
Frédéric Michaud
Frédéric Painchaud

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North, Québec, QC, Canada, G3J 1X5

August 16, 2006

Abstract

The Canadian government, especially the Department of National
Defence and the Canadian Forces, has a strong need for secure and
reliable information systems. Currently used, mass-market systems
tend to be very poor with respect to security and reliability, since they
routinely contain serious bugs and vulnerabilities. While a redesign of
these systems would be a sound long-term solution, an effective short-
term solution is an imperative. Mature high-availability products for
mass-market operating systems are now available and we believe they
could effectively and robustly prevent the effects of some classes of
failures. We propose to evaluate this hypothesis.

Introduction

The Canadian government, DND1, and CF2 are increasingly dependent on
information systems, which need to offer a very high level of security, relia-
bility, and fault-tolerance [1]. However, current information systems are in-
adequate for many reasons. First, many legacy systems currently in use were
designed before the Internet was widespread and were not supposed to be
exposed to a world-wide network. Second, they were built with technologies
and programming languages that are prone to vulnerabilities and bugs that
were not known at the time (e.g., buffer overflows). Since these systems are
needed for a foreseeable future, special care should be taken to prevent the

1Department of National Defence
2Canadian Forces

RTO-MP-IST-064 2.3 - 1

2.3 – High-Availability Solutions to
Common Software Failures

exploitation of these vulnerabilities. Finally, other systems were built on top
of mass-market operating systems and integrated with widely-available ap-
plications, which have a poor security and reliability record [3, 4, 5]. These
mass-market components are routinely used in contexts that exceeds the
level of security and reliability they were designed to offer [2].

We believe that the ideal solution would be a complete redesign of these
systems with the use of adapted programming languages and frameworks,
aimed at providing better software fault-tolerance, to get rid of the prob-
lems at their source. Indeed, better designs with more explicit security
and reliability requirements and the use of safe programming languages and
technologies not prone to vulnerabilities, such as Java or Ada, would be
a very good start. However, systems with critical security and reliabil-
ity requirements are rather expensive to specify, develop, procure, operate
and maintain, because of the time and expertise involved. Fundamental re-
search on subjects related to the survivability of systems is also needed to
solve remaining problems and questions [6]. This ideal solution is therefore
necessarily a long-term solution.

In the short term, something else must be done. The good news is that
mature high-availability products for mass-market operating systems are
now available. These products claim that they can “wrap” existing appli-
cations and run them in a virtualized environment, allowing their execution
to continue even if a fatal error happens. However, we could not find a
complete, independent report on their evaluation. Therefore, we need to in-
vestigate these products, and this is our proposition, in order to know how
good these solutions are and which threats they can mitigate.

The following section presents the family of high-availability solutions
that are of interest. Then, section 2 discusses information system threats
and how some of them could be mitigated with high-availability solutions.
Finally, section 3 details our evaluation’s goals and work plan.

1 High-Availability Solutions

High-availability solutions wrap the execution of an existing system and
helps it attain a higher level of availability by mitigating the effects of hard-
ware and software errors. This is mainly done by the use of redundancy,
where a failed component is replaced with a working one so that the system
can continue to offer its service.

Interesting solutions are those that wrap the entire system, not only
a single component, as a RAID disk array does. These solutions, called

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 2 RTO-MP-IST-064

high-availability clusters [8, 9], generally use clones of the entire system as
redundant nodes.

High-availability clusters can work in many modes:

Monitor and Replace Without State Transfer The system is moni-
tored for errors and when a fatal one happens, the failed node is shut
down and replaced with a hot standby. As the state of the failed node
is not transferred to the new one, the execution cannot continue and
the system has to be reinitialized, including remote clients. Therefore,
this type of high-availability cluster simply automates the reinitializa-
tion process.

Monitor and Replace With State Transfer Again, the system is mon-
itored for errors and when a fatal one happens, the failed node is shut
down and replaced with a hot standby. However, the state of the failed
node is preserved and transferred to the new node in order to continue
the execution as if the failure never happened. A small downtime can
occur while the state is transferred from the failed node to the hot
standby.

Mask Failures With Virtualization This time, the system runs inside
a virtualized environment, made of many nodes that run the system
in parallel. When a fatal error occurs in one node, it is simply masked
by using the result of another node (or many others), without any
downtime or reinitialization. This approach has less drawbacks than
other ones, but it is much more complex to implement correctly.

In a nutshell, high-availability clusters can either restart a failed system
or mask the failure so that the execution can continue as if nothing hap-
pened, sometimes minus a small downtime. Important questions emanate
from these observations:

• How useful is restarting a system when a fatal error happens? Is the
error going to occur again after a restart?

• Which errors can be masked and which cannot?

• Do applications need to be aware of the cluster or can everything be
transparent?

• What kind of applications make the state transfer impractical?

These are some of the questions we would like to answer after our eval-
uation of high-availability clusters.

2.3 – High-Availability Solutions to Common Software Failures

RTO-MP-IST-064 2.3 - 3

1.1 Products of Interest

A short research on the Internet revealed many interesting high-availability
products that can be evaluated. Here is a non-exhaustive list with a de-
scription from their respective vendor:

Marathon everRunFT This product synchronizes two unmodified servers
to create a virtual application environment that runs on both of them
simultaneously. If one server fails, the other server enables the appli-
cation to continue operating without interruption [10].

Microsoft Clustering Services This service provides high availability and
scalability for mission-critical applications such as databases, messag-
ing systems, and file and print services. Multiple servers (nodes) in
a cluster remain in constant communication. If one of the nodes in
a cluster becomes unavailable as a result of failure or maintenance,
another node immediately begins providing service, a process known as
failover. Users who are accessing the service continue to access the
service, and are unaware that it is now being provided from a different
server [11].

Veritas Cluster Server Veritas Cluster Server can detect faults in an ap-
plication and all its dependent components, including the associated
database, operating system, network, and storage resources. When a
failure is detected, Cluster Server gracefully shuts down the applica-
tion, restarts it on an available server, connects it to the appropriate
storage device, and resumes normal operations [12].

VMware Virtual Infrastructure VMware High Availability provides easy
to use, cost effective high availability for applications running in virtual
machines. In the event of server failure, affected virtual machines are
automatically restarted on other production servers with spare capacity
[13].

Linux High-Availability Project It provides monitoring of cluster nodes,
applications, and provides a sophisticated dependency model with a
rule-based resource placement scheme. When faults occur, or a rule-
change occurs, the user-supplied rules are then followed to provide the
desired resource placement in the cluster [14].

On paper, these products seem very promising. Obviously, our evalua-
tion would include thorough testing of these products in order to validate
these claims.

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 4 RTO-MP-IST-064

1.2 Added Value Provided by High-Availability Solutions

As a side note, it is important to realize that availability offered by these
solutions can be leveraged in other contexts and can provide non-negligible
added value, such as:

Non-Disruptive Maintenance Upgrades and common hardware and soft-
ware maintenance can be performed while the system is running, with-
out its users noticing any downtime. Furthermore, if the system’s state
is extensively logged (which should be the case most of the time), mod-
ifications that prove to be erroneous can be rollbacked.

Server Consolidation In order to achieve fault-tolerance, virtualization is
often used in high-availability solutions and it can also be used to run
many virtual servers on the same hardware. It is thus possible to con-
solidate many less-used servers on one powerful computer, simplifying
management.

Advanced Monitoring & Logging State transfers and virtualization in
high-availability clusters need extensive monitoring and logging which
is ideal for good forensics. Therefore, if, for whatever reason, a system
that uses a high-availability cluster is attacked and fails, the failure
has the potential to be deeply analyzed from the logs.

2 Problems & Threats

This section looks at threats that current systems face everyday [7] and how
a high-availability solution could help, by either restarting the failed com-
ponent or by masking the effects of the fault. Restarting a failed component
is a sound solution only if the cause of failure is transient, or temporary. If
the cause of failure is still present after a restart, the component will fail
again and will keep being restarted over and over again. Masking the effects
of a fault may also not always be possible, if, for instance, all the duplicate
nodes fail simultaneously and give the same erroneous output.

2.1 Environmental Faults

Environmental faults are failures that originate from outside the system
itself, such as a power failure, a network connectivity loss (cut cable), natural
disasters, etc. Since the problem lies outside the system, restarting it will not
change much, unless the problem goes away while the system is restarting.

2.3 – High-Availability Solutions to Common Software Failures

RTO-MP-IST-064 2.3 - 5

If the system cannot deal with a temporary outage of a specific kind (it
cannot progress from a failed state to a correct state), restarting it may be
necessary after the outage. Masking the fault would require a distributed
system with geographically-distant nodes that cannot be subject to the same
environmental faults.

We see a limited use of high-availability solutions for these kinds of faults.

2.2 Hardware Faults

Hardware faults occur when a hardware component of the system stops
working correctly and reports an error. Examples include a crashed disk,
failed parity checking while reading memory, burned power supply, etc.

High-availability solutions were first designed to handle hardware faults
and are generally considered to work well in that context.

2.3 Software Faults

Software faults occur when the execution of a program diverges from “what
it should be”, i.e., its specification. For instance, a program could write data
outside the bounds of one of its buffers. This leads to memory corruption
and can be the cause of a crash. Errors in computation can also emerge if
the program reads outside the bounds of one of its buffers. Another example
of a program crash is if the program attempts a division by zero.

Software fault-tolerance is a vast domain being intensively researched
right now. All problems and questions are not yet solved and answered. We
want to start by investigating what currently-available high-availability so-
lutions have to offer in handling software fault-tolerance of existing systems.
The answer to “What can be done when a system crashes because of a soft-
ware fault?” is not easy to find. However, we believe that high-availability
solutions could be useful when a transient software error occurs.

2.4 Malicious Acts

Systems can also crash because of malicious acts like denial-of-service and
code injection attacks. High-availability solutions cannot mitigate code in-
jection attacks because if a system is vulnerable to code injection, making
it more available will not solve the problem. However, systems wrapped by
high-availability solutions can be more resilient to denial-of-service attacks
because if the attack slows down one of the nodes of the system, load balanc-
ing could be used to redistribute resources and achieve better performance.
If the attack crashes the system, it could be automatically restarted.

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 6 RTO-MP-IST-064

3 Goals & Work Plan

To sum up, our main goals for our evaluation are as follows:

1. Evaluate monitors’ error-detection performance.

(a) Which faults can be detected?

(b) Which monitoring approach do they use?

2. Assess how useful is a restart and for which kind of faults.

3. Assess how useful and feasible is to mask faults.

4. Determine if high-availability solutions are transparent to the applica-
tions.

5. Determine the limits of each product in general.

And our draft work plan:

Summer and Fall 2006 : Feasibility study and state-of-the-art report.

Spring 2007 : Preparation (development of tests, setup, etc.).

Summer 2007 : Evaluation.

Fall 2007 : Final report.

References

[1] Martin Croxford, Roderick Chapman, Correctness by Construction: A
Manifesto for High-Integrity Software, CrossTalk, December 2005.

[2] Gregory Slabodkin, Software glitches leave Navy Smart Ship dead in
the water, Government Computer News, July 13, 1998.

[3] SANS Institute, The SANS Top 20 Internet Security Vulnerabilities,
http://www.sans.org/top20/

[4] SecurityFOCUS, BugTraq Mailing List Archive,
http://www.securityfocus.com/archive/1

[5] McAfee, McAfee Threat Center – Security Vulnerabilities,
http://www.mcafee.com/us/threat center/vulnerabilities.html

2.3 – High-Availability Solutions to Common Software Failures

RTO-MP-IST-064 2.3 - 7

http://www.sans.org/top20/
http://www.securityfocus.com/archive/1
http://www.mcafee.com/us/threat_center/vulnerabilities.html

[6] Peter G. Neumann, Practical Architectures for Survivable Systems and
Networks, Computer Science Laboratory, SRI International, June 2000.

[7] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr, Basic Concepts and Taxonomy of Dependable and Secure
Computing, IEEE Transactions on Dependable and Secure Computing,
Vol. 1, No. 1, January-March 2004 (23 pages).

[8] Gregory Pfister, In Search of Clusters, 2nd Edition, Prentice Hall, 1998,
608 pages.

[9] Evan Marcus, Hal Stern, Blueprints for High Availability, 2nd Edition,
John Wiley & Sons, 2003, 624 pages.

[10] http://www.marathontechnologies.com/

[11] http://www.microsoft.com/windowsserver2003/technologies/clustering/default.mspx

[12] http://www.symantec.com/Products/enterprise?c=prodinfo&refId=20

[13] http://www.vmware.com/vinfrastructure/

[14] http://www.linux-ha.org/

2.3 – High-Availability Solutions to Common Software Failures

2.3 - 8 RTO-MP-IST-064

http://www.marathontechnologies.com/
http://www.microsoft.com/windowsserver2003/technologies/clustering/default.mspx
http://www.symantec.com/Products/enterprise?c=prodinfo&refId=20
http://www.vmware.com/vinfrastructure/
http://www.linux-ha.org/

	2.3 – High-Availability Solutions to Common Software Failures
	Abstract
	Introduction
	1 High-Availability Solutions
	1.1 Products of Interest
	1.2 Added Value Provided by High-Availability Solutions

	2 Problems & Threats
	2.1 Environmental Faults
	2.2 Hardware Faults
	2.3 Software Faults
	2.4 Malicious Acts

	3 Goals & Work Plan
	References

