[image: image5.wmf][image: image6.jpg]

Decision Engine and Ontologies:
A Way Toward Autonomic System Management

Decision Engine and Ontologies:
A Way Toward Autonomic System Management

Decision Engine and Ontologies:
A Way Toward Autonomic System Management
Maurice Israël

Julien Borgel

{julien.borgel, Maurice.Israel}@fr.thalesgroup.com

A way toward autonomic system management

The essence for autonomic management is the ability for a system to self-govern its behaviour within the constraints of operational goals that the system as a whole try to achieve[1]

 REF _Ref184695243 \r \h
[1]. In this paper we present a new approach aiming at making easier and quicker the deployment of Tactical Information Systems but also solving incidents that could occur during a mission. The ultimate goal is definitely to make seamless the deployment and use of such systems that provide mission critical services no matter restricting the context could be. The implemented solution relies on novel monitoring and reconfigurations approaches related to both Artificial Intelligence solutions and semantic associations.
1.0
Introduction

Naturally, Information Systems (IS) complexity is dramatically increasing. Actually mastering and managing totally the whole IS become difficultly feasible. And when a problem occurs, it could be very difficult to assess real impacts on operational services [1]. Such a management is requiring expert people in network or software technologies that are more or less far from the actual preoccupations imposed by the mission. Moreover, the incident diagnosis and analysis is more and more difficult and the resolution time also increases. That induces obviously a high impact in the business of company and its related costs, or the capacity to achieve successfully some operational missions. Our approach, implemented in the ITEA-ENERGy project[2] is to combine both classical Policy Based Management systems with some cognitive ones. Artificial Intelligence should play a role of key importance to allow problem resolution in a dynamic and automatic way.

In case of problem impacting the network elements and related services within the theatre of operations, decisions to recover must be made very quickly, and have to be efficient and reliable. The human resource optimization is crucial and people involved in the reconfiguration have often many other things to do than managing the system. Indeed, checking which service is impacted or which one is available is of course very time consuming. Simplifying and reducing human intervention by making automatic some reconfiguration decisions is definitively needed. However the operator expertise and the IS context should also be taken into account to compute automatic reactions.

Some innovative architectures have already been presented to cope with the automatic network management [18]. A step further is presented here with a services and applications oriented architecture.

For example, let’s have a look at the use case of a unit which need to be connected to a deployed infrastructure on the theatre of operations, and which need a video service (not already planned) for their intelligence mission. Many problems could occur. First, the deployment : an operator will have to configure the connection in order to allow communications services between the units. Secondly, video services need to be set up to meet the intelligence unit mission requirements.

This is of course done today, but it requires many manpower and a certain level of knowledge in network management.

Tools that we propose to present here allow to overcome these kind of problematic, by computing relevant solutions corresponding to the real/current situation and dynamically invoke the reconfiguration solution chosen by the operator.

In this paper, we firstly describe the functional architecture of our management tool. Then we focus on the network and Tactical Information System ontology-based model, and how we take advantage of such a model in the decision engine we have implemented. We furthermore show how it has been applied on a practical example.

2.0 Functional description

Architecture

The canvas is a classical 3-layered architecture, with a Supervision layer, Processing layer and Managed system layer.

Figure 1 : 3-tier architecture
Supervision layer

On the supervision layer, the monitoring console gives the administrator the opportunity to describe policies that must be enforced on the system [4]. Here you should notice that a spate mechanism could be depicted, allowing the operator to describe some high level policies. Concretely, a high level policy could trigger underlying policies and so on and so forth.

Besides, the administrator is in a position to describe its Tactical System thanks to services description. Actually, three different concepts have been introduced : “low level services”, “high level services”, and “domains”.

Low level services

Firstly, the administrator could describe “low level services”. These services are hosted by a device, or any Network Element (NE) and they could be monitored by different classical channels: scripts, Web Services, Syslog, SNMP…

High level services

The IS administrator could also describe some “high level” services. Those ones directly depend on low level services. That means that they are not hosted by one single element. These services are somehow abstract. That’s possible to have many level of high level services, for instance, a high level service could depend on other high level and/or low level services. High level services allow to represent operational services and monitor their performance. Hence, the impact on a higher level service of a problem on a low level service is now clearly measurable.

To make concrete this feature, just imagine you are managing a classical tactical information system. This system provides mailing, Internet, Intranet, authentication services to its users. Moreover, they are using a Geographical Information System tool (Grass) relying on databases . Now, suppose you put yourself in the administrator position. To represent this system, you could decide that the “Mailing” service depends on two low level services: a “LDAP” one and a “SMTP” one. Additionally, the “Geographical” service would depend on “redunded databases” and on the “Grass” tool. As a result, we will have two high level services called “Geographical” [Figure 2 Services Tree] and “Mailing” , which both depend on low level services. Another possibility would be to gather database related services for instance, and network ones on the other hand. Finally at the end, you will have your own representation of operational services and their dependences to low level services. Some performance or availability metrics could be composed and aggregated to compute the operational services end-user perception. But the most important aspect to keep in mind is that this tools allow the administrators to represent the IS they have to manage. It is an abstraction of the managed IS, and as a result there is not one single solution. Different administrators could represent the same system in different manner (as far as it is relevant) and the main objective which is to monitor and manage the IS will be reach efficiently in the different cases.

[image: image1.png]
Figure 2 Services Tree

Concept of domains:

The third concept we introduced is the “domain” one, as already mentioned. No denying that end-to-end services are often provided by many independent entities (each of them supplying parts of the end-to-end service). And as a matter of fact, there isn’t one single administrator for all of them. As a result, you can’t directly act on all the NE of the chain of responsibility. That’s definitely not possible to change the bandwidth allocation, or the flow priority of your content provider. These non managed (by our system) entities are what we called “domains”: we could only exchange Service Level Agreements (as a collection of Service Level Specifications) in order to maintain end-to-end Quality of Service or service availability.

So the first level of knowledge is provided by the supervision layer, augmented with the system representation dynamically described by the system administrator.

Managed system layer

The bottom layer is dedicated to monitoring activities: raw events are collected from the monitored system, then filtered to prevent redundant data (e.g. if 10 times the same event are sent within 5 seconds, only one will be effectively received by the system) and correlated to prevent toggling data (e.g. toggling from one state to another within a short period of time) .

Processing layer

Let’s have a look now on the intermediate layer which is the core of our autonomic behaviour: this layer actually hosts the rules engine, the decision engine, and maintain a living knowledge on the system [6]

 REF _Ref184695716 \r \h
[8].

That’s quite common for human beings that red flashing lights often mean that problems occur somewhere, but what for a machine? Some cognitive capabilities should be added to our management tool so that it will be able to take right decisions at the right time and the right place, when a problem occurs on the system. To do that, we have described the “management world” by the way of ontology.

Ontology

An ontology is a simple set of concepts linked each other by some relationships[10]

 REF _Ref184695742 \r \h
[11].

In our case, key concepts are services, possible problems and atomic (or single) reconfiguration actions. Moreover, we have defined the service status concept to represent the fact that any reconfiguration action will impact one or many service status. That’s really the expert knowledge that is gathered in the ontology. An experienced system administrator knows that restarting an application could sometimes solve performance problems. We have translated such kind of information into our ontology. Other atomic actions are obviously possible to cope with performance problem: stop an other application, give some priorities, and so on… Anyway, that knowledge is represented in our ontology. Some other information could also be added: the “cost” (regarding the time/delay, the security issue, inconvenience or whatever) of an atomic action could be of interest. Additionally, some high availability constraints could be depicted. That means for example that some performance related solutions (e.g. “stop an application”) should be avoided if such a critical service is impacted.

The semantic added value:

Ontologies are used to represent relationships and semantics which cannot be represented using information language as UML. How to say “This performance is related to a video server, or some reconfiguration action could concern performance problems” with UML? Data models are excellent at representing facts, but do not have any inherent mechanisms to represent semantics, required to reason about those facts[13].

Once ontologies are correctly/fully described, we need to link the monitored data and the reconfiguration actuators to these models. Thus, semantic annotations are used on real instances of previously modelized concepts.

Policy Based Management

Then a knowledge base is populated: facts are coming from the real managed system and the services representation while management rules come from the ontology. As depicted in figure 3 all the information received are called “events”. These events are forwarded to our Policy Management tool so that if an event match with the policy, it is transformed into a problem, otherwise it is deleted.[7]

[image: image2.png]
Figure 3: Policy Based Management

A problem is characterized by some initial service status whereas the policy gives us what is the desired status of the service. For example if a router is down, we won’t ping it. If the performance is low, we firstly investigate the underlying low level services to determine the exact causes of this problem. It could come from a CPU overload or a network bandwidth congestion. Anyway this allows us to finely qualify the problem and to know all the impacted operational services. On the other hand, the policies give us the desired status: e.g. the performance must be better than 80%. Or the network connectivity must be ensured.

Reconfiguration mechanisms

As mentioned earlier, each reconfiguration actions make service status move from one state to another one. For example, the action “start_Application” make the state move from “not started” to “started”. In the figure Error! Reference source not found., Action “A2” make the service move form state “E0” to state “Ei2”.

[image: image3.png]

Figure 4 Status graph

Obviously some preconditions determine the needed status for a reconfiguration action to be applied. Our reconfiguration algorithm consists in looking for all the possible paths to move from the initial status to the final one thanks to one or more atomic reconfigurations. The solutions consist in a list of reconfiguration paths from one global state to another one. Indeed, one path represents the expected (reconfigurations) action sequence to be applied on the system to solve the previously analysed problem. In the figure above, an action sequence is for example {A2, A4, A8}. And the solution’s list is {A2, A4, A8}, {A2, A5, A7, A8}, {A3, A6, A7, A8}. The solution’s list is presented to the operator and is ranked according to relevant metrics (number of actions, security risks, time duration, costs, …). The optimum solution is the one which minimize these metrics. The chosen solution is executed on the managed system. And that is the last stage of the resolution algorithm: the system dynamically invoke some reconfiguration actions. Here again, semantically augmented Web Services are used: a semantic reconfiguration action (let say StopService) is translated into a simple Web Service call. For that a search is performed among available Web Services to discover which of them are able to perform such a StopService action and then the corresponding SOAP message is generated.

Prototype implementation

The Core of the Service Management System is based on a Multi-Agents platform System (JADE [12]) which provides the environment to manage and control software system by multi-agent systems cooperation[3]

 REF _Ref175121621 \n \h
 * MERGEFORMAT [14].

Protégé [11] as an ontology editor is used to describe our concepts and rules acting on these concepts. Protégé output is an OWL file. The decision engine is built with Prolog [15] which is “innately” able to parse a RDF file and consequently OWL ones and is able to create the corresponding knowledge base. This represents the main part of our job to implement the system “intelligence”.

All the semantic related works come from internal developments (based on the SETHA program). Thus it mainly allows us performing semantic discovery, and dynamic invocation.

Besides, as seen at the beginning our work is based on the operational goal representation: we needed some tools to create, describe, link and monitor high-level services based on other services and/or network resources. For that we did start from the famous Nagios [16] platform However, many views have been added, in order to :

· cope with our needs of monitoring low level services and high level services

· display a physical topology of the monitored devices and represent the dependencies between services (high and low level) and devices

· read, edit and modify policies, and also to activate or deactivate them.

· look at the problems raised by the system and trigger a solution computation.

Many effectors like Web services or a Netconf [17] proxy, which translate Netconf requests into the specific vendor protocol and data, are also used.

Application scenario

To demonstrate our autonomous aptitude, we have tested it on a test bed composed of four different entities: A X battalion is assigned on a given operational theatre. Its goal is to provide tactical situation up to the brigade headquarter. Transmissions are realised by network connections. This brigade could also send information to the division headquarter. Lastly, a Y battalion could join the X one and support them within their critical mission. The first scenario deals with the Y battalion interconnection (deployment phase), whereas the second one shows how to keep some critical services (here video transmission) available in spite of failures.

To allow battalions services interconnections, new services and applications configurations are needed. It is computed by the inference engine which has a real time knowledge of the Information System. The reconfiguration algorithm computes the needed reconfigurations which are later applied on the services and applications provided and on the related network elements.

Within the second scenario, a squadron is attacked by foes on the operational theatre. The soldiers need to transmit consolidated information to the headquarter (reachback) to obtain as soon as possible relevant reinforcements and further supplies. So a video stream is forwarded from the operational theatre to the headquarter. The video emitter has to manage its network mainly composed of networked elements and be sure that this kind of information is set as prioritized, which means that a high priority will be set for this service, even if other services must be debased. This service provider is connected to the brigade network, also managed by our tool. As it is absolutely needed to transmit this information as soon as possible, it is decided to use the video stream service. This service requires a lot of resources but of course is of high priority. To keep available this service, you need to think about which elements are used, and how to keep the service alive in spite of network overload on some nodes. It turns out that some of the routers are diffserv compliant: a solution could be to label network flows, and then decide some priorities on them. Even if some labels have already been set, our tool is able to calculate which path is needed to transmit the video and set in consequence flows priority. Similar process to be performed in each domain. Providing that the video service has been described (as a critical service needing high availability), that some diffserv enforcers are available, our system is able to automatically compute and invoke the needed actuators on the system in order to keep the video streaming service available. Finally, the headquarter could have the relevant information thanks to a video streaming client and then decide what to do.

To do that, two key information are needed: the first one is within our ontology. It gathers the domain expert knowledge. Some assertion looks like “ to keep video availability, you could label and prioritize network flows”, “ to install a patch you firstly need to stop the impacted application”. “To start a service, it has to be stopped” “a high availability service can't stop” and so on.

As you could see, some actions require preconditions to be executed.

Furthermore, to map this modelled world to the real one, a semantic link is used. To do that each sensor and actuator of the real system are semantically notated. As a result, the “stop action” for instance is mapped with a web service that really stops the application! In the same way, a Netconf implementation has been semantically noted to map a real action with “apply diffserv” action.

Now suppose that to solve a problem some reconfigurations are needed within many different entities, the first domain which has detected a problem is going to propagate the technical requirements to the next domain. To do that, the “send SLS“ action has also been semantically noted so that a given entity could speak to its vicinity (neighbours “domains”). For our inference engine, the send SLS action is a reconfiguration action as any other one. [9] . When the brigade (neighbour) domain receive the SLS, their autonomic management tool will also compute the required configuration so that the video stream could be transmitted under good conditions.

To put in a nutshell our previous explanations, the Network and system administrators knowledge has been parsed and understood by the inference engine to populate the rules base. On the other hand, the real living system is continuously monitored and some events (facts in the inference language) triggers some reconfiguration computations if needed.

The main result of such an approach is probably its evolution potential. Indeed, without any new implementation, our tool is able to “use” new features (e.g. reconfiguration actions) that could be later added to the system provided that the ontology be updated!

Conclusion

As a conclusion, we could assert that the Network and Information Systems management tool is entering now in the knowledge age. If the first essential step was to collect and gather accurate information, autonomous systems now need to interpret this information in a given context. Artificial intelligence may help the administrator to take the right decision at the right time. However basic sensors and actuators outputs have to be understood to make their management automatic.

This modular architecture also allows us to provide a distributed management tool: each administrative domain is finally autonomous, but all together, they could provide end-to-end services, along the networked element chain.[5]
Discussion and future work

We are considering many research ways: the first one will be to standardize the network management ontology. We intend moreover to go further in detail in the semantic description of sensors and actuators. Our goal is to achieve autonomic management of complex sub-systems, where dynamic parameters computations are needed (and not just a start/stop action).

Acknowledgements

We thank André Cotton, head of advanced studies department, and Daniel Lopes, head of network management software tools department for their support.

References

[1] Towards autonomic management of communications networks
Jennings, Van Der Meer, Balasubramaniam, Botvich, Foghlu, Donnelly, Strassner, Communication Magazine, 2007
[2] ITEA Research Project “ENERGy”, http://www.itea-energy.eu/
[3] Les réseaux autonomiques, F Krief Colloque Gestion de réseau et services , 2006

[4] Application des agents dans la gestion par politiques Traité IC2 Intelligence dans les réseaux,2005

[5] Theorie and Practice of Configuration Management in Decentralized systems, Mark Burgess, EMANICS, 2006

[6] The Management Plane in Autonomic networks, O Festor, MADYNES 2006

[7] An Adaptive Policy-Based Framework for Network Services Management, Leonidas Lymberopooulos, Emil Lupu, Morris Sloman, 2003

[8] An Informational Framework for Autonomic Networking Z B Daho, N Simoni, C Yin, F Bennani, 2006

[9] Promise theory – a model of autonomous objects for pervasive computing and swarms, Mark Burgess and Siri Fagernes, 2007

[10] Towards holonic multiagent systems: Ontology for supervision tool boxes, Silvia Suárez, Beatriz López, Joaquim Melendez 2001

[11] Protegé 2000. http://protege.stanford.edu/
[12] JADE. http://jade.tilab.com/
[13] L. Stojanovic et AL. : “The role of ontologies in autonomic computing systems”, IBM Systems Journal, Vol 43, N°3, 2004

[14] Gérard Nguengang, Louis Hugues, Dominique Gaiti. A Multi Agent System Approach for Self Resource Regulation in IP Networks

[15] http://www.swi-prolog.org/
[16] Nagios, an Open Source host, service and network monitoring program : http://www.nagios.org/
[17] NETCONF, http://www.ops.ietf.org/netconf/
[18] Management Architecture & Solutions for French Tactical Systems, V Cottignies, 2006

[image: image4.emf]

Application repository,

NE collections, topology

Managed system Layer

Services dependency,

Knowledge base,

Correlation, decision engine

Monitoring console.

Policy description.

Service dependence description

Supervision Layer

RTO-MP-IST-083
14 - 1
14 - 10
RTO-MP-IST-083
RTO-MP-IST-083
14 - 9

_1258458256.bin

_1258460586.bin

_1258182186.bin

