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m  Randomized algorithms are frequently used in many
areas of engineering, computer science, physics,
finance, optimization,...but their appearance in systems
and control is mostly limited to Monte Carlo
simulations...

m  Main objective of this mini-course: Introduction to
rigorous study of RAs for uncertain systems and
control, with specific applications
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m  Combinatorial optimization, computational geometry

m Examples. Data structuring, search trees, graph

algorithms, sorting (RQYS), ...
= Motion and path planning problems
m  Mathematics of finance: Computation of path integrals

m  Bioinformatics (string matching problems)
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Uncertainty has been always a critical issue in control
theory and applications

First methods to deal with uncertainty were based on a
stochastic approach

Optimal control: LQG and Kalman filter

Since early 80's dternative deterministic approach
(worst-case or robust) has been proposed
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m  Major stepping stone in 1981: Formulation of the H_,

problem by George Zames

m  Various “robust” methods to handle uncertainty now
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Robustness
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Late 80's and early 90's: Robust control theory became
awell-assessed area

Successful industrial  applications in  aerospace,

IENT-CNR
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m Researchers realized some drawbacks of robust control

m Consider uncertainty A bounded in a set 8 of radius p.
Largest value of p such that the system is stable for all
A € Biscalled (worst-case) robustness margin

m Conservatism: Worst case robustness margin may be
small

m Discontinuity: Worst case robustness margin may be

discontinuous wrt problem data
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exist:  Structured singular  values, Kharitonov, chemical, electrical, mechanical engineering, ...
optimization-based (LMI), I-one optimal control, = However
quantitative feedback theory (QFT)
NATO Lecture Series SCI-195 @RT 2008 9 NATO Lecture Series SCI-195 (@RT 2008 10
= fjé
¢ Limitations of Robust Control - 1 | Limitations of Rabust Control - 2

IENT-CNR

 — — i o o o o o |

= Various robustness problems are NP-hard

Computational Complexity: Worst case robustness is
often NP-hard (not solvable in polynomial time unless

P=Np)

— static output feedback
— structured singular value
— stability of interval matrices

[1] V. Blondel and JN. Tsitsiklis (2000)

NATO Lecture Series SCI-195

@RT 2008 12

4B - 2

RTO-EN-SCI-195



Randomized Algorithms for Systems
and Control: Theory and Applications

@ Conservatism and Complexity
\E‘V\IT-CNR Traje—Off

[  — — O —  — i)

m Uncertain or control design parameters often enter into
the system in a nonlinear/nonconvex fashion

m To avoid complexity issues (or just to find a solution of
the problem) relaxation techniques such as SOS are used

m Study issues about the accuracy of the approximation
introduced and related complexity
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m New paradigm proposed is based on uncertainty
randomization and leads to randomized algorithms for
analysis and synthesis

m Within this setting a different notion of problem
tractability is needed

m Objective: Breaking the curse of dimensionalityl!

[1] R Bellman (1957)
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m The interplay of Probability and Robustness for control
of uncertain systems

m Robustness: Deterministic uncertainty bounded

m Probability: Random uncertainty (pdf is known)

m Computation of the probability of performance

m Controller which stabilizes most uncertain systems
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m We obtain larger robustness margins at the expense of a
small risk

m We study the probability degradation beyond the
robustness margins

m Computational complexity is generally not an issue:
Randomized agorithms are low complexity
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M(s) System A Uncertainty

= A belongs to a structured set B,
— Parametric uncertainty q
— Nonparametric uncertainty A,
— Mixed uncertainty

NATO Lecture Series SCI-195 @RT 2008 17
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m Worst case model: Set membership uncertainty
m Theuncertainty A is bounded in aset B,

Ae 8B,

m Real parametric uncertainty g=[q,...,q,] € R’
g e [gq7]
m Nonparametric uncertainty
A € {Ae R || A1}
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= Robustness — Objective of Robustness
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m Objective of robustness: To guarantee stability and
A performance for all
Ae 8B,
w M Z m Different probabilistic paradigm based on uncertainty

randomization of A within 8,
m Uncertainty A is bounded in a structured set B,

m z= 7 (M,A) w, where 7 (M,A) isthe upper LFT
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= Example: Flexible Structure - 1 — Flexible Structure - 2
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m Mass spring damper model

m M-A configuration for controlled systems and study stability of
m Real parametric uncertainty affecting stiffness and

damping M(9)=C(sl—-A'B

= Complex unmodeled dynamics (nonparametric) qls 0 O
A= 0 qls O
A

‘l ‘Z ‘3 IA IS 's
T . I . I . T . I . I }» Oy, € R 0 0 1
m m, m, m, m 44
Ul T il il il i AeC
k k ks ks ks ks

Ae B,={AeD:c(A)<p}
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R Probability Degradation Function Ryt Probabilistic Model
[ I aMooon [ S — I E—  — — -
m Probability density function associated to 8,,

L m We now assume that A is arandom matrix with given

density function f,(A) and support 8,

m Example: Aisuniformin 8,

Estimaled probability degradation

0.94

0zs  0a  o4s o5 055 06 ves o7
i
p~0394
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m Takef,(A)=U[B,] (uniform density within B,))
1

il
Pyt Performance Function
[ ) — — O — .y |

m In classical robustness we guarantee that a certain
performance requirement is attained for all Ac 8,,

[ e — [ w—  — = n i) |
m Compute the H,, norm of the upper LFT #(M,A)

J(2) = | 7 M, A)l..
m For given >0, check if

U8, 1= vol (8,) ifAe 8B, m This can be stated in terms of a performance function
0 otherwise 3= )
m |nthis case, for asubset Sc B,
m Examples: H_, performance and robust stability
dA
e s 8 _
vol(B,) vol(B,)
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m Continuous time SISO systems with real parametric
uncertainty q with upper LFT

ZM,A) = 7 (M,q) =

0.59,9,5+10°q,

IENT-CNR
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m Theset of q,, g, for which J(q)<y is shown below

X 10

J(A) < ’Y -5 2 -5 2
(10°° +0.05q,)s? + (0.00102 + 0.59,)s+ (2-10° + 0.5¢7)
fordl Ain 8,
whereq, € [0.2, 0.6] and ¢, € [105,3:10%]
m Letting J(g) = || #,(M,9) ||, we choose y=0.003
m Check if J(g)<y for all qintheseintervals
NATO Lecture Series SCI-195 @RT 2008 27 NATO Lecture Series SCI-195 (@RT 2008 28
© 0
s Example: #_ Performance - 3 o= Exampleltl: Robust Stability - 1
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m Consider the closed |oop uncertain polynomial
p(sa) =
(11 +60, +60, + 200, )+ (G + @ + )5+ (g + G +1)2 + &
whereq, € [0.3,2.5], g, € [0,1.7] and r=0.5
m Check stability for all gintheseintervals

[1] G. Truxa (1961)
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g Example: Robust Stability - 2
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m Set of unstable polynomials

17

%

0
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Good and Bad Sets
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= We define two subsets of 8,

Ay ={A1J(A) <Y} By
Ay ={A1JA)>7} =8,

B Agooq iSthe set of A’ssatisfying performance
m Measure of robustnessis

IENT-CNR
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m In worst-case analysis we compute y such that al A
satisfy performance. Equivalently, we evaluate Y such
that

Agood =5

m |n aprobabilistic setting, we are satisfied if the ratio

Vol (A goog)
vol(8,,)
iscloseto one
NATO Lecture Series SCI-195 @RT 2008 35
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m Taking r=0 the unstable set reduces to a singleton vol (Agood ) = J.A?Aﬂ
NATO Lecture Series SCI-195 @RT 2008 31 NATO Lecture Series SCI-195 @RT 2008 32
© 0
= Example of Good and Bad Sets o Example of Good and Bad Sets - 2
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
Taking small r
A 17 A 17
bad bad
— —
—
dz 7
; | ; |
03 o 25 03 a ‘ 25
AQOOd Agood
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m We define the probability of performance as

p, =Pr{J(A) <v}
m Noticethat, if f,(A) isuniform, then

p — VOI (A good )
"= Vol(8,)
[1] RF. Stengel (1980)
NATO Lecture Series SCI-195 @RT 2008 36
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= For Truxal's example, we compute p, in closed-form
= For uniform distribution, we have

VOI(Aypg) = 3.74 -1 12

vol(B,,) = 3.74

NATO Lecture Series SCI-195 @RT 2008 37
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m For given performance level vy, check whether

= Compute the probability of performance p,

JA) <y

foral AinB,

NATO Lecture Series SCI-195
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m Randomized Algorithm (RA): An agorithm that makes
random choices during its execution to produce a result

m Example of a“random choice” isacoin toss

heads or tails

a1

NATO Lecture Series SCI-195 @RT 2008
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P2: Worst-Case Performance o
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m Find J,, such that
Jiax = Max J(A)
Ac By, . -
Randomized Algorithms
m Compute the worst case performance (or its for Anal ysis
probabilistic counterpart)
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Randomized Algorithm: Definition
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m Randomized Algorithm (RA): An agorithm that makes
random choices during its execution to produce a result

m For hybrid systems, “random choices’ could be
switching between different states or logical operations

m For uncertain systems, “random choices” require (vector
or matrix) random sample generation

NATO Lecture Series SCI-195 @RT 2008 a2
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m Monte Carlo Randomized Algorithm (MCRA): A
randomized algorithm that may produce incorrect results,
but with bounded error probability

.EFCNJR Las Vegas Randomized Algorithm

[ f —  E— o B — i i n  w a

m Las Vegas Randomized Algorithm (LVRA): A
randomized algorithm that always produces correct
results, the only variation from one run to another is the
running time

IENT-CNR
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m Consider random uncertainty A, associated pdf and
bounding set B
m A is a (rea or complex) random vector (parametric
uncertainty) or matrix (nonparametric uncertainty)
m Consider a performance function
J(A):B—>R

andlevel y>0
m Define worst case and average performance
Jmax = An;ag( J(A) Jae=EA(J(A))

NATO Lecture Series SCI-195 @RT 2008 43 NATO Lecture Series SCI-195 (@RT 2008 44
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m H_ performance of sensitivity function
B = {A: A=bdiag (Ay,... , Ag) € F"™, G,u(A) < p}
SsA) = U(1+ P(sA) C(9)
J(A) = [S(s.A)L..

IENT-CNR
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m H_ performance of sensitivity function
B = {A: A=bdiag (Ay,... , Ag) € F™™, 5,0 (A) < p}
S(s,A) = U(1 + P(s,A) C(9)
J(2) = IS(s.A)IL.

m Objective: Check if
Jnax SY A JpeSY

m These are uncertain decision problems

NATO Lecture Series SCI-195 @RT 2008 45 NATO Lecture Series SCI-195 @RT 2008 46
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B Example: H_, Performance - 2 e Two Problem Instances
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m We have two problem instances for worst case
performance

‘]max s Y and Jmax > ’Y
and two problem instances for average case performance
‘]a\/e s Y and ‘]a\/e > Y

m Thisleads to one-sided and two-sided MCRA
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ne-Sided MCRA One-Sided MCRA: Case 1
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m One-sided MCRA: Always provide.a correct sol utior? in )

one of the instances (they may provide a wrong solution

in the other instance)
m Consider the empirical maximum

Jmax = max J(AY)
i=1,...N

where A are random sampl esand N isthe sample size

m Check if Jmax\ Yy or Jmax >y A
N A2 A3 A% A5 A6

NATO Lecture Series SCI-195 @RT 2008 49 NATO Lecture Series SCI-195 (@RT 2008 50
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One-Sided MCRA: Case 1 o One-Sided MCRA: Case 1
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a

J(A) JA) algorithm provides a correct solution

J(AY)
A
Al A2 A3 A* A5 A8 Al A2 A3
NATO Lecture Series SCI-195 @RT 2008 51 NATO Lecture Series SCI-195 @RT 2008 52
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iyl One-Sided MCRA: Case 2 = Two-Sided MCRA
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
) algorithm may provide a wrong solution [ Two-siQed MCRA: They may provide a wrong solution
3 in both instances
H s Y, S — J“max = Consider the empirical average
Joe= ave J(AY
J(A2) = A€ (
I > Y>3
J(ah e e where Al are random samples and N is the sample size
m Check if Jave < yor Ja\/e >y
A
Al A2 A3
NATO Lecture Series SCI-195 @RT 2008 53 NATO Lecture Series SCI-195 @RT 2008 54
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o Two-Sided MCRA: Case 1 — Two-Sided MCRA: Case 2
[ o e [ o s s o o
A algorithm may provide a wrong solution ) 1) algorithm may provide a wrong solution )
‘]ave> ,Y> ‘]ave ‘]ave< Y< ‘]ave

J(A2) J(A% 5 J(,Aj)/ J(A“\).\ "~
ave 'Y ______________________________

A A
At A2 A3 A% A5 A8 Al A2 AS A* AS A8
NATO Lecture Series SCI-195 @RT 2008 55 NATO Lecture Series SCI-195 @RT 2008 56
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= Las Vegas Randomized Algorithms o Discrete Bounding Set
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
» We aso have zero-sided (Las Vegas) randomized Consider random uncertainty A, a discrete bounding set
agorithms B, given pdf and performance function

m Las Vegas Randomized Algorithm (LVRA): Always

give the correct solution PO
m The solution obtained with a LVRA is probabilistic, so PO
“aways’ means with probability one e e o0 060 00 oo
R ) ) o o o o e o e o e o
= Running time may be different from one run to another e o 60 00 00 o0
. . e o o o e o o o e o
m We can study the average running time e 6 6 06 6 6 06 06 o o
e o o o o o o o o o
Al AZ AE A4 AS A(: A7 AB AQ AlO
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m Consider discrete random variables m Assumethat A is random with pdf f,(A) with support 8,
= The sample space is discrete and MN possible choices m Accuracy ¢« (0,1) and confidence 8 (0,1) be assigned
can be made . .
) m Performance function for analysis and level
= Inthe binary case we have 2V ! !
m Finding maximum requires ordering the 2N choices
m LasVegas can be used for ordering real numbers
J=J(8) Y
m Examplee Randomized Quick Sort for sorting red
numbers (classical in computer science)
NATO Lecture Series SCI-195 @RT 2008 59 NATO Lecture Series SCI-195 @RT 2008 60
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Randomized Algorithms for Analysis

m Two classes of randomized algorithms for probabilistic
robust performance analysis

m P1: Performance verification (compute p,)
m P2: Worst-case performance (compute J,,.,,)

m Both are based on uncertainty randomization of A

m Bounds on the sample size are obtained

[  — — O —  — i)

7
.EFCNJR Randomized Algorithms - 2

[ f —  E— o B — i i n  w a
m We estimate p, by means of arandomized algorithm

m First, we generate N i.i.d. samples
AL A2 . AN € B,

according to the density f,

m Weevauate J(AY), J(A?), ..., J(AN)

m Construct an indicator function

|(Ai): 1 IfJ(A).S}/
0 otherwise
= Anestimate of p, isthe empirical probability

8 = 130 (4) 2 Nooos
pN_Ni;I(A)_ N

where Ny,oq i the number of samples such that J(A) <y

NATO Lecture Series SCI-195 @RT 2008 61 NATO Lecture Series SCI-195 @RT 2008 62
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m Theempirical probability isareliable estimate if

b, — Py =IPr{I@) <y}-pyl<e
m Find the minimum N such that
Prilp, - pu|<ef21-6

where £€(0,1) and 5 (0,1)

NATO Lecture Series SCI-195 @RT 2008 63 NATO Lecture Series SCI-195 @RT 2008 64
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o Chernoff Bound!!! o= Comparison Between Bounds
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
m Forany £€(0,1) and 6 (0,1), if

5 -
N > 1095 \
282 8 \ Bernoulli
Bienayme
then % 6F \ Chernoff -
Prilp, - py|<ef=1-06 g \
£ 4 \
2L \
\
2p \\
\
S e \\\\
10° e IO';; 107"
[1] H. Chernoff (1952) Gonfidence and Accuracy
NATO Lecture Series SCI-195 @RT 2008 65 NATO Lecture Series SCI-195 @RT 2008 66
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m Remark: Chernoff bound improves upon other bounds
such as Bernoulli (Law of Large Numbers)

m Dependence on 1/dislogarithmic
m Dependence on 1/¢is quadratic

e 01% | 0.1% | 05% | 0.5%
1-6 | 999% | 99.5% | 99.9% | 99.5%
N |[3.910° | 3.0-106 | 1.6:106 | 1.2-10

=
.EFCNJR Computational Complexity of RAs
[ :  — — i o o o o o |

m RAsareefficient (polynomial-time) because

1. Random sample generation of A can be performed in
polynomial-time

2. Cost associated with the evaluation of J(A) for fixed
Al'is polynomial-time

3. Sample size is polynomial in the problem size and
probabilistic levels eand &

IENT-CNR
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m Random number generation (RNG): Linear and
nonlinear methods for uniform generation in [0,1) such
as Fibonacci, feedback shift register, BBS, MT, ...

m Non-uniform univariate random variables. Suitable
functional transformations (e.g., the inversion method)

m The problem is much harder: Multivariate generation of
samples of A with pdf f,(A) and support 8,

m |t can be resolved in polynomial-time

NATO Lecture Series SCI-195 @RT 2008 67 NATO Lecture Series SCI-195 @RT 2008 68
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L 1. Random Sample Generation —J 2. Cost of Checking Stability

[  — — i o o o o o |

m Consider a polynomial
p(s,a)=a,+as+--+a,s"
m To check left half plane stability we can use the Routh
test. The number of multiplications needed is

2 n*-1

r1—for neven for nodd

m The number of divisions and additions is equal to this
number
m We conclude that checking stability is O(n?)

IENT-CNR
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m Chernoff bound is independent on the size of 8B,,, on
the structure D on the number of blocks, on the pdf

fA(A)
m It dependsonlyon d and €

= Same comments can be made for other bounds such as
Bernoulli

NATO Lecture Series SCI-195 @RT 2008 69 NATO Lecture Series SCI-195 (@RT 2008 70
= _ /fjé -
. 3. Bounds on the Sample Size L Worst-Case Performance

NATO Lecture Series SCI-195 @RT 2008 1
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m Recall that

Joax = Qgi(J(A)

m Generate N i.i.d. samples
AL A2 . AN € B,
according to the density f,

= Compute the empirical maximum
J max J(Al)

max =
i=1,....N

NATO Lecture Series SCI-195 @RT 2008
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.= Worst-Case Bound (Log-over-Log)! = Comparison and Comments
[  — — O —  — i) [  — — i o o o o o |

m For any £€(0,1) and 6 (0,1), if

m Number of samplesis much smaller than Chernoff

N 2% m Bound is a specific instance of the fpras (fully
logs%; polynomial randomized approximated scheme) theory

then m Dependence on 1/¢isbasically linear (Iogizej

Pripr{a(a) > 3y J<ef>1-6

5 0.1% 0.1% 0.5% 0.5% | 0.01% | 0.001%
1-8 | 99.9% | 99.5% | 99.9% | 99.5% | 99.99% |99.999%
N ]6.91-10%|5.30-103 | 1.38-10° | 1.06:10% | 9.21-10*| 1.16-10°

[1] R. Tempo, E. W. Bai and F. Dabbene (1996)
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= =
€ i i . Confidence Interval
= Volumetric Interpretation — onriaence Intervals
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
= Inthe case of f,(A) uniform, we have » The Chernoff and worst-case bounds can be computed a-
~ priori and provide an explicit functional relation
pr{J(A)NN}:MAm) NZ N
vol(8,,) =N(& 9)
m Therefore m The sample size obtained with the confidence intervalsis
not explicit

Pr{Pr{J ()> ‘]N}S 8}21_ g m Given §(0,1), upper and lower confidence intervals p_
. ) h th
is equivalent to andp, are s pré?tpLg p,<pf=1-8

Privol(A,, )< evol (8, )}21-6
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= Confidence Intervals - 2 o Confidence Intervals - 3
[ e — [ w—  — = n i) | [ f —  E— e B — i i n  w a
m The probabilities p, and p, can be computed a o MNNSEERESEENES 2
posteriori when the value of Ny, is known, solving i 8 e 774
equations of the type o T T T I T f/ 7
07— g 9, /
& (N N-k P ! ~ 57 74
2| A=) =4 ynnupa ; g drm
k=N gooq _z os FI— f 4 % 7/\/—%4’
New (N 1oL GG raaunn
> pa-p)t =g, 7SS ArS
&k 0 oo araa e
. 5=0.05 N//742 0T
with é_"'%:é‘ o1 é?‘/ ﬁ,J] |
5 1 INRENEN
o ol 02 035 ,“,,i;. ﬁaﬁlbmss 07 08 pyo.s 10
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Q Statistical Learning Theory

[ e — [ w—  — = n i) |
m The Chernoff Bound studies the problem
Prilp, - pu|<e}21-6
wherep, = Pr{J(4) <y}
m Performance function J is fixed

m Statistical Learning Theory computes bounds on the
sample size for the problem

Pr{Pr(3(A)<y)- /<& VIe J}21-6
where J isagiven class of functions

&

IENT-CNR

V C and P-dimension(12]

 — — i o o o o o |

m Statistical Learning Theory aims at studying uniform
Law of Large Numbers

m The bounds obtained depend on quantities called VC-
dimension (if J is a binary valued function), or P-
dimension (if J isacontinuous valued function)

m VC and P-dimension are measures of the problem
complexity

[1] M. Vidyasagar (1997)
[2] E.D. Sontag (1998)

r/;: /r_—l y
€] Choice of the Distribution - 1 o) Choice of the Distribution - 2

IENT-CNR
[  — — O —  — i)

m The probability Pr{a € s}
depends on f,(A)

m |t may vary between 0
and 1 depending on the

IENT-CNR

 — — i o o o o o |

m The bounds discussed are independent on the choice
of the distribution but for computing Pr{J(A) <y} we
need to know the distribution f,(A)

m Some research has been done in order to find the
worst-case distribution in acertain class!

Paf f5(4) m Uniform distribution is the worst-case if a certain
target is convex and centrally symmetric
[1] B. R. Barmish and C. M. Lagoa (1997)
NATO Lecture Series SCI-195 @RT 2008 81 NATO Lecture Series SCI-195 @RT 2008 82
T . N )
. Choice of the Distribution - 3 -

IENT-CNR
[  — — O —  — i)

= Minimax properties of the uniform distribution have
been studied™

[1] E. W. Ba, R. Tempo and M. Fu (1998)
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IENT-CNR

 — — i o o o o o |

Probabilistic Robust Synthesis
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(=
‘E-‘f—c;L Analysis vs Design with Uncertainty

[ e — [ w—  — = n i) |
m Starting point: Worst-case analysis versus design
= Consider aninterval family p(s,g), ge 8,={ qe R"||qll.<1}
m Analysis problem:
— Check if p(s,g) is stable for al ge B,
Answer: Kharitonov Theorem

m Design Problem:
— Does there exist age B, such that p(s,q) is stable?
Answer: Unknown in general

NATO Lecture Series SCI-195 @RT 2008 s

&

IENT-CNR

Synthesis Paradigm

 — — i o o o o o |

L=,

Te= 0

m Design the parameterized controller K, to guarantee
stability and performance

NATO Lecture Series SCI-195 @RT 2008 86

€] Synthesis Performance Function

IENT-CNR
[  — — O —  — i)

m Recall that the parameterized controller is K,

m We replace J(A) with a synthesis performance function

J=J(A0)

where 6 € O represents the controller parameters to be
determined and their bounding set

NATO Lecture Series SCI-195 @RT 2008 87

)

IENT-CNR

Randomized Algorithms for Synthesis

 — — i o o o o o |

m Two classes of RAsfor probabilistic synthesis
= Average performance synthesig!l

m Based on expected value minimization

m Use of Statistical Learning Theory results

m Very genera problems can be handled

m Existing bounds are very conservative and controller
randomization is required

m Ongoing research aiming at major reduction of sample
size
[1] M. Vidyasagar (1998)
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‘E‘%NJR Randomized Algorithms for Synthesis
‘ I I COICIIooon

= Robust performance synthesigl

m Problem reformulation as robust feasibility
m Only convex problems can be handled
m Finite-time convergence with probability one is obtained

[1]B. Polyak and R. Tempo (2001)

NATO Lecture Series SCI-195 @RT 2008 89

=
| Robust Performance Synthesis

IEIT-CNR
 — — i o o o o o |

m Uncertainty randomization of A in 8,
m Convex optimization to design the controller K(s)

(=]
_

d P ( S) e
” ]
K(s)
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©
\E.:\IT-CNR
[ I — — —  —  — -

RAsfor Optimal Control (LQR)

.EFCNJR Uncertain Systemsin State Space

[ f —  E— o B — i i n  w a
m We consider a state space description of the uncertain
system

X(t) = A(A)x(t) + Bu(t)
with x(0)=x,; XeR™ ueR™, Ae B,

m For example, A(A) is an interval matrix with bounded
entries a; <a; <a

IENT-CNR
[  — — O —  — i)

= We consider interval uncertainty A (i.e. when ae 8,))

m That is, a, rangesin theinterval for all i, k
|3 - @ 1< Wy
where g, are nominal values and w;, are weights
m Definethe N = 2% vertex matrices AL, A2,..., AN
A =ay Wy or &y =ay -W
fordli, k=12, ...,n

NATO Lecture Series SCI-195 @RT 2008 91 NATO Lecture Series SCI-195 @RT 2008 92
= —

T . M .
¢ Interval and Vertex Matrices C Common Lyapunov Functions

IEIT-CNR
[  — — i o o o o o |

m Given matrices A*, W and feedback K, find a common
quadratic Lyapunov function Q > O for the system

Xt)=(A+BK) x(t) foradl Ae A
m Find Q> 0 suchthat
L(Q, A) = (A+BK)TQ+ Q (A+BK) <0 foradl Ae A
m Equivaently, find Q > 0 such that
Aok L(Q, A) <0 fordl Ae A

IENT-CNR
[  — — O —  — i)

m Quadratic Lyapunov stability analysis and synthesis of
interval systems are NP-hard problems

m |n principle, they can be solved in one-shot with convex
optimization, but the number of constraints is
exponential

m We can use relaxation (eg. w2 TheoremlY) or
randomization

[1] Yu. Nesterov (1997)

NATO Lecture Series SCI-195 @RT 2008 95
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© 6
—  Lyapunov Stability of Interval Systems — Vertex Solution

IEIT-CNR
[  — — i o o o o o |

= Due to convexity, it suffices to study L(Q, A) < 0 for
all vertex matricest]

m Question: Do we really need to check all the vertex
matrices (N = 219)?

[1] H.P. Horisberger, P.R. Belanger (1976)

NATO Lecture Series SCI-195 @RT 2008 96

4B - 16

RTO-EN-SCI-195



Randomized Algorithms for Systems
and Control: Theory and Applications

S
‘E"if—c;L Vertex Reduction

[ e — [ w—  — = n i) |

m Answer: It suffices to check “only” a subset of 22
vertex matrices!!

m Thisis gtill exponential (the problem is NP-hard), but
it leads to a major computational improvement for
medium size problems (e.g. n = 8 or 10)

m For example, for n=8, N is of the order 10° (instead of
1019)

[1] T. Alamo, R. Tempo, D. Rodriguez, E.F. Camacho (2007)

=
< Diagonal Matrices and Generalizations

IENT-CNR
[  — E— — — — o

m Transform the original problem from full square
matrices A to diagonal matricesZ e R2v2n

m |t suffices to check the vertices of Z

m Extensions for L,-gain minimization and other related
LMI problems

m Generalizations for multiaffine interval systems
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==

riJ LasV Randomized Algorith /EJ Probabilistic Soluti
as Vegas Randomiz gorithm obabilistic Solution

[ e — [ w—  — = n i) |
= We may perform randomization of the N = 27 vertices
(in the worst case)

m |f we select the vertices in random order according to a
given pdf, we haveaLVRA

[ f —  E— o B — i i n  w a
m Randomly generate Al,..., AN. Then, check if the
Lyapunov eguation
AQ+ QA) <0
is feasible for i=1,...,N and find a common solution
Q=Q">0
m Critical problem: Even if N is relatively smdll, thisis a
hard computational problem
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= =

Tl tial Algorith L] Defiriti
IEIIT-CNR wuer] I gorl m IENIT-CNR I nl Ion

[ e — [ w—  — = n i) |
m Key point: Sequentia algorithm which deals with one
constraint at each step

m At step k we have
Phase 1: Uncertainty randomization of A
Phase 2: Gradient algorithm and projection

m Fina result: Find a solution Q=QT >0 with probability
onein afinite number of steps

NATO Lecture Series SCI-195 @RT 2008 101

[  — — i o o o o o |
= Let & bean Euclidean space

&, ={A: A" eR",

A- Zai}

ik=1

and C be the cone of positive semi-definite matrices

c={Ac &,:A>0}
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‘Eﬁf—c;]n Projection on a Cone
[ e — [ w—  — = n i) |
m For any real symmetric matrix A we define the

projection [A]*e C as

t— i _
[Al = argmin|A- X

m The projection can be computed through the eigenvalue
decomposition A=TATT

m Then
(A =TAT
where A;*=max {A; ,0}

=
.QEJR Phase 1. Uncertainty Randomization

[ f —  E— o B — i i n  w a
m Uncertainty randomization: Generate Ake B,

m Then, for guaranteed cost we obtain the Lyapunov
equation

A(AQ+QAT (A <0

and a scalar function
QA9 =| M@Qal'|
where || - || is the Frobenius norm
= We can also take the maximum eigenvalue of V(Q,AX)

NATO Lecture Series SCI-195 @RT 2008 103 NATO Lecture Series SCI-195 (@RT 2008 104
ol 0
= Matrix Vaued Function — Phase 2: Gradient Algorithm
[ I E— — — — -y il [ ) I I— — O — — o w aj}
m Define amatrix valued function n Wewrite
V(QA) =A&)Q+QA (4 Qo [Q“- 1o AN if v(Q“,4)>0
Q- otherwise

where 9, is the subgradient and the stepsize u< is

o VQ &)+ r]ag v A
ot Al

and r>0 is a parameter

NATO Lecture Series SCI-195 @RT 2008 105 NATO Lecture Series SCI-195 @RT 2008 106
= =

L) Closed-form Gradient Computation L) Theorem!™
IEIIT-CNR O 0 er] 0 pu 0 IENT-CNR m ern

[ e — [ w—  — = n i) |
= The function v(Q,A¥) is convex in Q and its subgradient
can be easily computed in a closed form

NATO Lecture Series SCI-195 @RT 2008 107

[ f —  E— o B — i i n  w a
m Assumption: Every open subset of 8B,, has positive
measure

m Theorem: A solution Q, if it exists, is found in a finite
number of steps with probability one

m |dea of proof: The distance of QK from the solution set
decreases at each correction step

[1] B.T. Polyak and R. Tempo (2001)
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0 &
- 1 e -
IEIIT-CNR EXarT]pI d ] IEIIT-CNR EXarT]pI e 2
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
m We study a multivariable example for the design of a m The state variables are
controller for the lateral motion of an aircraft. —x, bank angle
m Themodel consists of four states and two inputs — X, derivative of bank angle
— X3 Sidedlip angle
o 1 0 0 0 0 — X, jaw rate
0 L, Ly L 0 -391 m The control inputs are
XO= o Y, “1 PO o0 o MO — u, rudder deflection
v B g 1
Ny(%) Ny Ng+NY, NN, -253 031 — u, aileron deflection
[1] B.D.O. Anderson and J.B. Moore (1971)
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=, =
(r M
‘E'HNJR Example- 3 .E'FCNJR Example- 4
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
= Nominal  values: L,=-293, Lg=-475 L=0.78, m Sequentia agorithm:
g/V:0086, YB:-O.ll, NBZOJ., Np:'0.042, NB:2601’ — Initia p0| nt QO rand0m|y selected
N=029 _ — 800 random matrices A
m Perturbed matrix A(A): each parameter can take valuesin — The algorithm converged to
arange of +15% of the nominal value
® Quadratic stability (y=0): take R=I and S=0.01I 0.7560 -0.0843 0.1645 0.7338
» Remark: A(A) is multiaffine in the uncertain parameters: o=l 0.0843 1.0927 0.7020 0.4452
quadratic  stability can be ascertained solving 0.1645 0.7020 0.7798 0.7382
simultaneously 2°=512 LMIs 07338 04452 0.7382 1.2162
NATO Lecture Series SCI-195 @RT 2008 11 NATO Lecture Series SCI-195 @RT 2008 112
ks T
] Example - 5 c
IEIIT-CNR arnp e IENT-CNR
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
m The corresponding controller
K = g o[ 386191 -43731 431284 -49.9567
- |-2.8814 -10.1758 10.2370 -0.4954
satisfies all the 512 vertex LMIs and therefore it isalso a
quadratic stabilizing controller in a deterministic sense .
m The optimal LQ controller computed on the nominal Extensions
plant satisfies only 240 vertex LMIs
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= Related Literature and Extensions
[ e — [ w—  — = n i) |
m  Minimization of a measure of violation for problems

that are not strictly feasiblelt]

= Uncertainty in the control matrix, B=B(A), Ae B,,
We take the feedback law
u=YQx
where Y and Q=QT >0 are design variables

[1] B.R. Barmish and P. Shcherbakov (1999)

il
— Related Literature
[ f —  E— o B — i i n  w a
m Related literature on optimization and adaptive control
with linear constraintg.234

m Stochastic approximation algorithms have been widely
studied in the stochastic control and optimization
literaturel6.7]

[1] S. Agmon (1954)

[2] T.S. Motzkin and 1.J. Schoenberg (1954)

[3] B.T. Polyak (1964)

[4] V.A. Bondarko and V.A. Y akubovich (1992)

[6] H.3. Kushner and G.G. Yin (2003)
[7] 3.C. Spall (2003)

[ e — [ w—  — = n i) |
m Design of common Lyapunov functions for switched
systemd !
= From common to piecewise Lyapunov functiong?
m Ellipsoida algorithm instead of gradient algorithml®!
m Stopping rule which provides the number of steps4l

= Other agorithms have been recently proposed!>-l
[1] D. Liberzon and R. Tempo (2004)
[2] H. Ishii, T. Basar and R. Tempo (2005)
[3] S. Kanev, B. De Schutter and M. Verhaegen (2002)
[4] Y. Oishi and H. Kimura (2003)
[5] Y. Fujisski and Y . Oishi (2007)
[6] T. Alamo, R. Tempo, D. R. Ramirez and E. F. Camacho (2007)
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= =

L Subsequent Research L) Optimization Problems™
gt sequent Researcl = ptimization Problem

[ f —  E— o B — i i n  w a
m Extensions to optimization problems

m Consider convex function f(x) and function g(x.4)
convex in x for fixed A

m Semi-infinite (nonlinear) programming problem
min f(x)
gx.4) <Oforal de 8
m Reformulation as stochastic optimization
m Drawback: Convergence results are only asymptotic

[4] V. B. Tadic, S. P. Meyn and R. Tempo (2003)

IENT-CNR
[  — — O —  — i)

m The scenario approach for convex problemd!

m Non-sequential  method which provides a one-shot
solution for general convex problems

m Randomization of A e 8B and solution of a single convex
optimization problem

m Derivation of a bound on the sample sizell

= A new improved bound based on a pack-based strategy(?

[1] G. Calafiore and M. Campi (2004)
[2] T. Alamo, R. Tempo and E.F. Camacho (2007)
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ol 6
: Scenario Approach o Convex Semi-Infinite Optimization

NATO Lecture Series SCI-195 @RT 2008 119

[ f —  E— o B — i i n  w a
m The semi-infinite optimization problemis

minc’@ subjectto f(9, 4) <0 foral de B

wheref(0, 4) <Oisconvexindforal 4e 8

m We assume that this problem is either unfeasible or, if
feasible, it attains a unique solution for all 4 € B (this
assumption is technical and may be removed)

m Weassumethat ¢ ® C R"
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S
‘E"'}f—c;L Scenario Problem

[ e — [ w—  — = n i) |

m Using randomization, we construct a scenario problem

m Taking random samples 4,i = 1, 2, ..., N, we construct
f(6, 4)<0, i=1,2,...,N

and

mincTd subjectto f(, 4)<0, i=1,2,...,N

=
.E;CNJR Theorem!d

[  — — i o o o o o |
m Theorem: For any £€(0,1) and 5€(0,1), if

N > [2/e log(1/é) + 2n + 2n/e log (&) |
then, with probability no smaller than 1- &

- either the scenario problem is unfeasible and then also
the semi-infinite optimization problem is unfeasible

- or, theAscenario problem is feasible, then its optimal
solution g, satisfies
Pr{ 4e 8:16,4>0}<¢

[1] G. Calafiore and M. Campi (2004)

[ e — [ w—  — = n i) |
m A new improved bound (based on a so-called pack-
based strategy) has been recently obtained

N > [2/e log(1/26) +2n + 2n/e log 4 |
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ol 0
— 1 e

IENT-CNR A NaN I mpl’oved Bound[ ] IEIT-CNR

[  — — i o o o o o |

IENT-CNR
[  — — O —  — i)

m RACT: Randomized Algorithms Control Toolbox for
Matlab

m RACT has been developed at IEIIT-CNR and at the
Institute for Control Sciences-RAS, based on a bilateral
international project

= Members of the project
Andrey Tremba (Main Developer and Maintainer)
Giuseppe Calafiore
Fabrizio Dabbene
Elena Gryazina
Boris Polyak (Co-Principal Investigator)
Pavel Shcherbakov
Roberto Tempo (Co-Principal Investigator)

NATO Lecture Series SCI-195 @RT 2008 125

m The main difference with the previous bound is that the
factor RA CT
2n/e log (2/¢)
isreplaced with
2n/e log 4
[1] T. Alamo, R. Tempo and E.F. Camacho (2007)
NATO Lecture Series SCI-195 @RT 2008 123 NATO Lecture Series SCI-195 @RT 2008 124
o= =
(r N
¢ RACT | RACT

IEIT-CNR
[  — — i o o o o o |

m Main features

m Define a variety of uncertain objects: scalar, vector and
matrix uncertainties, with different pdfs

m Easy and fast sampling of uncertain objects of amost
any type

m Randomized algorithms for probabilistic performance
verification and probabilistic worst-case performance

m Randomized algorithms for feasibility of uncertain LMIs
using stochastic gradient, elipsoid or cutting plane
methods (Y ALMIP needed)
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IENT-CNR
[  — — O —  — i)

Probabilistic Control of
Mini-UAVSY

[4] L. Lorefice, B. Pralio and R. Tempo (2007)
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0 T Application of RA
IEIIT-CNR IEI\T-CI\IR pp Icatlon O S
e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
m Randomized agorithms have been developed for
various specific applications
. . . m Control of flexible structures
Applications of Randomized B _
Al gorithms m Stability and robustness of high speed networks
m Stability of quantized sampled-data systems
m Brushless DC motors
m Control design of Mini UAV
NATO Lecture Series SCI-195 @RT 2008 127 NATO Lecture Series SCI-195 (@RT 2008 128
= =N Italian National Project
] L i i
— for Fire Prevention

IENT-CNR

f —  E— o B — i i n  w a
m  This activity is supported by the Italian Ministry for
Research within the National Project
Sudy and development of a real-time land control and
monitoring system for fire prevention
m  Five research groups are involved together with a
government agency for fire surveillance and patrol
located in Sicily
m The aerid platform is based on the MicroHawk
configuration, developed at the Aerospace Engineering
Department, Politecnico di Torino, Italy
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=

Tl MHZ1000 Platform - 1

[  — — O —  — i)
m Platform features

- wingspan 3.28 ft (1 m)

- total weight 3.3 1b (1.5 kg)

!
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)

IENT-CNR M H 1000 PI aform = 2

[ f —  E— o B — i i n  w a
m Main on-board equipment
- various sensors and two cameras (color and infrared)
m DC motor
m Remote piloting and autonomous flight
m Flight endurance of about 40 min
= Flight envelope
- min/max velocity: 33 ft/s (10 m/s) — 66 ft/s (17 m/s)
- average velocity: 43 ft/s (14 m/s)
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. - & Bes
I asic on-board Systems
= Flight Envelope (Limits) — Sy
[ I E— — O — — -y il [ ) I I— — O — — o w aj}
) ) . Aerodynamic constraint (red) = minimum flight
Wing loading effect > total weight speed (stall effect) DC motor: Hacker B20-15L (4:1) receiver: Schulze Alphas4ow
B Propulsive constraint (blu) > maximum flight = weight: 589 " weight: 1359
Propeller sizing effect speed = dimensions: @ 20 x 40 mm = dimensions: 52 X 21 X 13 mm
= Kv: 3700 rpmivolt = 8 channels
velocity: 33 ft/s (10 m/s) — 66 ft/s (17 m/s)

controller: Hacker Master Series 18-B-Flight

servo: Graupner C1081 (2x)
= weight: 219

= weight: 139
» dimensions: 33 X 23 X 7 mm

= current drain: 18 A

» dimensions: 23 X 9 X 21 mm
= torque: 12 Nem

battery: Kokam 2000HD (3x)

= weight: 160 g

= dimensions: 79 X 42 X 25 mm
= capacity: 2000 mAh

@ Prototype Manufacturing - 1 GEJ Prototype Manufacturing - 2
[

 — — O —  — i)

) I I— — O — — o w aj}

. working nsruments
_Ilflmg surfaces outline

= =
—a, ——i
v fuselage reference

[oegac ] 5

NATO Lecture Series SCI-195

@ Prototype Manufacturing - 3 GEJ State Space Model
‘ IEIIT-CNR O ooon ‘ IEIT-CNR

| o e o o o
prototype

m State space formulation obtained by linearization of the
full (12 coupled nonlinear ODE) model
X(t) = A(A) x(t) + B(A) u(t)
u(t) =- Kx(t)

where x = [V, o, g, g7 (V flight speed, o angle of
attack, g and @ pitch rate and angle), A uncertainty

m Consider longitudinal plane dynamics stabilization

m Control u isthe symmetrical elevon deflection

easy construction
rapid manufacturing

bad model reproducibility

inaccurate geometry

NATO Lecture Series SCI-195 @RT 2008
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) Uncertainty Description - 1

IENT-CNR
[ I — — —  —  — -

m We consider structured parameter uncertainties affecting
plant and flight conditions, and aerodynamic database

m Uncertainty vector A =[4,,..., gl where g€ [4, §']

m Key point: There is no explicit relation between state
space matrices A and B and uncertainty A

m Thisisdueto the fact that state space system is obtained
through linearization and off-line flight simulator

m The only techniques which could be used in this case are
simulation-based which lead to randomized algorithms

7
.EFCNJR Uncertainty Description - 2

[ f —  E— o B — i i n  w a

= We consider random uncertainty A =[4,,..., Sl T

m The pdf is ether uniform (for plant and flight
conditions) or Gaussian (for aerodynamic database
uncertainties)

m Flight conditions uncertainties need to take into account
large variations on physical parameters

m Uncertainties for aerodynamic data are related to
experimental measurement or round-off errors

[  — — O —  — i)

P —

Standard deviation is experimentally computed from the vel ocity
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(Tl ] = J
-— Plant and Flight Condition Uncertainties = Aerodynamic Database Uncertainties
\ ) s s s s s e 1 \ I I ooan
parameter pdf | & % Py g # parameter | paf g [
flight speed [ft/s] U |4265 (15 |3625 (4905 |1 G G -001215 | 0.00040 8
y C, 1 G 030651 | 0.00500 |9
altitude [ft] u (16404 [+100 |0 32808 |2
Cul] G 002401 |0.00040 |10
mass [Ib] U |331 +10 |298 3.64 3 Cyy lrad] |G -0.20435 0.00650 11
wingspan [ft] U |328 +5 [312 3.44 4 Cpolrad” |G -1.49462 | 0.05000 12
Cp lrad?t] |G 076882 | 0.01000 |13
mean aero chord [ft] U |175 +5 167 1.85 5 -
Cy [rad] |c 017072 |0.00540 |14
wing surface [ft?] u [561 [+10 |[5.06 618 |6 C, [rady |G 141136 |0.02200 |15
-1 -
moment of inertia[lbft?] (U |1.34 +10 |1.21 1.48 7 Gy [radh |G 0.94853 0.01500 16
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= Standard Deviation and Velocity o Critical Parameters and Matrices

[ f —  E— o B — i i n  w a

m We select flight speed (4;) and take off mass (J;) as
critical parameters

m Flight speed is taken as critical parameter to optimize
gain scheduling issues

m Take off mass is a key parameter in mission profile
definition

m We define critical matrices

At AZ A® A* B! BZ B® B!

m They are constructed setting d,, d;to the extreme values

o, 04,65, 6t and dl theremaining 6 areequal to g
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@
.— Phase 1: Random Gain Synthesis (RGS)

[ e — [ w—  — = n i) |
m Critical parameters are flight speed and take off mass

m Specification property
S, ={K: A, — B.K satisfies the specs below}

0 e[4060]radls  (epe[0.509]
Loy €[0.1,0.3] Awg <+ 45%

Wy €[1.0,1.5] rad/s
Ay < = 20%

where @ and ¢ are undamped natural frequency and
damping ratio of the characteristic modes; & and oy
denote short period and phugoid mode
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=
i
J Volume of the Good Set

[ e — [ w—  — = i n i |
m Define abounding set B of gains K

B={K:ke[k k' i=1,...4}
m Define the volume of the good set
Vol go0q = fA dK

7
L Specs in the Complex Plane

IENT-CNR
[  — E— — — — o

kL R 4
‘ /_Q.‘ »
(,.I—j‘ Y
IE’ENJR Randomized Algorithm 1 (RGS)

[ IC 1 Oooon
= Uniform pdf for controller e
gainsK in given intervals :
m Accuracy and confidence
e€=4-10%and § =3 -10*

= Number of random
samples is computed with

where A = { KeBn Sl} “Log-over-Log” Bound r 1| o |
Vol is simply the volume of the h tangle B obtaning N =200,000 | |
m Vol issimply the volume of the hyperrectangle = Weobtained 5 gains ki | v i
satisfying specification ! | } i
property S, i [peccason 5 foiment |
NATO Lecture Series SCI-195 @RT 2008 147 NATO Lecture Series SCI-195 @RT 2008 148
—
© 0
= Randomized Algorithm 1 (RGS) o Random Gain Set
[ _ I — — w— — — - -’y n )| [ f —  E— o B — i i n  w a
Given ¢, § € (0,1), RGS returns the set of gains {K%,...,K$}
satisfying S,
1. Compute N using the Log-over-log Bound; ganset | Ky Ky Ky Ko
2. For fixed j=1,2,...,N, generate uniformly the gain random matrix Ki e B; K1 0.00044023 |0.09465000 |0.01577400 |-0.00473510
3. Set C=0;
4. For fixed i=1,2,3,4, compute the closed-loop matrix K2 0.00021450 |0.09581200 |0.01555500 |-0.00323510
AJ(K) = Al - B K
-ifKie S, set C=C+H1; K3 0.00054999 |0.09430800 |0.01548200 |-0.00486340
- otherwise, set C=C;
5 End; K4 0.00010855 |0.09183200 |0.01530000 |-0.00404380
6. If C=4, return the gain Kj;
7. :et dl =j+landreturnto Step 2; K5 0.00039238 |0.09482700 |0.01609300 |-0.00417340
8 En
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z?

ORGANIZATION

(q.l}_’J Phase 2: Random Stability Robustness
\E.\IT-CNR A nal yS S (RSRA)

[  — — O —  — i)
m TakeK,,,q = K obtained in Phase 1

m Randomize A according to the given pdf and take N
random samples Al

m Specification property

S,={A: A(A) —B(A) K,ang Satisfies the specs of S;}

m Computation of the empirical probability of stability Py,

il
— Empirical Probability
\ ) | s s o s s
m Consider fixed gain K4
m Define the probability
Pree=k P(A)dA
whereC ={AeB N S,} and p(A) isthe given pdf
m Then, weintroduce a*“success’ indicator function
1(A)=1ifAleS,
or 1(A)) = 0 otherwise
m Theempirical probability for S,is given by
pN = Ngood/N
where Nyqoq iS equal to the number of successes
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= Randomized Algorithm 2 (RSRA) — Randomized Algorithm 2 (RSRA)
\ ) s o s s s s 1 \ | e e s o Y
m TakeK 4 from Phase 1 o Givene, 5e (0,1), RSRA returns the empirical probability Py
m Accuracy and confidence T [ that S, is satisfied for a gain K,y provided by Algorithm 1
e=5=00145 A _ .
a Number of random - ! — | 1. Compute N using the Chernoff Bound,;

samples is computed with
Chernoff Bound obtaining
N =5,000

= Empirical probability is
defined using an indicator

2. Generate N random vectors Al e B according to the given pdf;
3. For fixed j=1,2,...,N, compute the closed-loop matrix
_ Aq(A)) = AAY) - BANK zng;
-if Ay(A) € Sy, set 1(A) =1,
- otherwise, set 1(A)) = 0;

. 4. End; N
function O R 5. Return the empirical probability Py
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r.?]; J Empirical Probability of Stability /?5‘
iyl for Phase 2 IE’FCNJR Probability Degradation Function
[ e — [ w—  — = n i) | [ f —  E— o I — i i n w a
m Flight condition uncertainties are multiplied by the
amplification factor p > 0 keeping the nominal value
gain set empirical probability constant
Kt 88.56% sdepld, s8] fori=1,2,...,7
K2 vy = No uncertai ntyiarfects the aerpdynamm database, i.e.
=& fori=8,9,...,16
K3 89.31% m For fixed pe[0,1.5] we compute the empirical
KA 93.86% probability for different gain setsK'
m The plot empirical probability vs p is the probability
K® 85.14% degradation function
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((F; . Probability Degradation Function ,;r—:’ )
‘E""E:L for Phase 2 — Root Locus Plot for Phase 2
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
i
{ kL
i .
) Root locus for K2 (left) and K* (right)
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/iJ Phase 3: Random Performance /rj_j] }
Robustness Analysis (RPRA) et Bandwidth Criterion
[ e — [ w—  w— = i n i | [ f —  E— o B — i i n  w a
m Thisphaseis similar to Phase 2, but military specs are
considered (bandwidth criterion)
m Specification property il et
S;={A: A(A) - B(A) K, 4,4 Satisfies the specs below} -
i 75 7\
Wy €[2.5,5.0] rad/s %.€[0.0,05] s
N S ——— Au—n—u-.-'.-n-—-
where @y, and 7, are bandwidth and phase delay of the L) LR
frequency response
m Computation of the empirical probability that S, is
satisfied
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{ IE‘J /rj_j‘ }
= Randomized Algorithm 3 (RPRA) o Randomized Algorithm 3 (RPRA)
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
m TakeK,,from Phase 1 ot = Given N and Ay(A), j=1,2,...,N, provided by Algorithm 2, RPRA
= Numer of random samples || lebeinto = returns the empirical probability P, that S, is satisfied for a gain
is computed with the ot prws ) .
Chernoff Bound obtaining T R Krana Provided by Algorithm 1
N =5,000 — - - - ) )
= Empirical probability is T T =S R— 1 Forfixedj=1,2..N
defined using an indicator N I B | A -if Ag(A)) € S5, set 1(A) = 1
function i e - otherwise, set 1(A)) = 0;
i 1 i 2. End;
Pt o S L 3. Return the empirical probability Py
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g.F, . Empirical Probability of Performance /fr:-’ J Probability Degradation Function
‘Eﬁ;;L for Phase 3 = for Phase 3
[ e — [ w—  — = n i) | [  — — i o o o o o |
gain set empirical probability S A
K1 93.58% i
K2 95.16% !
K3 90.80% :
K4 84.78%
KS 96.06% 2
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) . i . |
Banadwidth Criterion for Phase 3 o Gain Selection
[ e — [ w—  — = n i) | [  — — i o o o o o |

m Multi-objective criterion as a compromise between
_ = different specifications

j =5 /=0\ Finally we selected gain K* as the best compromise
between all the specs and criterial

Bandwidth criterion for K (left) and K3 (right)
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T . . . ) . . o
o Conclusions: Flight Testsin Sicily - 1 o= Conclusions: Flight Testsin Sicily - 2
[  — — O —  — i) [  — — i o o o o o |
m Evaluation of the payload carrying capabilities and m Satisfactory response of MH1000

autonomous flight performance m Possible improvements by iterative design procedure

m Mission test involving altitude, velocity and heading

m Stability of the platform is crucial for the video quality
changing was performed in Sicily

and in the effectiveness of the surveillance and
m Checking effectiveness of the control laws for monitoring tasks
longitudinal and lateral-directional dynamics

m Flight control design based on RAs for stabilization and
guidance
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Color Camera: Right Turn

k|

 — — O —  — i)
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ok Color Camera: Landing Phase

[  — — i o o o o o |

NATO Lecture Series SCI-195 @RT 2008 170

=N =
¢@ Infrared Camera- 1 J:J Infrared Camera - 1

 — — O —  — i)
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road
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=N =
¢@ Infrared Camera - 1 J:J Infrared Camera - 1

 — — O —  — i)

road road
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@ &
= Infrared Camera - 1 — Infrared Camera - 2
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
car
water
road p| pe
shed
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Infrared Camera - 3 o Acknowledgment
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
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\E‘\ITVCNR IE.I‘ENR PAC Algorlthms
[ e — [ w—  — = n i) | [ f —  E— o B — i i n  w a
m Randomized algorithms are Probably Approximately
Correct (PAC)
m We give up a guaranteed deterministic solution
Conclusions m This implies accepting a “small” risk of giving a wrong
solution
m The risk can be made arbitrarily small (but not zero)
taking suitable values of so-called confidence and
accuracy
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S
‘E"'}f—c;L PAC Algorithms
[ I E— — — — -y il

m Two open problems

m Optimization with sequential methods

m Derive “reasonable’” bounds for the statistical learning
theory approach
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