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ABSTRACT 

The equatorial ionosphere contains imbedded bubbles that rise though a horizontally stratified plasma.  The 
motion of the bubbles are affect by gravity, neutral winds or external electric fields which produce electric 
fields in the F-Region density perturbations of the bubbles.  Exact solutions for the electric potentials are 
derived assuming linear or circular symmetry to the density structures imbedded in the background plasma.  
A wide variety of analytic solutions for electric potentials are found for both density cavities and density 
enhancements.  An analytic description of a rising bubble can be constructed by attaching a tail to the top half 
of a circular hole to from the electron density solution.  The potential for this plume structure is a weighted 
sum of the analytic solutions for each separate piece.  Using this electric potential, quasi-analytic solutions 
for the transport of the bubbles are derived using the continuity equation for the plasma with production and 
loss terms neglected.  The analytic models of the electric fields provide incompressible motion that transports 
the locations of “plasma cells” but does not change the density of the plasma in each cell.  This Lagrangean 
approach employs a time dependent coordinate mapping of the undisturbed layer grid.  Using internal 
electric potentials of the bubbles and external polarizations of the F-layer as a whole, a transport model 
yields tilted plasma plumes that move through the F-Region.  This time-dependent computer model provides 
useful plasma densities in a fraction of the time for fully numerical simulations.    

1.0 INTRODUCTION 

The F-Region ionosphere can become unstable if a density perturbation becomes electrically polarized by 
external forces from electric fields, neutral winds, and gravitational acceleration.  Near the geomagnetic 
equator, gravity can act on the plasma attached to the nearly horizontal magnetic field lines to produce 
unstable conditions.  After sunset when the layer is lifted by ambient electric fields, the bottom-side steepens 
and plasma bubbles are formed.  These bubbles rise through the layer in response to a Rayleigh-Taylor type 
instability.   Also, winds or electric fields induce electric fields in both density cavities and enhancements that 
cause distortions in the density structures. These distorted plasma structures are responsible for degradation of 
radio propagation that lead to navigation errors and outages, communications systems failures and radar 
clutter.  The modeling of ionospheric bubbles or density enhancements uses computer simulations the 
calculate the effects of self generated electric fields (E) that are driven by gravity, neutral winds and external 
electric fields.  Numerical computation of the electric potentials requires the most time and effort in the 
bubble modeling process.  The electric fields for these simulations can be found numerically using direct or 
iterative solvers of the non-separable potential equations that describe the self-generated electric fields (e.g. 
Bernhardt, P.A. (2006) Quasi-Analytic Models for Density Bubbles and Plasma Clouds in the Equatorial Ionosphere. In Characterising  
the Ionosphere (pp. 18-1 – 18-46). Meeting Proceedings RTO-MP-IST-056, Paper 18. Neuilly-sur-Seine, France: RTO. Available from: 
http://www.rto.nato.int/abstracts.asp. 
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[1]).  The computational time for solving for the disturbed ionosphere is often prohibitive so analytic solutions 
to both the transport and potential equations are useful.  Exact analytic solutions for the electric potential can 
be used to test the numerical algorithms and to determine errors produced by boundary conditions and 
numerical round-off.  The analytic solutions also yield insight into the conditions for production of 
ionospheric bubbles.   

 

 

Figure 1: Block diagrams of (a) numerical and (b) quasi-analytic algorithms for ionospheric bubble 
modeling.  Both approaches use an equivalent set of equations but apply different solution 

techniques and different frames of reference.  This paper focuses on the solution  
of the elliptic potential shown in red for the (b) quasi-analytic approach. 

The computational and analytical techniques for simulations of equatorial bubbles are compared in Figure 1.  
Typically, numerical models of equatorial bubbles follow the procedure illustrated by the block diagram given 
in Figure 1a.  A stratified model of the F-layer is perturbed by a small density disturbance.  Gravity is allowed 
to setup an electric potential in this plasma.  The electric potential is obtained with a numerical solution of a 
non-separable elliptic equation using a direct solver such as described in Appendix A.  Once the electric 
potential is obtained, the plasma transported in response to the electric fields for a small time step.  A non-
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dissipative flux corrected transport algorithm [9] is then used for incrementally move the plasma disturbance.  
The process is repeated with the generation of a revised electric potential followed by more incremental 
plasma transport.  All of these processes are numerically intensive and can require several hours of 
computation.    

A new approach for the quasi-analytic model of the equatorial bubble is proposed using the three steps in 
Figure 1b.  First, the electric potential is defined by an analytic function that gives self-consistent expressions 
for electron density (or Pedersen conductivity) structures that are obtained in the presence of background 
electric fields, neutral winds and gravity.  This procedure is described in the next section of this paper.  
Second, the plasma transport is determined using incompressible motion from the induced electric fields.  The 
plasma transport is derived with the analytic electric potential distorting the coordinates with out changing the 
density in each coordinate cell.  The third step is to adjust the parameters in the analytic models to that the 
analytic solution given in step 1 matches the quasi-analytic results from step 2.  The application of the 
transport and normalization processes will be described in the later sections of this paper. 

2.0 ANALYTIC MODELS FOR THE ELECTRIC POTENTIAL IN A DISTURBED 
IONOSPHERE 

The equatorial ionosphere is commonly thought of as a uniform layer with the occasional imbedded structure 
or bubble.  The modeling of ionospheric bubbles uses computer simulations that calculate the effects of self 
generated electric fields (E) that are driven by gravity, neutral winds and external electric fields.  The 
equations for these simulations can be found in a number of papers including [2].  For the analytic solutions 
considered here, the background ionosphere will be uniform in the horizontal, x- and z-directions. The 
ambient magnetic field, B, is aligned with the z-axis.  The altitude variations of the undisturbed ionosphere 
will be represented by the function (y)ne0  where y is the vertical coordinate.   

The layer becomes distorted when a small perturbation grows as electric fields provide incompressible 
perpendicular motion at F-region altitudes.  These internal electric fields move plasma across magnetic field 
lines with the velocity 

2
0

2
0 BB

BBEv ×Φ∇
−=

×
=         (1) 

where v is the velocity perpendicular to the ambient magnetic field B and the electric field Φ−∇=E  can be 
represented as the gradient of a scalar electrostatic potential Φ.  Other perpendicular components of velocity 
driven by pressure gradients, neutral winds, and gravity can be neglected because the plasma in the F-region 
ionosphere is magnetized.  This means that the electron and ion gyro frequencies are much larger than the 
corresponding collision frequencies with the background neutral gas.   

An analytic approach is derived to solve for the electric potential for localized electron density perturbations 
driven by external vector fields Kelley [6] gives the electric current in the F-region as  

P
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([ BgUEEJ ×+++=        (2) 



Quasi-Analytic Models for Density Bubbles  
and Plasma Clouds in the Equatorial Ionosphere 

18 - 4 RTO-MP-IST-056 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

where 
i

ine

0
p Ω

n
B
eσ ν

=  is the Pedersen conductivity, ne(x, y, z) is the electron density, νin is the ion neutral 

collisions frequency, E0 is the external electric field perpendicular to B, yxU ((
yx UU += gives the normal 

components of the neutral wind vector, yg (
0g −= is the gravitational acceleration, zB (

0B= is the magnetic 
field vector and the inertial terms in the momentum equation have been neglected.  Assume that the normal 
electric fields are constant along the magnetic field in the z-direction and that there is no z-component of 
current J.  For specific gravitational accelerations, neutral winds and external electric fields, the potential 
equation is found from (2) using  

0
z
Jz =⋅∇+

∂
∂

⊥ J          (3) 

Substitution of (2) into (3) and integration along the z-direction leaves an equation for the potential in the 
perpendicular (⊥) x- and y- directions.   

∫ ×++⋅∇=Σ∇⋅∇+∇Σ=∇Σ⋅∇ ⊥⊥⊥⊥⊥⊥ dzσ ])
ν

([ΦΦΦ)( p
in

0p
2

pp BgUE   (4)  

where ∫= dzσΣ pp is the field-line-integrated Pedersen conductivity and Φ−∇= ⊥E  is the induced electric 

field.  For simplicity, the driving fields 
in

0 ν
and , , gUE  are assumed constant in space and time, then the 

potential equation simplifies to  

)ln(}{)ln(}])
ν

([{ pTp
in

0
2 Σ∇⋅Φ∇−=Σ∇⋅Φ∇−×++=Φ∇ ⊥⊥⊥⊥⊥ EBgUE   (5)  

where the equivalent electric field vector defined by  0
in

( )
ν

≡ + + ×T
gE E U B .  Given a spatial distribution 

for the Pedersen conductivity (or electron density), the potential is usually obtained numerically from the non-
separable elliptic equation (5).  Often iterative solvers requiring relatively long solution times or direct solvers 
requiring large memories are required to compute this solution.   

A computational alternate approach assumes that the potential is given and (5) is used to find the associated 
electron density.  For this solution, only Pedersen currents in the horizontal, x-direction will be considered so  

xx ((
Tx0

in

0
y0x E ])Bg(U[E ≡−+

ν
        (6) 

where ETx represents the equivalent driving fields from a static electric field in the positive x-direction, a 
neutral wind in the positive y-direction and gravitational acceleration along the positive y-axis.  The sign of 
ETx is negative for the downward acceleration of gravity.  In our notation, the growth rate for the Rayleigh-
Taylor instability is N0Tx )/L/BE(γ −=  where LN is the scale length of the gradient on the bottom side of the 
ionosphere [8].   



Quasi-Analytic Models for Density Bubbles 
and Plasma Clouds in the Equatorial Ionosphere  

RTO-MP-IST-056 18 - 5 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

In normalized Cartesian coordinates, (4) becomes  
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where often gravitational forcing is the sole contribution to ETx, 
0Tx r E

ΦΦ =
)

is the dimensionless, normalized 

potential, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00 r
y,

r
x)y,x( ))  are the normalized coordinates, and r0 is a constant scale factor for all distances.  

Note that (7) has many self-similar elements.  Multiplying the x) - and y) - coordinates as well as Φ̂ by a 
constant scale factor (i.e., r0) does not change the equation.  Multiplying Σp by a constant C0 also yields a 

solution.  Consequently, if )y,x(Φ )))
 and P (x,y)Σ ) )  satisfies (7) then so do the pairs of functions )

r
y,

r
x(Φ r

00
0

)
 

and 0 P
0 0

x yC  ( , )
r r

Σ .  Normalized coordinates ( x) , y) ) will be used to simplify the notation for the analytic 

solutions.   

The existence of analytic solutions for (7) was discovered by examining numerical solutions.  A numerical 
algorithm for non-separable elliptic equations similar to (7) was written using a block tri-diagonal solver of 
the algebraic equation derived from finite difference approximations to the partial derivatives (Appendix A).  

When a circularly symmetric function, )r(ΣP
)  where 22 yxr ))) += , was used for the Pedersen conductivity it 

was found that the integral of the resulting electric potential along x)  was also circularly symmetric.  In 
mathematical terms, 

∫ =⇒ )r(Fxd )y,xΦ()r(Σ 1P
)))))         (8)  

This immediately shows that the form of the potential is the x)  coordinate multiplied by a circularly 
symmetric function since 
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Functions of single variables such as r)  can be solved analytically. 

General analytic solutions to (7) can be derived by making simplifying assumptions about the form of Φ
)

 and 
Log(Σp).  Numerical simulations for symmetric perturbations in x with x-directed fields given by (6) yield 
electric potentials that are odd functions of x with the form 

)]y,xG[q( )x a(a)y,x(Φ 10
))))))

+=        (10) 

where a0 and a1 are constants, 22 y sx)y,xq( )))) +=  is a single variable representing an elliptical perturbation 
for the potential and “s” determines the polarization of the coordinate ellipse.   
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The Pedersen conductivity (or electron density) takes the form of an elliptically shaped perturbation 
modulating the background conductivity.  

)]y(log[Σs]),y,x[q(L)]y,x(Log[Σ p0p
(s)
p

))))) +=        (11) 

where Lp(q,s) is the natural log of the conductivity/density perturbation and zd r 
Ω

ν )z ,y(n
B
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ine0
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)
∫=  

is the integrated conductivity associated with the horizontally stratified plasma layer.  The last term of the left 
side of (7) is x-direction gradient of the log-Pedersen conductivity which drives the solution for the potential.  
Consequently, the x) variation through the function q is required to obtain useful solutions for the potential. 

Substitution of  (10) and (11) into (7) and solving for the derivative of Lp(q) yields the equation 
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where the prime )(′  denotes the derivative with respect to q.  If the functions of y)  vanish, (12) may be 
integrated directly.  The 2y) terms vanish only if s = 0, or 1.   

General solutions for an extended vertical plume imposed on a horizontally stratified ionosphere are 
considered first.  For s = 0 the potential has no variations in the altitude coordinate ( y) ) and the solutions for 
(10) and (11) are given by   
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=
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)
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) )
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    (13) 

where C0 is a constant chosen to give the background conductivity as ∞→x) .  Exact solutions for pairs of 
Pedersen conductivity and electric potentials from (13) are easily found.  Table I gives several examples these 
pairs.   

Exact solutions for pairs of Pedersen conductivity and electric potentials from (13) are easily found.  The last 
equation in (13) can be inverted to give  

(0) -1
P

0 1 0

1G(x) =  1  Σ (q) dq
(a +a x)

x
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)        (14)  
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where 
(0)

(0) P
P

0 P0

Σ (x, y)Σ (x) = 
C  Σ (y)

) )
)

)  is the normalized 1-dimensional density cross section in the horizontal direction.  

From the second equation in (13), the electric potential is found as  
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Table I.  Electron Density Disturbances and Companion 1-D Potential Functions 

Pedersen Conductivity Function, )y,x(Σ (0)
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))+  

 
An example of the second function in Table I is illustrated in Figure 2 with the parameters a1 = -0.5 and b = 3.  
The conductivity trough (Figure 2a) centered along the y-axis has a ridges that increase in amplitude as the 
parameter “a1” is increased.  If a1 > 0, the trough is replaced by a Pedersen conductivity enhancement as the 
sense of the potential (Figure 2b) is reversed.  The parameter “b” simultaneously controls the steepness of the 
walls on the conductivity irregularity and the spatial decay of the potential function.  With separation of 
variables, even more general solutions to (7) can be found in Cartesian coordinates.  The 1-D conductivity 
structure and electric potential represent the “tail” portion of an ionospheric bubble. 
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Figure 2.  One-Dimensional Pedersen conductivity associated with the 1-D analytic electric  
potential using the parameters a1= -0.5 and b = 3.  The topology of the solution  

remains unaffected by the choice of model parameters.   

General solutions for circular holes in an ionosphere with simple vertical structure are considered next.   For s 
=1 the density disturbance is circularly symmetric with radius r around the ( x) , y) ) origin.  The solutions from 
(12) require a0 = 0 and a1 = 1 with the result 
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To eliminate any dependence on of y)  in (16), the background Pederson conductivity takes the functional form  

m
0p0 yC)y(Σ )) =  where m and C0 are a constants.  With this substitution, (16) becomes  

1)r(G r)rG(
)r(G r)r(Gm)(3,1)r(LP −′+

′′+′+
−=′ )))

)))
)        (17) 

which is identical to (13) with a0 = 0, a1 = 1 and m = -1.  The corresponding formula for the spatial variation 
of Pedersen conductivity is  

m
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Using separation of variables, a wider range of solutions for (7) in cylindrical geometry can be derived but 
(18) embodies the useful solutions for equatorial bubble modeling. 

The one-dimensional (s=0) and two-dimensional, circularly-symmetric (s=1) expressions are similar.  With a0 

= 0 and a1 = 1, the rational polynomial function of the form  
q1

aG(q) b+
= used in (10), and the 

corresponding potentials from (13) and (14) are  
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where a and b are constants.  Analytic solutions can be obtained from (13) through (16).   

Derivatives of the density perturbations become    
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The corresponding Pederson conductivity expressions are 
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where ]1)a(ba[4bA 2
1 −+−= and 21)a(bB1 −−−=  and 22 yx r ))) += .  The constants of integration 

are chosen to yield the background density at large distances where ∞→x .  The physically acceptable 
solutions have b > 0.   

The analytic solutions give insight into the relationships between localized density perturbations and the 
associated electric potentials.  Two types of conductivity structures, cavities and enhancements, are described 

by (21a and 21b).  In the parameter range 0aa
1)(b

4b
Min2 >>≡

−
−

, the plasma structure is a cavity centered at 

x = 0. These limits are found by solving for A1 = 0.  As parameter “a” approaches the value of “amin” the sides 
of the density cavity becomes steeper.  With a = amin, the wall of the cavity is located at radius is 
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With 0 > a > 1, a conductivity enhancement is found at the origin. This enhancement can represent the 
increased Pedersen conductivity produced by an artificial ion cloud from Barium or similar material released 
in the sunlit ionosphere.  As 1a → , the sides of the density enhancement become steeper.  Solutions exist for 
all values of b > 0 but if b > 1, the potential vanishes at large distances.  If a > 1, then the solutions in (21a and 
21b) become complex and are not physically possible.  The maximum upward velocity for the potential 

y)(x,(1)Φ
)

 in (17b) is 
0

Tx

0
y0 B

a E
x

t)y,Φ(x,
B
1V =

∂
∂

= .  If a > 1, then the conductivity would move with a 

velocity larger than the ETx/B0 velocity of the driving force, which is not possible.  For instance if only a 
vertical wind Uy is considered in the equation (6) for ETx, then the upward velocity is Vy0 = a Uy.  An 
unreasonable value of a > 1 would permit the conductivity enhancement to rise faster than the neutral wind 
driver.   

The restrictions on the ranges for the potential amplitude “a” indicate that not all electric potentials correspond 
to a physical density or Pedersen conductivity structure.  For a given force on the plasma from external 
electric fields, neutral winds or gravity, the induced potential is determined by the gradients on the wall of 
density cavity or enhancement.  These gradients are physically limited by infinite steepness and the amplitude 
of the potential is a maximum at this limit.  Thus, for the solution to (4), a given physical density structure will 
always correspond to a potential function.  The magnitude of a potential function can be increased to the point 
that there is no corresponding plasma density function.   

The one dimensional expression (21a) can represent a horizontal density modulation that uniformly changes 
the background density of a stratified ionosphere.  These may be produced by horizontally traveling acoustic-
gravity waves can act as seeds for equatorial bubbles.  The elongated shapes of these modulations are 
illustrated by the example in Figure 2.  The elongations can be found in nature as the extensions of an 
ionospheric plume below its top.  The horizontal electric field vectors calculated as gradients of the potential 
yield vertical plasma transport.  This transport is normal to the density gradients and, consequently, no net 
change in the densities is produced.  The electric fields near the top of the bubble are the primary drivers for 
plasma transport.  The cylindrical solutions describe the head portion of the bubble.  Combining the head and 
tail portions of the analytic bubbles is discussed in Section 3.   
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Figure 3.  Analytic results for density cavities and enhancements in a uniform background  
(i.e., m=0).  The densities and potentials are computed using (a) b = 2 , a = 0.99 aMin = -5.92, and  

(b) b =89, a = 0.5 aMin = -0.48, (c) b = 4, a = 0.5.  The changes in the parameters yield either  
(a) a cavity with steep sides, (b) a ridge around the cavity or (c) a peaked enhancement.   
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The two-dimensional solutions to the potential equation are more useful than the one-dimensional solutions.  
The expression for (1)

p ˆ ˆΣ (x, y)  in (21b) describes a plasma disturbance with two-dimensional structure.  The 

conductivity (or electron density) vanishes in )y,x(Σ(1)
p

)) at y=0 unless m=0.  Figure 3 illustrates three 
examples of the analytic density cavities and the associated electric potential for a uniform background using 
m = 0.  By changing the parameters in the analytic model, a wide variety of density structures is obtained.   

 

Figure 4.  Density cavities imbedded in a linear and inverse-quartic variation for the vertical  
profile of the plasma conductivity.  Both structures yield the same electric potential.   
The conductivity and the y-directed electric field go to zero at the lower boundary. 
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The background plasma variation can be approximated using nonzero values of m.  The Pedersen conductivity 
from (21b) vanishes at the y)  = 0 boundary if m > 0.  With ΣP = 0 at the lower ŷ=0  boundary, the potential 

equation (7) reduces to P
ˆΣ Φ  = 0

ˆ ˆy y
∂ ∂
∂ ∂

.  To satisfy this condition,  0y/Φ =∂∂ ))
 because a vertical gradient 

p ˆΣ / y∂ ∂ is nonzero-positive at the lower boundary.  This condition is automatically built into the analytic 

expression for the electric potential because of the 2y) symmetry of )yxG( x)y,x(Φ 22 ))))))
+= .   

Two quantitatively different ionospheres can become polarized with the same potential variation.  Figure 4 
illustrates two solutions of (21b) with identical parameters for a and b but with (a) m = 1 for a linear 
background profile, and (b) m = 0.25 for a forth-root of y profile.  As seen by the solutions in (21a and 21b), a 
family of Pedersen conductivity structures can be associated with a single electric potential (or field) 
distribution.  This non-uniqueness property can be exploited for modeling the evolution of the density 
structures 

3.0 FORMATION OF BUBBLE STRUCTURES FROM ANALYTIC SOLUTIONS 
FOR TROUGHS AND HOLES 

The analytic solutions derived in Section 2.0 are the building blocks for analytic descriptions of equatorial 
bubble structures.  A single plasma bubble or the individual finger of plasma bifurcation can be decomposed 
into holes and troughs.  By adjusting the parameters of the analytic descriptions for the holes and troughs, any 
finger of a plasma irregularity can be approximated.  The procedure for bubble finger formation is based on 

noting that an analytic potential in (14) with the form (1) 2 2
1Φ (x,y) x G [ x y ]= +

) ) ) ) ) )  is shown to have a 
density structure of the form 

(1) 0 1
p

1 1 1 1

2 2

C G (r)Σ (x,y)  exp dr
G (r) r G (r) 1 G (r) r G (r) 1

where r x y  and m = 0.

⎡ ⎤′
= −⎢ ⎥

′ ′+ − + −⎢ ⎥⎣ ⎦

= +

∫
)

)) )
) ) ) ) ) )

) ) )

   (22) 

Analytic bubbles or fingers are formed by using (22) for the top portion or “tip” of the finger above some 
altitude y0 and by extending the horizontal, x-axis cross-section downward for the plume portion of the bubble 
for y less than y0.  The bubble is then fully described by  

(1)
p 0

Bubble (1)
p 0 0

Σ (x, y) for y  > y
Σ (x,y) = 

Σ (x, y ) for y  > y
⎧⎪
⎨
⎪⎩

) ) ) )
) )

) ) )        (23) 

Away from the transition altitude y0, the corresponding electric potential is given by 

(1) 2 2
1 0

Bubble (0) (1) -1
P 0 0

0

Φ (x, y) =  x G [ x y ]             for y >> y
Φ (x, y) = 

Φ (x) = 1  Σ (q, y ) dq   for y << y
x

⎧ +
⎪
⎨

⎡ ⎤−⎪ ⎣ ⎦
⎩

∫
)

) ) ) ) ) ) ) )
) ) )

) ) ) ) )    (24) 
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These equations satisfy the normalized potential equation (7) at all locations near y = y0 where the electric 
potential from one type solution penetrates into the region of the other type solution. 

The bubble potential can be thought of as a weighted sum of the analytic solutions for the potentials of the 
trough and hole.  If the end of the trough joins the center of the hole (i.e., y0 = 0) then the potential at that 

point is the average of the two potentials.  This is proven by noting at y = 0 that 
(1)Log[ (x, 0)] 0
y
P∂ Σ

=
∂

)

)  and 

therefore BubbleLog( ) 0
y

∂ Σ
=

∂)
.   Without the y-derivative, the potential equation (7) becomes 

2 2
Bubble Bubble Bubble Bubble Bubble

2 2

Φ Log( ) Φ Φ Log( ) 0
x x x y x

∂ ∂ Σ ∂ ∂ ∂ Σ
+ + − =

∂ ∂ ∂ ∂ ∂

) ) )

) ) ) ) )    (25) 

By assuming that y0 = 0, the potential equations for the hole and the trough take similar forms  

(1)2 (1) 2 (1) (1)

2 2

Log[ (x, 0)]Φ (x, 0) Φ (x, 0) Φ (x, 0) 1 0
x y x x

P ⎡ ⎤∂ Σ∂ ∂ ∂
+ + − =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

) ) ))) ) )

) ) ) )    (26) 

and  

(1)2 (0) 2 (0) (0)

2 2

Log[ (x, 0)]Φ (x) Φ (x) Φ (x) 1 0
x y x x

P ⎡ ⎤∂ Σ∂ ∂ ∂
+ + − =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

) ) ))) ) )

) ) ) )  .   (27) 

Adding (26) and (26) and comparing with (25) immediately yields that the bubble potential as the average of 
the trough and the hole potentials 

(1) -1
1 P 0(1) (0)

0
Bubble

x G [ x ] + 1  Σ (q, y ) dq
Φ (x,0) + Φ (x)Φ (x,0) =  = 

2 2

x

⎡ ⎤−⎣ ⎦∫
)

) ) )
) )) )) ) .  (28) 

In general, the bubble potential from a finger structure (23) takes the form 

(1) (0)
BubbleΦ (x, y) = Φ (x, y) g(x, y) + Φ (x) [1 - g(x, y)]

) ) )) ) ) ) ) ) ) ) )   

where the transition function g(x, y) is bounded by 0 and 1 with the limits 

0

0

0 for y << y
g(x, y)  

1 for y >> y
⎧

→ ⎨
⎩

) )
) )

) )         (29) 

and for y0 = 0, g(x,0) = ½.   
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Figure 5.  Electric potentials for a plasma bubble (a) formed by attached a plume to a circular density cavity.   
The numerical solution of the potential equation (b) is approximated by the analytic solutions of the potentials  

for the plume attached to the potential for the cavity (c).  The potential fluctuations at the tip of the  
bubble closely match the analytic dipole potential (d) associated with the plasma hole.   

To illustrate the analytic finger formation, rational polynomial function 

1 b
aG (q)  

1 q
=

+
         (30) 

is used to generate density and potential structures.  The bubble will be formed in a uniform background 
plasma by letting m = 0.  The transition from plume to tip will occur at y = y0 using (21b) to give the analytic 
result 

b b 2
-1 1

Bubble b 2b
1 1 1

2 2 2 2
0 0 0

B 2qa (1 q )Σ (x,y)   exp 2tan sign(a) π  
A A 1 a B q q

where q x y  for y > y  and q x y  for  y < y

⎧ ⎫⎡ ⎤⎛ ⎞− +⎪ ⎪= −⎨ ⎬⎢ ⎥⎜ ⎟ − − +⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= + = +

) )
) )

) )

) )) ) ) ) ) ) ) )

 (31) 
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The electric potential is found from (24) with 
( )Bubble 0b/22 2

x aΦ (x,y) =    for y > y
1 x y+ +

)) ) ) ) )
) )

 and the numerical 

integral of -1
Bubble 0 0

0

1  Σ (q, y ) dq  for y < y
x

⎡ ⎤−⎣ ⎦∫
)

) ) ) .  Figure 5 illustrates the bubble structures for the 

parameters a = -0.9, b = 3, and the normalized y0 = -1.  The hybrid structure of a trough attached to a hole 
yields a realistic description for a plasma bubble (Figure 5a).  Using a numerical solver for the potential 
equation (see Appendix A), the electric potential for the analytic bubble structure is computed and is shown in 
Figure 5b.  The hybrid potential (Figure 5c) agrees very well with the computation in all regions except at the 
interface y = y0 in (23) and (24) where there is a discontinuity in the derivative of the model bubble.  For 
reference, the analytic potential associated with just the tip of the bubble is given in Figure 5d.  It turns out 
that this bubble tip potential is all that is required for computation by the transport equations in the plasma. 

The bubble potential drives the plasma transport to change the density of the plasma.  The incompressible 
continuity equation is given by  

p
p 0

t ⊥

∂Σ
+ ⋅∇ Σ =

∂
v          (32) 

where the plasma velocity is computed from the electric potential using 

0

Φ
B

⊥∇ ×
≡ −

Bv .          (33) 

Normalizations of the potential, derivatives, velocities, and time are given by  
0 Tx

0
Tx 0 Tx 0 0

 B EΦΦ ,  r , , and t =  t
E  r E B  r⊥ ⊥

−
= ∇ = ∇ ≡

− −
vv

)) ))  with the negative sign for the electric field used 

because with downward gravity ETx < 0.  With these normalizations, the continuity and plasma drift velocity 
combined to give the rate of change for the integrated Pederson conductivity  

( )p
p p

0 0

Φ Φ
t B B

⊥
⊥ ⊥ ⊥

∂Σ ∇ ×
= − ⋅ ∇ Σ = ∇ × ∇ Σ ⋅

∂
B B

) )
) ) ))

)      (34) 

The gradient of the potential (i.e. electric field) must be orthogonal to the gradient in the Pederson 
conductivity for the densities to change.  In the trough portion of the plasma bubble, the density gradients are 
aligned with the gradients in the potential (Figure 2) and there will be no change in the plasma density in this 
region where y < y0.  Consequently, the primary driver of evolution for the plasma bubbles is the electric 
potential near the tip of the bubble structures.   
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Figure 6.  Temporal changes in Pedersen conductivity by incompressible transport from the induced 
electric fields.  The (a) numerical, (b) hybrid, and (c) analytical potentials from Figure 5b, c,  

and d, respectively, are used to compute the rate of change for the hybrid bubble  
model shown in Figure 5a.  The analytic potential for a plasma hole fit at  
the tip of the bubble yields a good match to the full numerical solution.   

Figure 6 provides a comparison for the conductivity temporal changes of (34) for the model parameters used 
in Figure 5 for a numerical potential (Appendix A), hybrid analytic potential model (24), and potential for the 
circular portion of the bubble (19b).  All three descriptions of the potential yield a density reduction at the top 
of the bubble because as the bubble rises, the low density portion of the bubble is transported upward.  The 
density increase at the bottom of the density hole also represents a vertical rise.  The transport of the tail 
portion of the bubble does not provide a change in the density or conductivity.  In the case of Figure 6, the 
electric potential from the circular part of the bubble should be scaled up by 1.2 to provide the correct plasma 
convection.   

From this study, it is concluded that it is sufficient to only consider the electric potential associated with the 
top portion of the plasma bubble to compute its temporal evolution.  The potential of the circular portion of 
the bubble is most easily found by fitting a plasma density hole such as given by (21b) and then using the fit 
parameters to describe the potential with the analytic representation of (19b).  This procedure provides the 
basis for the plasma transport algorithm developed in the sections 4 and 5.  This discussion justifies the quasi-
analytic approach illustrated in Figure 1.   

4.0 QUASI-ANALYTIC SOLUTIONS FOR PLASMA TRANSPORT IN A 
DISTURBED IONOSPHERE 

Plasma densities evolve by transport, compression, production and loss.  These processes are contained in the 
continuity equation 
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LP)(n
t
n

−=⋅∇+
∂
∂ v          (35) 

where n is density, P is production and L is loss.  Numerical or analytic solutions to (30) can be based on 
either the Eulerian or the Lagrangean form of the equations [7].  These forms are equivalent except the 
Lagrangean form describes where each bit of fluid cam from originally.  Equation (30) is the Eulerian from of 
the equation of continuity.  The Lagrangean from is derived for the special case of incompressible flow. 

The compressibility of a plasma is given by the term v⋅∇ .  When this term is zero, the plasma is termed 
incompressible.  Using (1) the compressibility of the F-region plasma is found to vanish because 

0/B][B 2
0

2
0 =×∇⋅Φ∇+Φ∇×∇⋅−=×Φ∇⋅−∇=⋅∇ B)()(BB)/(v    (36) 

where a constant B is assumed. 

Expanding (30) with (31) yields the compressionless form of the continuity equation  

LP
Dt
Dnn

t
n

t
n

−=≡⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂

=∇⋅+
∂
∂ vv       (37) 

where Dn/Dt is called the total derivative.  The total derivative of the density moves with a small volume 
element ),,( zyx ∆∆∆ in the velocity field.  During this process a plasma element at (x, y, z) is mapped to 
another location (x’, y’, z’) in an increment of time t∆ .  The incremental mapping equation is given by 

t∆+=′ )(xvxx          (38) 

where the vectors have components x = (x, y, z) and v = (vx, vy, vz).  The derivative form of (33) simplifies 
(32) so that  

t),(
dt
(t)d

t),L(t),P(
dt

t),dn(

xvx

xxx

=

−=
        (29)  

If production and loss are neglected, then the electric fields simply move volume elements of plasma in space 
but the density in each element remains unchanged.  Equations (24) are the Lagrangean form of the continuity 
equation.   

An analytic formulation is developed to describe the equatorial bubbles in terms of a mapping function that 
distorts the ionospheric layer according to the second equation in (24).  The mapping function is usually 
determined with a numerical simulation that calculates the electrostatic E fields as a function of time and 
space as an ionospheric bubble or irregularity is formed in the F-layer.  Substitution of these fields into (1) 
yields the transport velocities and the second equation in (24) can be solved to provide the motion of the 
density coordinates.  The transformation of coordinates by this process is given by  

]xMxxMx 0
1

000 t-t(t),[)(t  and  ]t-t),(t[(t) −==       (30) 
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and, neglecting production and loss, the electron densities are given by 

) t,t-t,[(nt),n( 00
1 ]xMx −=         (31) 

where the map 1M−  transforms the distorted coordinates back to the initial coordinate locations.   

Taking the magnetic field to be aligned with the z-direction, the electron density fluctuations are assumed to 
vary in the 2-dimensional coordinate system (x, y).  The coordinate transform map is given as  

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
)tt,y,(xM
)tt,y,(xM

y(t)
x(t)

000y

000x         (32)  

where y is altitude, x is zonal distance in a flat earth system and (x0, y0) are the initial values for these 
coordinates at time t0.   

The mapping function M(x, y, t) must be one-to-one and invertible and be the identity map where the induced 
electric potential is zero and the plasma densities are unchanged.  Substitution of (1) into (29) yields  

2
0Bdt

(t)d Bx ×Φ∇
−=          (33) 

Assuming uniformity along B in the z-direction, the differential equations governing the coordinated 
transformations are 

x
t)y,Φ(x,

B
1

t
t),y,y(x  and  

y
t)y,Φ(x,

B
1

t
t),y,x(x

0

00

0

00

∂
∂

=
∂

∂
∂

∂
−=

∂
∂

   (34)  

Differentiating (34) by x0 and y0 and using the Poisson’s equation  

)
y
Φ

x
Φ(Φ)(E 2

0

2

2
0

2

∂
∂

+
∂
∂

−=−∇⋅∇=⋅∇        (35) 

yields the equations for the velocities 

Φ−∇=
∂

∂∂∂
−

∂
∂∂∂

∂
∂∂∂

−=
∂

∂∂∂ 2

0000 x
t)y/(

y
t)x/( and 

y
t)y/(

x
t)x/(

    (36) 

The areas between curves of constant x0 and y0 are preserved in the transformation and the trajectories of the 
coordinate transformation follow contours of constant Φ(x,y).  The electric potential is setup by gravity, 
neutral winds and external electric fields.   

Consider the coordinate transformation provided by the analytic potential from (19b) in the previous section  

b
Tx0x

b/22
0

2
0

Tx0x0

r̂1
 Er a x̂

])r(y)r(x[1
 Er a )r(xy)Φ(x,

+
=

++
=  .     (37) 
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where coordinates x̂  and ŷ  are the Cartesian coordinates normalized by a constant scale factor r0 and 
constants ax and b define the shape of the potential.   

The plasma transport velocities are  

2b

b2-b2

2b

2b

)r̂(1
r̂r̂ x̂ b1

t
ŷ

)r̂(1
r̂ ŷ x̂ b

t
x̂

+
+−

=
∂
∂

+
=

∂
∂ −

)

)

         (38) 

where 22

00

Txx ŷx̂r̂  andt  
Br
 Eat +==

)
.   

The maximum upward velocity at the ( x̂  = 0, ŷ = 0) origin is given by 
0

Txx
y0 B

 EaV = , independent of the 

potential shape parameter “b”.  Note that in our example of the downward gravity vector driving the transport, 
the parameter ETx from (6) is less than zero and a value of 0ax <  is required to yield an upward velocity.  The 
parameter ax<0 denotes a density cavity and consequently the center of the cavity is expected to rise against 
gravity.  If the parameter “ax” were greater than zero, the center of the density enhancement would fall as 
expected under the influence of gravity.  For the rest of the discussion, only density cavities will be 
considered.   

The sides of a cavity fall under the influence of gravity.  The minimum downward velocity of 

4b
1)(b V

4b
1)(b 

B
 EaV

2

y0

2
Txx

y1
−

−=
−

−=  is found at 
1/b

1b
1bx̂ ⎟

⎠
⎞

⎜
⎝
⎛

−
+

±=  and ŷ = 0.  The Cartesian coordinate 

system is distorted by the potential inside a conductivity cavity so that the center cells move upward and the 
side cells move downward.   

The analytic model potential with b = 4 was previously illustrated in Figure 3b.  The corresponding vector 
field for the plasma velocities (Figure 6a) shows the central uplift of the plasma.  As a result of this flow, after 
normalized time 1t =

)
 the initially square cells become mapped according to the results shown in Figure 7b.  

The horizontal (red) and vertical (blue) grid lines become distorted by the vortex flow from the potential.  
Note that the area in each plasma cell remains constant during this process.  
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Figure 7.  Computed (a) plasma velocities and (b) mapping of Cartesian coordinates by the analytic 
model for the electric potential shown in Figure 3b.  The longest velocity vector has a magnitude 

B
a Etx and the spatial coordinates are normalized by the scale length r0.  The coordinate map is 

illustrated after the flow velocities flow have operated on the plasma for time  
1

0

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

B r
a Et tx or when normalized time 1=t

)
.   

The primary feature of ionospheric bubbles is that they rise leaving an elongated cavity of reduced plasma 
density often referred to as a “plume”.  As the plume rises, it carries the along electric potential.  Using the 

upward velocity for the potential in (32) of
0

Txx
y0 B

 EaV = , the analytic model for the potential becomes 
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With this potential formula, the plasma drift velocities are found from (34) to be 
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where the time has been normalized by 0y0/rVt t =
)

 and ]y,x[(0)]y (0),x[ 00
)))) =  are the initial conditions at 

time 0tt 0 =≡
))

.  This equation is the base for the quasi-analytic transport for production of ionospheric 
bubbles.  By using this equation, it is assumed that the electric potential shape is totally specified with fixed 
parameters ETx, a, b, and r0.  The only temporal variation of the potential is that it rises with a constant speed 
given by  

0

Txx
y0 B

 EaV = .   

The potential in the trailing portion of the plume is neglected because any vertical flow below the bubble only 
operates on horizontal gradients and, consequently, there is no net plasma transport within this region.   

In the reference frame of the rising potential, tyyp

))) −≡  and the differential equations become 
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The coordinate transformation if found by integrating (41) for )y,x( p
))  with an initial value of )y,x( 00

))  and 

then finding tyy P

))) −=  .  Further simplification is obtained by transforming to spherical coordinates where 

PP Cosθ rx )) =  and PPP θ Sin ry )) =  .  With this substitution, (41) becomes 
 

 

           (42) 
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The coordinate transform starts with an electric potential at altitude 0ty 0 =≡
)) and lets this potential distort 

the coordinates until time 1t
)

when the potential is at altitude 1ty
)) = .  The starting and stopping times and 

altitudes are critical in defining the coordinate distortions.  For describing equatorial bubbles, these starting 
altitude must be transformed to the location where the bubbles starts to form on the bottom side of the 
ionosphere and the stopping altitude yields with the location of the bubble at time y0011 /Vr tt

)
= .  This 

renormalization is described later. 

The properties of this coordinate transform can be examined at the center where 0x̂ =  and (40) simplifies to  
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The solutions of (43) are found from the nonlinear equation  
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The limiting forms for the asymptotic solutions to (44) are  
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Figure 8.  Mapping of the (a) y-axis and (b) a square coordinate grid with a rising potential that starts 
at the origin.  Using equation (34) with b = 4, the coordinates above the initial center of the potential 

are swept into a narrow band that rises with the upward bubble velocity.  The snapshot at 
6=t

)
shows transport of the ionosphere upward at the center and downward at the sides.   

This maps of the coordinate distortions are illustrated in Figure 8 using the potential with index b = 4.  The 
temporal variations in the normalized altitude are given in Figure 8a.  The spatial mapping of the grid at time 

6t =
)

 is shown in Figure 8b.  The ionosphere is nearly undisturbed below the starting altitude ( 0y =) ) of the 
rising electric potential.  The ionosphere is also undisturbed for times ( 0yt ))

< ) when the potential is below the 
undisturbed ionosphere.  As the potential rises, it sweeps up all the coordinates and carries them in a narrow 
layer at just above the center of the potential function where ty

)) = .  This type of coordinate transformation 
can be used to simulate the rising equatorial bubble.  At time 1t

)
the potential rises to be centered at an 

altitude 11 ty
)) = . 
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Figure 9.  Coordinate compression at the top of the plasma bubble.  For the potential parameters  
b = 4, the normalized y) -coordinates are mapped to a thin shell about 0.4 to 0.45  

above the center of the rising potential function located at ty
)) = .   

The horizontal coordinates near the center of the rising potential map to a thin shell centered at the altitude 
ty
)) = .  An approximation to this map is given by the last equation in (45).  The evolution of this coordinate 

“compression” is illustrated in Figure 9 for normalized times between 1t =
)

 and 20 using the parameter b=4 
for the electric potential.  The offset ( ty

)) − ) from the center of the rising bubble increases monotonically but 
slowly as the initial coordinate covers a much larger range.   

The normalized density gradient at the edge of the bubble is 
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 is the coordinate 
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This factor is plotted in Figure 10 with b = 4 for a wide range of times and initial coordinate altitudes.  The 
compression factor increase with time easily attaining values greater than 10 or 100.  With this compression, a 
bottomside ionospheric gradient becomes greatly amplified as the bubble rises.    

 

Figure 10.  Density gradient enhancement factor for the coordinate compression at the top of the 
rising bubble with index b = 4.  The compression becomes enhanced with increases in the 
normalized time t

)
.  Outside the effect of the potential this factor is unity.  This processes  

yields the steepened gradients at the sides of the ionospheric bubble. 

To obtain the electron density or Pedersen conductivity at time ( t
)

), cell coordinates must be obtained for the 
original cell that was transported to the current position.  The model ionospheric bubble is therefore formed by 
operating on a horizontally stratified layer with the inverse of the coordinate transformation defined by (40).  
This inverse may be obtained with by (1) interpolation of the solution to (40) or (2) by reversing time for the 
solution of (35).  Figure 8 shows the location of the coordinates at the current time for each normalized 

starting position ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡

0

0

0

0
00 r

y ,
r
xy ,x )) .  The interpolation process is hampered by the distortion of the 

coordinate density cells.  In the mapping shown by Figure 8b, the square cell with corners at  ( )00 y ,x ))  = (0, 
2), (0.1,2), (0.1, 2.1), and (0, 2.1) are mapped to the elongated region with corners (0, 6.421), (0.1075,4.374), 
(0.1112, 4.443), (0, 6.424) at 6t =

)
.  With linear interpolation, the point ( )y ,x ))  = (0.055, 5.4) inside the 

elongated region is determined to map to the initial position ( )00 y ,x ))  = {0.0505, 2.0364).  This is in error; the 
correct location for this position is ( )00 y ,x ))  = (0.3329, -0.1784).  Beside being prone to error, this technique 
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requires interpolation on a non-uniform mesh or numerical solution for the inverse of interpolation on an a 
uniformly spaced mesh of the coordinate locations at time 0t =

)
.  For good accuracy and ease of 

computation, interpolation or numerical inverse solutions should be avoided.   

Since the electric potential does not evolve with time, the inverse coordinate mapping is easily achieved with 
time reversal.  Consider a cell with location (x1, y1) at time t = t1.  Running time backwards to time t = 0 yields 
its starting point (x0, y0).  If the parameters vy0 and b are constant, the time reversal solution is most easily 
obtained by replacing t

)
 with – t

)
 in (35) through (37).  This process yields the map represented by (31).    

The equations for the inverse coordinate map are 
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     (47) 

The center of the potential function starts at altitude 10 ty
)) =  and then (47) solved as the center of the potential 

falls to an altitude 0y0 =) .  For this reason, the inverse coordinate map equations are integrated from 

1tt
))

−= to 0t =
)

.  The initial conditions for (47) are  

110110 y)(-ty and x)(-tx )))) ==         (48) 

The inverse coordinate map is illustrated in Figure 11 for the initial grid and the distorted inverse grid at 
several times.  This map is used to determine the origin of a coordinate cell and the initial electron density or 
Pedersen conductivity in that cell.  As an example of using this inverse map, the mapping of specific point 
(0.055, 5.4) is directly obtained with (47) to yield the correct initial location (0.3329, -0.1784).   

 
 
 
 
 
 
 
 
 



Quasi-Analytic Models for Density Bubbles  
and Plasma Clouds in the Equatorial Ionosphere 

18 - 28 RTO-MP-IST-056 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 

 
Figure 11.  Inverse coordinate map showing source regions for density gradients. 

No analytic solution to (47) could be found but the numerical solution to the coupled ordinary differential 
equations is fast and efficient using standard explicit methods.  The Lagrangean inverse-map is consequently 
called quasi-analytic because no finite-difference approximations are applied to the spatial (x, y) coordinates 
but discrete steps in the time dependent solutions of (47) is required.  Applying the inverse map to any 
analytical model of a uniform ionosphere can efficiently provide the density at any point in space and time 
that can be obtained without the use of interpolation or the numerical solution of two-dimensional partial 
differential equations. 

As an example, the inverse coordinate map is applied to an F-layer described by the following formula for a 
modified Chapman layer. 
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The parameters Ne0, HP, H0, H01, H02 and H1 control the shape of the layer.  The analytic simulation uses peak 
density Ne0 = 106 cm-3, peak altitude HP = 400 km, bottom-side scale height H01 = 20 km, top-side scale height 
H02 = 50 km, and transition scale H1 = 10 km.  This simple layer model has a steep bottomside representative 
of the equatorial ionosphere.  The conversion from normalized coordinates is c00 yr yy += ) where yc0 is the 
starting altitude of the electric potential at time t = 0.   

 
Figure 12.  Simulation of a bubble formed in the ionosphere using a simple formulation  

for the electric potential.  The parameters for the model are b=4, and r0 = 30 km.   
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Applying the inverse coordinate transformation (47) to the ionospheric profile yields the bubble evolution 
illustrated in Figure 12.  The coordinate distances are determined using a scaling factor r0 = 30 km and the 
potential function rises through the layer starting at yc0 = 370 km altitude.  The potential function index is 
arbitrarily set to b = 4 for this example.  The normalized time coordinate )r /(B Eat /rVt t 0Txx0y0 ==

)
 is 

used because the parameter “ax has yet to be specified.  The allowable values for a were previously given after 

(19) as 0a
1)(b

4b
2 <<

−
−

 .  With a larger value of parameter “ax ETx”, the vertical velocity of the bubble 

increases and the absolute time (t) in the simulation is reduced for a fixed normalized time.  Figure 12 
illustrates that the analytic model using the rising potential yields a quasi-analytic solution that resembles 
numerical solutions requiring much more computation time.   

 

Figure 13.  Effect of electric potential index b on the model ionospheric  
bubble.  The normalized time for each solution is 3.75t =

)
.     

Whereas the parameter “ax” controls the bubble rise rate, the “b” determines the size of the bubble.  The 
parameter “b” may have any value greater than unity.  Larger values of b yield electric potentials with larger 
gradients at the edges.  Increasing b increases the region affected by the electric potential.  Figure 13 
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illustrates the ionospheric bubble for several values of this index.  Values of the potential index in the range 2 
< b < 4 seem to yield reasonable descriptions of the rising ionospheric bubble.   

5.0 BUBBLE TILTS AND AMBIENT SHEAR FLOW 

Both observations and numerical computations [8] have demonstrated that neutral winds can tilt the 
ionospheric plumes off vertical.  When acted on by a zonal neutral wind Ux, a vertical electric field Ey is 
produce by interactions with the background electron density (or Pedersen conductivity).   Also, a perturbation 
electric field ETy is produced by polarization of the plasma density bubble by the neutral wind.  These two 
processes work simultaneously to affect the tilt the bubbles.  First, the background neutral wind induces large 
scale plasma motions in the zonal, eastward direction.  The shear in this large-scale plasma drift will cause the 
regions of lower background Pedersen conductivity to lag behind the regions of maximum Pedersen 
conductivity.  Second, polarization of the ionospheric bubbles by the neutral wind, which moves faster than 
the bulk motion of the plasma, will produce horizontal motion that will cause the density depletions to move 
in the opposite direction of the neutral wind relative to the bulk plasma drift.  This is a well known property of 
plasma holes as they respond to neutral winds [2].  Both of these processes are easily incorporated in the 
quasi-analytic bubble model.   

Vertical gradients in the background density yield vertical gradients in the induced electric field and vertical 
shears in the horizontal plasma drifts produced by these fields.  This process is captured in (2) assuming that 
the vertical currents vanish with the result 

0 ]BU[EJ P0xyy =−= σ         (50) 

The field line is divided into the F-region where the wind is uniform and the E-region where the neutral wind 
will assume to vanish [8].    Calling the integrated Pedersen conductivity in these two regions 

EF Σ and Σ respectively, the vertical electric field profile is given by  

y
Φ

(y)ΣΣ
(y)Σ BU(y)E 0

FE

F0x
y ∂

∂
−≡

+
=         (51) 

where Φ0 is the polarization potential of the background plasma.   

The resulting plasma velocity is given by (24) with the result 
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Σ)y(f)(y/rf
0F

E
0 == )))

.       (53) 

This is the horizontal velocity of the plasma in which the bubble is imbedded.  Usually the wind shear 
variation is small compared to the average bulk motion.   
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In normalized coordinates, this wind shear equation for the background horizontal motion becomes  
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    (54) 

Integration of (49) yields the simple coordinate map from this large scale plasma motion 

 

)y(V tx td )y(V)t(x xS0xS
))))))))) +== ∫        (55) 

where x0 is the initial coordinate at time 0t =
)

. 

 

Figure 14.  Profiles from neutral atmosphere and electron density models used for  
the sample computations of electric polarization that tilts the equatorial bubbles.   
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Figure 15.  Model profiles of field-line integrated Pedersen conductivity, uniform neutral wind,  
large-scale horizontal plasma drifts, and horizontal wind relative to the drifting plasma.   

If the E-region Pedersen conductivity is zero, then the plasma will move horizontally with the neutral wind 
speed Ux.  A finite EΣ  coupled with vertical shears in the F-region Pedersen conductivity gives a shear 
structure to the horizontal plasma motion.  The tilts of the equatorial plume structures will be computed using 
the Lagrangean approach to the plasma transport with both imbedded potential given by (39) and the large 
scale distortions described by (55).   

As an example of this wind induced shear in the horizontal plasma drift, a uniform neutral with Ux = 100 m/s 
was used to polarized the plasma layer given by (49) with a peak density of 106 cm-3.  The model neutral 
atmosphere and electron density profiles illustrated in Figure 14 are used to derive the equatorial profile of the 
field-line integrated Pedersen conductivity shown in Figure 15.  A dipole magnetic field model of the form  
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is used for the magnetic field lines where H0 =-0.311 10-5 Tesla.  Figure 16 illustrates the distortion of a square 
mesh using the coordinate transform defined by (52).  Application of this transform after the transform 
illustrated in Figure 8 will tilt the bubble to the left (west) side of the simulation.  The simulation for Figure 16 
used a fixed E-region conductivity ΣE that was one-tenth the maximum value of the F-layer Pedersen 
conductivity ΣF .   

 
Figure 16.  Horizontal coordinate distortion by wind induced  

plasma shear flow after 500 seconds of plasma motion.   

The rising bubble will be caught in the sheared plasma flow to provide a tilt to the bubble.  To model this tilt, 
the quasi-analytic transport model will be modified assuming that the bubble follows a trajectory that is a 
combination of the vertical rise velocity Vy0 and the horizontal shear velocity given by (52).  The equations 
for the trajectory of the center (xc, yc) of the bubble is 
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       (57) 

Assuming that the bubble starts to form at the initial location (x, y) = (0, yc0), then the solution of (57) 
becomes 

∫ ′′+=+=
t

0
y0c0Sxcy0c0c td )tV(yVx  andt  Vyy       (58) 
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In normalized coordinates this solution for the center trajectory of the bubble becomes 

∫==
t

0
xScc τd )τ(Vx  and  ty

)

))))))          (59) 

where distance is normalized by r0, velocities are normalized by Vy0 and time is normalized by r0/Vy0 as 
before.  

The simple coordinate map (57) neglects horizontal flow from internal polarization of the bubble.  This flow 
is the result of vertical polarization fields generated by polarization of the bubble structure by the neutral 
wind.  This process has been described in Section II except that, along with vertical gravitational acceleration, 
the horizontal neutral wind induces an electric potential that causes horizontal motion of the bubble center.  
From (6), the vector electric field from these forces is 

T
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0 )
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( EBgUE −≡×++         (60) 

The horizontal neutral wind in the rest frame of the plasma bubble is Ux – Vx0 where Vx0 is the horizontal 
velocity of the center of the bubble.  The electric field associated with this neutral wind in this frame is  

y )BV(Uy E 0x0xTy
)) −≡         (61) 

by the definition in (60).  In the rest frame of the plasma, the relative velocity of the electric potential at 
altitude y = yc , 
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where Φ1 is the potential from internal polarization.   

The response of the plasma to this drive field is dependent on the physical structure of the bubble.  For the 
tilted bubble model with internal polarization, a single parameter scaling of the ambient drifts is used.  The 
horizontal drift velocity of the bubble center is assumed to have the form  

xRxSxSyx0 VVV )a1((y)V +=−= with xSyxR Va V −=       (63) 

where ya  is a constant analogous to ax used in the previous section to determine the bubble rise rate from 
gravity.  The parameter ay determines the bubble velocity in a rest frame of the background plasma.   

The wind and plasma drift profiles in Figure 15 illustrate this polarization effect.  Figure 15b shows that, near 
the peak, the relative wind in the plasma rest frame is about 10% of the total plasma drift.  The parameter ay 
controls the relative velocity of the bubble in the background plasma.  If ay = 0, the bubble drifts with the 
background plasma as if there were on internal polarization of the bubble.  If ay = 1, the background horizontal 
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plasma drift cancels the wind-induced relative motion produced by the polarization fields inside the bubble 
giving Vx0 = 0 and VxR = -VxS.  In normalized coordinates (63) becomes  

xRxSxSy
y0

x0
x0 VVV)a1(

V
VV

))))
+=−== .       (64) 

Using the definition of  

xSxRy /VVa −=           (65)   

where VxR is the measured bubble velocity relative to the background plasma drive VxS . 

The technique for bubble modeling is based on the motion of the analytic electric potential along a trajectory.  
The tilted bubble rises along the path defined by the velocity yxV0

((
y0x0 VV += .  With both background drift 

and internal plasma motion, the dynamics of the center of the plasma bubble potential are given by  
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with the initial conditions ]   y0, [  (0)]y(0),[x c0cc =  .   

For the tilted bubble model, the internal horizontal and vertical electric fields are considered along with of the 
overall motion of the background plasma.  With the internal field assumption, the analytical potential function 
becomes 
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which is identical to (39) with Φ0, VxR and xc equal to zero.  The induced plasma bubble velocity in the 
horizontal direction is  
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x0 VV
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1V +=

∂
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−=         (68) 

at the position (t)xx c=  and tVyy y0c0 += .  The added variables tilt the electric potential off vertical so that 
the head of the bubble can flow against the ambient drift of the background plasma.  

The coordinate shift (t)xxx cp −=  and tVyyy y0c0p −−=  translates the potential into the reference frame 
of the bubble center with the result 
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where 2
p

2
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2
p yxr +=  . 

The potential function given by (65) is substituted into the Lagrangean transport equations  
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The resulting coordinate mapping equations for the rising potential in sheared plasma flow is  
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incorporating both internal and external forces on the bubble. 

In normalized coordinates, the transport equations become  
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where once again distance is normalized by r0, velocity is normalized by Vy0, and time is normalized by the 
quatntity r0/Vy0 .  The velocity functions are all related to the normalized plasma shear by the parameter ay 
with )y(V )/ay(V )a /(1)y(V xSyxRyx0

))))) =−=−  .   

Before computing the coordinate mapping, the trajectory of the center of the potential function (xc, yc) is 
found by solving the first ordinary differential equation in (71) or (72).  For this calculation and all the follow, 
the shear velocity shown in Figure 16 was used in (66) with a several values of ay.  Figure 17 illustrates the 
model results for the motion of bubble center as a function of the parameter ay.  With ay = 0 the potential will 
rise and drift east reaching a maximum distance on the topside where the wind induced drift vanishes.   As the 
parameter ay is increased toward unity, the internal polarization of the bubble inhibits its horizontal motion in 
the background plasma flow.   
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Figure 17.  Curves of the trajectory for the analytic potential function used to create the equatorial 
bubble.  With parameter ay = 0, the internal polarization of the bubble is neglected and the potential 
function is transported by the full action of the plasma shear.  As ay is increased, the zonal motion 

of the center of the bubble potential is reduced.  With ay = 1, the internal polarization at  
the head of the bubble completely cancels the plasma drift of the ambient layer. 

To illustrate the results from these coordinate-mapping equations, the parameter ay is set to one-tenth so the 
potential function moves horizontally with the ambient plasma flow at each altitude and is slightly retarded by 
internal polarization.  When ay = 0.1, then VxR(y) = VxS/10, Vx0 = 9 VxS/10.  The initial conditions for the 
coordinate map are ]y,x [0,(0)]y (0),x (0),x[ 00c

))))) =  at 0t =
)

.  All of the results are displayed in normalized 
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coordinates.  The normalization parameters r0 = 30 km, and vy0 = 100 m/s can be used to translate the 
solutions back to physical space.  The bubble moves with the vertical rise velocity from internal electric fields 
set up by gravity.  By setting the internal polarization parameter ay nearly to zero, the horizontal motion is 
primarily with the background plasma but there is a small retardation from the internal fields.  The shear 
function was put into normalized form from the physics coordinates using the definition 0c0 )/ry-(yy =)  
where yc0 = 370 km.  With the parameter b = 4, the ordinary differential equations given in (67) are integrated 
in time to yield the quasi-analytic solutions for the Lagrangean coordinate distortions shown in Figure 18.  
The center of the potential function as derived from the first equation in (72) is shown by the green curve in 
each figure.  The plume structure below the top of the bubble becomes caught up in the ambient flow to from 
a backwards “C”.  The successive images in Figure 18 are normalized shown for normalized times of 2, 4, and 
6.  Using the normalization factor r0/Vy0 = 300 seconds, the absolute times for the tilted bubble coordinate 
maps are (a) 600, (b) 1200, and (c) 1800 seconds.   

 
Figure 18  Coordinate map for distortions from a rising (b = 4) bubble in a sheared background 

plasma flow.  The green line shows the trajectory of the center of the bubble with ay = 0.1.   
The plume becomes curved as it is caught in the ambient plasma flow. 

The coordinate transform equations in (72) yield the normalized, destination coordinates )]t(y ),t(x[
))))  from the 

given initial coordinates ]y,x[ 00
)) .  To determine a mapped density at a given location, the time-inverse 

transformation to determine the initial coordinates for a coordinate cell that is transported to a given location.  
This inverse transform has already been discussed in the previous section for bubbles with out tilts.  This 
inverse map are obtained by replacing t with –t in (72). The center of the potential function starts at location 

)t(xx 1c0

)) =  and 10 ty
)) = .   
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The solution for the inverse coordinate transform proceeds in two steps.  First, the initial equation in (72) is 
solved to yield the function xc(t) for the horizontal displacement of the bubble potential function.  Next, the 
system given by (68) is integrated as the potential follows a trajectory )]t(y ),t(x[ cc

))))  to end at the origin of 
the normalized coordinate system where 0x0 =)  and 0y0 =) .  The curves in Figure 17 show the 

)]t(y ),t(x[ cc

))))  trajectories as a function of the internal polarization factor ay.  As previously discussed with 

(47), the inverse coordinate map equations are integrated from 1tt
))

−= to 0t =
)

.  The initial conditions for (72) 
are  

110110 y)(-ty and x)(-tx )))) ==         (73) 

 

 

Figure 19  Computed examples of (a) inverse coordinate map at 4t =
)

and (b) corresponding 
ionospheric bubble densities at t = 1200 seconds for the electric potential moving through  

a sheared plasma with small internal polarization (ay = 0.1).  The parameters for the  
simulation are identical to those used to generate Figure 12 which can be used for  

comparison to illustrate the effects of the zonal wind on tilting the bubble.   

The inverse coordinate map for the rising bubble the sheared plasma flow is illustrated in Figure 19a in 
normalized coordinates at the normalized time 4t =

)
.  This coordinate map presents the origin of the plasma 
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cells that have been transported to the west by the wind induced horizontal transport and the gravity induced 
vertical transport.  The parameter ay is set to zero so the horizontal transport by internal polarization of the 
equatorial bubble is neglected.   

When the inverse coordinate map is applied to the background plasma layer, the electron densities are to form 
the tilted plume structure in Figure 19b.  The depletion at the center of the bubble is the result of 
incompressible convection from the bottom to the topside of the layer.  In this model, the reduced density 
channel extends over 100 km down though the layer to the bottom of the F-region.  The absolute spatial 
dimensions are derived using a scale length r0 = 30 km and a base height yc0 = 370 km.  As with Figure 17, the 
time normalization factor is 300 seconds.  

6.0 NORMALIZATION IN THE ANALYTIC MODELS OF THE DISTURBED 
IONOSPHERE 

In the simulations of the previous three sections, the electric potential was fixed as it rose through the plasma 
layer forming bubble structures.  The next step in the quasi-analytic modeling is to adjust the model 
parameters to make the computed electron density consistent with the electric potential.  The appropriate 
values of both parameters (ax and b) are obtained by comparing the analytic solutions given in (19) with the 
quasi-analytic solutions obtained by compressing the F-layer coordinates using (47) for an untilted bubble or 
(71) for a plume with internal polarization and plasma shear flow.   

The vertical bubble motion comes from polarization of the horizontal density gradients.  The horizontal 
Pedersen conductivity from (21b) though the center of the electric potential is given by  
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where ]1)a(ba[4bA 2
1 −+−= and 21)a(bB1 −−−=  and 2x |x| )) = .  Assume that the electron density 

at the equator is directly proportional to the integrated Pedersen conductivity.  In absolute coordinates, the 
analytic model for the horizontal electron density profile through the center of the bubble is 
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where (t)xx c−=px  is the horizontal distance relative to the center of the potential function and {xc(t), 
yc(t)} is the location of this center.  The corresponding electric potential is 
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where ax(t), b(t), R1(t), and C1(t) are parameters that will be allowed to vary with time as the bubble evolves.  
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The bubble rise velocity  
0

Txx
y0 B

 E(t)a(t)V =  and the bubble retardation velocity xSyxR Va V = have been 

defined in the previous sections.  The electric potential follows a trajectory given by  
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With this trajectory, the Lagrangean coordinate map    
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is again used to determine the distortion of the plasma layer.  The normalization procedure fits the function 
given by (73) to the densities determined using the Lagrangean transport given by (77) as applied to the 
stratified plasma profile.   

Tests of the normalization procedure has demonstrated that the numerical value for the temporal 
normalization constant )r /(B Ea 00Txx  is equal to approximately 70% of the calculated growth rate 

N0Tx )/L/BE(γ −= of the instability so that the parameter ratio 7.0/L/ar  Nx0 ≈− .  The recommended 
procedure for providing reasonable models of equatorial bubbles is to first choose a scale length r0 that 
matches the dimension of the “seed” needed to produce the bubble.  Second, select the potential amplitude 

using the simple expression N0x /Lr  0.7 a −≈  where 
y

Ne(y)Ne(y)/LN ∂
∂

=  is the initial scale length of the 

bottomside of the background ionosphere. 

7.0 CONCLUSIONS 
At this point, all the steps outlined in Figure 1b have been completed and the densities for the ionospheric 
bubble can be computed with relative ease.  The only numerical computation is a solution of the ordinary 
differential equations (72) which are applied to the model of the unperturbed ionosphere.  Physics based 
simulations of equatorial plumes can be computed with relatively high speed using a simple form for the 
electric potential that has 4 parameters that are adjusted based on numerical model fits to the electron density 
at each time step.  This fit procedure occurs only at the altitude of the center of the bubble potential function.  
The spatial and temporal scales for the simulations are all normalized with a constant r0.  The Lagrangean 
Map can be applied to a wide variety of ionospheres.  This flexibility allows the generation of a wide range 
equatorial bubbles without complete re-computation of the densities.  The examples have illustrated the 
integrated Pedersen conductivities plotted at the equatorial plane.  The densities along the magnetic field lines 
may be obtained by solving for one-dimensional field-aligned diffusion of the plasma as they are transported 
by the bubble electric fields.   

The formulas described here provide the electron densities that can be used for a wide range of ionospheric 
applications including ray path propagation, diffraction screen formation, radar and navigation error 
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estimation, and communications systems effects prediction.  The major use of this model is to predict 
observations from new sensors launched into space.  The results of this model have been predictions of the 
signature of equatorial bubbles on GPS occultation receivers in low-earth orbit (LEO) [3] and the phase and 
amplitude scintillations that would be recorded from ground-to-space propagation from UHF beacons to LEO 
satellites [4].  A secondary use of this formulation is to provide incite into the formation of equatorial bubbles.  
The analytic formulation has shown that (1) a continuous range of electron density structures will yield the 
same electric potential distribution, and (2) the electric potential that contributes to the evolution of the bubble 
is concentrated near the head.  Future research using this technique will examine the triggering of bubbles 
using initial distributions shown in Figure 4 and bifurcations of bubbles where the single potential function is 
analytically split into a pair of potentials.   

APPENDIX A.  NUMERICAL SOLUTION OF THE POTENTIAL EQUATION 
USING A DIRECT SOLVER.   

 
Numerical solutions are required when conditions of simplified geometries or uniform flows yield a 
complicated, nonlinear partial differential equation for the electric potential.  In Cartesian coordinates, the 
non-separable elliptic equation that describes the electric potential is given by (7) and is repeated in equivalent 
form here 
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The conductivity function )y ,x(ΣP
))  is known and the potential function )y ,x(Φ )))

 is found as a numerical 
solution to the equation (A1).  

This equation is converted into a set of linear equations using the usual finite difference approximations to the 
derivatives given by  
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The Pedersen conductivity is sampled in the uniform solution grid spaced by ∆x and ∆y to form the array 
variables ji, PΣ with (i=1,2, …, M) and (j=1, 2, …, N).  To complete the solution, boundary conditions of 
periodic, fixed/Dirichlet, derivative/Neumann or mixed form are provided.   
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The unknowns ji,Φ
)

 for (i=1,2, …, M) and (j=1, 2, …, N) are grouped into linear arrays given by 

]Φ  ...  [Φ jM,j1,j =X          (A3) 

The resulting linear system can be written as an extended tri-diagonal matrix  
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where the M x M block matrices jjj CBA  and , ,  are functions of the finite difference parameters and the 

Pedersen conductivity samples ji, PΣ .  The matrices A1 and D1 are needed for periodic boundaries in the y-
direction.  The string of matrices [D1, D2, D3, …, DN-1, DN] allow inclusion of an additional condition on the 
potential such as  

∫∫ = 0yd xd )y ,x(Φ )))))
 .         (A6)   

This condition arises when the addition of a constant to a solution also yields solution.  The nonuniqueness 
occurs if the boundary conditions are completely periodic and/or specified by constant derivatives (i.e., 
Neumann).  With these types of boundary conditions, (A6) prevents the square matrix in (A5) from being 
singular and a numerical solution can be obtained.  Finally, the right side of (A1) and boundary conditions are 
contained in the linear arrays Yj .  

The algorithm for solving (A5) is a generalization of the Thomas Algorithm for scalar tridiagonal systems [5].  
Initialize with new matrix variables     

111112111
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Continue with the equations  

1i1-i1i1-iiiii
-1

iiii1-i1-ii bAαb  ],SA[YαS  ,]aA-[Bα  ,Cαa −⋅⋅−=−⋅=⋅=⋅=   (A8) 

for the index in the range 1N, ... 2,i −= .  The next operations define a new set of variables starting with 
Ib  0,S NN =′=′ , where I is the M x M identity matrix, and continue with  

1iN1iNiNiN1iN1iNiNiN babb  ,SaSS +−+−−−+−+−−− ′−=′′−=′      (A9) 
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for the index “i” in the range 1N, ... 1,i −= .  The solution for j = N is given by  
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The remaining solution vectors are found from  

Niii XbSX ⋅′+′=          (A11) 

where the index “i” is given by the range 1N, ... 1,i −= .  This algorithm was used to provide the numerical 
potential solutions illustrated in Figure 5 and the data given in Tables II and III. 
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