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ABSTRACT

Recent advances in the construction and analysis of atteahg have provided new tools to network de-
fenders. Even so, improving the security of networks resnamincredibly complex task. With increasing
numbers of vulnerabilities, maturing attacker tools, amgamizations becoming ever more reliant on computer
network infrastructure, automation and recommendatiais@are essential. Much course of action recommen-
dation research to date has worked with the assumption taeept network security is possible. In reality,
network administrators balance security with usabilitydaso they tolerate vulnerabilities and imperfect secu-
rity. In this paper we present course of action recommeindagilgorithms that compute efficient and effective
solutions which improve the security of networks withinlsgarld constraints including patch availability,
resource costs, and usability costs. Our solution buildsruexisting metric research in order to give courses
of action that maximally disrupt an attacker’s ability toach critical targets of the administrator’s choosing.
A polynomial time algorithm makes greedy choices to prodiseses of action that are almost always the
optimal choices computed by an exponential algorithm, ngakur solution especially useful in practice. We
demonstrate the value of our solution through several érpants.

1.0 INTRODUCTION

Modern network environments are extremely complex, aseigab of ensuring their security. Network admin-
istrators must defend assets of varying priority agairiatks of diverse complexity and maturity. Additionally,
they have only finite resources at their disposal and they flae difficult task of balancing security, usability,
and resources. In this paper we present a solution that ggppetwork administrators in making best-case
security decisions that optimize resource utilization amakimally defend their network, within a specified
budget.

Considerable work1-8] has been done in recent years to develop automated seangtysis tools that
compute multi-hop network attacks based upon network cordtgpn data such as host connectivity, installed
software, services offered, and open source vulneralultyabases. A computationally practicle method de-
scribes complex network attacks by the uselgbendency attack graphBependency attack graphs illustrate
how low-level details of the network configuration can beichd together by an attacker to compromise net-
work assets. Additionally, representing attacks as a gedlplvs problems to be solved using graph theory
techniques.
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Attack graphs may be generated with the attacker startimgyanode (including internal nodes) and tar-
getting any number of nodes. Since the information deswilai successful attack is contained in the graph,
a network administrator could, in theory, use an attack lytapdecide on an ideal course of action (COA) to
strategically or tactically improve the security of thewetk. However, while it is simple to consider each
individual attack step in the graph, analyzing the globapdris overwhelmingly complex. Hence, the network
defender is inundated with information and unclear about best to proceed. Furthermore, zero-day vulner-
abilities, resource limitations, and operational constsamake it very difficult to completely secure a network
[9]. Network defenders require a solution that maximally (bat necessarily completely) improves security
within real-world constraints.

1.1 Problem

Defenders of enterprise networks have finite resourcesinstance, there are a fixed amount of staff resources
available to test and roll-out configuration changes andhest Defenders cannot assume that all attacks will
be completely neutralized so they must determine the CORntlaximally defends the network. We build on
previous research on the defender’s prioritization of ises; computation of attack paths, and the attackers’
relative dependence on intermediate attack st&éPslll]. The defender wishes to spend his/her resources in
the manner that maximally disrupts the attackers’ caggltdi control the defender’s services, according to the
defender’s priorities. The attackers’ priorities might be the same as the defender’s priorities; however, our
prime concern is the defender’s priorities. The attackerigrities will likely be diverse based on their differing
motivations and they need not distract the defender, whesgonsibility is to the organization’s priorities.
The degree to which an attacker depends upon each attadk@gse user credentials, network connectivity,
vulnerability) in the attack graph is represented by raridiesmassigned to each attack asset. The cost to change
a network configuration is provided by the defender. We dcasstime the attack can be completely removed
within the budget. The problem is computing a COA, in timeypoimial with the network size, which removes
the greatest amount of attacker capability to reach pidedt services, while staying within the defender’s
budget (for example, staff hours).

1.2 Contribution

In this paper we define the closure of a COA in the context ecatgraphs, and present a polynomial-time best
first search greedy algorithm for generating COA recommgmaks Our approach combines knowledge of the
logical structure of network attacks, configuration datdngrability attributes, exploit maturity, device priori
tization, remediation costs, and budget limitations. Gige attack graph that describes how attacks against a
specified set of network assets could occur, our method nalyimemoves attacker capabilities for reaching
critical network services. Previous approaches took a-geatric total defence strategy and concentrated on
the full combination of privileges required to attack a gdaiey compute the cost-optimal solution using expo-
nential algorithms. Our approach is COA-centric and ersatile polynomial computation of partial solutions
which maximize the return on investment.

2.0 BACKGROUND

A network attack graph is a mathematical abstraction, stingi of vertices and arcs (directed edges), which
describes how an asset, or set of assets, in a network coualtidoed. Two main types of attack graphs have
been described in the literature. Early work in the areagedwon state enumeration attack grapghslp] in
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which each vertex represents a particular state of theeesystem and arcs represent state transitions. These
graphs suffered from scalability issues which were resbbyeusing dependency attack grapgsH], in which

each vertex represents a particular fact about the systdrnaras represent the logical dependencies between
the facts. Because they do not attempt to encode all posgities of the system, dependency attack graph are
more concise and efficient than state enumeration attagtgrand their vertices directly suggest COAs. In
this paper we deal with dependency attack graphs.

Although our approach to COA optimization could be appliedi¢pendency attack graphs acquired from
any source, we generate our graphs using the open sourceAMsRhturity analysis tool suitelp]. MulVAL
accepts as input a description of the network configuratn@twork routes, installed software, file privileges,
active servicesetc), and software vulnerability data from the National Vulagitity Database (NVD). Mul-

VAL employs Datalog 13] and a set of deductive logic rules to produce an attack gdaglribing all possible
attack paths leading to a specified set of assets. The attapk ¢ a directed graph composed of three types
of vertices: AND, OR, and SINK. The SINK vertices are the matwconfiguration facts, the AND vertices
correspond to attack methods, and the OR vertices corrdsfmonew capabilities the attacker can derive.
AND vertices are valid if all of their out-neighbours areidalvhile OR vertices are valid if any one of their
out-neighbours are validlfl]. A network defender may examine the graph to see which coatioins of
SINK vertices allow an attacker to obtain a privilegeq: the ability to execute arbitrary code on a particu-
lar server). Invalidating (removing) a SINK vertex corresgds with removing a network faceé.Q: patching
vulnerable software). These directed, AND/OR dependenaphs are a species of directed hypergraph called
F-hypergraphs19].

Attack graphs are valuable aids for identifying and analgzsecurity problems in a network, but even
for relatively small networks, the attack graph can be lamgmnplex, and difficult to interpret. Additional
analysis is required to extrapolate intelligent COA recandations from the graph to support the network
administrator.

To be useful in practice, COA recommendations should tatkeaocount four factors. First, some network
configuration changes are more costly than others. We usmtieept of doss function[16] to provide acost
corresponding to the removal of each SINK vertex. A lossfionds a non-negative function mapping an event
(a configuration change) to a real number (the cost incurredaking the configuration change). The use of a
loss function scopes the complicated task of determiniranfiral cost, time investment cost, and denial-of-use
cosf to decision theory research. In our model, the user cartiitelpincrease or decrease the cost in response
to COA recommendations. If a network fact cannot be changeagt (vulnerable critical software without a
patch available), its cost is considered infinite.

Second, the network administrator has a limited budget peres on these costs. Except for very simple
networks, it is unlikely that all of the security problemsndae fixed; the administrator aims to maximally
improve security, given the budget available.

Third, some vulnerabilities and privileges are more usafuhttackers than others due to the ease of ex-
ploitation, stealthiness of the attack, capabilities these attackers in furthering the attack, or other factors,
and one ought to preferentially obstruct the attackerditalio exploit or acquire the most useful privileges.
We model the dependence that attackers are likely to havaanattack asset by assigning a rank weight using
AssetRank 1] to every vertex in the attack graph.

AssetRank is an algorithm that assigns a rank weight to eadiewin a dependency graph based upon
the global structure of the graph, the likelihood of attackeccess in using or exploiting a network fact, the
maturity of attack tools, the likelihood of a successfuliabengineering attack, and the identification of critical

*http://nvd. ni st. gov/cvss. cfm
%Insofar as certain changes will disrupt network functiod ampair the organization’s business activity.
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assets. Itis an eigenvector ranking algorithm that canlbameighted directed graphs with both AND and OR
vertices, and vertex-specific damping factors. In the canié network attack graphs, the AssetRank value
assigned to each vertex represents the relative dependanattacker places on that vertex in furthering his
attack against the network. As such, the defender’s obgestiould be to preferentially eliminate vertices with
high AssetRank values. All rank weights sum to 1 and the raeffect the relative value of the graph vertex
to the attacker. Any rank function whose ranks can be ligeagigregated may be used as an alternative to
AssetRank.

Fourth, some network assets are more valuable to the deftradeother assets, and their protection should
be prioritized accordingly. In our experiments we manuaBgign a priority to services but complex enterprise
networks could again use AssetRank to compute a criticadigyric for each service that reflects the system
dependence upon that service.

3.0 COMPUTING COURSES OF ACTION

Given a dually weightetidependency attack graph, we consider how to generate dpfi®w recommenda-
tions under a budgetary constraint. In general, we want timly prevent the attacker from reaching the
target vertices the defender has prioritized for protectiée define two sets of vertices in the attack graph: the
goal set contains the goal vertices and the attacker setiosrthe attacker starting location(s). Our objective is
then to maximally decrease the connectivity between thesgdand the attacker set. AssetRank values reflect
the degree to which the attacker depends upon each verteaching the goal set.

AND/OR directed graphs correspond to propositional logrofulas. SINK vertices are logic variables that
may be true or false. When the attack graph is built, all SINitiges are set to true (representing the fact that
vulnerabilities exist, certain software is installed,wetk paths existetc). The remaining vertices in the graph
build conjunctive (AND vertices) and disjunctive (OR veds) clauses. In addition, each vertex corresponds
to a logical statement that can be simplified to consist egtiof SINK vertices. The statement will be true
or false, depending upon the value of the variables (SINKces). Wanget al. [17] compute optimal COAs
by building logic formulas for the goal vertices. Howevdrey point out that building the formulas requires
exponential time, and so a new approach is required to belisgfractice. Furthermore, if setting one or more
SINK vertices to false does not falsify the goal, the appheadn [L7, 18] will not indicate the degree to which
the security of the network has changed.

When a SINK vertex is made invalid, the portion of the grapét tttepended upon it (representing de-
rived privileges) will become invalid, meaning that it isrd use to the attacker in reaching the goal vertices.
Summing the AssetRanks of all of the invalid vertices givesedric indicating the effect on the attacker of
removing the SINK vertexi(e.: the proportion of rank that becomes inaccessible to tlaeladt). However, the
determination of invalid vertices is a cascading problem.

Initially, all vertices in the attack are on a path from a gesidtex to the attacker. If we delete the vertices
which are invalid (and the incident edges) vertices remaginn the graph could become unreachable from
the goal vertex, or unable to reach the attacker vertex. Eadex that is not in a path from the goal set
to the attacker does not aid an attacker to reach the goal.s@oulnected subgraph is an example of both
unreachability cases.

As an example, consider the attack graph shown in Fifj(e® If vertex i is deleted, then the compound
arc¢ incident to it is also removed, resulting in the graph showfigure1(b). Vertex is still present but it

®Rank weights for all vertices and cost weights for SINK \aa$.
“Note that every AND vertex hassingleoutgoing compound arc. Invalidating any one of an AND veéstexit-neighbours deletes
the arc to every out-neighbour.
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(a) Example attack graph (b) Figurel(a)attack graph with vertex (c) Full effect of removing

and its incident compound arc deleted.  vertex: and its closure from
the Figurel(a)attack graph.

attacker

Figure 1: Determining the effects of vertex removal. AND ver tices are denoted by ellipses and correspond to attack metho ds;
OR vertices are denoted by diamonds and correspond to new cap abilities the attacker can derive; SINK vertices are denote d by
boxes and correspond to network configuration facts.

is not useful to the attacker because, being disconnedtsdio longer reachable. We see thatan reach the
attacker but is not reachable by the goal, and so it too is ngdouseful. Removing isolatesh so it should
also be removed. Vertekis reachable from the goal but cannot reach the attackeissoot useful. Figurd.(c)
shows the final effect of deleting vertéxIn this example, the COA set {3}. We term the set of vertices that
are deleted as a result of deleting the COA setthsureof the set. In this example the closure{é}, denoted
(i, is{f.g,h.i,5}.

It is important to note that removing a set of COA verticesrfrthe graph can affect legitimate network
users because their removal signifies changes to the netwofiguration; whereas removing the remaining
vertices in the closure of the COA set only affects attackémsthe previous example, the removal of SINK
vertexi can affect both attackers and users, whereas the SINK egjtiand ~» are removed from the attack
graph, but do not cause configuration changes in the network.

The closure algorithm is used by both the polynomial and egptal algorithms; the full details are pre-
sented in Algorithml (VertexSetClosure). Briefly, the algorithm computes thesate of a set of vertices

by:
Line 2 Remove the COA vertices from the graph.

Line 3 Compute the AND and OR vertices unable to reach the attackeinghe directed graph. This is
efficiently computed by finding the vertices reachable fromattacker set in the graph transpdse.

Line 5 Compute the vertices unreachable from the goal set in tieetéidl graph.

Computing the vertex set closure is very efficient (see 8e&il). Approaching the problem from the goal-
informed but COA-centric point-of-view (“What are the nefik effects of removing this privilege (SINK)?”)
instead of a goal-centric approach (“What combination ofileges are required to attack the goal?”) enables
a polynomial complexity algorithfnand an efficient way to measure partial security improvement

Our aim is to compute the COA vertex set with the least codtrdrmoves the maximum rank from the
graph. Each SINK vertex has an associated cost given by &iosson (recall Sectio2.0), so the cost for the
COA set is defined as the sum of the costs of its member vertidesvise, each vertex in the graph has a rank
value, and we define the rank of the COA set clos@®the sum of the ranks of its members. Formally, our

The graph transpose is the graph with all arcs reversed satehioteds”’ for a graphG.
Polynomial in terms of the number of vertices and arcs.
"Note that we are interested in the cost of the COA set but réitk olosure.
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Algorithm 1 VertexSetClosure(G,C,S,T) — Closure of a vertex set

Input: AND/OR directed grapld- = (V, A), set of vertices” whose closure is to be computed, goal vertex set
S that vertices must be reachable from, attacker verteX ¢t vertices must be able to reach. Input variables
are assumed to have been passed by value (they are moditipids)c

Output: GraphG = (V, A) with closureC deleted, closur€’ of C.

1: C—C

2: Gy «— Gy — C {Arcs also deleted as necessary

3 C — {vjv € Gy, type(v) = AND or OR, At € T(t —gr v}
4 Gy —Gy—-C,C—CuC

5 C — {vjv € Gy, As € S(s =g v)}

6: Gy — Gy —C,C —CuC

7: return G, C

optimization problem is to find a subs@tof the SINK graph vertice$' such that:

1515%( (Z rank(c)) (1)

ceC

under the constraint

> costc) < Budget 2)

ceC

Solving this exactly is a binary integer programming pramlevhich is NP-completel9]. The optimal
solution, Algorithm2, is computed by brute force by considering all combinatiohSINK vertices that are
within budget. Since Algorithn2 has exponential complexity (see Sect®i), it is not practical for finding
complete solutions in large graphs. However, we take adganof it for subproblems, in particular to improve
the results obtained by Algorith@(BFSCOA).

Our greedy algorithm uses the “best first search” (BFS) B&anvith the following evaluation function:

f0,G) =" ranku) / cos(v) ©)
uev

This evaluation function gives a return on investment (R&yicomputing the amount of rank that would
be removed from the graph with the investment of removingrtiqudar vertex. That is, for each SINK vertex
v whose cost is within the budget, we compute the rank of the G&Aclosure in the context of the graph
G and divide by the cost of the vertex. The vertex with the hggtROI is removed from the graph (along
with its closure) and the cost is deducted from the availbbliget. The process is repeated with the resulting
subgraph and terminates when the budget is exhausted, artherfimprovements are possible within the
unspent budget. The full details are presented in AlgoriB(iBFSCOA).

The closure of candidate COA sets is supermodular, meahatghe closure of the union of sefsand B
contains at least the union of the closuresAaind B (and often much more). Thus, in contrast to diminishing
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Algorithm 2 OptimumCOA(G,S,T,Budget) — Optimum course of action

Input: AND/OR directed graplts = (V, A), goal vertex seb, attacker vertex séf, Budget.
Output: OptimumCOASet, RankEliminated

1: CandidateCOAs- (), RankEliminated— —oo
2: CandidateCOAs— [C' € PowerSet(Sinkg~)), costC') < Budget]
3: for (COA;, Cost;) € CandidateCOASslo
4. (G;,COA;) «— VertexSetClosure(G,COA;,S,T)
5.  COARank; — Z Rank(v)
veCOA;

if COARank; > RankEliminatedhen

RankEliminated— COARank;

CandidateCOAs— {COA;} {Replace previous solutiohs
else ifCOARank; = RankEliminatedhen
10: CandidateCOAs— CandidateCOAsI{COA;} {Set of set$
11: Keep only least expensive solutions in CandidateCOAs
12: return CandidateCOAs, RankEliminated

returns, we have increasing returns as we add more vertickeetCOA set. As a result, Algorithi®a can
compute a COA set with redundant removals. If the COA setiadidn the order, b, ¢, and ifa is not inb or ¢
(where overlines denote closure) but isike {b, c}, then{a, b, ¢} is a sub-optimal set that could be returned by
the BFSCOA algorithm. Although Algorithris exponential, it is useful on the subproblem of optimizihg
BFS solutions. We can use the COA set found by the BFS algorithlimit the number of possible COA sets
considered by the brute force algorithm. Although the detaie omitted, we created a hybrid algorithm that
calls Algorithm?2 each time a new vertex is added to the COA set in Algorigamhe OptimumCOA algorithm
only considers the vertices in the COA set (rather than &lkStertices), removes the redundant vertices (such
asa in the previous example), and returns their cost to the aviglbudget.

3.1 Complexity

The main work in our approach is done in Algorithin(VertexSetClosure). The most complex lines in that
algorithm, 3 and 5, compute the reachable vertices from eifgpset. The algorithm used is a depth-first-
search implementation provided by the Python NetworkX n®d20]. The implementation was modified
slightly to allow the reachability of a set of vertices to bmrgputed simultaneously. The complexity of the
NetworkX reachability algorithm i€)(v + a) wherewv is the number of vertices in the graph amds the
number of arcs. Since there are no loops in the algorithmcaheplexity isO(v + a).

Algorithm 1 (VertexSetClosure) is called by both Algorithtn(OptimumCOA) and Algorithm3 (BFS-
COA). Algorithm 2 (OptimumCOA) computes the optimal course of action for thecfied budget by a brute
force comparison of all candidate combinations. While tower set of the sink set is of si2é wheres is the
number of sinks, the power set contains many combinatiorsin&s whose total cost exceeds the budget, so
those are eliminated. The size of the remaining set can bé& smaller thar2®. For example, if every SINK
has a cost of 1, the budgettisand every vertex has a positive (non-zero) rank, then thebeu of candidate
courses of action is given [§f whereC; = s!/(b!(s — b!). As the attack graph grows in size, the discriminator
of a limited budget significantly reduces the candidate sp#e have implemented (the details are omitted) an
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Algorithm 3 BFSCOA(G,S,T,Budget) — Best first search greedy coursetarac

Input: AND/OR directed graplts = (V, A), goal vertex seb, attacker vertex séf, Budget.
Output: GraphGG’ = (V’, A") with CO A deletedCOA, CO A (closure), TotalCost, TotalRank.

1: TotalCost— 0, TotalRank— 0, COA — 0, COA «— (), SinkClosureComputeé- false, G’ — G
2: Sinks— {v|v € G}, Type(v) = SINK, Cost(v) < Budget

3: while Sinks<> () do

4. MaxROI «— —oco,m «— 0

5. for v; € Sinksdo

6 if SinkClosureComputethen {Ensure vertex is within budget, adjust cpst
7: COAInClosure «+ COANT7;

8 VertexCost— VertexCost- 3, ... Cos{u)

9 if VertexCost+ TotalCost> Budgetthen

10: Sinks« Sinks—{v;}

11: next

12: (G;,COA;) « VertexSetClosure(G',{v;}, S, T)

13: COARank; < 3, ceox; Rank(u)

14: ROI; — COARank;/Cos(v;)

15: if ROI; > MaxROI then

16: m <« 1

17:  if m = 0 then {No COA found within budgét
18: Sinks«— ()

19: else

20: TotalRank«— TotalRank+COARank,,

21: TotalCost— TotalCost+ Cos{v,;,)

22: if SinkClosureComputethen

23: COA «+— COA— COAInClosure,

24: COA — COAU{v,}

25: COA — COAUCOA,,

26: G — Gp

27: Sinks« Sinks— COA,,

28: SinkClosureComputed- true

29: return G’, COA, COA, TotalCost, TotalRank
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efficient dynamic programming method of generating onlydtedidate courses of action within budget.

The most complex line in thior loop is line 4, which has a complexity 6?(v + a). Given that line 4 is
executed up t@° times in the worst case of an unlimited budget, the complefithe algorithm i<D(2° (v+a)),
but runs withinZZ:O C; iterations when a limited budget is specified. Specifyingiddet is usually practical
because Algorithn3 (BFSCOA) will compute a solution in polynomial time, thusigig a budget upperbound.

In Algorithm 3 (BFSCOA), the highest time complexity is at line 12 and itastpf a doubly-nested loop.
Thefor loop at line 5 is performed over the sinks computed in lines@ 27. Recall that the sinks represent
facts about the network and they are the only items which earmbnged to alter the graph (improve the security
of the network). The number of sinks whose cost is within lidg denoteds in the following discussion and
is clearly less than the number of vertices in the graph. vWhie loop at line 3 is executed until no sinks
remain within budget. The number of sinks decreases by st leat each iteration. Lines 8 and 13 require a
summation where the number of operands is bounded by

In summary, lines 3 and 5 each loop upstimes, the complexity of line 12 i® (v + a), giving an overall
complexity ofO(s%(v+a)). Note that the graph itself is shrinking (line 26), as areréimaining sinks to check
(lines 10 and 27) so using the initial v, anda gives a conservative estimate.

4.0 EXPERIMENTS

We illustrate our method using three examples. The first staork with an attack graph that is small enough
to enable a full understanding of the concepts. The secoad&work representative of an organization with
several servers and remote workers.

4.1 Example 1

The network in Figur@ has three hosts plus the attacker’s PC. Each computer hasotetg exploitable vul-
nerability. Public databases give information regardimgyriature of particular vulnerabilities, and the maturity
of attacks against them. Given this information, we setittedihood of an attacker successfully exploiting the
vulnerability on the web server to 80%, the mail server to 48%ad the file server to 100%. The defender’s
primary concern is safeguarding the file server. The attad&es not have direct access to the file server but
can reach it by a multistep attack through either the webes@wthe mail server.

(et [ DNz ) (_nemal__|)
Internet > WWW(80,443) DMZ - fs(135,...)
Internet > Mail(25,80)
Attacker Attacker's PC WWwW Mail File Server (fs)

Figure 2: Example 1 network: The attacker can reach the file se rver by a multistep attack through the web server or mail serv er.

Figure 3 is the attack graph containing the possible attacks fordgbéario. Vertices represent assets (or
capabilities) that the attacker can use to further his lated arcs indicate dependencies that each derived asset
has on other assets. The graph gives a proof tree for howskeeasec Code( f s, syst en) is derived from

8execCode(fs, systen) states that the attacker can execute arbitrary code on ¢heefiver (fs) at the privilege of the system
account.

RTO-MP-IST-091 1-9
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1: execCode(fs,system)
Rank: 0.0005
2: RULE 3 (remote exploit of a server program)
Rank: 0.00121

29: vulExists(fs,'CVE-2008-4250',server,remoteExploit, privEscalation)
Rank: 0.00219
Cost: infinite

ORGANIZATION

28: networkServicelnfo(fs,server,tcp,135,system) 3: netAccess(fs,tcp,135)
nk: 0.00219 Rank: 0.00219

Cost: 10000

4: RULE 6 (multi-hop access)

26: RULE 6 (multi-hop access)
Rank: 0.00152 Rank: 0.00254

—

6: execCode(mail,sendmailAcct)
Rank: 0.023:

5: hacl(mail,fs,tcp, 135)
Rank: 0.00263
Cost: 500

~

7: RULE 3 (remote exploit of a server program)
R

ank: 0.03276

1

27: hacl(www s, tcp, 135)
Rank: 0.00406

Cost: 1000

i, CVE-2003-0694' sendmail, i, sendmail icp,25
8: netAccess(mail(cp,25) ok o oatse Rank: 0.04626

Baniioicas2s Cost: 250 Cost: 1000
21: RULE 7 (direct network access) 9: RULE 6 (multi-hop access)

Rank: 0.04665 Rank: 0.01896

22: hacl(internet,mail tcp,25) 10: hacl(www,mailtcp,25) -
Rank: 0.06566 Rank: 0.02699 RO R
Cost: 750 Cost: 500 -
12: RULE 3 (remote exploit of a server program)
Rank: 0.04316
. 20: vulExists(www,'CVE-2009-1012",apache, 19: apache,tcp,80,
13: HE?::ES;%VWGDV\;‘S(CPVBO) Rank: 0.06078 Rank: 0.06078
Cost: 2000 Cost: 3000

16: RULE 7 (direct network access)

14: RULE 6 (multi-hop access)
Rank: 0.07124

Rank: 0.01465

]

15 hacl(mail,www,tcp.80)

17: hacl(interet,wwwtcp,80)

Rank: 0.10001 Rank: 0.02097
Cost: 3000 Cost: 10
Figure 3: Attack graph for Example 1 network: The graph gives a proof tree of the attacker’s ability to obtain code executi on

privileges on the file server. Vertex 25 is the recommended CO
remaining decorated vertices are the closure of vertex 25.

A under loss function “Cost 2" with a budget of 1000; the

other facts. Vertices are coloured from red (high) to bluevjlto reflect their AssetRank values. The vertices
related to the web server have higher rank than those rdiatisg mail server because the exploit on the web
server has a higher likelihood of success.

In a network as small as this example, the defender will yikedve the resources to patch all software;
however, we assume enterprise-level resource restrictmneadily demonstrate the benefits of COA analysis
in a network small enough to evaluate. Tallgives costs under two different loss functions. The column
“Rank Sum of Closure” gives the sum of the rank weights fordlosure of each vertex. The goal is to deny the
attacker the greatest amount of rank; a rank sum of 1 comelspwith completely eliminating the attack. The
full graph contains 28 vertices and 30 arcs. The residuaicesrand arcs columns give the number of vertices
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and arcs remaining in the graph after the vertex closurem®ved. One immediately notices that the number
of residual vertices or arcs is a poor indicator of the sofutjuality.

Cost 1 simply assigns a cost of 250 for every vulnerabilitichpa500 for every network route removal,
and 1000 for every service shutdown. Using column Cost 1 analget of 1000, we immediately notice two
solutions that remove the entire attack: vertex 28 at a dadsd@0, and vertex 29 at a cost of 250.

Column Cost 2 presents loss function costs from a manuaépsodoss functions are an active and difficult
area of decision theory research. Our scope is limited toptienization of return on investment for courses of
action. The user can use any rank or loss functions from idecikeory research. The following assumptions
are examples of information used by the loss function: aorimenient workaround is available for the web
server vulnerability (vertex 20); a well-tested patch igikable for the mail server vulnerability (vertex 25); the
file sharing service (vertex 28) is critical to operations &8s availability is the highest priority; a patch does
not exist for the file server vulnerability (vertex 29). Ugi@ost 2 and a budget of 1000, it is not at all obvious
what the best solution is from an examination of the graplablet Figure3 illustrates the solution found by
both the greedy and optimal algorithms; namely, the remol/akrtex 25 at a cost of 250. There are several
other combinationse(g: {5,10}, {10, 15, 25, {22}, etc), but every vertex within the budget is contained in
the closure of vertex 25, so it is the optimal COA, removing gineatest amount of rank (39%) from the graph.
The least cost COA that fully removes the attack on the fileesds {25,27} for a cost of 1250.

Table 1: Vertex costs for Figure 3 graph

Vertex Rank Sum Residual Residual

Number Description of Closure  Vertices Arcs Costl Cost2
5 route: mail to fs 0.00415 26 27 500 500
10 route: www to mail 0.04595 26 27 500 500
15 route: mail to www 0.03562 26 27 500 10
17 route: internet to www 0.17125 26 27 500 3000
19 apache service on www 0.51546 15 14 1000 3000
20 vulnerability on www 0.51546 15 14 250 2000
22 route: internet to mail 0.11231 26 27 500 1000
23 attacker exists 1 0 0 00 00
24 sendmail service on mail 0.39267 15 14 1000 1000
25 vulnerability on mail 0.39267 15 14 250 250
27 route: www to fs 0.0066 26 27 500 1000
28 server service on fs 1 0 0 1000 10000
29 vulnerability on fs 1 0 0 250 00

4.2 Example 2

Only a slightly larger example is required to demonstrate uhlity of the optimization algorithms and the
efficiency of the greedy algorithm. Consider the small bessnnetwork shown in Figurg based upon an
actual business network. It is protected by a firewall coméduo permit only traffic deemed necessary for
business activities. The firewall also hosts a VPN serveetmji secure connections for employees working
off-site. The machines in the DMZ host services such as HDN%, and sendmail; in the Corporate subnet
is an internal mail server and web application server, algitly several workstation templates (together rep-
resenting dozens of similarly configured computers) rummiarious operating systems; the Secure subnet is
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protected by an additional firewall and contains machineging important services: Porky is a Citrix server
for remote application hosting and also hosts the compdmesicial information; Elmer hosts a file server,
source repository, and SQL database containing senstiee d

Apollo

Cgrgorale

LYY

Daffy Marvin Taz

W\ Bz D
VPN 1

St N

&S &

Internet PepeVPN Sylvester Tweety

Figure 4: Example 2 network. The attacker is located on the in ternet. The defender’s primary concern is safeguarding the six
servers.

All of the servers in the network have been hardened acaprdimNIST security configuration guidelines
[21]. Nonetheless, the network is vulnerable to attack becalifee presence of several software vulnerabili-
ties.

An attack graph for this network is shown in Figuse The graph is complex and, unaided, it is difficult
for a human to grasp the security implications of COA deaisiwithout considerable effort. When examined
closely, it shows that an attacker could gain root acces®wndf the servers: Sylvester, Tweety, Foghorn, or
Elmer. The fourexecCode SINK vertices corresponding to root access on the serverstite goal set for the
algorithms, and the attacker vertex forms the attackerBetails about network connectivity, vulnerabilities,
and costs are contained in Figiréwhich may be magnified in the electronic version of this doeat) but a
discussion of them is omitted since our intent in this examglo show the range of possible COA solutions
and compare the algorithm performance.

We study the greedy and optimal solutions for this attacklyr@ several different budget levels. TaBle
presents the budget, the actual cost of the COA found withénbiudget, the percentage of rank eliminated
from the graph, the COA vertices, and the CPU time requirecbtopute the solution using a Python 2.5.1
implementation on a 2.4 GHz dual core processor.

Here, the greedy algorithm does not always produce the apsoiution, but it does find nearly optimal
solutions efficiently. The rank removed from the graph bydheedy solution is at lea$0% of the optimal
value for each budget, and the greedy solution is found inalsand decreasing, fraction of the time to find
the optimal solution. As the budget increases — or, more rgéneas the number of SINK vertices under
consideration increases — the long execution times fonr@talgorithms make them impractical for real-world
application. At a budget of 4,000, there are 34 SINK vertiwesonsider resulting in 1,585,000 combinations
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Figure 5: Attack graph for Example 2 network: As configured, a n attacker beginning on the internet can obtain root privile ges
on Sylvester, Tweety, Foghorn, or EImer. Note: The figures in the electronic version of this document can be magnified in or der
to read the vertex contents.

Table 2: Course-of-action recommendations by Algorithm 3 BFSCOA. ltalicized vertices are redundant vertices thatar e removed
by applying OptimumCOA to the BFSCOA output. CPU times are fo ra 2.4 GHz dual core processor and Python 2.5.1.
Rank CPU Time
Budget COA Cost Eliminated COA Vertices (seconds)

1000 600 30.9% 119, 105, 51 0.222
2000 1800 48.9% 119, 105, 73, 42 0.367
3000 2900 62.4% 119, 105, 73, 96, 98 0.470
4000 3700 82.4% 119,05 73, 96, 123 0.514
5000 3700 82.4% 119,05 73, 96, 123 0.566
6000 3700 82.4% 119,05 73, 96, 123 0.636
7000 3700 82.4% 119,05 73, 96, 123 0.668
8000 7700 100% 119,05 73, 96,123 81 0.673

within budget for OptimumCOA to consider. Thus, the fasteesimn time and quality recommendations of the
greedy algorithm make it an attractive and practical aittve.

Note that a large proportion of the graph rank can be remoyeadtblligent deletion of a relatively small
set of SINK vertices. This illustrates the supermodular-hioear aspect of the optimization. Consider the
Budget= 2000 case as an example. The attack graph in Figunas fifty SINK vertices, yet removal of just
three or four judiciously chosen vertices (the COA sets fthenoptimal and greedy algorithms, respectively)
is sufficient to remove roughly half the rank in the graphyélg significantly limiting the attacker’'s range of
action. Similarly, the sum of the (non-infinite) costs of @&INK vertices is 101,600, yet 82% of the rank can
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Table 3: Course-of-action recommendations by Algorithm 2 OptimumCOA. The CPU times are for a 2.4 GHz dual core processo  r
and Python 2.5.1.
Rank CPU Time
Budget COA Cost Eliminated COA Vertices (seconds)

1000 1000 31.2% 62, 105, 119 2.814

2000 2000 55.0% 73, 96, 119 139.147

3000 2800 67.4% 96, 119, 123 2238.819

4000 3600 82.4% 73,96, 119, 123 17711.524

be eliminated with a cost of just 3,600, if the SINK removais aeptimal.

To illustrate the suitability of Return on Investment as aal@ation function for the best first search heuris-
tic, consider Figur®. The solutions generated by Algorith2(OptimumCOA) with up to three vertices in the
COA set are plotted with the cost against the ROI. The dotwaleflects the rank sum of the COA closure
with the highest rank sums in red and the lowest in blue. The 3avertex COAs given in Tableésand3 can
be picked out in the figure by identifying the highest ROI dotdach of the costs: 600, 1000, 2000, and 2800.
Those COAs optimally remove the attackers’ capabilitieshennetwork to reach the defender’s priorities.

ERIiEY —

0.000625
0000600
0.000575
0.000550 Q
0000525
0.000500
0.000475
0.000450 Q
0.000425
0.000400
0000375
0.000350
0.000325
0.000300

RO

0.000275
0.000250 L
0.000225
0.000200 L
0.000175
0.000150
0000125
0.000100 L
0.000075
0.000050
0.000025

0.000000
-0.000025

o 500 1,000 1,500 £,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 &,000 6,500 7000 7,500 §,000
Cost

Figure 6: COAs for the Example 2 network: 1-vertex, 2-vertex , and 3-vertex COAs costing less than 8,000. The dot colourre  flects
the rank sum of the COA closure with the highest rank sums in re d and the lowest in blue. (Jitter has been applied to differen tiate
stacked data points.) The figure illustrates the large numbe r of COA combinations, the fact that cost without considerin grank is
not a good measure of solution effectiveness.
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4.3 Scalability and accuracy

In this section we demonstrate the scalability and efficddh® Best First Search algorithm, compared to the
brute force algorithm. To do this, we randomly generate neits comprised of 10, 100, and 1000 unique
configurations. One may think of each configuration as a suwwhi&h contains multiple hosts but all hosts
in the subnet share a common baseline configuration. Forufpoge of generating a MulVAL attack graph,
this format is sufficient since it isn't concerned with theuat number of hosts, only the number of different
configurations.

A scale-free network is a network in which the vertex degistitdution follows a power law. The following
equation gives the expected percentage of nodes of dégneg graph following a power law distribution.

Pout(k‘) ~ ]{,’_ﬁfout andf)ln(k:) ~ k_’yin (4)

The world wide web (WWW) and inter-domain networking havertbshown to be well-modeled as scale-
free networks 22, 23]. Researchers have modelled inter-domain networkinggusirdirected graphs because
it accurately models routing. In our case, our concern iswilatther the physical infrastructure allows a
connection but whether the network access control listd @@llow a connection.

If a domain allows outbound session initialization to aeotdomain it does not imply it allows inbound
session initialization. The most important factor in dttgcopagation is whether or not a communication
session may be stood up. For example, a domain likely allawshast to initiate a communication session
with Google; however, the converse would rarely be true.

Preferential attachment is used by Bolloleasil. [24] to generate scale-free directed graphs. Conceptually,
preferential attachment is the idea that vertices with mamyeighbours are more likely to receive new con-
nections than vertices with few in-neighbours. Likewisettices with many out-neighbours are more likely
to make a new connection than vertices with few out-neigtdobor the WWW, we see this reflects reality.
Network connectivity follows the same pattern. A servet tleeady allows many inbound connections (for
example, a DNS server) is likely to allow connections fronwlyeadded hosts. Similarly, a server that is al-
lowed to access many other hosts (for example, a patch deplayserver) will likely be allowed to access new
hosts as well.

In the absence of published data giving experimentallyfieeripower-law exponents, we use the values
that Bollobaset al. [24] suggest for web graphs. Empirical evidence shows thatgidge network subnets are
more likely to initiate outbound connections than to reeg¢lvem, and this is also the behaviour of web graphs.
The values given for web graphs (and used by ushare= 2.7, v;, = 2.1.

4.3.1 Graph generation

First, a directed scale free graph is generated where eatdxwd the graph represents a host baseline config-
uration. Each configuration contains a remotely explogahlinerability. Since the network is formed using
preferential attachment, a large number of host configamatido not offer connectivity for incoming con-
nections. Hosts sharing a baseline configuration are asktorige in the same subnet and have unrestricted
connectivity to other hosts in the subnet.

Next, an attack graph is generated for the computer netwdhe attacker’s starting location is chosen
randomly. Most often, the attacker will have no incomingmections but occasionally it will be a host config-
uration with dense connections.
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Table 4: Distribution of inbound connectivity
Number of inbound con- Vertex list

nections

0 3,4,5,7,8,9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24
25, 26, 27, 28, 29

1 15, 16

2 6

4 2

8 0

25 1

The number of attack targets varies from 1 to 10% of the nurobéost configurations. The targets are
selected by choosing the hosts with the highest in-degresst(incoming connections). Since the attacker
starting location is chosen randomly, care is taken to avha@bsing the attacker’s location as a target.

For display purposes, a 100 host configuration network idam®e and a 10 host configuration network is
too small to be very interesting so Figureshows a randomly generated 30 host configuration network. Th
network has three attack targets. Tallesd5 give the distribution of inbound and outbound connecti¥ity
the network.

REEIRIS

1 e

Va
=g
S

Figure 7: Randomly generated 30 host configuration network w ith three attack targets (vertices 0, 1, and 2). The attacker s
starting location is vertex 23.

4.3.2 Course of action parameters

A loss function cost is associated with each course-obads follows:

e Removing a network connection from host A to B costs the nurobm-neighbours of A. The rationale
is that host A depends on host B for functionality. Removihg tonnection between A and B will
adversely affect all of the hosts connecting to A.

e Shutting down a service on host A costs the number of in-teighs of A. The same rationale is applied
here as was applied for network connections.
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Table 5: Distribution of outbound connectivity
Number of outbound Vertex list

connections

0 16

1 3,5,6, 8,10, 11, 12, 13, 14, 17, 19, 20, 21, 23, 24, 25, 262&7,
29

2 2,4,7,9,15, 18, 22

3 1

4 0

e Patching a vulnerability costs 1/4 of the number of hostslihge the vulnerability. The cost of deploying
a patch is proportional to the number of hosts that have theevability.

For each attack graph, the COA budget is incremented frond 25¢numhosts) inincrements of 0.25(numhosts) /10|
to give up to 10 steps.

4.3.3 Scalability and efficacy

Since the brute force algorithm (OptimumCOA) is too slow &applied to networks with 1,000 hosts, it was
only applied to networks with 10 and 100 hosts. The Best Bestrch (BFS) algorithm was applied to all three
sizes of networks over various combinations of random nedsyaumber of goals, and budget levels. The BFS
algorithm gives the same answer as the brute force algo®®¥a of the time in networks with 10 and 100
hosts, but with a much shorter computation time. Té&beesents the results.

Table 6: Comparison of the Best First Search algorithm versu s the brute force algorithm over various combinations of ran dom
networks, number of goals, and budget levels.
Property 10 Hosts 100 Hosts 1000 Hosts
Combinations (network, goals, budget) 1504 2622 108
BFS computing time range (sec) 0.00-0.16 0.00-1.95 0.016785
Brute force computing time range (sec) 1.08 -87.87 1.1468532095 N/A
Cases with different COA total rank 14 (0.9%) 28 (1.1%) N/A

5.0 RELATED WORK

A number of previous papers have studied the problem of g#gcnetrics in IT networks. Some have advocated
an economics-driven approach to the problem. Gordon andb [2 study how much money should be
invested in order to protect information of a certain valuethey do not specify how the money can be spent
effectively to secure the information. The same generaity feature of other cost-benefit analyses from an
economic perspectivef].

Previous work has used game theory to model the interaabiceisackers and defenders in order to develop
guantitative risk measures and security strategies.eLial. model the attacker’s incentives in order to infer
his intent, objectives, and strategie®/]. Cavusogluet al. model network traffic patterns, attacker intent,
monitoring effectiveness, expected damage, and otheorfa28]. While such approaches can effectively
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parametrize various aspects of network security, the latgeber of parameters with uncertain or unknown
values makes their quantitative predictions very subjecti

Numerous groups have proposed security metrics in the xioateattack graphs or trees. One strategy
has been to introduce measures of Return-On-Investment) (R9 and Return-On-Attack (ROA)30]. In
this scheme, ROI is a function of monetary damage resultiogn fattacks, estimates of risk mitigation, and
the costs of security investments, while ROA measures theedeto which an attacker’s gain is reduced by
security investments. These measures are applied toauedibttack trees. Wargf al. [31] use attacker and
exploit modeling in the context of attack graphs to estinth&eprobability of particular network assets being
compromised.

Closer to our approach is the work of Jtzal. [32] in which attack graphs are used to deduce a minimal set
of security measures that will ensure security. Our worfedifinsofar as we maximize the value of privileges
denied to the attacker, but within a fixed budget. We areeasted in solutions that will maximally improve, but
not necessarily ensure, the security of the system for agiust. Ingolset al. [2] build “multiple prerequisite”
attack graphs, and generate single-action recommenddt@sed on the number of hosts secured by deleting
vulnerability instances. Our work extends their work by sidering costs and combinations of actions, as well
as the relative value of privileges to the defender. Jajetlial. [33] propose a “weakest-adversary” metric
in which the security of a network is stated in terms of the kes& adversary that can successfully attack
it. A benefit of this approach is that it permits comparisorttaf relative security of two different network
configurations.

Dewri et al. also study the problem of how to select a set of security mindemeasures that satisfy a
budgetary constrainB8g]. They use genetic algorithms to search for a solution to li+olbjective optimization
problem that balances security improvements against cospatential damage. Their work deals with attack
trees while our work deals with the more general case of latjeaphs. Recall that any two vertices in a tree
are connected by exactly one path, while in a graph they mapheected by multiple and cyclic paths.

Directed graph theory defines &n, y)-vertex cut set as a set of vertices whose removal discosivect
ticesz andy (for example, representing an attacker and goal). Diregtagh cut set research is not directly
applicable to the problem addressed in this paper for tweorea The first, and most important reason, is we
do not assume it is possible to remove all connectivity betwadtackers and goals. Second, logic attack graphs
are not properly represented by directed graphs but arecirafapecies of directed hypergraphs. We are not
aware of any published theory on vertex cuts in directed tgypehs.

Homer and Ou35] combine MulVAL-generated attack graphs with usabilityugements, and use Boolean
Satisfiability Solving to find network configurations thabpide security while retaining usability. They com-
pute the minimal cost cut-set that will completely protese&of identified vertices while respecting specified
usability requirements. If a solution exists, their metipodvably finds the optimal (lowest cost) configuration.
The attempt to find solutions that simultaneously addressrigg problems and preserve usability is admirable.
The advantage of our work is that it can provide an effectmerse of action even when absolute protection of
the goal vertices is not possible.

The previous work that most resembles our approach is thefaofget al. [17], in which a minimum-
cost algorithm is used to identify sets of network propertieat enable successful attacks. They associate a
propositional logic formula with each attack graph verteattstates its truth condition as a function of the truth
values of network configuration facts, and they search farinmél-cost sets of facts which can invalidate the
attack.

Our work extends existing approaches by employing rank ktgjgvhich permit strategic defence of net-
work assets that are most valuable to the attacker. We atstupe partial solutions when mitigation costs of a
complete solution are too high. If each vertex is assumea tof lequal value to the attacker and the budget is
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infinite, our exponential complexity solution is similarfoevious exponential approaches.

6.0 CONCLUSION

We introduced thelosureof a course of action (COA) in the context of attack graphs ames$ented a poly-
nomial time algorithm that leverages prior attack graph ar&lrics research to compute multi-action COA
recommendations that maximally disrupt attackers, withispecified budget. Our experiments demonstrate
that practical solutions can be found by the polynomiaktibest first search greedy algorithm in less than a
second for a representative single site corporate netwdkkgenerated thousands of network configurations
with the results showing that computing COAs for enterpnisvorks can be done in a reasonable time period,
usually with optimal solutions. Our algorithm makes effeetrecommendations for improving security even
when practical considerations prevent the network fromdpebmpletely secured.

It is possible to use the greedy and optimal algorithms c@dpely in order to achieve better results. The
greedy algorithm, because it removes the single most effe®INK vertex in each iteration, can sometimes
expend part of the budget removing a vertex that will itselfridirectly removed in a later iteration. This results
in a COA set that is a superset of an equivalently good sa@lu{ibor example, comparing the Budget4000
results in Table2 and 3 shows that the greedy algorithm includes vertex 105, wisalminecessary because
it is contained in the closure of the remaining vertices.clSsupersets can be compressed by applying the
optimal algorithm to them. These sets are usually small soofttimal algorithm can execute quickly, and
when it succeeds in reducing the COA set (and its associat)ltbhe greedy algorithm can resume searching
with a larger remaining budget. This optimization can be poted very quickly and we recommend the hybrid
approach.

Our approach is flexible due to the use of rank and cost weidkésmk weights may reflect whatever the
defender wants to deny the attacker, and cost weights mactefhatever the defender wishes to change.
For example, in place of the expressive rank and loss fumatist values we presented, the defender could
uniformly rank the network services and set all other verssks to zero. The defender could assign a cost of 1
to each vulnerability vertex and set the remaining SINKiee# to an infinite cost. The computed COA would
then maximally deny the attacker access to network serbig@atching as few vulnerabilities as possible. The
flexibility and efficiency of our approach should be very ws$éf practice.

Our technique can be applied in both proactive and reactieeasios. The difference between the two
situations is the range of actions, and the cost of impleimgitihe actions. Our future work in progress includes
integrating the algorithms into an automated computer odtwefence system.
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