

NORTH ATLANTIC TREATY
ORGANISATION

 RESEARCH AND TECHNOLOGY
ORGANISATION

AC/323(IST-064)TP/256 www.rto.nato.int

RTO MEETING PROCEEDINGS MP-IST-064

Building Robust Systems
with Fallible Construction
(Bâtir des systèmes sûrs à partir

de constructions faillibles)

This Report documents the material presented at the IST-064/RWS-011

Workshop held in Prague, Czech Republic, 9-10 November 2006.

Published May 2009

 Distribution and Availability on Back Cover

http://www.rto.nato.int/

NORTH ATLANTIC TREATY
ORGANISATION

 RESEARCH AND TECHNOLOGY
ORGANISATION

AC/323(IST-064)TP/256 www.rto.nato.int

RTO MEETING PROCEEDINGS MP-IST-064

Building Robust Systems
with Fallible Construction
(Bâtir des systèmes sûrs à partir

de constructions faillibles)

This Report documents the material presented at the IST-064/RWS-011

Workshop held in Prague, Czech Republic, 9-10 November 2006.

http://www.rto.nato.int/

ii RTO-MP-IST-064

The Research and Technology
Organisation (RTO) of NATO

RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote
co-operative research and information exchange. The objective is to support the development and effective use of
national defence research and technology and to meet the military needs of the Alliance, to maintain a technological
lead, and to provide advice to NATO and national decision makers. The RTO performs its mission with the support of an
extensive network of national experts. It also ensures effective co-ordination with other NATO bodies involved in R&T
activities.

RTO reports both to the Military Committee of NATO and to the Conference of National Armament Directors.
It comprises a Research and Technology Board (RTB) as the highest level of national representation and the Research
and Technology Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to
facilitate contacts with the military users and other NATO activities, a small part of the RTA staff is located in NATO
Headquarters in Brussels. The Brussels staff also co-ordinates RTO’s co-operation with nations in Middle and Eastern
Europe, to which RTO attaches particular importance especially as working together in the field of research is one of the
more promising areas of co-operation.

The total spectrum of R&T activities is covered by the following 7 bodies:
• AVT Applied Vehicle Technology Panel
• HFM Human Factors and Medicine Panel
• IST Information Systems Technology Panel
• NMSG NATO Modelling and Simulation Group
• SAS System Analysis and Studies Panel
• SCI Systems Concepts and Integration Panel

• SET Sensors and Electronics Technology Panel

These bodies are made up of national representatives as well as generally recognised ‘world class’ scientists. They also
provide a communication link to military users and other NATO bodies. RTO’s scientific and technological work is
carried out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams can
organise workshops, symposia, field trials, lecture series and training courses. An important function of these Technical
Teams is to ensure the continuity of the expert networks.

RTO builds upon earlier co-operation in defence research and technology as set-up under the Advisory Group for
Aerospace Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share
common roots in that they were both established at the initiative of Dr Theodore von Kármán, a leading aerospace
scientist, who early on recognised the importance of scientific support for the Allied Armed Forces. RTO is capitalising
on these common roots in order to provide the Alliance and the NATO nations with a strong scientific and technological
basis that will guarantee a solid base for the future.

The content of this publication has been reproduced
directly from material supplied by RTO or the authors.

Published May 2009

Copyright © RTO/NATO 2009
All Rights Reserved

ISBN 978-92-837-0081-4

Single copies of this publication or of a part of it may be made for individual use only. The approval of the RTA
Information Management Systems Branch is required for more than one copy to be made or an extract included in
another publication. Requests to do so should be sent to the address on the back cover.

RTO-MP-IST-064 iii

Table of Contents

 Page

List of Participants v

Executive Summary and Synthèse ES-1

Chapter 1 – Introduction and Motivation 1-1
 (by W. Morven Gentleman)

Chapter 2 – Positions
2.1 Architectural Support for Integration in Distributed Reactive Systems 2.1-1

(by Maarten Boasson)
2.2 Component Architecture Framework – An Approach to the Enterprise Architecture 2.2-1

Development in a Risk Environment
(by Tomas Feglar)

2.3 High-Availability Solutions to Common Software Failures 2.3-1
(by Frédéric Michaud and Frédéric Painchaud)

2.4 A Looming Fault Tolerance Software Crisis? 2.4-1
(by Alexander Romanovsky)

2.5 Strategies for Achieving Robustness in Coalitions of Systems 2.5-1
(by Mary Shaw)

Chapter 3 – Slides
3.1 NATO Workshop Prague 2006 3.1-1

(by Maarten Boasson)
3.2 SaGE, an Exception Handling System for Message-Oriented Programming 3.2-1

(by Christophe Dony)
3.3 Service-Oriented Architecture (SOA) Robustness: The Road Ahead 3.3-1

(by Tomas Feglar)
3.4 Strategies for Achieving Dependability in Coalitions of Systems 3.4-1

(by Mary Shaw)
3.5 Closed-Loop Management Patterns 3.5-1

(by Joe Sventek)

Chapter 4 – Papers
4.0 Service-Oriented Architecture (SOA) Robustness: The Road Ahead 4-1

(by Tomas Feglar)

Chapter 5 – Discussion
5.0 Minutes of the NATO RTO Workshop on “Building Robust Systems from Fallible 5-1

Construction”
(by Yves van de Vijver)

iv RTO-MP-IST-064

Chapter 6 – Unresolved Challenges
6.0 Future Work 6-1

(by W. Morven Gentleman)

Chapter 7 – Conclusions and Recommendations 7-1
 (by W. Morven Gentleman)

RTO-MP-IST-064 v

List of Participants

CANADA
W. Morven GENTLEMAN
Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia B3H 4R2
Email: Morven.Gentleman@dal.ca
Professor – Task Team Chair

Frédéric PAINCHAUD
Knowledge & Information Management
Defence Research and Development Canada
2459 boul. Pie-XI Nord
Val-Bélair, Québec G3J 1X5
Email: Frederic.Painchaud@drdc-rddc.gc.ca
Defence Scientist – Expertise: Defence Systems

CZECH REPUBLIC
Tomas FEGLAR
Vondrousova 1199
163 00 Prague 6
Email: feglar@centrum.cz
Computer Science Consultant – Expertise: Process Integration and Systems Engineering

Milan SNAJDER
Military Technology Institute of Air Force
VTULaPVO
Mladoboleslavska 944
197 21 Prague 97
Email: milan.snajder@vtui.cz
Professor – Task Team Member

FRANCE
Christophe DONY
Université de Montpellier
LIRMM
161 rue Ada
34392 Montpellier Cedex 5
Email: dony@lirmm.fr
Researcher – Expertise: Exception Handling

NETHERLANDS
Maarten BOASSON
Faculty of Science
University of Amsterdam
Kruislaan 404
1098 SM Amsterdam
Email: boasson@science.uva.nl
Consultant – Expertise: Software Architecture for Distributed Applications

mailto:Morven.Gentleman@dal.ca
mailto:Frederic.Painchaud@drdc-rddc.gc.ca
mailto:feglar@centrum.cz
mailto:milan.snajder@vtui.cz
mailto:dony@lirmm.fr
mailto:boasson@science.uva.nl

vi RTO-MP-IST-064

NETHERLANDS (cont’d)
Yves VAN DE VIJVER
National Aerospace Laboratory (NLR)
Anthony Fokkerweg 2
PO Box 90502
1006 BM Amsterdam
Email: vyver@nlr.nl
Engineer – Task Team Member

UNITED KINGDOM
Alexander ROMANOVSKY
School of Computer Science
The University of Newcastle-upon-Tyne
Newcastle-upon-Tyne, NE1 7RU
Email: alexander.romanovsky@ncl.ac.uk
Professor – Expertise: Software Fault Tolerance

Joe SVENTEK
Department of Computing Science
University of Glasgow
17 Lilybank Gardens
Glasgow, Scotland G12 8RZ
Email: joe@dcs.gla.ac.uk
Professor of Communications Systems – Expertise: Self Managed Systems and Networks

UNITED STATES
Mary SHAW
Institute for Software Research International
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891
Email: mary.shaw@cmu.edu
A.J. Perlis Professor – Expertise: Software Architecture

mailto:vyver@nlr.nl
mailto:alexander.romanovsky@ncl.ac.uk
mailto:joe@dcs.gla.ac.uk
mailto:mary.shaw@cmu.edu

RTO-MP-IST-064 ES - 1

Building Robust Systems with Fallible Construction
(RTO-MP-IST-064)

Executive Summary
Today’s NATO military commanders depend on large, complex software systems that must be more
predictable and trustworthy than traditional development methods can deliver for the available time and
cost investments. This requirement is not quite compatible with the traditional software development that
is prevalent in today’s military acquisition methods. Today’s systems are typically integrated from
components that may themselves contain flaws, originating in specification, design or implementation
errors, or in miscommunication between different teams involved in the development. “System of
Systems”, where components are systems in and of themselves, are a significant factor. More seriously,
the integration process itself may be flawed. This situation can arise in the NATO context, for instance,
when coalitions are formed quickly, and complex systems must be integrated from subsystems supplied by
different nations.

The workshop was organized to review past and present understanding of the challenge, as well as
examining relevant approaches to address them. Rather than an exchange of pre-prepared material,
the workshop was intended as a working meeting with a goal of producing a deliverable that is a summary
of the state of the art.

The workshop topic is related to Software Fault Tolerance, a topic that has been studied at least since
1970. Worldwide much has been learned about how to address those problems, as they were understood at
the time. However changes in perspective as to what constitute the challenges, and changes in available
and commonplace technology, have led to a need to go beyond conclusions reached in the past.

The proceedings include position statements from the participants, slides from the presentations made by
the participants, and the one complete paper that was submitted. Minutes of the discussions provide
insight into how the deliverable, the final report of task group IST-047/RTG-019, was shaped.

ES - 2 RTO-MP-IST-064

Bâtir des systèmes sûrs à partir
de constructions faillibles

(RTO-MP-IST-064)

Synthèse
Aujourd’hui, les commandants militaires de l’OTAN sont tributaires de systèmes logiciels importants et
complexes qui doivent être plus prévisibles et dignes de confiance que ce que peuvent produire les méthodes
de développement traditionnelles compte tenu du temps disponible et des coûts d’investissement.
Ces impératifs ne sont pas vraiment compatibles avec le développement traditionnel des logiciels qui prévaut
actuellement dans les méthodes militaires d’acquisition. Actuellement, les systèmes sont en général intégrés
à partir de composants qui peuvent contenir des imperfections provenant des spécifications, d’erreurs de
fabrication ou de mise en œuvre, ou d’une mauvaise communication entre les différentes équipes impliquées
dans le développement. Les « systèmes de systèmes », dont les composants sont eux-mêmes des systèmes
dans le système en sont un élément significatif. Plus sérieusement, le processus d’intégration peut être
lui-même défectueux. Cette situation peut advenir dans un cadre OTAN, par exemple quand les coalitions
sont formées rapidement et quand des systèmes complexes doivent être intégrés à partir de sous-systèmes
fournis par différentes nations.

L’atelier a été organisé pour passer en revue les façons passées et présentes d’appréhender les enjeux mais
aussi pour examiner les approches pertinentes pour les aborder. Plutôt que d’échanger des éléments
préparés à l’avance, l’atelier a été voulu comme une réunion de travail avec pour but de produire un
résumé de ce qu’est l’état de l’art dans le domaine.

Le thème de l’atelier concernait la limite de tolérance acceptable aux défauts des logiciels, sujet étudié
depuis au moins 1970. Dans le monde entier, on a beaucoup appris sur la façon de traiter ces problèmes,
tels qu’on les appréhendait à l’époque. Cependant, les changements de perspective sur ce qui constitue les
enjeux et les évolutions de la technologie disponible courante, ont rendu nécessaire d’aller au delà des
conclusions retenues par le passé.

Les rapports contiennent l’exposé des positions des participants, les diapositives des présentations faites par
ces participants et le document complet unique qui a été proposé. Les minutes des débats donnent une vision
interne de la façon dont le produit délivré, compte-rendu final du groupe opérationnel IST-047/RTG-019 a
été élaboré.

RTO-MP-IST-064 1 - 1

Chapter 1 – Introduction and Motivation

W. Morven Gentleman
Professor

Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia

CANADA

Morven.Gentleman@dal.ca

Today’s NATO military systems depend on large, complex software with the need to be built and
deployed more rapidly and cheaper than traditional development methods can deliver. Moreover, because
military commanders depend on these systems, they must be more predictable and trustworthy than
traditional development methods can deliver for the available time and cost investments. However this
requirement is not quite compatible with the traditional project-oriented view of software development,
which is prevalent in today’s military acquisition methods.

Today’s systems are typically integrated from components. These components may themselves contain
flaws, originating in specification, design or implementation errors, or in miscommunication between
different teams involved in the development. More seriously, the integration process itself may be flawed,
as when pre-existing components are used for purposes that their developers had not envisioned, and the
integrators misunderstand the detailed behaviour of the components. This situation can arise in the NATO
context, for instance, when coalitions are formed quickly, and complex systems must be integrated from
subsystems supplied by different nations: the components might be flawed, they might be misused, and
the integration might be inappropriately performed.

A different perspective comes from the recognition that components sometimes are systems in and of
themselves, and that these systems may not lose their identity when integrated into a “System of Systems”
but as well as being expected to fulfill their role in the System of Systems, may continue to retain their
original purpose, with their independent management, independent operational needs, and independent
evolution [Meier 1999]1. Frictions, even conflicts, can obviously arise in such mixed circumstances.
Interoperability failures between different national systems often are of this form.

Experience with interoperating commercial products, especially in the context of the Internet, indicates
that robustness to fallible components and fallible integration can be achieved without centralized
predictive coordination. Appropriate software architecture, redundancy in functional components, and
enforcement of critical interface standards appear to be key elements of success. Improved registry and
plug-and-play concepts can help automate integration and reduce configuration problems.

If we are to try to build infallible systems with fallible construction methods, there is a need to review the
advances in software development in the commercial market. There is also a need to evaluate the
requirements of military software development, bring forth lessons to be learned and to identify areas of
research and draw projections especially for the procurement community.

RTO IST-064/RWS-11 was a cooperative international workshop specifically aimed at investigating how
to usefully work with software that is believed to be faulty. The workshop was intended to be a truly
interactive workshop rather than only a mini-conference of presented papers. That is, it was to be a
working meeting to produce a specific deliverable: a report summarizing the state of the art. Attendees

1 [Meier 1999] M. W. Meier, “Architecting Principles for Systems-of-Systems”, Systems Engineering, 2:1, 1999.

mailto:Morven.Gentleman@dal.ca

INTRODUCTION AND MOTIVATION

1 - 2 RTO-MP-IST-064

were expected to participate fully in identifying the critical issues for successfully working with software
believed to be faulty, determining community challenge problems, applications and case studies, and
helping to set a research agenda for the area. The workshop was structured around a set of topics and
issues identified by the participants. Prior to the workshop, all invited participants were asked to submit a
position paper outlining their perspective, and to categorize their own position paper and their related
work. The categorizations chosen helped to suggest session themes. The workshop consisted of several
focused sessions, which set the stage for scheduled and impromptu presentations by participants and
follow-up discussion.

The Technical Activity Proposal authorizing this workshop had defined possible topics to be covered:

1) Choices of software architecture for robustness.

2) Integration process and tools.

3) Critical interface standards.

4) Interoperability with complementary or related products.

5) Empirical behaviour investigation through testing.

6) Oracles to ascertain plausibility of results.

7) Scalability of fault recovery.

8) Autonomic systems, self-healing, dynamic re-configuration.

9) Coping with component evolution.

10) Aids to retraining users.

11) Scaffolding reuse.

12) Regression tests, integration tests, integrity testing, consistency testing.

13) Project metric tracking.

14) Implications for cultural change.

15) Architectures for defect tolerance.

16) CORBA reliability.

In planning the workshop, the overlap with software fault tolerance was noted, so topics for discussion
were suggested where there was a difference today from situations that had been considered in the past
with respect to fault tolerance:

1) Use of pre-existing components.

2) Excess computing capacity that can be used:
a) For training and simulation to ensure proper functioning when needed;
b) For audit routines to monitor integrity of run-time and persistent data structures; and
c) For self-management (AI techniques).

3) Decentralized operation and control.

4) Conflicting, unknowable, diverse requirements.

5) Continuous evolution and deployment.

6) Heterogeneous, inconsistent, changing elements.

7) Indistinct people/system boundary.

INTRODUCTION AND MOTIVATION

RTO-MP-IST-064 1 - 3

8) Failures considered normal.

9) New forms of acquisition and policy.

10) Use of signatures to identify potential upcoming problems:
a) Correlation only yet causality may be needed to be able to take corrective actions.

11) Depth of exposure of commanders to computers.

12) Display of uncertainty.

13) Size and level of expertise of development teams.

14) Increasing use of concurrency (and lack of exception handling mechanisms for concurrency).

15) Voting mechanisms may not work (properly) because:
a) Answers not always being unique or uniquely represented;
b) Answers that cannot be compared automatically; or
c) Answers that cannot guarantee to be compared within certain time limits.

16) Classical engineering use linear models:
a) What does linearity and continuity mean for software systems?
b) Can we build linear models for software?
c) If not, can we handle non-linear models?

17) Agent-based architectures and the publish/subscribe mechanism decouple components. Does this
make the understanding of the system as a whole not more difficult?

Some new opportunities for research were also suggested:

1) Revise/reopen previous research (e.g. strongly guarded data structures).

2) New ways of doing distributed computing.

3) Information synthesis/fusion (area also covered in grid computing field).

4) Taking sociological issues into account.

Unfortunately, it proved impossible to arrange participation in the workshop by any representative of one
obvious research group relevant to the topic, the Stanford-UC Berkeley initiative on Recovery Oriented
Computing. This group has explicitly taken the position that failures are inevitable, if only because of
inappropriate input by humans such as system operators as well as end-users. Consequently, their
approach has been that rather than concentrating on avoiding failure, attention should be focused on
making recovery from failure faster and more reliable. Perhaps surprisingly, there is as yet very little other
work from this perspective. In the absence of a representative of this group, the workshop discussions
deliberately had to attempt to anticipate the reactions this group would have.

The original intent was that the report would include:

1) Summary of workshop results;

2) Position papers;

3) An identified research agenda;

4) Community challenge problems; and

5) Plans for future cooperative activities.

INTRODUCTION AND MOTIVATION

1 - 4 RTO-MP-IST-064

Abstract

Due to the many possible interactions with an ever
changing environment, combined with stringent require-
ments regarding temporal behaviour, robustness, availa-
bility, and maintainability, large-scale embedded systems
are very complex in their design. Coordination models
offer the potential of separating functional requirements
from other aspects of system design. In this paper we
present a software architecture for large-scale embedded
systems that incorporates an explicit coordination model.
Conceptually the coordination model consists of applica-
tion processes that interact through a shared data space -
no direct interaction between processes is possible. Start-
ing from this relatively simple model we derive successive
refinements of the model to meet the requirements that are
typical for large-scale embedded systems.

The software architecture has been applied in the
development of commercially available command-and-
control and traffic management systems. Experience
shows that due to the very high degree of modularity and
the maximal independence between modules, these sys-
tems are relatively easy to develop and integrate in an
incremental way. Moreover, distribution of processes and
data, fault-tolerant behaviour, graceful degradation, and
dynamic reconfiguration are directly supported by the
architecture.

1. Introduction

Due to the many possible interactions with an ever
changing environment, combined with stringent require-
ments regarding temporal behaviour, robustness, availabil-
ity, and maintainability, large-scale embedded systems,
like traffic management, process control, and command-
and-control systems, are very complex in their design. The
tasks performed by these systems typically include: (1)
processing of measurements obtained from the environ-

ment through sensing devices, (2) determination of model
parameters describing the environment, (3) tracking dis-
crepancies between desired state and perceived state, (4)
taking corrective action, and (5) informing the operator or
team of operators about the current and predicted state of
affairs. All tasks are very closely related and intertwined,
and particularly in large-scale systems, there is a huge
number of model parameters, which are often intricately
linked through numerous dependencies. It is therefore a
very natural approach to design the software for such sys-
tems as a monolithic entity, in which all relevant informa-
tion (deductive knowledge and actual data) is readily
accessible for all the above mentioned parts.

There is, however, a strong and well-known reason to
proceed differently: a software system thus conceived is
very difficult to implement, and even more difficult to
modify should the purpose of the system be changed, or
the description of the environment be refined. Adopting a
modular approach to design, the various functions imple-
mented in software are separated into different modules
that have some independence from each other. Such an
approach - well established today as standard software
engineering practice - leads to better designs, and reduces
development time and the likelihood of errors.

Unfortunately, with today’s highly sophisticated sys-
tems, this is still not good enough. In addition to the func-
tional requirements of these systems, many non-functional
requirements, such as a high degree of availability and
robustness, distribution of the processing over a possibly
wide variety of different host processors, and (on-line)
adaptability and extendibility, place constraints on the
design freedom that can hardly be met with current design
approaches. A methodology for the design of large-scale
distributed embedded systems should provide (a basis for)
an integral solution for the various types of requirements.
Traditional design methods based on functional decompo-
sition are not adequate. The sound principle of modularity
needs therefore to be further exploited to cover non-func-

Maarten Boasson
Quaerendo Invenietis bv

Universiteit van Amsterdam
The Netherlands

maarten@quaerendo.com

RTO-MP-IST-064 2.1 - 1

2.1 – Architectural Support for Integration
in Distributed Reactive Systems

MAILTO:maarten@quaerendo.com

tional requirements as well.
Recently coordination models and languages have

become an active area of research [6]. In [7] it was argued
that a complete programming model consists of two sepa-
rate components: the computation model and the coordi-
nation model. The computation model is used to express
the basic tasks to be performed by a system, i.e. the sys-
tem’s functionality. The coordination model is applied to
organize the functions into a coherent ensemble; it pro-
vides the means to create processes and facilitates commu-
nication. One of the greater merits of separating
computation from coordination is the considerably
improved modularity of a system. The computation model
facilitates a traditional functional decomposition of the
system, while the coordination model accomplishes a fur-
ther decoupling between the functional modules in both
space and time. This is exemplified by the relative success
of coordination languages in the field of distributed and
parallel systems.

Since the early 80’s we have developed and refined a
software architecture for large-scale distributed embedded
systems [2], that is based on a separation between compu-
tation and coordination. Below, we first present the basic
software architecture, after which we shall focus on the
underlying coordination model. We demonstrate how the
basic coordination model can be gradually refined to
include non-functional aspects, such as distributed
processing and fault-tolerance, in a modular fashion. The
software architecture has been applied in the development
of commercially available command-and-control, and traf-
fic management systems. We conclude with a discussion
of our experiences in the design of these systems.

2. Software architecture

A software architecture defines the organisational prin-
ciple of a system in terms of types of components and pos-
sible interconnections between these components. In
addition, an architecture prescribes a set of design rules
and constraints governing the behaviour of components
and their interaction [4]. Traditionally, software architec-
tures have been primarily concerned with structural organ-
isation and static interfaces. With the growing interest in
coordination models, however, more emphasis is placed
on the organizational aspects of behaviour and interaction.

In practice, many different software architectures are in
use. Some well-known examples are the Client/Server and
Blackboard architectures. Clearly, these architectures are
based on different types of components - clients and serv-
ers versus knowledge sources and blackboards - and use
different styles of interaction - requests from clients to
servers versus writing and reading on a common black-

board.
The software architecture, named SPLICE, that we

developed for distributed embedded systems basically
consists of two types of components: applications and a
shared data space. Applications are active, concurrently
executing processes that each implement part of the sys-
tem’s overall functionality. Besides process creation, there
is no direct interaction between applications; all communi-
cation takes place through a logically shared data space
simply by reading and writing data elements. In this sense
SPLICE bears strong resemblance to coordination lan-
guages and models like Linda [5], Gamma [1], and Swarm
[9], where active entities are coordinated by means of a
shared data space.

2.1. The shared data space

The shared data space in SPLICE is organized after the
well-known relational data model. Each data element in
the shared data space is associated with a unique sort, that
defines its structure. A sort definition declares the name of
the sort and the record fields the sort consists of. Each
record field has a type, such as integer, real, or string; vari-
ous type constructors, such as enumerated types, arrays,
and nested records, are provided to build more complex
types.

Sorts enable applications to distinguish between differ-
ent kinds of information. A further differentiation between
data elements of the same sort is made by introducing
identities. As is standard in the relational data model, one
or more record fields can be declared as key fields. Each
data element in the shared data space is uniquely deter-
mined by its sort and the value of its key fields. In this way
applications can unambiguously refer to specific data ele-
ments, and relationships between data elements can be
explicitly represented by referring from one data element
to the key fields of another.

To illustrate, we consider a simplified example taken
from the domain of air traffic control. Typically a system
in this domain would be concerned with various aspects
about flights, such as flight plans and the progress of
flights as tracked from the reports that are received from
the system’s surveillance radar. Hence, we define sorts
flightplan, report, and track as indicated in Figure 1.

Sort flightplan declares four fields: a flight number, e.g.
KL332 or AF1257, the scheduled time for departure and
arrival, and the type of aircraft that carries out the flight,
e.g. a Boeing 737 or an Airbus A320. By declaring the
flight number as a key field, it is assumed that each flight
plan is uniquely determined by its flight number.

Sort report contains the measurement vector of an
object as returned at a specific time by the system’s sur-
veillance radar. The measurement vector typically con-

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 2 RTO-MP-IST-064

tains position information. A unique index is attached to
be able to distinguish between different reports.

Through a correlation and identification process, the
progress of individual flights is recorded in sort track. The
state vector typically contains position and velocity infor-
mation on the associated flight number, that is computed
from consecutive measurements. The timestamp identifies
the time at which the state vector has been last updated.

2.2. Applications

Basically, applications interact with the shared data
space by writing and reading data elements. SPLICE does
not provide an operation for globally deleting elements
from the shared data space. Instead, data can be removed
implicitly using an overwriting mechanism. This mecha-
nism is typically used to update old data with more recent
values as the system’s environment evolves over time.
Additionally, applications can hide data, once read, from
their view. This operation enables applications to progres-
sively traverse the shared dataspace by successive read
operations. By the absence of a global delete operation,
the shared dataspace in SPLICE models a dynamically
changing information store, where data can only be read or
written. This contrasts the view where data elements rep-
resent shared resources, that can be physically consumed
by applications.

SPLICE extends an existing (sequential) programming
language with coordination primitives for creating proc-
esses and for interacting with the shared dataspace. More

formally, the primitives are defined as follows.

• create(f): creates a new application process from the
executable file named f, and run it in parallel to the
existing applications.

• write (α, x): inserts an element x of sort α into the shared
data space. If an element of sort α with the same key
value as x already exists in the shared dataspace, then
the existing element is replaced by x.

• read(α, q, t): reads an element of sort α from the shared
dataspace, satisfying query q. The query is formulated
as a predicate over the record fields of sort α. In case a
matching element does not exist, the operation blocks
until either one becomes available or until the timeout t
has expired. If the latter occurs, a timeout error is
returned by the operation. The timeout is an optional
argument: if absent the read operation simply blocks
until a matching element becomes available. In case
more than one matching element can be found, one is
selected non-determinstically.

• get(α, q, t): operates identically to the read operation,
except that the element returned from the shared
dataspace becomes hidden from the application’s view,
that is, the same element cannot be read a second time
by the application.

The overwriting mechanism that is used when inserting
data elements into the shared dataspace potentially gives
rise to conflicts. If at the same time two different applica-
tions each write a data element of the same sort and with
the same key value, one element will overwrite the other in
a nondeterministic order. Consequently one of the two
updates will be lost. In SPLICE this type of nondetermin-
istic behaviour is considered undesirable. The architecture
therefore imposes the design constraint that for each sort
at most one application shall write data elements with the
same key value.

As an illustration we return to the air traffic control
example from the previous section. Consider an applica-
tion process that tracks the progress of flight number n.
This application continuously reads new reports from the
surveillance radar and updates the track data of flight
number n accordingly. The application process can be
defined as indicated by the code fragment in Figure 2.

The application first reads the initial track data for
flight number n from the shared dataspace. The initial data
is produced by a separate application that is responsible
for track initiation. The application then enters a loop
where it first reads a new report r from the shared
dataspace. If the report correlates with the current track t,

sort flightplan
key flightnumber : string
departure : time
arrival : time
aircraft : string

sort track
key flightnumber : string
timestamp : time
state : vector

sort report
key index : integer
measurement : vector
timestamp : time

Figure 1. Sort definitions: an example.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

RTO-MP-IST-064 2.1 - 3

as expressed by the condition correlates(r, t), then track t
is updated by the newly received report, using the proce-
dure update(t, r). The updated track is inserted into the
shared dataspace, replacing the previous track data of
flight number n. This process is repeated until track t is
terminated. Termination can be decided, for instance, if a
track did not receive an update over a certain period of
time.

3. Refinements of the architecture

The shared dataspace architecture is based on an ideal
situation where many non-functional requirements, such
as distribution of data and processing across a computer
network, fault-tolerance, and system response times, need
not be taken into account. We next discuss how, through a
successive series of modular refinements, a software archi-
tecture can be derived that fully supports the development
of large-scale, distributed embedded systems.

3.1. A distributed software architecture

The first aspect that we consider here is distribution of
the shared data space over a network of computer systems.
The basic architecture is refined by introducing two addi-
tional components. As illustrated in Figure 3, the addi-
tional components consist of heralds and a communication
network.

Each application process interacts with exactly one her-
ald. A herald embodies a local database for storing data
elements, and processing facilities for handling all com-
munication needs of the application processes. All heralds
are identical and need no prior information about either
the application processes or their communication require-
ments. Communication between heralds is established by
a message passing mechanism. Messages between heralds
are handled by the communication network that intercon-
nects them. The network must support broadcasting, but
should preferably also support direct addressing of her-

alds, and multicasting. An application process interacts
with its assigned herald by means of the interaction primi-
tives from section 2.2. The interaction with heralds is
transparent with respect to the shared dataspace model:
application processes continue to operate on a logically
shared dataspace.

The heralds are passive servers of the application proc-
esses, but are actively involved in establishing and main-
taining the required inter-herald communication. The
communication needs are derived dynamically by the col-
lection of heralds from the read and write operations that
are issued by the application processes. The protocol that
is used by the heralds to manage communication is based
on a subscription paradigm that can be briefly outlined as
follows.

First consider an application that performs a write oper-
ation. The data element is transferred to the application’s
herald, which initially stores the element into its local
database, overwriting any existing element of the same
sort and with the same key value.

Next consider an application that issues a read request
for a given sort. Upon receipt of this request, the applica-
tion’s herald first checks whether this is the first request
for that particular sort. If it is, the herald broadcasts the
name of the sort on the network.

All other heralds, after receiving this message, register
the herald that performed the broadcast as a subscriber to
the sort carried by the message. Next each herald verifies
if its local database contains any data elements of the
requested sort, previously written by its application proc-
ess, in which case copies of these elements are transferred
to the newly subscribed herald. After this initial transfer,
any subsequently written data of the requested sort will be
immediately forwarded to all subscribed heralds.

Each subscribed herald stores both the initially and all
subsequently transferred copies into its local database,

t := get(track, flightnumber = n);
repeat

r := get(report, true);
if correlates(r, t) then
update(t, r);
write (track, t);

end if
until terminated(t);

Figure 2. Coordination primitives: an example.

communication network

herald herald herald herald

Application processes

SHARED DATA SPACE

P0 P1 Pn•••

Figure 3. A distributed software architecture.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 4 RTO-MP-IST-064

overwriting any existing data of the same sort and with the
same key value. During all transfers a protocol is used that
preserves the order in which data elements of the same
sort have been written by an application. This mechanism
in combination with the architecture’s design constraint
that for each sort at most one application writes data ele-
ments with the same key value, guarantees that overwrites
occur in the same order with all heralds. Otherwise, com-
munication by the heralds is performed asynchronously.

The search for data elements matching the query of a
read request is performed locally by each herald. If no
matching element can be found, the operation is sus-
pended either until new data of the requested sort arrives
or until the specified timeout has expired.

Execution of a get operation is handled by the heralds
similarly to the read operation, except that the returned
data element is removed from the herald’s local database.

As a result of this protocol, the shared dataspace is
selectively replicated across the heralds in the network.
The local database of each herald contains data of only
those sorts that are actually read or written by the applica-
tion it serves. In practice the approach is viable, particu-
larly for large-scale distributed systems, since the
applications are generally interested in only a fraction of
all sorts. Moreover, the communication pattern in which
heralds exchange data is relatively static: it may change
when the operational mode of a system changes, or in a
number of circumstances in which the configuration of the
system changes (such as extensions or failure recovery).
Such changes to the pattern are very rare with respect to
the number of actual communications using an established
pattern. It is therefore beneficial from a performance point
of view to maintain a subscription registration. After an
initial short phase each time a new sort has been intro-
duced, the heralds will have adapted to the new communi-
cation requirement. This knowledge is subsequently used
by the heralds to distribute newly produced data to all the
heralds that hold a subscription. Since subscription regis-
tration is maintained dynamically by the heralds, all
changes to the system configuration will automatically
lead to adaptation of the communication patterns.

Note that there is no need to group the distribution of a
data element to the collection of subscribed heralds into an
atomic transaction. This enables a very efficient imple-
mentation in which the produced data is distributed asyn-
chronously and the latency between actual production and
use of the data depends largely on the consuming applica-
tion processes. This results in upper bounds that are
acceptable for distributed embedded systems where timing
requirements are of the order of milliseconds.

3.2. Temporal aspects

The shared dataspace as introduced in section 2, mod-
els a persistent store: data once written remains available
to all applications until it is either overwritten by a new
instance or hidden from an application’s view by execu-
tion of a get operation. The persistence of data decouples
applications in time. Data can be read, for instance, by an
application that did not exist the moment the data was
written, and conversely, the application that originally
wrote the data might no longer be present when the data is
actually read.

Applications in the embedded systems domain deal
mostly with data instances that represent continuous quan-
tities: data is either an observation sampled from the sys-
tem’s environment, or derived from such samples through
a process of data association and correlation. The data
itself is relatively simple in structure; there are only a few
data types, and given the volatile nature of the samples,
only recent values are of interest. However, samples may
enter the system at very short intervals, so sufficient
throughput and low latency are crucial properties. In addi-
tion, but to a lesser extent, embedded systems maintain
discrete information, which is either directly related to
external events or derived through qualitative reasoning
from the sampled input.

This observation leads us to refine the shared dataspace
to support volatile as well as persistent data. The sort defi-
nition, which basic format was introduced in section 2.1, is
extended with an additional attribute that indicates
whether the instances of a sort are volatile or persistent.
For persistent data the semantics of the read and write
operations remain unchanged. Volatile data, on the other
hand, will only be visible to the collection of applications
that is present at the moment the data is written. Any
application that is created afterwards, will not be able to
read this data.

Returning to the air traffic control example from
Figure 1, the sort report can be classified as volatile,
whereas the sorts track and flightplan are persistent. Con-
sequently, the tracking process, as specified in Figure 2,
does not receive any reports from the surveillance radar
that were generated prior to its creation. After the tracking
process has been created, it first gets the initial track data
and then waits until the next report becomes available.

Since the initial track data is produced exactly once, the
tracking process must be guaranteed to have access to it,
otherwise the process might block indefinitely. This
implies that the sort track must be persistent.

The subscription-based protocol, that manages the dis-
tribution of data in a network of computer systems, can be
refined to exploit the distinction between volatile and per-
sistent data. Since volatile data is only available to the

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

RTO-MP-IST-064 2.1 - 5

applications that are present at the moment the data is
written, no history needs to be kept. Consequently, if an
application writes a data element, it is immediately for-
warded to the subscribed heralds, without storing a copy in
the application’s local database. This optimization reduces
the amount of storage that is required. Moreover, it elimi-
nates the initial transfer of any previously written data ele-
ments, when an application performs the first read
operation on a sort. This enables a newly created applica-
tion to integrate into the communication pattern without
initial delay, which better suits the timing characteristics
that are typically associated with the processing of volatile
data.

3.3. Fault-tolerance

Due to the stringent requirements on availability and
safety that are typical of large-scale embedded systems,
there is the need for redundancy in order to mask hardware
failures during operation. Fault-tolerance in general is a
very complex requirement to meet and can, of course, only
be partially solved in software. In SPLICE, the heralds can
be refined to provide a mechanism for fault-tolerant
behaviour. The mechanism is based on both data and proc-
ess replication. By making fault-tolerance a property of
the software architecture, the design complexity of appli-
cations can be significantly reduced.

In this paper we only consider failing processing units,
and we assume that if a processor fails, it stops executing.
In particular we assume here that communication never
fails indefinitely and that data does not get corrupted.

If a processing unit in the network fails, the data that is
stored in this unit, will be permanently lost. The solution is
to store copies of each data element across different units
of failure. The subscription-based protocol described in
section 3.1 already implements a replicated storage
scheme, where copies of each data element are stored with
the producer and each of the consumers. The basic proto-
col, however, is not sufficient to implement fault-tolerant
data storage in general. For instance, if data elements of a
specific sort have been written but not (yet) read, the ele-
ments are stored with the producer only. A similar prob-
lem occurs if the producers and consumers of a sort
happen to be located on the same processing unit.

The solution is to store a copy of each data element in
at least one other unit of failure. The architecture as
depicted in Figure 3 is extended with an additional type of
component: a persistent database. This component exe-
cutes a specialized version of the subscription protocol.
On start-up a persistent database broadcasts the name of
each persistent sort on the network. As a result of the sub-
scription protocol that is executed by the collection of her-
alds, any data element of a persistent sort that is written by

an application, will be automatically forwarded to the per-
sistent database. There can be one or more instances of the
persistent database executing on different processing
units, dependent on the required level of system availabil-
ity. Moreover, it is possible to load two or more persistent
databases with disjoint sets of sort names, leading to a dis-
tributed storage of persistent data.

When a processing unit fails, also the applications that
are executed by this unit will be lost. The architecture can
be refined to support both passive and active replication of
applications across different processing units in the net-
work.

Using passive replication, only one process is actually
executing, while one or more back-ups are kept off-line,
either in main memory or on secondary storage. When the
processing unit executing the active process fails, one of
the back-ups is activated. In order to be able to restore the
internal state of the failed process, it is required that each
passively replicated application writes a copy of its state to
the shared dataspace each time the state is updated. The
internal state can be represented by one or more persistent
sorts. When a back-up is activated, it will first restore the
current state from the shared dataspace and then continue
execution.

When timing is critical, active replication of processes
is often a more viable solution. In that case, multiple
instances of the same application are executing in parallel,
hosted by different processing units; all instances read and
write data. Typically active replication is used when tim-
ing is critical and the failing component must be replaced
instantaneously.

The subscription-based protocol can be refined to sup-
port active replication transparently. If a particular
instance of a replicated application performs a write oper-
ation, its herald attaches a unique replication index as a

Figure 4. Supporting fault-tolerance.

communication network

persistent

herald herald herald

active

SHARED DATA SPACE

P0 Pn•••

replication
passive

replication

database(s)

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 6 RTO-MP-IST-064

key field to the data element. The index allows the sub-
scribed heralds to distinguish between the various copies
that they receive from a replicated application. Upon a
read request, a herald first attempts to return a matching
element having a fixed default index. When, after some
appropriate time-out has expired, the requested element is
still not available, a matching element with an index other
than the default is returned. From that moment on it is
assumed that the application corresponding to the default
index has failed, and the subscription registration is
updated accordingly. The index of the actually returned
data element now becomes the new default.

A general overview of the distributed software architec-
ture supporting fault-tolerance based on the various data
and process replication techniques is given in Figure 4.

3.4. System Modifications and Extensions

In the embedded systems domain requirements on
availability often make it necessary to support modifica-
tions and extensions while the current system remains on-
line. There are two distinct cases to be considered.

• The upgrade is an extension to the system, introducing
new applications and sorts but without further
modifications to the existing system.

• The upgrade includes modification of existing
applications.

Since the subscription registration is maintained
dynamically by the heralds, it is obvious that the current
protocol can deal with the first case without further refine-
ments. After installing and starting a new application, it
will automatically integrate.

The second case, clearly, is more difficult. One special,
but important, category of modifications can be handled
by a simple refinement of the heralds. Consider the prob-
lem of upgrading a system by replacing an existing appli-
cation process with one that implements the same
function, but using a better algorithm, leading to higher
quality results. In many systems it is not possible to physi-
cally replace the current application with the new one,
since this would require the system to be taken off-line.

By a refinement of the heralds it is possible to support
on-line replacement of applications. If an application per-
forms a write operation, its herald attaches an additional
key field to the data element representing the application’s
version number. Upon a read request, a herald now first
checks whether multiple versions of the requested instance
are available in the local database. If this is the case, the
instance having the highest version number is delivered to
the application - assuming that higher numbers correspond

to later releases. From that moment on, all data elements
with lower version numbers, received from the same her-
ald, are discarded. In this way an application can be
dynamically upgraded, simply by starting the new version
of the application, after which it will automatically inte-
grate and replace the current version.

4. Conclusion

Due to the inherent complexity of the environment in
which large-scale embedded systems operate, combined
with the stringent requirements regarding temporal behav-
iour, availability, robustness, and maintainability, the
design of these systems is an intricate task. Coordination
models offer the potential of separating functional require-
ments from other aspects of system design. We have pre-
sented a software architecture for large-scale embedded
systems that incorporates a separate coordination model.
We have demonstrated how, starting from a relatively sim-
ple model based on a shared data space, the model can be
successively refined to meet the requirements that are typi-
cal for this class of systems.

Over the past years SPLICE has been applied in the
development of commercially available command-and-
control, and traffic management systems. These systems
consist of some 1000 applications running on close to 100
processors interconnected by a hybrid communication net-
work. Experience with the development of these systems
confirms that the software architecture, including all of the
refinements discussed, significantly reduces the complex-
ity of the design process [3]. Due to the high level of
decoupling between processes, these systems are rela-
tively easy to develop and integrate in an incremental way.
Moreover, distribution of processes and data, fault-tolerant
behaviour, graceful degradation, and dynamic reconfigura-
tion are directly supported by the architecture.

References

[1] J.-P. Banatre, D. Le Metayer, “Programming by Multiset
transformation”, Communications of the ACM, Vol. 36, No.
1, 1993, pp. 98-111.

[2] M. Boasson, “Control Systems Software”, IEEE Transac-
tions on Automatic Control, Vol. 38, No. 7, 1993, pp. 1094-
1107.

[3] M. Boasson, “Complexity may be our own fault”, IEEE
Software, March 1993.

[4] M. Boasson, Software Architecture special issue (guest
editor), IEEE Software, November 1995.

[5] N. Carriero, D. Gelernter, “Linda in Context”, Communica-
tions of the ACM, Vol. 32, No. 4, 1989, pp. 444-458.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

RTO-MP-IST-064 2.1 - 7

[6] D. Garlan, D. Le Metayer (Eds.), “Coordination Languages
and Models”, Lecture Notes in Computer Science 1282,
Springer, 1997.

[7] D. Gelernter, N. Carriero, “Coordination Languages and
their Significance”, Communications of the ACM, Vol. 35,
No. 2, 1992, pp. 97-107.

[8] K. Jackson, M. Boasson, “The importance of good architec-
tural style”, Proc. of the workshop of the IEEE TF on
Engineering of Computer Based Systems, Tucson, 1995.

[9] G.-C. Roman, H.C. Cunningham, “Mixed Programming
Metaphors in a Shared Dataspace Model of Concurrency”,
IEEE Transactions of Software Engineering, Vol. 16, No.
12, 1990, pp.1361-1373.

2.1 – Architectural Support for
Integration in Distributed Reactive Systems

2.1 - 8 RTO-MP-IST-064

RTO-MP-IST-064 2.2 - 1

2.2 – Component Architecture Framework – An Approach to the
Enterprise Architecture Development in a Risk Environment

Tomas FEGLAR
International Consultant in Information Systems Research and Architecture

Vondrousova 1199, 163 00 Prague 6
CZECH REPUBLIC

feglar@centrum.cz

1.0 PRIMARY GOALS OF PROCESS INTEGRATION AND SYSTEMS
ENGINEERING DISCIPLINE

Primary goals of process integration must directly support missions that are planned and owned by
Business Planners and Owners:

• To assist Business Process (BP) Planners and Owners to understand, describe and continuously
develop their business processes independently on application, IT infrastructure and physical
environment.

• To protect BP Planners and Owners interests against risks by the way that guarantees continuous
and measurable quality improvements.

The first primary goal corresponds to the Army Force management and Force Development (AFMP, FDP)
structure which encapsulates a lot of hierarchically organized business processes.

The second primary goal corresponds to the Information Technology Landscape that supports AFMP/FDP
structure and which is exposed to threats.

Systems Engineering (SE) received increased attention as ways are sought to reverse the trend of increasing
project failure, particularly in large information systems which are exposed to internal and external
disturbances.

SE engineering discipline distinguishes a lot of SE processes; four of them are the most critical for a
development of systems supporting AFMP and FDP:

• Architectural Design Process (ADP);
• Risk Management Process (RMP);
• Information Management Process (IMP); and
• Security Management Process (SMP).

These processes are usually applied inconsistently and result that outcomes are available to BP Planners
and Owners as stove pipe solutions. To overcome these serious limitations we have developed new
approach – Component Architecture Framework (CAF) that integrates all four SE processes, support them
with appropriate architecture frameworks and modeling methods.

2.0 ARCHITECTURE DESIGN PROCESS (ADP)
ADP combines TOGAF, Zachman and C4ISR frameworks. TOGAF is applied for architecture
development; architectural products are stored in Zachman matrix that also includes mappings to the
C4ISR views and products.

mailto:feglar@centrum.cz

COMPONENT ARCHITECTURE FRAMEWORK – AN APPROACH TO THE
ENTERPRISE ARCHITECTURE DEVELOPMENT IN A RISK ENVIRONMENT

2.2 - 2 RTO-MP-IST-064

3.0 RISK MANAGEMENT PROCESS (RMP)

CAF associates outcomes of this process with a risk driven strategic concept that can be structured in
accordance with enterprise strategy using profiles like ISO/IEC 17799, NATO Risk profile and others.

4.0 INFORMATION MANAGEMENT PROCESS (IMP)

CAF supports particular ITIL (Information Technology Infrastructure Library) modules, primarily Service
Level Management, Availability Management, and Continuity Planning.

5.0 SECURITY MANAGEMENT PROCESS (SMP)

Risk driven strategic concept synthesized as a result of the RMP includes two large groups of
countermeasures – security mechanisms and security operating procedures. SMP allows keeping a control
over security mechanism implementation and over security responsibility (various stakeholders that have a
set of security operating procedures included in their job description).

6.0 CONCLUSION

CAF approach includes also tools that support all four SE processes mentioned above with common
graphical interface and integrated dictionary (CAF database). This approach was successfully applied in a
development of Human Resource and TOE systems.

Frédéric Michaud
Frédéric Painchaud

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North, Québec, QC, Canada, G3J 1X5

August 16, 2006

Abstract

The Canadian government, especially the Department of National
Defence and the Canadian Forces, has a strong need for secure and
reliable information systems. Currently used, mass-market systems
tend to be very poor with respect to security and reliability, since they
routinely contain serious bugs and vulnerabilities. While a redesign of
these systems would be a sound long-term solution, an effective short-
term solution is an imperative. Mature high-availability products for
mass-market operating systems are now available and we believe they
could effectively and robustly prevent the effects of some classes of
failures. We propose to evaluate this hypothesis.

Introduction

The Canadian government, DND1, and CF2 are increasingly dependent on
information systems, which need to offer a very high level of security, relia-
bility, and fault-tolerance [1]. However, current information systems are in-
adequate for many reasons. First, many legacy systems currently in use were
designed before the Internet was widespread and were not supposed to be
exposed to a world-wide network. Second, they were built with technologies
and programming languages that are prone to vulnerabilities and bugs that
were not known at the time (e.g., buffer overflows). Since these systems are
needed for a foreseeable future, special care should be taken to prevent the

1Department of National Defence
2Canadian Forces

RTO-MP-IST-064 2.3 - 1

2.3 – High-Availability Solutions to
Common Software Failures

exploitation of these vulnerabilities. Finally, other systems were built on top
of mass-market operating systems and integrated with widely-available ap-
plications, which have a poor security and reliability record [3, 4, 5]. These
mass-market components are routinely used in contexts that exceeds the
level of security and reliability they were designed to offer [2].

We believe that the ideal solution would be a complete redesign of these
systems with the use of adapted programming languages and frameworks,
aimed at providing better software fault-tolerance, to get rid of the prob-
lems at their source. Indeed, better designs with more explicit security
and reliability requirements and the use of safe programming languages and
technologies not prone to vulnerabilities, such as Java or Ada, would be
a very good start. However, systems with critical security and reliabil-
ity requirements are rather expensive to specify, develop, procure, operate
and maintain, because of the time and expertise involved. Fundamental re-
search on subjects related to the survivability of systems is also needed to
solve remaining problems and questions [6]. This ideal solution is therefore
necessarily a long-term solution.

In the short term, something else must be done. The good news is that
mature high-availability products for mass-market operating systems are
now available. These products claim that they can “wrap” existing appli-
cations and run them in a virtualized environment, allowing their execution
to continue even if a fatal error happens. However, we could not find a
complete, independent report on their evaluation. Therefore, we need to in-
vestigate these products, and this is our proposition, in order to know how
good these solutions are and which threats they can mitigate.

The following section presents the family of high-availability solutions
that are of interest. Then, section 2 discusses information system threats
and how some of them could be mitigated with high-availability solutions.
Finally, section 3 details our evaluation’s goals and work plan.

1 High-Availability Solutions

High-availability solutions wrap the execution of an existing system and
helps it attain a higher level of availability by mitigating the effects of hard-
ware and software errors. This is mainly done by the use of redundancy,
where a failed component is replaced with a working one so that the system
can continue to offer its service.

Interesting solutions are those that wrap the entire system, not only
a single component, as a RAID disk array does. These solutions, called

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 2 RTO-MP-IST-064

high-availability clusters [8, 9], generally use clones of the entire system as
redundant nodes.

High-availability clusters can work in many modes:

Monitor and Replace Without State Transfer The system is moni-
tored for errors and when a fatal one happens, the failed node is shut
down and replaced with a hot standby. As the state of the failed node
is not transferred to the new one, the execution cannot continue and
the system has to be reinitialized, including remote clients. Therefore,
this type of high-availability cluster simply automates the reinitializa-
tion process.

Monitor and Replace With State Transfer Again, the system is mon-
itored for errors and when a fatal one happens, the failed node is shut
down and replaced with a hot standby. However, the state of the failed
node is preserved and transferred to the new node in order to continue
the execution as if the failure never happened. A small downtime can
occur while the state is transferred from the failed node to the hot
standby.

Mask Failures With Virtualization This time, the system runs inside
a virtualized environment, made of many nodes that run the system
in parallel. When a fatal error occurs in one node, it is simply masked
by using the result of another node (or many others), without any
downtime or reinitialization. This approach has less drawbacks than
other ones, but it is much more complex to implement correctly.

In a nutshell, high-availability clusters can either restart a failed system
or mask the failure so that the execution can continue as if nothing hap-
pened, sometimes minus a small downtime. Important questions emanate
from these observations:

• How useful is restarting a system when a fatal error happens? Is the
error going to occur again after a restart?

• Which errors can be masked and which cannot?

• Do applications need to be aware of the cluster or can everything be
transparent?

• What kind of applications make the state transfer impractical?

These are some of the questions we would like to answer after our eval-
uation of high-availability clusters.

2.3 – High-Availability Solutions to Common Software Failures

RTO-MP-IST-064 2.3 - 3

1.1 Products of Interest

A short research on the Internet revealed many interesting high-availability
products that can be evaluated. Here is a non-exhaustive list with a de-
scription from their respective vendor:

Marathon everRunFT This product synchronizes two unmodified servers
to create a virtual application environment that runs on both of them
simultaneously. If one server fails, the other server enables the appli-
cation to continue operating without interruption [10].

Microsoft Clustering Services This service provides high availability and
scalability for mission-critical applications such as databases, messag-
ing systems, and file and print services. Multiple servers (nodes) in
a cluster remain in constant communication. If one of the nodes in
a cluster becomes unavailable as a result of failure or maintenance,
another node immediately begins providing service, a process known as
failover. Users who are accessing the service continue to access the
service, and are unaware that it is now being provided from a different
server [11].

Veritas Cluster Server Veritas Cluster Server can detect faults in an ap-
plication and all its dependent components, including the associated
database, operating system, network, and storage resources. When a
failure is detected, Cluster Server gracefully shuts down the applica-
tion, restarts it on an available server, connects it to the appropriate
storage device, and resumes normal operations [12].

VMware Virtual Infrastructure VMware High Availability provides easy
to use, cost effective high availability for applications running in virtual
machines. In the event of server failure, affected virtual machines are
automatically restarted on other production servers with spare capacity
[13].

Linux High-Availability Project It provides monitoring of cluster nodes,
applications, and provides a sophisticated dependency model with a
rule-based resource placement scheme. When faults occur, or a rule-
change occurs, the user-supplied rules are then followed to provide the
desired resource placement in the cluster [14].

On paper, these products seem very promising. Obviously, our evalua-
tion would include thorough testing of these products in order to validate
these claims.

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 4 RTO-MP-IST-064

1.2 Added Value Provided by High-Availability Solutions

As a side note, it is important to realize that availability offered by these
solutions can be leveraged in other contexts and can provide non-negligible
added value, such as:

Non-Disruptive Maintenance Upgrades and common hardware and soft-
ware maintenance can be performed while the system is running, with-
out its users noticing any downtime. Furthermore, if the system’s state
is extensively logged (which should be the case most of the time), mod-
ifications that prove to be erroneous can be rollbacked.

Server Consolidation In order to achieve fault-tolerance, virtualization is
often used in high-availability solutions and it can also be used to run
many virtual servers on the same hardware. It is thus possible to con-
solidate many less-used servers on one powerful computer, simplifying
management.

Advanced Monitoring & Logging State transfers and virtualization in
high-availability clusters need extensive monitoring and logging which
is ideal for good forensics. Therefore, if, for whatever reason, a system
that uses a high-availability cluster is attacked and fails, the failure
has the potential to be deeply analyzed from the logs.

2 Problems & Threats

This section looks at threats that current systems face everyday [7] and how
a high-availability solution could help, by either restarting the failed com-
ponent or by masking the effects of the fault. Restarting a failed component
is a sound solution only if the cause of failure is transient, or temporary. If
the cause of failure is still present after a restart, the component will fail
again and will keep being restarted over and over again. Masking the effects
of a fault may also not always be possible, if, for instance, all the duplicate
nodes fail simultaneously and give the same erroneous output.

2.1 Environmental Faults

Environmental faults are failures that originate from outside the system
itself, such as a power failure, a network connectivity loss (cut cable), natural
disasters, etc. Since the problem lies outside the system, restarting it will not
change much, unless the problem goes away while the system is restarting.

2.3 – High-Availability Solutions to Common Software Failures

RTO-MP-IST-064 2.3 - 5

If the system cannot deal with a temporary outage of a specific kind (it
cannot progress from a failed state to a correct state), restarting it may be
necessary after the outage. Masking the fault would require a distributed
system with geographically-distant nodes that cannot be subject to the same
environmental faults.

We see a limited use of high-availability solutions for these kinds of faults.

2.2 Hardware Faults

Hardware faults occur when a hardware component of the system stops
working correctly and reports an error. Examples include a crashed disk,
failed parity checking while reading memory, burned power supply, etc.

High-availability solutions were first designed to handle hardware faults
and are generally considered to work well in that context.

2.3 Software Faults

Software faults occur when the execution of a program diverges from “what
it should be”, i.e., its specification. For instance, a program could write data
outside the bounds of one of its buffers. This leads to memory corruption
and can be the cause of a crash. Errors in computation can also emerge if
the program reads outside the bounds of one of its buffers. Another example
of a program crash is if the program attempts a division by zero.

Software fault-tolerance is a vast domain being intensively researched
right now. All problems and questions are not yet solved and answered. We
want to start by investigating what currently-available high-availability so-
lutions have to offer in handling software fault-tolerance of existing systems.
The answer to “What can be done when a system crashes because of a soft-
ware fault?” is not easy to find. However, we believe that high-availability
solutions could be useful when a transient software error occurs.

2.4 Malicious Acts

Systems can also crash because of malicious acts like denial-of-service and
code injection attacks. High-availability solutions cannot mitigate code in-
jection attacks because if a system is vulnerable to code injection, making
it more available will not solve the problem. However, systems wrapped by
high-availability solutions can be more resilient to denial-of-service attacks
because if the attack slows down one of the nodes of the system, load balanc-
ing could be used to redistribute resources and achieve better performance.
If the attack crashes the system, it could be automatically restarted.

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 6 RTO-MP-IST-064

3 Goals & Work Plan

To sum up, our main goals for our evaluation are as follows:

1. Evaluate monitors’ error-detection performance.

(a) Which faults can be detected?

(b) Which monitoring approach do they use?

2. Assess how useful is a restart and for which kind of faults.

3. Assess how useful and feasible is to mask faults.

4. Determine if high-availability solutions are transparent to the applica-
tions.

5. Determine the limits of each product in general.

And our draft work plan:

Summer and Fall 2006 : Feasibility study and state-of-the-art report.

Spring 2007 : Preparation (development of tests, setup, etc.).

Summer 2007 : Evaluation.

Fall 2007 : Final report.

References

[1] Martin Croxford, Roderick Chapman, Correctness by Construction: A
Manifesto for High-Integrity Software, CrossTalk, December 2005.

[2] Gregory Slabodkin, Software glitches leave Navy Smart Ship dead in
the water, Government Computer News, July 13, 1998.

[3] SANS Institute, The SANS Top 20 Internet Security Vulnerabilities,
http://www.sans.org/top20/

[4] SecurityFOCUS, BugTraq Mailing List Archive,
http://www.securityfocus.com/archive/1

[5] McAfee, McAfee Threat Center – Security Vulnerabilities,
http://www.mcafee.com/us/threat center/vulnerabilities.html

2.3 – High-Availability Solutions to Common Software Failures

RTO-MP-IST-064 2.3 - 7

http://www.sans.org/top20/
http://www.securityfocus.com/archive/1
http://www.mcafee.com/us/threat_center/vulnerabilities.html

[6] Peter G. Neumann, Practical Architectures for Survivable Systems and
Networks, Computer Science Laboratory, SRI International, June 2000.

[7] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr, Basic Concepts and Taxonomy of Dependable and Secure
Computing, IEEE Transactions on Dependable and Secure Computing,
Vol. 1, No. 1, January-March 2004 (23 pages).

[8] Gregory Pfister, In Search of Clusters, 2nd Edition, Prentice Hall, 1998,
608 pages.

[9] Evan Marcus, Hal Stern, Blueprints for High Availability, 2nd Edition,
John Wiley & Sons, 2003, 624 pages.

[10] http://www.marathontechnologies.com/

[11] http://www.microsoft.com/windowsserver2003/technologies/clustering/default.mspx

[12] http://www.symantec.com/Products/enterprise?c=prodinfo&refId=20

[13] http://www.vmware.com/vinfrastructure/

[14] http://www.linux-ha.org/

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 8 RTO-MP-IST-064

http://www.marathontechnologies.com/
http://www.microsoft.com/windowsserver2003/technologies/clustering/default.mspx
http://www.symantec.com/Products/enterprise?c=prodinfo&refId=20
http://www.vmware.com/vinfrastructure/
http://www.linux-ha.org/

August 2, 2006

Alexander Romanovsky

Newcastle University
alexander.romanovsky@ncl.ac.uk

Abstract. Experience suggests that it is edifying to talk about software crises at NATO
workshops. It is argued in this position paper that proper engineering of fault tolerance software
has not been getting the attention it deserves. The paper outlines the difficulties in building fault
tolerant systems and describes the challenges software fault tolerance is facing. The solution
being advocated is to place a special emphasis on fault tolerance software engineering which
would provide a set of methods, techniques, models and tools that would exactly fit application
domains, fault assumptions and system requirements and support disciplined and rigorous fault
tolerance throughout all phases of the life cycle. The paper finishes with an outline of some
directions of work requiring special focused efforts from the R&D community.

1. Fault tolerance misuse
As reported by Flavio Cristian in the 80s [1], field experience with telephone switching systems
showed that up to two thirds of system failures were due to design faults in exception handling
or recovery algorithms.
Let us look into what is happening now.

− The Interim Report on Causes of the August 14th 2003 Blackout in the US and Canada
[2] clearly shows that the problem was mostly caused by badly designed fault tolerance:
poor diagnostics of faults, longer-than-estimated time for component recovery, failure to
involve all necessary components in recovery, inconsistent system state after recovery,
failures of alarm systems, etc.

− Tony Hoare reports [3] that in some MS systems more than 10% of code is dedicated to
executable assertions. Yet as we all know, many customers are still unhappy with the
quality of these products

− The authors of an ICSE 2006 paper [4] have experimentally found that in a 10 million
LOC real-time embedded control system, misused exception handling introduced 2-3
bugs per 1 KLOS.

− Another paper, just accepted to IVNET 2006 [5], shows that in eight .NET assemblies
(which represent application, library and infrastructure levels), over 90% of exceptions
that the code can throw are not documented.

− Paper [6] by IBM researchers reports typical patterns of exception handling misuse and
abuse in five customer and one proprietary J2EE applications, referring to them as “bad
coding practice”. It was found, for example, that one in ten classes swallows exceptions
without doing anything about them.

We keep making mistakes in designing fault tolerance! The situation is deteriorating as the
complexity of software and systems in general is growing, causing an increase in the complexity

RTO-MP-IST-064 2.4 - 1

2.4 – A Looming Fault Tolerance Software Crisis?

MAILTO:alexander.romanovsky@ncl.ac.uk

of fault tolerance, as computer-based systems proliferate more widely in business, society and
individuals' activities.
In spite of the fact that a plethora of fault tolerance mechanisms have been developed since the
70s, that there is a good understanding of the basic principles of building fault tolerant software
and that a considerable fraction of requirements analysis, run time resources, development effort
and code are now dedicated to fault tolerance, we might well be on our way to a fault tolerant
software crisis. At present, fault tolerance is not trustworthy as it is the least understood,
documented and tested part of the system, is frequently misused or poorly designed, regularly
left until too late in the development process, not typically introduced in a systematic,
disciplined or rigorous way, and often not suitable for the specific situations in which it is
applied.

2. Fault tolerance: challenges and difficulties
Fault tolerance means can and will undermine overall system dependability if not applied
properly. The following are some of the main challenges in the area:

− Fault tolerance means are difficult to develop or, when they are provided by some
dedicated support, to use – this is because they increase system complexity by adding a
new dimension to the reasoning about system behaviour. Their application requires a
deep understanding of the intricate links between normal and abnormal behaviour and
states of systems and components, as well as system state and behaviour during
recovery.

− Fault tolerance (software diversity, rollback, exception handling) is costly as it always
uses redundancy. Rather than improve fault tolerance, system developers far too often
prefer to spend resources on extending functionality. We cannot and/or do not always
want to put a cost on failures.

− System designers are reluctant to think about faults at the early phases of development.
Fault tolerance is often considered to be an implementation issue. Moreover, fault
tolerance is often “added” after the normal part of the system is developed, which
makes it less effective, may require system redesign or result in faulty fault tolerance.

− There is a lack of appropriate training for, education about or good practice in, fault
tolerance:

o We do not really know what counts as a good fault tolerant program. We
usually know well only how to write programs and components that assume
(unjustifiably) that nothing will go wrong

o Developers of many applications fail to apply even the basic principles of
software fault tolerance. There is no focus on clearly defining fault assumptions
from the very start, early error detection, recursive system structuring for error
confinement, minimising and ensuring error confinement and error recovery
areas, extending component specification with a concise and complete
definition of failure modes, etc.

− It is imperative that fault tolerance means fit the system, the types of faults (i.e. the fault
assumptions), the application domain, the development paradigm, the execution
environment and the system characteristics. We need suitable fault tolerance
abstractions for a variety of particular situations.

3. Fault assumptions and application fault tolerance
We believe that due to

− an increase in hardware quality and a reduction in hardware cost (e.g. hardware
replication is cheap)

2.4 – A Looming Fault Tolerance Software Crisis?

2.4 - 2 RTO-MP-IST-064

− a dramatic rise in software complexity and volume
− the involvement of new actors (non-professional users, multiple organisations, critical

infrastructures)
− a growing complexity of the environment in which systems operate,

for many applications hardware faults are no longer the predominant threat. These applications
include a wide range of safety-, life-, business- and money-critical systems – see, for example,
recent studies by J.-C. Laprie [7], J. Knight [8] and by the Standish Group [9]. The predominant
types of faults to be tolerated are

− application software faults (including design faults)
− environmental and infrastructural faults/deficiencies
− potentially damaging changes in systems, components, environments and infrastructures
− mismatches of components composed together (including mismatches of fault tolerance

mechanisms [10])
− architectural and organisational mismatches and system-level inconsistencies
− degradation of services provided by components and systems
− organisational, human and socio-technical faults.

Such faults cannot be tolerated (and the system recovered) by hardware or middleware means
alone, without involving application software. This is why we need to include fault tolerance
measures into application system development (be it top-down or bottom-up or a mix of both).

4. Fault tolerance and software development
Fault tolerance needs to be engineered in a disciplined and rigorous way. In agreement with a
number of my colleagues working in fault tolerance, I see the way forward in pursuing the
following directions:

− integrating fault tolerance measures (diversity, exception handling, backward error
recovery, etc.) into system models starting from the early architectural design

− making fault tolerance-related decisions for each appropriate model by modelling faults,
fault tolerance measures and dedicated redundant resources. In particular, we need to
focus on fault tolerant software architectures

− ensuring correct transformations of those models that enrich fault tolerance measures
and make models more concrete and detailed

− making fault tolerance verification and validation part of system development
− developing dedicated tool support for fault tolerance development
− providing domain-specific application-level fault tolerance mechanisms and

abstractions.
Clearly, there has been some research done in these areas. Yet if we look at the proceedings of
some best conferences relevant to dependability and software engineering, such as ICSE, DSN,
ESEC/FSE and EDCC, we will see that these topics are at best peripheral. It is my strong belief
that more focused efforts are needed to achieve fault tolerance which neither fails nor requires
fault tolerance itself.

5. Where to look for solutions
In this section I would like to briefly introduce some of the R&D directions which I believe are
or will be contributing to the successful engineering of fault tolerance.
Architecting fault tolerant systems is now becoming an active research area. We need to focus
on introducing specialised architectural solutions:

2.4 – A Looming Fault Tolerance Software Crisis?

RTO-MP-IST-064 2.4 - 3

− supporting all main fault tolerance mechanisms (exception handling with error
confinement, software diversity, atomic actions, etc.)

− introducing specific fault tolerance solutions (such as adaptors and protective wrappers
for COTS component integration – [11])

− making existing and widely accepted architectures fault tolerant
− ensuring tolerance of architectural mismatches [12].

It is essential that fault tolerance is supported by a set of specialised patterns and styles that
would assist developers at all steps of the life cycle. These should include specialised
architectural, refinement, decomposition, design, implementation and model transformation
patterns and styles.
Where appropriate, fault tolerance should be developed formally to ensure its “correctness by
construction”. This needs to be supported by a development environment with a set of
specialised tools. We should be able to model faults and fault tolerance, to express, prove and
check specific fault tolerance properties of these models and to refine them by refining both
fault assumptions and fault tolerance means.
Different faults and their tolerance need to be considered at the appropriate phases of the life
cycle and further refined and decomposed during development. This needs to start with the
requirement phase.
To avoid making software more complex and introducing new faults, the fault tolerance
mechanisms and abstractions being developed should fit the types of faults, the application
domain, the development paradigm, the execution environment and the system characteristics
and requirements.
Fault tolerance and fault tolerant evolution. Both system evolution and dynamic upgrade
should ensure the preservation or the controlled and predictable changes of system fault
tolerance. It is systems going through online modifications that are mostly vulnerable to faults,
so we need specialised fault tolerance mechanisms that will ensure dependable modifications.

Some of the recent and ongoing activities that are directly related to engineering fault tolerant
systems:

- RODIN - Rigorous Open Development Environment for Complex Systems, FP6 IST
STREP project (2004-2007)1

- FME 2005 Workshop on rigorous engineering of fault tolerant systems (REFT 2005,
Newcastle, July 2005) and a follow-up State of the Art LNCS collection [13]

- Workshop on engineering fault tolerant systems in Luxemburg (EFTS 2006)2. June
2006

- Edited collection of papers on engineering fault tolerant systems to be published in
2007

- A series of workshops on architecting dependable systems (WADS at ICSE and DSN in
2002-2006)3 and three follow-up LNCS collections [14-16].

Acknowledgements. My thanks go to many people with whom these ideas have been
discussed, but first of all, to Brian Randell, Cliff Jones, Jörg Kienzle, Nicolas Guelfi and
Fernando Castro Filho. This work is supported by the IST RODIN Project.

1 http://rodin.cs.ncl.ac.uk/
2 http://se2c.uni.lu/tiki/tiki-index.php?page=Efts2006Overview
3 http://www.cs.kent.ac.uk/events/conf/2006/wads/

2.4 – A Looming Fault Tolerance Software Crisis?

2.4 - 4 RTO-MP-IST-064

http://rodin.cs.ncl.ac.uk/
http://se2c.uni.lu/tiki/tiki-index.php?page=Efts2006Overview
http://www.cs.kent.ac.uk/events/conf/2006/wads/

References
1. F. Cristian. Exception handling. In Dependability of Resilient Computers, T. Anderson (Ed.).

Blackwell Scientific Publications, 1989. pp. 68-97.
2. Interim Report: Causes of the August 14th Blackout in the United States and Canada.

Canada–U.S. Power System Outage Task Force. November 2003. http://www.nrcan-
rncan.gc.ca/media/docs/reports_e.htm.

3. T. Hoare. Assertions in modern software engineering practice. Invited talk. COMPSAC 2002.
Oxford, UK, 26-29 August 2002.

4. M. Bruntink, A. van Deursen, T. Tourwé. Discovering Faults in Idiom-Based Exception
Handling. ICSE 2006. 20-28 May 2006. Shanghai. China. ACM Press. pp. 242-251.

5. P. Sacramento, B. Cabral, P. Marques. Unchecked exceptions: can the programmer be trusted
to document exceptions? Accepted for the 2nd Int. Conf. on Innovative Views of .NET
Technologies (IVNET 2006). 2006. Florianopolis, Brazil.

6. D. Reimer, H. Srinivasan. Analyzing exception usage in large java applications. In
Proceedings of ECOOP 2003 Workshop on Exception Handling in Object-Oriented
Systems, July 2003.

7. J.-C. Laprie. Dependability of software-based critical systems. In Dependable Network
Computing. D. R. Avresky (Ed.). 1999.

8. J. Knight. Assured Reconfiguration: An Architectural Core For System Dependability.
Invited talk. ICSE 2005 Workshop on Architecting Dependable Systems. St. Louis,
Missouri, USA, 17 May 2005.

9. J. Johnson. The Other Side of Failure! DSN 2006 Industry Session. June 26. Philadelphia,
USA. 2006.

10. A. Avizienis. Infrastructure-Based Design of Fault-Tolerant Systems. In the Electronic
Proceedings of the IFIP Int. Workshop on Dependable Computing and Its Applications
(DCIA 98) January 12 - 14, 1998, Johannesburg, South Africa.

11. T. Anderson, B. Randell, A. Romanovsky. Wrapping the future. In the Proceedings of the
IFIP Congress Topical Sessions. Toulouse. France. 2004. pp. 165-174.

12. R. de Lemos, C. Gacek, A. Romanovsky. Architectural Mismatch Tolerance. In
Architecting Dependable Systems. LNCS 2677, 2003. pp. 175-194.

13. M. Butler, C. Jones, A. Romanovsky, E. Troubitsyna (Eds). Rigorous development of
complex fault tolerant system. LNCS 4157. 2006.

14. R. de Lemos, C. Gacek, A. Romanovsky (Eds). Architecting Dependable Systems. LNCS
2677. 2003.

15. R. de Lemos, C. Gacek, A. Romanovsky (Eds). Architecting Dependable Systems II. LNCS
3069, 2004.

16. R. de Lemos, C. Gacek, A. Romanovsky (Eds). Architecting Dependable Systems III. LNCS
3549, 2005.

2.4 – A Looming Fault Tolerance Software Crisis?

RTO-MP-IST-064 2.4 - 5

2.4 – A Looming Fault Tolerance Software Crisis?

2.4 - 6 RTO-MP-IST-064

Mary Shaw

School of Computer Science
Carnegie Mellon University

mary.shaw@cs.cmu.edu
November 2006

“Robustness” is an overarching property of software systems that includes, to various viewers and
to various extents, elements of correctness, reliability, fault-tolerance, performance, security,
usability (without surprises), accuracy, and numerous other properties. Robustness is a form of
dependability that focuses on resilience to failures.
Many aspects of dependability and robustness have been explored extensively in the context of
individual components. Modern software systems, however, are composed from multiple
components. Often these components have not been designed to operate together. Increasingly
these components are legacy code or even applications that can operate alone as well as in
concert. Further, the components may be data or services as well as code. The challenge of
individual components lies in understanding and managing the code, but the major challenge of
modern systems lies in understanding and managing the interactions among the components.
Large-scale system integration encounters new sources of problems, such as architectural
mismatch, cross-platform portability, and side effects of evolution of the computing
infrastructure.
This new setting qualitatively changes the nature of the software development and integration
process.
 Classical software Modern systems
 Localized Distributed
 Independent Interdependent
 Insular Vulnerable
 Installations Communities
 Centrally-administered User-managed
 Software Information resource
 Systems Coalitions
In this setting, “coalition” seems like a more suitable label than “system” for the interacting
collection of information technology components.
A number of strategies offer complementary approaches for achieving robustness in this setting,
as suggested by Figure 1.
There are two general ways to deal with the possibility of bad things happening: Prevent them
from happening at all and detect problems and react to them as they occur. We approach the
former through validation and the latter through remediation. Within each of these categories we
can identify (at least) three interesting cases.

RTO-MP-IST-064 2.5 - 1

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

MAILTO:mary.shaw@cs.cmu.edu

Figure 1: Approaches to robustness in modern software coalitions

Prevention

Prevention based on a global standard
This case is the focus of much of formal language theory and static program analysis, which
attempt to make guarantees about programs based on the code of a system. In recent years this
has focused on specific properties rather than complete specifications. The objective here is
absolute guarantees.
This is also the focus of dynamic analysis including testing and dynamic analyses (e.g., of
runtime behavior).

Prevention based on a relative standard
It is increasingly clear that the acceptability of a system to a specific user – and hence the
robustness of the system in the eyes of that user – depends as much on the expectations of the
user as it does on compliance with system specifications. Two issues arise.
First, the expectations of a given user may be either less demanding or more demanding than the
system specification promises (or would promise if it existed). The first case is clear: the user
might not use all of the precision, capability. or performance of the system or might be more
tolerant of failures. The second case also arises, though: users often imagine what they hope the
system may do and are unhappily surprised when it does not meet their expectations.
The second issue is a question of engineering cost-effectiveness: the cost of increasing robustness
may not be justified by a user’s actual needs. Rather, we need a way for individual users to
determine whether a system is sufficiently dependable for their own needs.

Prevention based on a policy standard
We are beginning to come to grips with systems that are very large as measured by observable
metrics such as lines of code, numbers of users, amount of data, and dependencies among
components. But we continue to reason about them as if they were discrete systems subject to
central control.
A more complex form of system is now emerging, with the Internet as a principal example. These
systems are not simply larger versions of the systems we are familiar with. They feature

Potential problem (bad thing)

Prevention Reaction

Remediation

Technical
reactive

Economic

Fault-
tolerant

Compen-
satory

Validation

Global
std

Policy
std

Traditional Ultra-large
scale

User-
centered

Self
healing

Relative std Technical
adaptive

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

2.5 - 2 RTO-MP-IST-064

• Decentralized operation and control
• Conflicting, unknowable, diverse requirements
• Continuous evolution and deployment
• Heterogeneous, inconsistent, changing elements
• Indistinct people/system boundary
• Normal failures triggered by complex system coupling

These features preclude central design. These systems grow organically as a result of the actions
of independent, possibly competitive users. They require new forms of acquisition and policy that
are more akin to zoning laws – ways to govern independent evolution – than to conventional
system specifications. [Software Engineering Institute. Ultra Large-Scale Systems: The Software
Challenge of the Future. 2006 http://www.sei.cmu.edu/uls/]

Reaction

Reaction based on traditional reactive techniques
This case is the focus of classical fault tolerance, with roots in classical hardware fault tolerance
with explicit set points or specifications of error states. In this case, robustness thresholds are set
explicitly and crossing a threshold triggers remedial action. The strategy is to characterize the
states of the system and the transitions between those states.

Reaction based on adaptive techniques
A difficulty with traditional reactive techniques is that they must invest specification effort in
precisely defining the internal states or thresholds. Sometimes the robustness property of interest
is appropriately treated as a threshold, but more often a system degrades gradually from
dependable to undependable operation. Choosing an exact threshold requires making a choice of
a single point in this gray area of decline.
An alternative is to base reaction on adaptive techniques that respond with low intensity to mild
decline and with increasing intensity as the situation deteriorates, but that do so as a general
reaction to conditions rather than as an explicit state change. Biological homeostasis offers
tantalizing examples.
Robustness can also be improved by budgeting computing capability for reflection: maintaining a
model of expected system behavior, monitoring system performance, and triggering adaptation.
In effect, this replaces classical fixed setpoints with a more sophisticated basis for adaptation.

Reaction based on economic mechanisms
Sometimes systems fail and dynamic recovery is not possible. The world at large recognizes this
as a risk management problem. One common way to manage such risks is to convert low
probability, high impact events into high probability, low impact events. Insurance is a common
example: risks of low probability, high cost events are pooled over a population that shares
similar risks. Each member of the pool contributes a “premium” – a know payment that creates a
fund that is subsequently disbursed to the few members of the pool who actually encounter the
event.
Insurance-based risk management is common in software-intensive businesses, but it has received
little attention at the system level. Creating an insurance model for software-intensive systems
would require the ability to predict failure rates for the insured system, a way to attribute system

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

RTO-MP-IST-064 2.5 - 3

http://www.sei.cmu.edu/uls/

failures to specific components, a way to evaluate the cost of a failure, and a way to create the
risk-sharing pool.
Explicit risk management also offers an opportunity to make triage decisions – to assess system
degradation and drop nonessential functions. This approach is used in provisioning certain types
of service bureaus: an economic decision may provide to maintain less capacity than potential
peak load, planning to drop (and pay penalties) some clients when load peaks in order to provide
capacity for higher-priority clients.

2.5 – Strategies for Achieving Robustness in Coalitions of Systems

2.5 - 4 RTO-MP-IST-064

RTO-MP-IST-064 3.1 - 1

3.1 – NATO Workshop Prague 2006

Maarten Boasson
Faculty of Science

University of Amsterdam
Kruislaan 404

1098 SM Amsterdam
NETHERLANDS

Email: boasson@science.uva.nl

This section was received as a PowerPoint
presentation in PDF format.

mailto:boasson@science.uva.nl

3.1 – NATO Workshop Prague 2006

3.1 - 2 RTO-MP-IST-064

RTO-MP-IST-064 3.2 - 1

3.2 – SaGE, an Exception Handling System
for Message-Oriented Programming

Christophe Dony
Université de Montpellier

LIRMM
161 rue Ada

34392 Montpellier Cedex 5
FRANCE

Email: dony@lirmm.fr

This section was received as a PowerPoint
presentation in PDF format.

mailto:dony@lirmm.fr

3.2 – SaGE, an Exception Handling
System for Message-Oriented Programming

3.2 - 2 RTO-MP-IST-064

RTO-MP-IST-064 3.3 - 1

3.3 – Service-Oriented Architecture (SOA) Robustness:
The Road Ahead

Tomas Feglar
International Consultant in Information Systems Research and Architecture

Vondrousova 1199, 163 00 Prague 6
CZECH REPUBLIC

Email: feglar@centrum.cz

This section was received as a PowerPoint
presentation in PDF format.

mailto:feglar@centrum.cz

3.3 – Service-Oriented Architecture (SOA) Robustness: The Road Ahead

3.3 - 2 RTO-MP-IST-064

RTO-MP-IST-064 3.4 - 1

This section was received as a PowerPoint
presentation in PDF format.

3.4 – Strategies for Achieving Dependability
in Coalitions of Systems

Mary Shaw
A.J. Perlis Professor

Institute for Software Research International
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891

USA

Email: mary.shaw@cmu.edu

mailto:mary.shaw@cmu.edu

3.4 – Strategies for Achieving Dependability in Coalitions of Systems

3.4 - 2 RTO-MP-IST-064

RTO-MP-IST-064 3.5 - 1

3.5 – Closed-Loop Management Patterns

Joe Sventek
Professor of Communications Systems

Department of Computing Science
University of Glasgow
17 Lilybank Gardens

Glasgow, Scotland G12 8RZ
UNITED KINGDOM

Email: joe@dcs.gla.ac.uk

This section was received as a PowerPoint
presentation in PDF format.

mailto:joe@dcs.gla.ac.uk

3.5 – Closed-Loop Management Patterns

3.5 - 2 RTO-MP-IST-064

RTO-MP-IST-064 4 - 1

4.0 – Service-Oriented Architecture (SOA)
Robustness: The Road Ahead

Tomas Feglar
International Consultant in Information Systems Research and Architecture

Vondrousova 1199, 163 00 Prague 6
CZECH REPUBLIC

Phone: +420 235 313 380, Fax: +420 235 313 380

Email: feglar@centrum.cz

ABSTRACT

Service-Oriented Architecture is a significant and integral part of the whole enterprise strategy. It must
harmonize business process re-engineering with a power of enterprise technology infrastructure focusing
Stability and Agility on the Enterprise Business Processes tier and Robustness on the SOA services tier.
Robustness can be very effectively applied for SOA Enterprise Solutions by two ways; using enterprise
System Engineering Support models for Short-Term solutions and using Robustness Patterns at the lower
layers of SOA architecture for Long-Term solutions. Because SOA is more managerial then technological
problem we propose Robustness based SOA Roadmap.

Keywords – SOA architecture, availability, robustness, risk analysis and management, system engineering

1.0 INTRODUCTION

The armed forces in East European Countries are under massive redesigning that requires a combination of
process oriented and technologically oriented efforts. The border between these two efforts stimulates
research activities oriented to service delivery in accordance with the needs of enterprise agility. At the same
time we can observe increasing popularity of modeling that combines three main components – People,
Process, and Technology [13,12,2,5]. Process re-engineering results mutual influences of these three
components but it has to be synchronized with information security planning that corresponds with the
robustness as a mechanism improving system stability and security. This is very important indicium but we
feel that it has to be encapsulated into more comprehensive system engineering discipline [14,15,4].

SOA is much matter of management as it is technology [17]. To understand all key SOA management
issues is difficult. Nowadays more typical SOA management practices stress only some of these issues
increasing “stove pipe” risks in SOA project management. It is especially critical in military domain
where stabile services directly influence Force Management.

This paper attacks SOA Robustness strategy in the context of the SOA based Robustness Roadmap that
is understood as one of possible ways how to improve SOA management applying system engineering
approach.

SOA Roadmap includes three main phases (Figure 1):

• Phase 1: Synthesize Enterprise Application Integration (EAI) Environmental Model and Decision
Support Models.

• Phase 2: Establish SOA based Scenario Landscape.

• Phase 3: Establish SOA Robustness Enterprise Solutions using System Engineering Support
Models and Robustness Patterns.

mailto:feglar@centrum.cz

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 2 RTO-MP-IST-064

System Engineering Approach to a SOA Robustness
Decomposition

TRA 1

V

V

V

V VV

V

Synthesize Enterprise Integration (EI) Model for Scenario
Risk Analysis

TRA 2

Synthesize Enterprise Application (EA) Model for Service
Enablement Strategy

TRA 3

Synthesize Decision Support Model for SOA Robustness
Financing

TRA 4

Synthesize SOA Services Scenario Concept
(SOA_SSC)

TRA 5

Synthesize SOA_SSC Loss of Availability Model

TRA 6

Synthesize SOA Solution with Robustness Patterns

TRA 7

Synthesize SOA Robustness Technological Landscape

TRA 8

Synthesize SOA Enterprise Solutions using Enterprise
Robustness Patterns

TRA 10

SOA Robustness Enterprise Solution System
Engineering Support Model

TRA 9

G1: EAI Environment
Model for Risk Analysis as

a Basement for SOA
Robustness Requirements

G2: Decision Support
Model as a basement for

SOA Robustness
Financing

G4: Long Term Solutions
based on Robustness

Patterns

G3: Short Term Solutions
Optimizing applying
System Engineering

Support Models

SOA RoM Ph 1: Synthesize EAI Environmental Model and Decision Support Models

SOA RoM Ph 3: Establish SOA Robustness Enterprise Solutions using System Engineering
Support Models and Robustness Patterns

SOA RoM Ph 2: Establish SOA based Scenarios Landscape

Figure 1: Robustness Based SOA Roadmap.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 3

Following this roadmap we hope to achieve four management goals:

• Goal 1: EAI Environment Model for Risk Analysis as a Basement for SOA Robustness
Requirements Specification.

• Goal 2: Decision Support Model as a basement for SOA Robustness Financing.

• Goal 3: Short-Term Solutions Optimizing applying System Engineering Support Models.

• Goal 4: Long-Term Solutions based on Robustness Patterns.

Each of these phases encapsulates relatively comprehensive modeling constructs; it was the reason why we
decided to prepare this paper as the outcome of the model named “SOA Robustness – The Road Ahead”
developed in accordance with Component Architecture Framework (CAF) approach [6,7,8]. The paper itself
describes the most important milestones. Appendix 1 explains steps characterizing particular milestones.

Paragraph 1 describes Phase 1 that includes 4 tracks. The track TRA1 explains SOA Robustness
decomposing this topic applying system engineering approach in accordance with ISO / IEC 15288 [15].
The track TRA2 explains Enterprise Integration (EI) Model synthesis for Scenario Risk Analysis. TRA4 is
the most critical for SOA Robustness initiative financing. Using decision support modeling we developed
some useful decision support templates that avoid decision makers intuitive, not optimal decision making.

Second SOA Roadmap phase (paragraph 2) introduces two concepts that allow better management of huge
amount of potential scenarios that relate to the SOA implementation. TRA5 illustrates key steps in designing
SOA Services Scenario Concept. This Concept cam be further used for synthesis of SOA solution with
robustness patterns (TRA7) or in a combination with Loss of Availability Model (TRA 6) for Short-Term
SOA robustness solutions. TRA6 explains key items characterizing SOA Loss of availability Model that we
need for SOA Robustness Landscape synthesis (TRA 8) and for optimizing of the Short Term system
solutions.

Third SOA Roadmap phase (paragraph 3) consists of two tracks. TRA9 produces one of the main goals of
SOA Roadmap – Short-Term Solutions Optimizing applying System Engineering Support Models. TRA10
is more implementation oriented and produces Long-Term Solutions based on Robustness Patterns.

2.0 ENTERPRISE APPLICATION INTEGRATION (EAI) ENVIRONMENT
MODEL AND DECISION SUPPORT MODEL

The SOA Robustness decomposition approach considers that in the final stage of SOA deployment
strategy Robustness Patterns will become a core of Enterprise Technology Infrastructure on which depend
all key business processes (Figure 2). SOA based interoperability among Enterprises will require Stability
and Agility at the business process (BP) tier and Reliability at the SOA services tier. To achieve these two
very fundamental requirements we must be able to manage all important factors that significantly
influence these requirements. In accordance with the Figure 2 they are:

• System Engineering experience based on Architecture Design Process, Risk Management Process,
Information Management Process, and Decision Making Process.

• System Integration experience based on well understanding of Enterprise Technology
Infrastructure.

• Enterprise Application experience based on well understanding of Service-Oriented Architecture
and its practices.

• Decision Making experience capable combining all previously mentioned experiences with the
robustness oriented goals that deal with a Balance between Business Process Impacts and a Cost
of SOA Robustness.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 4 RTO-MP-IST-064

Figure 2: System Engineering Approach to a SOA Robustness Decomposition.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 5

Rapid increasing of the IT service delivery market stimulates research activities in the area of Service
Quality and Marketing [19, 22]. Significantly less progress we can see in the area of service delivery in a risk
environment [9]. It is serious problem; without risk motivated basement it is difficult to create robustness
solution because we loss opportunity to argue robustness cost comparing it with business process impacts.

Figure 3 focuses Enterprise Integration (EI) Model; we consider this model as a model of environment in
which SOA exists (SOA is primarily about applications). Enterprise node anatomy is analyzed from two
perspectives – business process (BP) Impact and Threats / Vulnerabilities. Risk landscape results of these
two perspectives. Particular risks can be calculating using automated tools like CRAMM [3] or analyzed
through Threat Agents [16]. Next step following risk Analysis is a Risk Treatment. Figure 3 associates this
step with designing of measures allowing decreasing risks to the acceptable level. We consider this
framework as appropriate for merging with robustness oriented activities as for example Frederics’ High-
Availability Solutions [18].

Service Enablement Strategy requires a development of Enterprise Application (EA) model that consists
of three parts:

• Enterprise Integration Roadmap encapsulating SOA Architecture (Figure 4);

• Hitchin’s Model of System Engineering, Defense Force horizons and SOA life cycle (Figure 5); and

• Force Management and Force Development Process and SOA Milestones (Figure 6 and 7).

Service Integration Architecture allows effective management of the SOA deployment strategy only if we
understand influences of other architectures within particular enterprise (Figure 4). For example, Business
Process Architecture allows us understanding a Vision (SOA deployment target) and Current Integration
Assessment let us realistically assess constrains we must consider for our SOA milestones establishment.

SOA Concept distinguishes five components that differ from viewpoint of their life cycle (Figure 5).
Robustness can be applied primarily for Technology Infrastructure (it’s life cycle (LC) longs approximately
20 years) and for Services (their LC longs approximately 15 years). At the beginning of our paper we stress
that SOA addresses a space between processes and technology respectively between process owners and IT
specialists. To analyze People behavior in the SOA deployment strategy we need additional perspective
oriented to the capability. It is the reason why we recommend combining SOA life cycle with Hitchin’s
model [13]. To achieve the Socio – Economic level, the Capability acquired during technology acquisition
(Layer 2 of Hitchin’s model) is not enough and must be followed with process owners oriented capability
development (levels 3 and 4).

Enterprise SOA strategy distinguishes five milestones [8] in accordance with Figure 6 and 7. M1 relates to
enterprise in which all key areas (Planning and Budgeting, HR Management, and Logistic) are supported by
monolithic applications. For better synchronization of these milestones with East European armed forces
transformation process we can omit first two milestones and start with milestone M3 and M4. The first one is
typical for armed forces developing their key information systems as bespoke applications; milestone M4 is
more appropriate for armed forces starting with ERP systems like SAP, Oracle Business Suite, PeopleSoft or
Axapta.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 6 RTO-MP-IST-064

Figure 3: Enterprise Integration (EI) Model for Scenario Risk Analysis.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 7

Figure 4: Service Integration Architecture in the Context of Enterprise Integration Strategy.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 8 RTO-MP-IST-064

Figure 5: Harmonization of the SOA Life Cycle and Defence Force Capability Development.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 9

Figure 6: Force Development and Force Management Processes and SOA Milestones.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 10 RTO-MP-IST-064

Figure 7: Business Processes and SOA Functionality Harmonization (Milestone M4).

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 11

During explanation of SOA Robustness decomposition concept (Figure 2) we stress how important are
Stability and Agility at the business process (BP) tier and Reliability at the SOA services tier. Achieving
these two requirements at the end of the SOA Roadmap we should probably apply different approaches for
milestone M3 and M4. M3 seems to be more suitable for long term robustness solutions because it
offers a possibility to develop SOA services using robustness patterns (in this case our SOA concept is
deployed from Bottom to Up). M4 requires Top Down approach. We have not enough time diving into
technological aspects because our main attention must be given to process re-engineering. In this case
short term robustness solutions seem to be more appropriate because they directly increase stability of
ICT environment of business processes that are not stabile as result of transformation process.

Tracks TRA1 up to TRA3 clearly show a complexity that must be managed to successfully achieve SOA
strategic goals. Robustness is very important piece of the whole picture but requires appropriate support at
the decision makers’ level.

It is worth to stress that right decision requires also modeling support that allows decision makers clear
understanding the goal of decision, alternatives and criteria. Track TRA4 (Figure 8) describes decision
oriented modeling for SOA Robustness Financing putting together.

Main goals:

• Goal 1: Justifying a Budget for Robustness oriented System Engineering Support in the information
and communication technology (ICT) total cost of ownership (TCO) Context.

• Goal 2: Justifying a Budget for Robustness oriented System Engineering Support in the Information
Security Context.

• Prioritize Robustness SOA Solutions Alternatives.

And main groups of activities:

• Arguing Robustness based SOA System Engineering Support Benefit in the ICT TCO Context
analyzing SOA Life Cycle alternatives.

• Arguing Robustness based SOA System Engineering Support Benefit in the Information Security
Context analyzing Risk Treatment Alternatives.

• Development and application of the Decision Support Model allowing choosing the best Robustness
based SOA Solution.

Figures 9 and 10 briefly illustrate first and third activities.

One of the most popular ERP systems is SAP. A.W. Scheer – The main SAP architect – explains his
experience with application of ARIS for SAP life cycle [21] (Figure 9). Scheer’s experience relates two
curves 1 and 2. Curve 1 characterizes total cost of ownership (TCO) across ERP life cycle when we omit
system engineering support completely. Curve 2 introduces significant TCO savings especially during
operational stage when we need constantly improved processes. Both curves also had shown unstable stages
that follow ERP infrastructure upgrades. Robustness is the right mechanism to solve problems like these,
but it must become an integral part of the whole ERP strategy from the beginning (see curve 3). TCO / ERP
LC diagram in the Figure 9 is also acceptable for senior staff that can see the space for its decision.

Figure 10 illustrates a decision support modeling inspired by Frederics’ paper that is also presented on this
meeting [18]. They describe five products allowing significantly improve system robustness. We developed
this model in accordance with AHP theory [20] applying EC 2000 software. More detailed explanation is
included in Appendix 1.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 12 RTO-MP-IST-064

Figure 8: Decision Support Model for SOA Robustness Financing.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 13

Figure 9: Identification of the Space for Robustness Budget Allocation.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 14 RTO-MP-IST-064

Figure 10: SOA Robustness Decision Support Model.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 15

3.0 SERVICE-ORIENTED ARCHITECTURE (SOA) BASED SCENARIOS
LANDSCAPE

First 4 tracks described in the previous paragraph are oriented primarily to the frameworks within which we
can successfully manage SOA based Robustness strategy. But we also need bricks allowing us building the
walls. SOA strategy offers a plenty of ways how to assembly SOA services to meet process requirements.
Before we start doing this we must carefully arrange our workspace, another words we need scenarios.

Track TRA5 (Figure 11) shows:

• Enterprise SOA Services and Layers; and

• SOA Services Scenario Concept (SOA SSC).

SOA SCC distinguishes four basic parts necessary for process modeling in SOA environment. We explain
these parts more detailed in Appendix 2 (see Material Request Order (MRO) process sample). SOA SSC
uses following constructs:

• Organizing Diagrams let us understanding parts of an enterprise affected by a process.

• Enterprise Service Structure Diagrams let us understanding requested functionality decomposition
across Enterprise SOA services.

• Event Process Chain (EPC) Diagrams let us visualize processes by the way that can be easily
understand by business process owners.

• Service Interaction Diagrams are preferred by designers. These diagrams are usually derived from
functional blocks used in EPC diagrams.

Figure 12 depicts SOA services and layers. Basic and Intermediary Services seems to be suitable for
implementation of SOA Robustness Patterns that can be used for SOA Enterprise Solution building.

Robustness that applies high-availability products [18] requires a development of appropriate SOA SSC
that can be used for synthesizing of a Loss of Availability Model. This kind of synthesizing starts with a
decomposition of particular high level process (like operation planning (OPLAN)) into functionalities that
can be overlapped by SOA services functionality (Figure 13). Figure 13 depicts a decomposition of a
Material Order Request (MRO) processing at the Enterprise Level (this process is owned by logisticians)
Process layer splits enterprise level process into three sub-processes – Material Management (MM),
Logistic Execution, and Sales and Distribution (SD). Each of these sub-processes needs support of lower
SOA layers. SOA SSC Loss of Availability Model usually consists of three modeling constructs (Figure
14). A content of these layers is depicted in Appendix 2.

4.0 SOA ROBUSTNESS ENTERPRISE SOLUTIONS USING SYSTEM
ENGINEERING SUPPORT MODELS AND ROBUSTNESS PATTERNS

Last two tracks of the Robustness based SOA Roadmap (TRA9, TRA10) produce outcomes corresponding
two main goals (Figure 15):

• Short Term Solutions Optimizing applying System Engineering Support Models (goal G3); and

• Long Term Solutions based on Robustness Patterns (goal G4).

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 16 RTO-MP-IST-064

Figure 11: SOA Services Scenario Concept, SOA Services and Layers.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 17

Figure 12: Enterprise SOA: Services and Layers.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 18 RTO-MP-IST-064

Figure 13: Enterprise Service Structure Diagram: MRO Process Decomposition.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 19

Figure 14: Main Parts of the SOA SSC Loss of Availability Model.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 20 RTO-MP-IST-064

Figure 15: Last Two Tracks of the Robustness Based SOA Roadmap.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 21

High-Availability products are more expensive and require more sophisticated maintenance then standard
products. As architects we must be sure that ways how we apply these products improve system stability
without negative impacts to enterprise agility.

System engineering let us solving this kind of problems. Loss of Availability Models capture all aspects of
process impacts from process owners’ perspective and allow architects understanding dependencies of
business processes on Enterprise Technology Infrastructure. Risk Analysis and Risk Management
(RARM) Models allow us controlling of risk levels on acceptable level. Robustness is one of key issues
that participate in risk management. RARM Models in a combination with Decision Support Models
(DSM) let us involving Robustness directly into BOCR (Benefits, Opportunities, Cost, and Risk) decision
process. All these system engineering models can be further applied during SOA life cycle significantly
increasing overall system stability and availability (see Figure 7).

Robustness patterns address primarily bottom two layers in the Enterprise SOA – Basic and Intermediary
(Figure 12). These two layers are subject of enterprise application architects’ interest [1,10,11]. Patterns of
Enterprise Application Architecture can be principally enhanced with robustness methods and properties
but it is not easy job. Object oriented programming experience is not enough because requirements for
robustness must be derived from dynamic behavior of services in enterprise context. Managing process
integrity is a nice example how designers can identify requirements for dynamic behavior of SOA services
[17]. Designer starts with analysis of technical failures and business exceptions. Technical Concepts for
Robustness can be design using one or more approaches:

• Logging and Tracing.

• ACID (Atomicity, Consistency, Isolation, and Durability) Transactions.

• Transaction Monitors and distributed 2PC (Two-Phase Commit Protocol).

• Nested and Multilevel Transactions.

• Persistent Queues and Transactional Steps.

• Transaction Chains and Compensation.

5.0 CONCLUSION

Robustness based SOA Roadmap is very effective way of management in situations when SOA strategy has
harmonizing technological capabilities with business process changes. It allows flexible combination of two
kinds of efforts. First, oriented to Short-Time solutions uses power of the System Engineering Support;
second approach dives into lower layers of the Enterprise SOA increasing their stability and availability.

The topic discussed in this paper stimulates few interesting research activities for near future:

• Enterprise Integration Model for Scenario Risk Analysis (Figure 3) opens an opportunity to show
high available products outcome [20] in the context of enterprise risk analysis and risk management.

• SOA Robustness Decision Support Model (Figure 10) can be developed as etalon model supporting
decision makers responsible for SOA deployment.

• SOA Services Scenario Concepts (Figure 11) in a combination with Loss of Availability Model
(Figure 14) significantly improve communication between business process owners and robustness
designers linking processes understandable to owners with robustness solutions developed by
designers.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 22 RTO-MP-IST-064

6.0 REFERENCES

[1] Brown, Whitenack: http://members.aol.com/kgb1001001/Chasms.htm

[2] Burlton, R.T.: “Business Process Management”, Sams Publishing, ISBN: 0-672-32063-0.

[3] CCTA: CRAMM Risk Analysis and Management Method, Crown Copyright, CCTA IT Security and
Privacy Group, London, 1991, 245.

[4] Cook, S.C.: “The Rise of Systems Engineering within the Australian Defence Organization”, IEEE
2004 Proceedings, Singapore, 2004.

[5] El-Gayar, O.F., Fritz, B.D.: “Business Process Re-engineering and Information Security Planning:
Opportunities of Integration”, SCI 2004 Proceedings, Florida, 2004.

[6] Feglar, T.: “CAF Methodology Usage for Management of Information Systems Protection”, SCI 2004,
July 18-21, Orlando, Florida (USA).

[7] Feglar, T., Levy, J.: “Protecting Cyber Critical Infrastructures (CCI): Integrating Information Security
Risk Analysis and Environmental Vulnerability Analysis”, IEEE 2004, October, Singapore.

[8] Feglar, T., Levy, J.: “Dynamic Analytic Network Process: Improving Decision Support Information
and Communication Technology”, IFORS 2005, July, Honolulu, Hawaii.

[9] Feglar, T.: “ITIL based Service Level Management if SLAs cover Security”, CITSA 2004, July,
Florida.

[10] Fowler, M.: “Patterns of Enterprise Application Architecture”, Addison Wesley, ISBN: 032 11 27420.

[11] Fowler, M.: http://martinfowlercom/ap2/timeNarrative.html

[12] Gelimas, U.J., Sutton, S.J., Fedorowitz, J.: “Business Processes and Information Technology”,
Thomson South Western, ISBN: 0-324-00878-3.

[13] Hitchins, D.K.: “Advanced Systems Thinking, Engineering, and Management”, Artec House, ISBN
1-58053-619-0.

[14] INCOSE: International Council on System Engineering, http://www.incose.org/

[15] ISO / IEC 15288: System Engineering – System Life Cycle Process, ISO, 2002.

[16] Jones, A., Ashenden, D.: “Risk Management for Computer Security”, Alsevier, ISBN 0-7506-7795-3.

[17] Krafzig, D., Banke, K., Slama, D.: “Enterprise SOA”, Prentice Hall, ISBN 0-13-146575-9.

[18] Michaud, F., Painchaude, F.: “High Availability Solutions to Common Software Failures”, NATO
Research Workshop IST 064/RW 5011, 2006, November, Prague.

[19] Parasuraman, Zeithaml, A., Berry, L.L.: “A Conceptual Model of Service Quality and its Implication
for Future Research”, Journal of Marketing, Vol. 49, 1985, pp. 41-50.

[20] Saaty, T.L.: “The Analytic Network Process – Decision Making With Dependence and Feedback”,
RWS Publications, Pittsburgh, ISBN 0-9620317-9-8.

http://members.aol.com/kgb1001001/Chasms.htm
http://martinfowlercom/ap2/timeNarrative.html
http://www.incose.org/

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 23

[21] Scheer, A.V.: “ARIS for SAP NetWeaver: The Business Process Design Solution for SAP
NetWeaver”, IDS Scheer, 2005.

[22] Zeithaml, V.A., Bitner, M.J.: “Service Marketing”, McGraw-Hill, New York, NY, 1996, p. 700.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 24 RTO-MP-IST-064

Appendix 1: The Decision Support Model for a Choice of
“The Best Solution Based on SOA Robustness”

Appendix 1 describes very simple AHP model that allows choosing the most optimal alternative using
criteria for their comparison.

Model structure is depicted in the Figure 1. Alternatives represent high-availability products described by
Frederic Michaud and Frederic Painchaud (“High-Availability Solutions to Common Software Failures”).
In accordance with AHP methodology we firstly design preferences for chosen criteria and then we
compare alternatives across each criteria respectively sub-criteria.

Figures 2 – 7 show characteristic snapshots used by decision makers.

Figure 2 shows finial model in which all preferences were successfully calculated and checked for
integrity.

Figure 3 visualize final preferences; the most preferable high-availability solution is alternative A2 –
Microsoft Clustering Services; the second best is alternative A1 – Marathon everRun.

Figure 4 illustrates very different performance of alternatives for different criteria. For example alternative
A2 has very high performance in criteria C2 (Adding Value), but very low in criteria C4 (Cost). Alternative
A5 (Linux) has very low performance in criteria C1 but very high in criteria C4.

In situation like just described decision makers want to avoid mistakes that relate to criteria preferences
calculations. Dynamic graphs allow us elaboration with other criteria preferences.

Figure 5 depicts starting situation (Alternative A2 is the most preferable).

Figure 6 illustrates the situation when decision maker increases preference for criteria C1 (Availability
Improvement) from 19.1 % to 28.5 %. We can see that preferences of alternatives become different –
the winner is alternative A1.

In figure 7 we increased preference for criteria C5 (Cost) from 10.9 % to 33.2 %. A1 is still the winner but
followed by alternative A5 (Linux).

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 25

Goal: The Best Solution
based on SOA Robustness

C1: Availability
Improvement C2: Adding Value C3: Number of

Threats Covered C4: Cost C5: Risk Effectivity C6: Complexity

C4.1: Acquisition C4.2: Maintenance

A1: Marathon
everRun

A2: Microsoft
Clustering Services

A3: Veritas Cluster
Service

A4: VMWare Virtual
Infrastructure

A5: Linux High-
Availability Project

THE GOAL

CRITERIA

ALTERNATIVES

Figure 1: Decision Model Structure.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 26 RTO-MP-IST-064

Figure 2: Final Decision Support Model in which All Calculations were Successfully Finished.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 27

Figure 3: The Winner Alternative is A1 – Microsoft Clustering Services; the Second Best
Alternative is Marathon everRun. We want to know more about decision making

process and we use Performance graph in accordance with next figure.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 28 RTO-MP-IST-064

Figure 4: Performance Graph Shows very Different Behavior of Alternatives in Dependency on Particular

Criteria. Because alternatives are so heavily dependent on criteria and their preferences we want to
know how situation could change in the case that we change preferences among criteria.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 29

Figure 5: Dynamic Graph let us Observe Influence how Criteria Preferences could Change

Results of Our Decision. In this case we consider criteria preferences that results
situation described in the Figure 3 (A2 winner, A1 second best).

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 30 RTO-MP-IST-064

Figure 6: We have Increased Preference of the Criteria C1 (Availability Improvement)

from 19.1 % to 28,5 %. We can see that preferences of alternatives
become different – the winner is alternative A1.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 31

Figure 7: We have Increased Preference of the Criteria C5 (Cost) from 10.9 % to

33.2 %. A1 is still the winner but followed by alternative A5 (Linux).

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 32 RTO-MP-IST-064

Appendix 2: The Material Request Order (MRO) Process Sample

Appendix 2 describes scenario for MRO processing and how this scenario is applied for a synthesize of
the Loss of Availability model. This sample let us understanding of tracks TRA5 and TRA 6 in the
Robustness based SOA Roadmap.

Each scenario is developed in two synchronized tracks – TRA5 and TRA6 (Figure 1).

Figures 2 – 8 show snapshots characterizing SOA Services Scenario Concept (SOA SSC). Figures 9 – 13
show snapshots characterizing SOA SSC Loss of Availability model.

Figure 2. Four main parts of the SOA SCC – Organization Diagram, Enterprise Service Structure
Diagram, EPC Diagram, and Service Interaction Diagram.

Figure 3. SOA SCC Organizing Diagram captures all key actors (organization units) involved in the MRO
processing.

Figure 4. Enterprise Service Structure Diagram let us understanding SOA services hierarchy that must be
available for the MRO processing.

Figure 5. EPC Diagram visualizes information and material flows among various organizational levels
involved in the MRO processing. EPC diagrams are also applied for modeling inside each organizational
level (see next figures).

Figure 6. Request for Material Order (MRO) appears at the tactical level and it is created by logisticians in
the CRU Battalion.

Figure 7. The first superordinate organization unit that reacts to the battalion’s MRO is the CRU Brigade.

Figure 8. Activities described as green blocks in EPC diagrams are supported by SOA services functionality
that is a result of interaction among particular SOA services in accordance with Service Interaction
Diagrams.

Last five snapshots deal with the SOA SSC Loss of Availability model.

Figure 9. Three main parts of the SOA SSC Loss of Availability model – Network System Configuration
Diagram, Network Topology Diagram, and Process (EPC) – System Dependency Diagram.

Figure 10. Network System Configuration Diagram captures all ICT components that must be available
for the MRO processing. ICT components are associated with network nodes.

Figure 11. Network Topology Diagram captures all organization units involved in the MRO processing.
Organization units are associated with network nodes.

Figure 12. Process (EPC) – System Dependency Diagram copies EPC Diagram used for visualization of
the MRO processing (see Figure 5).

Figure 13. Process (EPC) – System Dependency Diagram is applied for each organizational level involved
in the MRO processing (Figure 11). It allows understanding of dependencies among events, functions, and
information objects (services) and ICT components.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 33

Figure 1: Each SOA Services Scenario is Developed within Two Synchronized Tracks TRA5 and TRA6.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 34 RTO-MP-IST-064

Figure 2: Four Main Parts of the SOA SCC – Organization Diagram, Enterprise

Service Structure Diagram, EPC Diagram, and Service Interaction Diagram.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 35

Figure 3: SOA SCC Organizing Diagram Captures All Key Actors (Organization Units) Involved in the MRO Processing.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 36 RTO-MP-IST-064

Figure 4: Enterprise Service Structure Diagram let us Understanding SOA

Services Hierarchy that Must be Available for the MRO Processing.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 37

Figure 5: EPC Diagram Visualizes Information and Material Flows among Various Organizational Levels Involved in the

MRO Processing. EPC diagrams are also applied for modeling inside each organizational level (see next figures).

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 38 RTO-MP-IST-064

Figure 6: Request for Material Order (MRO) Appears at the Tactical Level and it is Created by Logisticians in the CRU Battalion.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 39

Figure 7: The First Superordinate Organization Unit that Reacts to the Battalion’s MRO is the CRU Brigade.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 40 RTO-MP-IST-064

Figure 8: Activities Described as Green Blocks in EPC Diagrams are Supported by SOA Services Functionality that

is a Result of Interaction among Particular SOA Services in Accordance with Service Interaction Diagrams.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 41

Figure 9: Three Main Parts of the SOA SSC Loss of Availability Model – Network System Configuration

Diagram, Network Topology Diagram, and Process (EPC) – System Dependency Diagram.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 42 RTO-MP-IST-064

Figure 10: Network System Configuration Diagram Captures All ICT Components that Must be

Available for the MRO Processing. ICT Components are Associated with Network Nodes.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 43

Figure 11: Network Topology Diagram Captures All Organization Units Involved in

the MRO Processing. Organization units are associated with network nodes.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 44 RTO-MP-IST-064

Figure 12: Process (EPC) – System Dependency Diagram Copies EPC Diagram

Used for Visualization of the MRO Processing (see Figure 5).

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

RTO-MP-IST-064 4 - 45

Figure 13: Process (EPC) – System Dependency Diagram is Applied for Each Organizational Level Involved in the MRO Processing

(Figure 11). It allows understanding of dependencies among events, functions, and information objects (services) and ICT components.

SERVICE-ORIENTED ARCHITECTURE
(SOA) ROBUSTNESS: THE ROAD AHEAD

4 - 46 RTO-MP-IST-064

RTO-MP-IST-064 5 - 1

5.0 – Minutes of the NATO RTO Workshop on
“Building Robust Systems from Fallible Construction”

Prague, 9 and 10 November 2006

Prepared by Yves van de Vijver

5.1 AGENDA

Thursday, 9 November

9:00 Welcome, logistics, introductions of participants
 - Morven Gentleman and Milan Snajder

9:15 Introduction to NATO Research and Technology Organization, and the Information Systems
Technology Panel

 - Lt. Col. Patrick Prodhome, IST Panel Executive

9:30 Introduction to topic and process
 - Morven Gentleman

9:45 First working session: framing the problem – what are the challenges today and why is the research
done in the past not enough?

• Systems of systems
• Pre-existing third-party code, including COTS and Open Source
• Installation and configuration errors
• Misunderstood interfaces and protocols
• Invalid operator input
• Malicious attacks
• Rate of upgrades
• …

10:30 Break

10:45 First working session resumes

12:30 Lunch

14:00 First working session resumes

15:30 Break

15:45 First working session resumes

16:30 Summary of day’s discussions

17:00 End of first day

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

5 - 2 RTO-MP-IST-064

Friday, 10 November

9:00 Second working session: what new technology or new approaches might reduce exposure risk or
facilitate damage recovery

• Education to ingrain fault sensitivity awareness
• Architecture, especially Service Oriented Architecture
• Internet and Web technologies, especially web services
• Virtual machines
• Genetic programming
• Trouble sensors
• Situational awareness and autonomic frameworks
• Forward rather than rollback error recovery
• Dependability of adaptive systems
• …

10:30 Break

10:45 Second working session resumes

12:30 Lunch

14:00 Second working session resumes

15:30 Break

15:45 Way forward: Summary of conclusions and next steps

17:00 End of workshop

5.2 DAY 1, 9 NOVEMBER 2006

5.2.1 Welcome and Objective
The chairman of the task group and the workshop, Dr. Morven Gentleman (Canada), opens the meeting
and welcomes the attendees to the workshop. The objective of the task group is to produce a report for the
NATO community on the subject of robust systems/software development. The topic of robustness/
reliability is not new, but goes back all the way to the early days of computers and software. Therefore,
the types of questions to be addressed in this workshop are the following:

• What has changed in the world of fault-tolerance and building systems in the last 30 years?

• What is different now compared to then?

• What has not been addressed before?

• What new techniques for building systems exist, and how do they deal with reliability?

• ….

After this welcome and introduction to the objective of the workshop, the NATO/RTO National Coordinator
of the Czech Republic, <Name>, welcomes the attendees to the beautiful city of Prague and the magnificent
workshop location at the Czech Ministry of Defence.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

RTO-MP-IST-064 5 - 3

Next, Lt. Col. Patrick Prodhome, the IST Panel Executive, introduces NATO/RTO and the IST Panel.
He shows the central position of the RTO in the NATO Structure and explains how the RTO works.

5.2.2 First Working Session
The first working session consisted of a number of short introductions describing the problem area and the
invited experts’ views on this area, followed by longer, in-depth presentations of the work of some of
these experts.

5.2.2.1 Short Introductions and Views

Dr. Morven Gentleman

The first working session starts with a problem definition by the chairman of the task group, Dr. Morven
Gentleman. He demonstrates the problem by means of a Geographical Information System (GIS),
for instance an internet site with a map of the city of Prague, with public buildings, tourist attractions, public
transport, etc., which you may ask for routes from A to B and the time it takes to get there. These systems
usually contain static data, such as maps, roads and rivers, which change infrequently, and dynamic data,
such as public transport schedules, and road works. More sophisticated systems may also take time-based
data and weather into account (e.g. to calculate time to move from A to B). Often, this information is not in
the system itself, but retrieved from external sources. And these external sources are systems of their own,
developed and maintained by third-parties not under control of the GIS operations. Also, the usage of these
external sources may not be as originally foreseen by the developers of that system. Finally, a main source of
errors is wrong operator input, and this can happen anywhere in the system itself, or any of the external
sources used.

The above example shows the many things that can go wrong when building an application on the basis of
a collection of (external) components of which the reliability is unknown, or questionable. Building such
an application from scratch, however, is an expensive solution, and hardly ever done (especially not in
commercial applications).

The classical approaches towards reliability mostly duplicated components (different implementations) and
used a voting system to determine which “answer” was the correct one, or used an “oracle” to decide
whether an answer was ok, or not. A basic assumption in many of the classical approaches was the presence
of an ability to roll-back to a previous (correct) state and try again from there. In current applications, such as
the one above, this is not always possible. So what to do then?

This last question is also very relevant to the NATO context, in which coalitions have to be formed in a
very short time frame, and in which the composition of coalitions change regularly. Each of the partners
brings their own systems and these have to be put together quickly.

Prof. Alexander Romanovsky

Prof. Romanovsky (University of Newcastle) is an expert in (software) fault tolerance and explains that a
shift has taken place in this field. Traditionally, software fault tolerance was built into systems to deal with
hardware failures. But nowadays, faults are introduced because of architectural mismatches between
different components or subsystems within the system, or because of faults in the underlying infrastructure in
which the components rely. These different types of faults ask for different types of techniques to deal with
them. And to add further to the problem, also in implementing fault tolerance, faults are introduced.
Therefore, he would like to direct research towards “software engineering for fault tolerance”, i.e. a method
for software engineering in which fault tolerance is an inherit part of the method, not an add-on afterwards.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

5 - 4 RTO-MP-IST-064

Prof. Mary Shaw

Prof. Shaw (Carnegie-Mellon University) is an expert in software architecture models. Recently, she has
been researching high-level system design methods in which costs (e.g. for high assurance) are taken into
account as an integral part of the design. The needs of the user play an important role in this. If, for example,
the GIS application described by Dr. Gentleman earlier will be used by an ambulance service, reliability and
accuracy must be much better than if the application will be used by tourists exploring the city. Same
application, but a need for different designs (resulting in different costs).

Prof. Shaw also mentions an important difference between system design thirty years ago, and system
design now: lack of central control. Where large systems in the past were usually designed by one chief
designer, or a small team of designers, who had control over the whole system design, large systems today
are more and more composed out of distributed components under distributed control. This introduces the
problem that any of the components of the system may change, without notice, at any time.

Tomas Feglar MSc PhD

Tomas Feglar is an international consultant in Information Systems Research and Architecture and an
expert in process integration and systems engineering. He has a large experience in working with the
Czech Ministry of Defence. He notices that the eastern European countries and their defence organisations
are modernizing and professionalizing fast. This challenge is accompanied by a rapid rate of change in
Information Technology. He has been involved in meeting these challenges for the Czech Army and
separated the two types of challenges by introducing business process models. First, a technology
independent set of business models were composed for Army Force Management and Force Development.
Then, these models are populated with technology and risks and threats to this technology are identified.
In the systems engineering activity, these risks and threats are explicitly taken into account in the
architectural design process, risk management process, information management process, and security
management process.

As a final remark, Mr. Feglar would like to see robustness become a major topic in Service Oriented
Architectures.

Maarten Boasson

Maarten Boasson is an expert in software architectures, especially for distributed applications. He worked
for a major Dutch defence company and work on distributed, real-time architectures for, among others,
frigates of The Royal Netherlands Navy. He always believed architecture was the answer to all problems,
but over the years he has become more sceptical. When comparing software engineering with other
engineering disciplines, he notices that there is no software engineering “discipline”: no discipline, no
theory, no guidelines. “We are just trying to build systems”.

Most efforts within software engineering are addressed to produce systems with “very few” faults, but one
fault may be too much. Most of the efforts in fault-tolerance are attempts to build a way around faults,
but who are we fooling, but ourselves.

Robust systems must contain no faults. And in order to ever get there, software engineering should
become a “real” engineering discipline.

Christophe Dony

Christophe Dony is an expert on exception handling. His current research consists of analysing languages
for the construction of systems (object oriented, component based, service oriented architectures),
and defining a new one, which will include exception handling mechanisms. Such mechanisms already

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

RTO-MP-IST-064 5 - 5

exist to some degree in software languages (e.g. Java), but not for distributed systems, component based
systems, etc.

Frédéric Painchaud M. Sc.

Frédéric Painchaud works for the Defence Research and Development Canada and is relative new to the
area. He started researching this field because a client needs a framework for building fault-tolerant
distributed systems. The short term goal of the research is to produce an overview of the available products
for such a framework. The long term goal is to develop a new framework. Frédéric has kindly offered the
results of his research so far for a state-of-the-art section in the task group’s final report, for which the task
group is very grateful.

Dr. Morven Gentleman – View of Experts not Present

The chairman of the task group, Dr. Morven Gentleman, finishes this first working session by shortly
introducing some views of experts who could unfortunately not attend the meeting in person.

The first view considers autonomic computing in the form of self adapting or self healing software a
solution to the problem of fault-tolerance. The software monitors itself and, in case of bad performance,
adjusts the built-in control loops. Each individual component does this for itself, and the system for the
system as a whole. This solution is considered most applicable in systems where “faults” do not occur
instantaneously, but do occur as a result of degradation of performance over time.

The second view introduces recovery oriented design as a solution. Given the fact that errors will always
be there (e.g. human operator input errors), design the system in such a way that it can always go back to a
previous, safe state.

The third view abandons the concept of predictive engineering (think what can go wrong and build
something to deal with that) and promotes to run a system in many different situations to find the faults
that (may) occur, for instance by applying genetic algorithms. This view also promotes no to go back to
previous safe states, but go to a stable state from where to continue. Of course, the problem is: “which are
the stable states?”

5.2.2.2 Presentations

After the short introductions, the first working session was resumed with longer presentations, some of
which were based on the position papers submitted.

Tomas Feglar MSc PhD – “SOA Robustness Roadmap”

Tomas identifies four important models to be developed for a system with a Service Oriented Architecture
(SOA):

• SOA Robustness Decomposition;

• Enterprise Integration Model;

• Enterprise Application Model; and

• Decision Support Model.

In this presentation, he focuses on the first of these models. The system is decomposed in business
processes, which provide one or more services to other business processes. System characteristics such as
agility and ability are covered within the business process tier of the (layered) architecture. Reliability is
covered within the SOA tier of the architecture.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

5 - 6 RTO-MP-IST-064

For each of the business processes, risk profiles are defined in which the various threats and impacts are
identified. These threats may be technical (e.g. hardware failure), but also physical (e.g. destruction of parts
of the infrastructure because of war-time activity). For each risk identified, risk measures are determined.
These measures may be measures for fault-tolerance (e.g. in case of hardware failure), but also management
or logistic measures (e.g. spare parts).

The idea behind taking risk management into account from the beginning is that future changes to the
system will be more economical, resulting in lower Total Ownership Costs.

During the work performed for the Czech Army, Tomas has discovered recurring patterns in these risk
profiles and measures, and identified a number of “SOA Enterprise Robustness Patterns” which are used
in numerous places throughout the overall system description.

The modelling activities are supported by a software tool, in which both the process view and the design
view are maintained and synchronized. Tomas demonstrates the use of the tool taking an example from the
position papers of F. Michaud and F. Painchaud.

Prof. Mary Shaw – “Strategies for Achieving Dependability in Coalitions of Systems”

Mary starts her presentation with trends in systems development and use: from local to distributed, from
independent to interdependent, from insular to vulnerable, from installations to communities, from central
administered to user managed, from software to resource, from single systems to coalitions. As a result of
these trends, failures will ripple through these “systems of systems”.

The dependability issues with these systems of systems are numerous:

• Different types of users require different levels of dependability.

• Costs matter (money, delay, disruption), but few can afford high dependability.

• Uncertainty is inevitable because specifications will never be complete, and actual operational
environments are unknown.

• Integration is a bigger challenge than components.

In order to structure the problem domain and the discussions in the rest of the meeting, Mary shows a
classification of types of measures for reliability. The first distinction is the time at which a problem will
be considered: before using the system (preventive), or during use of the system (reactive). Preventive
measures “validate” the system against a standard. This may be a global standard, a relative standard, or a
policy standard. Validation against a global standard is the “traditional” approach, based on analysis and
careful development. Other measures in this category are formal methods, and testing. Validation against
relative standards take the user needs into account, and is therefore categorized as “User-centred”.
Validation against policy standards is an approach in the case of large systems of systems, in which
negotiations among stakeholders drive the standard. This category is therefore called “Ultra-large scale”.
Reactive measures, or “remediation”, can be further decomposed in technological reactive measures
(“fault-tolerance”), technological adaptive measures (“self-adaptive, self-healing”), and economical
reactive measures (“compensation”).

The preventive measures (“validation”) are common in many engineering disciplines. A common factor in
these disciplines is the existence of linear models, which may be validated easily. But, in case of systems
of systems, such linear models probably do not exist. Therefore, validation will be at least very difficult, if
not impossible. As a consequence, for systems of systems, reactive strategies to dependability will
probably be more effective.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

RTO-MP-IST-064 5 - 7

Maarten Boasson – “Software Faults”

Maarten identifies tree types of faults: faults that lead to no results; faults that lead to wrong results; and
faults that lead to late results. Faults are the result of errors. In order to prevent faults, first of all, errors
must be detected before they occur. Secondly, the impact of errors must be limited, and, thirdly, errors
must be repaired. Maarten would like to see that effort and research is focused on the first way of
prevention, error detection, or, even better, error prevention (“never stop striving for correct programs”).
He therefore is a strong advocate for research into formal data models, formal verification, and minimal
dependencies (e.g. by late binding, asynchronous communication, and autonomous components).

Prof. Joe Sventek – “Closed-Loop Management Patterns”

Joe presents the idea of using closed-loop management patterns in system management. Closed-loop
management is used in many production plants: measuring the output of a process, and adjusting the input
and control of the process to steer the process towards producing the desired output. This principle works
well for managing processes with slowly degrading output. So why not adopting such an approach to
managing systems and software processes?

To make the use of closed-loop management even more powerful, the system to be managed could be
designed as a hierarchy of lower-level processes or subsystems. On each of these levels, and in each of the
components or subsystems at those levels, the closed-loop management principle can be applied. The
advantages are manifold, including the closure of a loop as low as possible in the hierarchy will avoid the
propagation of problems, and some well-proven techniques at one level can be reused at other levels.

The open question in applying this principle to achieve robustness, is how well this principle will work for
faults, i.e. not a slowly degradation of performance, but a sudden malfunctioning of the system?

Prof. Cristophe Dony

Cristophe’s interests are agent-based and component-based applications and message oriented
programming. The objective of his current research is to specify and implement an Exception Handling
System (EHS) for new architectures, for instance, J2EE.

Cristophe defines an exceptional situation as a situation in which the standard execution cannot continue.
An Exception Handling System must then raise the exception, associate handlers to entities to deal with
the exception, and put back the system to a coherent state.

Current solutions towards an EHS include:

1) Standard signalling methods (e.g. Java), which are stack-oriented and destructive;

2) Separation of treatment; and

3) Contextualization (pass exception to requester who knows the context).

These solutions, however, do not work well when dealing with concurrency, which is inevitable in today’s
larger and larger, distributed systems. Commercial implementations of exception handling systems for these
types of systems are not available yet. But, Prof. Dony et al. have been able to produce a first implementation
of an exception handling system for J2EE.

He is currently looking to coordinate his activities with other researchers in the field.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

5 - 8 RTO-MP-IST-064

Frédéric Painchaud

Frédéric introduces the research he has been performing in the last eighteen months on fault-tolerance.
He identifies three sources of faults: the system environment, the hardware, and the software. Most error
recovery strategies can be classified as either: retry, fallback (redundancy), or diversity (different
implementations of the same algorithm). Most of the times, these strategies fail, because the underlying
logical problem is not recognized, and similar mistakes are made independently of each other.

He started researching this field because a client needs a framework for building fault-tolerant distributed
systems. The short term goal of the research was to produce an overview of the available products for such
a framework. The long term goal is to develop a new framework.

The anticipated solution is a framework for systematic development of software with built-in support for
managing diversity, based on the principles of Erlang (Ericsson), and developed for JAVA with support
for distributed applications.

5.3 DAY 2, 10 NOVEMBER 2006

5.3.1 Second Working Session – Presentations

Maarten Boasson – SPLICE

The second working session starts with a presentation of the ideas behind SPLICE, a dependable, distributed
architecture developed by Maarten Boasson during his activities at Hollandse Signaal Apparaten BV.
A commercial implementation (OpenSplice) is available.

The basic idea behind the architecture is that a system works when “the right information is at the right
place at the right time”. The design principles behind SPLICE are: make inter-process data visible,
minimize dependencies, and maximize component autonomy. The resulting architecture is deceptively
simple, but very powerful.

SPLICE contains a number of mechanisms for fault-tolerance: passive replication (“cold-start”), semi-
active replication (“hot-start”), and active replication. For robustness purposes, all messages should pass
absolute states, not relative states, in order to allow components to send the same message multiple times
without changing the meaning (e.g., turn left 10 degrees cannot be sent more than once, because if two
messages are received, the ship would turn 20 degrees; a message “at time T, change course to 70°” may
be sent as many times as needed to assure one message is received).

After this presentation, a number of questions were raised by the audience:

Q1: Is there a notion of reflection?

A1: Yes, processes can look at system data and determine which processes are subscribed to what,
which processes are running, etc.

Q2: Is deadlock/ live-lock used as a programming tool as it is often in blackboard systems?

A2: Deadlock/Live-lock never occurred, so the situation is not explicitly dealt with. Starvation
may happen, but deadlock not.

Q3: How to ensure real-time behaviour?

A3: Hard real-time is not practical, so just assure empirically, or by calculation, that messages are
passed quickly enough for proper working of the system. Usually, passing time-stamped

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

RTO-MP-IST-064 5 - 9

information is enough to make a successful hard real-time system. Most hard real-time
requirements are not really hard. Usually it is some sort of periodic calculation.

Q4: Some data passed is large (“blobs”) and fixed length messages are not very useful, which
means you have to send sequences of messages. How is this done in SPLICE?

A4: There are two types of messages in SPLICE. The first type is “fire and forget”, for which
length is irrelevant. The second type is “order maintained”, for which messages are chopped
up, sent, and assembled as an atomic action before giving the message to the subscriber.

Q5: How do you establish that a collection of processes together are a semantically correct
system? Is there a chief designer?

A5: In practice, there has always been one “group” of designers with control. But the architecture
provides some support in the form of “watchdog processes”, which monitor the running and
dying processes. Furthermore, the publish/subscribe mechanism allows publishers without
subscribers, and there may even be multiple publishers, but this is not recommended. Crucial
for the working of the system, is to get all required data structures right.

The discussion finally led to the following problem statement by Mary Shaw that would guide the
remainder of the working session:

“If you compose your system by using externally developed components or systems (e.g., a
database available through the internet), how do you assure your overall application is correct?”

This is a specifically new challenge since this way of composing systems is relatively new. And in the area
of Service Oriented Architectures (SOAs), which aim to meet this challenge, research into robustness of
SOAs is not yet covered (very well).

With this problem statement, presentations by attending experts have finished, and the meeting moves to a
smaller round-table room in order to facilitate interactive discussions better.

5.3.2 Second Working Session – Round Table Discussion
The chairman of the meeting, Morven Gentleman, starts the round table discussions with some more ideas
on what is different now compared to thirty years ago, and how these differences may be used to improve
robustness. One major difference is computing power and network capacity, which was once scarce but now
often in excess. Why not use the excess power for speculative computing (e.g. data mining) on archived data
such as event logs and incident logs to discover something has gone wrong or might go wrong? Add “audit
routines” to the software that, based on earlier results, suggest that something is not working correctly. In the
example of the GIS application at the start of the meeting (beginning of Section 5.2.2.1), structured data
could be audited to get an idea of the quality of the data. Also, consistency with unstructured data could be
checked (is a road in the structured data visible on the satellite image?). But finding inconsistencies is one
side of the problem; the other side is what to do if one is found? How do you notify the running application
that something’s wrong, and what is the application supposed to do then?

Mary Shaw suggests that such an approach should be coupled with a model of confidence for the application
and raise flags, but maybe should not directly impact the running application. Morven Gentleman replies that
there should be grades in audit routines, such that serious problems are dealt with immediately, and minor
problems are left to deal with later, unless more audit routines raise the same issue, and the “problem level”
is increased.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

5 - 10 RTO-MP-IST-064

Patrick Prodhome – Guidelines for Final Report

Because some attendees will have to leave the meeting earlier, the round-table discussion is shortly
adjourned to enable Patrick Prodhome, NATO RTO IST Panel Executive, to provide the attendees with
some guidelines for contributing to the final report of the task group. An important prerequisite is the
submission of a publication clearance through the proper national NATO channels, in order for RTO to be
able to publish the final report. Patrick also shows how to log onto the RTO web site and what materials
may be found there.

Round Table Discussion Continued

The discussion continues on the use of the spare capacity in the military environment. Where
commercially “just-in-time” seems to be the prevailing attitude (which usually turns out to be “just-too-
late”), military systems are specifically designed to handle peak loads (war-time). When not needed
(peace-time), spare capacity can be used to do training exercises, or simulations, to ensure that the system
will work when it is really needed. This way of using resources is part of the military culture, where
personnel are used in a similar way. Therefore, military systems are good candidates to apply the
suggestions of Morven Gentleman to.

Cristophe Dony remarks that adding more constructs to a system for robustness usually tends to obscure
the structure of the system and make the system more difficult to understand. Alexander Romanovsky
follows up on that remark by stating that the contrary might be the case if constructs are used that allow
separating normal computation from exceptions. In this case, the understanding of the system may even be
increased. This view is supported by Tomas Feglar, who uses risk management strategies to build
robustness into systems top down. He claims the resulting system is better, needs less repairing during
operational lifetime, and therefore the initial structure is better maintained.

After these comments, the discussion is again focussed on the question: What is different now, compared
to thirty years ago? Mary Shaw has been looking into “Ultra Large Scale Systems” recently, and found the
following list of differences:

• Decentralised operation and control.

• Conflicting, unknowable, diverse requirements.

• Continuous evolution and deployment.

• Heterogeneous, inconsistent, and changing elements.

• Indistinct people/system boundary.

• Normal failures.

• New forms of acquisition and policy.

After lunch, Morven Gentleman, re-starts the discussion from a slightly different angle. In the seventies,
techniques of redundant data structures, which allowed to check damage in data, and sometimes even
allowed automated repair, were popular. Have these techniques been forgotten, or are they still around?
Alexander Romanovsky knows that diversity in data structures, either by a mapping function, or by double
implementation, is still used to recover data structures. Mary Shaw reminds that in user interfaces,
checkable redundancy (e.g. address and postal code) is sometimes built in to check consistency of manual
input. But, in general, it may be worthwhile to look into some of these “old” techniques, and see what has
become of them, to include in the final report. There may even be techniques that once where abandoned
because of, for instance, lack of computing power, and that could be revived because of the changed
conditions in computing.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

RTO-MP-IST-064 5 - 11

Alexander Romanovsky follows up this discussion with the observation that there seem to be many diverse
implementations of the same functionality on the Internet. Maybe this is a new form of redundancy that
could be exploited for fault tolerance? Morven Gentleman, however, remarks that, although the interface
(web page) is different, the underlying implementation could still be the same, and that there is less diversity
than you expect. Mary Shaw supports that view by adding that most weather sites are using the same
underlying weather data from a single source. Alexander counters that, even in this case, the location of
the site may be important for speed, and depending on your application, this could be a very important
requirement.

The discussion is wrapped-up with some final thoughts on how all of the techniques and issues discussed
in the previous two days will in the end better support the commander in asymmetric warfare; because that
is the kind of question the NATO and its member states would like to see answered in the final report.
The answer to this question, borrowed from Maarten Boasson in his presentation of SPLICE, is that these
techniques will eventually help to get:

“The right information, at the right place, at the right time.”

5.4 MEETING CLOSURE

The meeting is closed with some ideas on how to produce the Task Group’s Final Report:

• Morven Gentleman will, with the help of Yves van de Vijver, produce and circulate an outline to
the meeting attendees and task group members, who are requested to give feedback and submit
missing items.

• The possibility of a next meeting, for instance in June 2007, to actually work on the report will be
investigated.

• Presentations of this workshop will be included in the Final Report as an appendix. Authors are
requested to get publication approval through their national channels in order to enable the
inclusion.

Finally, Morven Gentleman, as chairman of the task group and the meeting, thanks the attendees for their
enthusiasm and valuable contributions to the meeting and the task group’s activities, and the local
organizing committee for hosting the meeting in such an inspiring environment.

And, finally, Milan Snajder, task group member and part of the local organizing committee, surprises the
attendees by some nice gifts to remember the workshop and the visit to the beautiful city of Prague.

MINUTES OF THE NATO RTO WORKSHOP ON
“BUILDING ROBUST SYSTEMS FROM FALLIBLE CONSTRUCTION”

5 - 12 RTO-MP-IST-064

RTO-MP-IST-064 6 - 1

6.0 – Future Work

W. Morven Gentleman

Morven.Gentleman@dal.ca

This workshop has highlighted a number of take-away actions for the scientific community interested in
software system dependability.

A final report describing the results of the workshop was produced and made available to others interested
in the topic. The report was published in April 2008 as RTO-TR-IST-047, “Building Robust Systems with
Fallible Construction”. It details research that has yet to be done, but that has been identified as needed in
order for systems being developed today to be resilient to predictable problems.

Existing software fault tolerance technology is inadequate because of new perspectives on what is it means
to build robust systems, and what is needed for systems to be robust:

• Robustness is needed, which is a different issue from correctness.

• People are part of the system.

• Dependability requirements depend on which stakeholder is considered.

• Automated correction of failures is not always feasible or appropriate.

• Autonomic computing, i.e. self-managed systems, has a role.

• Rollback is not always feasible or desirable.

• Service availability may outweigh correctness of individual service requests.

• Software development is not a single homogeneous activity.

• The software product may not be monolithic homogeneous code.

• The development organization may not be a monolithic homogeneous entity.

• Malicious attacks may be an essential concern, beyond accidental failures.

• Fault tolerance awareness needs to be ingrained in stakeholders.

These points are elaborated in the aforementioned report. Recovery-oriented computing has also been
recognized as an important shift of perspective, and although some investigations have been undertaken
based it, nevertheless a great deal more is needed.

Existing software fault tolerance technology is also inadequate because new technology creates new
options, but in addition poses new situations requiring additional solutions.

We have identified four technologies that have become widely available in the past few years, each of
which offers potential for new solutions to building more robust systems:

1) Surfeit of computing capacity.

2) Autonomic computing.

3) Virtual machines.

4) The discipline of software architecture.

mailto:Morven.Gentleman@dal.ca

FUTURE WORK

6 - 2 RTO-MP-IST-064

The aforementioned report elaborates on these technologies. Because these technologies were not available
when most software fault tolerance technology was being developed, their application was not taken into
account in the software fault tolerance literature. The potential benefits of them need to be investigated.

We have also identified about a dozen technologies that have become prominent in the past few years that
present new challenges for building robust systems:

• Software component-based engineering.

• Systems of Systems.

• Web and Internet technologies.

• Concurrent, parallel, and distributed computing.

• Exception handling.

• Non-imperative programming.

• Genetic and more generally exploratory computation.

• Massive datasets.

• Inadequacy of oracles.

• Security and privacy.

• Multimedia, especially time-based streaming media.

• Scalability and nonstop operation.

• Rapid rate of new releases.

Again the aforementioned report elaborates on these technologies and issues that they raise. Although some
of the existing literature on software fault tolerance bears on these issues, it has many deficiencies and gaps,
meaning that intense further study is required in order to provide guidance for developing systems that
involve these technologies.

In short, existing software fault tolerance literature has serious shortcomings for today’s systems, and
simple extension of past work will not resolve that: new directions in research must be pursued. Results
are needed for systems being built now. Funding such research is critical.

RTO-MP-IST-064 7 - 1

Chapter 7 – Conclusions and Recommendations

W. Morven Gentleman

Morven.Gentleman@dal.ca

“Sunny-day” systems, that fail to take into account predictable things that might cause the system to fail, are
inadequate and all too common. Ignoring consequences of fallible construction is a perfect example.
Understanding of software dependability needs to be ingrained in all stakeholders, not just system designers:

• Robustness needs to be built-in, and cannot be an add-on.

• Implementation faults (bugs) are only one concern, maybe not even the most critical.

Software dependability cannot be achieved by middleware alone. Robust components are nice but also not
enough.

Systems are made up of hardware, software, and people. Processes (i.e. workflow processes, not just the
operating system software process abstraction) are critical, as are tools to support the processes. In the event
of failure, systems need to be able to continue to operate, albeit in degraded mode, and ultimately to return to
full operations status: graceful degradation epitomizes robustness. Procurement needs to take a much more
pro-active stance on requiring robustness and recovery. Operations needs to plan for, and practice, recovery
from failures. The inevitability of human failure needs to be recognized and planned for, not just in the form
of end-user invalid input and misinterpretation of output, but also in incorrect actions of operational staff as
well as support such as system installers and maintainers. Particularly insidious are data corruption faults that
do not immediately give indication of failure, but may lurk undetected for days, weeks, even years. Ultra-
large scale systems have highlighted problems that traditional approaches don’t solve. Nevertheless, some of
these problems have long existed even in smaller systems, such as systems-of-systems.

Recovery-Oriented Computing is different from Disaster Recovery. The latter is typically taken into account
by operational units as addressing business continuity and business resumption in the face of cataclysmic,
but exceedingly unlikely events such as national power or communications outages, or aircraft crashing into
computer centers or in the military context severe battlefield reverses. These vulnerabilities are indeed wise
to consider, but are unlikely to warrant investment in automated response. Recovery-Oriented Computing,
on the other hand, investigates automated aid to assist operational staff in restoring service after unavoidable
events for which the risk is enough that the investment is prudent.

Although research on software fault tolerance has been done for almost 40 years, more needs to be done.
This is definitely not polishing a shiny jewel, but rather addressing problems not yet resolved, problems of
direct relevance to today’s net-centric systems. Funding must be found for this research.

The original plans for this workshop proved overambitious. Significant results were achieved, so this is
not a criticism in and of itself, but it stresses the need for continuing efforts.

mailto:Morven.Gentleman@dal.ca

CONCLUSIONS AND RECOMMENDATIONS

7 - 2 RTO-MP-IST-064

RTO-MP-IST-064

REPORT DOCUMENTATION PAGE

1. Recipient’s Reference 2. Originator’s References 3. Further Reference

4. Security Classification
of Document

 RTO-MP-IST-064
AC/323(IST-064)TP/256

ISBN
978-92-837-0081-4

UNCLASSIFIED/
UNLIMITED

5. Originator Research and Technology Organisation
North Atlantic Treaty Organisation
BP 25, F-92201 Neuilly-sur-Seine Cedex, France

6. Title
Building Robust Systems with Fallible Construction

7. Presented at/Sponsored by

This Report documents the material presented at the IST-064/RWS-011 Workshop
held in Prague, Czech Republic, 9-10 November 2006.

8. Author(s)/Editor(s) 9. Date

Multiple May 2009

10. Author’s/Editor’s Address 11. Pages

Multiple 118

12. Distribution Statement

There are no restrictions on the distribution of this document.
Information about the availability of this and other RTO
unclassified publications is given on the back cover.

13. Keywords/Descriptors

Commercial equipment
Computer applications
Computer architecture
Computer programs
Correlation
Critical system
Design
Distributed systems

Failure
Fault tolerance
Integrated systems
International cooperation
Interoperability
Methodology
Reliability

Software development
Software engineering
Software reuse
Standards
System of systems
Systems analysis
Systems engineering

14. Abstract

This workshop is related to Software Fault Tolerance, a topic that has been studied at least since
1970. Since then much has been learned about how to address those problems, as they were then
understood. However changes in perspective as to what constitute the challenges, and changes in
available and commonplace technology, have led to a need to go beyond conclusions reached
in the past. The workshop was organized to review past and present understanding of the
challenge, as well as examining relevant approaches to address them. Rather than an exchange of
pre-prepared material, the workshop was intended as a working meeting with a goal of producing
a deliverable that is a summary of the state of the art. The proceedings include position statements
from the participants, slides from the presentations made by the participants, and the one
complete paper that was submitted. Minutes of the discussions provide insight into how the
deliverable, the final report of task group IST-047/RTG-019, was shaped.

 RTO-MP-IST-064

NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION

BP 25

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE
Télécopie 0(1)55.61.22.99 • E-mail mailbox@rta.nato.int

DIFFUSION DES PUBLICATIONS

RTO NON CLASSIFIEES

Les publications de l’AGARD et de la RTO peuvent parfois être obtenues auprès des centres nationaux de distribution indiqués ci-dessous. Si vous
souhaitez recevoir toutes les publications de la RTO, ou simplement celles qui concernent certains Panels, vous pouvez demander d’être inclus soit à
titre personnel, soit au nom de votre organisation, sur la liste d’envoi.
Les publications de la RTO et de l’AGARD sont également en vente auprès des agences de vente indiquées ci-dessous.
Les demandes de documents RTO ou AGARD doivent comporter la dénomination « RTO » ou « AGARD » selon le cas, suivi du numéro de série.
Des informations analogues, telles que le titre est la date de publication sont souhaitables.
Si vous souhaitez recevoir une notification électronique de la disponibilité des rapports de la RTO au fur et à mesure de leur publication, vous pouvez
consulter notre site Web (www.rto.nato.int) et vous abonner à ce service.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE HONGRIE REPUBLIQUE TCHEQUE
Streitkräfteamt / Abteilung III Department for Scientific Analysis LOM PRAHA s. p.
Fachinformationszentrum der Bundeswehr (FIZBw) Institute of Military Technology o. z. VTÚLaPVO
Gorch-Fock-Straße 7, D-53229 Bonn Ministry of Defence Mladoboleslavská 944
 P O Box 26 PO Box 18

BELGIQUE H-1525 Budapest 197 21 Praha 9
Royal High Institute for Defence – KHID/IRSD/RHID
Management of Scientific & Technological Research ITALIE ROUMANIE

for Defence, National RTO Coordinator General Secretariat of Defence and Romanian National Distribution
Royal Military Academy – Campus Renaissance National Armaments Directorate Centre
Renaissancelaan 30, 1000 Bruxelles 5th Department – Technological Armaments Department
 Research 9-11, Drumul Taberei Street

CANADA Via XX Settembre 123 Sector 6
DSIGRD2 – Bibliothécaire des ressources du savoir 00187 Roma 061353, Bucharest
R et D pour la défense Canada
Ministère de la Défense nationale LUXEMBOURG ROYAUME-UNI
305, rue Rideau, 9e étage Voir Belgique Dstl Knowledge and Information
Ottawa, Ontario K1A 0K2 Services

 NORVEGE Building 247
DANEMARK Norwegian Defence Research Porton Down

Danish Acquisition and Logistics Organization (DALO) Establishment Salisbury SP4 0JQ
Lautrupbjerg 1-5, 2750 Ballerup Attn: Biblioteket
 P.O. Box 25 SLOVAQUIE

ESPAGNE NO-2007 Kjeller Akadémia ozbrojených síl
SDG TECEN / DGAM M.R. Štefánika, Distribučné a
C/ Arturo Soria 289 PAYS-BAS informačné stredisko RTO
Madrid 28033 Royal Netherlands Military Demanova 393, P.O.Box 45

 Academy Library 031 19 Liptovský Mikuláš
ETATS-UNIS P.O. Box 90.002

NASA Center for AeroSpace Information (CASI) 4800 PA Breda SLOVENIE
7115 Standard Drive Ministry of Defence
Hanover, MD 21076-1320 POLOGNE Central Registry for EU and
 Centralny Ośrodek Naukowej NATO

FRANCE Informacji Wojskowej Vojkova 55
O.N.E.R.A. (ISP) Al. Jerozolimskie 97 1000 Ljubljana
29, Avenue de la Division Leclerc 00-909 Warszawa
BP 72, 92322 Châtillon Cedex TURQUIE
 PORTUGAL Milli Savunma Bakanlığı (MSB)

GRECE (Correspondant) Estado Maior da Força Aérea ARGE ve Teknoloji Dairesi
Defence Industry & Research General SDFA – Centro de Documentação Başkanlığı

Directorate, Research Directorate Alfragide 06650 Bakanliklar
Fakinos Base Camp, S.T.G. 1020 P-2720 Amadora Ankara
Holargos, Athens

AGENCES DE VENTE
NASA Center for AeroSpace The British Library Document Canada Institute for Scientific and

Information (CASI) Supply Centre Technical Information (CISTI)
7115 Standard Drive Boston Spa, Wetherby National Research Council Acquisitions
Hanover, MD 21076-1320 West Yorkshire LS23 7BQ Montreal Road, Building M-55
ETATS-UNIS ROYAUME-UNI Ottawa K1A 0S2, CANADA
Les demandes de documents RTO ou AGARD doivent comporter la dénomination « RTO » ou « AGARD » selon le cas, suivie du numéro de série
(par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont souhaitables. Des références
bibliographiques complètes ainsi que des résumés des publications RTO et AGARD figurent dans les journaux suivants :

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements & Index (GRA&I)
STAR peut être consulté en ligne au localisateur de ressources publié par le National Technical Information Service
uniformes (URL) suivant: http://www.sti.nasa.gov/Pubs/star/Star.html Springfield
STAR est édité par CASI dans le cadre du programme Virginia 2216
 NASA d’information scientifique et technique (STI) ETATS-UNIS
STI Program Office, MS 157A (accessible également en mode interactif dans la base de
NASA Langley Research Center données bibliographiques en ligne du NTIS, et sur CD-ROM)
Hampton, Virginia 23681-0001
ETATS-UNIS

mailto:mailbox@rta.nato.int
http://www.rto.nato.int/
http://www.sti.nasa.gov/Pubs/star/Star.html

NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION

BP 25

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE
Télécopie 0(1)55.61.22.99 • E-mail mailbox@rta.nato.int

DISTRIBUTION OF UNCLASSIFIED
RTO PUBLICATIONS

AGARD & RTO publications are sometimes available from the National Distribution Centres listed below. If you wish to receive all RTO reports,
or just those relating to one or more specific RTO Panels, they may be willing to include you (or your Organisation) in their distribution.
RTO and AGARD reports may also be purchased from the Sales Agencies listed below.
Requests for RTO or AGARD documents should include the word ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial number. Collateral
information such as title and publication date is desirable.
If you wish to receive electronic notification of RTO reports as they are published, please visit our website (www.rto.nato.int) from where you can
register for this service.

NATIONAL DISTRIBUTION CENTRES
BELGIUM HUNGARY ROMANIA

Royal High Institute for Defence – KHID/IRSD/RHID Department for Scientific Analysis Romanian National Distribution
Management of Scientific & Technological Research Institute of Military Technology Centre

for Defence, National RTO Coordinator Ministry of Defence Armaments Department
Royal Military Academy – Campus Renaissance P O Box 26 9-11, Drumul Taberei Street
Renaissancelaan 30 H-1525 Budapest Sector 6, 061353, Bucharest
1000 Brussels

 ITALY SLOVAKIA
CANADA General Secretariat of Defence and Akadémia ozbrojených síl

DRDKIM2 – Knowledge Resources Librarian National Armaments Directorate M.R. Štefánika, Distribučné a
Defence R&D Canada 5th Department – Technological informačné stredisko RTO
Department of National Defence Research Demanova 393, P.O.Box 45
305 Rideau Street, 9th Floor Via XX Settembre 123 031 19 Liptovský Mikuláš
Ottawa, Ontario K1A 0K2 00187 Roma

 SLOVENIA
CZECH REPUBLIC LUXEMBOURG Ministry of Defence

LOM PRAHA s. p. See Belgium Central Registry for EU & NATO
o. z. VTÚLaPVO Vojkova 55
Mladoboleslavská 944 NETHERLANDS 1000 Ljubljana
PO Box 18 Royal Netherlands Military
197 21 Praha 9 Academy Library SPAIN

 P.O. Box 90.002 SDG TECEN / DGAM
DENMARK 4800 PA Breda C/ Arturo Soria 289

Danish Acquisition and Logistics Organization (DALO) Madrid 28033
Lautrupbjerg 1-5 NORWAY
2750 Ballerup Norwegian Defence Research TURKEY
 Establishment Milli Savunma Bakanlığı (MSB)

FRANCE Attn: Biblioteket ARGE ve Teknoloji Dairesi
O.N.E.R.A. (ISP) P.O. Box 25 Başkanlığı
29, Avenue de la Division Leclerc NO-2007 Kjeller 06650 Bakanliklar – Ankara
BP 72, 92322 Châtillon Cedex
 POLAND UNITED KINGDOM

GERMANY Centralny Ośrodek Naukowej Dstl Knowledge and Information
Streitkräfteamt / Abteilung III Informacji Wojskowej Services
Fachinformationszentrum der Bundeswehr (FIZBw) Al. Jerozolimskie 97 Building 247
Gorch-Fock-Straße 7 00-909 Warszawa Porton Down
D-53229 Bonn Salisbury SP4 0JQ
 PORTUGAL

GREECE (Point of Contact) Estado Maior da Força Aérea UNITED STATES
Defence Industry & Research General Directorate SDFA – Centro de Documentação NASA Center for AeroSpace
Research Directorate, Fakinos Base Camp Alfragide Information (CASI)
S.T.G. 1020 P-2720 Amadora 7115 Standard Drive
Holargos, Athens Hanover, MD 21076-1320

SALES AGENCIES
NASA Center for AeroSpace The British Library Document Canada Institute for Scientific and

Information (CASI) Supply Centre Technical Information (CISTI)
7115 Standard Drive Boston Spa, Wetherby National Research Council Acquisitions
Hanover, MD 21076-1320 West Yorkshire LS23 7BQ Montreal Road, Building M-55
UNITED STATES UNITED KINGDOM Ottawa K1A 0S2, CANADA

Requests for RTO or AGARD documents should include the word ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial number (for example
AGARD-AG-315). Collateral information such as title and publication date is desirable. Full bibliographical references and abstracts of RTO and
AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements & Index (GRA&I)
STAR is available on-line at the following uniform resource published by the National Technical Information Service
locator: http://www.sti.nasa.gov/Pubs/star/Star.html Springfield
STAR is published by CASI for the NASA Scientific Virginia 2216
 and Technical Information (STI) Program UNITED STATES
STI Program Office, MS 157A (also available online in the NTIS Bibliographic Database
NASA Langley Research Center or on CD-ROM)
Hampton, Virginia 23681-0001
UNITED STATES

ISBN 978-92-837-0081-4

mailto:mailbox@rta.nato.int
http://www.rto.nato.int/
http://www.sti.nasa.gov/Pubs/star/Star.html

	Cover
	Table of Contents
	List of Participants
	Executive Summary
	Synthèse
	Chapter 1 – Introduction and Motivation
	Chapter 2 – Positions
	2.1 – Architectural Support for Integration in Distributed Reactive Systems
	Abstract
	1. Introduction
	2. Software architecture
	2.1. The shared data space
	2.2. Applications

	3. Refinements of the architecture
	3.1. A distributed software architecture
	3.2. Temporal aspects
	3.3. Fault-tolerance
	3.4. System Modifications and Extensions

	4. Conclusion
	References

	2.2 – Component Architecture Framework – An Approach to the Enterprise Architecture Development in a Risk Environment
	1.0 PRIMARY GOALS OF PROCESS INTEGRATION AND SYSTEMS ENGINEERING DISCIPLINE
	2.0 ARCHITECTURE DESIGN PROCESS (ADP)
	3.0 RISK MANAGEMENT PROCESS (RMP)
	4.0 INFORMATION MANAGEMENT PROCESS (IMP)
	5.0 SECURITY MANAGEMENT PROCESS (SMP)
	6.0 CONCLUSION

	2.3 – High-Availability Solutions to Common Software Failures
	Abstract
	Introduction
	1 High-Availability Solutions
	1.1 Products of Interest
	1.2 Added Value Provided by High-Availability Solutions

	2 Problems & Threats
	2.1 Environmental Faults
	2.2 Hardware Faults
	2.3 Software Faults
	2.4 Malicious Acts

	3 Goals & Work Plan
	References

	2.4 – A Looming Fault Tolerance Software Crisis?
	Abstract
	1. Fault tolerance misuse
	2. Fault tolerance: challenges and difficulties
	3. Fault assumptions and application fault tolerance
	4. Fault tolerance and software development
	5. Where to look for solutions
	Acknowledgements
	References

	2.5 – Strategies for Achieving Robustness in Coalitions of Systems
	Prevention
	Prevention based on a global standard
	Prevention based on a relative standard
	Prevention based on a policy standard

	Reaction
	Reaction based on traditional reactive techniques
	Reaction based on adaptive techniques
	Reaction based on economic mechanisms

	Chapter 3 – Slides
	3.1 – NATO Workshop Prague 2006
	3.2 – SaGE, an Exception Handling System for Message-Oriented Programming
	3.3 – Service-Oriented Architecture (SOA) Robustness: The Road Ahead
	3.4 – Strategies for Achieving Dependability in Coalitions of Systems
	3.5 – Closed-Loop Management Patterns

	Chapter 4 – Papers
	4.0 – Service-Oriented Architecture (SOA) Robustness: The Road Ahead
	ABSTRACT
	1.0 INTRODUCTION
	2.0 ENTERPRISE APPLICATION INTEGRATION (EAI) ENVIRONMENT MODEL AND DECISION SUPPORT MODEL
	3.0 SERVICE-ORIENTED ARCHITECTURE (SOA) BASED SCENARIOS LANDSCAPE
	4.0 SOA ROBUSTNESS ENTERPRISE SOLUTIONS USING SYSTEM ENGINEERING SUPPORT MODELS AND ROBUSTNESS PATTERNS
	5.0 CONCLUSION
	6.0 REFERENCES
	Appendix 1: The Decision Support Model for a Choice of “The Best Solution Based on SOA Robustness”
	Appendix 2: The Material Request Order (MRO) Process Sample

	Chapter 5 – Discussion
	5.0 – Minutes of the NATO RTO Workshop on “Building Robust Systems from Fallible Construction”
	5.1 AGENDA
	5.2 DAY 1, 9 NOVEMBER 2006
	5.2.1 Welcome and Objective
	5.2.2 First Working Session

	5.3 DAY 2, 10 NOVEMBER 2006
	5.3.1 Second Working Session – Presentations
	5.3.2 Second Working Session – Round Table Discussion

	5.4 MEETING CLOSURE

	Chapter 6 – Unresolved Challenges
	6.0 – Future Work

	Chapter 7 – Conclusions and Recommendations
	Report Documentation Page

	Link to presentation:

