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Chapter 6
Multiple Target Tracking

“Although this may seem a paradox, all exact science is
dominated by the idea of approximation.”

Bertrand Russell, The Scientific Outlook, 1931

Abstract Multitarget tracking intensity filters are closely related to imaging
problems, especially PET imaging. The intensity filter is obtained by three
different methods. One is a Bayesian derivation involving target prediction
and information updating. The second approach is a simple, compelling,
and insightful intuitive argument. The third is a straightforward application
of the Shepp-Vardi algorithm. The intensity filter is developed on an aug-
mented target state space. The PHD filter is obtained from the intensity filter
by substituting assumed known target birth and measurement clutter inten-
sities for the intensity filter’s predicted target birth and clutter intensities.

To accommodate heterogeneous targets and sensor measurement models,
a parameterized intensity filter is developed using a marked PPP Gaussian
sum model. Particle and Gaussian sum implementations of intensity fil-
ters are reviewed. Mean-shift algorithms are discussed as a way to extract
target state estimates. Grenander’s method of sieves is discussed for regu-
larization of the multitarget intensity filter estimates. Sources of error in the
estimated target count are discussed. Finally, the multisensor intensity filter
is developed using the same PPP target models as in the single sensor fil-
ter. Both homogeneous and heterogeneous multisensor fields are discussed.
Multisensor intensity filters reduce the variance of estimated target count by
averaging.

Multitarget tracking in clutter is a joint detection and estimation problem.
It comprises two important inter-related tasks. One initiates and terminates
targets, and the other associates, or assigns, data to specific targets and to
clutter. The MHT (Multiple Hypothesis Tracking) formulation treats both
tasks. It is well matched to the target physics and to the sensor signal proces-
sors of most radar and sonar systems. Unfortunately, exact MHT algorithms
are intractable because the number of measurement assignment hypotheses
grows exponentially with the number of measurements. These problems are
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152 6 Applications: Multiple Target Tracking

aggravated when multiple sensors are used. Circumventing the computa-
tional difficulties of MHT requires approximation.

Approximate tracking methods based on PPP models are the topics of
this chapter. They show much promise in difficult problems with high target
and clutter densities. The key insight is to model the distribution of targets
in state space as a PPP, and then use a filter to update the defining parameter
of the PPP — its intensity. To update the intensity is to update the PPP. The
intensity function of the PPP approximation characterizes the multiple target
tracking model. This important point is discussed further in Section 6.1.1.

The PPP intensity model uses an augmented state space, S+. This enables
it to estimate target birth and measurement clutter processes on-line as part
of the filtering algorithm.

Three approaches to the intensity filter are provided. The first and most
rigorous is a Bayesian derivation given in Appendix D. The relationship
between this approach and the “first moment intensity” of the posterior
point process is shown. The second approach is a short but extraordinarily
insightful derivation that is ideal for readers who wish to avoid the Bayesian
analysis, at least on a first reading. The third approach is based on the
connection to PET and the Shepp-Vardi algorithm. The PET interpretation
contributes significantly to understanding the PPP target model. A special
case of the intensity filter is the well known PHD filter. It is obtained by
assuming a known target birth-death process, a known measurement clutter
process, and restricting the intensity filter to the non-augmented target state
space S.

Implementation issues are discussed in Section 6.3. Current approaches
use either particle or Gaussian sum methods. An image processing method
called the mean shift algorithm is well suited to point target estimation,
especially for particle methods. Observed information matrices (cf. Section
4.7) are proposed as surrogates for the error covariance matrices widely used
in single target Bayesian filters. The underlying statistical meaning of OIM
estimates is as yet unresolved.

Several sources of error in the estimated target count are discussed in
Section 6.4. Target count estimates are sensitive to the probability of target
detection. This function, PD

k (x), depends on target state x at measurement
time tk. It varies over time because of slowly changing sensor characteristics
and environmental conditions. Monitoring these and other factors that affect
target detection probability is not typically considered part of the tracking
problem.

Several areas of on-going research are also discussed. One is a Gaussian
sum PPP filter that enables heterogeneous target motion and sensor mea-
surement models to be used in an intensity filter setting. See Section 6.2.2 for
details. Another is the multiple sensor intensity filter described in Section 6.5.
This filter is relies on the validity of the PPP approximation for every sensor.
It reduces the variance of the target count by averaging over the sensors,
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6.1 Intensity Filters 153

so that the variance of estimated target count decreases with the number of
sensors.

6.1 Intensity Filters

6.1.1 PPP Model Interpretation

The points of a realization of a PPP on the target state space are a poor rep-
resentation of the physical reality of a multiple target state. This is especially
easy to see when exactly one target is present, for then ideally∫

S

λ(x)dx = 1 . (6.1)

From (2.4), the probability that a realization of the PPP has exactly one point
target is

pN(n = 1) = e−1
≈ 37% .

Hence, 63% of all realizations have either no target or two or more targets.
Evidently, realizations of the PPP seriously mismodel this simple tracking
problem. The problem worsens with increasing the target count: if exactly n
targets are present, then the probability that a realization has exactly n points
is e−n nn /n! ≈ (2πn)−1/2

→ 0 as n→∞. Evidently, PPP realizations are poor
models of real targets.

One interpretation of the PPP approximation is that the critical element
of the multitarget model is the intensity function, not the PPP realizations.
The shift of perspective means that the integral (6.1) is the more physically
meaningful quantity. Said another way, the concept of expectation, or en-
semble average over realizations, corresponds more closely to the physical
target reality than do the realizations themselves.

A huge benefit comes from accepting the PPP approximation to the mul-
tiple target state — exponential numbers of assignments are completely
eliminated. The PPP approximation finesses the data assignment problem
by replacing it with a stochastic imaging problem, and the imaging problem
is easier to solve. It is fortuitous that the imaging problem is mathematically
the same problem that arises in PET; see Section 5.2. The “at most one mea-
surement per target” rule for tracking corresponds in PET to the physics —
there is at most measurement per one positron-electron annihilation.

Analogies are sometimes misleading, but consider this one: In the lan-
guage of thermodynamics, the points of PPP realizations are microstates.
Microstates obey the laws of physics, but are not directly observable without
disturbing the system state. Physically meaningful quantities (such as tem-
perature, etc.) are ensemble averages over the microstates. In the PPP target
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154 6 Applications: Multiple Target Tracking

model, the points of a realization are thus “microtargets”, and microtargets
obey the same target motion and measurement models as real targets. The
ensemble average over the PPP microtargets yields the target intensity func-
tion. The language of microtargets is helpful in Section 6.5 on multisensor
intensity filtering, but it is otherwise eschewed in this chapter.

6.1.2 Predicted Target and Measurement Processes

Formulation

Standard filtering notation is adopted, but modified to accommodate PPPs.
The general Bayesian filtering problem is reviewed in Appendix C. Let S =
Rnx denote the nx-dimensional single target state space. The augmented
space isS+

≡ S∪φ, whereφ represents a “clutter target” state. Clutter targets
account for data not assigned to real, physical targets. The augmented space
S

+ is discussed in Section 2.12.
The single target transition function from time tk−1 to time tk, denoted by

Ψk−1(y |x) ≡ pΞk |Ξk−1 (y |x), is assumed known for all x, y ∈ S+. The augmented
state space enables both target initiation and termination to be incorporated
directly into Ψk−1 as specialized kinds of state transitions. Novel aspects of
the transition function are:

• Ψk−1(φ |x) is the probability that a target at x ∈ S terminates;
• Ψk−1(y |φ) is the likelihood that a new target initiates at y ∈ S; and
• Ψk−1(φ |φ) is the probability that a target in φ remains in φ.

The augmented state φ is also used to account for measurement clutter, that
is, for data that do not correspond to real targets.

The multitarget state at time tk is Ξk. It is a point process on S+, but it
is not a PPP on S+. Nonetheless, Ξk is approximated by a PPP to “close
the loop” after the Bayesian information update. The multitarget state is a
realization ξk of Ξk. If ξk = (n, {x1, . . . , xn}), then every point x j is either a
point in S or is φ. It is stressed that repeated occurrences of φ are allowed in
the list {x1, . . . ,xn} to account for clutter.

The measurement at time tk is Υk. It is a point process on the (nonaug-
mented) spaceT ≡ Rnz , where nz is the dimension of a sensor measurement.
The measurement data set

υk = (m, {z1, . . . , zm}) ∈ E(T )

is a realization of Υk. The pdf of a point measurement z ∈ T conditioned on a
target in state x ∈S+ at time tk is the measurement pdf pk(z |x). The only novel
aspect of this pdf is that pk(z |φ) is the pdf that z is a clutter measurement.

The Bayesian posterior multitarget state point process conditioned on the
data υ1, . . . , υk−1 is approximated by a PPP. Denote this PPP by Ξk−1|k−1. The
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6.1 Intensity Filters 155

Fig. 6.1 Block diagram of the Bayes update of the intensity filter on the augmented target
state spaceS+. One step of the Shepp-Vardi algorithm is used in the “PET Iteration” block.
Because the null state φ is part of the state space, target birth and measurement clutter
estimates are intrinsic to the predicted target and predicted measurement steps. The same
block diagram holds for the PHD filter on the nonaugmented space S.

intensity of Ξk−1|k−1 is fk−1|k−1(x), x ∈ S+. Let Ξk|k−1 denote the predicted PPP
at time tk. Its intensity is denoted by fk|k−1(x), and it is the integral of the
intensity fk−1|k−1(x) of Ξk−1|k−1, as seen in Section 2.11.2, Eqn. (2.86).

The goal is to update the predicted PPP,Ξk|k−1, with the measurement data
υk. The information updated point process is not a PPP, so it is approximated
by a PPP. Let Ξk|k denote the approximating PPP, and let its intensity be
fk|k(x).

Fig. 6.1 outlines the steps of the intensity filter. The discussion below
walks through the steps in the order outlined.
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156 6 Applications: Multiple Target Tracking

Target Motion and the Bernoulli Split

The first of these steps accounts for target motion and predicts the intensity
at the next time step. The input is a PPP with intensity fk−1|k−1(x), so the
transition procedure yields an output process that is also a PPP, as is seen in
Section 2.11.1. Let fk|k−1(x) denote the intensity of the output PPP. Adapting
(2.83) to S+ gives

fk|k−1(x) =

∫
S+
Ψ (x | y) fk−1|k−1(y)dy , (6.2)

where the integral over S+ is defined as in (2.97).
Target motion is followed by a Bernoulli thinning procedure using the

probability of the sensor detecting a target at the point x, denoted PD
k (x). This

probability is state dependent and assumed known. The input PPP intensity
is fk|k−1(x). As seen in Section 2.9.2, thinning splits it into two PPPs – one
for detected targets and the other for undetected targets, denoted by f D

k|k−1(x)
and f U

k|k−1(x), respectively. These PPPs are independent (see Section 2.9.2)
and, from (2.56), and their intensities are

f D
k|k−1(x) = PD

k (x) fk|k−1(x)

and

f U
k|k−1(x) =

(
1 − PD

k (x)
)

fk|k−1(x) .

Both branches in Fig. 6.1 are now subjected to an information update.

Predicted Measurement PPP, and Why It Is Important

As seen in Section 2.11.2, the predicted measurement process is a PPP. Its
intensity is

λk|k−1(z) =

∫
S+

pk(z |x)PD
k (x) fk|k−1(x)dx , for z ∈ T , (6.3)

as is seen from (2.86). The measurement PPP is a critical component of the
intensity filter because, as is seen in Eqn. (6.9), it weights the individual terms
in the sum that comprises the filter.

Another way to see the importance of λk|k−1(z) is to recall the classical
single-target Bayesian tracking problem. The standard Bayesian formulation
gives
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6.1 Intensity Filters 157

p(x |z) =
p(z |x)p(x)

p(z)
, (6.4)

where the denominator is a scale factor that makes the left hand side a
true pdf. It is very easy to ignore p(z) in practice because the numerator
is obtained by multiplication and the product scaled so that it is a pdf.
When multiple conditionally independent measurements are available, the
conditional likelihood is a product and it is the same story again for the scale
factor. However, if the posterior pdfs are summed, not multiplied, the scale factor
must be included for the individual terms to be comparable. Such is the case
with the intensity filter: the PPP model justifies adding Bayesian posteriors
instead of multiplying them, and the scale factors are crucial to making the
sum meaningful.

The scale factor clearly deserves a respectable name, and it has one. It is
called the partition function in statistical physics and the machine learning
communities.

6.1.3 Information Updates

It is seen in Appendix C that the mathematically correct information update
procedure is to apply the Bayesian method to both the detected and unde-
tected target PPPs to evaluate their posterior pdfs. These pdfs are defined on
the event space E (S+). If the posterior pdfs have the proper form, then the
posterior point processes are PPPs and are characterized by their intensity
functions on S+.

The information update of the undetected target PPP is the Bayesian
updated process condition on no target detection. The posterior point process
is identical to the predicted target point process. It is therefore a PPP whose
intensity, denoted by f U

k|k(x), is given by

f U
k|k(x) = f U

k|k−1(x)

=
(
1 − PD

k (x)
)

fk|k−1(x) . (6.5)

This brings the right hand branch of Fig. 6.1 to the superposition stage, i.e.,
the block that says “Add Intensities”.

The left hand branch is more difficult because, as it turns out, the infor-
mation updated detected target point process is not a PPP. This is a serious
dilemma since it is highly desirable both theoretically and computationally
for the filter recursion to remain a closed loop. The posterior point process
of the detected targets is therefore approximated by a PPP. Three methods
are given for obtaining this approximation.

The first method is a Bayesian derivation of the posterior density of the
point process on the event space E (S+), followed by a “mean field” ap-
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158 6 Applications: Multiple Target Tracking

proximation. Details about Bayesian filters in general are given in Appendix
C. The Bayesian derivation is mathematically rigorous, but not particularly
insightful.

To gain intuition, one need look no further than to the second method.
While not rigorous, it is intuitively appealing and very convincing. The per-
spective is further enriched by the third method. It shows a direct connection
between the information update of the Bayesian filter and the Shepp-Vardi
algorithm for PET imaging. This third method also poses an interesting
question about iterative updates of a Bayesian posterior density.

First Method: Bayesian Derivation and Mean Field Approximation

The pdf of the Bayesian posterior point process for detected targets is defined
on the event space E (S+). The Bayesian posterior, or information updated,
pdf is defined on this complex event space. The derivation is straightforward
and a delight for Bayesians. It is relatively long and interferes with the flow
of the discussion, so it is given in Appendix D where it can be read at leisure.
The main points are outlined here, so readers suffer little or no loss of insight
by skipping it on a first reading. Specific equation references are provided
here so the precision of the mathematics is not lost in the flow of words.

The Bayesian derivation explicitly incorporates the “at most one measure-
ment per target”rule into the measurement likelihood function. It imposes
this constraint via the measurement conditional pdf (cf. Eqn. (D.5)). This pdf
sums over all possible assignments of the given data to targets. Because of the
augmented space S+, a clutter measurement is accounted for by assigning it
to a target with state φ.

The usual Bayesian update (cf. Eqn. (D.6)) leads to the pdf of the Bayesian
posterior point process (cf. Eqn. (D.10)). This pdf uses the facts that the a priori
target process is a PPP with intensity f D

k|k−1(x) and that the predicted measure-
ment process is a PPP with intensity λk|k−1(z) given by (6.3). The posterior
pdf is computationally intractable except in reasonably small problems. In
any event, inspection of the posterior pdf clearly reveals that it does not have
the form of a PPP pdf. Approximating the posterior point process with a PPP
is the next step.

The Bayesian posterior pdf is replaced by a mean field approximation, a
widely used method of approximation in machine learning and statistical
physics problems. This approximation is the product of the one dimensional
marginal pdfs of the posterior pdf. The marginal pdfs are identical. The
intensity function of the approximating PPP is therefore taken to be propor-
tional to the marginal pdf (cf. Eqn. (D.13)). The appropriate scale factor is
a constant determined by maximum likelihood. In essence, the mean field
approximation (cf. Eqn. (D.14)) is proportional to the intensity function of
the approximating PPP.
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6.1 Intensity Filters 159

The posterior detected target point process is a special case of the more
general class of finite point processes. The general theory of these processes
dates to the 1950s. An excellent text on the topic is [16, Chap. 5]. Finite point
process theory leads via the so-called Janossy densities to the first moment
intensity function approximation. Janossy densities are merely the joint pdfs
of the points of the process (conditioned on their number). The first moment
is a sum over all Janossy densities. In the tracking application, only one
Janossy density is nonzero, and it is the likelihood function of updated point
process. Consequently, and happily, the first moment is given by a sum
comprising only one term. The mean field approximation is very closely
related to the first moment intensity function. Further details are provided
in the last section of Appendix D.

Second Method: Expected Target Count

Let pk( · |x), x ∈ S+, denote the conditional pdf of a measurement in the mea-
surement space T , so that∫

T

pk(z |x)dz = 1 , for all x ∈ S+ . (6.6)

The special case pk(z |φ) is the pdf of a data point z conditioned on the target
state φ, that is, the pdf of z given that it is clutter. The predicted intensity at
time tk of the target point process is a PPP with intensity PD

k (x) fk|k−1(x). The
intensity f D

k|k(x) is the intensity of a PPP that approximates the information
updated, or Bayes posterior, detected target process.

The measured data at time tk are mk points in a measurement space T .
Denote these data points by Zk = (z1, . . . , zmk ).

The information update of the detected target PPP is obtained intuitively
as follows. The best current estimate of the probability that the point mea-
surement z j originated from a physical target with state x ∈ S in the infinites-
imal dx is

pk(z j |x)PD
k (x) fk|k−1(x)dx

λk|k−1(z j)
, (6.7)

where the denominator is found using (6.3). Similarly, the probability that z j
originated from a target with state φ is

pk(z j |φ)PD
k (φ) fk|k−1(φ)

λk|k−1(z j)
. (6.8)
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160 6 Applications: Multiple Target Tracking

Because of the “at most one measurement per target” rule, the sum of the
ratios over all measurements z j is the estimated number of targets at x, or
targets in φ, that generated a measurement.

The estimated number of targets at x ∈ S is set equal to the expected
number of targets conditioned on the data υk, namely f D

k|k(x)dx. Cancelling
dx gives

f D
k|k(x) =

m∑
j=1

pk(z j |x)PD
k (x) fk|k−1(x)

λk|k−1(z j)
. (6.9)

Eqn. (6.9) holds for all x ∈ S+, not just for x ∈ S.
The expected target count method makes it clear that the expected number

of detected targets in any given setR⊂S is simply the integral of the posterior
pdf

E
[
Number of detected targets in R

]
=

∫
R

f D
k|k(x)dx . (6.10)

Similarly, the expected number of targets in state φ is the posterior intensity
evaluated at φ, namely, f D

k|k(φ). The predicted measurement process with
intensity λk|k−1(z) is a vital part of the intensity filter.

Third Method: Shepp-Vardi Iteration

The PET model is interesting here. The measurement data and multiple
target models are interpreted analogously so that:

• The target state space S+ corresponds to the space in which the radioiso-
tope is absorbed.

• The measured data Zk ⊂ T correspond to the measured locations of the
annihilation events. As noted in the derivation of Shepp-Vardi, the mea-
surement space T need not be the same as the state space.

• The posterior target intensity f D
k|k(x) corresponds to the annihilation event

intensity.

The analogy makes the targets mathematically equivalent to the distribution
of (hypothetical) positron-electron annihilation events in the state space.

Under the annihilation event interpretation, the information update (6.9)
of the detected target process is given by the Shepp-Vardi algorithm for PET
using PPP sample data. The EM derivation needs only small modifications
to accommodate the augmented state space. Details are left to the reader.
The n-th iteration of the Shepp-Vardi algorithm is, from (5.18),
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6.1 Intensity Filters 161

f D
k|k(x)(n+1) = f D

k|k(x)(n)
mk∑
j=1

pk(z j |x)∫
S+ pk(z j |s) f D

k|k(s)(n) ds
, (6.11)

where the predicted intensity f D
k|k(x)(0)

≡ f D
k|k−1(x) = PD

k (x) fk|k−1(x) initializes
the algorithm. The first iteration of this version of the Shepp-Vardi algorithm
is clearly identical to the Bayesian information update (6.9) of the detected
target process. The second and higher iterations are not Bayesian intensity
estimates.

The Shepp-Vardi iteration converges to an ML estimate of the target state
intensity given only data at time tk. It is independent of the data at times
t1, . . . , tk−1 except insofar as the initialization influences the ML estimate. In
other words, the iteration leads to an ML estimate of an intensity that does
not include the effect of a Bayesian prior. The problem lies not in the PET
interpretation but in the pdf of the data. To see this it suffices to observe
that the parameters of the pdf (5.7) are not constrained by a Bayesian prior
and, consequently, the Shepp-Vardi algorithm converges to an estimate that
is similarly unconstrained. It is, moreover, not obvious how to impose a
Bayesian prior on the PET parameters that does not disappear in the small
cell limit.

6.1.4 The Final Filter

Superposing the PPP approximation of the detected target process and the
undetected target PPP gives

fk|k(x) = f U
k|k(x) + f D

k|k(x), x ∈ S+

=

1−PD
k (x) +

m∑
j=1

pk(z j |x)PD
k (x)

λk|k−1(z j)

 fk|k−1(x) (6.12)

as the updated intensity of the PPP approximation to Ξk|k.
The intensity filter comprises equations (6.2), (6.3), and (6.12). The first

two equations are more insightful when written in traditional notation. Ex-
panding the discrete-continuous integral (6.2) gives

fk|k−1(x) = b̂k(x) +

∫
S

Ψk−1(x | y) fk−1|k−1(y)dy, (6.13)

where the predicted target birth intensity is

b̂k(x) = Ψk−1(x |φ) fk−1|k−1(φ). (6.14)

Also, from (6.3),
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162 6 Applications: Multiple Target Tracking

Table 6.1 Intensity Filter on the State Space S+ = S∪φ
INPUTS:
Data: z1:m ≡ {z1, . . . ,zm} ⊂ T at time tk
Probability of target detection: PD

k (x) at time tk

OUTPUT: { fk|k(x), fk|k(φ)} = IntensityFilter
[

fk−1|k−1(x), fk−1|k−1(φ), PD
k (x), z1:m

]
• Predicted target intensity : For x ∈ S,

– Newly born targets (target initiations): b̂k(x) = Ψk−1(x |φ) fk−1|k−1(φ)
– Moving targets: d̂k(x) =

∫
S
Ψk−1(x | y) fk−1|k−1(y)dy

– Target intensity: fk|k−1(x) = b̂k(x) + d̂k(x)

• Predicted clutter intensity:

– Clutter persistence: b̂k(φ) = Ψk−1(φ |φ) fk−1|k−1(φ)
– Newly born clutter (target terminations): d̂k(φ) =

∫
S
Ψk−1(φ | y) fk−1|k−1(y)dy

– Clutter intensity: fk|k−1(φ) = b̂k(φ) + d̂k(φ)

• Predicted measurement intensity: FOR j = 1 : m,

– Generated by targets: ν̂k(z j) =
∫
S

pk(z j |x)PD
k (x) fk|k−1(x)dx

– Generated by clutter: λ̂k(z j) = pk(z j |φ)PD
k (φ) fk|k−1(φ)

– Measurement intensity: λk|k−1(z j) = λ̂k(z j) + ν̂k(z j)

• Information updated target intensity : For x ∈ S,

– Undetected targets: f U
k|k(x) =

(
1 − PD

k (x)
)

fk|k−1(x)

– Detected targets: f D
k|k(x) =

[∑m
j=1

pk(z j |x)PD
k (x)

λk|k−1(z j)

]
fk|k−1(x)

– Target intensity: fk|k(x) = f U
k|k(x) + f D

k|k(x)

• Information updated clutter intensity:

– Undetected clutter targets (generate no data): f U
k|k(φ) =

(
1 − PD

k (φ)
)

fk|k−1(φ)

– Detected clutter targets (generate data): f D
k|k(φ) =

[∑m
j=1

pk(z j |φ)PD
k (φ)

λk|k−1(z j)

]
fk|k−1(φ)

– Clutter target intensity: fk|k(φ) = f U
k|k(φ) + f D

k|k(φ)

λk|k−1(z) = λ̂k(z) +

∫
S

pk(z |x)PD
k (x) fk|k−1(x) dx, (6.15)

where

λ̂k(z) = pk(z |φ)PD
k (φ) fk|k−1(φ) (6.16)

is the predicted measurement clutter intensity. The probability PD
k (φ) in (6.16)

is the probability that a clutter target generates a measurement at time tk.
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6.2 Relationship to Other Filters 163

The computational parts of the intensity filter are outlined in Table 6.1.
The table clarifies certain interpretive issues that are glossed over in the
discussion. Implementation methods are discussed elsewhere in this chapter.

Likelihood Function of the Data Set

Since fk|k(x) is the intensity of a PPP, it is reasonable to inquire about the
pdf of the data ηk =

(
mk,

{
z1, . . . , zmk

})
. The measurement intensity after the

information update of the target state intensity is, applying (2.86) on the
augmented space S+,

λk|k(z) =

∫
S+

pk(z |x) fk|k(x)dx . (6.17)

Therefore the pdf of the data ηk is

p(ηk) = e−
∫
Rnz λk|k(z)dz

mk∏
j=1

λk|k(z j)

= e−Nk|k

mk∏
j=1

λk|k(z j) , (6.18)

where

Nk|k =

∫
Rnz

λk|k(z)dz

=

∫
S+

(∫
Rnz

pk(z |x)dz
)

fk|k(x)dx

=

∫
Rnx

fk|k(x)dx (6.19)

is the estimated mean number of targets. The pdf ofηk is approximate because
fk|k(x) is an approximation.

6.2 Relationship to Other Filters

The modeling assumptions of the intensity filter are very general, and spe-
cializations are possible. The most important is the PHD filter discussed in
Section 6.2.1. By assuming certain kinds of a priori knowledge concerning
target birth and measurement clutter, and adjusting the filter appropriately,
the intensity filter reduces to the PHD filter. The differences between the
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164 6 Applications: Multiple Target Tracking

intensity and PHD filters are nearly all attributable to the augmented state
space S+. That is, the intensity filter uses the augmented single target state
space S+ = S∪φ, while the PHD filter uses only the single target space S.
Using S practically forces the PHD filter to employ target birth and death
processes to model initiation and termination of targets.

A different kind of specialization is the marked multitarget intensity filter.
This is a parameterized linear Gaussian sum intensity filter that interprets
measurements as target marks. This interpretation is interesting in the con-
text of PPP target models because it implies that joint measurement-target
point process is a PPP. Details are discussed in Section 6.2.2.

6.2.1 Probability Hypothesis Density (PHD) Filter

The state φ is the basis for the on-line estimates of the intensities of the target
birth and measurement clutter PPPs given by (6.13) and 6.15), respectively.
If, however, the birth and clutter intensities are known a priori to be bk(x) and
λk(z), then the predictions b̂k(x) and λ̂k(z) can be replaced by bk(x) and λk(z).
This is the basic strategy taken by the PHD filter.

The use of a posteriori methods makes good sense in many applications.
For example, they can help regularize parameter estimates. These methods
can also incorporate information not included a priori in the Bayes filter. For
example, Jazwinski [49] uses an a posteriori method to derive the Schmidt-
Kalman filter for bias compensation. These methods may improve perfor-
mance, i.e., if the a priori birth and clutter intensities are more accurate or
stable than their on-line estimated counterparts, the PHD filter may provide
better tracking performance.

Given these substitutions, the augmented space is no longer needed and
can be eliminated. This requires some care. If the recursion is simply re-
stricted to S and no other changes are made, the filter will not be able to
discard targets and the target count may balloon out of control. To balance
the target birth process, the PHD filter uses a death probability before propa-
gating the multitarget intensity fk−1|k−1(x). This probability was intentionally
omitted from the intensity filter because transition into φ is target death, and
it is redundant to have two death models.

The death process is a Bernoulli thinning process applied to the PPP
at time tk−1 before targets transition and are possibly detected. Let dk−1(x)
denote the probability that a target at time tk−1 dies before transitioning
to time tk. The surviving target point process is a PPP and its intensity is
(1 − dk−1(x)) fk−1|k−1(x). Adding Bernoulli death and restricting the recursion
to S reduces the intensity filter to the PHD filter.
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Table 6.2 PHD Filter on the State Space S
INPUTS:
Data: z1:m = {z1, . . . , zm} ⊂ T at time tk
Target death probability function: dk−1(x) = Pr

[
target death at state x ∈ S at time tk−1

]
Target birth probability function: bk(x) = Pr

[
target birth at state x ∈ S at time tk

]
Probability of target detection: PD

k (x) at time tk
Measurement clutter intensity function: λk(z) at time tk

OUTPUT: fk|k(x) = PHDFilter
[

fk−1|k−1(x), dk−1(x), bk(x), λk(z), PD
k (x), z1:m

]
• Predicted target intensity : For x ∈ S,

– Surviving targets:
Sk(x) = (1 − dk−1(x)) fk−1|k−1(y)

– Propagated targets:
Sk(x) ←

∫
S
Ψk−1(x | y)Sk(y)dy

– Predicted target intensity:
fk|k−1(x) = bk(x) + Sk(x)

• Predicted measurement intensity:
IF m = 0, THEN fk|k(x) =

(
1 − PD

k (x)
)

fk|k−1(x) STOP
FOR j = 1 : m,

– Intensity contributions from predicted target intensity:
ν̂k(z j) =

∫
S

pk(z j |x)PD
k (x) fk|k−1(x)dx

– Predicted measurement intensity:
λk|k−1(z j) = λk(z j) + ν̂k(z j)

END FOR
• Information updated target intensity: For x ∈ S,

fk|k(x) =

1 − PD
k (x) +

m∑
j=1

pk(z j |x)PD
k (x)

λk|k−1(z j)

 fk|k−1(x)

• END

6.2.2 Marked Multisensor Intensity Filter (MMIF)

The intensity filter assumes targets have the same motion model, and that
the sensor measurement likelihood function is the same for all targets and
data. Such assumptions are idealized at best. An alternative approach is to
develop a parameterized intensity filter that accommodates heterogeneous
target motion models and measurement pdfs by using target-specific param-
eterizations. The notion of target-specific parameterizations in the context of
PPP target modeling seems inevitably to lead to the idea of modeling indi-
vidual targets as a PPP, and then using superposition to obtain the aggregate
PPP target model. Parameter estimation using the EM method is natural to
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166 6 Applications: Multiple Target Tracking

superposition problems, as shown in Chapter 3. The marked multisensor
intensity filter (MMIF) is one instance of such an approach.

The MMIF builds on the basic idea that a target at state x is “marked” with
a measurement z. If the target is modeled as a PPP, then the joint measurement-
target vector (z, x) is a PPP on the Cartesian product of the measurement and
target spaces. This is an intuitively reasonable result, but the details needed
to see that it is true are postponed to Section 8.1. The MMIF uses a lin-
ear Gaussian target motion and measurement model for each target and
superposes them against a background clutter model. Since the Gaussian
components correspond to different targets, they need not have the same
motion model. Similarly, different sensor measurement models are possible.
Superposition therefore leads to an affine Gaussian sum intensity function
on the joint measurement-target space. The details of the EM method and
the final MMIF recursion are given in Appendix E.

The MMIF adheres to the “at most one measurement per target rule” but
only in the mean, or on average. It does this by reinterpreting the single
target pdf as a PPP intensity function, and by interpreting measurements as
the target marks. The expected number of targets that the PPP on the joint
measurement-target space produces is one.

Another feature of the MMIF is that the EM weights depend on the Kalman
filter innovations. The weights in other Gaussian sum filters often involve
scaled multiples of the measurement variances, resulting in filters that are
somewhat akin to “nearest neighbor” tracking filters.

The limitation of MMIF and other parameterized sum approaches is the
requirement to use a fixed number of terms in the sum. This strongly affects
its ability to model the number of targets. In practice, various devices can
compensate for this limitation, but they are not intrinsic to the filter.

6.3 Implementation

Simply put, targets correspond to the local peaks of the intensity function
and the areas of uncertainty correspond to the contours, or isopleths, of the
intensity. Very often in practice, isopleths are approximated by ellipsoids in
target state space corresponding to error covariance matrices. Methods for
locating the local peak concentrations of intensity and finding appropriate
covariance matrices to measure the width of the peaks are discussed in this
section.

Implementation issues for intensity filters therefore concern two issues.
Firstly, it is necessary to develop a computationally viable representation of
the information updated intensity function of the filter. Two basic representa-
tions are proposed, one based on particles and the other on Gaussian sums.
Secondly, postprocessing procedures are applied to the intensity function
representation to extract the number of detected targets, together with their
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6.3 Implementation 167

estimated states and corresponding error covariance matrices. Analogous
versions of both issues arise in classical single target Bayesian filters.

The fact remains, however, that a proper statistical interpretation of target
point estimates and their putative error covariances is lacking for intensity
filters. The concern may be dismissed in practice because they are intuitively
meaningful and closely resemble their single target Bayesian analogs. The
concern is nonetheless worrisome and merits further study.

6.3.1 Particle Methods

The most common and by far the easiest implementation of nonlinear filters
is by particle, or sequential Monte Carlo (SMC), methods. In such methods
the posterior pdf is represented nonparametrically by a set of particles in
target state space, together with a set of associated weights, and estimated
target count. Typically these weights are uniform, so the spatial distribution
of particles represents the variability of the posterior density. An excellent
discussion of SMC methods for Bayesian single target tracking applications
is found in the first four chapters of [91].

Published particle methods for the general intensity filter are limited to
date to the PHD filter. Extensions to the intensity filter are not reported here.
An early and well described particle methodology (as well as an interesting
example for tracking on roads) for PHD filters is given in [98]. Particle
methods and their convergence properties for the PHD filter are discussed
in detail in a series of papers by Vo et al. [126]. Interested readers are urged
to consult them for specifics.

Tracking in a surveillance region R using SMC methods starts with an
initial set of particles and weights at time tk−1 together with the estimated
number of targets in R:{(

xk−1|k−1(`),wk−1|k−1(`)
)

: ` = 1, LSMC
}

and Nk−1|k−1 ,

where wk−1|k−1(`) = 1/LSMC for all `. For PHD filters the particle method
proceeds in several steps that mimic the procedure outlined in Table 6.2:

• Prediction. In the sequential importance resampling (SIR) method, predic-
tion involves thinning a given set of particles with the survival probability
1 − dk(x) and then stochastically transforming the survivors into another
particle set using the target motion model Ψk−1(y |x) with weights ad-
justed accordingly. Additional new particles and associated weights are
generated to model new target initializations.

• Updating. The particle weights are multiplicatively (Bayesian) updated
using the measurement likelihood function pk(z |x) and the probability of
detection PD

k (x). The factors are of the form
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168 6 Applications: Multiple Target Tracking1 − PD
k (x) +

m∑
j=1

pk(zk( j) |x)PD
k (x)

λk|k−1(z j)

 , (6.20)

where zk(1), . . . , zk(m) are the measurements at time tk. The updated par-
ticle weights are nonuniform.

• Normalization. Compute the scale factor, call it Nk|k, of the sum of the up-
dated particle weights. Divide all the particle weights by Nk|k to normalize
the weights.

• Resampling. Particles are resampled by choosing i.i.d. samples from the
discrete pdf defined by the normalized weights. Resampling restores the
particle weights to uniformity.

If the resampling step is omitted, the SMC method leads to particle weight
distributions that rapidly concentrate on a small handful of particles and
therefore poorly represents the posterior intensity. There are many ways to
do the resampling in practice.

By computing Nk|k before resampling, it is easy to see that

Nk|k ≈

∫
R

λk|k(x)dx

= E
[
Number of targets in R

]
. (6.21)

The estimated number of targets in any given subset R0 ⊂ R is

Nk|k(R0) =

(
Number of particles in R0

LSMC

)
Nk|k . (6.22)

The estimator is poor for sets R0 that are only a small fraction of the total
volume of R.

The primary limitations of particle approaches in many applications are
due to the so-called Curse of Dimensionality1: the number of particles needed
to represent the intensity function grows exponentially as the dimension
of the state space increases. Most applications to date seem to be limited
to four or five dimensions. The curse is so wicked that Moore’s Law (the
doubling of computational capability every 18 months) by itself will do little
to increase the effective dimensional limit over a human lifetime. Moore’s
Law and improved methods together will undoubtedly increase the number
of dimensions for which particle filters are practical, but it remains to be
seen if general filters of dimension much larger than say six can be treated
directly.

1 The name was first used in 1961 by Richard E. Bellman [8]. The name is apt in very
many problems; however, some modern methods in machine learning actually exploit
high dimensional embeddings.

Poisson Point Processes: Imaging, Tracking, and Sensing 

RTO-EN-SET-157(2010) 5 - 19 
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6.3.2 Mean Shift Algorithm

As is clear from the earlier discussion of PET, it is intuitively reasonable
to think of the multitarget intensity filter as a sequential image processing
method. In this interpretation an image comprises the “gray scales” of a set of
multidimensional voxels in the target state spaceRnx . Such an interpretation
enables a host of image processing techniques to be applied to the estimated
intensity function.

One technique that lends itself immediately to extracting target point
estimates from a particle set approach is the “mean-shift” algorithm. This
algorithm, based on ideas first proposed in [35], is widely used in computer
vision applications such as image segmentation and tracking. The mean-shift
algorithm is an EM algorithm for Gaussian kernel density estimators and
a generalized EM algorithm for non-Gaussian kernels [11]. The Gaussian
kernel is computationally very efficient in the mean-shift method.

Denote the non-φ particle set representing the PPP intensity at time tk by{
xk|k(`) : ` = 1, . . . ,LSMC

}
.

The intensity function is modeled as a scalar multiple of the kernel estimator

λk(x) = Ik

LSMC∑
`=1

N (x ; xk|k(`), Σker) , (6.23)

where N (x ; xk|k(`), Σker) is the kernel. The covariance matrixΣker is specified,
not estimated. Intuitively, the larger Σker, the fewer the number of local
maxima in the intensity (6.23), and conversely. The scale factor Ik > 0 is
estimated by the particle filter and is taken as known here.

The form (6.23) has no parameters to estimate, so extend it by defining

λk(x ; µ) = Ik

LSMC∑
`=1

N
(
x ; xk|k(`) − µ, Σker

)
, (6.24)

where µ is an unknown rigid translation of the intensity (6.23). It is not hard
to see that the ML estimate of µ is a local maximum of the kernel estimate,
that is, a point estimate for a target. The vector µ is estimated from data using
the EM method. The clever part is using an artificial data set with only one
point in it, namely, the origin.

Let r = 0, 1, . . . denote the EM iteration index, and let µ(0) be a specified
initial value for the mean. The auxiliary function is given by Eqn. (3.20) with
m = 1, x1 = 0, L = LSMC, θ` = µ, and

λ`
(
x ; µ

)
≡ Ik N

(
x ; xk|k(`) − µ, Σker

)
.
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The bounded surveillance region R is taken to be Rnx . Define the weights

w`

(
µ(r)

)
=

N
(
0; xk|k(`) − µ(r), Σker

)
∑LSMC
`′=1 N

(
0; xk|k(`′) − µ(r), Σker

)
=

N
(
xk|k(`) ; µ(r), Σker

)
∑LSMC
`′=1 N

(
xk|k(`′) ; µ(r), Σker

) . (6.25)

The auxiliary function in the present case requires no sum over j as done in
(3.20), so

Q(µ ; µ(r)) = −Ik +

LSMC∑
`=1

w`

(
µ(r)

)
log

{
Ik N

(
0;xk|k(`) − µ, Σker

)}
. (6.26)

The EM update of µ is found by taking the appropriate gradient, yielding

µ(r+1) =

∑LSMC
`=1 w`

(
µ(r)

)
xk|k( j)∑LSMC

`=1 w`
(
µ(r)) . (6.27)

Substituting (6.25) and canceling the common factor gives the classical mean-
shift iteration:

µ(r+1) =

∑LSMC
`=1 N

(
xk|k(`) ; µ(r), Σker

)
xk|k(`)∑LSMC

`=1 N
(
xk|k(`) ; µ(r), Σker

) . (6.28)

The update of the mean is a convex combination of the particle set. Conver-
gence to a local maximum µ(r)

k → x̂k|k is guaranteed as r → ∞.
Different initializations are needed for different targets, so the mean shift

algorithm needs a preliminary clustering method to initialize it, as well as to
determine the number of peaks in the data correspond to targets. Also, the
size of the kernel depends somewhat on the number of particles and may
need to be adjusted to smooth the intensity surface appropriately.

6.3.3 Multimode Algorithms

Identifiability remains a problem with the mean shift algorithm, that is, there
is no identification of the point estimate to a target except through the way
the starting point of the iteration is chosen. This may cause problems when
targets are in close proximity.

One way to try to resolve the problem is to use the particles themselves
as points to feed into another tracking algorithm. This method exploits se-
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rial structure in the filter estimates and may disambiguate closely spaced
targets. However, particles are serially correlated and do not satisfy the con-
ditional independence assumptions of measurement data, so the resulting
track estimates may be biased.

6.3.4 Covariance Matrices

Matrix CRBs

The true error covariance matrix of the ML point estimate computed by the
mean shift method is not available; however, the CRB can be evaluated using
(4.21). This CRB is appropriate if the available data are reasonably modeled
as realizations of a PPP with intensity (6.24). If the intensity (6.24) function
is a high fidelity model of the intensity, the FIM of µ is

J(µ) = IkΣ
−1
kerΣ(µ)Σ−1

ker , (6.29)

where the matrix Σ(µ) is

Σ(µ) =

L∑
`=1

L∑
`′=1

∫
Rnx

w(x, µ ; `, `′)
(
x−xk|k(`) +µ

)(
x−xk|k(`′) +µ

)T
dx (6.30)

and the weighting function is

w(x, µ ; `, `′) =
N

(
x ; xk|k(`) − µ, Σker

)
N

(
x ; xk|k(`′) − µ, Σker

)
∑LSMC
`′′=1 N

(
x ; xk|k(`′′) − µ, Σker

) . (6.31)

The CRB is J−1(µ) evaluated at the true value of µ. Because the integral is
over all of Rnx , a change of variables shows that the information matrix J(µ)
is independent of the true value of µ. This means that the FIM is not target
specific.

A local bound is desired, since the mean shift algorithm converges to a
local peak of the intensity. By restricting the intensity model to a specified
bounded gate G⊂Rnx , the integral in (6.30) is similarly restricted. The matrix
Σ(µ) is thus a function of G. The gated CRB is local to the gate, i.e., it is a
function of the target within the gate.

OIM: The Surrogate CRB

The OIM is the Hessian matrix of the negative loglikelihood evaluated at the
MAP point estimate; it is often used as a surrogate for Fisher information
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when the likelihood function is complicated. Its inverse is the surrogate CRB
of the estimate x̂k|k. The construction of OIMs for the mean-shift algorithm is
implicit in [11].

The loglikelihood function of µ using the intensity function (6.23) and the
one data point x1 = 0 is

log p(µ) = −Ik LSMC + log

LSMC∑
`=1

N (xk|k(`) ; µ, Σker)

 .
Direct calculation gives the general expression

∇µ

[
∇µ logp(µ)

]T
= Σ−1

ker +
1
κ2

LSMC∑
`=1

N (µ ; xk|k(`), Σker)Σ−1
ker

(
µ − xk|k(`)

)
×

LSMC∑
`=1

N (µ ; xk|k(`), Σker)Σ−1
ker

(
µ − xk|k(`)

)
T

−
1
κ
Σ−1

ker

LSMC∑
`=1

N (µ ; xk|k(`), Σker)
(
µ − xk|k(`)

)(
µ − xk|k(`)

)T
 Σ−1

ker ,

where the normalizing constant is

κ =

LSMC∑
`=1

N (µ ; xk|k(`), Σker) .

The observed information matrix is evaluated at the MAP estimate µ = x̂k|k.

The middle term is proportional to
[
∇µ p(µ)

] [
∇µ p(µ)

]T
and so is zero any

stationary point of p(µ), e.g., at the MAP estimate µ = x̂k|k. The OIM is
therefore

OIM
(
x̂k|k

)
= Σ−1

ker

− Σ−1
ker


∑LSMC
`=1 N (x̂k|k ; xk|k(`), Σker)

(
x̂k|k − xk|k(`)

)(
x̂k|k − xk|k(`)

)T∑LSMC
`=1 N (µ ; xk|k(`), Σker)

Σ−1
ker .

(6.32)

The CRB surrogate is OIM−1
(
x̂k|k

)
. The inverse exists because the OIM is

positive definite at x̂k|k. This matrix is, in turn, a surrogate for the error
covariance matrix.

The OIM for x̂k|k can be computed efficiently in conjunction with any
EM method (see [61] for a general discussion). As noted in Section 4.7, the
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statistical interpretation of the OIM is unresolved in statistical circles. Its
utility should be carefully investigated in applications.

6.3.5 Gaussian Sum Methods

An alternative to representing the PPP intensity using particle filters is to
use a Gaussian sum instead. An advantage of this method is that the clus-
tering and track extraction issues are somewhat simpler, that is, target state
estimates and covariance matrices are extracted from the means and vari-
ances of the Gaussian sum instead of a myriad of particles. The Gaussian
sum approach is especially attractive for linear Gaussian target motion and
measurement models because the prediction and information update steps
are closed form, assuming constant survival and detection functions (i.e., the
PPP thinning functions are independent of state).

Gaussian sum implementations of the PHD filter are carefully discussed
by Vo and his colleagues [124]. In this approach, an unnormalized Gaussian
sum is used to approximate the intensity. These methods are important
because they have the potential to be useful in higher dimensions than
particle filters. In the end, however, Gaussian sum intensity filters will also
suffer from the curse of target state space dimensionality.

Gaussian sum methods for intensity estimation comprises several steps:

• Prediction. The target intensity at time tk−1 is a Gaussian sum, to which
is added a target birth process that is modeled by a Gaussian sum. The
prediction equation for every component in the Gaussian sum is identical
to a Kalman filter prediction equation.

• Component Update. For each point measurement, the predicted Gaussian
components are updated using the usual Kalman update equations. The
update therefore increases the number of terms in the Gaussian sum if
there is more than one measurement. This step has two parts. In the first,
the means and covariance matrices are evaluated. In the second, the coef-
ficients of the Gaussian sum are updated by a multiplicative procedure.

• Merging and Pruning. The components of the Gaussian sum are merged
and pruned to obtain a “nominal” number of terms. Various reasonable
strategies are available for such purposes, as detailed in [124]. This step is
the analog of resampling in the particle method.

Some form of pruning is necessary to keep the size of the Gaussian sum
bounded over time, so the last – and most heuristic – step cannot be omitted.

Left out of this discussion are details that relate the weights of the Gaussian
components to the estimated target count. These details can be found in [124].
For nonlinear target motion and measurement models, [124] proposes both
the extended and the unscented Kalman filters. Vo and his colleagues also
present Gaussian sum implementations of the CPHD filter in [124] and [125].
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6.3.6 Regularization

Intensity filters are in the same class of stochastic inverse problems as image
reconstruction in emission tomography — the sequence t0, t1, . . . , tk of inten-
sity filter estimates fk|k(x) is essentially a movie (in dimension nx) in target
state space. As discussed in Section 5.7, such problems suffer from serious
noise and numerical artifacts. The high dimensionality of the PPP parameter,
i.e., the number of voxels of the intensity function, makes regularization a
priority in all applications. Regularization for intensity filters is a relatively
new subject. Methods such as cardinalization are inherently regularizing.

Grenander’s method of sieves used in Section 5.7 for regularizing PET
adapts to the intensity filter, but requires some additional structure. The
sieve kernel k0(x |u) is a pdf on S+, so that∫

S+
k0(x |u)dx = 1 (6.33)

for all points u in the discrete-continuous spaceU+ = U∪φ. As before, the
choice of kernel and space U+ is very flexible. The multitarget intensity at
every time tk, k = 0, 1, . . . , is restricted to the collection of functions of the
form

fk|k(x) =

∫
U+

k0(x |u)ζk|k(u)du for some ζk|k(u) > 0 . (6.34)

The kernel k0 can be a function of time tk if desired. The restriction (6.34) is
also imposed on the predicted target intensity:

fk|k−1(x) =

∫
U+

k0(x |u)ζk|k−1(u)du for some ζk|k−1(u) > 0 . (6.35)

Substituting (6.35) into the predicted measurement intensity (6.3) gives

λk|k−1(z) =

∫
U+

p̃k(z |u)ζk|k−1(u)du , (6.36)

where

p̃k(z |u) =

∫
S+

pk(z |x)k0(x |u)dx . (6.37)

is the regularized measurement likelihood function.
An intensity filter is used to update ζk|k(u). This filter employs a transition

function Φk−1( · | · ) to provide a dynamic connection between the current
intensity ζk−1|k−1(u) and predicted intensity ζk|k−1(u). The function Φk−1( · | · )
is specified for all u and v inU+ and is, in principle, any reasonable function,
but in practice is linked to the target motion model Ψk−1( · | · ).
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One way to define Φk−1( · | · ) requires defining an additional kernel. Sub-
stitute (6.34) into the predicted detected target intensity to obtain

fk|k−1(x) =

∫
S+

fk−1|k−1(y)Ψk−1(x | y)dy

=

∫
S+

(∫
U+

k0(y |u)ζk−1|k−1(u)du
)
Ψk−1(x | y)dy

=

∫
U+

Ψ̃k−1(x |u)ζk−1|k−1(u)du ,

where

Ψ̃k−1(x |u) =

∫
S+
Ψk−1(x | y)k0(y |u)dy . (6.38)

Define a Bayesian kernel k1(v |x) so that∫
U+

k1(v |x)dv = 1 (6.39)

for all points x ∈ S+. Like the sieve kernel k0( · ), the Bayesian kernel k1(v |x)
is very flexible. It is easily verified that the function

Φk−1(v |u) =

∫
S+

k1(v |x)Ψ̃k−1(x |u)dx (6.40)

is a valid transition function for all k0( · ) and k1( · ).
Given the intensity ζ̂k−1|k−1(u) from time tk−1, the predicted intensity

ζ̂k|k−1(u) at time tk is defined by

ζ̂k|k−1(u) =

∫
U+

Φk−1(u |v) ζ̂k−1|k−1(v)dv .

The information updated intensity ζ̂k|k(u) is evaluated via the intensity filter
using the regularized measurement pdf (6.37) and the predicted measure-
ment intensity (6.36). The regularized target state intensity at time tk is the
integral

fk|k(x) =

∫
U+

k(x |u) ζ̂k|k(u)du . (6.41)

The regularized intensity fk|k(x) depends on the sieve and Bayesian kernels
k0( · ) and k1( · ).

The question of how best to define the k0( · ) and k1( · ) kernels depends
on the application. It is common practice to define kernels using Gaussian
pdfs. As mentioned in Section 5.7, the sieve kernel is a kind of measurement
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176 6 Applications: Multiple Target Tracking

smoothing kernel. If dim(U) < dim(S), the Bayesian kernel disguises ob-
servability issues, that is, many points x ∈ S map with the same probability
to a given point u ∈ U. This provides a mechanism for target state space
smoothing.

6.4 Estimated Target Count

Estimating the number of targets present in the data is a difficult hypothesis
testing problem. In a track before detect (TBD) approach, it is a track man-
agement function that is integrated with the tracking algorithm. Intensity
filters seem to offer an alternative way to integrate, or fuse, the multitarget
track management and state estimation functions.

6.4.1 Sources of Error

Accurate knowledge of the target detection probability function PD
k (x) is

crucial to correctly estimating target count. An incorrect value of PD
k (x) is a

source of systematic error. For example, if the filter uses the value PD
k (x) = .5

but in fact all targets always show up in the measured data, the estimated
mean target count will be high by a factor of two. This example is somewhat
extreme but it makes the point that correctly setting the detection probability
is an important task for the track management function. The task involves
executive knowledge about changing sensor performance characteristics,
as well as executive decisions external to the tracking algorithm about the
number of targets actually present — decisions that feedback to validate
estimates of PD

k (x). Henceforth, the probability of detection function PD
k (x) is

assumed accurate.
There are other possible sources of error in target count estimates. Birth-

death processes can be difficult to tune in practice, regardless of whether they
are modeled implicitly as transitions into and out of a state φ in the intensity
filter, or explicitly as in the PHD filter. If in an effort to detect new targets
early and hold track on them as long as possible, births are too spontaneous
and deaths are too infrequent, the target count will be too high on average.
Conversely, it will be too low with delayed initiation and early termination.
Critically damped designs, however that concept is properly defined in this
context, would seem desirable in practice. In any event, tuning is a function
of the track management system.

Under the PPP model, the estimated expected number of targets in a
given region,A, is the integral overA of the estimated multitarget intensity.
Because the number is Poisson distributed, the variance of the estimated
number of targets is equal to the mean number. This large variance is an
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unhappy fact of life. For example, if 10 targets are present, the standard
deviation on the estimated number is

√
10 ≈ 3.

It is therefore foolhardy in practice to assume that the estimated of the
number of targets is the number that are actually present. Variance reduction
in the target count estimate is a high priority from the track management
point of view for both intensity and PHD filters.

6.4.2 Variance Reduction

The multisensor intensity filter discussed in Section 6.5 reduces the variance
by averaging the sensor-level intensity functions over the number of sensors
that contribute to the filter. Consequently, if the individual sensors estimate
target count correctly, so does the multisensor intensity filter.

Moreover, and just as importantly, the variance of the target count estimate
of the multisensor intensity filter is reduced by a factor of M compared to that
of a single sensor, where M is the number of sensors, assuming for simplicity
that the sensor variances are identical.

This important variance reduction property is analogous to estimators
in other applications. An especially prominent and well known example
is power spectral estimation of wideband stationary time series. For such
signals the output bins of the DFT of a non-overlapped blocks of sampled
data are distributed with a mean level equal to the signal power in the
bin, and the variance equal to the mean. This property of the periodogram
is well known, as is the idea of time averaging the periodogram, i.e., the
non-overlapped DFT outputs, to reduce the variance of spectral estimates.2

The Wiener-Khinchin theorem justifies averaging the short term Fourier
transforms of nonoverlapped data records as a way to estimate the power
spectrum with reduced variance. In practice, the number of DFT records
averaged is often about 25.

The multisensor intensity filter is low computational complexity, and ap-
plicable to distributed heterogeneous sensor networks. It is thus practical and
widely useful. Speculating now for the sheer fun of it, if the number of data
records in a power spectral average carries over to multisensor multitarget
tracking problems, then the multisensor intensity filter achieves satisfactory
performance for many practical purposes with about 25 sensors.

2 Averaging trades off variance reduction and spectral resolution. It was first proposed by
M. S. Bartlett [6] in 1948.
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6.5 Multiple Sensor Intensity Filters

To motivate the discussion, consider the SPECT application of Section 5.4. In
SPECT, a single gamma camera is moved to several view angles and a snap-
shot is taken of light observed emanating from gamma photon absorption
events. The EM recursion given by Eqn. (5.67) is the superposition of the
intensity functions estimated by each of the camera view angles. Intuitively,
since different snapshots cannot contain data from the same absorption event,
the natural way to fuse the multiple images into one image is to add them.
The theoretical justification is that, since the number of absorptions is un-
known and Poisson distributed, the estimates of the spatial distribution of
the radioisotope that are obtained from different view angles are indepen-
dent, not conditionally independent, so the intensity functions (images) are
superposed.

The general multisensor filtering problem is not concerned with gamma
photon absorptions, but rather with physical entities (aircraft, ships, etc.) that
persist over long periods of time — target physics are very different from
the physics of photons. Nonetheless, for reasons discussed at the beginning
of this chapter, a PPP multitarget model is used for single sensor multitarget
tracking. It is assumed, very reasonably, that the same PPP target model holds
regardless of how many sensors are employed to detect and track targets.
The analogy with SPECT is now clear: each sensor in the multisensor filtering
problem is analogous to a camera view angle in SPECT, and the sensor-level
data are analogous to the camera snapshot data.

The PPP multitarget model has immediate consequences. The most im-
portant is that conditionally independent sensors are actually independent
due to the independence property of PPPs discussed in Section 2.9. The
multisensor intensity filter averages the sensor-level intensities [111]. The
reason the sensor intensities are averaged and not simply added is that tar-
gets are persistent (unlike absorption events). Adding the intensities “over
count” targets because each sensor provides its own independent estimate
of target intensity.

The possibility of regularization at the multisensor level is not considered
explicitly. Although perhaps obvious, the multisensor intensity filter is fully
compatible with sensor-level regularization methods.

Let the number of sensors be M ≥ 1. It is assumed that the target detection
probability functions, PD

k (x ; `), ` = 1, . . . ,M, are specified for each sensor. The
sensor-specific state space coverage is defined by

Ck(`) =
{
x ∈ S : PD

k (x ; `) > 0
}
. (6.42)

In homogeneous problems the sensor coverages are identical, i.e., Ck(`) ≡ Ck
for all `. Heterogeneous problems are those that are not homogeneous.

Two sensors with the same coverage need not have the same, or even
closely related, probability of detection functions. As time passes, homoge-
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neous problems may turn into heterogeneous ones, and vice versa. In prac-
tice, it is probably desirable to set a small threshold to avoid issues with very
small probabilities of detection. Homogeneous and heterogeneous problems
are discussed separately.

6.5.1 Identical Coverage Sensors

For ` = 1, . . . ,M, let the measurement space of sensor ` beZ(`). Denote the
measurement pdf by pk(z |x ; `), where z(`) ∈ Z(`) is a point measurement.
The predicted measurement intensity is

λk|k−1(z ; `) =

∫
S+

pk(z |x ; `)PD
k (x ; `) fk|k−1(x)dx , z ∈ Z(`) . (6.43)

The measured data from sensor ` is

ξk(`) = (mk(`), {zk(1 ; `), . . . , zk(mk(`) ; `)}) . (6.44)

The sensor-level intensity filter is

fk|k(x ; `) = Lk(ξk(`) |x ; `) fk|k−1(x) , (6.45)

where the Bayesian information update factor is

Lk(ξk(`) |x ; `) = 1 − PD
k (x ; `) +

mk(`)∑
j=1

pk(zk( j ; `) |x ; `)PD
k (x ; `)

λk|k−1(zk( j ; `) ; `)
. (6.46)

The multisensor intensity filter is the average:

f Fused
k|k (x) =

1
M

M∑
`=1

fk|k(x ; `)

=
1
M

 M∑
`=1

Lk(ξk(`) |x ; `)

 fk|k−1(x) . (6.47)

If the sensor-level intensity filters are maintained by particles, and the num-
ber of particles is the same for all sensors, the multisensor averaging filter is
implemented merely by pooling all the particles (and randomly downsam-
pling to the desired particle size, if desired).

Multisensor fusion methods sometimes rank sensors by some relative
quality measure. This is unnecessary for the multisensor intensity filter. The
reason is that sensor quality, as measured by the probability of detection
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functions PD
k (x ; `) and the sensor measurement pdfs pk(z |x ; `), is automati-

cally included in (6.47).
The multisensor intensity filter estimates the number of targets as

NFused
k|k =

∫
S

f Fused
k|k (x)dx

=
1
M

M∑
`=1

∫
S

fk|k(x ; `)dx

=
1
M

M∑
`=1

Nk|k(`) , (6.48)

where Nk|k(`) is the number of targets estimated by sensor `. Taking the
expectation of both sides gives

E
[
NFused

k|k

]
=

1
M

M∑
`=1

E
[
Nk|k(`)

]
. (6.49)

If the individual sensors are unbiased on average, or in the mean, then
E[Nk|k(`)] = N for all `, where N is the true number of targets present. Con-
sequently, the multisensor intensity filter is also unbiased.

The estimate Nk|k(`) is Poisson distributed, and the variance of a Poisson
distribution is equal to its mean, so

Var[Nk|k(`)] = N , ` = 1, . . . ,M .

The variance of the average in (6.48) is the average of the variances, since the
terms in the sum are independent. Thus,

Var
[
NFused

k|k

]
=

1
M

M∑
`=1

Var
[
Nk|k(`)

]
=

N
M
. (6.50)

In words, the standard deviation of the estimated target count in the multi-
sensor intensity filter is smaller than that of individual sensors by a factor of
√

M, where M is the number of fielded sensors. This is an important result
for spatially distributed networked sensors.

The averaging multisensor intensity filter is derived by Bayesian methods
in [111]. It is repeated here in outline. The Bayesian derivation of the single
sensor intensity filter in Appendix D is a good guide to the overall structure
of most of the argument.

The key is to exploit the PPP target model on the augmented space S+.
Following the lead of Eqn. (D.5) in Appendix D, the only PPP realizations
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with nonzero likelihood have mk =
∑M
`=1 mk(`) microtargets. The mk PPP

microtargets are paired with the mk sensor data points, so the overall joint
likelihood function is the product of the sensor data likelihoods given the
microtarget assignments. This product is then summed over all partitions of
the mk microtargets into parts of size mk(1), . . . ,mk(M).

The sum over all partitions is the Bayes posterior pdf on the event space
E(S+). It is a very complex sum, but it has important structure. In particular,
the single target marginal pdfs are identical, that is, the integrals over all but
one microtarget state are all the same. After tedious algebraic manipulation,
the single target marginal pdf is seen to be

pFused
X (x) =

1
mk

M∑
`=1

Lk(ξk(`) |x ; `) fk|k−1(x) , x ∈ S+ . (6.51)

The mean field approximation is now invoked as in Eqn. (D.13). Under this
approximation, f Fused

k|k (x) = cpFused
X (x), where the constant c > 0 is estimated.

From (6.17) and (6.18), the measurement intensity is

λFused
k|k (z) = c

∫
S+

pk(z |x)pFused
X (x)dx , (6.52)

so the likelihood function of c given the data sets ξk(`) is

L (c ; ξk(1), . . . , ξk(M)) =

M∏
`=1

e−
∫
S+ cpFused

X (x)dx
mk(`)∏
j=1

λFused
k|k (zk( j ; `))


∝ e−cM cmk .

Setting the derivative with respect to c to zero and solving gives ML estimate
ĉML =

mk
M . The multisensor intensity filter is ĉML pFused

X (x). Further purely
technical details of the Bayesian derivation provide little additional insight,
so they are omitted.

The multiplication of the conditional likelihoods of the sensor data hap-
pens at the PPP event level, where the correct associations of sensor data to
targets is assumed unknown. The result is that the PPP parameters — the in-
tensity functions — are averaged, not multiplied. The multisensor intensity
filter therefore cannot reduce the area of uncertainty of the extracted target
point estimates. In other words, the multisensor intensity averaging filter
cannot improve spatial resolution. Intuitively, the multisensor filter achieves
variance reduction in the target count by foregoing spatial resolution of the
target point estimates.
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6.5.2 Heterogeneous Sensor Coverages

When the probability of detection functions are not identical, the multisensor
intensity filter description is somewhat more involved. At each target state
x the only sensors that are averaged are those whose detection functions
are nonzero at x. This leads to a “quilt-like” fused intensity that may have
discontinuities at the boundaries of sensor detection coverages.

The Bayesian derivation of (6.47) outlined above assumes that all the
microtargets of the PPP realizations can be associated to any of the M sensors.
If, however, any of these microtargets fall outside the coverage set of a sensor,
then the assignment is not valid. The way around the problem is to partition
the target state space appropriately.

The total coverage set

C = ∪M
`=1 C(`) (6.53)

contains points in target state space that are covered by at least one sensor.
PartitionC into disjoint, nonoverlapping sets Bρ that comprise points covered
by exactly ρ sensors, ρ = 1, . . . ,M. Now partition Bρ into subsets Bρ,1, . . . , Bρ, jρ
that are covered by different combinations of ρ sensors. To simplify notation,
denote the sets

{
Bρ j

}
by {Aω}, ω = 1, 2, . . . , Ω. The sets are disjoint and their

union is all of C:

C = ∪Ωω=1Aω , Ai∩A j = ∅ for i , j . (6.54)

No smaller number of sets satisfies (6.54) and also has the property that each
setAω in the partition is covered by the same subset of sensors.

The overall multisensor intensity filter operates on the partition {Aω}.
The assignment assumptions of the multisensor intensity filter are satisfied
in each of the setsAω. Thus, the overall multisensor filter is

f Fused
k|k (x) =

1
|Aω|

 ∑
`∈I (Aω)

Lk(ξk(`) |x ; `)

 fk|k−1(x) , x ∈Aω . (6.55)

where I (Aω) are the indices of the sensors that contribute to the coverage
ofAω, and |Aω| is the number of sensors that do so.

The multisensor intensity filter is thus a kind of “patchwork” with the
pieces being the sets Aω of the partition. The variance of the multisensor
filter is not the same throughout C — the more sensors contribute to the
coverage of a set in the partition, the smaller the variance in that set.
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6.6 Historical Note

The PHD (Probability Hypothesis Density) filter ([66], [67] and references
therein) was pioneered by Mahler beginning about 1994. Mahler was ap-
parently influenced in this work [66, p. 1154] by an intriguing approach to
additive evidence accrual proposed in 1993 by Stein and Winter [108]. An
alternative and more insightful bin-based derivation of the PHD filter was
discovered in 2008 by Erdinc, Willett, and Bar Shalom [29].

The intensity filter of Streit and Stone [117] is very similar to the PHD fil-
ter, differing from it primarily in its use of an augmented target state space,
S

+, instead of birth-death processes to model target initiation and termina-
tion. The PHD filter is recovered from the intensity filter by modifying the
posterior intensity. This paper is the source of the Bayesian approach to the
intensity filter given in Section 6.1. The other two approaches presented in
that section follow the discussion given in [112]. It draws on the connec-
tions to PET to gain intuitive insight into the interpretation of the PPP target
model. These approaches greatly simplify the mathematical discussion sur-
rounding intensity filters since it builds on work already presented in earlier
chapters for PET imaging.

The multisensor intensity filter was first derived in 2008 by Streit [111]
using a rigorous Bayesian methodology, followed by the same kind of PPP
approximation as is used in the single sensor intensity filter. The general mul-
tisensor problem was presented for both homogeneous and heterogeneous
sensor coverage. The theoretical and practice importance of the variance re-
duction property of the averaging multisensor filter was also discussed in
the same paper.

Mahler [66] reports a product form for the multisensor PHD filter. It is
unclear if the product form estimates target count correctly. The problem
arises from the need for each of the sensor-level integrals of intensity as well
as the multisensor integral of intensity to estimate the target count. In any
event, the multisensor intensity filter and the multisensor PHD filter take
quite different forms, and therefore are different filters.

The MMIF tracking filter is new. It was developed by exploring connec-
tions between intensity filters and the PMHT (Probabilistic Multiple Hy-
pothesis Tracking) filter, a Gaussian mixture (not Gaussian sum) approach to
multitarget tracking developed by Streit and Luginbuhl [113, 114, 115] that
dates to 1993. These connections reveal the PPP underpinnings of PMHT.
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Appendix D
Bayesian Derivation of Intensity Filters

The multitarget intensity filter is derived by Bayesian methods in this ap-
pendix. The posterior point process is developed first, and then the posterior
point process is approximated by a PPP. Finally, the last section discusses the
relationship between this method and the “first moment”approximation of
the posterior point process.

The steps of the intensity filter are outlined in Fig. 6.1. The PPP interpre-
tations of these steps are thinning, approximating the Bayes update with a
PPP, and superposition. The PPP at time tk is first thinned by detection. The
two branches of the thinning are the detected and undetected target PPPs.
Both branches are important. Their information updates are different. The
undetected target PPP is the lesser branch. Its information update is a PPP.
The detected target branch is the main branch, and its information update
comprises two key steps. Firstly, the Bayes update of the posterior point
process of Ξk on E(S+) given data up to and including time tk is obtained.
The posterior is not a PPP, as is seen below from the form of its pdf in (D.10).
Secondly, the posterior point process is approximated by a PPP, and a low
computational complexity expression for the intensity of the approximating
PPP is obtained. The two branches of detection thinning are recombined by
superposition to obtain the intensity filter update.

D.1 Posterior Point Process

The random variables Ξk−1|k−1, Ξk|k−1, and Υk|k−1 are defined as in Section C.
The state space of Ξk−1|k−1 and Ξk|k−1 is E(S+), where E(S+) is a union of sets
defined as in (2.1). Similarly, the event space of Υk|k−1 is E(T ), not T .

The process Ξk−1|k−1 is assumed to be a PPP, so it is parameterized by
its intensity fk−1|k−1(s), s ∈ S+. A realization ξk ∈ E(S+) of Ξk−1|k−1 is thinned
by a death probability function dk−1(s), assumed known, and subsequently
diffused to time tk via the single target transition functionΨk−1(y |x). Thinning

249
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and diffusing Ξk−1|k−1 yields the predicted target PPP Ξk|k−1. Its intensity is,
using (2.83),

fk|k−1(x) =

∫
S+
Ψk−1(x |s) (1−dk−1(s)) fk−1|k−1(s)ds. (D.1)

The integral in (D.1) is defined as in (2.97).
The point process Ξk|k is the sum of detected and undetected target pro-

cesses, denoted by ΞD
k|k and ΞU

k|k, respectively. They are obtained from the
same realizations of Ξk|k−1, so they would seem to be highly correlated.
However, the number of points in the realization is Poisson distributed, so
they are actually independent. See Section 2.9.

The undetected target process ΞU
k|k is the predicted target PPP Ξk|k−1

thinned by 1− PD
k (s), where PD

k (s) is the probability of detecting a target
at s. Thus ΞU

k|k is a PPP, and

f U
k|k(x) = (1−PD

k (x)) fk|k−1(x) (D.2)

is its intensity.
The detected target process ΞD

k|k is the predicted target PPP Ξk|k−1 that is
thinned by PD

k (s) and subsequently updated by Bayesian filtering. Thinning
yields the predicted PPP ΞD

k|k−1, and

f D
k|k−1(x) = PD

k (x) fk|k−1(x) (D.3)

is its intensity.
The predicted measurement process Υk|k−1 is obtained from ΞD

k|k−1 via the
pdf of a single point measurement z ∈ T conditioned on a target located at
s ∈ S+. The quantity pk(z |φ) is the likelihood of z if it is a false alarm. See
Section 2.12. Thus, Υk|k−1 is a PPP on T and

λk|k−1(z) =

∫
S+

pk(z |s)PD
k (s) fk|k−1(s)ds , (D.4)

is its intensity.
The measurement set is υk = {m, {z1, . . . ,zm}, where z j ∈ T . The conditional

pdf of υk is defined for arbitrary target realizations ξk = (n, {x1, . . . , xn}) ∈
E(S+). All the points x j of ξk, whether they are a true target (x j ∈ R

nx ) or
are clutter (x j = φ), generate a measurement so that only when m = n is
the measurement likelihood non-zero. The correct assignment of point mea-
surements to targets in ξk is unknown. All such assignments are equally
probable, so the pdf averages over all possible assignments of data to false
alarms and targets. Because φ is a target state, the measurement pdf is
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pΥk |Ξk (υk |ξk) =

{ 1
m!

∑
σ∈Sym(m)

∏m
j=1 pk(zσ( j) |x j), m = n

0, m , n,
(D.5)

where Sym(m) is the set of all permutations on the integers {1, 2, . . . ,m}.
The lower branch of (D.5) is a consequence of the “at most one measure-

ment per target”rule together with the augmented target state space S+.
To elaborate, the points in a realization ξ of the detected target PPP are tar-
gets, some of which have state φ. The augmented state space accommodates
clutter measurements by using targets in φ, so only realizations with m = n
points have nonzero probability.

The posterior pdf of ΞD
k|k on E(S+) is, from (C.5),

pk|k(ξk) = pΥk |Ξk (υk |ξk)
pk|k−1(ξk)
πk|k−1(υk)

. (D.6)

The pdf’s pk|k−1(ξk) and πk|k−1(υk) of ΞD
k|k−1 and Υk|k−1 are given in terms of

their intensity functions using (2.12):

pk|k−1(ξk) =
1

m!
exp

(
−

∫
S+

f D
k|k−1(s)ds

) m∏
j=1

f D
k|k−1(x j) (D.7)

πk|k−1(υk) =
1

m!
exp

(
−

∫
T

λk|k−1(z)dz
) m∏

j=1

λk|k−1(z j) . (D.8)

From (D.3) and (D.4), ∫
S+

f D
k|k−1(s)ds =

∫
T

λk|k−1(z)dz . (D.9)

Substituting (D.7), (D.8), and (D.5) into (D.6) and using obvious properties
of permutations gives the posterior pdf of ΞD

k|k:

pk|k(ξk) =
1

m!

∑
σ∈Sym(m)

m∏
j=1

pk(zσ( j) |x j)PD
k (x j) fk|k−1(x j)

λk|k−1(zσ( j))
. (D.10)

If ξk does not contain exactly m points, then pk|k(ξk) = 0. Conditioning ΞD
k|k

on m points gives the pdf of the points of the posterior process as

pk|k(x1, . . . , xm) =
1

m!

∑
σ∈Sym(m)

m∏
j=1

pk(zσ( j) |x j)PD
k (x j) fk|k−1(x j)

λk|k−1(zσ( j))
. (D.11)

The pdf (D.11) holds for x j ∈ S
+, j = 1, . . . ,m .
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D.2 PPP Approximation

The pdf of the posterior point process ΞD
k|k is clearly not that of a PPP. This

causes a problem for the recursion. One way around it is to approximateΞD
k|k

by a PPP and recursively update the intensity of the PPP approximation.
The pdf pk|k(x1, . . . , xm) = pk|k(xσ(1), . . . , xσ(m)) for all σ ∈ Sym(m); therefore,

integrating it over all of arguments except, say, the `th argument gives the
same result regardless of the choice of `. The form of the “single target
marginal” is, using (D.4),

pk|k(x`) ≡
∫
S+
· · ·

∫
S+

pk|k(x1, . . . , xm)
m∏

i=1
i,`

dxi

=
1

m!

∑
σ∈Sym(m)

∫
(S+)m−1

m∏
j=1

pk(zσ( j)|x j)PD
k (x j) fk|k−1(x j)

λk|k−1(zσ( j))

m∏
i=1
i,`

dxi

=
1

m!

m∑
r=1

∑
σ∈Sym(m)
and σ(`)=r

pk(zσ(`) |x`)PD
k (x`) fk|k−1(x`)

λk|k−1(zσ( j))

=
1
m

m∑
r=1

pk(zr |x`)PD
k (x`) fk|k−1(x`)

λk|k−1(zr)
. (D.12)

This identity holds for arbitrary x` ∈ S+.
The joint conditional pdf is approximated by the product of its marginal

pdf’s:

pk|k(x1, . . . , xm) ≈
m∏

j=1

pk|k(x j). (D.13)

The product approximation is called a mean field approximation in the
machine learning community [50, pp. 35–36]. Both sides of (D.13) integrate
to one.

The marginal pdf is proportional to the intensity of the approximating
PPP. Let f D

k|k(x) = cpk|k(x) be the intensity. The likelihood function of the
unknown constant c is

L (c |ξk) =
1

m!
e−

∫
S+ cpk|k(s)ds

m∏
j=1

(
cpk|k(x j)

)
∝ e−c cm .

The maximum likelihood estimate is ĉML = m, so that
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f D
k|k(x) =

m∑
r=1

pk(zr|x)PD
k (x) fk|k−1(x)

λk|k−1(zr)
(D.14)

is the intensity of the approximating PPP.

Altogether Now

The PPP approximation to the point processΞk|k is the sum of the undetected
target PPP ΞU

k|k and the PPP that approximates the detected target process
ΞD

k|k. Hence,

fk|k(x) = f U
k|k(x) + f D

k|k(x) , x ∈ S+

=

1 − PD
k (x) +

m∑
r=1

pk(zr |x)PD
k (x)

λk|k−1(zr)

 fk|k−1(x) (D.15)

is the updated intensity of the PPP approximation to Ξk|k.
The intensity filter comprises equations (D.1), (D.4), and (D.15). The first

two equations are more insightful when written in traditional notation. From
(D.1),

fk|k−1(x) = b̂k(x) +

∫
S

Ψk−1(x |s) (1 − dk−1(s)) fk−1|k−1(s)ds, (D.16)

where the predicted target birth intensity is

b̂k(x) = Ψk−1(x |φ) (1 − dk−1(φ)) fk−1|k−1(φ). (D.17)

Also, from (D.4),

λk|k−1(z) = λ̂k(z) +

∫
S

pk(z |s)PD
k (s) fk|k−1(s) ds , (D.18)

where

λ̂k(z) = pk(z |φ)PD
k (φ) fk|k−1(φ) (D.19)

is the predicted measurement clutter intensity.
The above derivation of the intensity and PHD filters was first given

in [117]. A more intuitive “physical space” approach is given by [29]. An
analogous derivation for multisensor multitarget intensity filter is given in
[111].
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254 D Bayesian Derivation of Intensity Filters

D.3 First Moment Intensity and Janossy Densities

An alternative method is often used in the literature to obtain the intensity
function (D.14) for the detected target posterior point process. The process
ΞD

k|k is not a PPP, but it is a finite point process because its realizations
contain exactly m points. The general machinery of finite point processes is
thus applicable toΞD

k|k. An excellent reference for general finite point process
theory is [16].

Let ξ = (N,X|N) denote a realization of ΞD
k|k, where N is the number of

points and X|N is the point set. From [16, Sect. 5.3], the Janossy probability
density of a finite point process is defined by

jn (x1, . . . , xn) = pN(n)pX|N ({x1, . . . , xn} |n) for n = 0, 1, 2, . . . . (D.20)

Janossy densities were encountered (but left named) early in Chapter 2, Eqn.
(2.10). Using the standard argument list as in (2.13) gives

jn (x1, . . . , xn) = n!pN(n)pX|N (x1, . . . , xn |n) for n = 0, 1, 2, . . . . (D.21)

Intuitively, from [16, p. 125],

jn (x1, . . . , xn) = Pr

 Exactly n points in a realization
with one point in each infinitesimal

[xi + dxi), i = 1, . . . , n

 . (D.22)

Now, for the finite point process ΞD
k|k, pN(m) = 1 and pN(n) = 0 if n , m,

so only one of the Janossy functions is nonzero. The Janossy densities are

jn (x1, . . . , xn) =

{
m!pk|k(x1, . . . , xm) , if n = m ,

0 , if n , m , (D.23)

where pk|k(x1, . . . , xm) is the posterior pdf given by (D.11). The first moment
intensity is denoted in [16] by m1(x). From [16, Lemma 5.4.III], it is given in
terms of the Janossy density functions by

m1(x) =

∞∑
n=0

1
n!

∫
S+
· · ·

∫
S+

jn+1(x, x1, . . . , xn)dx1 · · ·dxn . (D.24)

From (D.23), only the term n = m − 1 is nonzero, so that

m1(x) =
1

(m − 1)!

∫
S+
· · ·

∫
S+

m!pk|k (x, x1, . . . , xm−1) dx1 · · ·dxm−1 . (D.25)

The integral (D.25) is exactly m times the integral in Eqn. (D.12), so the first
moment approximation to ΞD

k|k is identical to the intensity (D.14).
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