[image: image63.wmf][image: image64.jpg][image: image65.wmf]Data

Sink

Stanag

4285 TX

[image: image66.wmf]Data

Source

FEC

Encoder

Inter

-

leaver

Symbol

Mapper

&

Scrambler

Symbol to

I/Q & TX

Filter

Float to

fixed

converter

Data

Sink

[image: image67.wmf]Float to

fixed

converter

Forwarder

Forwarder

Forwarder

Forwarder

Data

Source

FEC

Encoder

Inter

-

leaver

Symbol

Mapper

&

Scrambler

Symbol to

I/Q & TX

Filter

Data

Sink

[image: image68.wmf]Increasing

accuracy

Analytical

model

Increasing

clarity /

simplicity

Concurrency model,

e.g. Petri

-

net

Simulation

model

Measurements

on

testbed

Measurements on

actual system

[image: image69.wmf]CORBATSTSRC

CORBATSTSINK

On Workload in an SCA-Based System,
with Varying Component and Data Packet Sizes

[image: image70.wmf]SRC

F1TO9

SNK

[image: image71.wmf]FTOT

SNK

[image: image72.wmf]SRC

F123

F456

F789

SNK

On Workload in an SCA-Based System,
with Varying Component and Data Packet Sizes

On Workload in an SCA-Based System,
with Varying Component and Data Packet Sizes
Tore Ulversøy1 and Jon Olavsson Neset2
1Forsvarets Forskningsinstitutt (FFI), N-2027 Kjeller, Norway

1UNIK University Graduate Center, N-2027 Kjeller, Norway

 1University of Oslo (UiO), N-0316 OSLO, Norway

2Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway

1tore.ulversoy@ffi.no / 2 jonolavs@stud.ntnu.no
Abstract

An SCA-based SDR-application has components which exchange data through ports. This enables scalability through the possibility of deployment on multiple processors, makes code reuse easier in other SDR applications, and makes it easier to port applications. There is wide freedom as regards the granularity of the component structure, e.g. few components with a large amount of processing in each component or a higher number of components with less processing in each component. While a fine structure further enhances scalability, reuse and portability, it has side-effects in the form of increased workload overheads. Here the effects of varying this granularity on the workload of the total system are examined. The analysis is done for a varying number of components, while splitting the processing functional work such that the total functional processing work remains the same. Also, the effects of varying the size of the data packets between the components are studied. The analysis is done both by model calculations and experimental measurements. The analysis is important for efficient utilization of the processing elements in an SDR system.
1.0 INTRODUCTION

The Software Communications Architecture (SCA) is the dominant architecture for Software Defined Radio (SDR) in the military domain. SCA defines a run-time environment for applications and allows applications to be built as compositions of components. SCA also defines a distributed architecture, allowing the application components to be deployed on several processing elements. The communication between the components is enabled through port interfaces, and uses CORBA as the underlying communications middleware between the various parts of the application running on the various processors. On processing elements where CORBA is not available, SCA prescribes the use of CORBA-adapters, of which several solutions exist.

The splitting of SDR applications into components, with their defined input- and output interfaces, and their defined requirements to their runtime environment, enables scalable systems in that the various components may be deployed on additional processors as needed. Components also make reuse of parts of an application easier, e.g. if two standards have the same common interleaver, it makes sense to define this interleaver as one component that can be used in the waveform applications for both standards. Generally, an application composition with many small components increases the probability of being able to reuse the components in other waveform applications.

The component approach however has side effects in the form of processor workload overhead, where we here define the processor workload implied by a task or a group of tasks as the fraction of available processor cycles occupied over a time period. The component approach adds CORBA overhead through the processing of the CORBA invocations and format conversions in the system. Also, the approach increases the number of separate processes and threads, which increases context switching in the cases where several components are deployed on the same processor.

In the following we will consider such a case where the application granularity is so fine that several components are deployed on the same processor. We examine this by using a scenario where we have one CORBA-capable General-Purpose Processor (GPP) which runs the same functional application work, but implemented as a variable number of components. As part of the experiment, we also vary the workload of components, the size of the data packets transferred between the components and the data rate in the system.

2.0 ANALYSIS APPROACH
Our aim in this work is to quantify and understand the effects of application granularity of SCA-based applications, when the granularity is such that several components will need to be deployed on the same CORBA-capable GPP processor. We will be strictly interested in granularity effects on workload, i.e. we will not consider other aspects that may also be affected, such as latency, throughput, and statistical variation of latency and throughput.

In analysing processor workload or processor system performance in general, a wide range of analysis approaches are available, as illustrated in figure 1. Simple analytical system models may provide good insight and be easy to understand, however for most practical model sizes such models will only provide a course representation of the system, and will not capture the system behaviour in fine detail. At the other end of the scale, workload measurements on the actual system will provide good accuracy in determining the actual workload, however the level of detail in the total system may result in a less clear picture as to what are the dominant causes for the measured system performance. By analysing and structuring the measured information however, we may also get an understanding of the underlying dominant mechanisms.
An approach that makes it easier to capture more details and hence makes it easier to provide a higher accuracy than an analytical model is e.g. a Petri-Net model [1]. This type of model is however also more complex to understand and interpret. An even further model refinement will be a simulation model, which is even more complex to build and understand, but which has the potential of capturing finer details. If we did not have a system to perform measurements on, a further alternative would be to build a testbed that captured the specific characteristics we were interested in.

[image: image73.wmf]F5

F6

F7

F8

F9

SRC

F1

F2

F3

F4

SNK

We have chosen in this work to use a combination of empirical analysis and simple analytical models. Empirical analysis in the form of workload measurements on sample applications provide quantification of granularity effects with good accuracy, and also allow us to do detailed analysis where appropriate. The simple analytical models intend to help provide better insight into the effects we are observing.
Figure 1: Illustration of system performance analysis methods
3.0 Workload Assessment Through Empirical Analysis
3.1 General

We have chosen to perform the empirical analysis using the OSSIE Core Framework (CF) from VirginiaTech [2], which uses the omniORB [3]. Since this is an open source CF, it gives us the advantage of having the full source code available for our analysis. The system runs on Linux on an x86 hardware architecture. A Linux system is convenient due to both good availability of public documentation and due to a rich variety of publicly available analysis tools. Specifics of software and hardware are listed in table 1.
Table 1: HW and SW used in the experiments

	
	Experiment 3.2
	Experiment 3.3

	OS
	Linux 2.6.9-34.EL
	Linux 2.6.9-34.EL

	OSSIE revision
	0.6.0
	0.6.2

	Processor
	Pentium M 1.86GHz
	Pentium M 1.86GHz

	RAM
	1,5 GByte
	1,5 GByte

	Cache specifics

L1i=first level instruction cache

L1d=first level data cache

L2=second level cache
	L1i=32kB

L1d=32kB

L2=2MB
	L1i=32kB

L1d=32kB

L2=2MB

We have further chosen to do the empirical analysis on the basis of two groups of waveform applications. The first group is based on a sample waveform application with a low computational load (relative to the capacity of the processor), the transmitter (TX) part of Stanag 4285. This waveform is being used in a study in the RTO-IST-080 RTG-038 on SDR, and the base code has been provided by Telefunken Racoms. For purpose of the study here, the waveform processing is configured into applications with a variable number of components, as described in section 3.2.

The second group of applications is a synthetic workload, also configured into applications with a variable number of components, and as described more specifically in section 3.3. A synthetic workload allows us to more easily vary the computational load of the components, and also the size of the transmitted packages between components, which will help us understand the system behaviour.
The system workload, and how the workload is distributed among various processes and modules in the system, may be measured in a variety of ways, ranging from instrumentation (time measurements in the code) to various profiling and monitoring tools. Here we have chosen to use the tools ‘OProfile’ [4] and ‘SYSSTAT sar’ [5]. OProfile is a statistical profiler that samples the complete system including the kernel, shared libraries, and executables. This makes it possible to assess the workload distribution over the total system, including e.g. what portion of the CPU time was spent in the various modules of the applications and what portion of it was used with CORBA. SYSSTAT sar is a performance monitoring tool that works through collecting operating system information at intervals specified by the user. SYSSTAT sar will be used to monitor the CPU utilization during execution of the different sample applications.
3.2 Empirical Workload Assessment Using a Sample Waveform Application With Low Computational Complexity: Stanag 4285 TX
In this experiment, we compare a 2-component, 7- and 11-component application implementation of the Stanag 4285 TX waveform, as illustrated in figure 2, in terms of CPU workload. Each of the implementations contain the same functional processing code, such that the amount of processing work that is carried out is the same in all three cases. Additionally we compare these application configurations against a non-SCA-based version, this version also doing the same processing work.

[image: image1]
Figure 2: Stanag 4285 TX implemented in three different application configurations: As two SCA components (top), as 7 SCA components (middle) and as 11 components (bottom). The data sink contains a packet rate regulator.

For regulating the number of data packets processed per second (PR) in the application chain, the data sink contains a packet rate regulator in the form of SW instructions that perform a blocking read of a number of samples from an audio card. PR can then be set as the number of samples read relative to the audio card sample rate.

The CPU workload is quantified using SYSSTAT sar (sar –u 40 5), and quantified as the CPU % in the user application space, and as the sum of the CPU % in the user application space and in the system space.
Figure 3 shows the user CPU % results from the experiment, when running the application at 2395 symbols / second (which corresponds to 9,36 data packets per second), and then at 25600 and 64000 symbols second. 2400 symbols/sec is the rate of the actual waveform, the reason for additionally measuring at the two higher speeds is to get more significant CPU% readings.

[image: image2.emf]0

5

10

15

20

25

30

23952560064000

Symbol rate

User CPU %

Non-SCA

Single component+sink

6-components+sink

10-components + sink

Figure 3: User applications CPU workload in %, measured by SYSSTAT sar, for Stanag 4285 TX, for four different application configurations, each having the same processing functionality. The processing symbol rates are also varied, by varying the number of packets processed per second (the original Stanag 4285TX symbol rate is 2400 symb/sec).

We see from figure 3 that the user CPU workload is increased more than 2,5 times, going from the non-SCA basecode to the 11-components implementation, and roughly 2,5 times from a two-component implementation to an 11-component one. When considering user+system CPU%, figure 4, we see that this difference is even larger. Hence we may conclude, for this processing code, that the CPU workload increases significantly as the processing code is split into more components.

[image: image3.emf]0

5

10

15

20

25

30

35

40

45

23952560064000

Symbol rate

User + System CPU %

Non-SCA

Single component+sink

6-components+sink

10-components + sink

Figure 4: Same as previous figure, but showing the User+System CPU workload in %.

3.3 Empirical Workload Assessment Using a Synthetic Load

In this experiment we compare a 2-component (W2), 3-component (W3), 5-component (W5) and 11-component (W11) application, see figure 5. The computational load in each case consists of 9 FIR-filter loads, each of
[image: image4.wmf]N

B

×

multiply-and-addition operations (plus the additional necessary load and store operations). Here B is the packet (block) size in number of floats (1 float=4 bytes), and N is the number of filter taps.
In this setup, we may easily vary B and the total functional load (
[image: image5.wmf]N

B

const

×

×

×

»

9

), which we term WLFUNC. In the same way as in 3.2, we vary PR by using the audio card as a packet rate regulator. For W2 the regulator is in the FTOT component, and for W3...W11 in the SRC component.
Due to subtle details as to how the functional code runs on the processor, the proportionality of WLFUNC to
[image: image6.wmf]N

B

×

×

9

 is not exact for all B and N. In order for this not to confuse our interpretation of measurements, we include reference measurements of WLFUNC where appropriate, defining WLFUNC as the measured workload when running the functional code as a standalone c-program.

[image: image7]
Figure 5: The synthetic load on the system, in four different application configurations. In all configurations, the functional load is that of 9 FIR-filters, each with B x N multiplications and additions.

As an initial experiment we want to verify that we see CPU workload differences between the various configurations also of the synthetic load. Since we have the liberty of changing the load in the components, we do this for two different loads, N*B=20000 and 100000, keeping the packet size B at 2000 floats. The results are provided in figure 6. For N*B=20000, we observe a CPU (U+S) workload ratio between the standalone program and the 11-component SCA-based configuration of 1,94, hence we clearly observe workload overhead effects. When N*B is increased 5 times, we still observe differences between the configurations, but the same (U+S) workload ratio is now decreased to 1,17. Hence, under these conditions, we see a clear workload ratio dependency on N*B.
[image: image8.emf]CPU Workload versus Configuration

BLSZ=2000, PR=40

0

5

10

15

20

25

30

35

40

45

50

FUNC

N=10

W2

N=10

W3

N=10

W5

N=10

W11

N=10

FUNC

N=50

W2

N=50

W3

N=50

W5

N=50

W11

N=50

Configuration

CPU WL [%]

System

User

Ratio, user: 1,67

Ratio, user+syst: 1,94

Ratio, user: 1,10

Ratio, user+syst: 1,17

Figure 6: User and system CPU workload in %, measured by SYSSTAT sar, for the four synthetic waveform application configurations, and compared to the standalone c-implementation, FUNC. The packet size is 2000 floats, and N=10 for the 5 leftmost measurements, N=50 for the other 5 measurements. PR=40.

Next we want to investigate the effects on workload from varying the packet size, while keeping WLFUNC approximately constant, figure 7. Since the component functional workload, as mentioned previously, is not ideally proportional to N*B, we have selected combinations of N and B points that result in WLFUNC= 10±0.3% as a reference. We see again that dividing the processing into more components leads to increased processor workload. We also see a clear processor workload dependency on B, with the workload generally increasing with increasing B.
[image: image9.emf]CPU Workload versus Packet Size

0

5

10

15

20

25

30

35

010000200003000040000500006000070000

Packet Size

CPU WL [%]

FUNC U

FUNC U+S

W3 U

W3 U+S

W5 U

W5 U+S

W11 U

W11 U+S

W2 U

W2 U+S

Figure 7: User(U) and User+System (U+S) CPU workload in %, measured by SYSSTAT sar, as a function of packet size in # of floats, for the four synthetic waveform application configurations and with the standalone C-program as a reference (FUNC). FUNC has been adjusted, by selecting combinations of B and N, to approximately 10% workload (see FUNC graph).
4.0 Workload aSSESSMENT through LOW-COMPLEXITY ANALYTICAL MODELS

4.4 A Simple Lower Bound Model
Model

This model is an optimistic one, and will serve as a lower bound on the workload in the SCA-based system. The model will tell us how much of the additional workload on the processor, due to increased granularity, can be explained by accounting for the added workload due to the CORBA-based communication, i.e. the CORBA client, data format conversions, ORB activities, data transport, and CORBA servant.

In this model we will assume no loss due to context switches. We will assume that all the functional code in the components, and all other activities on the processor, execute in sequence without any performance losses due to there being several processes competing for the resources, and we will assume that the processor goes into idle state when it has processed one data package through the chain of components. Specifically we here assume that separating the functional code into more components does not lead to an increased amount of cache misses and hence does not lead to a lower average memory fetch/store speed.
In the model, we have chosen to separate out the data conversion to and from the ‘FloatSequence’ type that is used for the port data packet communication, as we found that to be important workload contributors.
Under these conditions we may write the CPU workload in % for our synthetic application with M components (including SRC and SNK) as

[image: image10.wmf](

)

100

)

2

(

)

1

(

)

1

(

9

%

×

×

-

+

×

-

+

×

-

+

+

+

×

×

=

PCR

t

M

t

M

t

M

t

t

t

PR

WLi

TF

TS

packet

SNK

SRC

CL

(1)
where
[image: image11.wmf]CL

t

 is the number of processor cycles to process one unit component load CL,
[image: image12.wmf]SRC

t

 is the number of processor cycles to process the functionality in the SRC component,
[image: image13.wmf]SNK

t

 is the number of processor cycles to process the functionality in the SRC component,
[image: image14.wmf]TS

t

 is the number of processor cycles to convert array of floats data to its FloatSequence representation,
[image: image15.wmf]TF

t

 is the number of processor cycles to convert the FloatSequence representation to array of floats data,
[image: image16.wmf]packet

t

 is the number of processor cycles to transfer one data packet between components, and
[image: image17.wmf]PCR

is the cycle rate of the processor. (The
[image: image18.wmf]2

-

M

 is due to there not being any conversion from the FloatSequence type in the SNK component in our specific case.)
Estimation of Parameters

Allthough it is possible to calculate estimates of the above
[image: image19.wmf]i

t

 parameters based on the source code of our system and processor specifics, it is a lengthy exercise and it is also difficult to get good accuracy. For our purpose of describing the workload overheads in the system, it suffices to instead measure the specific parameters in (1), as follows:
·
[image: image20.wmf]CL

t

×

9

 is measured, using OProfile, as a function of N and B, by running the functional code as a standalone c-program

·
[image: image21.wmf]SRC

t

,
[image: image22.wmf]SNK

t

,
[image: image23.wmf]TS

t

,
[image: image24.wmf]TF

t

 and
[image: image25.wmf]packet

t

: Measured using both SYSSTAT Sar and OProfile, with a test application consisting of merely one source and one sink component, see figure 8.
·
[image: image26.wmf]SRC

t

,
[image: image27.wmf]SNK

t

: Measured using OProfile, with no conversion to/from FloatSequence taking place in the source- and sink-components, as a function of B, and excluding all ORB-related processor cycles
·
[image: image28.wmf]TS

t

,
[image: image29.wmf]TF

t

: Measured with OProfile and sar, with a large number of conversions to FloatSequence taking place in the source component and/or and a large number of conversions from FloatSequence taking place in the sink component

·
[image: image30.wmf]packet

t

: Measured with OProfile as the sum of the processor cycles judged to be ORB-related. Estimated with SAR with no conversion to/from FloatSequence and assuming
[image: image31.wmf]SRC

t

 and
[image: image32.wmf]SNK

t

 ≈ 0.

[image: image33]
Figure 8: Test application for measurements of parameters in equation (1)

Table 2: The parameters in model (1) measured with OProfile and SYSSTAT sar, using the test application of figure 8.
	
	
	
[image: image34.wmf]SRC

t

	
[image: image35.wmf]SNK

t

	
[image: image36.wmf]TS

t

(B)

	
[image: image37.wmf]TF

t

(B)
	
[image: image38.wmf]packet

t

(B)

	User

	Estimate based on ‘sar’ measurements:
	Assumed 0
	Assumed 0
	14,5*B
	10,6*B
	79200+5,5*B

	
	Estimate based on OProfile measurements:
	650

	200
	14,6*B
	10,6*B
	80700+5,5*B

	System
	Estimate based on ‘sar’ measurements:
	Assumed 0
	Assumed 0
	≈ 0
	≈ 0
	160000+23,6*B

	
	Estimate based on OProfile measurements:
	≈ 0
	≈ 0
	≈ 0
	≈ 0
	150000+23,0*B

Comparison with Measured WL

Figure 9 shows a comparison of measured WL (user %) for the W11 configuration as a function of B (same data as in figure 7), and WLi, when using the OProfile
[image: image39.wmf]SRC

t

,
[image: image40.wmf]SNK

t

,
[image: image41.wmf]TS

t

,
[image: image42.wmf]TF

t

 and
[image: image43.wmf]packet

t

 estimates from table 2, and setting M=11 in the model. As expected WLi underestimates the real workload, in particular for high B’s, and in particular as we have not accounted for any context switching. Notably though, WLi predicts the major part of the observed WL overhead, particularly for the low B region.
[image: image44.emf]0123456

x 10

4

10

12

14

16

18

20

22

24

B

WL User [%]

Comparison of W11 Measured Data and Simple Lower Bound Model

Figure 9: Comparison of measured (upper graph) WL (user %) for W11 , and WLi (lower graph), when using the OProfile
[image: image45.wmf]SRC

t

,
[image: image46.wmf]SNK

t

,
[image: image47.wmf]TS

t

,
[image: image48.wmf]TF

t

 and
[image: image49.wmf]packet

t

 estimates from table 2 when calculating WLi as a function of the packet size. FUNC has been adjusted to approximately 10% for all B.
4.5 A Simple Model Including Context Switching
Model

A context switch refers to the switching of the CPUs execution from one process or thread to another.

Each SCA component will run as a process of its own. The switching of which process is the active executing one, is determined by the scheduling algorithm of the OS, in our case by the Linux 2.6.9 scheduler.

When a context switch occurs, this has a workload cost for the processor. We refer to the direct cost of the context switch as the cost directly associated with almost every context switch, as the saving and restoring of processor registers, the execution of the OS scheduler, reloading of TLB entries and the flushing of the processor pipeline [6] . The indirect cost is related to the cache sharing between processes [6], which may cause parts of the cache having to be stored onto lower-level cache or memory, and new values to be read into the cache, i.e. a ‘rewarming-up’ of the caches to the process or thread being executed.

The costs due to context switching is an added workload to that of equation (1), hence we write the workload including context switching
[image: image50.wmf]%

WLcs

as

[image: image51.wmf](

)

100

%

%

×

+

×

+

=

PCR

t

t

CSR

WLi

WLcs

CSI

CSD

(2)
where CSR is the rate of context switches,
[image: image52.wmf]CSD

t

 is the direct cost in number of processor cycles due to a context switch, whereas
[image: image53.wmf]CSI

t

 is the indirect cost, in processor cycles, of the context switch.
Estimation of Parameters
As our interest here is mainly that of verifying that (2) provides useful explanations of our problem, we will here only use course estimates of the parameters in (2):

· CSR is a function of both the scheduling algorithm and the processor load. For the comparison with the W11 measured data in figure 9, we here measure CSR directly, using ‘vmstat’ in Linux. We use a constant CSR of 1300 as a course average of observed CSR’s for the various B’s in figure 9.
·
[image: image54.wmf]CSD

t

 is assumed to be a constant, and can be measured through methods described in the literature. In [6],
[image: image55.wmf]CSD

t

is measured to be 3,8µsec for a dual 2.0GHz Intel Xeon system. We will use 5 µsec or 9300 cycles as a course estimate for our system.

·
[image: image56.wmf]CSI

t

 is dependent on the L1 and L2 caches of the processor. In a simplified view, if the sum of the data and instruction code areas that we are addressing are beyond the size of the L2 cache, the system will increasingly need to write data buffers to memory and read data buffers and instruction code from memory, at context switches. If this is the case, we assume that we will need to store our changed data of the past process to memory, and then read in the data and instructions of the next process that is to execute. We make a course estimate
[image: image57.wmf]CSI

t

 for the W11 case as a fraction c multiplied by the cycle count for writing one component data buffer of size B floats to memory, reading two buffers of size B from memory and reading 10kBytes of instructions, for the case that the sum of the buffers and code of all 11 components exceed the L2 size.
The blue line in figure 10 is
[image: image58.wmf]%

WLcs

, for W11 and the same general conditions as in figure 9, and when accounting only for CSR and
[image: image59.wmf]CSD

t

. We see that this provides a better agreement with the measured data for W11 than using only the simple lower bound model, in particular for the left part of the curve (low B).

When using a
[image: image60.wmf]CSI

t

 based on c=1 (full buffers written to and read from memory at each context switch) we vastly overestimate the processor workload. When setting c=0.02 we get the dashed black curve in figure 10, which, given our many assumptions, should be regarded as an example of CS model output only. Interestingly we see however that the exhaustion of the L2 explains the deviation of the measured data from that of the Simple Lower Bound model for high B’s.
[image: image61.emf]0123456

x 10

4

10

12

14

16

18

20

22

24

B

WL User [%]

Comparison of W11 Measured Data and CS Model with Approximate Parameters

Figure 10: Comparison of measured (red diamond graph) WL (user %) for W11 , and WLCS accounting for direct cost only (blue solid line), with same conditions as in figure 9. The black dashed graph is an example of a WLCS graph including both direct and indirect CS cost under certain assumptions, see specific conditions in the text.
5.0 conclusions

We have used empirical analysis and simple analytical models to understand the effects of component granularity in an SCA-based system, when the granularity is such that several components are deployed on the same CORBA-capable processor. For the empirical analysis, we have used the OSSIE CF from VirginiaTech, and omniORB. We have used variable number of components implementations of a real TX waveform processing, the Stanag 4285TX, and we have also used a synthetic waveform where we have been able to vary both the component workloads and the data packet sizes.
When executing the same total functional processing work, but with a varying number of SCA-based components, we observe that the processor workload increases as the number of components increases, and increasingly so for decreasing total functional processing work as well as for increasing data packet sizes. Hence the scalability and reusability benefits that result from implementing the SDR-application with a high number of components, must be balanced against the processing efficiency loss that occurs when having to run several components on the same processor.

We have proposed two simple models that explain the major effects of the processor workload overheads in a SCA-based system, and that with proper determination of their parameters may be used to predict actual workload in a system.
6.0 Acknowledgement

The first author would like to thank Torleiv Maseng at FFI (the Norwegian Defence Research Establishment) for his encouragement and for valuable inputs and advice, and would also like to thank Sarvpreet Singh at FGAN for his inputs on how to design the packet rate regulator.
7.0 REFERENCES

[1]
P. J. Fortier and H. E. Michel, Computer Systems Performance Evaluation and Prediction. Amsterdam: Digital Press, 2003.

[2]
VirginiaTech, OSSIE development site for software-defined radio, http://ossie.wireless.vt.edu/trac as of Dec. 20 2007

[3]
omniORB, http://omniorb.sourceforge.net/ as of Feb. 29 2008

[4]
OProfile - A System Profiler for Linux, http://oprofile.sourceforge.net as of Feb. 29 2008

[5]
SYSSTAT, http://pagesperso-orange.fr/sebastien.godard/ as of Feb. 29 2008

[6]
Chuanpeng Li, Chen Ding, and Kai Shen, "Quantifying The Cost of Context Switch," in ExpCS '07: Proceedings of the 2007 workshop on Experimental computer science, San Diego, CA, 13-14 June 2007.

[image: image62.emf]

CORBATEST:

11 comp.

7 comp.

2 comp.

W11:

W5:

W3:

W2:

RTO-MP-IST-083
3 - 1
3 - 2
RTO-MP-IST-083
RTO-MP-IST-083
3 - 13

_1267446890.unknown

_1267452457.unknown

_1267533203.unknown

_1267544027.unknown

_1267613675.unknown

_1267616473.unknown

_1267533235.unknown

_1267452466.unknown

_1267447405.unknown

_1267452321.unknown

_1267452418.unknown

_1267452436.unknown

_1267452302.unknown

_1267447379.unknown

_1265737924.unknown

_1266406514.unknown

_1267446844.unknown

_1266406588.unknown

_1266862094.unknown

_1266406554.unknown

_1266395534.unknown

_1266396382.unknown

_1266394363.unknown

_1265737581.unknown

_1265737748.unknown

_1265737407.unknown

