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1 INTRODUCTION

1 Introduction

We may say that one of the main objectives of the kinetic theory is to describe the macro-
scopic properties of gases – like pressure, temperature, thermal conductivity, viscosity,
diffusion, etc. – from microscopic quantities that are associated with the molecules which
compose the gases – like mass, velocity, kinetic energy, internal degrees of freedom and
interaction forces between the molecules.

The foundations of the modern kinetic theory of gases were established in 1867 by
James Clerk Maxwell (1831-1879) who proposed a general transport equation for arbi-
trary macroscopic quantities associated with mean values of microscopic quantities. This
equation of transport relates the time evolution of a macroscopic quantity with the motion
of the molecules, collision between the molecules and action of external forces. Although
the theory was valid for any molecular interaction potential, Maxwell could only deter-
mine the transport coefficients of shear viscosity, thermal conductivity and diffusion by
assuming that the interaction potential was derived from a repulsive force which was in-
versely proportional to the fifth power of the relative distance between the molecules.
Nowadays this type of potential is known as Maxwellian potential. The kinetic theory of
gases gained a new impulse in 1872 with the work by Ludwig Eduard Boltzmann (1844-
1906), who proposed an integro-differential equation – the Boltzmann equation – which
represents the evolution of the velocity distribution function in the phase space spanned
by the coordinates and velocities of the molecules. In the Boltzmann equation the tempo-
ral change of the distribution function has two terms, one of them is a drift term due to
the motion of the molecules while the other one is a collision term related to encounters
of the molecules. Based on this equation, Boltzmann proposed the so-called H function
which decreases with time or remains constant. The identification of this function as the
negative of the gas entropy gave a molecular interpretation of the increase of the entropy
for irreversible processes. Furthermore, Boltzmann in the same work presented a rigorous
deduction of the Maxwellian distribution function.

From the Boltzmann equation one could determine the velocity distribution function
hence the transport coefficients of rarefied gases, however this task was not so easy. Indeed,
it took almost forty years after the proposition of Boltzmann equation, for David Hilbert
(1862-1943) to show how one could get an approximate solution of the integro-differential
equation from a power series expansion of a parameter which is proportional to the mean
free path. Further advances were due to Sydney Chapman (1888-1970) and David Enskog
(1884-1947) who – in the years 1916 and 1917 – calculated independently and by different
methods the transport coefficients for gases whose molecules interact according to any kind
of spherically symmetric potential function. Another method derived from the Boltzmann
equation was proposed in 1949 by Harold Grad (1923-1986) who expanded the distribution
function in terms of tensorial Hermite polynomials and introduced balance equations
corresponding to higher order moments of the distribution function.

The aim of these notes is to discuss the methods of Chapman-Enskog and Grad with
an applications to granular gases.
(a) Cartesian notation for tensors is used with Latin indexes i, j, k, . . . – which may range
from 1 to 3 – denoting the three-dimensional system of spatial coordinates x, y, z;

(b) Einstein’s summation convention over repeated indexes is used, for example, Tijvj ≡∑3
j=1 Tijvj;
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2 BOLTZMANN AND BALANCE EQUATIONS

(c) Parentheses around the indexes denote the symmetric part of a tensor, brackets its
antisymmetric part while angular parentheses refer to its traceless symmetric part, for
example,

T(ij) =
1

2
(Tij + Tji), T[ij] =

1

2
(Tij − Tji), T⟨ij⟩ = T(ij) −

1

3
Trrδij.

Above, δij is Kronecker’s symbol and the traceless tensor T⟨ij⟩ is called tensor deviator.

2 Boltzmann and Balance Equations

We consider a monatomic rarefied gas with N molecules enclosed in a recipient of volume
V , where a molecule is specified as a point in a six-dimensional phase space spanned by its
coordinates x = (x1, x2, x3) and velocity components c = (c1, c2, c3). The state of a gas is
characterized by the one-particle distribution function f(x, c, t) such that f(x, c, t)dx dc
gives at time t, the number of molecules in the volume element with position vectors
within the range x and x+ dx and with velocity vectors within the range c and c+ dc.

An elastic binary collision is characterized by the conservation laws of momentum and
kinetic energy, namely,

mc+mc1 = mc′ +mc′1,
1

2
mc2 +

1

2
mc21 =

1

2
mc′2 +

1

2
mc′21 , (1)

where (c, c1) refer to pre-collisional velocities and (c′, c′1) to post-collisional velocities of
two molecules. The subindex 1 is used in order to distinguish two identical molecules that
participate in the collision. The relative velocity is denoted by g = c1 − c and the energy
conservation law implies that g = g′.

The space-time evolution of the one-particle distribution function in the phase space
is governed by the Boltzmann equation, which in the absence of external forces, reads

∂f

∂t
+ ci

∂f

∂xi
=

∫
(f ′

1f
′ − f1f)g b db dε dc1. (2)

We note that it is a non-linear integro-differential equation for f(x, c, t). The right-hand
side of the Boltzmann equation is related to the collisions of the molecules through the
product of two distribution functions. The relative motion of the molecules is characterized
by the impact parameter 0 ≤ b < ∞ and by the azimuthal angle 0 ≤ ε ≤ 2π (see
Figure 1). Furthermore, the following abbreviations were introduced f ′ ≡ f(x, c′, t), f ′

1 ≡
f(x, c′1, t), f ≡ f(x, c, t), f1 ≡ f(x, c1, t).

The multiplication of the Boltzmann equation (2) by an arbitrary function ψ ≡
ψ(x, c, t) and the integration of the resulting equation over all values of the velocity
components c leads to

∂

∂t

∫
ψf dc+

∂

∂xi

∫
ψcif dc−

∫ [
∂ψ

∂t
+ ci

∂ψ

∂xi

]
f dc =

∫
(ψ′ − ψ)f1f g b db dε dc1 dc

=
1

4

∫
(ψ1 + ψ − ψ′

1 − ψ′)(f ′
1f

′ − f1f)g b db dε dc1dc, (3)

where the two equalities in the right-hand side of the above equation where obtained from
the symmetry properties of the collision operator.
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2 BOLTZMANN AND BALANCE EQUATIONS

g = c  − c   1

Restitution cylinder

g

g

Collision cylinder
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g
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π
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d ε

Figure 1: Geometry of a binary collision.

From the analysis of the last equality in the right-hand side of (3) we may infer that
it vanishes for any kind of distribution function f when ψ1 + ψ = ψ′

1 + ψ′. A function ψ
which fulfills such condition is called a summational invariant. A summational invariant
is given by a linear combination of the conservative quantities: mass, linear momentum
and energy, and is expressed by ψ(c) = A + B · c + Dc2 where A and D are two scalar
functions and B a vectorial function, all of them being independent of c.

In kinetic theory a macroscopic state of a gas is characterized by quantities that are
defined in terms of the distribution function f(x, c, t). Firstly, based on the microscopic
quantities of the gas molecules as mass m, linear momentum mci and energy mc2/2 we
define the mass density ϱ, the momentum density ϱvi and the total energy density ϱu of
the gas, namely,

ϱ =

∫
mf(x, c, t) dc, ϱvi =

∫
mcif(x, c, t) dc, ϱu =

∫
mc2

2
f(x, c, t) dc. (4)

If we substitute the molecular velocity in (4)3 by the peculiar velocity Ci = ci − vi – such
that

∫
mCif dc = 0 – we obtain

ϱu =
1

2
ϱv2 + ϱε, where ϱε =

1

2

∫
mC2f(x, c, t) dc. (5)

Hence, the total energy density of the gas is given by a sum of its kinetic energy density
ϱv2/2 and its internal energy density ϱε.

We define the moment of the distribution function of order N by

pi1i2...iN =

∫
mCi1Ci2 . . . CiNf(x, c, t) dc, (6)

which represents a symmetric tensor of orderN with (N+1)(N+2)/2 distinct components.
The zeroth moment represents the mass density, the first moment vanishes and the

second moment, known as the pressure tensor, reads

pij =

∫
mCiCjf(x, c, t)dc. (7)
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2 BOLTZMANN AND BALANCE EQUATIONS

We denote by p⟨ij⟩ the pressure deviator, which represents the traceless part of the pressure
tensor. It is given by

p⟨ij⟩ = pij −
1

3
prrδij, with p =

1

3
prr =

1

3

∫
mC2f(x, c, t) dc, (8)

representing the hydrostatic pressure of the gas. The internal energy density ϱε, given
by (5)2 is related to the hydrostatic pressure by p = 2ϱε/3. The equation of state of an
ideal gas is given by p = nkT where k, n = ϱ/m and T denote the Boltzmann constant,
the particle number density and the temperature of the gas, respectively. Hence, we can
obtain the following expression for the temperature of a monatomic gas written in terms
of the distribution function:

T =
p

nk
=

2

3

m

k
ε =

1

3nk

∫
mC2f(x, c, t) dc. (9)

The heat flux vector is defined as the contracted third order moment

qi =
1

2
pjji =

1

2

∫
mC2Cif(x, c, t) dc, (10)

and the moments of higher order do not have specific proper names.
We obtain the balance equations for the moments of the distribution function from

the transfer equation (3) by choosing ψ(x, c, t) equal to:
(i) Balance of mass density (ψ = m):

∂ϱ

∂t
+
∂ϱvi
∂xi

= 0, (11)

(ii) Balance of momentum density (ψ = mci):

∂ϱvi
∂t

+
∂

∂xj
(ϱvivj + pij) = 0, (12)

(iii) Balance of total energy density (ψ = mc2/2):

∂

∂t

[
ϱ
(
ε+

1

2
v2
)]

+
∂

∂xi

[
ϱ
(
ε+

1

2
v2
)
vi + qi + pijvj

]
= 0, (13)

(iv) Balance of N th order moment (ψ = mCi1Ci2 . . . CiN ):

∂pi1i2...iN
∂t

+
∂

∂xk
(pi1i2...iNk + pi1i2...iNvk)−

N

ϱ
p(i1i2...iN−1

∂piN )k

∂xk

+ Npk(i1i2...iN−1

∂viN )

∂xk
= Pi1i2...iN . (14)

The above equation was obtained by eliminating the time derivative of the hydrodynamic
velocity vi by the use of (12). The parenthesis around the indexes indicate a sum over all
N ! permutations of these indexes divided by N !. Furthermore, the production term due
to the molecular collisions Pi1i2...iN reads

Pi1i2...iN =

∫
m(C ′

i1
C ′

i2
. . . C ′

iN
− Ci1Ci2 . . . CiN )f f1 g b db dε dc dc1. (15)
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3 CHAPMAN-ENSKOG METHOD

If we subtract from the balance equation of the total energy density (13) the mo-
mentum balance equation (12) multiplied by the bulk velocity vi, we obtain the balance
equation for the internal energy density, namely,

∂ϱε

∂t
+

∂

∂xi
(ϱεvi + qi) + pij

∂vi
∂xj

= 0. (16)

3 Chapman-Enskog Method

First let us introduce the dimensionless variables

t⋆ = t/tc, x⋆ = x/Lc, c⋆ = c/c̄, g⋆ = g/ḡ, b⋆ = b/d, ε⋆ = ε/π, f ⋆ = f/fc,
(17)

where d denote the molecular diameter, c̄ =
√
8kT/mπ the mean thermal velocity, and ḡ =√

2c̄ the mean relative velocity. Furthermore, the characteristic value for the distribution
function fc is equal to n/c̄

3 where n represents the particle number density of the gas and
tc and Lc are a representative time and length that characterize the fluid flow. By taking
into account the dimensionless variables (17), the Boltzmann equation (2) can be written
as

Sr
∂f⋆

∂t⋆
+ c⋆i

∂f ⋆

∂x⋆i
=

1

Kn

∫
(f ⋆′

1 f
⋆′ − f ⋆

1 f
⋆)g⋆ b⋆ db⋆ dε⋆ dc⋆1. (18)

In the above equation we have introduced the Strouhal number Sr and the Knudsen
number Kn which are defined by

Sr =
Lc

c̄ tc
, Kn =

l

Lc

, (19)

where l = 1/
√
2πd2n is the mean free path.

The Knudsen number is related to the degree of rarefaction of a gas. When Kn ≪ 1
the molecular collisions are very important, the distribution function is determined by the
collision term of the Boltzmann equation and the gas is described by a continuum regime.
Otherwise, when Kn ≫ 1 the molecular collisions become negligible, the distribution
function is determined via a collisionless Boltzmann equation and the regime of the gas
is known as free molecular flow.

In the method of Chapman-Enskog the distribution function f is expanded as

f = f (0) + Λf (1) + Λ2f (2) + · · · =
∞∑
r=0

Λrf (r), (20)

i.e., in power series of a parameter Λ which is of order of the Knudsen number. The
distribution functions f (0), f (1) and f (2) represent the first, second and third approximation
to the distribution function, and so on. The parameter Λ can be set later equal to unity,
so that the proper dimensions of the Boltzmann equation are restored. Moreover, the
approximations must satisfy the constraints∫

ψf (r)dc = 0, ∀ r ≥ 1, (21)
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3 CHAPMAN-ENSKOG METHOD

where ψ represents the summational invariants m, mci (or mCi) and mc
2/2 (or mC2/2).

If we insert the series expansion of the distribution function (20) into the definitions
of the pressure tensor and of the heat flux vector we obtain

pij = δij
1

3

∫
mC2f (0)dc+

∫
mC⟨iCj⟩

∞∑
r=1

Λrf (r)dc = pδij +
∞∑
r=1

Λrp
(r)
⟨ij⟩, (22)

qi =

∫
m

2
C2Ci

∞∑
r=1

Λrf (r)dc =
∞∑
r=1

Λrq
(r)
i . (23)

The parameter Λ is introduced into the collision term of the Boltzmann equation (2),
yielding

Df + Ci
∂f

∂xi
=

1

Λ
Q(f, f), (24)

where D = ∂/∂t+vi∂/∂xi denotes the material time derivative. In (24) the collision term
was expressed in terms of an integral for a bilinear quantity

Q(F,G) =
1

2

∫
(F ′

1G
′ + F ′G′

1 − F1G− FG1)g b db dε dc1. (25)

The material time derivative, like the distribution function, is also expanded in power
series as

D = D0 + ΛD1 + Λ2D2 + · · · =
∞∑
r=1

ΛrDr, (26)

and the insertion of the expansions (22), (23) and (26) into (11), (12) and (16) lead to
the following decomposition of the balance equations

D0ϱ+ ϱ
∂vi
∂xi

= 0, Drϱ = 0 (∀ r ≥ 1), (27)

ϱD0vi +
∂p

∂xi
= 0, ϱDrvi +

∂p
(r)
⟨ij⟩

∂xj
= 0 (∀ r ≥ 1), (28)

3

2
nkD0T + p

∂vi
∂xi

= 0,
3

2
nkDrT +

∂q
(r)
i

∂xi
+ p

(r)
⟨ij⟩

∂vi
∂xj

= 0 (∀ r ≥ 1). (29)

We can now obtain the integral equations for the approximations of the distribution
function by the inserting the expansions (20) and (26) into the Boltzmann equation (24)
and equating equal powers of Λ. Hence, it follows

Q
(
f (0), f (0)

)
= 0, (30)

2Q
(
f (0), f (1)

)
= D0f

(0) + Ci
∂f (0)

∂xi
, (31)

2Q
(
f (0), f (2)

)
+Q

(
f (1), f (1)

)
= D0f

(1) +D1f
(0) + Ci

∂f (1)

∂xi
, (32)

and so on. The above equations represent the three first integral equations for f (0), f (1)

and f (2), respectively.
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3 CHAPMAN-ENSKOG METHOD

For the determination of the first approximation to the distribution function f (0) from
the integral equation (30) we note that its solution is given by f ′(0)f

′(0)
1 = f (0)f

(0)
1 or

ln f ′(0) + ln f
′(0)
1 = ln f (0) + ln f

(0)
1 . Hence, ln f (0) is a summation invariant so that it must

be represented by ln f (0) = A+B ·C+DC2. If we insert this representation for f (0) into
the definitions of the mass density (4)1, hydrodynamic velocity (4)2 and temperature (9)
we obtain the Maxwellian distribution function, namely,

f (0) = n

(
β

π

) 3
2

e−βC2

where β =
m

2kT
. (33)

For the determination of the second approximation f (1) we write f (1) = f (0)ϕ and the
integral equation (31) reduces to

2Q
(
f (0), f (0)ϕ

)
= f (0)

{
1

T

(
βC2 − 5

2

)
Ci
∂T

∂xi
+ 2βCiCj

∂v⟨i
∂xj⟩

}
= I[ϕ] =

∫
f (0)f

(0)
1 (ϕ′

1 + ϕ′ − ϕ1 − ϕ) g b db dε dc1, (34)

by eliminating the material time derivatives through the use of (27)1, (28)1 and (29)1.
The general solution of the integral equation (34) is given by a sum of the solution

of the homogeneous integral equation plus a particular solution of it, i.e., ϕ = ϕh + ϕp.
The solution of the homogeneous integral equation I[ϕh] = 0 is a summational invariant
ϕh = α1+α

2
rCr+α3C

2, where α1 and α3 are scalar functions, while α
2
r is a vector function,

all of them do not depend on the peculiar velocity C.
The particular solution of the integral equation is expressed as a linear combination

of the temperature gradient and of the velocity gradient deviator, namely,

ϕp = −Ai

T

∂T

∂xi
− 2βBij

∂v⟨i
∂xj⟩

. (35)

where Ai and Bij denote a vector function and a tensor function of (C, ϱ, T ), respectively.
It is easy to show that the representations of the vector and tensor functions in terms
of the peculiar velocity C are given by Ai = A⋆Ci and Bij = BCiCj, where the scalar
functions A⋆ and B depend only on (C2, ϱ, T ).

Hence, the solution of the non-homogeneous integral equation (34) is given by

ϕ = −A⋆Ci

T

∂T

∂xi
− 2βBCiCj

∂v⟨i
∂xj⟩

+ α1 + α2
rCr + α3C

2. (36)

The second approximation f (1) = f (0)ϕ must satisfy the constraints (21) which imply
the following restrictions

α1 +
3kT

m
α3 = 0, α1 +

5kT

m
α3 = 0,

∫
mC2

[
−A⋆

T

∂T

∂xj
+ α2

j

]
f (0)dc = 0. (37)

From the two first equations we may infer that α1 = α3 = 0, whereas the last equation
implies that α2

j must be proportional to ∂T/∂xj. By writing the proportionality factor of
α2
j as α/T , the constraint (37)3 reduces to∫

C2Af (0)dc = 0, (38)
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3 CHAPMAN-ENSKOG METHOD

with A = A⋆ − α being a new scalar function of (C2, ϱ, T ).
Hence, from the above results we may write the distribution function (20) – up to the

second approximation and with Λ = 1 – as

f = f (0)(1 + ϕ) = f (0)

{
1− A

T
Ci
∂T

∂xi
− 2βBCiCj

∂v⟨i
∂xj⟩

}
. (39)

Now the scalar coefficients A and B in the distribution function (39) can be obtained
as solutions of the integral equations that follows from (34), namely,

f (0)

[
βC2 − 5

2

]
Ci = −I[ACi], f (0)C⟨iCj⟩ = −I[BC⟨iCj⟩]. (40)

In order to solve the integral equations (40) the scalar coefficients A(C2, ϱ, T ) and
B(C2, ϱ, T ) are expanded in series of Sonine polynomials. The Sonine polynomials of
order n and index (l + 1/2) in the variable βC2 = mC2/2kT are defined by

S
(n)
l+1/2(βC

2) =
n∑

k=0

Γ(n+ l + 3/2)

k!(n− k)!Γ(k + l + 3/2)
(−βC2)k, (41)

and obey the orthogonality conditions∫ ∞

0

e−βC2

C2l+2S
(n)
l+1/2(βC

2)S
(p)
l+1/2(βC

2)βl+3/2dC =
1

2

Γ(n+ l + 3/2)

n!
δnp, (42)

where Γ(n) denotes the gamma function. The first three Sonine polynomials read

S
(0)
l+1/2(βC

2) = 1, S
(1)
l+1/2(βC

2) = l +
3

2
− βC2, (43)

S
(2)
l+1/2(βC

2) =
1

2

(
l +

5

2

)(
l +

3

2

)
−
(
l +

5

2

)
βC2 +

1

2
β2C4. (44)

The integral equations (40) in terms of the Sonine polynomials become

f (0)S
(1)
3/2(βC

2)Ci = I [ACi] , f (0)S
(0)
5/2(βC

2)C⟨iCj⟩ = −I
[
BC⟨iCj⟩

]
. (45)

Moreover, the expansions of the scalar coefficients A(C2, ϱ, T ) and B(C2, ϱ, T ) in series of
Sonine polynomials are written as

A(C2, ϱ, T ) = −
∞∑
r=0

a(r)S
(r)
3/2(βC

2), B(C2, ϱ, T ) =
∞∑
r=0

b(r)S
(r)
5/2(βC

2). (46)

In the above equations, the scalar coefficients a(r) and b(r) are only functions of (ϱ, T ),
and from this point on, the dependence of the Sonine polynomials in the variable βC2 is
omitted.

The coefficient A must satisfy the constraint (38), hence by using its representation
(46)1, we get

0 =

∫
C2f (0)

∞∑
r=0

a(r)S
(r)
3/2dc = 4πn

(
β

π

) 3
2

∞∑
r=0

a(r)
∫ ∞

0

S
(0)
3/2S

(r)
3/2C

4e−βC2

dC =
3

2

n

β
a(0),

(47)

  

9 - 10 RTO-EN-AVT-194 

 

 



3 CHAPMAN-ENSKOG METHOD

due to (42) and (43)1. From (47) it follows that a(0) = 0 and the scalar coefficient A
reduces to

A(C2, ϱ, T ) = −
∞∑
r=1

a(r)S
(r)
3/2. (48)

Now the insertion of the expressions (48) and (46)2 into their respective integral equations
(45), yields

f (0)S
(1)
3/2Ci = −

∞∑
r=1

a(r)I
[
S
(r)
3/2Ci

]
, f (0)S

(0)
5/2C⟨iCj⟩ = −

∞∑
r=0

b(r)I
[
S
(r)
5/2C⟨iCj⟩

]
. (49)

In order to determine the coefficients a(r) e b(r) from (49) we proceeds as follows. First

we multiply the integral equation (49)1 by βS
(s)
3/2Ci and integrate the resulting equation

over all values of C. By using (42) we obtain

15

4

n

β2
δ(1,r) =

∞∑
s=1

α(r,s)a(s), where α(r,s) = − 1

β

∫
S
(r)
3/2CiI[S(s)

3/2Ci]dC. (50)

In the above equation δ(1,r) represents Kronecker’s symbol. Following the same method-
ology, we multiply the integral equation (49)2 by β2S

(s)
5/2C⟨iCj⟩, integrate the resulting

equation and get

5

2

n

β2
δ(0,r) =

∞∑
s=0

β(r,s)b(s), where β(r,s) = −
∫
S
(r)
5/2C⟨iCj⟩I[S(s)

5/2C⟨iCj⟩]dC. (51)

The integrals in (50)2 and (51)2 depend on the molecular interaction potential and on the
fields (ϱ, T ). Moreover, from the condition

∫
φI[ϕ]dc =

∫
ϕI[φ]dc – which is valid for all

arbitrary functions ϕ(x, c, t) and φ(x, c, t) – we may infer that

α(r,s) = α(s,r), β(r,s) = β(s,r) and α(r,0) = α(0,r) = 0. (52)

We conclude that (50)1 and (51)1 represent an infinite system of algebraic equations
for the coefficients a(n) and b(n), respectively.

To obtain the constitutive equations for the pressure tensor and for the heat flux
vector we proceed as follows. First, we insert the non-equilibrium distribution function
(39) together with the representations of A and B – given by (48) and (46)2, respectively
– into the definitions of the pressure tensor and heat flux vector and get

pij =

∫
mCiCjfdc = p δij −

∫
2mβCiCjS

(0)
5/2f

(0)

∞∑
r=0

b(r)S
(r)
5/2C⟨pCq⟩

∂vp
∂xq

dc, (53)

qi =

∫
m

2
C2Cifdc =

∫
m

2Tβ

[
5

2
S
(0)
3/2 − S

(1)
3/2

]
Cif

(0)

∞∑
r=1

a(r)S
(r)
3/2Cp

∂T

∂xp
dc. (54)

In (54) we have used the relationship βC2 =
[
5
2
S
(0)
3/2 − S

(1)
3/2

]
which follows from (43)2.

Next, the substitution of the Maxwellian distribution function (33) into (53) and (54) and
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3 CHAPMAN-ENSKOG METHOD

the subsequent integration of the resulting equations over all values of C, yield

pij = p δij − 2µ
∂v⟨i
∂xj⟩

, where µ =
ϱ

2β
b(0), (55)

qi = −λ ∂T
∂xi

, where λ =
5k

4m

ϱ

β
a(1), (56)

thanks to the orthogonality condition of the Sonine polynomials (42). Equations (55)1
and (56)1 are the mathematical expressions for the laws of Navier-Stokes and Fourier,
with µ and λ representing the coefficients of shear viscosity and thermal conductivity,
respectively.

We note from (55)2 and (56)2 that the transport coefficients of shear viscosity and
thermal conductivity are functions only of the coefficients a(1) and b(0), respectively. We
can obtain these coefficients from the system of equations (50)1 and (51)1, which can be
written as

a(1) = lim
n→∞

A′
nn

Ann

, b(0) = lim
n→∞

B′
nn

Bnn

, (57)

where

A′
nn = det

∣∣∣∣∣∣∣∣∣
15
4

n
β2 α(1,2) . . . α(1,n)

0 α(2,2) . . . α(2,n)

...
...

. . .
...

0 α(n,2) . . . α(n,n)

∣∣∣∣∣∣∣∣∣ , Ann = det

∣∣∣∣∣∣∣
α(1,1) . . . α(1,n)

...
. . .

...
α(n,1) . . . α(n,n)

∣∣∣∣∣∣∣ , (58)

B′
nn = det

∣∣∣∣∣∣∣∣∣
5
2

n
β2 β(0,1) . . . β(0,n)

0 β(1,1) . . . β(1,n)

...
...

. . .
...

0 β(n,1) . . . β(n,n)

∣∣∣∣∣∣∣∣∣ , Bnn = det

∣∣∣∣∣∣∣
β(0,0) . . . β(0,n)

...
. . .

...
β(n,0) . . . β(n,n)

∣∣∣∣∣∣∣ . (59)

The coefficients a(1) and b(0) follow from (58) and (59) through a method of successive
approximations, where the approximation of order p for the coefficients a(1) and b(0) –
denoted by [a(1)]p and [b(0)]p – is given by the sub-determinant of order p. The first two
approximations for the coefficients a(1) e b(0) are

[a(1)]1 =
15

4

n

β2

1

α(1,1)
, [b(0)]1 =

5

2

n

β2

1

β(0,0)
, (60)

[a(1)]2 =
15

4

n

β2

α(2,2)

α(1,1)α(2,2) − α(1,2)2
, [b(0)]2 =

5

2

n

β2

β(1,1)

β(0,0)β(1,1) − β(0,1)2
. (61)

The integrals α(r,s) and β(r,s) are given in terms of the collision integrals

Ω(l,r) =

∫ ∞

0

∫ ∞

0

e−γ2

γ2r+3
(
1− cosl χ

)
b db dγ, (62)

where χ = arccos(g′ · g/g2) is the scattering angle and γ =
√
β/2 g represents a dimen-

sionless relative velocity.
The determination of the integrals α(r,s) and β(r,s) is not an easy task. As an example,

let us compute the integral β(0,0). For its calculation a change of the integration variables
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3 CHAPMAN-ENSKOG METHOD

is performed by replacing the velocities C and C1 by the relative velocity g = C1−C and
by the center of mass velocity G = (C1 +C)/2. The linear momentum conservation law
implies that G′ = G and the Jacobian of the transformation of the volume elements has
modulus equal to one so that dCdC1 = dgdG. In terms of the new variables the integral
reads

β(0,0) =

∫
C⟨iCj⟩I[C⟨iCj⟩]dc =

n2

2

(
β

π

)3 ∫
e−2βG2

e−
β
2
g2

×
(
G⟨iGj⟩ −G⟨igj⟩ +

1

4
g⟨igj⟩

)(
g′⟨ig

′
j⟩ − g⟨igj⟩

)
g b db dεdgdG. (63)

The integration of (63) with respect to G and ε leads to

β(0,0) =
πn2

4

(
β

2π

) 3
2
∫
e−

β
2
g2
(
cos2 χ− 1

)
g5 b db dg, (64)

If we introduce the dimensionless relative velocity γ =
√
β/2 g, the integration of the

above equation with respect to the angles of g leads to

β(0,0) = −
√
πn2

(
2

β

) 5
2

Ω(2,2), (65)

where Ω(2,2) denotes the collision integral defined by (62).

By introducing the integrals α
(r,s)
⋆ = β

5
2

n2
√
2π
α(r,s), and β

(r,s)
⋆ = β

5
2

n2
√
2π
β(r,s), we can obtain

in the same way the following expressions in terms of the collision integrals Ω(l,r)

α(1,1)
⋆ = 4Ω(2,2), α(1,2)

⋆ = 7Ω(2,2) − 2Ω(2,3), α(2,2)
⋆ =

77

4
Ω(2,2) − 7Ω(2,3) +Ω(2,4), (66)

β(0,0)
⋆ = α(1,1)

⋆ , β(0,1)
⋆ = α(1,2)

⋆ , β(1,1)
⋆ =

301

12
Ω(2,2)−7Ω(2,3)+Ω(2,4) = α(2,2)

⋆ +
35

24
α(1,1)
⋆ .

(67)
As was pointed out the coefficients b(0) and a(1) are determined through a method of

successive approximations, so are the transport coefficients µ and λ. Hence, it follows
from (60), (61), (55)2 and (56)2 that the two first approximations to the coefficients of
shear viscosity and thermal conductivity read

[µ]1 =
5

4

√
mkT

π

1

β
(0,0)
⋆

, [λ]1 =
75k

16m

√
mkT

π

1

α
(1,1)
⋆

, (68)

[µ]2 =
5

4

√
mkT

π

β
(1,1)
⋆

β
(0,0)
⋆ β

(1,1)
⋆ − β

(1,2)
⋆

2 , [λ]2 =
75k

16m

√
mkT

π

α
(2,2)
⋆

α
(1,1)
⋆ α

(2,2)
⋆ − α

(1,2)
⋆

2 . (69)

Now from (68) and (69) we can build the ratios

[λ]1
[µ]1

=
5

2
cv,

[λ]2
[λ]1

=

(
1− α

(1,2)
⋆

2

α
(1,1)
⋆ α

(2,2)
⋆

)−1

>

(
1− β

(0,1)
⋆

2

β
(0,0)
⋆ β

(1,1)
⋆

)−1

=
[µ]2
[µ]1

. (70)
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4 APPLICATION OF CHAPMAN-ENSKOG METHOD TO GRANULAR GASES

We may infer from (70)1 that the ratio of the first approximations to the coefficients of
thermal conductivity and shear viscosity of monatomic ideal gases is equal to 5cv/2 for
all types of spherically symmetrical molecular interaction potentials, where cv = 3k/2m is
the specific heat at constant volume. Furthermore, from the relationship (70)2 it follows
that [λ]2/[µ]2 > [λ]1/[µ]1 = 5cv/2, i.e., the ratio of the second approximations is larger
than the ratio of the first ones.

For a hard-sphere potential the impact parameter is given by b = d cos(χ/2) with
0 ≤ χ ≤ π, so that the collision integral Ω(2,r) becomes

Ω(2,r) =

∫ ∞

0

e−γ2

γ2r+31

3
d2dγ =

d2

6
Γ

(
2r + 4

2

)
. (71)

Hence, it follows from (66) and (67) that

α(1,1)
⋆ = β(0,0)

⋆ = 4d2, α(1,2)
⋆ = β(0,1)

⋆ = −d2, α(2,2)
⋆ =

45

4
d2, β(1,1)

⋆ =
205

12
d2, (72)

and the two first approximations (68) and (69) to the coefficients of shear viscosity and
thermal conductivity for the hard-sphere potential read

[µ]1 =
5

16d2

√
mkT

π
,

[λ]1
[µ]1

=
5

2
cv,

[µ]2
[µ]1

=
205

202
≈ 1.014 851,

[λ]2
[λ]1

=
45

44
≈ 1.022 727.(73)

We note that the second approximations to the transport coefficients is a small correction
to the first ones, so is the ratio [λ]2/[µ]2 ≈ 1.007 761[λ]1/[µ]1.

The fifth approximations to the transport coefficients for hard-sphere potential are

[µ]5
[µ]1

≈ 1.016 027,
[λ]5
[λ]1

≈ 1.025 197.

4 Application of Chapman-Enskog Method to Gran-

ular Gases

The mechanical energy of a gas is conserved when its molecules undergo elastic colli-
sions and, in this case, the gas relaxes towards an equilibrium state characterized by a
Maxwellian distribution function. However, the inelastic collisions of the gas molecules
transform the translational kinetic energy into heat and the mechanical energy lost im-
plies a temperature decay of the gas. In the literature gases whose molecules undergo
inelastic collisions are known as granular gases. The main premisses of the kinetic theory
of granular gases are: (a) only binary collisions of hard spherical molecules are taken into
account and (b) the energy lost from inelastic collisions is small.

Let us consider the encounter of two identical molecules of mass m diameter d pre-
collisional velocities (c, c1) and post-collisional velocities (c′, c′1). The momentum conser-
vation lawmc+mc1 = mc′+mc′1 holds for inelastic collisions, but the inelastic encounters
are characterized by the relationship (g′ · k) = −α(g · k) which relates the pre- and post-
collisional relative velocities at collision. The parameter 0 ≤ α ≤ 1 – here considered as
a constant – refers to the normal restitution coefficient and k is the unit vector directed
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4 APPLICATION OF CHAPMAN-ENSKOG METHOD TO GRANULAR GASES

along the line which joins the molecules centers and pointing from center of the molecule
labeled by the index 1 to the center of the molecule without label. The component of the
velocity perpendicular to the collision vector k does not change in inelastic collisions, so
that k × g′ = k × g. From the momentum conservation law it follows the relationships
which give the post-collisional velocities in terms of the pre-collisional ones, as well as
relationships which connect the relative velocities and their modulus:

c′ = c+
1 + α

2
(g · k)k, c′1 = c1 −

1 + α

2
(g · k)k, (74)

g′ = g − (1 + α)(g · k)k, g′2 = g2 − (1− α2)(g · k)2. (75)

In the case of elastic collisions, α = 1 and it follows the conservation of the kinetic energy
g = g′.

A restitution collision with pre-collisional velocities (c∗, c∗1) that corresponds to the
post-collisional velocities (c, c1) are characterized by the equations

c∗ = c+
1 + α

2α
(g · k)k, c∗1 = c1 −

1 + α

2α
(g · k)k, (76)

where k∗ = −k and (g · k) = −α(g∗ · k).
For the determination of the Boltzmann equation we have to know the transformation

of the volume elements dc∗1 dc
∗ = |J |dc1 dc, where the modulus of the Jacobian is given

by |J | = 1/α. Hence, it follows the relationship

(g∗ · k∗) dc∗ dc∗1 =
1

α2
(g · k) dc dc1, (77)

and the Boltzmann equation for granular gases reads

∂f

∂t
+ ci

∂f

∂xi
=

∫ (
1

α2
f ∗
1 f

∗ − f1f

)
d2 (g · k) dk dc1 ≡ QI(f, f). (78)

Above we have introduced the bilinear form

QI(F,G) =
1

2

∫ (
1

α2
F ∗
1G

∗ +
1

α2
F ∗G∗

1 − F1G− FG1

)
d2 (g · k) dk dc1. (79)

The balance equations for the mass density ϱ, for the momentum density ϱvi and
for the specific internal energy ε = 3kT/2m are obtained from the Boltzmann equation
(78) by multiplying it successively by m, mci and mC2/2 and integrating the resulting
equations. Hence, it follows

Dϱ+ ϱ
∂vi
∂xi

= 0, Dvi +
∂pij
∂xj

= 0, DT +
2

3nk

(
∂qi
∂xi

+ pij
∂vi
∂xj

)
+ Tζ = 0. (80)

We observe that the balance equation for the temperature (80)3 has the additional term
Tζ which represents the energy loss due to inelastic collisions. The coefficient ζ, known
as cooling rate of the granular gas, is given by

ζ =
d2m(1− α2)

12nkT

∫
f1f(g · k)3dk dc1 dc. (81)
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4 APPLICATION OF CHAPMAN-ENSKOG METHOD TO GRANULAR GASES

It is easy to verify from the above equation that the cooling rate vanishes for elastic
collisions where α = 1.

The methodology used to determine the distribution function by using the Chapman-
Enskog method for granular gases is different from the one applied to a monatomic gas
of elastic spherical molecules, since we have to take into account that there exists no
equilibrium state characterized by a Maxwellian distribution function. The first difference,
refers to the decomposition of the balance equations, since they are written as

D0n = 0, D1n = −n∂vi
∂xi

, (82)

D0vi = 0, D1vi = −1

ϱ

∂p

∂xi
. (83)

D0T = −Tζ(0), D1T = −Tζ(1) − 2T

3

∂vi
∂xi

. (84)

The first and the second approximation to the cooling rate in (84) read

ζ(0) =
d2m(1− α2)

12nkT

∫
f
(0)
1 f (0)(g · k)3dk dc1 dc, (85)

ζ(1) =
d2m(1− α2)

12nkT

∫ (
f
(1)
1 f (0) + f

(0)
1 f (1)

)
(g · k)3dk dc1 dc. (86)

In terms of the parameter Λ we write the Boltzmann equation for granular gases (78)
as

1

Λ
Df + Ci

∂f

∂xi
=

1

Λ
QI(f, f), (87)

instead of the representation (24), indicating that the material time derivative and the
collision term are of same order, while the spatial gradients are of higher order.

The two first integral equations for the determination of f (0) and f (1) are obtained by
inserting the expansions (20) and (26) into the Boltzmann equation (87) and equating the
equal powers of Λ, yielding

D0f
(0) = QI(f

(0), f (0)), D1f
(0) +D0f

(1) + Ci
∂f (0)

∂xi
= 2QI(f

(1), f (0)). (88)

In order to determine the first approximation of the distribution function the integral
equation (88)1 is written as

−Tζ(0)∂f
(0)

∂T
= QI(f

(0), f (0)), (89)

through the elimination of the material time derivatives D0 by using (82)1, (83)1 and
(84)1. We note that the solution of the integral equation (89) for the distribution function
f (0) is not a Maxwellian, but we may write f (0) as a Maxwellian plus an expansion in
Sonine polynomials of the peculiar velocity, i.e.,

f (0) = fM

[
1 +

∞∑
n=1

anS
(n)
1
2

(βC2)

]
, where fM = n

(
β

π

) 3
2

e−βC2

, (90)
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4 APPLICATION OF CHAPMAN-ENSKOG METHOD TO GRANULAR GASES

denotes the Maxwellian distribution function. The scalar coefficients an do not depend
on the peculiar velocity C and we suppose that this series expansion converges for large
values of the peculiar velocity. We may approximate the representation of the distribution
function (90) as

f (0) = fM

[
1 + a1S

(1)
1
2

(βC2) + a2S
(2)
1
2

(βC2)
]
, where (91)

S
(1)
1
2

(βC2) =
3

2
− βC2, S

(2)
1
2

(βC2) =
15

8
− 5

2
βC2 +

1

2
β2C4. (92)

If we insert the representation (91) into the definition of the temperature (9) and integrate
the resulting equation we get that a1 = 0.

For the determination of the coefficient a2 we proceed as follows. First the product of
the distribution functions is written as

f (0)f
(0)
1 = n2

(
β

π

)3

e
−β

(
2G2+ g2

2

){
1 + a2

[
15

4
− 5β

2

(
2G2 +

g2

2

)

+
β2

2

(
2G4 +G2g2 +

g4

8
+ 2(G · g)2

)]}
, (93)

by neglecting all product of the coefficient a2 and changing the velocity variables (C,C1)
by the relative and the center of mass velocities (g,G). Next, we multiply the integral
equation (89) by an arbitrary function of the peculiar velocity ψ(C2) and integrate the
resulting equation over all values of c, yielding

−
∫
ψ(C2)Tζ(0)

∂f (0)

∂T
dc =

1

2

∫ [
ψ(C ′2

1 ) + ψ(C ′2)

− ψ(C2
1)− ψ(C2)

]
f
(0)
1 f (0) d2 (g · k) dk dc1 dc. (94)

If we choose ψ(C2) = 1 and ψ(C2) = C2 in (94) the integration of the resulting equations
lead to identities. However, if we choose ψ(C2) = C4 in (94) and use the relationship

C ′4
1 + C ′4 − C4

1 − C4 = 2(α+ 1)2(g · k)2(G · k)2 + (α2 − 1)2

8
(g · k)4

+(α2 − 1)(g · k)2G2 +
(α2 − 1)

4
(g · k)2g2 − 4(α+ 1)(g · k)(G · k)(G · g), (95)

we obtain through the integration of the resulting equation that the coefficient a2 has the
form

a2 =
16(1− α)(1− 2α2)

81− 17α+ 30α2(1− α)
. (96)

We may infer from the above equation that the coefficient a2 vanishes for elastic collisions
where α = 1.

From the knowledge of the coefficient a2, the distribution function (91) is written as

f (0) = fM

[
1 +

16(1− α)(1− 2α2)

81− 17α+ 30α2(1− α)
S
(2)
1
2

(βC2)

]
. (97)
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Figure 2: Left frame: dimensionless distribution function π3/2f (0)/nβ3/2 as a function of

x = βC2 for α = 1 and 0.8. Right frame: cooling rate ζ(0)/nd2 versus the temperature
and the normal restitution coefficient.

If we substitute the distribution function (97) into the expression for the cooling rate
(85) and integrate the resulting equation we get that

ζ(0) =
4

3
nd2(1− α2)

√
πkT

m

[
1 +

3(1− α)(1− 2α2)

81− 17α+ 30α2(1− α)

]
. (98)

In the left frame of Figure 2 it is represented the dimensionless distribution function
π3/2f (0)/nβ3/2 as a function of x = βC2 and α. We may infer from this figure that the
peak of the curve decreases by decreasing the normal restitution coefficient. In the right
frame of the Figure 2 it is plotted the cooling rate ζ(0)/nd2 versus the temperature and
the normal restitution coefficient. We note that the cooling rate increases by decreasing
the normal restitution coefficient and by increasing the temperature. Furthermore, the
cooling rate is zero when α = 1, i.e., for elastic collisions of the molecules.

The determination of the second approximation to the distribution function f (1) from
the integral equation (88)2 is more involved and the details of such kind of calculation will
not be given here. From this integral equation we may conclude that f (1) is a function
of the thermodynamic forces: deviator of the velocity gradient ∂v⟨i/∂xj⟩, gradient of the
particle number density ∂n/∂xi and gradient of temperature ∂T/∂xi. Hence, we may
write the second approximation f (1) as

f (1) = fM

[
γ1S

(1)
3
2

(C2)Ci
∂ lnT

∂xi
+ γ2S

(0)
5
2

(C2)CiCj

∂v⟨i
∂xj⟩

+ γ3S
(1)
3
2

(C2)Ci
∂ lnn

∂xi

]
, (99)

where γ1, γ2 and γ3 are scalar coefficients that depend on n, T and α. If we solve the
integral equation (88)2 we get that the coefficients of the distribution function f (1) are
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given by

γ1 =
15

d2n(9 + 7α)(α+ 1)

√
m

πkT
, γ2 =

−15

2d2n(13− α)(α+ 1)

√
1

π

( m
kT

)3
,(100)

γ3 =
300(1− α)

d2n(9 + 7α)(α+ 1)(19− 3α)

√
m

πkT
. (101)

We obtain the constitutive equations for the pressure tensor and heat flux vector
through the substitution of the distribution function (99) into their definitions and by
integrating the resulting equations. Hence, it follows the laws of Navier-Stokes and Fourier

pij =

∫
mCiCjfdc = p δij − 2µ

∂v⟨i
∂xj⟩

, (102)

qi =

∫
m

2
C2Cifdc = −λ ∂T

∂xi
− ϑT

∂ lnn

∂xi
. (103)

Above, the coefficients of shear viscosity µ, thermal conductivity λ and the one associated
with the gradient of particle number density ϑ read

µ =
15

2d2(13− α)(α+ 1)

√
mkT

π
, λ =

75

2d2(9 + 7α)(α+ 1)

k

m

√
mkT

π
, (104)

ϑ =
750(1− α)

d2n(9 + 7α)(α+ 1)(19− 3α)

k

m

√
mkT

π
. (105)

We note that the coefficients are proportional to
√
T so that they increase by increasing of

the temperature. With respect to the normal restitution coefficient α, we may infer that
the coefficients also increase by decreasing the values of α. Furthermore, by considering
elastic collisions where α = 1 the coefficients of shear viscosity and thermal conductivity
reduce to the first approximations (73)1,2, while the coefficient ϑ vanishes.

5 Grad’s Method of Moments

Let us consider a thirteen scalar field description of a rarefied gas within Grad’s moment
method. In this case the fields are the mass density ϱ(x, t), the hydrodynamic velocity
vi(x, t), the pressure tensor pij(x, t) and the heat flux vector qi(x, t) and their balance
equations read

∂ϱ

∂t
+

∂ϱvi
∂xi

= 0, (106)

∂ϱvi
∂t

+
∂ (ϱvivj + pij)

∂xj
= 0, (107)

∂pij
∂t

+
∂ (pijk + pijvk)

∂xk
+ pki

∂vj
∂xk

+ pkj
∂vi
∂xk

= Pij, (108)

∂qi
∂t

+
∂ (qij + qivj)

∂xj
+ pijk

∂vj
∂xk

+ qj
∂vi
∂xj

− pki
ϱ

∂pkj
∂xj

− 1

2

prr
ϱ

∂pij
∂xj

= Qi. (109)
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5 GRAD’S METHOD OF MOMENTS

We note that the two first equations above represent the balance equations of mass density
(11) and moment density (12), while the balance equation for the pressure tensor (108)
was obtained from (14) by taking N = 2. The balance equation for the heat flux vector
(109) follows from (14) by takingN = 3, contracting two indices and dividing the resulting
equation by 2. Moreover, we have introduced the following definitions in (108) and (109):

pijk =

∫
mCiCjCkfdc, Pij =

∫
m
(
C ′

iC
′
j − CiCj

)
ff1dΓ, (110)

qij =

∫
m

2
C2CiCjfdc, Qi =

∫
m

2

(
C ′2C ′

i − C2Ci

)
ff1dΓ. (111)

The tensors pijk and qij represent non-convective fluxes for the pressure tensor and heat
flux vector, respectively, while Pij and Qi refer to their production terms. In the above
equations we have introduced the abbreviation dΓ = g b db dε dc1dc.

If we analyze the system of partial differential equations (106) – (109) we may infer
that it cannot be considered a system of field equations for the basic fields ϱ, vi, pij and
qi. In fact, to obtain a closed system of differential equations, the non-convective fluxes
pijk, qij and the production terms Pij, Qi must be expressed in terms of the basic fields,
and for this end we must express the distribution function in terms of the thirteen scalar
fields ϱ, vi, pij and qi.

In Grad’s moment method the distribution function is expanded in series of tensorial
Hermite polynomials Hi1i2...iN (N = 0, 1, 2, . . . ) as follows

f = f (0)

(
aH + aiHi +

1

2!
aijHij + · · ·+ 1

N !
ai1i2...iNHi1i2...iN + . . .

)
, (112)

where ai1i2...iN (N = 0, 1, 2, . . . ) are tensorial coefficients that depend on x and t. Fur-
thermore, the Maxwellian distribution function f (0) is written as

f (0) = n

(
β

π

) 3
2

e−βC2

= n
( m
kT

) 3
2
ω(ξ), (113)

where ω(ξ) is the weight function:

ω(ξ) =
1

(2π)
3
2

e−ξ2/2, with ξi =

√
m

kT
Ci. (114)

On the basis of the weight function, the tensorial Hermite polynomials are written as

Hi1i2...iN (ξ) =
(−1)N

ω

∂Nω

∂ξi1∂ξi2 . . . ∂ξiN
, (115)

being orthogonal with respect to ω(ξ), i.e.,∫
ω(ξ)Hi1i2...iN (ξ)Hj1j2...jM (ξ)dξ = δMN ∆i1j1i2j2...iN jN . (116)

In the above equation, ∆i1j1i2j2...iN jN represents the sum∆i1j1i2j2...iN jN = δi1j1δi2j2 . . . δiN jN+
(all permutations of the j′s indices) and δMN is Kronecker’s symbol.
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5 GRAD’S METHOD OF MOMENTS

From (115) we can obtain the first four tensorial Hermite polynomials, namely,

H(ξ) = 1, Hi(ξ) = ξi, Hij(ξ) = ξiξj − δij, (117)

Hijk(ξ) = ξiξjξk − (ξiδjk + ξjδik + ξkδij). (118)

In terms of the tensorial Hermite polynomials we can write the thirteen moments of
the distribution function as

ϱ =

∫
m

(
kT

m

) 3
2

fHdξ, 0 =

∫
m

(
kT

m

)2

fHidξ, (119)

T =
m

3kϱ

∫
m

(
kT

m

) 5
2

f(Hii + 3H)dξ, (120)

p⟨ij⟩ =

∫
m

(
kT

m

) 5
2

f

(
Hij −

1

3
Hrrδij

)
dξ, qi =

∫
m

2

(
kT

m

)3

f (Hijj + 5Hi) dξ.(121)

We recall that the temperature is given by T = 2mprr/3kϱ.
The coefficients ai1i2...iN that appear in the distribution function (112) are determined

from the definition of the moments of the distribution function. Furthermore, for a thirteen
moment theory the distribution function (112) is written as

f = f (0)

(
aH + aiHi +

1

2
aijHij +

1

10
arriHssi

)
, (122)

where a, ai, aij and arri represent thirteen scalar coefficients to be determined. We note
that the term 1

3!
aijkHijk was decomposed according to

1

6

[
a⟨ijk⟩ +

1

5
(arriδjk + arrjδik + arrkδij)

]
Hijk =

1

6
a⟨ijk⟩Hijk +

1

10
arriHssi, (123)

and the part associated with the third order tensor 1
6
a⟨ijk⟩Hijk was not taken into account.

If we insert now the distribution function (122) into the definitions of the moments
(119) – (121), integrate the resulting equations and use the orthogonality properties of
the tensorial Hermite polynomials (116), we obtain that

a = 1, ai = 0, arr = 0, a⟨ij⟩ =
p⟨ij⟩
p
, arri =

2qi
p

√
m

kT
. (124)

Hence, the distribution function for the thirteen moments (with β = m/2kT ) becomes

f = f (0)

{
1 +

2β2

ϱ

[
p⟨ij⟩CiCj +

4

5
qiCi

(
βC2 − 5

2

)]}
, (125)

which is the so-called Grad’s distribution function.
In order to determine the non-convective fluxes pijk and qij we insert Grad’s distribu-

tion function (125) into the definitions (110)1 and (111)1 and obtain by integrating the
resulting equations:

pijk =
2

5
(qiδjk + qjδik + qkδij) , qij =

5p2

2ϱ
δij +

7p

2ϱ
p⟨ij⟩. (126)

RTO-EN-AVT-194 9 - 21 
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For the calculation of the production terms Pij and Qi we change the integration
variables (c, c1) 7−→ (g,G) so that in these new variables (110)2 and (111)2 become

Pij =

∫
m

2

[1
2

(
g′ig

′
j − gigj

)
−Gi

(
g′j − gj

)
−Gj (g

′
i − gi)

]
ff1dΓ, (127)

Qi =

∫
m

2

[
1

2
Gr (g

′
rg

′
i − grgi)−

1

2

(
G2 +

1

4
g2
)
(g′i − gi)−GiGr (g

′
r − gr)

]
ff1dΓ, (128)

where the product of Grad’s distribution functions in a linearized theory reads

ff1 = n2

(
β

π

)3

e−(2βG
2+β

2
g2)

{
1 +

4β2

ϱ
p⟨kl⟩

[
GkGl +

1

4
gkgl

]
(129)

+
8β2

5ϱ
qj

[
2Gj

(
βG2 +

β

4
g2 − 5

2

)
+ βgjGkgk

]}
. (130)

The integration of (127) and (128), yields

Pij = −
p⟨ij⟩
τr

, Qi = −2qi
3τr

, where τr =
5

16n

√
m

πkT

1

Ω(2,2)
, (131)

represents the relaxation time of the pressure deviator.
Once we know the constitutive equations for the non-convective fluxes (126) and pro-

duction terms (131) as functions of the thirteen basic fields ϱ, vi, pij and qi, a system of
linearized thirteen scalar field equations can be obtained from (106) – (109), namely

Dϱ + ϱ
∂vi
∂xi

= 0, (132)

ϱDvi +
∂p

∂xi
+
∂p⟨ij⟩
∂xj

= 0, (133)

3

2
nkDT +

∂qi
∂xi

+ p
∂vi
∂xi

+ p⟨ij⟩
∂vi
∂xj

= 0, (134)

Dp⟨ij⟩ +
4

5

∂q⟨i
∂xj⟩

+ 2p
∂v⟨i
∂xj⟩

= −
p⟨ij⟩
τr

, (135)

Dqi +
p

ϱ

∂p⟨ik⟩
∂xk

+
5

2

k

m
p
∂T

∂xi
= −2qi

3τr
. (136)

If we restrict ourselves to a five field theory described by the fields of mass density,
momentum density and temperature, the corresponding balance equations are given by
(132), (133) and (134). In this case the pressure deviator and the heat flux vector are no
longer variables, just constitutive quantities. We may use the remaining eight equations
(135) and (136) in order to obtain the constitutive equations for the pressure deviator
and for the heat flux vector, by considering only the equilibrium values of the pressure
deviator p⟨ij⟩ = 0 and of the heat flux vector qi = 0 on the left-hand sides of (135) and
(136). Hence, only the underlined terms remain, and we obtain

p⟨ij⟩ = −2µ
∂v⟨i
∂xj⟩

, where µ = pτr =
5

16

√
mkT

π

1

Ω(2,2)
, (137)

qi = −λ ∂T
∂xi

, where λ =
15k

4m
pτr =

75k

64m

√
mkT

π

1

Ω(2,2)
. (138)
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6 CHAPMAN-ENSKOG-GRAD COMBINED METHOD

Equations (137) and (138) represent the laws of Navier-Stokes and Fourier, respectively,
and the coefficients of shear viscosity µ and thermal conductivity λ correspond to the first
approximation to these coefficients found by applying the Chapman-Enskog method (see
(68)).

6 Chapman-Enskog-Grad Combined Method

We describe now another method to obtain the constitutive equations for the pressure
deviator and for the heat flux vector which combines the features of Chapman-Enskog
and Grad’s methods. In this method neither a solution of the integral equation is needed
– as in the Chapman-Enskog method – nor the field equations for the moments of the
distribution function are used – as in Grad’s method.

To begin with we observe that in the representation f = f (0)(1+ϕ) the deviation of the
Maxwellian distribution function ϕ in the Chapman-Enskog method – which is a unknown
quantity – can be written in terms of known quantities. These known quantities can be
chosen as the thirteen scalar fields of mass density, hydrodynamic velocity, temperature,
pressure deviator and heat flux vector which appear in Grad’s distribution function (125),
namely,

ϕ =
2β2

ϱ

[
p⟨ij⟩CiCj +

4

5
qiCi

(
βC2 − 5

2

)]
. (139)

In the framework of the Chapman-Enskog-Grad combined method we insert the rep-
resentation (139) into the non-homogeneous integral equation of the Chapman-Enskog
method (34), so that it becomes an equation for the determination of the pressure devia-
tor p⟨ij⟩ and of the heat flux vector qi. This equation reads

f (0)

{
1

T

(
βC2 − 5

2

)
Ck

∂T

∂xk
+ 2βCkCl

∂v⟨k
∂xl⟩

}
=

2β2

ϱ
p⟨kl⟩ I[CkCl]

+
8β2

5ϱ
qk I

[(
βC2 − 5

2

)
Ck

]
. (140)

For the determination of the pressure deviator, we multiply (140) by C⟨iCj⟩ and inte-
grate the resulting equation over all values of c, yielding

2
p

m

∂v⟨i
∂xj⟩

=
2β2

ϱ
p⟨kl⟩

∫
C⟨iCj⟩I[CkCl]dc. (141)

To solve the above equation for the pressure deviator p⟨kl⟩, we introduce the integral

Iijkl =

∫
CiCjI[CkCl]dc = A1δijδkl + A2(δikδjl + δilδjk), (142)

which was written in terms of Kronecker’s symbol with coefficients A1 and A2. If we
contract the integral Iijkl in two different manners, namely, Irrss = 9A1 +6A2 and Irsrs =
3A1 + 12A2 we get that

I⟨ij⟩kl =
3Irsrs − Irrss

15
δk⟨iδj⟩l. (143)
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We use now the relationship (143) to write (141) as

2
p

m

∂v⟨i
∂xj⟩

=
2β2

5ϱ
p⟨ij⟩

∫
C⟨rCs⟩I[C⟨rCs⟩]dc = −2β2

5ϱ
β(0,0) p⟨ij⟩, (144)

where β(0,0) is given by (65). Hence, it follows from (144) Navier-Stokes’ law

p⟨ij⟩ = −2µ
∂v⟨i
∂xj⟩

, where µ =
5

16

√
mkT

π

1

Ω(2,2)
, (145)

is the coefficient of shear viscosity.
We determine the heat flux vector by following the same methodology. We multiply

(140) by C2Ci and the integrate of the resulting equation over all values of c, resulting

5
kp

m2

∂T

∂xi
=

8β2

5ϱ
qk

∫
C2CiI

[(
βC2 − 5

2

)
Ck

]
dc = −8β2

15ϱ
α(1,1) qi, (146)

thanks to the following relationship

Iik =

∫
C2CiI

[(
βC2 − 5

2

)
Ck

]
dc =

Irr
3
δik. (147)

Hence, Fourier’s law follows from (146)

qi = −λ ∂T
∂xi

, where λ =
75

64

k

m

√
mkT

π

1

Ω(2,2)
, (148)

is the coefficient of thermal conductivity. Above, we have used the relationship α(1,1) =
β(0,0) which was obtained in the Chapman-Enskog method.

We can extended this method to obtain the successive approximations to the transport
coefficients, by introducing traceless second order tensors p

(s)
⟨ij⟩ and vectors q

(s)
i defined by

p
(s)
⟨ij⟩ = 15

(2s)!!

(2s+ 5)!!

∫
mS

(s)
5
2

C⟨iCj⟩ f dc, q
(s)
i = − 15(2s)!!

4β(2s+ 3)!!

∫
mS

(s)
3
2

Ci f dc, (149)

where p
(0)
⟨ij⟩ = p⟨ij⟩ represents the pressure deviator and q

(0)
i = qi the heat flux vector,

while the the higher-order moments p
(s)
⟨ij⟩(s > 0) and q

(s)
i (s > 1) do not have standard

designations.
For the moments of the distribution function characterized by ϱ, vi, T , p

(s)
⟨ij⟩ and q

(s)
i

the distribution function reads

f = f (0)

{
1 +

2β2

ϱ

∞∑
s=0

S
(s)
5
2

C⟨iCj⟩p
(s)
⟨ij⟩ −

8β2

5ϱ

∞∑
s=0

S
(s)
3
2

Ciq
(s)
i

}
, (150)

so that (140) becomes

f (0)

{
− 1

T
S
(1)
3
2

Ck
∂T

∂xk
+ 2βS

(0)
5
2

CkCl

∂v⟨k
∂xl⟩

}
=

2β2

ϱ

∞∑
s=0

p
(s)
⟨kl⟩ I

[
S
(s)
5
2

CkCl

]
−8β2

5ϱ

∞∑
s=0

q
(s)
k I

[
S
(s)
3
2

Ck

]
. (151)
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7 FOURTEEN MOMENT THEORY FOR GRANULAR GASES

The multiplication of (151) by βS
(s)
5
2

C⟨iCj⟩ and integration of the resulting equation

leads to

−5

2

ϱ2

mβ3
δ(0,r)

∂v⟨i
∂xj⟩

=
∞∑
s=0

β(r,s)p
(s)
⟨ij⟩. (152)

If we solve the above equation for the pressure deviator p⟨ij⟩ it follows the Navier-Stokes
law

p⟨ij⟩ = −2 [µ]p
∂v⟨i
∂xj⟩

, where [µ]p =
5

4

ϱ2

mβ3

(
β−1
)(0,0)

(153)

is the coefficient of shear viscosity in the pth successive approximation. In (153)2 (β
−1)

(0,0)

represents the first row and first column of the inverse of the p× p matrix β(r,s).

If we multiply (151) by βS
(s)
3
2

Ci and integrate the resulting equation we get

−75

16

n2k

β
δ(1,r)

∂T

∂xi
=

∞∑
s=0

α(r,s)q
(s)
i , (154)

which can be solved for the heat flux vector qi, yielding Fourier’s law:

qi = − [λ]p
∂T

∂xi
, where [λ]p =

75

16

n2k

β

(
α−1
)(1,1)

. (155)

The coefficient of thermal conductivity [λ]p in the pth successive approximation is given

in terms of the element (α−1)
(1,1)

of the inverse matrix.

The successive approximations of the transport coefficients of shear viscosity (153)2
and thermal conductivity (155)2 are the same as those which follow from the Chapman-
Enskog method.

7 Fourteen Moment Theory for Granular Gases

We may characterize a macroscopic state of the granular gas by the fourteen fields of mass
density ϱ, hydrodynamic velocity vi, pressure tensor pij, heat flux vector qi and contracted
fourth moment piijj which are defined by

ϱ =

∫
mf dc, ϱvi =

∫
mcif dc, pij =

∫
mCiCjf dc, (156)

qi =

∫
m

2
C2Cif dc, piijj =

∫
mC4f dc. (157)

The balance equations for the fourteen fields are obtained from the Boltzmann equation
(78) by multiplying it successively by m, mci, mCiCj, mC

2Ci/2 and mC4 and integrating
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7 FOURTEEN MOMENT THEORY FOR GRANULAR GASES

the resulting equations. Hence, it follows

∂ϱ

∂t
+
∂ϱvi
∂xi

= 0, (158)

∂ϱvi
∂t

+
∂

∂xj
(ϱvivj + pij) = 0, (159)

∂pij
∂t

+
∂

∂xk
(pijk + pijvk) + pki

∂vj
∂xk

+ pkj
∂vi
∂xk

= Pij, (160)

∂qi
∂t

+
∂

∂xj
(qij + qivj) + pijk

∂vj
∂xk

+ qj
∂vi
∂xj

− pki
ϱ

∂pkj
∂xj

− 1

2

prr
ϱ

∂pij
∂xj

= Qi, (161)

∂piijj
∂t

+
∂

∂xj
(piijjk + piijjvj) + 8qik

∂vi
∂xk

− 8

ϱ
qi
∂pik
∂xk

= P. (162)

In the above equations the new moments of the distribution function are defined by

pijk =

∫
mCiCjCkfdc, qij =

∫
m

2
C2CiCjfdc, piijjk =

∫
mC4Ckfdc, (163)

where qii = piijj/2. Furthermore, the production terms read

Pij =
1

2

∫
m
(
C1′

i C
1′

j + C ′
iC

′
j − C1

i C
1
j − CiCj

)
f1f d

2 (g · k) dk dc1 dc, (164)

Qi =
1

2

∫
m

2

(
C ′2

1 C
1′

i + C ′2C ′
i − C2

1C
1
i − C2Ci

)
f1f d

2 (g · k) dk dc1 dc, (165)

P =
1

2

∫
m
(
C ′4

1 + C ′4 − C4
1 − C4

)
f1f d

2 (g · k) dk dc1 dc. (166)

We can decompose the balance equation for the pressure tensor (160) in its trace and
traceless parts by introducing the traceless tensors p⟨ij⟩ and p⟨ijk⟩ defined by

pij = p⟨ij⟩ + pδij, pijk = p⟨ijk⟩ +
2

5
(qiδjk + qjδik + qkδij) , (167)

where p = nkT is the hydrostatic pressure. Hence, we obtain from (160) the equations:

∂T

∂t
+ vi

∂T

∂xi
+

2

3nk

(
∂qi
∂xi

+ p
∂vi
∂xi

+ p⟨ij⟩
∂vi
∂xj

)
+ Tζ = 0, (168)

∂p⟨ij⟩
∂t

+
∂

∂xk

(
p⟨ijk⟩ + p⟨ij⟩vk

)
+ p⟨ki⟩

∂vj
∂xk

+ p⟨kj⟩
∂vi
∂xk

− 2

3
p⟨kr⟩

∂vr
∂xk

δij

+
4

5

∂q⟨i
∂xj⟩

+ 2p
∂v⟨i
∂xj⟩

= P⟨ij⟩. (169)

Equation (168) is the balance equation for the temperature with ζ denoting the cooling
rate (81), while (169) is the balance equation for the pressure deviator.

We represent the non-equilibrium distribution function for the fourteen moments as

f = fM
(
a+ aiCi + aijCiCj + biC

2Ci + bC4
)
, (170)

where the fourteen coefficients a, ai, aij, bi and b do not depend on the peculiar velocity.
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7 FOURTEEN MOMENT THEORY FOR GRANULAR GASES

At equilibrium the contracted fourth moment reads

p
(0)
iijj =

∫
mC4fM dc = 15ϱ

(
kT

m

)2

, (171)

and it is convenient to introduce a dimensionless non-equilibrium part of piijj, denoted by
∆ and defined by

∆ =
1

15ϱ

( m
kT

)2 [
piijj − p

(0)
iijj

]
=

1

15ϱ

( m
kT

)2 ∫
mC4(f − fM)dc. (172)

The fourteen coefficients a, ai, aij, bi, b are determined from the definition of the basic
fields (156), (157) and (172) together with the non-equilibrium distribution function (170),
yielding

f = fM

{
1 +

2β2

ϱ
p⟨ij⟩CiCj +

8β2

5ϱ
qiCi

(
βC2 − 5

2

)
+

(
15

8
− 5βC2

2
+
β2C4

2

)
∆

}
. (173)

We can now determine the constitutive equations for the moments of the distribution
function by inserting (173) into the expressions (163) and subsequent integration of the
resulting equations. Hence, it follows

p⟨ijk⟩ = 0, piijjk = 28
kT

m
qk, qij =

5

2
ϱ

(
kT

m

)2

[1 + ∆] δij +
7

2

kT

m
p⟨ij⟩. (174)

The constitutive equations for the cooling rate ζ and for the production terms P⟨ij⟩, Qi, P
are obtained in the same manner and it follows from (81), (164), (165) and (166) through
integration that

ζ =
1

3τ

√
T

T0
(1− α2)

[
1 +

3∆

16

]
, P⟨ij⟩ = − 1

5τ

√
T

T0
(1 + α)(3− α)p⟨ij⟩, (175)

Qi = − 1

60τ

√
T

T0
(1 + α) [49− 33α] qi, (176)

P = −ϱ
τ

(
kT

m

)2

(1− α2)(2α2 + 9)

√
T

T0

{
1 +

30α2(1− α) + 271− 207α

(2α2 + 9)(1− α)

∆

16

}
. (177)

We have introduced in the above equations a mean free time in terms of a reference

temperature T0, namely, τ =
√

m
πkT0

/4nd2. Furthermore, we have considered in the above

expressions only linear terms in ∆. For the elastic case α = 1 and the production terms
(175) – (177) reduce to

ζ = 0, P⟨ij⟩ = − 4

5τ

√
T

T0
p⟨ij⟩, Qi = − 8

15τ

√
T

T0
qi, P = −8ϱ

τ

(
kT

m

)2√
T

T0
∆. (178)

From the knowledge of the constitutive equations in terms of the basic fields, we get
– by inserting (174) – (177) into the balance equations (158), (159), (161), (162), (168)
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and (169) – the following linearized system of fourteen field equations for ϱ, vi, T , p⟨ij⟩”
qi and ∆:

Dϱ+ ϱ
∂vi
∂xi

= 0, ϱDvi +
∂p

∂xi
+
∂p⟨ij⟩
∂xj

= 0, (179)

DT +
2

3nk

(
∂qi
∂xi

+ p
∂vi
∂xi

)
+
T

3τ

√
T

T0
(1− α2)

[
1 +

3∆

16

]
= 0, (180)

Dp⟨ij⟩ +
4

5

∂q⟨i
∂xj⟩

+ 2p
∂v⟨i
∂xj⟩

= − 1

5τ

√
T

T0
(1 + α)(3− α)p⟨ij⟩, (181)

Dqi +
kT

m

∂p⟨ij⟩
∂xj

+
5(kT )2

2m

(
n
∂∆

∂xi
+∆

∂n

∂xi

)
+

5k2Tn

2m

∂T

∂xi

= − 1

60τ

√
T

T0
(1 + α) [49− 33α] qi, (182)

15ϱ

(
kT

m

)2

D∆+
8kT

m

∂qj
∂xj

=
ϱ

τ

(
kT

m

)2

(1 + α)

√
T

T0

{
(1− 2α2)(1− α)

−
[
81− 17α+ 30α2(1− α)

] ∆
16

}
. (183)

In (183) we have used (179) and (180) in order to eliminate the time derivatives of ϱ and
T and neglected products of ∆.

Now we search for spatially homogeneous solutions of the fourteen field equations
where the fields depend only on time. The field equations (179) – (183) in this case read

dϱ

dt∗
= 0,

dvi
dt∗

= 0, (184)

dT∗
dt∗

+
T

3
2
∗

3
(1− α2)

[
1 +

3∆

16

]
= 0, (185)

dp∗⟨ij⟩
dt∗

= −(1 + α)(3− α)

5

√
T∗p

∗
⟨ij⟩, (186)

dq∗i
dt∗

= −(1 + α)

60

√
T∗ [49− 33α] q∗i , (187)

d∆

dt∗
=

1 + α

15

√
T∗

{
(1− 2α2)(1− α)− [81− 17α+ 30α2(1− α)]

∆

16

}
. (188)

Above, the following dimensionless quantities were introduced: time t∗ = t/τ , temperature
T∗ = T/T0, pressure deviator p∗⟨ij⟩ and heat flux vector q∗i .

We may infer from (184) that the mass density and the velocity fields remain constant
in time, while (185) – (188) compose a system of coupled differential equations for the
determination of the temperature T∗, pressure deviator p∗⟨ij⟩, heat flux vector q∗i and
fourth moment ∆. Since this system of equations is non-linear, it was solved numerically
by considering the initial conditions T∗(0) = 1, p∗⟨ij⟩(0) = 1, q∗i (0) = 1 and ∆(0) = 1. The
left frame of Figure 3 shows the time decay of the temperature (solid line) in comparison
with Haff’s law (dashed line) which is the solution of (185) when ∆ = constant (see (190)
below). We may conclude that the temperature decay T∗ follows closely Haff’s law and by
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increasing the restitution coefficient the time decay of the temperature is less accentuated.
Furthermore, from the right frame of the Figure 3 we may observe that the pressure
deviator, the heat flux vector and the dimensionless fourth moment decay also with time
and the trend to equilibrium is more pronounced for the pressure deviator followed by
the heat flux vector and the dimensionless fourth moment. The curves in the right frame
were obtained for the restitution coefficient α = 0.75. By increasing the value of the
restitution coefficient the time decay of the pressure deviator and dimensionless fourth
moment are more accentuated but the one of the heat flux vector is less pronounced, since
it is connected with the transport of energy which is directly affected by the inelasticity.

0 10 20 30 40 50
t
*

0

0.2

0.4

0.6

0.8

1

T
*
(t)

Haff’s law

α=0.75

α=0.95
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∆(t)
p*

<ij>
(t)

q*
i 
(t)

α=0.75

Figure 3: Left frame: time decay of the temperature. Right frame: time decay of the
pressure deviator, heat flux vector and fourth moment.

From the analysis of the differential equations (186) we note that the pressure deviator
and the heat flux vector do not evolve with respect to time when the initial conditions for
these fields vanish. However, a vanishing initial condition for ∆ implies from (188) that it
could evolve with time. An interesting case is the one where the fourth moment remains
constant in time and which is expressed by the condition that the right-hand side of (188)
must vanish, i.e.,

∆ =
16(1− α)(1− 2α2)

30α2(1− α) + 81− 17α
= a2. (189)

The above expression for ∆ is the same as that found for the coefficient a2 which follows
from the Chapman-Enskog method (see (96)). We note that ∆ vanishes in the elastic case
where α = 1.

If we substitute the expression of ∆ given by (189) into (186) and the integrate the
resulting equation, we get Haff’s law

T∗(t) =
1{

1 + (1−α2)
6

[
1 + 3(1−α)(1−2α2)

81−17α+30α2(1−α)

]
t∗

}2 . (190)

By considering the elastic case α = 1, the temperature T∗ remains constant in time
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and
p∗⟨ij⟩(t) = p∗⟨ij⟩(0)e

− 4
5

√
T∗t∗ , q∗i (t) = q∗i (0)e

− 8
15

√
T∗t∗ , (191)

i.e, both decay exponentially with time, which is a well known result.
In the case of a five field theory described by the fields of mass density, velocity

and temperature, the pressure deviator and the heat flux vector are no longer fields but
constitutive quantities. The constitutive equations for these quantities are obtained from
the eight remaining field equations (181) and (182) by inserting the equilibrium values
p⟨ij⟩ = 0 and qi = 0 on the left-hand side of these equations, yielding the laws of Navier-
Stokes and Fourier

p⟨ij⟩ = −2µ
∂v⟨i
∂xj⟩

, qi = −λ ∂T
∂xi

− ϑ
∂n

∂xi
, (192)

respectively. The transport coefficients of shear viscosity µ, thermal conductivity λ and
the coefficient ϑ are given by

µ =
5

4d2

√
mkT

π

1

(1 + α)(3− α)
, λ =

75k

2d2m

√
mkT

π

1

(1 + α)(49− 33α)
, (193)

ϑ =
75kT

2nd2m

√
mkT

π

16(1− α)(1− 2α2)

(1 + α)(49− 33α)[30α2(1− α) + 81− 17α]
. (194)

We note that if we consider a thirteen moment theory the heat flux vector is proportional
only to the temperature gradient and the dependence on the particle number gradient
does not show up. This fact can be understood by observing that this dependence comes
out from the underlined term in (182) which depends exclusively on the dimensionless
fourth moment. Furthermore, the transport coefficients (193) and (194) are not the same
as those obtained from the Chapman-Enskog method (104) and (105), and it seems that
the equivalence of the two methods can be attained if we consider more moments of the
distribution function in Grad’s moment method.
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