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Outline

 On board Information processing

 Main Technologies

Digital Signal Processors - DSP
Reconfigurable Computing, FPGAs
Embedded processing

Self Reconfigurable processing
Evolvable Hardware
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Onboard Processing Requirements

Computational Performance
- sufficient to accomplish complex imaging algorithms
Low power and Low Energy
- management of circuitry, architecture
Minimal physical characteristics
- packaging, weight
Communication Performance
- antennas, digital soft radio, protocols
Storage



Key Component Technology

* Digital Signal Processors, DSPs

 Reconfigurable processors, FPGAs

e Embedded processors



Digital Signal Processors (DSPs)



What are DSPs ?

Embedded microprocessors that are designed to handle
digital signal processing applications in a very cost effective

manner
Current market leaders:

Tl, Motorola, Lucent

Market well over - $ 50 Billions



Nature of DSPs

DSPs utilize special hardware to meet performance, power,
and price points

Sacrifice orthogonality and ease-of-use to meet goals
Assume hand-assembly or libraries used for core algorithms

Compiler mostly used for control and glue logic



DSP principle

 Converting a continuously changing waveform (analog) into a
series of discrete levels (digital)




DSP principle

« The waveform is sliced into equal segments and the
amplitude is measured in the middle of each segment

e The measurements make up the digital representation of
the waveform
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ADC and DAC

« ADC: analog conversion to digital

« DAC: digital conversion to analog

 Both operations are approximate as the waveforms do not
completely match - filtering needed to smooth them out

AN WmUsalalhio
% vy N0 ¢ halh \ -
: SRR #

v o .




DSP algorithms

Basically various filtering type of algorithms
FIR: finite impulse response

lIR: infinite impulse

Bandpass filter

AR: autoregressive
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FIR filter

 Most widely used filter
* series of delays, multipliers, and adders

* frequency response output fine-tuned to filter's length
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DSP - Architecture Characteristics

 DSP architecture is designed to solve one problem well
- Digital filters (FIR, IIR) and FFTs
- In Real-Time
e Architecture features added to speed up this problem
- MAC: multiply & accumulator, speedup FIR tap
- Circular buffer: speedup shifting FIR delay registers
- RISC based: single clock per instruction
- Harvard Architecture: separate instruction & data
- Word oriented



DSP characteristics

 Disadvantages: not a general purpose computer

- slow character processing

- No multi-user operating system support

- No virtual memory, no translate lookside tables

- No memory page protection (Read, Write, Execute)



FIR filter architecture

« Example
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FIR on typical processor

 simple assembly FIR routine

loop:
—_— *10, %0 Data Path «—{ Memory
e hig *1r1,.v0
ey x0,¥0,4a
add a,b
v vO,*r2
inc 0 Problems:
ine rl * Memory bandwidth bottleneck
ine r2  Control code and addressing
deac cEr overhead
tst ctr « Possibly slow multiply
jnz loop

[Computes one tap per loop iteration)



Early DSP architecture

e simple datapath and memory structure

Data Path
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Typical architectures

ALU /O
Address bus
instructions

and instructions data

data
Von Neuman architecture Harvard architecture was coined to
Area efficient but requires higher bus describe machines with separate
bandwidth because instructions and memories.

data must compete for memory. Speed efficient: Increased parallelism.




FIR filter on conventional DSP

Use of dot product

Do dotprod UNTIL CE;

dotprod:

MR = MR + MXO * MYO (SS),

MXO
MYO

DM(IO,MO),
PM(I4,M4);



Baseline DSPs

e Common attributes

- Arithmetic: 16 or 24-bit or even 40-bit fixed point (fractional),
or 32-bit arithmetic operations

- Instructions: 16-, 24- or 32-bit instructions

- Issue: one instruction per cycle, single-issue

- complex, compound instruction encoding, many operations
- highly constrained, non-orthogonal architecture

- dedicated addressing hardware

- specialized addressing modes



Baseline DSP

e attributes (cont)

- on-chip memory architecture

- dedicated hardware for loops and other execution control
- on chip peripherals and I/O interfaces

- low cost, low power, low memory usage



Increasing Parallelism

 Boosting performance beyond faster clock speeds requires the
processor to do more work per cycle

e Two ways to increase the processors' parallelism:

- Increase the number of operations that can be performed in
every cycle

- increase the number of instructions that can be issued and
executed in every cycle

* this leads to pipelining and parallelism



More Operations per instruction

« How to increase the number of operations performed in each
instruction?

- Add execution units (multiplier, adder, i.e. add hardware)

 enhance the instruction set to take advantage of extra hardware
e Possibly, increase the instruction word length (width)
* Use wider buses to keep the processor fed with more data

- Add SIMD capabilities - data parallelism



Architectures for DSPs

Enhanced conventional DSPs

- Lucent DSP16xxx, ADSP 2116x
VLIW (Very Long Instruction Word) DSPs

- TITMS320C6xxx, Siemens Carmel, Philips Trimedia
Superscalar DSP

- ZSP ZSP164xx

Hybrid processors

- PowerPC with Altivec Hardware, TriCore
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Enhanced conventional DSPs

 More parallelism via:

- Multi-operation data path

e e.g., 2" multiplier, adder

e SIMD capabilities
- Highly specialized hardware in core

* e.g., application oriented datapath operations (crypto)
- Co-processors

» Viterbi decoder, FIR filtering, mpeg7, etc



SIMD - single instruction multiple data

e Split words into smaller chunks for parallel operations

« Some SIMD processors support multiple data widths, such as

16-bit, 8-bit,...)

- For example, Lucent DSP16xxx, ADI ADSP 211x
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Challenges to SIMD

* Algorithms, data organization must be amenable to data
parallelism

- Programmers must be creative, pursuing alternatives
- Reorganization penalties can be significant

- SIMD most effective on algorithms that process large blocks of
data



More Instructions per clock

e How to increase the number of instructions issued and
executed in every clock cycle?

- Use VLIW techniques
e static scheduling
- Use Superscalar techniques

* dynamic scheduling



Superscalar vs VLIW: scheduling

Memory Instruction
scheduling,
INS 1 dispatch
INS 2 [ ‘
— P,
INS 3 "

INS n

Execution Units

ALU

MAC

BMU

INS 3

INS 6

INS 1

INS 5

INS 2

INS 4




VLIW concept

On-Chip Program Memory
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VLIW Application

* FIR filter loop

LOOP :
ADD .L1 AOQ0, A3, AD
ADD L2 B1,B7,B1

MPYHL .M1X AZ2,B2,A3
MPYLH .M2X AZ,B2,R7
L.DW .D2 *B4++,B2
LDW D1 *AT==_AZ
[B0O] ADD .22 -1,BO0,BO
[B0] B .21 LOOQP

LOOP ends here

1)



Evaluation

 Advantages

- performance

- reqular structure

- easier to program — depending on tools
 Disadvantages

- difficult tools -- compilers/schedulers
- deep pipeline latencies

- code size explosion

- higher power consumption



Superscalar DSPs

* Characteristic
- hardware support for instruction control
- 2-4 instruction issue per cycle
- lots of parallelism

« Example FIR filter

LOOFP: LDLU Rd, R14, 2
LDLET R83, R1l5, 2
MACE . A Fd, RS
AGI0 LOCFP

e All four instructions exec in parallel



Evaluation

 Advantages

- performance

- easier tools -- compilers

- smaller code size
 Disadvantages

- dynamic behavior complicates software development
- execution time unpredictability
- high energy consumption



Hybrids

 Typical approach: Embedded DSP and microcontrollers

- heterogeneous multi-core systems including

 Reqgular processor cores
* DSP co-processors
* Advanced cryptoprocessors

 Design methods
- tweaking a GPP with DSP support, or
- tweaking a DSP with some microcontrol support, or
- entire new design from scratch



Example: TI OMAP Hybrid Processor
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Reconfigurable Processing



Reconfigurable Processing

e Ability of a device to change its internal structure,

functionality, and behavior, either on command, or
autonomously.

e Two methods for execution of algorithms:

- hardwired technology: high performance

- software-programmed microprocessors: high flexibility

A third approach: Reconfigurable computing

- intended to fill the gap between hard and soft, achieving
potentially much higher performance than software, while
maintaining a higher level of flexibility than hardware



Reconfigurability Classes

Static Configuration: performed while device is off line.

Dynamic Configuration: device is on-line, "on the fly".

Self Reconfiguration: performed autonomously by device.

Evolution type: Self Reconfiguration with adaptation such as
replication and growth, "bio-inspired".



Reconfigurability Spectrum
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Reconfigurable Logic

e Currently implemented by FPGASs

« Static reconfiguration is achieved by downloading into the
FPGA chip a new configuration while the FPGA is off-line

* obvious disadvantages in configuration time



Traditional FPGAs
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Static Configuration
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Dynamic Configuration

e |t is achieved by inserting new FPGA functionality on the fly,
l.e. while the chip is active

e Certain areas of the device can be reconfigured while others
remain unaffected

* In practice, partial configuration is used to achieve run-time
dynamic reconfiguration

- Xilinx Virtex families
- Altera FPGAs
- Atmel, etc.



Partial Configuration styles

« Module based: distinct portions of the design (modules) that
can be reconfigured separately (Bus Macros)

- independent modules
- communicating modules

» Difference based: making small design changes in local areas
e.g. LUTs, block RAMs, but not routing




Virtex Il Architecture
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Module-based Partial Configuration
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Bus macros

 Connecting reconfigurable and fixed modules in partial
configuration maps

LO[3:0] RO [3:0]
—\ A\ A\ 4& VA SEA A A&*
LI [3:0] RI [3:0]

LT [3:0] RT [3:0]



Major Constraints

Size and position of a module can not be changed
Modules can communicate only with neighbors
No global signals are allowed except clocks

I/O blocks exclusively accessed by adjacent modules



Difference-based Partial Configuration

Small changes on the FPGA configuration
Manually done, usually via an FPGA Editor
What can be modified?

- LUTs equations
- BRAM contents and BRAM write modes
- 1/O standards and pull-ups or pull-downs on external pins
- Flipflop initialization and reset values,
What cannot be modified?

- Routing, very dangerous: internal contentions



Self Reconfiguration

A second way for dynamic reconfiguration:

The chip modifies its own configuration based on peripheral
or internal signals

This may occur

- under command, or

- autonomously
This idea leads to the concept of Self Reconfiguration



Why Self Reconfiguration ?

Ability to operate autonomously in remote, challenging and
hostile environments

Perform on-board processing and communication
Variability of function and operation modes

Quick response to changing ambiance



Potential Self Reconfiguration Apps

Space exploration probes

Military & commercial
satellites

UAVs and p UAVs
deep underwater rescue
nuclear or chemical plants

autonomous robotics




Key Issues of Self Reconfigurable architectures

Autonomy
Real time response

Low power and energy consumption
Reliability



About UAVs: Rationale

* |ncreasing need for flexible embedded processing on board a
variety of aerial vehicles especially pnUAVSs.

 To perform their mission, YUAVs need unconventional on
board processing capabilities:
- Performing multitude of computationally intensive functions
- Operating autonomously, adapting from one input to another

- Meeting low power and reliability requirements



Rationale (cont)

 Reconfigurable processors based of FPGAs have two traits:
flexibility and parallel processing.

« However, FPGAs lack autonomous adaptation capability while
suffering from power consumption.

e Clearly, mini aerial vehicles, e.qg. satellite sensors and uUAVSs,
need autonomous, adaptable and dynamically reconfigurable
processors, beyond conventional FPGAs.



Sensor Web Scenario
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Self Reconfiguration Approach

 Novel autonomous, adaptable and and self reconfigurable
system has been proposed consisting of 2 basic units:

- Adaptation software manager
- Dynamic reconfigurable hardware fabric

 The approach is based on the twofold concept:
adaptation of the application software coupled with
dynamic reconfiguration of the hardware.



Approach (cont)

* Architecture: reconfigurable at four Layers:

Layer 4:
Layer 3:
Layer 2:
Layer 1:

the Adaptation Manager.

the Real-Time Operating System RTOS.
the Embedded Processors and Memory.
the Reconfigurable Hardware Fabric.



Architecture: Non Traditional Reconfigurable

Adaptation Manager Layer 4

Real Time OS Kernels I Layer 3

Embedded Modules

Em bedded Embedded Config Embedded

Hard Soft Controller
Processor Processor Memory Layer 2

Reconfigurable Processing Fabric Layer 1

Configurable I/O ports




Reconfiguration Strategy

e (Qccurs at several levels:

Selection of application modules by the Adaptation Manager.

Mapping of modules into the hardware fabric or the embedded
processors, depending on performance requirements.

Configuration of the hardware fabric and the embedded
processor to meet performance and data delivery
requirements.

* The reconfigurable hardware is essential for mapping of
communications algorithms such as :

IR filtering,
multichannel CDMA,
complex encoding,
advanced imaging.



Adaptation manager

The adaptation manager captures real time sensor inputs and
interacts with the Function Libraries.

The Libraries store pre-built configurations for application
functions

The manager decides on which configuration to be fed into
the hardware fabric.

The manager also involves a software learning process to
adapt configuration decisions.



Self Adaptation - Dynamic Configuration
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Reconfigurable Fabric

The reconfigurable fabric consists of a number of processing
tiles each having capability of dynamic reconfiguration

Tiles are equipped with regularly structured functional units
capable of operation level parallelism.

Tiles can be hierarchically assembled at several levels using
dynamically interconnected switch-buffer matrices.

- Distributed buffer memory

Configuration can be achieved within a tile, and along several
Interconnected tiles.

This approach provides good scalability, growth and fault
tolerance.



Reconfigurable Fabrics and Tiles




Reconfigurable Tiles
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Self Reconfigurable and Evolvable Systems

There is an overalap between the two concepts
Self reconfiguration operates in real time

Evolvable reconfiguration implies self-growth and replication
of the reconfigurable hardware at slower pace.

Evolvable hardware use bio-inspired approaches and may
need technologies not based on CMOS.



Evolvable Hardware

 Evolvable Hardware, EHW, is capable of on-line adaptation

« EHW can change its architecture and behavior dynamically
and autonomously, either through software or by directly
morphing the hardware.

* At present, EHW use evolutionary algorithms or genetic
algorithms as their main adaptive mechanism. However,
other techniques are possible such as Neural Networks.



Evolvable: Inspiration from Nature

The most fit individuals

survive becoming parents;
ﬁ\childrcn inherit parents

characteristics, with some
variations, and may perform
better, increasing the level of
adaptation.

“Design” goal: survival _g—
Evolution 1n nature

has lead to species
highly adapted to
their environment:
adaptation ensured

survival. Millions of years

Design goal: meet system specifications
Potential designs
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Accelerated evolution, m
~ seconds for electronics



Evolvable Hardware Classes

 Extrinsic EHW: simulates evolution by software and only loads
the best configuration to hardware in each generation.

e Intrinsic EWH: simulates evolution directly in hardware.

 Most evolution approaches are extrinsic or off-line types



Evolutionary design and adaptation of circuits

Evolutionary Algorithm
Search on a population of
chromosomes

eselect the best designs from

a population
« reproduce with variation
« iterate t1ll goal 1s reached.

Chromosomes
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Potential electronic designs/implementations compete:
the best ones are slightly modified to search for even more suitable solutions



Evolutionary design: extrinsic - intrinsic
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Genetic Evolutionary Operations

Selection
Crossover
Mutation

Use an Objective or Fitness function



Principles of Evolution

- Coding solutions as chromosomes.
- Operating on code, not solutions.
- A string is a candidate solution.

Initialize a population Select the Acceplable Output

—> best ™ 5‘?'““9” —» solution
found?

of candidate solutions [, L"‘*"“'“L“llﬁ
ddaad population ot
FT T LIo] individuals

[

Use genetic No
operators to

create a new
population based
on old one




Evolutionary implementation
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e Current approaches to EHW implementation:
- use powerful compute engines to run GAs for evolution
- use reconfigurable HW or FPGAs to load evolved HW
 Requires:
- fast evaluation
- low cost for failure

 Future: everything should be seamlessly integrated in HW



Where is Hardware Evolution ?

» Many learning algorithms
are inspired by nature

/ - \ - GA/GP
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- Design Optimisation



Some examples: evolving an FPGA design
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Is it practical ?

 For most practical real world problems, human designers plus
tools still outperform evolution

 However,

 Hardware evolution does have some niche applications



Adaptive Systems

Evolution + Reconfigurable Hardware = Real-time Adaptation

Can adapt autonomously to changes in environment

Useful when real-time manual control not possible
- E.qg. spacecraft systems (sensor processing)
Non-critical systems are more suitable

- E.g. data compression systems
- plant power management
- ATM cell scheduling



Traditional vs. Evolutionary Search

Traditional design decomposes from the top down into known
sub-problems

Applies constraints to ensure design behaves like known sub-
problems

Evolution works from the bottom up
Evolution uses fitness to guide performance
Not directed by prior knowledge

Oblivious to complexities of the interactions within the circuit



Innovative Circuits

Circuits that could not be found using traditional design
abstractions are innovative

Solution may have high performance
May use less gates that traditional designs
Analysis shows internal non-digital behaviour

Examples: evolvable multiplier, adder
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Application Examples of custom EHW

Japan Higucht EHW-chips JPL’98 FPTA-0

Industrlal

~ Research,
general

JPL’2001 FPTA-2 BN it 8
Integrated 64 cells (each 44 £ §
programmable transistors) |

- Boards MUX-based
UK Sussex (Evolvable motherboard)

Germany (Heidelberg) -_%_ Brazil -PAMA
Array of 16x16 programmable

transistor cells
UK Edinburgh Palmo




Evolved Antennas

LLvAn

DEvADN
DLvAn Recontfigurable antenna based on IvAn’s grid antenna

« Same layout except that its perimeter 1s closed with switches
* 48 swilches vs EvAn's 30
* ~1/5 scale of 'vAn antenna



EHW vs. Neural Networks (NN)

Inspiration
NN seek biological inspiration for EHW seeks biological inspiration for
scomputational elements, methodology leading to designs (1,2)
» architecture appropriate to situations/application
* mechanisms 1. of various types of HW
for certain problems where biology does 2. freeing from biological
well (and attempts beyond) constraints
AHW
NN
Building block Mechanisms

« NN: Simplified/distorted models of biological neuron
« EHW: Domain oriented reconfigurable cell



EHW vs. Self Reconfigurable, again

 Key issue: real time efficiency

* Self reconfigurable hardware requires fast responses whereas
Evolvable HW is still slow paced

e Combining the two is important for future applications



Layered approach to EHW/Self Reconfigurable

Key feature: interaction and coordination of two basic entities

- evolvable adaptation software
- dynamic reconfigurable hardware

We could have used an evolution-based approach to design
both units, i.e. the manager and the fabric. However,

An Evolvable Hardware fabric would ultimately require
unconventional hardware, not yet available.

The Evolvable Manager uses a software approach based on
Neural Net learning technique to evaluate and perform
adaptation of application functions



Self Adaptation - Dynamic Configuration

Self Adapiation
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Evolvable Adaptation Model

 Evolvable hardware model consists of two interacting
components

- dynamic reconfigurable hardware and
- a neural network

* The idea is to achieve evolution in the hardware by evolving
configuration candidates via the neural network and testing

them for fitness.



Evolvable Platform

Reconfigurable Hardware

Neural Network

Evolvable Hardware



Evolution Modes

 QOperation mode: Neural Net (NN) generates configuration
code

 Training mode: NN incrementally evolves configurations by
training itself on input stimuli as well as configuration data
that are recurrently applied after being improved by genetic
operations.

* Other evolution modes e.qg. self-diagnosis and self repair are
also feasible.



Training

During training, candidate configurations are selected from a
population via genetic operations.

Training continues until a candidate passes a fitness test
depending on responses from the reconfigurable fabric.

Training may start on command or autonomously, in new
environment, new functions or upgrading for better
performance.

A major aspect of this scheme is to design a robust training
mechanism for configuration evolution of the dynamic
reconfigurable fabric.



Evolvable Hardware Training

Input

Neural

preliminary

Network

Configuration
data

Genetic Algorithm

Configuration

Fithess

test

Evolution Training

Final

Configuration



Summary and the Future

Self reconfigurable and evolvable systems have the potential
to be an important future technology especially for avionics
and space infrastructure.

EHW based on bio-inspired paradigm using GAs and software
simulation off-line to evolve and discover hardware.

This is fine in slow growth and self paced evolution but not in
real time.

In the future, there is need to integrate seamlessly Evolvable
software with Neural Network techniques into dynamic
reconfigurable hardware platforms.
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Motivation: Autonomous UAVs

e UAV scenarios

- Civilian and Military applications
- Threat assessment, rescue & recovery, reconnaissance

e UAV real time info flow

- Queries and Inquiries to UAVs
- Sensory signal processing

- Feature processing

- UAV Response feedback

- Networking UAV



UAV Scheme
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Autonomous UAV Real Time Requirements

Queries and Inquiries to UAVs

Autonomous & Hierarchical Cognitive Learning
Image processing

Master/Slave UAV organization

Networking formations and UAV collaboration

Mission strategies



System Concept

Central Command

|

Master

Process Inquiry

G

Collect sensory info
Adaptive target

Modify inquiry recognition

or command
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System Concept (cont)

 The system architecture and methodology manages the real-
time information flow between CC and the Master UAV.

A key property is the adaptation and learning capability of the
Master in order to respond intelligently to CC queries.



System Architecture

Interacts in real time with a

e A central command control —
(CC) communications center /I Mobile Agent
§ .

Adaptable Mobile Agent &
(AMA) on the Master UAV. & -
- The Master collects sensory g
information. §
- CC evaluates feedback,

accepting or modifying it. —
antra
- CC resends query and | Station

updates its database.

| Target Area



System Architecture Information Flow
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System Architecture information flow

System Architecture
processes the information
flow for an inquiry session
between CC and the
Master.

Queries operations may
Involve:

Processing & analyzing
“existing” knowledge

“Augmenting” the
knowledge base
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|
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/ 3
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query
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Collect sensory info
Adaptive target
recognition
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Sensory
Learning




System Architecture information flow (cont)
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Inquires

A key element of the CC is an inquiry processor which
transforms user inquiries into formal queries for the AMA.

* An inquiry consists of a number of phrases that resemble a
restricted natural language specifically

e Consists of an <action>, <qualifiers> and a single <object>.



Inquires: Feature Qualifiers

For example, “find preferred in Ohio landing area”

where

<action> is “find”;

<qualifiers> are “preferred” & “in Ohio”
and <object> is “area”.

Feature Qualifiers are characterized by a particular trait which
exhibits a fuzzy description such as “good” or “preferred”.

For example, “preferred” has a method describing the human
meaning into low level terrain sensory features, e.q.

”n '

“clearance”, “roughness”, etc.



Prolog

e Declarative Language

- Declarative Clause Grammars, DCG
- Straight forward mapping to parallel hardware technologies

* Al-based goal searching and Pattern Matching

- Image processing and object recognition
- Optical technologies

* Formulate logical database queries

- Natural-like language processing
- Biophotonics technologies

- Associative memories



Queries

A formal query is a symbolic expression which can be
described by Prolog's Declarative Clause Grammar (DCG).

For example, the CC Inquiry
- find preferred in Ohio landing area
becomes transformed the AMA query fro the Master UAV:

- find ( clearance > 7 and roughness > 8) and 1in Ohio
landing area

Feature qualifiers require offline and online learning by using
a combination of supervised learning (i.e. Neural Nets) and
fuzzy system descriptions.



Feature Training Strategies

Hierarchical training modules

- Sensory features on distinct sensor modules on Master UAV
- Preference training module
Two levels of Learning
- Adaptive feature learning
- Preference-based learning
Inquiry: find preferred in Ohio landing area

Query: find ( clearance > 7 and roughness > 8)



Master UAV architecture

* Adaptive recognizer of Function
patterns and images through

sSensors
- For Features & Preferences

Adaptive
Recognizer
« Reconfigurable processor
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UAV Training Process

* Hierarchical training modules

- Training sensory features on distinct sensor modules on UAVs
- Preference training module
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Training Strategy
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Training strategies

* Master:
- Filtering for each parameter data type
- Parameter sensory training based on query preference
- Trained data collected into one feature vector
e Central station (CC):
- Similar to Master but operating on simulated data

- Software filtering

- feature vector data at the Central derived by simulations using
the training knowledge from the Master.



Query processing: Master

sensory trainer is stored in the local knowledge base

query execution process real-time data from the local sensors.

Central Station
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Query processing: Slave

Slave UAVs organized into fleets to collect multiple data

Collaborative trainer: resolving inconsistencies from multiple UAV data.

Master Agent
Master Agent query {
| Query .| Collaborator '
| Validation Trainer
Slave Agent query / \
Slave Agent : ~ .
T Response | Knowledge ] _____ Query | .
| Unit Base Execution ' Sensors
Master Agent '
answer }

Master Agent



Key issues in Master (AMA)

Associative memories and processors is an enabler
iInformation technology

All Master subsystems will benefit from large associative
memories

Command and Control, CC

- Inquiry system - Prolog engine

- Preference Learning — Neural Network Classifier
Adaptable Mobile Agents, AMA

- Query learning — Supervised Learning, Fuzzy Logic

- Cognitive Image Recognizer — Unsupervised Learning
- Sensory Learning - Supervised Learning



Key Attributes in UAV Scheme

All UAV subsystems will benefit from large biophotonic
associative memories, especifically

Command and Control

- Query system - Prolog engine

- Preference Learning — Neural Network Classifier
Master UAV

- Cognitive Image Recognizer
- Sensory Learning
Slave UAVs

- Advanced imaging - wavelets
- Collaborative learning

Associative memories and processors are enablers for
Information technology on UAVs



Example: terrain landing




Feature properties

Features Min Range | Max Range | Sensory Data | Learning
Ohbstacle clearance | 1 9 Learning Yes
Roughness 1 9 Learning Yes
Ground hardness 1 9 Learning Yes
Inclination 0" 30Y Reading No
Wind speed 0 mil/hr 54 mil/hr Reading No
Temperature 0" F 150" F Reading No
Features Clusters
Obstacle clearance limited accessible clear
Roughness fine coarse rough
Ground hardness hard firm soft
Inclination leveled  tilted
Wind speed still low high
Temperature low high




Cluster Charaterization

1 2 3 4 5 6 7 8
Yy
1 accessible | x X X limited | limited accessible | accessible
2 clear limited | x limited | x limited clear accessible
3 limited clear clear clear clear accessible | limited accessible
4 limited limited | accessible | clear clear accessible | limited clear
5 limited limited | limited clear clear limited accessible | clear
x| 1 2 3 4 5 6 7 8

Yy

1 good | x X X X poor | ok ok

2 good | good | x X X poor | ok poor

3 poor | good | good | ok ok ok poor | ok

4 poor | poor | poor | good | good | ok poor | ok

5 poor | poor | poor | good | good | poor | ok ok




Query examples and answers

Possible queries

Local Station answers

1. Find all possible sites for landing.

All grids which are not ‘x’.

2. Find all good sites for landing.

(L1)(1.2)(2.2)(2.3)(3.3) 4.4 (5.4 (4.5)(5.,5)

3. Find the best site for landing.

(3.3)

4. Find the closet site for landing
from a given location

The system needs to know the current location of the ve-
hicle, altitude, and other information for flicht landing
plan

5. Find the best site for landing
within a given length of time

The system needs to know the current location of the ve-
hicle, altitude, and other information for flicht landing
plan




Conclusions

System Architecture and methodology to manage the massive
iInformation flow and inquires between CC and AMA in
realtime.

Bio-inspired learning techniques are needed for query and
Inquiry processing for feature qualifiers and preferences.

Bio-inspired learning are needed for pattern recognition of
sensory information.

Prolog, optical and biophotonic technologies are needed for
processing realtime massive information flow.
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Outline

Mission scenario
Heterogeneous sensor nets
Characteristics of platforms
Information management

Our Approach

- On board UAV architecture

- Adaptive processing

- Evolutionary learning and training
- Associative cognition



Distributed Sensing Concept

UAVs
L] B

Three coordinating sensory networks: ground sensors, UAVSs, trooper sensors



Expeditionary Operation

Three distributed sensory networks

- ground sensors
- UAV sensors
- trooper sensors

The trooper sensory is normally operating in passive mode,
l.e. avoiding transmissions while receiving data from UAVs
and ground sensors.

UAV sensors coordinate with the ground sensors to track
Information about the target. This information is transmitted
to troopers.

The ground sensory consists of redundant heterogeneous
sensors that are dispersed en masse to monitor targets.



Ground Sensors

Sensors are heterogeneous, redundant and disposable.

They are self-organized by their monitoring threat identity
types:

- Motion

- Sound

- Imaging (infrared)

- Proximity, location

- Chemical, bio, radiation

Ground sensors communicate point-to-point with other sensors

Ground sensors normally operate in passive monitoring mode.
They are activated by the UAVs for transmission.



UAV Sensors

UAV sensors are equipped with long-range communication
devices. They respond to ground sensory, troopers and other
UAVS.

UAVs may be organized in hierarchical network formations, i.e.
master UAVs and lower flying mini UAVSs.

Possible intelligent information and threat discovery by UAVs
- Threat identity

- threat coordination

- Overall threat assessment

- Threat pattern tracking

Information bridge between troopers, ground sensors and
distant command station.



Trooper Sensors

 Trooper sensors are carried on soldiers to retrieve information
normally from the UAVs, occasionally the ground sensors and
In emergency the command center

e Characteristics

- Support information retrieval and interpretation
- Support coordination among trooper sensors
- Passive sensory: mostly receiving

- Threat avoiding and/or safe threat practice for safety of
troopers



Data Gathering Principles

Troopers gather data from their own sensors and from nearby
sensory assets, i.e. UAVs and ground sensors. Sensory data
Is relayed all the way from assets located close to the target.

Gathering of sensory data is determined by transmission rate,

transmission range, quantity, quality, energy and real time
constraints.

There is priority of selecting sensory data types (for example,
audio vs. visual) based on mission objectives, threat level, etc.

Ground sensors transmit raw data with small data rates

UAVs can transmit processed data that may have been
analyzed by the UAV systems or at the Command Station.



Sensor Suite

Depends on mission requirements

expeditionary missions to discover hidden hostiles under
cover and slow moving targets

- UAV sensors: visual, audio, infrared
- Ground sensors: motion, chemical, possibly sonar

reconnaissance missions to passively gathering data

- UAV sensors: long-range visual, infrared, radar
- Ground sensors: audio, possibly visual

surveillance missions to monitor behavior of people, objects,
or processes in large region

- UAV sensors: visual, infrared
- Ground sensors: motion, audio, possibly visual



Platform characteristics improvement

« UAVs: onboard processing and communication capabilities.
Adaptive hardware and software to the mission objectives.
Associative processing to enable real time identification and

recognition.

 Ground sensors: Minimal computation and communication.
Very low energy consumption, possibly energy scavenging.

 Troopers: Low power processing and passive communication
capability.




Validation and experimentation

* There is need to collect real time data in simulated scenarios
that closely relate to real scenarios.

e All key actors in an expeditionary scenario, the troopers, the

UAVs and the ground sensors, should interplay to collect real
data.

 Data capture capability for post mission analysis.



Real time information management

 Troopers: management of sensory data received by their own
sensors and ground sensors. This involves prioritization of
sensories and weighting their responses.

- For example, a motion signal from a ground sensor may

reinforce an infrared image from the trooper sensor to decide
about a target.

« UAVs: More sophisticated data management and analysis in
real time.

- Imaging
- sensory pattern recognition
- adaptive pattern training

* Ground sensory

- Low level data recording
- Raw data transmitted with low data rates



Sensory inter-operation

A key issue of sensory inter-operation is how and where to
evaluate sensory data in real time.

We propose that the initial evaluation be done by the UAVs.
Patterns of diverse sensory data could be weighted to provide
a real time response.

Sensory patterns could be recognized by adaptation and
(off-line) training based on data from previous missions.
(More details to follow).

All unresolved information would be sent to command center
for expert decisions with time delay penalty



Approach: UAV Centric
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Hierarchical System Concept

 Operation level 1: Local evaluation

- UAVs collect sensory information from their sensors and the
ground sensors concerning the target

- UAVs process and evaluate the data in real time to locate and
Identify the target and threat level

- UAVs transmit a response to the troopers and/or command
center

 QOperation level 2: Remote analysis

- For deeper analysis, UAVs communicate with the central
command in real time. A feedback received is transmitted to
the troopers.

A key property is the adaptation and learning capability of the
UAVs based on associative processing to provide responses in
real time.




UAV on-board architecture

Onboard associative storage
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Key Attributes of UAV-Centric Scheme

All UAV subsystems as well as command center will benefit
from large associative memories, specifically

UAVs: efficient real time response

- Cognitive imaging

- Sensory learning

- Collaborative training
Command: computation intensive

- Preference learning — Neural Classifiers
- Query system

Associative memories and reconfigurable Iarocessors are
enablers for sensory and cognitive technology on UAVSs.




Expeditionary Application
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On-board UAV Operations
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Onboard UAV Function Modules

e Our approach builds on several on-board function modules to
assist the troopers and central command by preprocessing
iInformation, correlate corrected data, and preliminary
association with existing knowledge.

 These three tasks undergo evolutionary learning processes
during online operation, or in offline training sessions.

"-‘ Adaptive Processing \ - .
Multiple
—»{ Adaptive Processing I—» Information _ Associative _
- Coghnition

Management

-

——= Adaptive Processing

| Online / Offline Evolutionary Learning '
M _




Offline UAV training process

* Hierarchical training modules

- Training sensory features on distinct sensor modules in the UAV
- Preferential training module

/~  SENSOR MODULE N\

% Sensor _ ADAPTIVE i‘? - ADAPTIVE
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Online/Offline Evolutionary Learning

e Evolutionary neural process learning employs a neural
network training and mapping approach between input and
output representations via an evolutionary learning algorithm.

* Evolutionary learning supports online training during realtime
application and offline training during traditional training
sessions

e Evolutionary learning augments UAV functions as follows:

- Adaptive data processing
- Multi sensory information management

- Associative recognition



Sensory Associative Memory

* QOur learning and training scheme employs a three phase
associative memory process:

- Sensory data transformations
- interfusion of sensory transforms

- associations and approximate recall

N :
Data | & & & ,%s:»‘f‘\ Recalled
—F & = F &
Key & & &0 Data Items
<& \ ¥

e All three phases use evolutionary neural network processing
to perform their internals



Adaptive Sensory Data Pre-processing

 Heterogeneous sensors pre-process raw data using distinct
adaptive modules on the UAV

 High level features of information are extracted from raw
sensory data, i.e. Fourier, wavelet

e Other information can be preferential rather than traditional
math-based. This is achieved with evolutionary preferential
neural process learning.

Sensor1 | preprocessor 1 .| Information —» Info 1

Extractor 1

___________________________________________

___________________________________________

[ preprocessor 2 _| Information :
Sensor 2 *—‘ prep Extractor 2 [~ Info 2

___________________________________________

___________________________________________

Sensor s A reprocessor s Information .
| PP Extractor s ~ Info s




Phase 1 - Sensory preprocessing

a) pre-processing filters,
b) high level feature extractors,

Feature vector f, represents data of Sensor-k

: Feature y
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Multi Sensory Information Fusion

 Extracted high level information from sensors are merged into

a single vector stream

 Merging uses statistical parameter, e.g. mean, weighted

average, etc

« Merging can be biased with existing knowledge rather than
standard unbiased statistical parameters. This is achieved
with evolutionary bias neural process learning.

Info 1 ---~a1 [s1] [ez| = Interfuser1 =
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Phase 2 - Interfusion
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Phase 3: Associative Recognition

* Associative recognizers measure statistical similarity or
difference between merged information and stored
associative memory data

* Similarity measures determine the association matching
levels between the merged information and stored data

e Often in practice, similarity measures in real association are
not mathematically well defined. This is achieved with
evolutionary undefined neural process learning.
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Evolutionary Training Scheme

 key advantage

- neural net structural evolution

- training data enrichment

 The training scheme consists of of three nested processes

- a) coefficient training process (inner loop),

- b) structural evolution process (middle loop) and

- C) training data enrichment process (outer loop),

Initial Net

Training
Data

A

[

Coefficient

Training

inner loop

Structural

Evolution

4./>_.

middle loop

- Trained
Training

Data —<¥» Net

Enrichment

outer loop




Training

 The coefficient training process (inner loop) is a variation of
the back propagation algorithm using adaptive learning rates
to accelerate convergence

 The structural evolution process (middle loop) evolves the net
structure to improve accuracy

 The training data enrichment process (outer loop) explores
and enhances the input-output training data space efficiently.
This helps to further improve the output accuracy and
convergence



Data Enrichment Process

* Properties

- Addresses the multi-label and imbalanced data problem.

- Manipulates the imbalanced data by sub-sampling into more
balanced data.

- lteratively updates the sub-sampled data through the training.
- Improves the generalization performance of the training net.
* Differences

- Multi-label & imbalanced data problem addressed by ONE net.
- Unique data selection technique to improve classifier training.
- Avoids sparsely data distribution assumption.

- No prior knowledge required.



Enrichment Initialization

 Enrichment Initialization re-samples the available imbalanced
training data to create a subset of more balanced training
data for first time neural net classifier training.
* Steps
- Select a number of initial clusters, g
- Cluster training data into g clusters

- Select equal number of data from each cluster as active
training set



Enrichment Initialization
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Enrichment Update

 Enrichment Update incrementally adds and removes training
data to/from the active training set at the end of an
enrichment training iteration.
* Steps
- Train neural net with the active training set.

- Separate the active training set into 2 groups with respect to
their errors.

- Add neighbors for high-group and remove half of low-group.



Enrichment Update

0 - . _
0.2 0.4
| 0.6 0.8 ;0 Gain
Total of 29 selected points

Angle



Enrichment Termination

 Enrichment Termination controls the enrichment process to
iterate for a pre-set number of enrichment training iterations.

* Steps

- Check if the enrichment process repeats for a pre-set number
of iterations.

- If NO, repeat Step 2. Otherwise, stop.



Experimentation: Robot arm controller
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Metrics

True-Positive: classification result is confirmed as correct
known label.

False-Positive: classification result is miss-classified as
different known labels.

Control Accuracy (Ac): the percentage of accepted classified
state in the sampled data.

ceepted -
Ae = aeeepte + 1005
all

Control Error (Ee): the Euclidean distance between estimated
control state and the sampled state in training data.

EFe = \/Z{tj — 0;)?




Advantages

 Data Enrichment supports neural network classifier in both
linearly separable and non-linearly separable cases.

 Data Enrichment improves the neural network training
yielding better trained network than conventional techniques.

 Data Enrichment reduces the time required to train a neural
network for multi-label and imbalanced data.



Some Results

[terations | Accuracy | Energy Error
] 27.00%, 2.0759
2 87.00%, (.4353
3 89.00%, 0.3958
4 08.00%, 0.3104
TABLE 1

Training repeats for 4 updates

Stepl: Enrichment Initialization

Step2: Enrichment Update

Step3: Enrichment Termination




Non-Linear Data Example
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Status

 Theoretical model of the three-phase sensory cognitive
processing scheme for training and operational mode

e Evolutionary Training of the cognitive processor including self-

modification of the NN structure and augmentation of
additional training data

- simulation for NN coefficient weights training
- simulation for the NN structural modification

- simulation of data enrichment process
* Needs:

- Controlled scenario for testing and verification of the cognitive
processing scheme with realistic information

- We will move the simulation to FPGA prototype



Assumptions on Existing Technologies

« We assume the following technologies already exist or are in
process of development

Communication and transmission technologies portable for
short- and long-range

Power and energy efficient devices for all sensory units
Troopers equipped with sensor technologies

Networking technologies for effective sensor communication
and processing

small, reliable UAVs



Applications to UAV Missions

Consider a reconnaissance mission

Sensory transform phase maybe embedded in low flying
mini UAVs to collect and process diverse sensory data

Another UAV, possibly a master at higher altitude, may
perform data interfusion

Depending on the application mission, the master UAV may
also perform data associations and matching in real time. An
associative memory should be included in the master UAV

However, if associations sizes are large, the master UAV may
contact the central command which can perform intensive
associations for matching



