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Outline

 On board Information processing

 Main Technologies

 Digital Signal Processors  -  DSP

 Reconfigurable Computing, FPGAs

 Embedded processing

 Self Reconfigurable processing

 Evolvable Hardware



Onboard  UAV  Operations



Onboard Processing Requirements

 Computational Performance

 sufficient to accomplish complex imaging algorithms

 Low power and Low Energy

 management of circuitry, architecture

 Minimal physical characteristics

 packaging, weight

 Communication Performance

 antennas, digital soft radio, protocols

 Storage 



Key Component Technology

 Digital Signal Processors,  DSPs

 Reconfigurable processors,  FPGAs

 Embedded processors 



Digital Signal Processors  (DSPs)



What  are DSPs ?

 Embedded microprocessors that are designed to handle 
digital signal processing applications in a very cost effective 
manner

 Current market leaders:

     TI, Motorola, Lucent

 Market well over - $ 50 Billions



Nature of DSPs

 DSPs  utilize special hardware to meet performance,  power, 
and price points

  Sacrifice orthogonality and ease-of-use to meet goals

   Assume hand-assembly or libraries used for core  algorithms

  Compiler mostly used for control and glue logic



DSP principle

 Converting a continuously changing waveform (analog) into a 
series of discrete levels (digital)



DSP principle

 The waveform is sliced into equal segments and the 
amplitude is measured in the middle of each segment

 The measurements make up the digital representation of 
the waveform
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ADC  and  DAC

 ADC:  analog conversion to digital

 DAC:  digital conversion to analog

 Both operations are approximate as the waveforms do not 
completely match  - filtering needed to smooth them out 



DSP algorithms

 Basically various filtering type of algorithms

 FIR:  finite impulse response

 IIR:  infinite impulse

 Bandpass filter

 AR:  autoregressive



FIR filter

 Most widely used filter

 series of delays, multipliers, and adders

 frequency response output fine-tuned to filter's length



DSP - Architecture Characteristics

 DSP architecture is designed to solve one problem well

 Digital filters (FIR, IIR) and FFTs

 In Real-Time

 Architecture features added to speed up this problem

 MAC:  multiply & accumulator, speedup FIR tap

 Circular buffer: speedup shifting FIR delay registers

 RISC based: single clock per instruction

 Harvard Architecture: separate instruction & data

 Word oriented



DSP characteristics

 Disadvantages:  not a general purpose computer

 slow character processing

 No multi-user operating system support

 No virtual memory, no translate lookside tables

 No memory page protection (Read, Write, Execute)



FIR filter architecture

 Example



FIR on typical processor

 simple assembly FIR  routine



Early DSP architecture

 simple datapath and memory structure



Typical architectures

Harvard architecture was coined to 
describe machines with separate 
memories.
Speed efficient:  Increased parallelism.

instructions data

ALU I/OALU I/O

instructions

and

data

Data busAddress bus

Von Neuman architecture
Area efficient  but requires higher bus 
bandwidth because instructions and 
data must compete for memory.



FIR filter on conventional DSP

Use of dot product

Do dotprod UNTIL CE;

dotprod:

    MR = MR + MX0 * MY0 (SS), 

    MX0 = DM(I0,M0), 

    MY0 = PM(I4,M4);



Baseline DSPs

 Common attributes

 Arithmetic:  16 or 24-bit  or even 40-bit fixed point (fractional), 
or 32-bit arithmetic operations

 Instructions:  16-, 24- or 32-bit instructions

 Issue:  one instruction per cycle, single-issue

 complex, compound instruction encoding, many operations

 highly constrained, non-orthogonal architecture

 dedicated addressing hardware

 specialized addressing modes



Baseline DSP 

 attributes (cont)

 on-chip memory architecture

 dedicated hardware for loops and other execution control

 on chip peripherals and I/O interfaces

 low cost, low power, low memory usage



Increasing Parallelism

 Boosting performance beyond faster clock speeds requires the 
processor to do more work per cycle

 Two ways to increase the processors' parallelism:

 Increase the number of operations  that can be performed in 
every cycle

 increase the number of  instructions  that can be issued and 
executed in every cycle

 this leads to pipelining and parallelism



More Operations per instruction

 How to increase the number of operations performed in each 
instruction?

 Add execution units (multiplier, adder,  i.e.  add hardware)
 enhance the instruction set to take advantage of extra hardware
 Possibly, increase the instruction word length (width) 
 Use wider buses to keep the processor fed with more data

 Add SIMD capabilities  -   data parallelism



Architectures for DSPs

 Enhanced conventional DSPs

 Lucent DSP16xxx, ADSP 2116x

 VLIW (Very Long Instruction Word) DSPs

 TI TMS320C6xxx, Siemens Carmel, Philips Trimedia

 Superscalar DSP

 ZSP ZSP164xx

 Hybrid processors

 PowerPC with Altivec Hardware, TriCore



Example



Enhanced conventional DSPs

 More parallelism via:

 Multi-operation data path
 e.g., 2nd multiplier, adder
 SIMD capabilities

 Highly specialized hardware in core
 e.g., application oriented datapath operations (crypto)

 Co-processors
 Viterbi decoder, FIR filtering, mpeg7, etc



SIMD  –  single instruction multiple data

 Split words into smaller chunks for parallel operations

 Some SIMD processors support multiple data widths, such as 
16-bit, 8-bit,...)

 For example, Lucent DSP16xxx, ADI ADSP 211x



Challenges to SIMD

 Algorithms, data organization must be amenable to data 
parallelism

 Programmers must be creative, pursuing alternatives

 Reorganization penalties can be significant

 SIMD most effective on algorithms that process large blocks of 
data



More Instructions per clock

 How to increase the number of instructions issued and 
executed in every clock cycle?

 Use VLIW techniques  
 static scheduling

 Use Superscalar techniques  
 dynamic scheduling



Superscalar  vs  VLIW:  scheduling



VLIW concept



VLIW Application

 FIR filter loop 



Evaluation

 Advantages

 performance

 regular structure

 easier to program – depending on tools

 Disadvantages

 difficult tools  -- compilers/schedulers

 deep pipeline latencies

 code size explosion

 higher power consumption



Superscalar  DSPs

 Characteristic

 hardware support for instruction control

 2-4  instruction issue per cycle

 lots of parallelism

 Example FIR filter

 All four instructions exec in parallel



Evaluation

 Advantages

 performance

 easier tools  -- compilers

 smaller code size

 Disadvantages

 dynamic behavior complicates software development

 execution time unpredictability

 high energy consumption 



Hybrids

 Typical approach:  Embedded DSP and microcontrollers

 heterogeneous multi-core systems including 
 Regular processor cores
 DSP co-processors
 Advanced cryptoprocessors

 Design methods

 tweaking a GPP with DSP support, or

 tweaking a DSP with some microcontrol support, or

 entire new design from scratch



Example:   TI   OMAP Hybrid  Processor



Reconfigurable  Processing



Reconfigurable Processing

 Ability of a device to change its internal structure, 
functionality, and behavior, either on command,  or 
autonomously.

 Two methods for execution of algorithms:

  hardwired technology:  high performance

  software-programmed microprocessors:  high flexibility

 A third approach:   Reconfigurable computing                           

 intended to fill the gap between hard and soft, achieving 
potentially much higher performance than software, while 
maintaining a higher level of flexibility than hardware



Reconfigurability  Classes

 Static  Configuration:   performed while device is off line.

 Dynamic  Configuration:   device is on-line, "on the fly".

 Self Reconfiguration:    performed autonomously by device.

 Evolution  type:   Self Reconfiguration with adaptation such as 
replication and growth,  "bio-inspired". 



Reconfigurability  Spectrum

Fixed HW

Reconfigurable

Self 
reconfigurable

Evolvable

Flexibility,  
Fault Tolerance

Generation

1st 4th3rd2nd



Reconfigurable  Logic

 Currently implemented by FPGAs

 Static reconfiguration is achieved by downloading into the 
FPGA chip a new configuration  while the FPGA is off-line

 obvious disadvantages in configuration time



 Traditional  FPGAs 



Static  Configuration



Dynamic Configuration

 It is achieved by inserting new FPGA functionality on the fly, 
i.e. while the chip is active

 Certain areas of the device can be reconfigured while others 
remain unaffected

 In practice,   partial configuration is used to achieve run-time  
dynamic reconfiguration

  Xilinx Virtex families

  Altera FPGAs

  Atmel, etc. 



Partial Configuration styles

 Module based:  distinct portions of the design (modules) that 
can be reconfigured separately (Bus Macros)

  independent modules

  communicating modules

 Difference based:  making small design changes in local areas 
e.g. LUTs,  block RAMs,  but not routing



Virtex II  Architecture

 CLBs,  Block RAMs, Config Columns



Module-based Partial Configuration



Bus  macros

 Connecting reconfigurable and fixed modules in partial 
configuration maps 



Major Constraints

 Size and position of a module can not be changed

 Modules can communicate only with neighbors

 No global signals are allowed except clocks

 I/O blocks exclusively accessed by adjacent modules



Difference-based Partial Configuration

 Small changes on the FPGA configuration 

 Manually done, usually via an FPGA Editor 

 What can be modified? 

 LUTs equations 

 BRAM contents and BRAM write modes 

 I/O standards and pull-ups or pull-downs on external pins 

 Flipflop initialization and reset values, 

 What cannot be modified? 

 Routing,  very dangerous:  internal contentions



Self  Reconfiguration

 A second way for dynamic reconfiguration: 

 The chip modifies its own configuration  based on peripheral 
or internal signals 

    This may occur 

  under command, or 

   autonomously

 This idea leads to the concept of  Self  Reconfiguration



Why Self Reconfiguration ?

 Ability to operate  autonomously  in remote,  challenging and 
hostile environments

 Perform on-board processing and communication

 Variability of function and operation modes

 Quick response to changing ambiance



Potential Self Reconfiguration Apps

 Space exploration probes

 Military & commercial 
satellites

 UAVs  and  µ UAVs

 deep underwater rescue 

 nuclear or chemical plants

 autonomous robotics



Key Issues of Self Reconfigurable architectures

 Autonomy

 Real time response

 Low power and energy consumption

 Reliability



About UAVs:  Rationale 

 Increasing need for flexible embedded processing on board a 
variety of aerial vehicles especially µUAVs.  

 To perform their mission,  µUAVs need unconventional on 
board processing capabilities:

 Performing multitude of computationally intensive functions

 Operating autonomously, adapting from one input to another

 Meeting low power and reliability requirements



Rationale (cont)

 Reconfigurable processors based of FPGAs have two traits:  
flexibility and parallel processing.  

 However, FPGAs lack autonomous adaptation capability while 
suffering from power consumption. 

 Clearly, mini aerial vehicles, e.g. satellite sensors and µUAVs,  
need  autonomous, adaptable and dynamically reconfigurable 
processors, beyond conventional FPGAs.



Sensor Web Scenario

Communication 
Tradeoffs  

  Bandwidth =

   Buffer/Latency,

  Data Rate,

  Protocol,

  Error Bit Rate



Self Reconfiguration Approach

 Novel autonomous, adaptable and and self reconfigurable 
system has been proposed consisting of 2 basic units:

 Adaptation software manager

 Dynamic reconfigurable hardware fabric

 The approach is based on the twofold concept:          
adaptation of the application software coupled with      
dynamic reconfiguration of the hardware.



Approach (cont)

 Architecture:  reconfigurable at four Layers:

   Layer 4:   the Adaptation Manager.

   Layer 3:   the Real-Time Operating System RTOS.  

   Layer 2:   the Embedded Processors   and Memory. 

   Layer 1:   the Reconfigurable Hardware Fabric. 



Architecture:   Non Traditional Reconfigurable



Reconfiguration  Strategy   

 Occurs at several levels:

 Selection of  application modules by the Adaptation Manager. 

 Mapping of modules into the hardware fabric or the embedded 
processors, depending on performance requirements.  

 Configuration of the hardware fabric and the embedded 
processor to meet performance and data delivery 
requirements.

 The reconfigurable hardware is essential for mapping of 
communications algorithms such as :  

 IR filtering,  

 multichannel CDMA, 

 complex encoding, 

 advanced imaging.



Adaptation manager

 The adaptation manager captures real time sensor inputs and 
interacts with the Function Libraries.

 The Libraries store pre-built configurations for application 
functions 

 The manager decides on which configuration to be fed into 
the hardware fabric. 

 The manager also involves a software learning process to 
adapt configuration decisions.



Self Adaptation  -  Dynamic Configuration



Reconfigurable Fabric

 The reconfigurable fabric consists of a number of processing 
tiles each having capability of dynamic reconfiguration

 Tiles are equipped with regularly structured functional units 
capable of operation level parallelism. 

 Tiles can be hierarchically assembled at several levels using 
dynamically interconnected switch-buffer matrices.  

 Distributed buffer memory

 Configuration can be achieved within a tile, and along several 
interconnected tiles.

 This approach provides good scalability, growth and fault 
tolerance.



Reconfigurable Fabrics and Tiles



Reconfigurable Tiles



Core Switch Matrix



Self  Reconfigurable  and  Evolvable Systems

 There is an overalap between the two concepts

 Self reconfiguration operates in real time  

 Evolvable reconfiguration implies self-growth and replication 
of the reconfigurable hardware at slower pace.  

 Evolvable hardware use bio-inspired approaches and may 
need technologies not based on CMOS. 



Evolvable Hardware 

 Evolvable Hardware, EHW, is capable of on-line adaptation 

 EHW can change its architecture and behavior dynamically 
and autonomously, either through software or by directly 
morphing the hardware. 

 At present, EHW use evolutionary algorithms or genetic 
algorithms as their main adaptive mechanism.  However, 
other techniques are possible such as Neural Networks. 



Evolvable:   Inspiration from Nature



Evolvable Hardware Classes

 Extrinsic EHW:  simulates evolution by software and only loads 
the best configuration to hardware in each generation.

 Intrinsic EWH:  simulates evolution directly in hardware.

 Most evolution approaches are extrinsic or off-line types



Evolutionary design and adaptation of circuits



Evolutionary design:  extrinsic - intrinsic



Genetic Evolutionary Operations

 Selection

 Crossover

 Mutation

 Use an Objective or Fitness function



Principles of Evolution

 Coding solutions as chromosomes.  

 Operating on code, not solutions.  

 A string is a candidate solution.



Evolutionary implementation 

 Current approaches to EHW implementation:

 use powerful compute engines to run GAs for evolution

 use reconfigurable HW or FPGAs to load evolved HW

 Requires:  

 fast evaluation

 low cost for failure

 Future:   everything should be seamlessly integrated in HW



Where is Hardware Evolution ?



Some examples:   evolving an FPGA design



Is it practical ?

 For most practical real world problems, human designers plus 
tools still outperform evolution

 However,

 Hardware evolution does have some niche applications



Adaptive  Systems 

 Evolution  +  Reconfigurable Hardware  =  Real-time Adaptation

 Can adapt autonomously to changes in environment  

 Useful when real-time manual control not possible   

  E.g. spacecraft systems (sensor processing) 

 Non-critical systems are more suitable   

 E.g. data compression systems   

 plant power management   

 ATM cell scheduling



Traditional vs. Evolutionary Search

 Traditional design decomposes from the top down into known 
sub-problems 

 Applies constraints to ensure design behaves like known sub-
problems 

 Evolution works from the bottom up 

 Evolution uses fitness to guide performance 

 Not directed by prior knowledge 

 Oblivious to complexities of the interactions within the circuit



Innovative  Circuits

 Circuits that could not be found using traditional design 
abstractions are innovative 

 Solution may have high performance 

 May use less gates that traditional designs 

 Analysis shows internal non-digital behaviour

 Examples:  evolvable multiplier, adder



Traditional vs Evolvable Multiplier

Traditional =  26 gates                                           Evolved =  21 gates + 7 MUXes



Application Examples of custom EHW



Evolved Antennas



EHW vs. Neural Networks  (NN)



EHW vs.  Self Reconfigurable,  again

 Key issue:   real time efficiency

 Self reconfigurable hardware requires fast responses whereas 
Evolvable HW is still slow paced

 Combining the two is important for future applications



Layered approach to EHW/Self Reconfigurable

 Key feature:  interaction and coordination of two basic entities

 evolvable adaptation software

 dynamic reconfigurable hardware

 We could have used an evolution-based approach to design 
both units, i.e.  the manager and the fabric.  However,

 An Evolvable Hardware fabric would ultimately require 
unconventional hardware, not yet available.

 The Evolvable Manager uses a software approach based on  
Neural Net learning technique to evaluate and perform 
adaptation of application functions



Self Adaptation  -  Dynamic Configuration



Evolvable Adaptation Model

 Evolvable hardware model consists of two interacting 
components

 dynamic reconfigurable hardware and 

 a neural network

 The idea is to achieve evolution in the hardware by evolving 
configuration candidates via the neural network and testing 
them for fitness.



Evolvable  Platform



Evolution Modes

 Operation mode:  Neural Net (NN)  generates configuration 
code

 Training mode:  NN incrementally evolves configurations by 
training itself on input stimuli as well as configuration data 
that are recurrently applied after being improved by genetic 
operations.

 Other evolution modes e.g. self-diagnosis and self repair are 
also feasible.



Training

 During training, candidate configurations are selected from a 
population via genetic operations.  

 Training continues until a candidate passes a fitness test 
depending on responses from the reconfigurable fabric. 

 Training may start on command or autonomously, in new 
environment, new functions or upgrading for better 
performance.

 A major aspect of this scheme is to design a robust training 
mechanism for configuration evolution of the dynamic 
reconfigurable  fabric.



Evolvable  Hardware  Training



Summary  and  the  Future

 Self reconfigurable and evolvable systems have the potential 
to be an important  future technology especially for avionics 
and space infrastructure.

 EHW based on bio-inspired paradigm using GAs and software 
simulation off-line to evolve and discover hardware.

 This is fine in slow growth and self paced evolution but not in 
real time.

 In the future, there is need to integrate seamlessly Evolvable 
software with Neural Network techniques into dynamic 
reconfigurable hardware platforms.
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 Motivation
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 Inquiry Processing and Query Processing

 Training

 Conclusions



Motivation:  Autonomous UAVs

 UAV scenarios

 Civilian and Military applications

 Threat assessment, rescue & recovery, reconnaissance

 UAV real time info flow 

 Queries and Inquiries to UAVs

 Sensory signal processing

 Feature processing

 UAV Response feedback

 Networking UAV 



Autonomous  UAV  Scheme



Autonomous UAV Real Time Requirements

 Queries and Inquiries to UAVs

 Autonomous & Hierarchical Cognitive Learning

 Image processing

 Master/Slave UAV organization

 Networking formations and UAV collaboration

 Mission strategies



System Concept



System Concept (cont)

 The system architecture and methodology manages the real-
time information flow between CC and the Master UAV.

 A key property is the adaptation and learning capability of the 
Master  in order  to respond intelligently to CC queries.



System Architecture

 A central command control 
(CC) communications center 
interacts in real time with a 
Adaptable  Mobile Agent 
(AMA) on the Master UAV.

 The Master collects sensory 
information.

 CC evaluates feedback,  
accepting or  modifying it. 

 CC resends query and 
updates its database.



System Architecture Information Flow

 CC prepares queries for the 
Master

 Master processes queries 

 knowledge base

 sensory data

 CC evaluates feedback,  
accepting or  modifying it 

 CC resends inquiry and 
updates its database 



System Architecture information flow

 System Architecture 
processes the information 
flow for an inquiry session 
between CC and the 
Master.

 Queries operations may 
involve:

 Processing & analyzing 
“existing” knowledge 

 “Augmenting” the 
knowledge base



System Architecture information flow (cont)

 Adaptive Query Learning:

 Due to rejections or 
otherwise unsatisfaction of 
CC's evaluation of result

 Incremental Sensory 
Adaption & Learning:

 Preloaded Master with 
sensory knowledge (i.e. 
High altitude video)

 Independently of its current 
mission, the Master is 
updating it's sensory



Inquires

 A key element of the CC is an inquiry processor which 
transforms user inquiries into formal queries for the AMA.

 An inquiry consists of a number of phrases that resemble a 
restricted natural language specifically

 Consists of an <action>, <qualifiers> and a single <object>.



Inquires:  Feature Qualifiers

 For example, “find preferred in Ohio landing area”

 where 

<action> is “find”; 

<qualifiers> are “preferred” &  “in Ohio”

and <object> is “area”.

 Feature Qualifiers are characterized by a particular trait which 
exhibits a fuzzy description such as “good” or “preferred”.

 For example, “preferred” has a method describing the human 
meaning into low level terrain sensory features, e.g. 
“clearance”, “roughness”, etc.



Prolog

 Declarative Language

 Declarative Clause Grammars, DCG

 Straight forward mapping to parallel hardware technologies

 Al-based goal searching and Pattern Matching

 Image processing and object recognition

 Optical technologies

 Formulate logical database queries

 Natural-like language processing

 Biophotonics technologies

 Associative memories



Queries

 A formal query is a symbolic expression which can be 
described by Prolog's Declarative Clause Grammar (DCG).

 For example, the CC Inquiry

 find preferred in Ohio landing_area

 becomes transformed the AMA query fro the Master UAV:

 find ( clearance > 7 and roughness > 8)  and in Ohio 
landing_area

 Feature qualifiers require offline and online learning by using 
a combination of supervised learning (i.e. Neural Nets) and 
fuzzy system descriptions.



 Feature Training Strategies

 Hierarchical training modules

 Sensory features on distinct sensor modules on Master UAV

 Preference training module

 Two levels of Learning

 Adaptive feature learning

 Preference-based learning

 Inquiry:   find preferred in Ohio landing_area

 Query:    find ( clearance > 7 and roughness > 8)



Master UAV architecture

 Adaptive recognizer of 
patterns and images through 
sensors

 For Features & Preferences

 Reconfigurable processor

 On board Library of training   
functions

 I/O interfaces and sensors



UAV Training Process

 Hierarchical training modules

 Training sensory features on distinct sensor modules on UAVs

 Preference training module 



Training Strategy



Training strategies

 Master:

 Filtering for each parameter data type

 Parameter sensory training based on query preference

 Trained data collected into one feature vector

 Central station (CC):

 Similar to Master but operating on simulated data 

 Software filtering

 feature vector data at the Central  derived by simulations using 
the training knowledge from the Master.



 Query processing:  Master

sensory trainer is stored in the local knowledge base

query execution process real-time data from the local sensors.



Query processing:  Slave

Slave UAVs organized into fleets to collect multiple data

Collaborative trainer:  resolving inconsistencies from multiple UAV data.



Key issues in Master (AMA)

 Associative memories and processors is an enabler 
information technology

 All Master subsystems will benefit from large  associative 
memories

 Command and Control, CC

 Inquiry system  –  Prolog engine

 Preference Learning  –   Neural Network Classifier

 Adaptable Mobile Agents, AMA

 Query learning – Supervised Learning, Fuzzy Logic

 Cognitive Image Recognizer – Unsupervised Learning

 Sensory Learning – Supervised Learning



Key Attributes in UAV Scheme

 All UAV subsystems will benefit from large  biophotonic 
associative memories, especifically

 Command and Control

 Query system  –  Prolog engine

 Preference Learning  –   Neural Network Classifier

 Master UAV

 Cognitive Image Recognizer

 Sensory Learning

 Slave UAVs

 Advanced imaging  –   wavelets 

 Collaborative learning

 Associative memories and processors are enablers for 
information technology on UAVs



Example:  terrain landing



Feature properties



Cluster Charaterization



Query examples and answers



Conclusions

 System Architecture and methodology to manage the massive 
information flow and inquires between CC and AMA in 
realtime.

 Bio-inspired learning techniques are needed for query and 
inquiry processing for feature qualifiers and preferences.

 Bio-inspired learning are needed for pattern recognition of 
sensory information.

 Prolog, optical and biophotonic technologies are needed for 
processing realtime massive information flow.
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Outline

 Mission scenario

 Heterogeneous sensor nets

 Characteristics of platforms

 Information management

 Our Approach

 On board UAV architecture

 Adaptive processing

 Evolutionary learning and training

 Associative cognition



Distributed Sensing Concept

Three coordinating sensory networks:  ground sensors,  UAVs, trooper sensors



Expeditionary  Operation

 Three distributed sensory networks

 ground sensors

 UAV sensors

 trooper sensors

 The trooper sensory is normally operating in passive mode, 
i.e. avoiding transmissions while receiving data from UAVs 
and ground sensors.

 UAV sensors coordinate with the ground sensors to track 
information about the target.  This information is transmitted 
to troopers.

 The ground sensory consists of  redundant heterogeneous  
sensors that are dispersed en masse to monitor targets.  



Ground Sensors

 Sensors are heterogeneous, redundant and disposable.  

 They are  self-organized by their monitoring threat identity 
types:

 Motion

 Sound

 Imaging (infrared)

 Proximity, location

 Chemical, bio, radiation

 Ground sensors communicate point-to-point with other sensors

 Ground sensors  normally operate in passive monitoring mode. 
They are activated by the UAVs for transmission.  



UAV Sensors

 UAV sensors are equipped with long-range communication 
devices.  They respond to ground sensory, troopers and other 
UAVs.

 UAVs may be organized in hierarchical network formations, i.e. 
master UAVs and lower flying mini UAVs.

 Possible intelligent information and threat discovery by UAVs

 Threat identity

 threat coordination

 Overall threat assessment

 Threat pattern tracking

 Information bridge between troopers, ground sensors and 
distant command station.



Trooper Sensors

 Trooper sensors are carried on soldiers to retrieve information 
normally from the UAVs, occasionally the ground sensors and 
in emergency the command center

 Characteristics

 Support information retrieval and interpretation

 Support coordination among trooper sensors  

 Passive sensory: mostly receiving 

 Threat avoiding and/or safe threat practice for safety of 
troopers



Data Gathering Principles

 Troopers gather data from their own sensors and from nearby 
sensory assets, i.e.  UAVs  and ground sensors.  Sensory data 
is relayed all the way from assets located close to the target.

 Gathering of sensory data is determined by transmission rate, 
transmission range, quantity, quality, energy and real time 
constraints.

 There is priority of selecting sensory data types (for example, 
audio vs. visual) based on mission objectives, threat level, etc.

 Ground sensors transmit raw data with small data rates 

 UAVs can transmit processed data that may have been 
analyzed by the UAV systems or at the Command Station.



 Sensor Suite

 Depends on mission requirements

 expeditionary missions   to discover hidden hostiles under 
cover and slow moving targets

 UAV sensors: visual, audio, infrared

 Ground sensors: motion, chemical, possibly sonar

 reconnaissance missions  to passively gathering data

 UAV sensors: long-range visual, infrared, radar

 Ground sensors: audio, possibly visual

 surveillance missions  to monitor behavior of people, objects, 
or processes in large region

 UAV sensors: visual, infrared

 Ground sensors: motion, audio, possibly visual



Platform characteristics improvement

 UAVs:  onboard processing and communication capabilities. 
Adaptive hardware and software to the mission objectives.   
Associative processing to enable real time identification and 
recognition.

 Ground sensors: Minimal computation and communication.  
Very low energy consumption, possibly energy scavenging.  

 Troopers:  Low power processing and passive communication 
capability.



Validation and experimentation

 There is need to collect real time data in simulated scenarios 
that closely relate to real scenarios.   

 All key actors in an expeditionary scenario, the troopers, the 
UAVs and the ground sensors, should interplay to collect real 
data.  

 Data capture capability for post mission analysis. 



Real time information management

 Troopers:  management of sensory data received by their own 
sensors and ground sensors.  This involves prioritization of 
sensories and weighting their responses.  

 For example, a motion signal from a ground sensor may 
reinforce an infrared image from the trooper sensor to decide 
about a target.

 UAVs:  More sophisticated data management and analysis in 
real time.

 imaging 

 sensory pattern recognition

 adaptive pattern training

 Ground sensory 

 Low level data recording

 Raw data transmitted with low data rates 



Sensory inter-operation

 A key issue of sensory inter-operation is  how and  where  to 
evaluate sensory data in real time.  

 We propose that the initial evaluation be done by the UAVs.  
Patterns of diverse sensory data could be weighted to provide 
a real time response.  

 Sensory patterns could be recognized by adaptation and     
(off-line) training  based on data from previous missions.   
(More details to follow).

 All unresolved information would be sent to command center 
for expert decisions with time delay penalty



Approach:  UAV Centric

UAV  Scheme

to Assist

Trooper

Operations



Hierarchical System Concept

 Operation level 1:  Local evaluation

 UAVs collect sensory information from their sensors and the 
ground sensors concerning the target

 UAVs process and evaluate the data in real time to locate and 
identify the target and threat level

 UAVs transmit a response to the troopers and/or command 
center

 Operation level 2:  Remote analysis

 For deeper analysis, UAVs communicate with the central 
command in real time.  A feedback received is transmitted to 
the troopers.

 A key property is the adaptation and learning capability of the 
UAVs based on associative processing to provide responses in 
real time.



UAV on-board architecture

 Onboard associative storage 
of training functions

 Adaptive recognizer of 
patterns and images through 
sensors

 Reconfigurable processor
 I/O interfaces and sensors

 Associative memory 
technology can be applied to

 Sensory Processing

 Adaptive Recognizer



Key Attributes of UAV-Centric Scheme

 All UAV subsystems as well as command center will benefit 
from large associative memories, specifically

  UAVs:   efficient real time response

 Cognitive imaging
 Sensory learning
 Collaborative training

 Command:  computation intensive

 Preference learning – Neural Classifiers
 Query system

 Associative memories and reconfigurable processors are 
enablers for sensory and cognitive technology on UAVs.



Expeditionary  Application



On-board UAV Operations



Onboard UAV Function Modules

 Our approach builds on several on-board function modules to 
assist the troopers and central command by preprocessing 
information, correlate corrected data, and preliminary 
association with existing knowledge.

 These three tasks undergo evolutionary learning processes 
during online operation, or in offline training sessions.



Offline UAV training process

 Hierarchical training modules

 Training sensory features on distinct sensor modules in the UAV

 Preferential training module



Online/Offline Evolutionary Learning

 Evolutionary neural process learning employs a neural 
network training and mapping approach between input  and 
output representations via an evolutionary learning algorithm. 

 Evolutionary learning supports online training during realtime 
application and offline training during traditional training 
sessions

 Evolutionary learning augments UAV functions as follows:

 Adaptive data processing

 Multi sensory information management

 Associative recognition



 Sensory Associative Memory

 Our learning and training scheme employs a three phase 
associative memory process: 

 Sensory data transformations

 interfusion of sensory transforms

 associations and approximate recall

 All three phases use evolutionary neural network processing 
to perform their internals 



 Adaptive Sensory Data Pre-processing

 Heterogeneous sensors  pre-process raw data using distinct 
adaptive modules on the UAV

 High level features of information are extracted from raw 
sensory data, i.e. Fourier, wavelet

 Other information can be preferential rather than traditional 
math-based.  This is achieved with evolutionary preferential 
neural process learning.



Phase 1  -  Sensory preprocessing

a) pre-processing filters,  

b) high level feature extractors,

    Feature vector  fk   represents data of  Sensor-k



Multi Sensory Information Fusion

 Extracted high level information from sensors are merged into 
a single vector stream

 Merging uses statistical parameter, e.g. mean, weighted 
average, etc

 Merging can be  biased  with existing knowledge rather than 
standard unbiased statistical parameters.  This is achieved 
with evolutionary bias neural process learning.



Phase  2  -  Interfusion

Inputs  Feature vectors

Output  Signature vector 
representing sensory data

    g k  =   (b k ; w k )

     b k  =  (f 1k ... f sk )



Phase 3:  Associative Recognition

 Associative recognizers measure statistical similarity or 
difference between merged information and stored 
associative memory data

 Similarity measures determine the association matching 
levels between the merged information and stored data

 Often in practice, similarity measures in real association are 
not mathematically well defined.  This is achieved with 
evolutionary undefined neural process learning.



Evolutionary Training Scheme

 key advantage 

 neural net structural evolution

 training data enrichment

 The training scheme consists of of three nested processes

 a) coefficient training process (inner loop), 

 b) structural evolution process (middle loop) and 

 c) training data enrichment process (outer loop),



Training

 The coefficient training process (inner loop) is a variation of 
the back propagation algorithm using adaptive learning rates 
to accelerate convergence

 The structural evolution process (middle loop) evolves the net 
structure  to improve accuracy

 The training data enrichment process (outer loop)  explores 
and enhances  the input-output training data space efficiently. 
This helps to further improve the output accuracy and 
convergence



Data Enrichment Process

 Properties

 Addresses the multi-label and imbalanced data problem.

 Manipulates the imbalanced data by sub-sampling into more 
balanced data.

 Iteratively updates the sub-sampled data through the training.

 Improves the generalization performance of the training net.

 Differences

 Multi-label & imbalanced data problem addressed by ONE net. 

 Unique data selection technique to improve classifier training.

 Avoids sparsely data distribution assumption.

 No prior knowledge required.



Enrichment Initialization

 Enrichment Initialization re-samples the available imbalanced 
training data to create a subset of more balanced training 
data  for first time neural net classifier training.

 Steps

 Select a number of initial clusters, g

 Cluster training data into g clusters

 Select equal number of data from each cluster as active 
training set



Enrichment Initialization



Enrichment Update

 Enrichment Update incrementally adds and removes training 
data to/from the active training set at the end of an 
enrichment training iteration.

 Steps

 Train neural net with the active training set.

 Separate the active training set into 2 groups with respect to 
their errors.

 Add neighbors for high-group and remove half of low-group.



Enrichment Update



Enrichment Termination

 Enrichment Termination controls the enrichment process to 
iterate for a pre-set number of enrichment training iterations.

 Steps

 Check if the enrichment process repeats for a pre-set number 
of iterations.

 If NO, repeat Step 2.  Otherwise, stop.



Experimentation:  Robot arm controller

Left: sampled data with inputs 
(Angle, Gain) and expected 
output (Internal State, i.e. 
rotate left, rotate right, idle).

Right: same sampled data with 
three distinguished expected 
states, illustrating multi-label 
imbalanced data problem



Metrics

 True-Positive: classification result is confirmed as correct 
known label.

 False-Positive: classification result is miss-classified as 
different known labels.

 Control Accuracy (Ac): the percentage of accepted classified 
state in the sampled data.

 Control Error (Ee): the Euclidean distance between estimated 
control state and the sampled state in training data.



Advantages

 Data Enrichment supports neural network classifier in both 
linearly separable and non-linearly separable cases.

 Data Enrichment improves the neural network training 
yielding better trained network than conventional techniques.

 Data Enrichment reduces the time required to train a neural 
network for multi-label and imbalanced data.



Some Results

 Training repeats for 4 updates

 Step1: Enrichment Initialization

 Step2: Enrichment Update

 Step3: Enrichment Termination



Non-Linear Data Example



Status

 Theoretical model of the three-phase sensory cognitive 
processing scheme for training and operational mode

 Evolutionary Training of the cognitive processor including self-
modification of the NN structure and augmentation of 
additional training data

 simulation for NN coefficient weights training 

 simulation for the NN structural modification 

 simulation of data enrichment process

 Needs:

 Controlled scenario for testing and verification of the cognitive 
processing scheme with realistic information

 We will move the simulation to FPGA prototype



Assumptions on Existing Technologies

 We assume the following technologies already exist or are in 
process of development

 Communication and transmission technologies portable for 
short- and long-range

 Power and energy efficient devices for all sensory units

 Troopers equipped with sensor technologies

 Networking technologies  for effective sensor communication 
and processing

 small, reliable UAVs



Applications to UAV Missions

 Consider a reconnaissance mission

 Sensory transform phase maybe embedded in low flying           
 mini UAVs to collect and process diverse sensory data 

 Another UAV, possibly a master at higher altitude, may 
perform data interfusion

 Depending on the application mission, the master UAV may 
also perform data associations and matching in real time.  An 
associative memory should be included in the master UAV

 However, if associations sizes are large, the master UAV may 
contact the central command which can perform intensive 
associations for matching


