
Embedded Reconfigurable Processing
for µUAV Applications

Part I - Onboard Processing

Chris Papachristou

Case Western Reserve University

Cleveland, Ohio 44106

cap2@case.edu

Outline

 On board Information processing

 Main Technologies

 Digital Signal Processors - DSP

 Reconfigurable Computing, FPGAs

 Embedded processing

 Self Reconfigurable processing

 Evolvable Hardware

Onboard UAV Operations

Onboard Processing Requirements

 Computational Performance

 sufficient to accomplish complex imaging algorithms

 Low power and Low Energy

 management of circuitry, architecture

 Minimal physical characteristics

 packaging, weight

 Communication Performance

 antennas, digital soft radio, protocols

 Storage

Key Component Technology

 Digital Signal Processors, DSPs

 Reconfigurable processors, FPGAs

 Embedded processors

Digital Signal Processors (DSPs)

What are DSPs ?

 Embedded microprocessors that are designed to handle
digital signal processing applications in a very cost effective
manner

 Current market leaders:

 TI, Motorola, Lucent

 Market well over - $ 50 Billions

Nature of DSPs

 DSPs utilize special hardware to meet performance, power,
and price points

 Sacrifice orthogonality and ease-of-use to meet goals

 Assume hand-assembly or libraries used for core algorithms

 Compiler mostly used for control and glue logic

DSP principle

 Converting a continuously changing waveform (analog) into a
series of discrete levels (digital)

DSP principle

 The waveform is sliced into equal segments and the
amplitude is measured in the middle of each segment

 The measurements make up the digital representation of
the waveform

0
0

.2
2 0
.4

4 0
.6

4 0
.8

2 0
.9

8
1.

11 1.
2

1.
24

1.
27

1.
24

1.
2

1.
11

0
.9

8
0

.8
2

0
.6

4
0

.4
4

0
.2

2
0

-0
.2

2
-0

.4
4

-0
.6

4
-0

.8
2

-0
.9

8
-1

.1
1

-1
.2

-1
.2

6
-1

.2
8

-1
.2

6
-1

.2
-1

.1
1

-0
.9

8
-0

.8
2

-0
.6

4 -0
.4

4 -0
.2

2
0

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

ADC and DAC

 ADC: analog conversion to digital

 DAC: digital conversion to analog

 Both operations are approximate as the waveforms do not
completely match - filtering needed to smooth them out

DSP algorithms

 Basically various filtering type of algorithms

 FIR: finite impulse response

 IIR: infinite impulse

 Bandpass filter

 AR: autoregressive

FIR filter

 Most widely used filter

 series of delays, multipliers, and adders

 frequency response output fine-tuned to filter's length

DSP - Architecture Characteristics

 DSP architecture is designed to solve one problem well

 Digital filters (FIR, IIR) and FFTs

 In Real-Time

 Architecture features added to speed up this problem

 MAC: multiply & accumulator, speedup FIR tap

 Circular buffer: speedup shifting FIR delay registers

 RISC based: single clock per instruction

 Harvard Architecture: separate instruction & data

 Word oriented

DSP characteristics

 Disadvantages: not a general purpose computer

 slow character processing

 No multi-user operating system support

 No virtual memory, no translate lookside tables

 No memory page protection (Read, Write, Execute)

FIR filter architecture

 Example

FIR on typical processor

 simple assembly FIR routine

Early DSP architecture

 simple datapath and memory structure

Typical architectures

Harvard architecture was coined to
describe machines with separate
memories.
Speed efficient: Increased parallelism.

instructions data

ALU I/OALU I/O

instructions

and

data

Data busAddress bus

Von Neuman architecture
Area efficient but requires higher bus
bandwidth because instructions and
data must compete for memory.

FIR filter on conventional DSP

Use of dot product

Do dotprod UNTIL CE;

dotprod:

 MR = MR + MX0 * MY0 (SS),

 MX0 = DM(I0,M0),

 MY0 = PM(I4,M4);

Baseline DSPs

 Common attributes

 Arithmetic: 16 or 24-bit or even 40-bit fixed point (fractional),
or 32-bit arithmetic operations

 Instructions: 16-, 24- or 32-bit instructions

 Issue: one instruction per cycle, single-issue

 complex, compound instruction encoding, many operations

 highly constrained, non-orthogonal architecture

 dedicated addressing hardware

 specialized addressing modes

Baseline DSP

 attributes (cont)

 on-chip memory architecture

 dedicated hardware for loops and other execution control

 on chip peripherals and I/O interfaces

 low cost, low power, low memory usage

Increasing Parallelism

 Boosting performance beyond faster clock speeds requires the
processor to do more work per cycle

 Two ways to increase the processors' parallelism:

 Increase the number of operations that can be performed in
every cycle

 increase the number of instructions that can be issued and
executed in every cycle

 this leads to pipelining and parallelism

More Operations per instruction

 How to increase the number of operations performed in each
instruction?

 Add execution units (multiplier, adder, i.e. add hardware)
 enhance the instruction set to take advantage of extra hardware
 Possibly, increase the instruction word length (width)
 Use wider buses to keep the processor fed with more data

 Add SIMD capabilities - data parallelism

Architectures for DSPs

 Enhanced conventional DSPs

 Lucent DSP16xxx, ADSP 2116x

 VLIW (Very Long Instruction Word) DSPs

 TI TMS320C6xxx, Siemens Carmel, Philips Trimedia

 Superscalar DSP

 ZSP ZSP164xx

 Hybrid processors

 PowerPC with Altivec Hardware, TriCore

Example

Enhanced conventional DSPs

 More parallelism via:

 Multi-operation data path
 e.g., 2nd multiplier, adder
 SIMD capabilities

 Highly specialized hardware in core
 e.g., application oriented datapath operations (crypto)

 Co-processors
 Viterbi decoder, FIR filtering, mpeg7, etc

SIMD – single instruction multiple data

 Split words into smaller chunks for parallel operations

 Some SIMD processors support multiple data widths, such as
16-bit, 8-bit,...)

 For example, Lucent DSP16xxx, ADI ADSP 211x

Challenges to SIMD

 Algorithms, data organization must be amenable to data
parallelism

 Programmers must be creative, pursuing alternatives

 Reorganization penalties can be significant

 SIMD most effective on algorithms that process large blocks of
data

More Instructions per clock

 How to increase the number of instructions issued and
executed in every clock cycle?

 Use VLIW techniques
 static scheduling

 Use Superscalar techniques
 dynamic scheduling

Superscalar vs VLIW: scheduling

VLIW concept

VLIW Application

 FIR filter loop

Evaluation

 Advantages

 performance

 regular structure

 easier to program – depending on tools

 Disadvantages

 difficult tools -- compilers/schedulers

 deep pipeline latencies

 code size explosion

 higher power consumption

Superscalar DSPs

 Characteristic

 hardware support for instruction control

 2-4 instruction issue per cycle

 lots of parallelism

 Example FIR filter

 All four instructions exec in parallel

Evaluation

 Advantages

 performance

 easier tools -- compilers

 smaller code size

 Disadvantages

 dynamic behavior complicates software development

 execution time unpredictability

 high energy consumption

Hybrids

 Typical approach: Embedded DSP and microcontrollers

 heterogeneous multi-core systems including
 Regular processor cores
 DSP co-processors
 Advanced cryptoprocessors

 Design methods

 tweaking a GPP with DSP support, or

 tweaking a DSP with some microcontrol support, or

 entire new design from scratch

Example: TI OMAP Hybrid Processor

Reconfigurable Processing

Reconfigurable Processing

 Ability of a device to change its internal structure,
functionality, and behavior, either on command, or
autonomously.

 Two methods for execution of algorithms:

 hardwired technology: high performance

 software-programmed microprocessors: high flexibility

 A third approach: Reconfigurable computing

 intended to fill the gap between hard and soft, achieving
potentially much higher performance than software, while
maintaining a higher level of flexibility than hardware

Reconfigurability Classes

 Static Configuration: performed while device is off line.

 Dynamic Configuration: device is on-line, "on the fly".

 Self Reconfiguration: performed autonomously by device.

 Evolution type: Self Reconfiguration with adaptation such as
replication and growth, "bio-inspired".

Reconfigurability Spectrum

Fixed HW

Reconfigurable

Self
reconfigurable

Evolvable

Flexibility,
Fault Tolerance

Generation

1st 4th3rd2nd

Reconfigurable Logic

 Currently implemented by FPGAs

 Static reconfiguration is achieved by downloading into the
FPGA chip a new configuration while the FPGA is off-line

 obvious disadvantages in configuration time

 Traditional FPGAs

Static Configuration

Dynamic Configuration

 It is achieved by inserting new FPGA functionality on the fly,
i.e. while the chip is active

 Certain areas of the device can be reconfigured while others
remain unaffected

 In practice, partial configuration is used to achieve run-time
dynamic reconfiguration

 Xilinx Virtex families

 Altera FPGAs

 Atmel, etc.

Partial Configuration styles

 Module based: distinct portions of the design (modules) that
can be reconfigured separately (Bus Macros)

 independent modules

 communicating modules

 Difference based: making small design changes in local areas
e.g. LUTs, block RAMs, but not routing

Virtex II Architecture

 CLBs, Block RAMs, Config Columns

Module-based Partial Configuration

Bus macros

 Connecting reconfigurable and fixed modules in partial
configuration maps

Major Constraints

 Size and position of a module can not be changed

 Modules can communicate only with neighbors

 No global signals are allowed except clocks

 I/O blocks exclusively accessed by adjacent modules

Difference-based Partial Configuration

 Small changes on the FPGA configuration

 Manually done, usually via an FPGA Editor

 What can be modified?

 LUTs equations

 BRAM contents and BRAM write modes

 I/O standards and pull-ups or pull-downs on external pins

 Flipflop initialization and reset values,

 What cannot be modified?

 Routing, very dangerous: internal contentions

Self Reconfiguration

 A second way for dynamic reconfiguration:

 The chip modifies its own configuration based on peripheral
or internal signals

 This may occur

 under command, or

 autonomously

 This idea leads to the concept of Self Reconfiguration

Why Self Reconfiguration ?

 Ability to operate autonomously in remote, challenging and
hostile environments

 Perform on-board processing and communication

 Variability of function and operation modes

 Quick response to changing ambiance

Potential Self Reconfiguration Apps

 Space exploration probes

 Military & commercial
satellites

 UAVs and µ UAVs

 deep underwater rescue

 nuclear or chemical plants

 autonomous robotics

Key Issues of Self Reconfigurable architectures

 Autonomy

 Real time response

 Low power and energy consumption

 Reliability

About UAVs: Rationale

 Increasing need for flexible embedded processing on board a
variety of aerial vehicles especially µUAVs.

 To perform their mission, µUAVs need unconventional on
board processing capabilities:

 Performing multitude of computationally intensive functions

 Operating autonomously, adapting from one input to another

 Meeting low power and reliability requirements

Rationale (cont)

 Reconfigurable processors based of FPGAs have two traits:
flexibility and parallel processing.

 However, FPGAs lack autonomous adaptation capability while
suffering from power consumption.

 Clearly, mini aerial vehicles, e.g. satellite sensors and µUAVs,
need autonomous, adaptable and dynamically reconfigurable
processors, beyond conventional FPGAs.

Sensor Web Scenario

Communication
Tradeoffs

 Bandwidth =

 Buffer/Latency,

 Data Rate,

 Protocol,

 Error Bit Rate

Self Reconfiguration Approach

 Novel autonomous, adaptable and and self reconfigurable
system has been proposed consisting of 2 basic units:

 Adaptation software manager

 Dynamic reconfigurable hardware fabric

 The approach is based on the twofold concept:
adaptation of the application software coupled with
dynamic reconfiguration of the hardware.

Approach (cont)

 Architecture: reconfigurable at four Layers:

 Layer 4: the Adaptation Manager.

 Layer 3: the Real-Time Operating System RTOS.

 Layer 2: the Embedded Processors and Memory.

 Layer 1: the Reconfigurable Hardware Fabric.

Architecture: Non Traditional Reconfigurable

Reconfiguration Strategy

 Occurs at several levels:

 Selection of application modules by the Adaptation Manager.

 Mapping of modules into the hardware fabric or the embedded
processors, depending on performance requirements.

 Configuration of the hardware fabric and the embedded
processor to meet performance and data delivery
requirements.

 The reconfigurable hardware is essential for mapping of
communications algorithms such as :

 IR filtering,

 multichannel CDMA,

 complex encoding,

 advanced imaging.

Adaptation manager

 The adaptation manager captures real time sensor inputs and
interacts with the Function Libraries.

 The Libraries store pre-built configurations for application
functions

 The manager decides on which configuration to be fed into
the hardware fabric.

 The manager also involves a software learning process to
adapt configuration decisions.

Self Adaptation - Dynamic Configuration

Reconfigurable Fabric

 The reconfigurable fabric consists of a number of processing
tiles each having capability of dynamic reconfiguration

 Tiles are equipped with regularly structured functional units
capable of operation level parallelism.

 Tiles can be hierarchically assembled at several levels using
dynamically interconnected switch-buffer matrices.

 Distributed buffer memory

 Configuration can be achieved within a tile, and along several
interconnected tiles.

 This approach provides good scalability, growth and fault
tolerance.

Reconfigurable Fabrics and Tiles

Reconfigurable Tiles

Core Switch Matrix

Self Reconfigurable and Evolvable Systems

 There is an overalap between the two concepts

 Self reconfiguration operates in real time

 Evolvable reconfiguration implies self-growth and replication
of the reconfigurable hardware at slower pace.

 Evolvable hardware use bio-inspired approaches and may
need technologies not based on CMOS.

Evolvable Hardware

 Evolvable Hardware, EHW, is capable of on-line adaptation

 EHW can change its architecture and behavior dynamically
and autonomously, either through software or by directly
morphing the hardware.

 At present, EHW use evolutionary algorithms or genetic
algorithms as their main adaptive mechanism. However,
other techniques are possible such as Neural Networks.

Evolvable: Inspiration from Nature

Evolvable Hardware Classes

 Extrinsic EHW: simulates evolution by software and only loads
the best configuration to hardware in each generation.

 Intrinsic EWH: simulates evolution directly in hardware.

 Most evolution approaches are extrinsic or off-line types

Evolutionary design and adaptation of circuits

Evolutionary design: extrinsic - intrinsic

Genetic Evolutionary Operations

 Selection

 Crossover

 Mutation

 Use an Objective or Fitness function

Principles of Evolution

 Coding solutions as chromosomes.

 Operating on code, not solutions.

 A string is a candidate solution.

Evolutionary implementation

 Current approaches to EHW implementation:

 use powerful compute engines to run GAs for evolution

 use reconfigurable HW or FPGAs to load evolved HW

 Requires:

 fast evaluation

 low cost for failure

 Future: everything should be seamlessly integrated in HW

Where is Hardware Evolution ?

Some examples: evolving an FPGA design

Is it practical ?

 For most practical real world problems, human designers plus
tools still outperform evolution

 However,

 Hardware evolution does have some niche applications

Adaptive Systems

 Evolution + Reconfigurable Hardware = Real-time Adaptation

 Can adapt autonomously to changes in environment

 Useful when real-time manual control not possible

 E.g. spacecraft systems (sensor processing)

 Non-critical systems are more suitable

 E.g. data compression systems

 plant power management

 ATM cell scheduling

Traditional vs. Evolutionary Search

 Traditional design decomposes from the top down into known
sub-problems

 Applies constraints to ensure design behaves like known sub-
problems

 Evolution works from the bottom up

 Evolution uses fitness to guide performance

 Not directed by prior knowledge

 Oblivious to complexities of the interactions within the circuit

Innovative Circuits

 Circuits that could not be found using traditional design
abstractions are innovative

 Solution may have high performance

 May use less gates that traditional designs

 Analysis shows internal non-digital behaviour

 Examples: evolvable multiplier, adder

Traditional vs Evolvable Multiplier

Traditional = 26 gates Evolved = 21 gates + 7 MUXes

Application Examples of custom EHW

Evolved Antennas

EHW vs. Neural Networks (NN)

EHW vs. Self Reconfigurable, again

 Key issue: real time efficiency

 Self reconfigurable hardware requires fast responses whereas
Evolvable HW is still slow paced

 Combining the two is important for future applications

Layered approach to EHW/Self Reconfigurable

 Key feature: interaction and coordination of two basic entities

 evolvable adaptation software

 dynamic reconfigurable hardware

 We could have used an evolution-based approach to design
both units, i.e. the manager and the fabric. However,

 An Evolvable Hardware fabric would ultimately require
unconventional hardware, not yet available.

 The Evolvable Manager uses a software approach based on
Neural Net learning technique to evaluate and perform
adaptation of application functions

Self Adaptation - Dynamic Configuration

Evolvable Adaptation Model

 Evolvable hardware model consists of two interacting
components

 dynamic reconfigurable hardware and

 a neural network

 The idea is to achieve evolution in the hardware by evolving
configuration candidates via the neural network and testing
them for fitness.

Evolvable Platform

Evolution Modes

 Operation mode: Neural Net (NN) generates configuration
code

 Training mode: NN incrementally evolves configurations by
training itself on input stimuli as well as configuration data
that are recurrently applied after being improved by genetic
operations.

 Other evolution modes e.g. self-diagnosis and self repair are
also feasible.

Training

 During training, candidate configurations are selected from a
population via genetic operations.

 Training continues until a candidate passes a fitness test
depending on responses from the reconfigurable fabric.

 Training may start on command or autonomously, in new
environment, new functions or upgrading for better
performance.

 A major aspect of this scheme is to design a robust training
mechanism for configuration evolution of the dynamic
reconfigurable fabric.

Evolvable Hardware Training

Summary and the Future

 Self reconfigurable and evolvable systems have the potential
to be an important future technology especially for avionics
and space infrastructure.

 EHW based on bio-inspired paradigm using GAs and software
simulation off-line to evolve and discover hardware.

 This is fine in slow growth and self paced evolution but not in
real time.

 In the future, there is need to integrate seamlessly Evolvable
software with Neural Network techniques into dynamic
reconfigurable hardware platforms.

Embedded Reconfigurable Processing
for µUAV Applications

Part II (a) - Information Flow

Chris Papachristou

Case Western Reserve University

Cleveland, Ohio 44106

cap2@case.edu

Outline

 Motivation

 System Concept and Methodology

 Architecture

 Inquiry Processing and Query Processing

 Training

 Conclusions

Motivation: Autonomous UAVs

 UAV scenarios

 Civilian and Military applications

 Threat assessment, rescue & recovery, reconnaissance

 UAV real time info flow

 Queries and Inquiries to UAVs

 Sensory signal processing

 Feature processing

 UAV Response feedback

 Networking UAV

Autonomous UAV Scheme

Autonomous UAV Real Time Requirements

 Queries and Inquiries to UAVs

 Autonomous & Hierarchical Cognitive Learning

 Image processing

 Master/Slave UAV organization

 Networking formations and UAV collaboration

 Mission strategies

System Concept

System Concept (cont)

 The system architecture and methodology manages the real-
time information flow between CC and the Master UAV.

 A key property is the adaptation and learning capability of the
Master in order to respond intelligently to CC queries.

System Architecture

 A central command control
(CC) communications center
interacts in real time with a
Adaptable Mobile Agent
(AMA) on the Master UAV.

 The Master collects sensory
information.

 CC evaluates feedback,
accepting or modifying it.

 CC resends query and
updates its database.

System Architecture Information Flow

 CC prepares queries for the
Master

 Master processes queries

 knowledge base

 sensory data

 CC evaluates feedback,
accepting or modifying it

 CC resends inquiry and
updates its database

System Architecture information flow

 System Architecture
processes the information
flow for an inquiry session
between CC and the
Master.

 Queries operations may
involve:

 Processing & analyzing
“existing” knowledge

 “Augmenting” the
knowledge base

System Architecture information flow (cont)

 Adaptive Query Learning:

 Due to rejections or
otherwise unsatisfaction of
CC's evaluation of result

 Incremental Sensory
Adaption & Learning:

 Preloaded Master with
sensory knowledge (i.e.
High altitude video)

 Independently of its current
mission, the Master is
updating it's sensory

Inquires

 A key element of the CC is an inquiry processor which
transforms user inquiries into formal queries for the AMA.

 An inquiry consists of a number of phrases that resemble a
restricted natural language specifically

 Consists of an <action>, <qualifiers> and a single <object>.

Inquires: Feature Qualifiers

 For example, “find preferred in Ohio landing area”

 where

<action> is “find”;

<qualifiers> are “preferred” & “in Ohio”

and <object> is “area”.

 Feature Qualifiers are characterized by a particular trait which
exhibits a fuzzy description such as “good” or “preferred”.

 For example, “preferred” has a method describing the human
meaning into low level terrain sensory features, e.g.
“clearance”, “roughness”, etc.

Prolog

 Declarative Language

 Declarative Clause Grammars, DCG

 Straight forward mapping to parallel hardware technologies

 Al-based goal searching and Pattern Matching

 Image processing and object recognition

 Optical technologies

 Formulate logical database queries

 Natural-like language processing

 Biophotonics technologies

 Associative memories

Queries

 A formal query is a symbolic expression which can be
described by Prolog's Declarative Clause Grammar (DCG).

 For example, the CC Inquiry

 find preferred in Ohio landing_area

 becomes transformed the AMA query fro the Master UAV:

 find (clearance > 7 and roughness > 8) and in Ohio
landing_area

 Feature qualifiers require offline and online learning by using
a combination of supervised learning (i.e. Neural Nets) and
fuzzy system descriptions.

 Feature Training Strategies

 Hierarchical training modules

 Sensory features on distinct sensor modules on Master UAV

 Preference training module

 Two levels of Learning

 Adaptive feature learning

 Preference-based learning

 Inquiry: find preferred in Ohio landing_area

 Query: find (clearance > 7 and roughness > 8)

Master UAV architecture

 Adaptive recognizer of
patterns and images through
sensors

 For Features & Preferences

 Reconfigurable processor

 On board Library of training
functions

 I/O interfaces and sensors

UAV Training Process

 Hierarchical training modules

 Training sensory features on distinct sensor modules on UAVs

 Preference training module

Training Strategy

Training strategies

 Master:

 Filtering for each parameter data type

 Parameter sensory training based on query preference

 Trained data collected into one feature vector

 Central station (CC):

 Similar to Master but operating on simulated data

 Software filtering

 feature vector data at the Central derived by simulations using
the training knowledge from the Master.

 Query processing: Master

sensory trainer is stored in the local knowledge base

query execution process real-time data from the local sensors.

Query processing: Slave

Slave UAVs organized into fleets to collect multiple data

Collaborative trainer: resolving inconsistencies from multiple UAV data.

Key issues in Master (AMA)

 Associative memories and processors is an enabler
information technology

 All Master subsystems will benefit from large associative
memories

 Command and Control, CC

 Inquiry system – Prolog engine

 Preference Learning – Neural Network Classifier

 Adaptable Mobile Agents, AMA

 Query learning – Supervised Learning, Fuzzy Logic

 Cognitive Image Recognizer – Unsupervised Learning

 Sensory Learning – Supervised Learning

Key Attributes in UAV Scheme

 All UAV subsystems will benefit from large biophotonic
associative memories, especifically

 Command and Control

 Query system – Prolog engine

 Preference Learning – Neural Network Classifier

 Master UAV

 Cognitive Image Recognizer

 Sensory Learning

 Slave UAVs

 Advanced imaging – wavelets

 Collaborative learning

 Associative memories and processors are enablers for
information technology on UAVs

Example: terrain landing

Feature properties

Cluster Charaterization

Query examples and answers

Conclusions

 System Architecture and methodology to manage the massive
information flow and inquires between CC and AMA in
realtime.

 Bio-inspired learning techniques are needed for query and
inquiry processing for feature qualifiers and preferences.

 Bio-inspired learning are needed for pattern recognition of
sensory information.

 Prolog, optical and biophotonic technologies are needed for
processing realtime massive information flow.

Embedded Reconfigurable Processing
for µUAV Applications

Part II (b) – Cognitive Processing
Approach

Chris Papachristou

Case Western Reserve University

Cleveland, Ohio 44106

cap2@case.edu

Outline

 Mission scenario

 Heterogeneous sensor nets

 Characteristics of platforms

 Information management

 Our Approach

 On board UAV architecture

 Adaptive processing

 Evolutionary learning and training

 Associative cognition

Distributed Sensing Concept

Three coordinating sensory networks: ground sensors, UAVs, trooper sensors

Expeditionary Operation

 Three distributed sensory networks

 ground sensors

 UAV sensors

 trooper sensors

 The trooper sensory is normally operating in passive mode,
i.e. avoiding transmissions while receiving data from UAVs
and ground sensors.

 UAV sensors coordinate with the ground sensors to track
information about the target. This information is transmitted
to troopers.

 The ground sensory consists of redundant heterogeneous
sensors that are dispersed en masse to monitor targets.

Ground Sensors

 Sensors are heterogeneous, redundant and disposable.

 They are self-organized by their monitoring threat identity
types:

 Motion

 Sound

 Imaging (infrared)

 Proximity, location

 Chemical, bio, radiation

 Ground sensors communicate point-to-point with other sensors

 Ground sensors normally operate in passive monitoring mode.
They are activated by the UAVs for transmission.

UAV Sensors

 UAV sensors are equipped with long-range communication
devices. They respond to ground sensory, troopers and other
UAVs.

 UAVs may be organized in hierarchical network formations, i.e.
master UAVs and lower flying mini UAVs.

 Possible intelligent information and threat discovery by UAVs

 Threat identity

 threat coordination

 Overall threat assessment

 Threat pattern tracking

 Information bridge between troopers, ground sensors and
distant command station.

Trooper Sensors

 Trooper sensors are carried on soldiers to retrieve information
normally from the UAVs, occasionally the ground sensors and
in emergency the command center

 Characteristics

 Support information retrieval and interpretation

 Support coordination among trooper sensors

 Passive sensory: mostly receiving

 Threat avoiding and/or safe threat practice for safety of
troopers

Data Gathering Principles

 Troopers gather data from their own sensors and from nearby
sensory assets, i.e. UAVs and ground sensors. Sensory data
is relayed all the way from assets located close to the target.

 Gathering of sensory data is determined by transmission rate,
transmission range, quantity, quality, energy and real time
constraints.

 There is priority of selecting sensory data types (for example,
audio vs. visual) based on mission objectives, threat level, etc.

 Ground sensors transmit raw data with small data rates

 UAVs can transmit processed data that may have been
analyzed by the UAV systems or at the Command Station.

 Sensor Suite

 Depends on mission requirements

 expeditionary missions to discover hidden hostiles under
cover and slow moving targets

 UAV sensors: visual, audio, infrared

 Ground sensors: motion, chemical, possibly sonar

 reconnaissance missions to passively gathering data

 UAV sensors: long-range visual, infrared, radar

 Ground sensors: audio, possibly visual

 surveillance missions to monitor behavior of people, objects,
or processes in large region

 UAV sensors: visual, infrared

 Ground sensors: motion, audio, possibly visual

Platform characteristics improvement

 UAVs: onboard processing and communication capabilities.
Adaptive hardware and software to the mission objectives.
Associative processing to enable real time identification and
recognition.

 Ground sensors: Minimal computation and communication.
Very low energy consumption, possibly energy scavenging.

 Troopers: Low power processing and passive communication
capability.

Validation and experimentation

 There is need to collect real time data in simulated scenarios
that closely relate to real scenarios.

 All key actors in an expeditionary scenario, the troopers, the
UAVs and the ground sensors, should interplay to collect real
data.

 Data capture capability for post mission analysis.

Real time information management

 Troopers: management of sensory data received by their own
sensors and ground sensors. This involves prioritization of
sensories and weighting their responses.

 For example, a motion signal from a ground sensor may
reinforce an infrared image from the trooper sensor to decide
about a target.

 UAVs: More sophisticated data management and analysis in
real time.

 imaging

 sensory pattern recognition

 adaptive pattern training

 Ground sensory

 Low level data recording

 Raw data transmitted with low data rates

Sensory inter-operation

 A key issue of sensory inter-operation is how and where to
evaluate sensory data in real time.

 We propose that the initial evaluation be done by the UAVs.
Patterns of diverse sensory data could be weighted to provide
a real time response.

 Sensory patterns could be recognized by adaptation and
(off-line) training based on data from previous missions.
(More details to follow).

 All unresolved information would be sent to command center
for expert decisions with time delay penalty

Approach: UAV Centric

UAV Scheme

to Assist

Trooper

Operations

Hierarchical System Concept

 Operation level 1: Local evaluation

 UAVs collect sensory information from their sensors and the
ground sensors concerning the target

 UAVs process and evaluate the data in real time to locate and
identify the target and threat level

 UAVs transmit a response to the troopers and/or command
center

 Operation level 2: Remote analysis

 For deeper analysis, UAVs communicate with the central
command in real time. A feedback received is transmitted to
the troopers.

 A key property is the adaptation and learning capability of the
UAVs based on associative processing to provide responses in
real time.

UAV on-board architecture

 Onboard associative storage
of training functions

 Adaptive recognizer of
patterns and images through
sensors

 Reconfigurable processor
 I/O interfaces and sensors

 Associative memory
technology can be applied to

 Sensory Processing

 Adaptive Recognizer

Key Attributes of UAV-Centric Scheme

 All UAV subsystems as well as command center will benefit
from large associative memories, specifically

 UAVs: efficient real time response

 Cognitive imaging
 Sensory learning
 Collaborative training

 Command: computation intensive

 Preference learning – Neural Classifiers
 Query system

 Associative memories and reconfigurable processors are
enablers for sensory and cognitive technology on UAVs.

Expeditionary Application

On-board UAV Operations

Onboard UAV Function Modules

 Our approach builds on several on-board function modules to
assist the troopers and central command by preprocessing
information, correlate corrected data, and preliminary
association with existing knowledge.

 These three tasks undergo evolutionary learning processes
during online operation, or in offline training sessions.

Offline UAV training process

 Hierarchical training modules

 Training sensory features on distinct sensor modules in the UAV

 Preferential training module

Online/Offline Evolutionary Learning

 Evolutionary neural process learning employs a neural
network training and mapping approach between input and
output representations via an evolutionary learning algorithm.

 Evolutionary learning supports online training during realtime
application and offline training during traditional training
sessions

 Evolutionary learning augments UAV functions as follows:

 Adaptive data processing

 Multi sensory information management

 Associative recognition

 Sensory Associative Memory

 Our learning and training scheme employs a three phase
associative memory process:

 Sensory data transformations

 interfusion of sensory transforms

 associations and approximate recall

 All three phases use evolutionary neural network processing
to perform their internals

 Adaptive Sensory Data Pre-processing

 Heterogeneous sensors pre-process raw data using distinct
adaptive modules on the UAV

 High level features of information are extracted from raw
sensory data, i.e. Fourier, wavelet

 Other information can be preferential rather than traditional
math-based. This is achieved with evolutionary preferential
neural process learning.

Phase 1 - Sensory preprocessing

a) pre-processing filters,

b) high level feature extractors,

 Feature vector fk represents data of Sensor-k

Multi Sensory Information Fusion

 Extracted high level information from sensors are merged into
a single vector stream

 Merging uses statistical parameter, e.g. mean, weighted
average, etc

 Merging can be biased with existing knowledge rather than
standard unbiased statistical parameters. This is achieved
with evolutionary bias neural process learning.

Phase 2 - Interfusion

Inputs Feature vectors

Output Signature vector
representing sensory data

 g k =  (b k ; w k)

 b k = (f 1k ... f sk)

Phase 3: Associative Recognition

 Associative recognizers measure statistical similarity or
difference between merged information and stored
associative memory data

 Similarity measures determine the association matching
levels between the merged information and stored data

 Often in practice, similarity measures in real association are
not mathematically well defined. This is achieved with
evolutionary undefined neural process learning.

Evolutionary Training Scheme

 key advantage

 neural net structural evolution

 training data enrichment

 The training scheme consists of of three nested processes

 a) coefficient training process (inner loop),

 b) structural evolution process (middle loop) and

 c) training data enrichment process (outer loop),

Training

 The coefficient training process (inner loop) is a variation of
the back propagation algorithm using adaptive learning rates
to accelerate convergence

 The structural evolution process (middle loop) evolves the net
structure to improve accuracy

 The training data enrichment process (outer loop) explores
and enhances the input-output training data space efficiently.
This helps to further improve the output accuracy and
convergence

Data Enrichment Process

 Properties

 Addresses the multi-label and imbalanced data problem.

 Manipulates the imbalanced data by sub-sampling into more
balanced data.

 Iteratively updates the sub-sampled data through the training.

 Improves the generalization performance of the training net.

 Differences

 Multi-label & imbalanced data problem addressed by ONE net.

 Unique data selection technique to improve classifier training.

 Avoids sparsely data distribution assumption.

 No prior knowledge required.

Enrichment Initialization

 Enrichment Initialization re-samples the available imbalanced
training data to create a subset of more balanced training
data for first time neural net classifier training.

 Steps

 Select a number of initial clusters, g

 Cluster training data into g clusters

 Select equal number of data from each cluster as active
training set

Enrichment Initialization

Enrichment Update

 Enrichment Update incrementally adds and removes training
data to/from the active training set at the end of an
enrichment training iteration.

 Steps

 Train neural net with the active training set.

 Separate the active training set into 2 groups with respect to
their errors.

 Add neighbors for high-group and remove half of low-group.

Enrichment Update

Enrichment Termination

 Enrichment Termination controls the enrichment process to
iterate for a pre-set number of enrichment training iterations.

 Steps

 Check if the enrichment process repeats for a pre-set number
of iterations.

 If NO, repeat Step 2. Otherwise, stop.

Experimentation: Robot arm controller

Left: sampled data with inputs
(Angle, Gain) and expected
output (Internal State, i.e.
rotate left, rotate right, idle).

Right: same sampled data with
three distinguished expected
states, illustrating multi-label
imbalanced data problem

Metrics

 True-Positive: classification result is confirmed as correct
known label.

 False-Positive: classification result is miss-classified as
different known labels.

 Control Accuracy (Ac): the percentage of accepted classified
state in the sampled data.

 Control Error (Ee): the Euclidean distance between estimated
control state and the sampled state in training data.

Advantages

 Data Enrichment supports neural network classifier in both
linearly separable and non-linearly separable cases.

 Data Enrichment improves the neural network training
yielding better trained network than conventional techniques.

 Data Enrichment reduces the time required to train a neural
network for multi-label and imbalanced data.

Some Results

 Training repeats for 4 updates

 Step1: Enrichment Initialization

 Step2: Enrichment Update

 Step3: Enrichment Termination

Non-Linear Data Example

Status

 Theoretical model of the three-phase sensory cognitive
processing scheme for training and operational mode

 Evolutionary Training of the cognitive processor including self-
modification of the NN structure and augmentation of
additional training data

 simulation for NN coefficient weights training

 simulation for the NN structural modification

 simulation of data enrichment process

 Needs:

 Controlled scenario for testing and verification of the cognitive
processing scheme with realistic information

 We will move the simulation to FPGA prototype

Assumptions on Existing Technologies

 We assume the following technologies already exist or are in
process of development

 Communication and transmission technologies portable for
short- and long-range

 Power and energy efficient devices for all sensory units

 Troopers equipped with sensor technologies

 Networking technologies for effective sensor communication
and processing

 small, reliable UAVs

Applications to UAV Missions

 Consider a reconnaissance mission

 Sensory transform phase maybe embedded in low flying
 mini UAVs to collect and process diverse sensory data

 Another UAV, possibly a master at higher altitude, may
perform data interfusion

 Depending on the application mission, the master UAV may
also perform data associations and matching in real time. An
associative memory should be included in the master UAV

 However, if associations sizes are large, the master UAV may
contact the central command which can perform intensive
associations for matching

