[image: image14.wmf][image: image15.jpg]}
A NATO
\4% OTAN



[image: image16.emf]


Multi-Stage Data Fusion in Military Surveillance Systems






 Multi-Stage Data Fusion in Military Surveillance Systems

Multi-Stage Data Fusion in Military Surveillance Systems
Stefano Coraluppi and Craig Carthel
NATO Undersea Research Centre

Viale S. Bartolomeo 400, 19126 La Spezia, ITALY
E-mail: coraluppi@nurc.nato.int, carthel@nurc.nato.int 
Abstract

Data fusion is a branch of applied science that processes measurements from a variety of sources and time epochs to provide a consolidated state history of a reality of interest, be it a physical process, an intangible system (e.g. economic, social, …), or a complex entity that includes elements of both (e.g. a set of individuals in physical space).  As such, data fusion is an important component in military and security surveillance systems.  The technology encompasses stochastic modelling, nonlinear filtering, data correlation, and sensor management.  Thus, there are significant technical overlaps with the signal processing, automatic control, information theory, and operations research communities.  This paper provides illustrations of some applications of data fusion technology to surveillance systems.  The unifying theme of the examples is the use of innovative and flexible multi-stage fusion processing.
1
introduction

Data fusion technology is essential to military surveillance systems.  In a typical theatre of interest, a number of similar or complementary systems will be available, each with a distinct sensor footprint, active or passive modality, sensor revisit rate (in the case of an active system), calibration and measurement errors, detection performance characteristics, etc.  Sensor signal processing will typically yield detection-level (contact-level) returns; in some cases, pre-detection data is available.  Some sensor systems, particularly older legacy systems, will lack important information such as contact localization error characteristics and measurement time information.  Further, the data is often collected in a distributed network of sensors, so that bandwidth constraints and data latencies will hamper the quality, quantity, and timeliness of data available for sensor fusion.
Historically, military surveillance research has focused heavily on sensor technology.  Downstream sensor fusion and target tracking technology has received less attention, and is an area where considerable performance gains remain to be achieved.
An overview of surveillance domains of interest, military platforms and systems, computational and communications constraints, and technical approaches to sensor fusion is beyond the scope of this work.  We will focus here on providing a brief overview of fundamental paradigms for data fusion in section 2, with an emphasis on multi-hypothesis tracking.  Section 3 introduces the unifying theme for the subsequent sections: high-performance tracking with an effective choice of multi-stage data fusion architecture.  Sections 4-7 describe specific multi-stage fusion architectures that in specific settings are shown to outperform single-stage, centralized, track-while-fuse processing.  We denote these approaches as track-before-fuse, fuse-before-track, track-extract-track, and track-break-track.  Section 8 provides conclusions and recommendations for future work.
2
data fusion paradigms and multi-hypothesis tracking
An encyclopaedic-style overview to approaches to data fusion is provided in [1].  Some approaches are appropriate for expeditionary operations that do not require real-time surveillance; as an example, area clearance prior to passage of a high-value unit requires surveillance results at the end of the data acquisition period.  This allows for powerful batch-processing methods to be brought to bear on the problem [2].  On the other hand, scan-based methods must be utilized for real-time surveillance.  Optimal data fusion remains a holy grail of sorts, in that all proposed fusion paradigms are known to invoke a number of simplifying algorithmic assumptions.  The most powerful current approach to data fusion is multi-hypothesis tracking, which was first introduced in the late 1970s [3] and made feasible in the mid-1980s with the track-oriented approach [4].  A number of enhancements to the basic approach have appeared over the years [1].
Our contributions to data fusion technology span applications to ground, undersea, and maritime military surveillance systems.  A central contribution has been the development of a computationally-efficient, high-performance, and flexible multi-hypothesis tracking approach that enables multi-stage fusion processing: track-before-fuse in ground and undersea domains [5-6], fuse-before-track in large sensor fields [7], track-extract-track in the maritime domain [8], and track-break-track in difficult multi-target scenarios [9].  Our application of these techniques to challenging surveillance problems is ongoing, including non-military applications [10].  Examples drawn from these references will be presented here.  Before doing so, we first illustrate the basic track-oriented multi-hypothesis tracking (MHT) approach with a simple example, illustrated in figure 2.1.
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Figure 2.1: A simple MHT example.

The example assumes that two tracks, T1 and T2, have already been resolved.  That is, prior data association decisions have led to a single global hypothesis that includes two tracks.  Next, assume that a scan of data is received with two measurements, R1 and R2.  Assume further that both R1 and R2 can feasibly be associated with T1, while only R1 can feasibly be associated with T2.  This leads to a number of local (or track) hypotheses.  Note that this set of hypotheses includes track continuation in the absence of a measurement (often denoted a track coast), as well as new-track hypotheses.  A second scan of data includes a single measurement R3.  We assume that R3 provides feasible updates to track hypotheses that include R2, as well as spawning a new-track hypothesis.  Note that we assume that tracks are terminated after two coasts, indicated by the red icons in figure 2.1.
While the example includes a number of track hypotheses, it is important to note that each global hypothesis provide a compete set of data-association decisions that account for all resolved tracks and all sensor measurements.  The number of global hypotheses is large, even for this simple example; the power of the track-oriented approach is that we do not require an explicit enumeration of global hypotheses.

Each track hypothesis has an associated log-likelihood score that reflects track initiation and termination penalties as well as nonlinear filtering scoring; in the case of linear Gaussian systems, this scoring is based on the filter innovations [11].  The vector c includes the track-hypothesis scores.  We are interested in the optimal global hypothesis, which amounts to identifying a vector x such that the global log-likelihood is maximized: the maximum likelihood solution.  Having identified this solution through a two-stage relaxation approach based on linear programming or Lagrangian relaxation [12] (solution is noted in yellow in figure 2.1), many conflicting local hypotheses are removed.  In particular, those track hypotheses that differ in the first scan past the resolved hypothesis layer are removed, while those that differ in the more recent past are maintained.
Having pruned the set of track hypothesis trees (with 5 surviving track hypotheses), we are ready for a new scan of data.  In the example, the resolved layer always lags the current time by one scan: thus we have a multi-hypothesis example with hypothesis-tree depth (n-scan) of one.
3 multi-stage data fusion and the nurc dmht
Multi-stage fusion with the NURC DMHT has two defining characteristics that differ from many legacy systems that exist today [1].  The first is that each tracker module retains measurement-level information at the output.  That each, each module performs the following: it removes large numbers of measurement data, and associates the remaining measurements to form tracks over time.  If the tracker is working well and the data is of reasonable quality, false measurements will be largely removed, and target-originated measurements will be largely maintained, and associated into tracks that persist over time with limited fragmentation.  Since measurement data is available at the tracker output, optimal track fusion and state estimation is achievable in downstage tracker modules; the cost to achieve this performance benefit is a slightly larger bandwidth requirement between processing stages.  The second defining characteristic of the NURC DMHT is that the track fusion is achieved in real time, with a scan-based approach.  Traditionally, track fusion is performed in a post-processing batch mode that is not readily amenable to real-time surveillance application [1].  

Figure 3.1 illustrates a multi-stage architecture that corresponds to a multistatic sonar processing configuration with two platforms, both equipped with sources and receivers; there are two monostatic source-receiver combinations, and two bistatic combinations.  In the example, data from each source-receiver combination is fed to a distinct tracking module, with subsequent track fusion.
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Figure 3.1: An example of a multi-stage data fusion architecture.

The theoretical optimality of unified, batch and centralized approaches to fusion and tracking (track-while-fuse) is at odds with a number of practical considerations.  First, in many surveillance settings optimal processing algorithms are either not known, or are computationally infeasible.  Second, detection-level data may not be available from some propriety or legacy sensor systems; thus, in general it may be required to process a mix of track-level and measurement-level data.  Finally, as we will see in subsequent sections, improved performance can be achieved with multi-stage processing that involves simpler and less computationally intensive algorithms than with near-optimal centralized processing.  The DMHT provides an ideal tool to explore the superior performance that can be achieved with distributed, multi-stage algorithms.  
4 track-before-fuse

The first multi-stage architecture of interest is track-before-fuse (as illustrated in figure 3.1).  In ground target tracking applications, where complimentary multi-sensor and multi-timescale data is available, tracking of high-rate data followed by fusion with informative low-rate data provides good performance results [5].  In undersea surveillance, where detection data exhibits significant target fading effects (i.e. highly correlated detection-event sequences), single-sensor tracking followed by real-time multi-sensor fusion provides superior results to centralized tracking, particularly for modest to high detection thresholds [6]: given complimentary looks on the target, it is best for each source-receiver to exploit its own detection trends, with subsequent track fusion.  Nonetheless, the track-before-fuse architecture must be used with caution: for low detection thresholds, the fading-target effect is overcome by the need for small association gates, consistent with the high rate of detection files processed in a single, centralized tracking stage.  Sea trial examples of these competing effects are in [13].
5 fuse-before-track
Recent years have seen a trend towards unmanned multi-sensor surveillance networks with large number of cheap and limited-performance sensors.  While these networks hold great potential for surveillance performance, it is of interest to quantify fundamental performance limitations.  When a large number of equal-performance sensors is available in a given surveillance region, the intuitive assumption that more is better breaks down.  The performance-degradation phenomenon is due to the sub-optimal processing inherent in all known approaches to data fusion.  In particular, scan-based approaches that process each frame of sensor data as it reaches the sensor data and provide a real-time surveillance output are particularly challenged in the large sensor field environment.  Batch processing approaches perform better, but they do not provide a real-time surveillance output.
We have recently introduced a two-stage architecture, fuse-before-track (FbT), which exploits the benefits of both batch and scan-based processing [7]; further, improved performance of FbT processing over centralized (single-stage) tracking has been demonstrated with simulated sensor data.  The FbT architecture is illustrated in figure 5.1.
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Figure 5.1: Centralized and FbT architectures.

An illustration drawn from the performance studies in [7] is given in figure 5.2.  In particular, we see a close-up on one target in a larger simulation-based analysis.  False contacts are shown as black dots; target-originated contacts are shown as magenta dots; target trajectories are shown in magenta, single-sensor tracks are red, multi-sensor tracks are blue, and FbT tracks are cyan; the (intermediate stage) contact fusion output in FbT processing is shown with cyan dots.
The figure shows what is documented quantitatively in [7]; namely, when faced with large number of synchronized sensors with coincident coverage (in the performance study, ten sensors are assumed), it is best to combine measurement scans through a static fusion operation that leverages more powerful batch processing techniques than what can be achieved with scan-based processing.  Correspondingly, scan-based processing is applied to the output of the static fusion process, enabling real-time surveillance results that exceed centralized (or single-sensor) processing results.

6 TRACK-EXTRACT-track

In May 2008, the N.R.V. Alliance participated in an experimental campaign in conjunction with the French company ACTIMAR, based in Brest, France.  In particular, ACTIMAR acquired roughly 6hrs of HF radar data using its two shore-based radars.  The HF radar dataset has proven to be a particularly challenging one, with large numbers of clutter-induced contacts.  High-confidence radar tracks (those containing at least 40 radar contacts) are shown in figure 6.1 (purple), overlaid on AIS transponder data (red).
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Figure 5.2: FbT performance (cyan) shows good agreement with true target trajectories (magenta), and outperforms centralized tracking (blue) and single-sensor tracking (red).

[image: image5]
Figure 6.1: AIS tracks (red) and HF radar tracks (purple).
Based on a first assessment, it appears that effective HF radar tracking is quite challenging.  The radars yield few tracks in the more distant vessel sea lane: analysis of the AIS data revealed that only large tankers are tracked.  There is greater success with the closer sea lane, though here again performance is limited.  Many near-range vessels identified by AIS are not found in the HF radar tracks.  Interestingly, there is a significant HF radar track with a northeast heading, likely to be a large vessel, which is not present in the AIS data.  This illustrates the potential of multi-sensor coverage to reveal anomalous vessel transponder behavior.

We address next the potential advantages of the track-extract-track multi-stage tracking architecture.  In this approach, we extract contact data from the first stage of tracking, and proceed with a second stage of tracking with the remaining contacts; the process can be iterated with a third stage of processing, and so on.  The key advantage of the approach is that it allows for additional, weaker target tracks to be extracted from the data.  This is accomplished by increasing the data correlation gates in the tracker, as well as lowering the track-confirmation criterion.  In principle, a similar result could be achieved with centralized processing, but with a much more complex adaptive-tracking methodology.

We illustrate the track-extract-track processing approach in the context of HF radar data in figure 6.2, which provides a display of additional tracks beyond those identified in figure 6.1.  Note that the superposition of all tracks (figure 6.3) yields a display that is heavily cluttered, yet comparable performance proved to be impossible to achieve with a single stage of (non-adaptive) target tracking.
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Figure 6.2: Additional track extraction based on the track-extract-track multi-stage processing paradigm.  Previous tracks (fig. 6.1) included >40 contacts; the additional track shown here include >35 contacts (top left), >30 contacts (top right), >25 contacts (bottom left), and > 20 contacts (bottom right).
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Figure 6.3: Consolidated HF radar adaptive tracking result based on an iterative track-extract-track scheme.
7 track-break-track
As previously observed in the literature [14], automatic trackers exhibit a track repulsion effect whereby neighbouring targets lead to tracks that are displaced at greater distances than the targets themselves.  For targets that approach slowly, this displacement may lead to track swapping.  An illustration of this phenomenon using the NURC DMHT is shown in figure 7.1.  Our experimental set-up is as follows:
· Ground truth: two constant velocity targets, x velocity = 500m / 179sec, y velocity = +/- x velocity · tan(target angle) / 2;
· Contact data: 180 scans of data; 1sec scan repetition time; PD=1, FAR=0 (ideal-data case); PD=0.9, FAR=7 (non-ideal case); positional measurements with std. dev. error of 1m/s in both x and y;
· Automatic tracker (DMHT) settings: process noise of 0.01m2/s3 [6];
· Performance assessment methodology: starting at 30deg, decrease target angle until track swap is observed: this defines the critical angle;

· Results are averaged over 50 Monte Carlo realizations.
We first study the ideal case of detection data with PD=1 and FAR=0.  The resulting critical angle as a function of the hypothesis depth in multi-hypothesis processing, or n-scan, is given in figure 7.2 (black curve).  We see that the likelihood of track swapping decreases as we increase the effectiveness of the tracking algorithm, though this comes at increasing computational expense.  Further, we note that the performance benefits saturate beyond n-scan=3.

For the general case (PD<1, FAR>0), a more effective approach to combating the track swap phenomenon is required.  We introduce a novel approach based on a track-break-track architecture that leverages the modularity in the NURC DMHT.  Specifically, we perform a first stage of tracking with n-scan=0; this often results in track swapping.  The value of the first tracking stage is that it removes significant number of extraneous contacts.  Next, we break all contact associations, and provide the resulting clean set of contact data (with FAR close to zero) to a second tracking stage, now with n-scan>0.

As shown in figure 7.2 (blue curve), the results of the track-break-track approach are impressive.  For all n-scan settings, we achieve a significant reduction in the critical angle for track swap, and at significantly lower computational expense than with single-stage tracking.  Interestingly, it appears that we continue to achieve further performance benefits with increasing n-scan, even as the single-stage architecture has reached saturation.  
Thus, we find that the NURC DMHT in a track-break-track configuration is effective at combating the track repulsion effect in difficult multi-target scenarios.  In particular, computation times are limited allowing for large values of the hypothesis tree depth (n-scan).   Further, tracking results outperform the single-stage approach, as demonstrated by the smaller critical angles for track swapping.  Future work on this topic will include an investigation of a wider range of scenario settings, and a comparison with other tracking approaches including those documented in [14].
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Figure 7.1: One realization illustrating a track swap induced by the track-repulsion effect.

[image: image12.emf]
Figure 7.2: Lower critical angle for all n-scan in the track-break-track approach (blue curve).  Results are based on PD=0.9 and FAR=7.
8 conclusions
The NURC Distributed Multi-Hypothesis Tracker (DMHT) is a high-performance, computationally efficient, and modular algorithm that was developed for undersea surveillance with a network of active sonar systems and is being extended in support of the NURC Maritime Surveillance System (MSS) [15].  Working with experimental sonar data, we have demonstrated that under certain conditions multi-stage processing (track-before-fuse) outperforms centralized, single-stage processing (track-while-fuse).  This is seemingly at odds with fundamental results in the nonlinear filtering and distributed detection literature, and is based on the fundamental sub-optimality of all current approaches to target tracking that must contend with data-association uncertainty.  Further investigation with simulated data has identified settings where alternative processing architectures outperform centralized processing: fuse-before-track in large sensor networks, track-extract-track in HF radar tracking, and track-break-track in difficult crossing-target scenarios.
We recommend continued investigation into novel multi-stage data fusion architectures for application in a variety of surveillance settings.  These approaches often hold considerable potential for dramatic performance improvements that are difficult to obtain with refinements in sensor data processing or nonlinear filtering algorithms, whether analytical or numerical.
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