − fni )/(fni±1 − fni )
)

if fni±1 − fni < 0,

(54)

where f∞ = max
j∈I
{fnj } is a local maximum.

The theoretical properties of this reconstruction can be summarized by the follow-
ing(Filbet et al., 2001)

Proposition 2 The approximation of the distribution function fh(x), defined by (53)-
(54), satisfies

• The conservation of the average: for all i ∈ I,
∫ xi+1/2

xi−1/2
fh(x)dx = ∆x fi.

• The maximum principle: for all x ∈ (xmin, xmax), 0 ≤ fh(x) ≤ f∞.

Moreover, if we assume that the Total Variation of the distribution function f(x) is
bounded, then we obtain the global estimate∫ xmax

xmin

|fh(x)− f̃h(x)| dx ≤ 4TV (f) ∆x,

where f̃h denotes the third order approximation of f without slope corrector.

Remark 6 If the solution is smooth, we can check numerically that the scheme is third
order. In several dimensions we can perform reconstruction dimension by dimension using
tensor product.

3.2 Time discretization of the collision step

Since we aim at developing operator splitting AP schemes, the most natural choice would
be to use implicit solvers applied to the collision step (32). Unfortunately the use of
fully implicit schemes for the full Boltzmann collision integral is unpracticable due to
the prohibitive computational cost required by the solution of the very large non-linear
algebraic system originated by the five fold integral appearing in Q(f, f). Exponential
methods represent a possible way to overcome these difficulties.
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3.2.1 Problem reformulation

First we rewrite the homogeneous equation (32) in the form

∂tf =
1

ε
(P (f, f)− µf), (55)

where P (f, f) = Q(f, f) + µf and µ > 0 is a constant such that P (f, f) ≥ 0. Typically
µ is an estimate of the largest spectrum of the loss part of the collision operator.

By construction we have the following

1

µ

∫
R3

P (f, f)(v)φ(v) dv =

∫
R3

f(v)φ(v) dv, φ(v) = 1, v, v2. (56)

Thus P (f, f)/µ is a density function and we can consider the following decomposition

P (f, f)/µ = M + g, (57)

where M is the Maxwellian with the same moments of f .
The function g represents the non equilibrium part of the distribution function and

from the definition above it follows that g is in general non positive. Moreover since
P (f, f)/µ and M have the same moments we have∫

R3

g(v)φ(v) dv = 0, φ(v) = 1, v, v2. (58)

The homogeneous equation can be written in the form

∂tf =
µ

ε
g +

µ

ε
(M − f) =

µ

ε

(
P (f, f)

µ
−M

)
+
µ

ε
(M − f). (59)

The above system is equivalent to the penalization method for the collision operator
recently introduced in Filbet and Jin (2010). Note that even if M is nonlinear in f ,
thanks to the conservation properties (19), it remains constant during the relaxation
process. The main feature of such formulation is that on the right hand side we have
a stiff dissipative linear part µ(M − f)/ε which characterizes the asymptotic behavior
of f and a stiff non dissipative non linear part (P (f, f)/µ −M)/ε which describes the
deviations of P (f, f)/µ from M , or equivalently the deviations of the Boltzmann operator
from a BGK-like relaxation term.

The formulation above permits to use exponential integrators where the schemes take
advantage of the exact solution of the linear part (Dimarco and Pareschi, 2010a). Expo-
nential methods for kinetic equations were first proposed in Gabetta et al. (1997).

3.2.2 Explicit exponential Runge-Kutta schemes

In order to derive the methods it is useful to rewrite (59) as

∂(f −M)eµt/ε

∂t
=

1

ε
(P (f, f)− µM)eµt/ε. (60)

The above form is readily obtained if one multiplies (59) by the integrating factor
exp(µt/ε) and takes into account the fact that M does not depend of time. A class of
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explicit exponential Runge-Kutta schemes is then obtained by direct application of an
explicit Runge-Kutta method to (60). More in general we can consider the family of
methods characterized by

F (i) = e−ciµ∆t/εfn +
µ∆t

ε

i−1∑
j=1

Aij(µ∆t/ε)

(
P (F (j), F (j))

µ
−Mn

)
(61)

+
(
1− e−ciµ∆t/ε

)
Mn, i = 1, . . . , ν

fn+1 = e−µ∆t/εfn +
µ∆t

ε

ν∑
i=1

Wi(µ∆t/ε)

(
P (F (i), F (i))

µ
−Mn

)
(62)

+
(
1− e−µ∆t/ε

)
Mn,

where ∆t is the time step, fn = f(tn), Mn = M(tn), ci ≥ 0, and the coefficients Aij and
the weights Wi are such that

Aij(0) = aij, Wi(0) = wi, i, j = 1, . . . , ν

with coefficients aij and weights wi given by a standard explicit Runge-Kutta method
called the underlying method. Various schemes come from the different choices of the
underlying method. The most popular approaches are the integrating factor (IF) and the
exponential time differencing (ETD) methods (Maset and Zennaro, 2009). Since Mn does
not depend on time during the collision process in the sequel we will omit the index n.

For the so-called Integrating Factor methods, which correspond to a direct application
of the underlying method to (60), we have

Aij(λ) = aije
−(ci−cj)λ, i, j = 1, . . . , ν, i > j

(63)

Wi(λ) = wie
−(1−ci)λ, i = 1, . . . , ν,

with λ = µ∆t/ε.
The first order IF scheme reads

fn+1 = e−
µ∆t
ε fn +

µ∆t

ε
e−

µ∆t
ε

(
P (fn, fn)

µ
−M

)
+
(

1− e−
µ∆t
ε

)
M, (64)

which is based on explicit Euler. For such methods the order of accuracy is the same as
the order of the underlying method.

The Exponential Time Differencing methods are strictly connected with the integral
representation of (60). In the general case the coefficients for ETD methods have the form

Aij(λ) =

∫ 1

0

e(1−s)ciλpij(s) ds, i, j = 1, . . . , ν, i > j

Wi(λ) =

∫ 1

0

e(1−s)λpi(s) ds, i = 1, . . . , ν,

where pi and pij are suitable polynomials.
The standard first order ETD method based on explicit Euler in our case gives

fn+1 = e−
µ∆t
ε fn +

µ∆t

ε
ϕ

(
µ∆t

ε

)
P (fn, fn)

µ
, (65)

where ϕ(z) = (1− e−z)/z.
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3.2.3 Time Relaxed methods

A class of exponential methods for kinetic equations, the so-called time relaxed (TR)
methods, has been introduced in Gabetta et al. (1997) as a combination of an exponen-
tial expansion (or Wild sum) together with a suitable Maxwellian truncation. In this
paragraph we show that these schemes included already decomposition (59) and can be
derived directly from a suitable Taylor expansion of (60).

To show this, let us first introduce the change of variables

τ = 1− exp(−µt/ε),

which, using the bilinearity of P (f, f), gives the equation

∂

∂τ

[
(f −M)

1

1− τ

]
= (P (f, f)− µM)

1

µ(1− τ)2
. (66)

The application of an explicit Runge-Kutta scheme to (66) with time step ∆τ = 1 −
exp(−µ∆t/ε) leads to a class of ETD methods. For example the first order scheme based
on explicit Euler in the original variables yields

fn+1 = e−
µ∆t
ε fn +

µ∆t

ε
ϕ1

(
µ∆t

ε

)(
P (fn, fn)

µ
−M

)
+ (1− e−

µ∆t
ε )M, (67)

where ϕk(z) = e−z(1− e−z)k/z, k = 1, 2, . . ..
Note that such scheme coincides with the first order exponential time relaxed method

derived in Gabetta et al. (1997) and differs from the standard ETD method based on
explicit Euler. Higher order ETD methods can be derived as well simply applying higher
order explicit Runge-Kutta methods to (66). Although interesting, here we do not explore
further this class of schemes.

Now let us consider a different approach by taking the Taylor expansion of (f−M)/(1−
τ) around τ = 0 in (66). This leads to

(f −M)/(1− τ) = (f0 −M) + τ

[
P (f0, f0)

µ
−M

]
+

τ 2

2

[
P (P (f0, f0), f0) + P (f0, P (f0, f0))

µ2
− 2M

]
+O(τ 3)

where we have used the bilinearity of the operator P (f, f).
If we compute all the terms in the expansion and use recursively the bilinearity of

P (f, f) we can state the following

Proposition 3 The solution to problem (59) or equivalently (60) or (66) can be repre-
sented as

f(v, t) = (1− τ)f0(v) + (1− τ)
∞∑
k=1

τ k(fnk (v)−M(v)) + τM(v), (68)

where the functions fk are given by the recurrence formula

fk+1(v) =
1

k + 1

k∑
h=0

1

µ
P (fh, fk−h)(v), k = 0, 1, . . . . (69)
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By truncating expansion (68) at the order m, and reverting to the old variables, we
recover exactly the time relaxed schemes presented in Gabetta et al. (1997)

fn+1 = e−µ∆t/εfn + e−µ∆t/ε

m∑
k=1

(1− e−µ∆t/ε)k(fnk −M) + (1− e−µ∆t/ε)M, (70)

which, using the fact that

1− e−µ∆t/ε

m∑
k=0

(1− e−µ∆t/ε)k = (1− e−µ∆t/ε)m+1,

can be rewritten in the usual form emphasizing their convexity properties

fn+1 = e−µ∆t/ε

m∑
k=0

(1− e−µ∆t/ε)kfnk + (1− e−µ∆t/ε)m+1M. (71)

A remarkable feature of these methods is that the functions fk(v) are density functions
with the same moments of the initial data. Such property, together with unconditional
nonnegativity and convexity of the weights, is enough to guarantee asymptotic preser-
vation of the schemes as well as nonnegativity and entropic stability (see Gabetta et al.
(1997) for details).

3.2.4 Main properties

In this section we will report the main properties for an IF exponential scheme in the
form (61)-(62). We refer to Dimarco and Pareschi (2010a) for further details an results
concerning general exponential schemes.

Now let us denote by fn and gn the corresponding solutions obtained with an explicit
exponential Runge-Kutta method. Let us define

R(λ) = e−λ +
ν−1∑
k=0

λk+1w̄(λ)T Ā(λ)kĒ(λ)ē, (72)

where λ = µ∆t/ε, Ā(λ) the ν × ν matrix of elements |Aij(λ)|, w̄(λ) the ν × 1 vector of
elements |Wi(λ)|, ē the ν × 1 unit vector and Ē(λ) = diag(e−c1λ, . . . , e−cνλ).

We can state (Dimarco and Pareschi, 2010a)

Theorem 3 If an explicit exponential Runge-Kutta method in the form (61)-(62) satisfies

lim
λ→∞

R(λ) = 0, (73)

with R(λ) given by (72) then it is asymptotic preserving.

Note that for an IF method we have

|Aij(λ)| ≤ |aij|e−(ci−cj)λ, |Wi(λ)| ≤ |wi|e−(1−ci)λ,
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thus we require

0 = c1 ≤ c2 . . . ≤ cν ≤ 1, (74)

in order for the above quantities to be bounded independently of λ.
Moreover for nonnegative coefficients and weights we get

R(λ) = e−λ

(
1 +

ν−1∑
k=0

λk+1wTAkē

)
, (75)

and condition (73) is always satisfied.
It can be proved that if the underlying Runge-Kutta method is a ν-stage explicit

Runge-Kutta method of order ν, with nonnegative coefficients and weights satisfying (74),
then the scheme is unconditionally stable and contractive. As pointed out in Maset and
Zennaro (2009) examples of such methods are well-known up to ν = 4 and the classical
RK method of order four is the sole method with four stages.

For practical applications it may be convenient to require that as λ→∞ the numer-
ical solution fn+1 and each level F (i) of the IF method are projected towards the local
Maxwellian. It is straightforward to verify that this stronger AP property is satisfied if
we replace condition (74) by

0 = c1 < c2 < . . . < cν < 1. (76)

We conclude this section with a results concerning an important convexity property
of IF schemes. We can state (see Dimarco and Pareschi (2010a))

Proposition 4 An explicit IF method is unconditionally positive and entropic if the un-
derlying Runge-Kutta method has nonnegative coefficients and weights satisfying By Tay-
lor expansion we obtain conditions

i−1∑
j=1

aijcj
k ≤ cki

k + 1
, k = 0, 1, 2, . . . , i = 1, . . . , ν (77)

ν∑
i=1

wic
k
i ≤

1

k + 1
, k = 0, 1, 2, . . . , (78)

Note that the above conditions on the choice of the underlying method are quite restrictive
since we are not using the bilinearity of P (f, f) which would lead to weaker constraints
on aij and wi. Examples of methods that satisfy convexity are the second order modified
Euler method

F (1) = fn,

F (2) = e−λ/2fn +
λ

2
e−λ/2

(
P (F (1), F (1))

µ
−M

)
+
(
1− e−λ/2

)
M, (79)

fn+1 = e−λfn + λe−λ/2
(
P (F (2), F (2))

µ
−M

)
+
(
1− e−λ

)
M.
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and the third order Heun method

F (1) = fn,

F (2) = e−λ/3fn +
λ

3
e−λ/3

(
P (F (1), F (1))

µ
−M

)
+
(
1− e−λ/3

)
M,

F (3) = e−2λ/3fn +
2λ

3
e−λ/3

(
P (F (2), F (2))

µ
−M

)
+
(
1− e−2λ/3

)
M, (80)

fn+1 = e−λfn +
λ

4
e−λ

(
P (F (1), F (1))

µ
−M

)
+

3λ

4
e−λ/3

(
P (F (3), F (3))

µ
−M

)
+
(
1− e−λ

)
M.

but not the classical fourth order Runge-Kutta scheme.

3.2.5 Implementation aspects

An essential aspect in the reformulation of the problem given by (75) is the choice of
the value of the constant µ used in estimating the spectrum of the collision operator. Of
course such constant can be chosen at each time step in order to improve our estimate. In
the sequel we show different choices in the case of variable hard spheres. We set Cγ = 1
for simplicity.

The choice of an upper bound for the loss part of the collision term leads to take
µ = µp where

µp = sup
v

∫
R3

|v − v∗|γf(v∗) dv∗. (81)

Positivity is guaranteed since it implies clearly P (f, f) ≥ 0. From a practical viewpoint
computation of (81) can be done at O(N logN) for a deterministic method based on N
parameters for representing f(v) on a regular mesh. This can be done using the FFT
algorithm thanks to the convolution structure of the loss term in (81).

However, such positivity constraint on P (f, f) typically leads to overestimates of the
true spectrum of the collision operator, especially in Monte Carlo simulations. A better
estimate of µ would be to use the average collision frequency

µa =

∫
R3

∫
R3

|v − v∗|γf(v)f(v∗) dv∗ dv. (82)

Finally, as suggested in Filbet and Jin (2010), µ can be chosen as an estimate of the
spectral radius of the linearized operator Q around the Maxwellian M . In fact

Q(f, f) ≈ Q(M,M) +∇Q(M,M)(M − f) = ∇Q(M)(M − f),

where ∇Q(M,M) is the Frechet derivative of Q evaluated at M . For example one can
take

µs = sup
v

∣∣∣∣Q(f, f)

f −M

∣∣∣∣ . (83)

The choices µ = µa or µ = µs, although more accurate, pose the question of stability
of the resulting scheme since they do not guarantee P (f, f) ≥ 0. We refer to Dimarco
and Pareschi (2010a) for more results in this direction.
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Remark 7 Here we have assumed µ constant during the time stepping. In principle one
can take µ = µ(t) and rewrite the exponential methods for a time dependent µ from

∂(f −M)e
1
ε

∫ t
0 µ(s) ds

∂t
=

1

ε
(P (f, f)− µ(t)M)e

1
ε

∫ t
0 µ(s) ds, (84)

and then recompute µp at each time step or stage of the Runge-Kutta method.

3.3 Numerical tests

In this section we report several test cases. First for homogeneous equations where we
illustrate the AP feature of the exponential schemes and then for nonhomogeneous prob-
lems in different regimes.

3.3.1 Homogeneous problems

A simple test case

In the first test case we consider the simplified situation of the Kac equation (17) with
initial data given by

f(v, 0) = v2e−v
2

.

In this case we have an exact solution given by

f(v, t) =
1

2

(
3

2
(1− C(t))

√
C(t) + (3C(t)− 1)C(t)3/2v2

)
e−C(t)v2

, (85)

with C(t) = (3 − 2e−
√
πt/16)−1. Thanks to its simple structure the collision integral can

be evaluated analytically and no further approximation is needed when comparing the
accuracy of different time discretizations after only one time step. More precisely we
compare the first and second order TR and IF methods with a first and second order
implicit-explicit (IMEX) and diagonally implicit Runge-Kutta (DIRK) methods. The
IMEX methods have been applied following Filbet and Jin (2010) (schemes (4.3) and
(4.14)) which in a homogeneous setting correspond to take the gain part of the collision
term explicitly and the loss part implicitly since the Maxwellian term cancels. All schemes
are unconditionally stable and AP except for the particular IMEX schemes which do not
satisfy the AP property. We refer to Section 4.3 for a discussion of asymptotic preserving
IMEX schemes.

The results are reported in Figure 12. The AP feature of the exponential schemes (both
TR and IF) and fully implicit solvers permits to capture the correct behavior. Quite re-
markably, in this test case, exponential schemes are more accurate then the corresponding
fully implicit methods with the IF methods being the most accurate.

Accuracy test

Next we compare the accuracy for Maxwell molecules and Hard Spheres in 3D. As initial
data we consider an equilibrium distribution with temperature T = 6, density % = 1 and
mean velocity u = −0.5. To this distribution we add a bump on the right tail along the
x-axis. The bump is realized adding a fraction of particles in equilibrium state with mass
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Figure 12: Kac equation L1 error of some first and second order time discretization
methods

%b = 0.5 %, mean velocity ub = 4
√
T and temperature Tb = 0.5 T to the initial Maxwellian

distribution function. The velocity error is neglected by solving the collision operator with
Monte Carlo methods with a very large number of particles. The simulations are run till
the equilibrium is approximately reached, which means t = 0.4 in the case of Hard Spheres
(HS) and t = 0.8 for Maxwellian molecules (MM). The reference solution is computed by
the same method with a very small time step.

In Figure 13 we show the L2 error for the fourth order moment of the distribution
function f for Maxwellian molecules. In Figure 14 the L2 error for the fourth order
moment of f is reported in the case of hard sphere molecules. Observe that, in the case
of Maxwellian molecules µ = 1 while in the case of Hard Sphere particles µ is a constant
upper bound for the collisional cross section (µ� 1). This constraint implies that the L2

norm of the error is larger, for equals choices of µ∆t/ε, in the case of HS respect to the
case of Maxwellian molecules.
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Figure 13: L2 Error for the Fourth Moment Relaxation for the homogeneous relaxation
problem with Maxwellian particles.
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Figure 14: L2 Error for the Fourth Moment Relaxation for the homogeneous relaxation
problem with hard sphere particles.
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Adaptivity

In this test we explore the possibility to use an adaptive value for µ in time. We use a
first order TR scheme with adaptive time stepping and µ given by

µ(t) = 3/2 max
v∈Ω

(
L(v)− Q+

f

)
,

where Ω = [−T/2, T/2]3. We use Maxwell molecules with the spectral method and 642

modes in 2D so that the velocity error can be neglected. We compare the results with
a reference solution obtained with a 4th order Runge-Kutta with a fixed time step. The
results are reported in Table 2.

The time evolution of µ is given in Figure 15. It shows that the method becomes more
and more accurate as the solution approaches the Maxwellian state.

3.3.2 Non-homogeneous problems

Accuracy of the method

Here we consider the full non-homogeneous case where the collision operator is solved by
spectral methods, the transport by the flux-positive schemes and the operator splitting is
second order Strang splitting combined with the adaptive second order TR method. We
test the overall accuracy of the method using as initial condition

f0(x, v) = (1 + β cos(k0 x)) exp(−v2/2), (x, v) ∈ [0, L]× IR2,

with periodic boundary conditions. The error is computed as

ε2h = max
t∈(0,T )

(‖fh(t)− f2h(t)‖1)/‖f0‖1,

and the results are given in Table 3. As expected the second order accuracy of the scheme
is observed.

τ = µ(t) ∆t nTot Numerical error ε(1) Numerical error ε(2)

with a fixed ∆t = T/nTot with ∆t = τ/µ(t)
0.010 50 0.0036 0.002
0.025 20 0.0080 0.007
0.050 11 0.0160 0.014
0.100 08 0.0300 0.025
0.200 07 0.0520 0.045
0.500 05 0.2000 0.090
1.000 03 XXXX 0.150
3.000 02 XXXX 0.040
5.000 01 XXXX 0.006

Table 2: Comparison between fixed ∆t and ∆t = τ/µ(t)
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Figure 15: Time evolution of the value µ(t).

Numerical parameters relative l1 error norm ε2h/εh
nx = 032, nvx = nvy = 08, ∆t = 0.100 ε4h = 0.3835 5.20
nx = 064, nvx = nvy = 16, ∆t = 0.050 ε2h = 0.0738 4.35
nx = 128, nvx = nvy = 32, ∆t = 0.025 εh = 0.0169 X

Table 3: Convergence results

Stationary shock profile

We consider a stationary shock wave problem for the Boltzmann equation solved on a
finite domain −L < x < L with boundary conditions that the incoming flux of particles
at x = ±L is distributed according to the Maxwellian flux vM±(v). As initial data, we
take f(x, v, 0) = M(ρ, u, T ), with

ρ = 1.0, T = 1.0, M = 2.0, L > x > 0,

where M is the Mach number. The mean velocity is

ux = −M
√
γT , uy = 0,

with γ = 5/3.
The values for ρ, u and T for x < 0 are given by the Rankine-Hugoniot conditions

(Whitham, 1974).
The profiles are shown in Figure 16 for different Knudsen numbers. As a reference

solution we report also the solution obtained by Monte Carlo methods.

Riemann problem

This test deals with the numerical solution of the non homogeneous 1D× 2D Boltzmann
equation for hard sphere molecules (α = 1). We have computed an approximation for
different Knudsen numbers, from rarefied regime up to the fluid limit. The solution in the
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Figure 16: Shock profiles at Mach 2: ε = 10−1 (left) and ε = 0.05 (right). From top to
bottom: density ρ, mean velocity u and temperature T .
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hydrodynamic limit is also compared with the numerical solution of Euler system. The
initial data is given by

(ρl, ul, Tl) = (1, 0, 1) if 0 ≤ x ≤ 0.5,

(ρr, ur, Tr) = (0.125, 0, 0.25) if 0.5 < x ≤ 1,

In Fig. 17 we plot the results obtained in the rarefied regime (ε = 10−2) using the
Spectral-PFC scheme and a Monte Carlo method (TRMC) as a comparison. The TRMC
method is used with 100 cells in x containing 100 particles whereas the Spectral-PFC
scheme is used with 64 points in x and the size of the velocity grid is 64 × 64 points for
the transport and the total number of modes 32× 32. We observe that the two solutions
are in this case very comparable even if small oscillations, due to the statistical noise,
persist. We also give the result of the computations close to the Euler limit (ε = 10−4)
using 128 space cells for the Spectral-PFC method.

Finally, the profiles obtained with TRMC and Spectral-PFC methods are reported in
Fig. 18. On the opposite, using a small time step (∆t = 0.001), an accurate solution is
obtained by the Spectral-PFC method, which is much less diffusive then the Monte Carlo
methods.
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Figure 17: Riemann problem (kn = 10−2): evolution of (1) the density ρ, (2) mean velocity
u and (3) temperature T at t = 0.05, 0.15, 0.20.
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Figure 18: Riemann problem (kn = 10−4): (1) the density ρ, (2) mean velocity u and (3)
temperature T at t = 0.20 obtained by the central scheme for Euler equations (up) and by
Spectral-PFC and TRMC methods for Boltzmann equations.

The ghost effect

Consider a gas between two plates at rest in a finite domain. In this situation, the
stationary state at a uniform pressure (the velocity is equal to zero and the pressure is
constant) is an obvious solution of the Navier-Stokes equations; the temperature field is
determined by the heat conduction equation

u = 0, T = C −∇x(T
1/2∇xT ) = 0.

On the other hand, if we move the plate by a velocity proportional to the Knudsen number,
then the macroscopic fields (density and temperature profiles) will be affected by the flow,
even for vanishing Knudsen number. This effect, called ”ghost effect”, is predicted by the
Hilbert expansion of the Boltzmann equation in terms of the Knudsen number, and it is
rather difficult to capture numerically, since the flow velocity is very small (Sone et al.,
1996). The results show that the numerical solution agrees with one obtained by the
asymptotic theory and not with the one obtained from the heat conduction equation; this
result is a confirmation of the validity of the asymptotic theory.

Thus consider two parallel plates, both with temperature distribution

Tw(x) = 1− 0.5 cos(2 π x); ∀x ∈ (0, 1),

in slow motion with velocity
uw(x) = (ε, 0).

We use the hard spheres model with diffusive b.c. on the walls and periodic in x. The
cross section of temperature and velocity profile are shown in Figure 19 for various values
of the Knudsen number, while velocity field and isothermal lines are reported in Figure
20, for Knudsen number ε = 0.02.
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Figure 19: Ghost effect: temperature and mean velocity along y = const for various
Knudsen numbers ε = 0.05, 0.02, 0.01.
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4 Other asymptotic preserving methods

In this section we shall consider alternative approaches to splitting methods when dealing
with the time integration of kinetic equations with stiff collision operators. This could
be an advantage for the construction of high-order or well-balanced schemes, i.e. schemes
that preserve the stationary solutions. First we discuss semilagrangian schemes and then
IMEX schemes for BGK like models. As we shall see, the BGK model allows a simple
implicit treatment. This is useful per se, and it provides a building block for effective
treatment of the Boltzmann equation near the fluid dynamic limit.

4.1 Semilagrangian methods for the BGK model

Here we will focus on implicit semilagrangian scheme for the numerical solution of the
BGK model of the Boltzmann equation. We shall restrict to the BGK equation in one
space dimension. More details on the method can be found in Santagati (2007).

4.1.1 A basic first order scheme

Let us rewrite the BGK model in one dimension:

∂f

∂t
+ v

∂f

∂x
=

1

ε
(M [f ]− f). (86)

The numerical scheme for the solution of Eq. (86) is based on the characteristic for-
mulation of the problem (86),

df

dt
=

1

ε
(M [f ]− f),

dx

dt
= v,

x(0) = x̃, f(0, x, v) = f0(x̃, v) t ≥ 0, x, v ∈ R.

(87)

For simplicity we assume constant time step ∆t and uniform grid in physical and velocity
space, with mesh spacing ∆x and ∆v respectively, and denote the grid points by tn = n∆t,
xi = i∆x, i = 1, . . . , Nx, vj = j∆v, j = −Nv, . . . , Nv, where Nx and 2Nv + 1 are the
numbers of grid nodes in space and velocity, respectively. Let fnij denote the approximate
solution of the problem (87) at time tn in each spatial and velocity node.

We start by considering first order accurate schemes.
An explicit first order semilagrangian scheme could be constructed by computing an

approximation f̃ of f(tn+1, xi + vj∆t, vj) as

f̃(tn+1, xi + vj∆t, vj) = fnij +
∆t

ε
(Mn

ij − fnij) (88)

The function f̃ computed in this way at the new time step does not lie on a grid. The values
of fn+1

ij could be reconstructed from the computed values f̃ by a suitable interpolation
back on the grid points (see Figure 21). Let us denote by x̃i = xi + vj∆t, and let us
assume that this point is between point xk and xk+1. Then the function fn+1

kj can be
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xi xi+1 xi+2xi−1

vj > 0

f̃(tn+1, xi + vj∆t, vj)

t

fnijfni−1,j

fn+1
kj

Figure 21: Propagation of the information along characteristics in the explicit scheme.
The computed point does not lie on the grid, and some interpolation is needed in order
to compute fn+1

kj . In this case k = i+ 2.

reconstructed by simple linear interpolation using the computed value at points x̃i and
x̃i−1.

The Maxwellian Mn
ij = M(vj, {ρni , uni , T ni }) is computed as follow

Mn
ij =

ρi

(2πRT̃i)1/2
exp

(
−|vj − ui|

2

2RTi

)
. (89)

This formula requires the computation of the discrete moments of {fnij}. This can be
done by using a numerical approximation of the integrals computed in (21). Following
the notation in Mieussens (2000), the discrete velocity grid may be denoted by V , which
is composed of 2Nv + 1 nodes, and the moments of any quantity g, < g >, can be
approximated by a quadrature rule on V . Let < g >V denote the approximation of
< g >, where V is the set of 2Nv + 1 indices matching the velocity grid nodes. By this
way we compute the moments of the Maxwellian at each grid nodes {xi},

(ρi, ρiui, Ei) =< fni φ(v) >V

As quadrature rule we use summation over V times ∆v, providing spectral accuracy for
smooth functions on compact support. The grid V is chosen to include most of the mass.
For a given number of nodes Nv, an optimal choice of the grid is obtained as a compromise
between the extension of the velocity domain and the resolution of the grid.

Once the moments are computed on the grid, they can be in turn computed in x̃i,
by a suitable interpolation formula, so that the Maxwellian gets easily evaluated. Details
about the WENO interpolation can be found in Cockburn et al. (1998), or in Russo and
Santagati (2011).

The scheme (88) can be used to perform the time step. The scheme is first order
accurate. A more sophisticated time integrator, coupled with a more accurate interpola-
tion, would provide greater accuracy in time. Notice that, because of the semilagrangian
nature of the method, there is no CFL-type stability restriction on the time step due to
convection. However, such scheme would suffer from stability restriction on the time step
due to the collision term when the collision time ε is small.

In order to circumvent the stiffness arising from when ε is small, it is possible to resort
to an implicit formulation.
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By applying simple implicit Euler on the characteristic equation in order to compute
fn+1
ij one obtains:

fn+1
ij = f̃nij +

∆t

ε
(Mn+1

ij − fn+1
ij ) (90)

The quantity f̃nij ≈ f(tn, xi − vj∆t, vj) can be computed by suitable reconstruction
from {fn·j}; linear reconstruction will be sufficient for first order scheme, while higher
order reconstruction, such as ENO or WENO, could be used to provide higher order non
oscillatory reconstruction.

The equation cannot be immediately solved for fn+1
ij , because the Maxwellian depends

from fn+1 itself. However, one can act as follows: let us take the moments of both sides
of Eq. (90). This is obtained at a discrete level multiplying both sides by φj∆v, where
φj = {1, vj, |vj|2}, and summing over j. We denote this procedure by < · >V , i.e. for any
quantity hj, we define

< h >V≡
∑
vj∈V

hj∆v

Then we have

< (fn+1
ij − f̃nij)φj >V=

∆t

ε
< (Mn+1

ij − fn+1
ij )φj >V (91)

The right hand side is zero, because, by definition, the Maxwellian at time tn+1 has the
same moments as fn+1. As a consequence, the moments of fn+1 can be computed as
moments of f̃ij. More explicitly, one has

ρn+1
i =

∑
vj∈V

f̃nij ∆v

un+1
i =

1

ρn+1
i

∑
vj∈V

f̃nijvj ∆v (92)

T n+1
i =

1

dRρn+1
i

∑
vj∈V

f̃nij(vj − ui)2 ∆v

where d denotes the dimension of velocity space (in our case d = 1).
Once the density, mean velocity and temperature are computed, then the Maxwellian

at the new time step can be explicitly computed:

Mn+1
ij = M(vj; {ρn+1

i , un+1
i , T n+1

i }).

Once the Maxwellian is known, the distribution function can be explicitly computed:

fn+1
ij =

εf̃nij + ∆tMn+1
ij

ε+ ∆t
. (93)

Notice that since we use a semilagrangian scheme, the geometrical CFL condition is
always satisfied, since the value f̃nij is computed by interpolation from points that surround
points x̃ij = xi − vj∆t. For example, in the case illustrated in Figure 22, xij ∈ [xk, xk+1],
with k = i − 2, and for the first order scheme the value of f̃nij can be obtained by linear
interpolation from the values fnkj and fnk+1,j.
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xi−2 xi−1 xixi−2

vj > 0

t

f̃nij

fn+1
ij

Figure 22: Propagation of the information along characteristics in the implicit scheme.
The foot of the characteristics does not lie on the grid, and some interpolation is needed
in order to compute f̃nij

Remark 8 Since the moments are computed by a quadrature formula, it is not properly
true that, in the discrete formulation, M [f ] and f have the same moments. To get an
insight on this aspect see Mieussens (2000). In that paper the author introduces the notion
of a discrete Maxwellian, which is more consistent with the discrete formulation of the
problem. The discrete BGK model obtained using such Maxwellian is conservative and
entropic. By enough large number of grid points in velocity, the continuous and discrete
Maxwellians give comparable results. However, for coarse discretization in velocity, the
discrete Maxwellian introduced in Mieussens (2000) produces better results.

In next section we shall show how to generalize the procedure and construct higher
order schemes.

4.1.2 High order time discretization

System (87) is a typical ordinary differential equation with relaxation, to be solved in the
characteristics framework. Relaxation time lies in a very wide range. It typically extends
from order one to very small values compared to the time scale of the problem. For
this reason, we treat the relaxation operator by L-stable diagonally implict Runge Kutta
(DIRK) schemes (Hairer and Wanner, 1996; Pareschi and Russo, 2000a, 2005), which
provides enough stability to ensure the AP property (see Sec. 1.7). DIRK schemes are
defined by the triangular ν×ν matrix, A = (alk), and the coefficient vectors, c = (1, ..., cν)

T

and b = (1, ..., ν)T , which are derived by imposing accuracy and stability constraints. They
characterize completely a DIRK scheme, which can be rappresented by the Butcher’s
tableaux

c A

wT

The internal stages are practically evaluated by a sequence of elementary implicit Euler
steps, because, at each stage, only the last stage value is unknown, due to the triangular
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structure of matrix A. Scheme (90) corresponds to implicit Euler scheme. It will be
denoted M1. The DIRK methods considered in this work are

M2 =
α α
1 1− α α

1− α α
, M3 =

1/2 γ
(1 + γ)/2 (1− γ)/2 γ

1 1− δ − γ δ γ
1− δ − γ δ γ

which are a second and a third order L-implicit schemes Pareschi and Russo (2000a). The
coefficients are

α = 1−
√

2

2
, γ = 0.4358665215, δ = −0.644373171.

Some DIRK schemes have the property that the last row of matrix A equals the vector
of the weights b. Such schemes are called stiffly accurate. This property is related to the
L-stability of the scheme. For more details see, for example, the classical book by Hairer
and Wanner (1996).

Here we apply the Runge-Kutta scheme along the characteristics. The numerical
solution is obtained as

fn+1
ij = f̃ij + ∆t

ν∑
`=1

b`K̃
(`)
ij (94)

The quantity

K̃
(`)
ij =

1

ε
(M [F̃

(`)
ij ]− F̃ (`)

ij )

are the so called Runge-Kutta fluxes, and have to be evaluated along the characteristics,
and depend on the so called stage values F̃

(`)
ij . In a standard DIRK methods, the `-th

stage value, say F̃
(`)
ij , is evaluated by solving an implicit equation involving only F̃

(`)
ij , since

the previous stage values have already been computed, due to the triangular structure of
the matrix A. In our case, however, this is not so easy, because if the point corresponding
to stage ` along the characteristics is not a grid point, it is not possible to compute the
moments of the Maxwellian at that point in space-time. For this reason, one has to resort
to a triangular scheme, which is illustrated, for a two stage scheme, with the help of Figure
23.

Two kinds of stage values will be needed: the stage values along the characteristics,
denoted by F̃

(`)
ij , which are needed for the computation of the numerical solution, and the

stage values on the grid, denoted by F̂
(`)
ij , which can be computed implicitly.

The two-stage stiffly-accurate scheme M2 works as follows.
First we compute F̂

(1)
ij by

F̂
(1)
ij =

εf̂
(1)
ij + ∆tM̂

(1)
ij

ε+ ∆t
(95)

Here the Maxwellian M̂
(1)
ij = M [F̂

(1)
ij ] can be computed by computing the moments of

f̂
(1)
ij = fnj (xi − αvj∆t) by suitable space reconstruction at time tn.

Once the implicit step is solved, the value of the Runge-Kutta flux K̂
(1)
ij can be easily

computed at the grid points (xi, t
n + α∆t). Then the fluxes are computed by high or-

der interpolation on the intermediate nodes along the characteristics (marked by a blue
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xi−2 xi−1 xixi−2

t

f̃nij

fn+1
ij

F̂
(1)
ij

F̃
(1)
ij

f̂
(1)
ij

tn+1

tn + α∆t

tn

Figure 23: Construction of two-stage stiffly-accurate DIRK. The first stage is computed
on the grid points (tn+α∆t, xi) (empty red circle) by an implicit step. The RK fluxes are
computed on the same points, and then interpolated to points (tn+α∆t, xi−(1−α)vj∆t),
denoted by a small blue square. Finally, the second stage value along the characteristics
is computed on the grid. Such stage value corresponds to the numerical solution implicit
scheme

square). Once such values, K̃
(1)
ij , are computed, then the value of the numerical solution

can be computed by

F̃
(2)
ij = f̃nij + ∆t

(
a21K̃

(1)
ij + a22

1

ε
(M [F̃

(2)
ij ]− F̃ (2)

ij )

)
(96)

Notice that in this fn+1
ij = F̃

(2)
ij , because the scheme is stiffly accurate, i.e. a21 = b1 and

a22 = b2.
The generalization of the procedure to high order schemes is straightforward, and can

be found, for example in Russo and Santagati (2011).

Remark 9 In practice the Runge Kutta fluxes can be computed from the internal stages.
For example

∆t

ε
(M

(1)
ij − F

(1)
ij ) =

F
(1)
ij − f̃nij
a11

.

Hence the scheme can be used in the limit ε → 0, with no constraint on the time step
amplitude.

4.2 Numerical tests

These tests are aimed to verify the accuracy (test 1) and the shock capturing properties
(test 2) of the schemes.

4.2.1 Regular velocity perturbation

This test has been proposed in Pieraccini and Puppo (2007). The solution is smooth, and
the accuracy can be tested. Initial velocity profile is given by

u0(x) =
1

σ

(
exp

(
−(σx− 1)2

)
− 2 exp

(
−(σx+ 3)2

))
, x ∈ [−1, 1]
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where σ is a positive constant parameter. Initial density and temperature profiles are
uniform, with constant value, ρ = 1 and T = 1 respectively. The initial condition for
the distribution function is the Maxwellian, computed by given macroscopic fields. The
boundary conditions are imposed assuming that beyond the computational domain the
distribution function is a Maxwellian with prescribed moments. Two regimes (rarefied and
fluid) have been investigated, corresponding to different Knundsen numbers, ε = 10−2 and
ε = 10−6. The final time, for both cases was 0.04, large enough to reach thermodynamic
equilibrium. Accuracy and conservation tests have been performed at the final time.
The errors has been computed using a reference solution, defined on a finer grid, with
Nx = 1280 and Nv = 20. The test case has been performed using Nv = 20 (as for the
reference solution),for each spatial grid nodes number, uniformly spaced in [-10,10].

The relative errors and order of accuracy are shown in Tables 4-7, for the schemes M2
and M3. Notice that only a moderate improvements is obtained using M3 in place of
M2. The reason is the following. The space reconstruction in both schemes is WENO
2-3, which guarantees third order accuracy for smooth functions. Since space errors are
dominant with respect to time errors, then only a small improvement is gained by a more
accurate time integrator. This also explains why for small number of grid points the order
or accuracy appears between two and three.

Also, notice that for smaller values of ε a strong degradation of the accuracy is ob-
served. In fact, in the fluid dynamic regime, only first order accuracy in time is guaranteed
by this approach.

Conservation errors have been investigated. Despite the schemes are not strictly con-
servative, conservation properties are maintained with good accuracy, even for a moderate
number of grid points.

4.2.2 Riemann problem

This test allows us to evaluate the capability of our class of schemes in capturing shocks,
contact discontinuities and the density profile in a rarefaction. The macroscopic fields are
initially assigned in the domain, satisfying the Rankine-Hugoniot shock jump conditions.
In particular we are interested in the behavior in the fluid regime. Here we illustrate the
results in the moments, i.e. density, velocity and temperature profiles, for ε = 10−2 and
ε = 10−6, respectively. As in test 1, the boundary conditions are imposed by Maxwellians
computed by prescribed macroscopic moments.

For this test two values ε are employed , ε = 10−2 and ε = 10−6. Nv = 60 nodes
are used in the range [-10,10] of the discrete velocity domain, as in Pieraccini and Puppo
(2007).

As it appears from the results, the scheme is able to capture the fluid dynamic limit for
very small values of the relaxation time, where the evolution of the moments is governed
by the underlying Euler equations.

Remark 10 The scheme presented here is not in conservation form. It is possible to
construct a conservative version of the scheme, by using the non conservative scheme as
a predictor, and a postprocessing that acts as a conservative corrector to be used at each
time step. The details of the scheme will be found in Russo and Santagati (2011).
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Figure 24: Riemann problem. From the top to the bottom, density, velocity and temper-
ature. Left column ε = 10−2. Right column ε = 10−6. CFL=9.44.
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L2-Relative errors L2-Orders
Nx Density Velocity Temperature Dens. Vel. Temp
20 2.54838e-03 2.35049e-03 4.63423e-03 - - -
40 5.57339e-04 3.64146e-04 9.17053e-04 2.193 2.690 2.337
80 8.41532e-05 5.21314e-05 1.28062e-04 2.727 2.804 2.840

160 1.17817e-05 8.94658e-06 2.53109e-05 2.836 2.543 2.339
320 1.69746e-06 1.95126e-06 6.47027e-06 2.795 2.197 1.968

Table 4: Scheme M2, ε = 10−2, CFL = 4.5.

L2-Relative errors L2-Orders
Nx Density Velocity Temperature Dens. Vel. Temp.
20 2.96809e-03 3.15227e-03 6.37101e-03 - - -
40 6.57722e-04 6.05216e-04 1.94043e-03 2.174 2.381 1.715
80 1.11120e-04 1.36059e-04 5.26168e-04 2.565 2.153 1.883

160 2.25137e-05 4.61239e-05 1.59816e-04 2.303 1.561 1.719
320 6.10643e-06 1.63245e-05 5.05549e-05 1.882 1.498 1.660

Table 5: Scheme M2, ε = 10−6, CFL = 4.5.

L2-Relative errors L2-Orders
Nx Density Velocity Temperature Dens. Vel. Temp.
20 2.41539e-03 1.97185e-03 4.36445e-03 - - -
40 4.93444e-04 2.90747e-04 8.14397e-04 2.291 2.762 2.422
80 7.36995e-05 4.27296e-05 1.14397e-04 2.743 2.766 2.832

160 1.06248e-05 5.91413e-06 1.54660e-05 2.794 2.853 2.887
320 1.55051e-06 9.55269e-07 2.89414e-06 2.777 2.630 2.418

Table 6: Scheme M3, ε = 10−2, CFL = 4.5.

L2-Relative errors L2-Orders
Nx Density Velocity Temperature Dens. Vel. Temp.
20 2.02024e-03 2.72023e-03 4.79517e-03 - - -
40 5.04007e-04 7.57946e-04 2.06197e-03 2.003 1.844 1.218
80 9.91878e-05 2.63921e-04 9.43964e-04 2.345 1.522 1.127

160 4.10972e-05 1.48278e-04 5.14779e-04 1.271 0.932 0.975
320 2.17256e-05 7.52320e-05 2.39514e-04 1.120 1.079 1.104

Table 7: Scheme M3, ε = 10−6, CFL = 4.5.

4.3 IMEX Runge-Kutta schemes

The possibility of implementing a very efficient implicit solver for the BGK model, coupled
with the fact that the BGK operator itself is a crude approximation of the Boltzmann
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ε =1e-2
Nx Density Momentum Energy
20 3.19103e-04 6.45517e-04 6.44489e-04
40 8.68364e-05 2.43064e-05 1.53479e-04
80 1.86619e-05 6.93736e-06 3.38482e-05

160 2.21369e-06 6.03659e-07 3.82991e-06
320 2.47089e-07 6.48153e-08 4.23732e-07
640 2.75503e-08 5.92434e-09 4.57648e-08

1280 3.21756e-09 6.82768e-10 5.29436e-09
ε =1e-6

Nx Density Momentum Energy
20 3.86571e-04 8.49545e-04 8.59503e-04
40 1.25170e-04 4.22174e-05 2.34721e-04
80 3.17682e-05 1.53056e-05 6.50680e-05

160 4.65888e-06 1.86177e-06 9.55101e-06
320 5.94587e-07 2.25448e-07 1.20946e-06
640 7.47884e-08 2.69514e-08 1.52337e-07

1280 9.24536e-09 3.27055e-09 1.87483e-08

Table 8: Errors in conservation. Scheme M2.

collision operator, can be used as a tool to construct very effective solvers for the full
Boltzmann equation. In this section we will consider this possibility in the context of
Implicit-Explicit Runge-Kutta schemes.

4.3.1 General formulation of IMEX schemes

To this goal we introduce the general formulation of the IMEX schemes (Pareschi and
Russo, 2005; Pieraccini and Puppo, 2007) for the BGK model. A general IMEX schemes
applied to a kinetic equation of the form

∂tf + v · ∇xf =
1

ε
(M [f ]− f) (97)

reads

F (i) = fn −∆t
i−1∑
j=1

ãijv · ∇xF
(j) + ∆t

ν∑
j=1

aij
1

ε
(M [F (j)]− F (j)) (98)

fn+1 = fn −∆t
ν∑
i=1

ω̃iv · ∇xF
(i) + ∆t

ν∑
j=1

ωi
1

ε
(M [F (i)]− F (i)). (99)

The matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are ν × ν matrices such that the
resulting scheme is explicit in ∇xf , and implicit in M [f ]−f . In general, an IMEX Runge-
Kutta scheme, is characterized by the above defined two matrices and the coefficient
vectors w̃ = (w̃1, .., w̃ν)

T , w = (w1, .., wν)
T . Since we want simplicity and efficiency in

solving the algebraic equations corresponding to the implicit part we will consider only
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diagonally implicit Runge-Kutta (DIRK) schemes for the source terms (aij = 0, for j > i).
The use of a DIRK scheme is enough to assure that the operator ∇xf is always evaluated
explicitly. The type of schemes described can be represented with a compact notation by
a double Butcher tableau

c̃ Ã

ω̃T

c A

ωT

where the coefficients c̃ and c are given by the usual relation

c̃i =
i−1∑
j=1

ãij, ci =
i∑

j=1

aij. (100)

We refer to Pareschi and Russo (2005) for a discussion of the stability requirements
and the derivation of the order condition of IMEX schemes up to third order. Let us
remark that order conditions are simplified under the assumptions c̃ = c and w̃ = w. The
first assumption however prevents the scheme from being asymptotic preserving unless
the initial data is well-prepared, namely consistent with the limiting equilibrium system.

As shown in Pareschi and Russo (2005) it is easy to prove the following:

Lemma 4 If all diagonal element of the triangular coefficient matrix A that characterize
the DIRK scheme are non zero, then

lim
ε→0

F (i) = M [F (i)]. (101)

Now if we multiply the IMEX method by the collision invariants φ(v) = 1, v, v2 and
integrate the result in velocity space we obtain∫

IR3

F (i)φ(v) dv =

∫
IR3

fnφ(v) dv −∆t
i−1∑
j=1

ãij

∫
IR3

v · ∇xF
(j)φ(v) dv (102)

∫
IR3

fn+1φ(v) dv =

∫
IR3

fnφ(v) dv −∆t
ν∑
i=1

ω̃i

∫
IR3

v · ∇xF
(i)φ(v) dv. (103)

Thus if (101) holds true the higher order moments of the F (i) can be computed as function
of mass, momentum and temperature of F (i) and we get the explicit Runge-Kutta scheme
applied to the corresponding system of compressible Euler equations. We can state:

Theorem 4 If detA 6= 0, in the limit ε → 0, the IMEX scheme (98)-(99) applied to

system (97) becomes the explicit RK scheme characterized by (Ã, w̃, c̃) applied to the limit
Euler system (23).

Note however that the above results do not guarantee that

lim
ε→0

fn+1 = M [fn+1].
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The latter property is achieved, for example, if we assume that

ãνi = w̃i, aνi = wi, i = 1, . . . , ν (104)

with aνν 6= 0. In fact, as a consequence we have fn+1 = F (ν), and limε→0 F
(ν) = M [F (ν)].

As for the corresponding DIRK methods such schemes are referred to as stiffly accurate.
Let us remark that the IMEX scheme (98)-(99) can be solved explicitly despite the

nonlinearity of M [f ]. In fact since M [F (i)] depends only on mass, momentum and tem-
perature of the solution, thus on the low order moments of F (i), it can be evaluated
directly from the explicit scheme (102)-(103). This property has been used, for example,
in Pieraccini and Puppo (2007); Filbet and Jin (2010) to implement efficiently IMEX
methods.

Several AP IMEX schemes up to third order can be found in Pareschi and Russo
(2005, 2000a). In Tables 9 and 10 we report two examples of second order methods,
PR(2,2,2) method, satisfying w̃ = w and det(A) 6= 0, and ARS(2,2,2), satisfying c̃ = c
and the stiffly accurate requirement. A modification of such schemes in order to achieve
uniformly accuracy in ε has been studied in Boscarino and Russo (2009).

4.3.2 Application to the Boltzmann equation

In the sequel we will describe how to extend the IMEX Runge-Kutta methods to the full
Boltzmann equation (1). We follow the methodology introduced in Filbet and Jin (2010);
Dimarco and Pareschi (2011).

Our scope is to avoid the implicit solution of the collision term of the Boltzmann
equation. To this goal we can reformulate the collision operator adding a BGK (or another
linear kinetic model which can be easily inverted) as a penalization, exactly as shown in
Section 3.2.1. Let us mention that a similar approach has been previously used in other
contexts (see, for example, (Smereka, 2003)) with the goal to adopt a time step which is
much larger than O(ε) in regions close to the fluid dynamic limit.

The Boltzmann equation can be rewritten as

∂tf + v · ∇xf =
µ

ε
g(f) +

µ

ε
(M [f ]− f), (105)

with

µg(f) = P (f, f)− µM [f ], P (f, f) = Q(f, f) + µf.

Clearly now M [f ] is non constant in time during the relaxation process. One can now use
a numerical scheme in which only the BGK term M [f ]− f is treated implicitly, while the
term g(f) describing the deviations from a BGK behavior and the convection term ∇xf
are treated explicitly.

The IMEX scheme now take the form

F (i) = fn + ∆t
i−1∑
j=1

ãij

(µ
ε
g(F (j))− v · ∇xF

(j)
)

+ ∆t
ν∑
j=1

aij
µ

ε
(M [F (j)]− F (j)) (106)

fn+1 = fn + ∆t
ν∑
i=1

ω̃i

(µ
ε
g(F (i))− v · ∇xF

(i)
)

+ ∆t
ν∑
j=1

ωi
µ

ε
(M [F (i)]− F (i)). (107)
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0 0 0
1 1 0

1/2 1/2

γ γ 0
1− γ 1− 2γ γ

1/2 1/2

γ = 1− 1√
2

Table 9: Tableau for the explicit (left) implicit (right) PR(2,2,2) scheme

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

,

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

, γ = 1−
√

2

2
, δ = 1− 1

2γ

Table 10: Tableau for the explicit (left) implicit (right) ARS(2,2,2) scheme

If we integrate the above scheme against φ(v) = 1, v, v2 we obtain again system (102)-
(103). It is a simple exercise to verify that Lemma 4 and Theorem 4 apply also to this
reformulated problem. Thus we obtain AP method for the Boltzmann equation that can
be evaluated explicitly. Here, however, the additional difficulty is given by the fact that
we are integrating explicitly the stiff term µg(f)/ε which may lead to unstable schemes if
not properly treated. The stiffly accurate conditions (104) are essential in such a situation
in order to obtain unconditionally stable AP schemes.

Finally let us emphasize that the usual stability requirements may not suffice to guar-
antee nonnegativity of the solution fn+1 starting from a nonnegative initial data fn. We
refer to Dimarco and Pareschi (2011) for further details.
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