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Abstract

Natural disasters such as earthquakes and tsunamis occur all over the world, altering the physical landscape and often severely disrupting people’s daily lives. Recently researchers’ attention has focused on using crowds of volunteers to help map the infrastructure and devastation caused by natural disasters, such as those in Haiti and Pakistan. This data is extremely useful, as it is allows us to assess damage and thus aid the distribution of relief, but it tells us little about how the people in such areas will react to the devastation, the supply of food, or the reconstruction.  This paper demonstrates a prototype spatially explicit agent-based model, created using crowdsourced geographic information and other sources of publicly available data, which can be used to study the aftermath of a catastrophic event. The specific case modelled here is the Haiti earthquake of January 2010. Crowdsourced data is used to build the initial populations of people affected by the event, to construct their environment, and to set their needs based on the damage to buildings. We explore how people react to the distribution of aid, as well as how rumours propagating through the population and crowding around aid distribution points might lead to food riots and similar social phenomena. Such a model could potentially provide a link between socio-cultural information of the people affected and relevant humanitarian relief organizations.
1.0
INTRODUCTION 

Natural disasters such as earthquakes and tsunamis occur all around the world, altering the physical landscape and often causing severe disruption to people’s daily lives. All too often, such events occur in the areas least suited to deal with them infrastructurally. Accurate and current spatial data is a tremendous aid in humanitarian efforts in such instances, but more often than not in less developed counties spatial data is lacking. Even in cases where spatial data is available, it temporal resolution often lags behind the situation on the ground. 

In recent years there has been a growth of bottom-up campaigns to crowdsource (Howe, 2006) spatial data, using volunteers to map entire counties. Some call these efforts volunteered geographic information (VGI, Goodchild, 2007). Recently attention has focused on using the crowd to help map the physical infrastructure (such as roads, bridges) and the devastation caused by natural disasters, such as in Haiti and Pakistan (e.g. Biewald and Janah, 2010, Zook et al., 2010). These mapping efforts have been aided by the development of such sites as Ushahidi (2011) and CrisisCommons (2011) which take advantage of Web 2.0 technology, (Graham, 2007) crowdsourcing, and VGI. Some of the earliest work in crowdsourcing crisis events explored wild fires in Santa Barbara (see Goodchild and Glennon, 2010) but numerous other crises have been covered, mainly in the form of map mashups (see Liu and Palen, 2010). It was not until the Haiti earthquake on the 12th of January 2010 that concerned citizens, technical experts, government agencies, and non governmental organizations (NGOs) employed Web 2.0 technologies and crowdsourcing to aid the humanitarian effort in real-time (United Nations Foundation, 2011). Within days of the earthquake, volunteers had used satellite imagery to trace roads, shelters, and other geographic features to make the most detailed map of Haiti available (see Meier, 2011). Such information played a critical role in minimizing the suffering of those affected. For example, for aid distribution (as of tents, water, and food), it is essential to identify those of greatest need. In the Haiti earthquake, crowdsourcing and social networks helped fill the information gap in a timely manner. Such events mark a new research frontier with respect to disaster response (see Biewald and Janah, 2010). 

Recent events have also spurred the growth of new user communities. The International Conference on Crisis Mapping, for example, focuses on three issues pertaining to crisis mapping, specifically coding, analysis and response (see Meier, 2009). Some consider this a move from Disaster Relief 1.0 to Disaster Relief 2.0, in the sense that a wide range of web mapping tools has changed how crisis information is shared and communicated (Parry, 2011). If one considers Web 2.0 as the growth of tools to support the user generated content, one can think of Disaster Relief 2.0 as people and government agencies harnessing such tools as described above to fill the information gap in near real-time (Parry, 2011). 

The purpose of this paper is to explore how Wed 2.0 technology can be linked to simulation modelling, in particular agent-based modelling (ABM) to aid the response effort, as we believe that coding and analysis are well established and using agent-based models offers an new insight into responding to such issues. The remainder of the paper will first provide some background on linking geographical information and ABM in the context of humanitarian relief (Section 2) before describing the structure of the model and the spatial data used within it (Section 3). Section 4 highlights a sample of modelling scenarios before we present a summary of the work and discuss future avenues of research (Section 5).

2.0
BACKGROUND AND LITERATURE REVIEW 

While the use of geographical information systems (GIS) and more generally spatial data for emergency management is not new (see Cova, 2005, for a review), applications often focus on the identification of devastation (e.g. Yamazaki, 2001), risk assessments (e.g. Tralli et al., 2005), or route planning for evacuating cities (e.g. Cova and Johnson, 2003). This is also true for agent-based models. Modellers have “agentised” evacuation models, be it vehicle (e.g. Thorp et al., 2006) or pedestrian traffic (e.g. Chen et al., 2010); while others have linked traffic models and disease propagation to explore spread of diseases within urban networks (e.g. Eubank, 2002 ; Barrett et al., 2005, Epstein et al., 2011) 

There are few agent-based models that look at natural disasters in relation to the people who stay behind, and those models tend not be overtly spatial (e.g. Salgado et al., 2010 looting model or economic migration models by Naqvi, 2009). There are even fewer models that combine GIS and ABM to assist humanitarian relief efforts such as food distribution or utilize crowdsourced geo-spatial data for model initialization. But we agree with others (see Fiedrich and Burghardt, 2007; RoboCup Rescue, 2011) that there is a great potential for the use of ABM to assist natural disasters from helping first responders and logistic support to understanding the people affected by such events.

The question one might want to ask is why should responders be interested in ABM? ABM serves as an artificial laboratory to test ideas and hypotheses that are difficult to study in reality (Axtell, 2000; Gilbert, 2007). For example, large scale emergency response drills are expensive and ABM has been used to replicate real events or responses which cannot be effectively simulated otherwise, such as chemical attacks and diseases (Eubank, 2002; Barrett et al., 2005). Within such models we have agents representing individual people who have their own rules and behaviours and interact with each other in some sort of environment. An established domain for ABM is that of pedestrian movement. For example, in a pedestrian evacuation, without actually setting a building on fire we cannot easily identify people's reactions to a specific room configuration as it fills up with smoke. Agent-based models, as with simulations in general, allow for such experiments. Rather than setting a building on fire, we can re-create the building in an artificial world (based on the building floor plans), and populate it with artificial people (based on number of expected number of people in the building), start a fire and watch what happens. Individuals in such events can also be given a set of behaviours based on empirical or qualitative literature. Such simulations allow the modeller to identify potential problems such as bottle necks and allows for the testing of numerous scenarios such as the way various room configurations can impact on evacuation time.

ABM is one of the cornerstones of computational social science, a discipline which studies social science questions with advanced computational tools. As such, agent-based models are used to build models of complex social phenomena focusing on the interactions of actors e.g.: economic markets (e.g. Axtell, 2007), traffic control (e.g. Feigh et al., 2005) or congestion (e.g. Beuck et al., 2008), and political systems (e.g. Goldstone et al., 2010) among many others. The goal of these studies is to gain insights that will lead to greater understanding and, in some cases, better management of the behaviour of complex social systems (see Cioffi-Revilla, 2010). 

With respect to VGI, we are interested in how ABM can be coupled with GIS, an especially in how we can use spatial data as a basis of our artificial world and allow agents to be related to actual geographic locations. The coupling of the two techniques is particularly appealing as spatial data alone provides us with no mechanism to discover new decision making frameworks, while ABM excels at investigating such questions (Robinson et al., 2007). Linking agent-based models and spatial data provides us with the ability to model the emergence of phenomena through the individual interaction of features in a GIS over space and time. For a detailed review of ABM and how it can be combined with geospatial data, readers are referred to Crooks and Castle (2011).

The remainder of this paper focuses on how GIS and ABM can be combined together to aid humanitarian relief. Specifically, the paper proposes to explore a prototype spatially explicit agent-based model wherein people search for food after an earthquake. The model is a simple caricature of reality (Axtell and Epstein, 1994) but demonstrates how one can create such a model from crowdsourced geographic information coupled with other sources of publically available data (including remotely sensed images), to map a catastrophic event and to study how aid might be distributed. Specifically, we focus on the devastating magnitude 7.0 earthquake that stuck the Haiti on Tuesday the 12th of January 2010. It is estimated to have killed 230,000 people and left more than 1.6 million people homeless (BBC, 2010)
. Figure 1 provides an idea of the population distribution of Haiti, with the greatest density in and around Port-au-Prince, the nation’s capital.
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Figure 1: The Republic of Haiti and its population distribution 
in 2009 (source data LandScan, 2011).
3.0
METHODOLOGY 

To demonstrate how crowdsourced data can be utilized, we have created a basic agent-based model which is loosely coupled to GIS, in the sense that raster and vector data structures are used as model inputs (in the form of ESRI grid and shapefiles respectively). The model itself is written in Java, utilizing and extending the MASON simulation toolkit (Luke et al., 2005) and its recently released GIS extension, GeoMASON (Sullivan et al., 2010). Mason is primarily used for its powerful scheduler of model actions, its visualization tools for displaying model information, and importation functionality for GIS vector and raster data. The model additionally utilizes another Java-based library, Java Topology Suite (JTS, 2011), which provides general 2D-GIS functions such as line intersection and buffering algorithms. The model consists of a number of modules which capture the physical and social processes that impact aid distribution. The model includes a series of overlaid maps showing various attributes of the spatial environment as well as graphs which track agent activities and the levels of supplies at aid stations. The layers of information displayed include the level of devastation as well as the location of roads, aid centers, and people. The model includes a number of parameters which can be adjusted to suit the underlying assumptions of the researcher, presented in Table 1 and discussed further in Sections 3.2 and Section 4. The model includes a graphical user interface, one configuration of which is displayed in Figure 2. Clockwise from the top left, the graphical user interface (GUI) features a map with the option to view or hide any layer of data, the model controller, and a series of graphs which summarize the dynamics of important system statistics over time. The model controller allows the user to initialize, pause, or stop the simulation control which displays are hidden or shown, and view some basic model information. Such an interface allows for ease of use in understanding and debugging the model. (Grimm, 2002).
Table 1: Parameters of the model.
	Type
	Parameter
	Description
	Range

	Agents
	Energy Level
	Set at model initialization based on location of the agent and level of destruction. The greater the destruction, the lower the energy value
	1000-2000

	
	Energy_to_Stay
	Energy expended staying at home
	0-1

	
	Energy_to_walk_Paved
	Energy expended walking on paved road
	0-1

	
	Energy_to_walk_UnPaved
	Energy expended walking on unpaved roads
	0-1

	
	Energy_to_Riot
	Energy expended when rioting
	1-10

	
	Re evaluate Interval
	How often (in terms of ticks) does the agent reevaluate its activity?
	0-10

	Environment
	MaximumDensity
	Maximum number of agents per 1002
	0-20

	
	RiotDensity
	Density of agents per 1002 to cause a riot
	0-20

	Centers
	FoodLevel
	Amount of food initially available at the center
	0-1000

	
	Energy_From_Food
	How much energy does the agent receive from one unit of food
	0-1000


Within the model we explore how people hear about aid distribution and then go and search for it (see Section 3.2). One of the novelties of this model is that it combines both raster and vector data structures into a single simulation. For interested readers the source code and data are available at the project website (http://www.css.gmu.edu/haiti). We do this for the sake of replication and docking, because if a model cannot be meaningfully compared to other work its credibility is unverifiable and its ramifications necessarily proscribed. (Axtell et al., 1996).The area chosen for the simulation measures 8 by 6 km around Haiti’s capital and most densely populated city, Port-au-Prince, as shown in Figure 1. As noted above the spatial data acts as a container and as an environment for our agents to interact with and within. It is to this we now turn.
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Figure 2: The Graphical User Interface of the Model.
3.1
Data Preparation
Several datasets are needed to build the simulation and these have been drawn from several sources. First, to initialize the agent population, we need an estimate of population distribution over the study area: for this we use population counts (approximately 1.3 million agents) from the 2009 LandScan (2011) dataset. LandScan data divides the world into roughly 1km2 and assigns a population count to each cell (see Cheriyadat et al., 2007 for further details). Such a data source is useful for estimating baseline populations where census data is missing. For example, Hailegiorgis et al. (2010) used a similar approach to initialize their agents for modelling parts of East Africa. When using this data to initialize our agents, we assume that the agents are evenly distributed within the 1km2 area, excluding the parts of the environment which contain water or similar obstacles. Individual agents were also assigned certain attributes: for example, their initial energy allocation is calculated based on the level of destruction at their home location. This energy level relates to agent decision making. We again took the most simplistic model possible, calculating the peoples needs based on information about the devastation at the block level from G-Mosaic (2010) released on the 16th of January, 2010 as four separate images that were stitched together.. This classification assesses damage at a number of different levels: totally destroyed, collapsed structures, visible damage, intact, and unclassified areas. This information is shown in Figure 3. The assumption the model makes is that agents in the areas of greatest devastation have the greatest needs. This data was edited and georeferenced to Port-au-Prince. For georeferencing purposes we used vector road lines sourced from OpenStreetMap, created on the 15th of January, 2010 via the Geocommons (2010) Haiti Data repository, as highlighted in Figure 3. The final data layers used within the model are shown in Figure 4

3.2
Model Structure

As noted above, the purpose of the model is to explore how people affected by a disaster might hear about aid distribution and respond to such information. The agents in this model are extremely simple with respect to their needs and methods of communication. This simplicity is intentional, as we are building a prototype model which can be extended in future research, for example by adding more complex behaviours or forms of interaction (Section 5 will discuss this in more detail). In a sense, our model is similar to the zero-intelligence traders model (Gode and Sunder, 1993) used in economics, whereby agents with nothing more than a budget constraint and a prohibition against trading at a loss replicate the demand and supply curves of ‘real’ markets. We rely on minimal assumptions to explain complex phenomena, laying the foundation for further work without the risk of confounding our results.
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	Figure 3: Data on the devastation focused on Port-au-Prince. A: Original Data, 
B: Geo referenced image with Roads shown which where used to locate 
the map (source of data G-Mosaic, 2010 and Geocommons, 2010).


The model implemented here is an agent-based model (ABM) which breaks the system being studied down into two different types of actors: Centers and Agents. These actors exist in an environment defined by physical space, represented here by a grid with a resolution of 100m2. The notion of time is abstract, but a "tick" of time in the simulation can be loosely interpreted to be about 5 minutes.
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Figure 4: Data on the devastation focused on Port-au-Prince. Model inputs include: Geo-referenced information amount the devastation to buildings, population counts, roads and aid points.

3.2.1
Centers
Centers represent the aid distribution points in the simulation. As an object, Centers are both a location and an actor. They are locations in that they cannot move, and in that two Centers cannot share one location. Centers are endowed with a certain amount of food which is distributed to Agents which enter the Center's grid point at a rate of one unit of food per Agent. Centers can only distribute as much food as they have on hand, so once they run out Agents are turned away. While the model supports the ability for Centers to be periodically resupplied throughout the simulation, in the following implementation we assume Centers are given an initial allocation of food and never resupplied.
3.2.2
Agents

Agents are the workhorse unit of the simulation, as they both propagate information among themselves and move around the physical landscape. The most important attribute for any individual Agent is its energy level, which reflects in an abstract fashion the health of an agent. It is the goal of Agents to maximize their energy levels over the course of the simulation. Agents burn energy at a rate proportional to the activities they are pursuing, emulating a metabolism of sorts. When an Agent receives food from a Center, it experiences an increase in energy as it "consumes" the food. If a given Agent's energy dips below zero, the agent is said to be dead and it is removed from the simulation. It does not leave behind any "body" on the landscape, so the movement of other Agents around its former position is not impeded. Agents whose homes are located in areas which have suffered extreme levels of destruction are assumed to begin the simulation with fewer resources and therefore lower energy than agents from relatively intact neighbourhoods, reflecting the varying needs of the heterogeneous population. In addition to a supply of energy, Agents also occupy a space in the physical environment and have a home location to which they will eventually attempt to return.

With respect to agent decision-making - in pursuit of its goal of maximizing energy, the Agent can choose among a number of actions, including walking to various locations or deciding to stay home as shown in Figure 5. Its choices are predicated upon the body of knowledge it maintains regarding the presence of aid supplies at various Centers and its understanding of the road network. The Agent's decision tree is depicted in Figure 5, and essentially boils down to determining the lowest-cost course of action. As even the act of staying home requires a certain amount of energy, it is not a given that staying home will be the energy-maximizing choice. Instead, an Agent will consider whether any of the Centers its knows to be stocked with supplies are close enough to make a trip to them worthwhile, which is to say that the travelling costs are lower than the projected energy increase from a unit of food. If it finds any Centers where the energy boost from food outweighs the cost of making the trip there and back, the Agent selects the Center associated with the greatest net energy increase and moves along the road network to that location. Agents constantly reassess their choices, so that if an Agent en route to Center A is told of Center B's new supply of food, it calculates whether the cost from its current location to Center A and then home is less than the cost from its current location to Center B and home. As such, Agents respond meaningfully to new information and are constantly replanning.

Agents plan their movement based on the road network, but the mental maps individuals associate with their environment may be in conflict with the post-disaster infrastructure. As such, Agent movement is constrained by the real road costs. Individuals plan their paths using an A* algorithm on the road networks they understand to exist, but the quality of the roads impacts the amount of energy that is burned by agents in moving over them. Agents are assumed to move at a speed of approximately 100m per tick, which corresponds to a rate of approximately 2m per second. However, in situations where Agents are attempting to move into a location with some maximum density, the Agent cannot move forward and must stay in its current location.

While there may be multiple Agents in one location, Agents cannot move into spaces that are already occupied by too many other Agents, and must wait until other Agents move away and the local density lessens. If an individual finds itself in a situation where the density is above a certain threshold, it is assumed to begin pushing or to be responding to being jostled, a state which burns a higher rate of energy. While this is a simplistic analogy to riots, it can be related to actual crowd condition, specifically that of collective behaviour. It is similar to other riot models, ones that do have agents pre-coded to riot (e.g. Bhat and Maciejewski, 2006 or legitimacy models (Wasik, 2011) which are akin to influence models in a similar vein to Epstein (2002).
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Figure 5: Agents decision making process.
The knowledge Agents have of food availability is a function of Agent rumour-spreading. Agents maintain a list of Centers which have been supplied with aid, and are assumed to pass this information along to individuals in the same location and in a small radius around them. When a Center is resupplied, the Agents in its immediate vicinity "witness" this and gain knowledge of the event, which they immediately begin to communicate to others. Agents do not strategically limit information-sharing, never lying or omitting information by accident. It is important to note that Agents do not pass rumours that certain Centers have run out of food, so that a rumour about a Center being resupplied may be passed along even after that Center's stocks have been depleted.
4.0
SIMULATION RESULTS 

An initial parameter sweep was run to ensure that the simulation was constructed correctly and that the relationships among variables were reasonable.  The results of these runs and analysis of the statistical significance of each of the variables are available at http://www.css.gmu.edu/haiti.

Three aid center locational setups were compared against one another on the basis of the ratio of agent deaths, the amount of aid that went undistributed, and the average amount of energy among all living agents at the end of the simulation. The significance of the first metric is obvious, while the second is meant to measure how effective the distribution effort was from the perspective of the aid organization. The third is a notional measure of the "population health"; it attempts to distinguish a population in which everyone barely survives to starve another day from a population in which a few people die while the remaining population is relatively healthy. The different aid center positioning are enumerated below, and their performance on the various statistics is finally compared.

· Prior - In the first setup, four aid centers are placed along the road network. Centers are located near areas which had suffered high levels of destruction, but are spread throughout the landscape to promote access. This was the setup upon which the parameter sweep was run, and is thus referred to here as the Prior setup as shown in Figure 6A. 

· Good - In the second setup, centers are located near the highest-need areas. They are on the road network, but they are not located along major highways as in the Prior setup as shown in Figure 6B.

· Bad - The third setup sets the centers up in inaccessible, low-population density areas far from the road network and not as grievously damaged in the earthquake. Information does not travel as well in low-density areas, so the positioning of these centers to a degree impedes the flow of information about them as shown in Figure 6C.
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Figure 6: Different aid center positioning where the blue 
dots represent the centers. A: Prior; B: Good, C: Bad.

The model was run ten times each on the different center distributions, producing the data given above. Each of the centers was initially given 500 units of food aid to distribute, each worth ten units of energy. The simulation is populated with over a million agents distributed realistically across the landscape. The performance of the different center distributions on the different metrics produced a number of interesting dynamics as shown in Table 2.

Table 2: Comparison of results.
	Setup
	Population Size
	Total Deaths
	Average Ratio of Deaths
	Range of Death Rate
	Total Energy in System
	Total Food Left

	Prior
	1315856.1
	412073.4
	0.313
	(.290, .325)
	329029296.2
	734.5

	Good
	1316090.7
	311712.1
	0.237
	(.232, .242)
	391942277.5
	533.6

	Bad
	1315859.5
	345285.3
	0.262
	(.258, .273)
	484702538.4
	788.1


On arguably the most important metric, the death rate, the "Good" setup performed best among the options, having an average loss of 23.7% and a rate that ranged between 23.2% and 24.1% as shown in Table 2. This is not surprising, seeing as the Good setup was designed to target the most vulnerable populations. It was also the most successful from the perspective of distributing food, having on average only 533.6 units of aid left over at the end of the simulation. It is important to note, however, that the absolute energy in the system was lower. The Good setup resulted in a cumulative total of 3.9 108 energy units throughout the entire population, only the second-highest energy levels of the setups sampled. While individual agents did better, the population as a whole had lower energy.

Compare this with the supposedly Bad setup. The ratio of deaths is higher than in the Good setup, ranging from 25.7% to 27.34% with an average at 26.2%, and there is a fair amount of food left over at the end of the simulation - 788.1 units on average. However, the average total energy for the system is uniformly - and significantly - greater at 4.8 108 units of energy. The inconvenience of the center locations dissuaded agents from attempting to make the trek, and the limited spread of information kept some in the dark. While more agents died, the agents who survived are much healthier than their peers in the other setups and resilient against future troubles.

Surprisingly, among the setups the Prior setup performed the worst in almost every category. It produced the greatest number of deaths and the lowest system-wide level of energy - 29.0% to 32.6% with an average of 31.3% and 3.2 108 units respectively. It was only slightly more successful at distributing food than the Bad setup, with 734.5 units of aid left over on average. In the end, the seeming convenience and proximity of the centers did more harm than good: agents believed that the trip would be worth their while but ended up getting caught in high-density situations and expending a great deal of energy.

The results reflect the importance of choosing center locations wisely and considering a number of different metrics of success. Depending on the other resources available to an aid organization, either the Good or the Bad setup might be preferable based on their impact on the system-wide health properties. An organization might assume that, having distributed more aid through the Prior setup than the Bad setup, the Prior setup best accomplishes their goals; this is not necessarily a valid conclusion.
5.0
SUMMARY
This paper has demonstrated how GIS and ABM can be utilized to explore humanitarian relief after a natural disaster such as an earthquake. Such a model harnesses crowdsourced, volunteered geographic data and other publicly accessible data to build agent environments. The model is also a move away from the more traditional disaster models that explore evacuation scenarios associated with a catastrophic event. The model demonstrates how such data can be used to initialize agents, their needs, and their environments, and how through a simple information dispersal model and decision making process people learn about and search for food. We consider this an important aspect of such efforts as natural disasters are times of great uncertainty, and it is difficult to predict beforehand how people will react to such events.  By using agent-based models we can explicitly explore potential agent behaviour and aid our understanding processes and their consequences. Such a model, once thoroughly developed, could be of potential use as a decision support tool for humanitarian relief. 

One might postulate that in the future, one could create such a model for any area in real time. There is currently much work with respect to providing near real time information with remote sensing and web mapping services which can carry out immediate damage assessment (e.g. Meng et al., 2009); updates from projects such as OpenStreetMap could be feed into such a model to provide more real time analysis. There is also the growth in Micro tasking, geo-locating reports from crowdsourced text messages such as that of Mission 4636 (2011). In the case of Mission 4635, a free phone number (4636) was set up after the Haitian earthquake where people could text their requests for food, shelter, medical care, or other aid. Volunteers used online crowdsourcing platforms (e.g. Crowdflower and Ushahidi) to sort the information by need and priority, and then distributed it to various emergency responders and aid organizations. Such data would allow one to assess the damage, security concerns etc within the agent-based model and potentially help inform agent behaviours.

Moreover, the utility of agent-based models does not stop with aid distribution but also to explore scenarios after the event. For example, Haiti has recently been affected by outbreaks of cholera, civil unrest against United Nations peacekeepers, and flooding. Example applications utilizing GIS and ABM could include the potential of studying civil violence (similar to the work of Epstein, 2002), rebuilding the city using modified urban growth models (similar to the work of Clarke and Gaydos, 1998). or monitoring the spread of diseases (e.g. Eubank et al., 2004, Epstein, 2009).
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� 	Note that Haiti has an estimated population of 9,719,932 (CIA, 2011).
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