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ABSTRACT

Recent advances in the construction and analysis of attack graphs have provided new tools to network de-
fenders. Even so, improving the security of networks remains an incredibly complex task. With increasing
numbers of vulnerabilities, maturing attacker tools, and organizations becoming ever more reliant on computer
network infrastructure, automation and recommendation tools are essential. Much course of action recommen-
dation research to date has worked with the assumption that perfect network security is possible. In reality,
network administrators balance security with usability and so they tolerate vulnerabilities and imperfect secu-
rity. In this paper we present course of action recommendation algorithms that compute efficient and effective
solutions which improve the security of networks within real-world constraints including patch availability,
resource costs, and usability costs. Our solution builds upon existing metric research in order to give courses
of action that maximally disrupt an attacker’s ability to reach critical targets of the administrator’s choosing.
A polynomial time algorithm makes greedy choices to producecourses of action that are almost always the
optimal choices computed by an exponential algorithm, making our solution especially useful in practice. We
demonstrate the value of our solution through several experiments.

1.0 INTRODUCTION

Modern network environments are extremely complex, as is the job of ensuring their security. Network admin-
istrators must defend assets of varying priority against attacks of diverse complexity and maturity. Additionally,
they have only finite resources at their disposal and they face the difficult task of balancing security, usability,
and resources. In this paper we present a solution that supports network administrators in making best-case
security decisions that optimize resource utilization andmaximally defend their network, within a specified
budget.

Considerable work [1–8] has been done in recent years to develop automated securityanalysis tools that
compute multi-hop network attacks based upon network configuration data such as host connectivity, installed
software, services offered, and open source vulnerabilitydatabases. A computationally practicle method de-
scribes complex network attacks by the use ofdependency attack graphs. Dependency attack graphs illustrate
how low-level details of the network configuration can be chained together by an attacker to compromise net-
work assets. Additionally, representing attacks as a graphallows problems to be solved using graph theory
techniques.
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Attack graphs may be generated with the attacker starting atany node (including internal nodes) and tar-
getting any number of nodes. Since the information describing a successful attack is contained in the graph,
a network administrator could, in theory, use an attack graph to decide on an ideal course of action (COA) to
strategically or tactically improve the security of the network. However, while it is simple to consider each
individual attack step in the graph, analyzing the global graph is overwhelmingly complex. Hence, the network
defender is inundated with information and unclear about how best to proceed. Furthermore, zero-day vulner-
abilities, resource limitations, and operational constraints make it very difficult to completely secure a network
[9]. Network defenders require a solution that maximally (butnot necessarily completely) improves security
within real-world constraints.

1.1 Problem

Defenders of enterprise networks have finite resources. Forinstance, there are a fixed amount of staff resources
available to test and roll-out configuration changes and patches. Defenders cannot assume that all attacks will
be completely neutralized so they must determine the COA that maximally defends the network. We build on
previous research on the defender’s prioritization of services, computation of attack paths, and the attackers’
relative dependence on intermediate attack steps [10, 11]. The defender wishes to spend his/her resources in
the manner that maximally disrupts the attackers’ capability to control the defender’s services, according to the
defender’s priorities. The attackers’ priorities might not be the same as the defender’s priorities; however, our
prime concern is the defender’s priorities. The attackers’priorities will likely be diverse based on their differing
motivations and they need not distract the defender, whose responsibility is to the organization’s priorities.
The degree to which an attacker depends upon each attack asset (e.g.: user credentials, network connectivity,
vulnerability) in the attack graph is represented by rank values assigned to each attack asset. The cost to change
a network configuration is provided by the defender. We do notassume the attack can be completely removed
within the budget. The problem is computing a COA, in time polynomial with the network size, which removes
the greatest amount of attacker capability to reach prioritized services, while staying within the defender’s
budget (for example, staff hours).

1.2 Contribution

In this paper we define the closure of a COA in the context of attack graphs, and present a polynomial-time best
first search greedy algorithm for generating COA recommendations. Our approach combines knowledge of the
logical structure of network attacks, configuration data, vulnerability attributes, exploit maturity, device priori-
tization, remediation costs, and budget limitations. Given an attack graph that describes how attacks against a
specified set of network assets could occur, our method maximally removes attacker capabilities for reaching
critical network services. Previous approaches took a goal-centric total defence strategy and concentrated on
the full combination of privileges required to attack a goal. They compute the cost-optimal solution using expo-
nential algorithms. Our approach is COA-centric and enables the polynomial computation of partial solutions
which maximize the return on investment.

2.0 BACKGROUND

A network attack graph is a mathematical abstraction, consisting of vertices and arcs (directed edges), which
describes how an asset, or set of assets, in a network could beattacked. Two main types of attack graphs have
been described in the literature. Early work in the area focused on state enumeration attack graphs [1, 12] in
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which each vertex represents a particular state of the entire system and arcs represent state transitions. These
graphs suffered from scalability issues which were resolved by using dependency attack graphs [2–5], in which
each vertex represents a particular fact about the system and arcs represent the logical dependencies between
the facts. Because they do not attempt to encode all possiblestates of the system, dependency attack graph are
more concise and efficient than state enumeration attack graphs, and their vertices directly suggest COAs. In
this paper we deal with dependency attack graphs.

Although our approach to COA optimization could be applied to dependency attack graphs acquired from
any source, we generate our graphs using the open source MulVAL security analysis tool suite [10]. MulVAL
accepts as input a description of the network configuration (network routes, installed software, file privileges,
active services,etc.), and software vulnerability data from the National Vulnerability Database (NVD)1. Mul-
VAL employs Datalog [13] and a set of deductive logic rules to produce an attack graphdescribing all possible
attack paths leading to a specified set of assets. The attack graph is a directed graph composed of three types
of vertices: AND, OR, and SINK. The SINK vertices are the network configuration facts, the AND vertices
correspond to attack methods, and the OR vertices correspond to new capabilities the attacker can derive.
AND vertices are valid if all of their out-neighbours are valid while OR vertices are valid if any one of their
out-neighbours are valid [14]. A network defender may examine the graph to see which combinations of
SINK vertices allow an attacker to obtain a privilege (e.g.: the ability to execute arbitrary code on a particu-
lar server). Invalidating (removing) a SINK vertex corresponds with removing a network fact (e.g.: patching
vulnerable software). These directed, AND/OR dependency graphs are a species of directed hypergraph called
F-hypergraphs [15].

Attack graphs are valuable aids for identifying and analyzing security problems in a network, but even
for relatively small networks, the attack graph can be large, complex, and difficult to interpret. Additional
analysis is required to extrapolate intelligent COA recommendations from the graph to support the network
administrator.

To be useful in practice, COA recommendations should take into account four factors. First, some network
configuration changes are more costly than others. We use theconcept of aloss function[16] to provide acost
corresponding to the removal of each SINK vertex. A loss function is a non-negative function mapping an event
(a configuration change) to a real number (the cost incurred in making the configuration change). The use of a
loss function scopes the complicated task of determining financial cost, time investment cost, and denial-of-use
cost2 to decision theory research. In our model, the user can iteratively increase or decrease the cost in response
to COA recommendations. If a network fact cannot be changed (e.g.: vulnerable critical software without a
patch available), its cost is considered infinite.

Second, the network administrator has a limited budget to expend on these costs. Except for very simple
networks, it is unlikely that all of the security problems can be fixed; the administrator aims to maximally
improve security, given the budget available.

Third, some vulnerabilities and privileges are more usefulto attackers than others due to the ease of ex-
ploitation, stealthiness of the attack, capabilities theygive attackers in furthering the attack, or other factors,
and one ought to preferentially obstruct the attackers’ ability to exploit or acquire the most useful privileges.
We model the dependence that attackers are likely to have on each attack asset by assigning a rank weight using
AssetRank [11] to every vertex in the attack graph.

AssetRank is an algorithm that assigns a rank weight to each vertex in a dependency graph based upon
the global structure of the graph, the likelihood of attacker success in using or exploiting a network fact, the
maturity of attack tools, the likelihood of a successful social engineering attack, and the identification of critical

1http://nvd.nist.gov/cvss.cfm
2Insofar as certain changes will disrupt network function and impair the organization’s business activity.
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assets. It is an eigenvector ranking algorithm that can handle weighted directed graphs with both AND and OR
vertices, and vertex-specific damping factors. In the context of network attack graphs, the AssetRank value
assigned to each vertex represents the relative dependencean attacker places on that vertex in furthering his
attack against the network. As such, the defender’s objective should be to preferentially eliminate vertices with
high AssetRank values. All rank weights sum to 1 and the ranksreflect the relative value of the graph vertex
to the attacker. Any rank function whose ranks can be linearly aggregated may be used as an alternative to
AssetRank.

Fourth, some network assets are more valuable to the defender than other assets, and their protection should
be prioritized accordingly. In our experiments we manuallyassign a priority to services but complex enterprise
networks could again use AssetRank to compute a criticalitymetric for each service that reflects the system
dependence upon that service.

3.0 COMPUTING COURSES OF ACTION

Given a dually weighted3 dependency attack graph, we consider how to generate optimal COA recommenda-
tions under a budgetary constraint. In general, we want to maximally prevent the attacker from reaching the
target vertices the defender has prioritized for protection. We define two sets of vertices in the attack graph: the
goal set contains the goal vertices and the attacker set contains the attacker starting location(s). Our objective is
then to maximally decrease the connectivity between the goal set and the attacker set. AssetRank values reflect
the degree to which the attacker depends upon each vertex in reaching the goal set.

AND/OR directed graphs correspond to propositional logic formulas. SINK vertices are logic variables that
may be true or false. When the attack graph is built, all SINK vertices are set to true (representing the fact that
vulnerabilities exist, certain software is installed, network paths exist,etc.). The remaining vertices in the graph
build conjunctive (AND vertices) and disjunctive (OR vertices) clauses. In addition, each vertex corresponds
to a logical statement that can be simplified to consist entirely of SINK vertices. The statement will be true
or false, depending upon the value of the variables (SINK vertices). Wanget al. [17] compute optimal COAs
by building logic formulas for the goal vertices. However, they point out that building the formulas requires
exponential time, and so a new approach is required to be useful in practice. Furthermore, if setting one or more
SINK vertices to false does not falsify the goal, the approaches in [17, 18] will not indicate the degree to which
the security of the network has changed.

When a SINK vertex is made invalid, the portion of the graph that depended upon it (representing de-
rived privileges) will become invalid, meaning that it is ofno use to the attacker in reaching the goal vertices.
Summing the AssetRanks of all of the invalid vertices gives ametric indicating the effect on the attacker of
removing the SINK vertex (i.e.: the proportion of rank that becomes inaccessible to the attacker). However, the
determination of invalid vertices is a cascading problem.

Initially, all vertices in the attack are on a path from a goalvertex to the attacker. If we delete the vertices
which are invalid (and the incident edges) vertices remaining in the graph could become unreachable from
the goal vertex, or unable to reach the attacker vertex. Eachvertex that is not in a path from the goal set
to the attacker does not aid an attacker to reach the goal. A disconnected subgraph is an example of both
unreachability cases.

As an example, consider the attack graph shown in Figure1(a). If vertex i is deleted, then the compound
arc4 incident to it is also removed, resulting in the graph shown in Figure1(b). Vertexj is still present but it

3Rank weights for all vertices and cost weights for SINK vertices.
4Note that every AND vertex has asingleoutgoing compound arc. Invalidating any one of an AND vertex’s out-neighbours deletes

the arc to every out-neighbour.
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(a) Example attack graph
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(b) Figure1(a)attack graph with vertexi
and its incident compound arc deleted.

goal

b

c d a t tacke r

(c) Full effect of removing
vertexi and its closure from
the Figure1(a)attack graph.

Figure 1: Determining the effects of vertex removal. AND ver tices are denoted by ellipses and correspond to attack metho ds;
OR vertices are denoted by diamonds and correspond to new cap abilities the attacker can derive; SINK vertices are denote d by
boxes and correspond to network configuration facts.

is not useful to the attacker because, being disconnected, it is no longer reachable. We see thatg can reach the
attacker but is not reachable by the goal, and so it too is no longer useful. Removingg isolatesh so it should
also be removed. Vertexf is reachable from the goal but cannot reach the attacker so itis not useful. Figure1(c)
shows the final effect of deleting vertexi. In this example, the COA set is{i}. We term the set of vertices that
are deleted as a result of deleting the COA set theclosureof the set. In this example the closure of{i}, denoted
{i}, is {f, g, h, i, j}.

It is important to note that removing a set of COA vertices from the graph can affect legitimate network
users because their removal signifies changes to the networkconfiguration; whereas removing the remaining
vertices in the closure of the COA set only affects attackers. In the previous example, the removal of SINK
vertexi can affect both attackers and users, whereas the SINK verticesj andh are removed from the attack
graph, but do not cause configuration changes in the network.

The closure algorithm is used by both the polynomial and exponential algorithms; the full details are pre-
sented in Algorithm1 (VertexSetClosure). Briefly, the algorithm computes the closure of a set of vertices
by:

Line 2 Remove the COA vertices from the graph.

Line 3 Compute the AND and OR vertices unable to reach the attacker set in the directed graph. This is
efficiently computed by finding the vertices reachable from the attacker set in the graph transpose.5

Line 5 Compute the vertices unreachable from the goal set in the directed graph.

Computing the vertex set closure is very efficient (see Section 3.1). Approaching the problem from the goal-
informed but COA-centric point-of-view (“What are the network effects of removing this privilege (SINK)?”)
instead of a goal-centric approach (“What combination of privileges are required to attack the goal?”) enables
a polynomial complexity algorithm6 and an efficient way to measure partial security improvements.

Our aim is to compute the COA vertex set with the least cost that removes the maximum rank from the
graph. Each SINK vertex has an associated cost given by a lossfunction (recall Section2.0), so the cost for the
COA set is defined as the sum of the costs of its member vertices. Likewise, each vertex in the graph has a rank
value, and we define the rank of the COA set closure7 as the sum of the ranks of its members. Formally, our

5The graph transpose is the graph with all arcs reversed, and is denotedGT for a graphG.
6Polynomial in terms of the number of vertices and arcs.
7Note that we are interested in the cost of the COA set but rank of its closure.
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Algorithm 1 VertexSetClosure(G,C,S,T) — Closure of a vertex set
Input: AND/OR directed graphG = (V,A), set of verticesC whose closure is to be computed, goal vertex set
S that vertices must be reachable from, attacker vertex setT that vertices must be able to reach. Input variables
are assumed to have been passed by value (they are modifiable copies).
Output: GraphG = (V,A) with closureC deleted, closureC of C.

1: C ← C
2: GV ← GV − C {Arcs also deleted as necessary}
3: C ← {v|v ∈ GV , type(v) = AND or OR, 6 ∃t ∈ T (t→GT v}
4: GV ← GV − C, C ← C ∪ C
5: C ← {v|v ∈ GV , 6 ∃s ∈ S(s→G v)}
6: GV ← GV − C, C ← C ∪ C
7: return G,C

optimization problem is to find a subsetC of the SINK graph verticesS such that:

max
C⊆S





∑

c∈C

rank(c)



 (1)

under the constraint

∑

c∈C

cost(c) ≤ Budget (2)

Solving this exactly is a binary integer programming problem, which is NP-complete [19]. The optimal
solution, Algorithm2, is computed by brute force by considering all combinationsof SINK vertices that are
within budget. Since Algorithm2 has exponential complexity (see Section3.1), it is not practical for finding
complete solutions in large graphs. However, we take advantage of it for subproblems, in particular to improve
the results obtained by Algorithm3 (BFSCOA).

Our greedy algorithm uses the “best first search” (BFS) heuristic with the following evaluation function:

f(v,G) =
∑

u∈v

rank(u)

/

cost(v) (3)

This evaluation function gives a return on investment (ROI)by computing the amount of rank that would
be removed from the graph with the investment of removing a particular vertex. That is, for each SINK vertex
v whose cost is within the budget, we compute the rank of the COAset closure in the context of the graph
G and divide by the cost of the vertex. The vertex with the highest ROI is removed from the graph (along
with its closure) and the cost is deducted from the availablebudget. The process is repeated with the resulting
subgraph and terminates when the budget is exhausted, or no further improvements are possible within the
unspent budget. The full details are presented in Algorithm3 (BFSCOA).

The closure of candidate COA sets is supermodular, meaning that the closure of the union of setsA andB
contains at least the union of the closures ofA andB (and often much more). Thus, in contrast to diminishing
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Algorithm 2 OptimumCOA(G,S,T,Budget) — Optimum course of action
Input: AND/OR directed graphG = (V,A), goal vertex setS, attacker vertex setT , Budget.
Output: OptimumCOASet, RankEliminated

1: CandidateCOAs← ∅, RankEliminated← −∞
2: CandidateCOAs← [C ∈ PowerSet(Sinks(G)), cost(C) ≤ Budget]
3: for (COAi, Costi) ∈ CandidateCOAsdo
4: (Gi, COAi)← V ertexSetClosure(G,COAi, S, T )

5: COARanki ←
∑

v∈COAi

Rank(v)

6: if COARanki > RankEliminatedthen
7: RankEliminated← COARanki

8: CandidateCOAs← {COAi} {Replace previous solutions}
9: else ifCOARanki = RankEliminatedthen

10: CandidateCOAs← CandidateCOAs∪{COAi} {Set of sets}
11: Keep only least expensive solutions in CandidateCOAs
12: return CandidateCOAs, RankEliminated

returns, we have increasing returns as we add more vertices to the COA set. As a result, Algorithm3 can
compute a COA set with redundant removals. If the COA set is found in the ordera, b, c, and ifa is not inb or c
(where overlines denote closure) but is ina ∈ {b, c}, then{a, b, c} is a sub-optimal set that could be returned by
the BFSCOA algorithm. Although Algorithm2 is exponential, it is useful on the subproblem of optimizingthe
BFS solutions. We can use the COA set found by the BFS algorithm to limit the number of possible COA sets
considered by the brute force algorithm. Although the details are omitted, we created a hybrid algorithm that
calls Algorithm2 each time a new vertex is added to the COA set in Algorithm3. The OptimumCOA algorithm
only considers the vertices in the COA set (rather than all SINK vertices), removes the redundant vertices (such
asa in the previous example), and returns their cost to the available budget.

3.1 Complexity

The main work in our approach is done in Algorithm1 (VertexSetClosure). The most complex lines in that
algorithm, 3 and 5, compute the reachable vertices from a specific set. The algorithm used is a depth-first-
search implementation provided by the Python NetworkX module [20]. The implementation was modified
slightly to allow the reachability of a set of vertices to be computed simultaneously. The complexity of the
NetworkX reachability algorithm isO(v + a) wherev is the number of vertices in the graph anda is the
number of arcs. Since there are no loops in the algorithm, thecomplexity isO(v + a).

Algorithm 1 (VertexSetClosure) is called by both Algorithm2 (OptimumCOA) and Algorithm3 (BFS-
COA). Algorithm 2 (OptimumCOA) computes the optimal course of action for the specified budget by a brute
force comparison of all candidate combinations. While the power set of the sink set is of size2s wheres is the
number of sinks, the power set contains many combinations ofsinks whose total cost exceeds the budget, so
those are eliminated. The size of the remaining set can be much smaller than2s. For example, if every SINK
has a cost of 1, the budget isb, and every vertex has a positive (non-zero) rank, then the number of candidate
courses of action is given byCs

b whereCs
b = s!/(b!(s− b!). As the attack graph grows in size, the discriminator

of a limited budget significantly reduces the candidate space. We have implemented (the details are omitted) an
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Algorithm 3 BFSCOA(G,S,T,Budget) — Best first search greedy course of action
Input: AND/OR directed graphG = (V,A), goal vertex setS, attacker vertex setT , Budget.
Output: GraphG′ = (V ′, A′) with COA deleted,COA, COA (closure), TotalCost, TotalRank.

1: TotalCost← 0, TotalRank← 0, COA← ∅, COA← ∅, SinkClosureComputed← false, G′ ← G
2: Sinks← {v|v ∈ G′

V , T ype(v) = SINK, Cost(v) ≤ Budget}
3: while Sinks<> ∅ do
4: MaxROI ← −∞,m← 0
5: for vi ∈ Sinksdo
6: if SinkClosureComputedthen {Ensure vertex is within budget, adjust cost}
7: COAInClosurei ← COA∩ vi

8: VertexCost← VertexCost−
∑

u∈vi
Cost(u)

9: if VertexCost+ TotalCost> Budgetthen
10: Sinks← Sinks−{vi}
11: next
12: (Gi, COAi)← V ertexSetClosure(G′, {vi}, S, T )
13: COARanki ←

∑

u∈COAi
Rank(u)

14: ROIi ← COARanki/Cost(vi)
15: if ROIi > MaxROI then
16: m← i
17: if m = 0 then {No COA found within budget}
18: Sinks← ∅
19: else
20: TotalRank← TotalRank+COARankm

21: TotalCost← TotalCost+ Cost(vm)
22: if SinkClosureComputedthen
23: COA← COA− COAInClosurem
24: COA← COA ∪ {vm}
25: COA← COA ∪ COAm

26: G′ ← Gm

27: Sinks← Sinks− COAm

28: SinkClosureComputed← true
29: return G′, COA, COA, TotalCost, TotalRank
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efficient dynamic programming method of generating only thecandidate courses of action within budget.
The most complex line in thefor loop is line 4, which has a complexity ofO(v + a). Given that line 4 is

executed up to2s times in the worst case of an unlimited budget, the complexity of the algorithm isO(2s(v+a)),
but runs within

∑b
k=0
Cs

k iterations when a limited budget is specified. Specifying a budget is usually practical
because Algorithm3 (BFSCOA) will compute a solution in polynomial time, thus giving a budget upperbound.

In Algorithm 3 (BFSCOA), the highest time complexity is at line 12 and it is part of a doubly-nested loop.
The for loop at line 5 is performed over the sinks computed in lines 2 and 27. Recall that the sinks represent
facts about the network and they are the only items which can be changed to alter the graph (improve the security
of the network). The number of sinks whose cost is within budget is denoteds in the following discussion and
is clearly less than the number of vertices in the graph. Thewhile loop at line 3 is executed until no sinks
remain within budget. The number of sinks decreases by at least 1 at each iteration. Lines 8 and 13 require a
summation where the number of operands is bounded byv.

In summary, lines 3 and 5 each loop up tos times, the complexity of line 12 isO(v + a), giving an overall
complexity ofO(s2(v+a)). Note that the graph itself is shrinking (line 26), as are theremaining sinks to check
(lines 10 and 27) so using the initials, v, anda gives a conservative estimate.

4.0 EXPERIMENTS

We illustrate our method using three examples. The first is a network with an attack graph that is small enough
to enable a full understanding of the concepts. The second isa network representative of an organization with
several servers and remote workers.

4.1 Example 1

The network in Figure2 has three hosts plus the attacker’s PC. Each computer has a remotely exploitable vul-
nerability. Public databases give information regarding the nature of particular vulnerabilities, and the maturity
of attacks against them. Given this information, we set the likelihood of an attacker successfully exploiting the
vulnerability on the web server to 80%, the mail server to 40%, and the file server to 100%. The defender’s
primary concern is safeguarding the file server. The attacker does not have direct access to the file server but
can reach it by a multistep attack through either the web server or the mail server.

Attacker’s PC

FW2��� ������	


�
WWW Mail File Server (fs)

FW1�
���
�� ������	�����
���
�� �������	���
Attacker

DMZ InternalInternet

Figure 2: Example 1 network: The attacker can reach the file se rver by a multistep attack through the web server or mail serv er.

Figure3 is the attack graph containing the possible attacks for thisscenario. Vertices represent assets (or
capabilities) that the attacker can use to further his attack, and arcs indicate dependencies that each derived asset
has on other assets. The graph gives a proof tree for how the assetexecCode(fs,system)8 is derived from

8execCode(fs,system) states that the attacker can execute arbitrary code on the file server (fs) at the privilege of the system
account.
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1: execCode(fs,system)
Rank: 0.0005

2: RULE 3 (remote exploit of a server program)
Rank: 0.00121

28: networkServiceInfo(fs,server,tcp,135,system)
Rank: 0.00219
Cost: 10000

29: vulExists(fs,’CVE-2008-4250’,server,remoteExploit,privEscalation)
Rank: 0.00219
Cost: infinite

3: netAccess(fs,tcp,135)
Rank: 0.00219

4: RULE 6 (multi-hop access)
Rank: 0.00152

26: RULE 6 (multi-hop access)
Rank: 0.00254

5: hacl(mail,fs,tcp,135)
Rank: 0.00263

Cost: 500

6: execCode(mail,sendmailAcct)
Rank: 0.0231

7: RULE 3 (remote exploit of a server program)
Rank: 0.03276

8: netAccess(mail,tcp,25)
Rank: 0.04626

24: networkServiceInfo(mail,sendmail,tcp,25,sendmailAcct)
Rank: 0.04626

Cost: 1000

25: vulExists(mail,’CVE-2003-0694’,sendmail,remoteExploit,privEscalation)
Rank: 0.04626

Cost: 250

9: RULE 6 (multi-hop access)
Rank: 0.01896

21: RULE 7 (direct network access)
Rank: 0.04665

10: hacl(www,mail,tcp,25)
Rank: 0.02699

Cost: 500

11: execCode(www,apacheAcct)
Rank: 0.03054

12: RULE 3 (remote exploit of a server program)
Rank: 0.04316

13: netAccess(www,tcp,80)
Rank: 0.06078

19: networkServiceInfo(www,apache,tcp,80,apacheAcct)
Rank: 0.06078

Cost: 3000

20: vulExists(www,’CVE-2009-1012’,apache,remoteExploit,privEscalation)
Rank: 0.06078

Cost: 2000

14: RULE 6 (multi-hop access)
Rank: 0.01465

16: RULE 7 (direct network access)
Rank: 0.07124

15: hacl(mail,www,tcp,80)
Rank: 0.02097

Cost: 10

17: hacl(internet,www,tcp,80)
Rank: 0.10001

Cost: 3000

23: attackerLocated(internet)
Rank: 0.16516
Cost: infinite

22: hacl(internet,mail,tcp,25)
Rank: 0.06566

Cost: 750

27: hacl(www,fs,tcp,135)
Rank: 0.00406

Cost: 1000

Figure 3: Attack graph for Example 1 network: The graph gives a proof tree of the attacker’s ability to obtain code executi on
privileges on the file server. Vertex 25 is the recommended CO A under loss function “Cost 2” with a budget of 1000; the
remaining decorated vertices are the closure of vertex 25.

other facts. Vertices are coloured from red (high) to blue (low) to reflect their AssetRank values. The vertices
related to the web server have higher rank than those relatedto the mail server because the exploit on the web
server has a higher likelihood of success.

In a network as small as this example, the defender will likely have the resources to patch all software;
however, we assume enterprise-level resource restrictions to readily demonstrate the benefits of COA analysis
in a network small enough to evaluate. Table1 gives costs under two different loss functions. The column
“Rank Sum of Closure” gives the sum of the rank weights for theclosure of each vertex. The goal is to deny the
attacker the greatest amount of rank; a rank sum of 1 corresponds with completely eliminating the attack. The
full graph contains 28 vertices and 30 arcs. The residual vertices and arcs columns give the number of vertices
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and arcs remaining in the graph after the vertex closure is removed. One immediately notices that the number
of residual vertices or arcs is a poor indicator of the solution quality.

Cost 1 simply assigns a cost of 250 for every vulnerability patch, 500 for every network route removal,
and 1000 for every service shutdown. Using column Cost 1 and abudget of 1000, we immediately notice two
solutions that remove the entire attack: vertex 28 at a cost of 1000, and vertex 29 at a cost of 250.

Column Cost 2 presents loss function costs from a manual process. Loss functions are an active and difficult
area of decision theory research. Our scope is limited to theoptimization of return on investment for courses of
action. The user can use any rank or loss functions from decision theory research. The following assumptions
are examples of information used by the loss function: an inconvenient workaround is available for the web
server vulnerability (vertex 20); a well-tested patch is available for the mail server vulnerability (vertex 25); the
file sharing service (vertex 28) is critical to operations and its availability is the highest priority; a patch does
not exist for the file server vulnerability (vertex 29). Using Cost 2 and a budget of 1000, it is not at all obvious
what the best solution is from an examination of the graph or table. Figure3 illustrates the solution found by
both the greedy and optimal algorithms; namely, the removalof vertex 25 at a cost of 250. There are several
other combinations (e.g.: {5,10}, {10, 15, 25}, {22}, etc.), but every vertex within the budget is contained in
the closure of vertex 25, so it is the optimal COA, removing the greatest amount of rank (39%) from the graph.
The least cost COA that fully removes the attack on the file server is{25,27} for a cost of 1250.

Table 1: Vertex costs for Figure 3 graph

Vertex Rank Sum Residual Residual
Number Description of Closure Vertices Arcs Cost 1 Cost 2

5 route: mail to fs 0.00415 26 27 500 500
10 route: www to mail 0.04595 26 27 500 500
15 route: mail to www 0.03562 26 27 500 10
17 route: internet to www 0.17125 26 27 500 3000
19 apache service on www 0.51546 15 14 1000 3000
20 vulnerability on www 0.51546 15 14 250 2000
22 route: internet to mail 0.11231 26 27 500 1000
23 attacker exists 1 0 0 ∞ ∞
24 sendmail service on mail 0.39267 15 14 1000 1000
25 vulnerability on mail 0.39267 15 14 250 250
27 route: www to fs 0.0066 26 27 500 1000
28 server service on fs 1 0 0 1000 10000
29 vulnerability on fs 1 0 0 250 ∞

4.2 Example 2

Only a slightly larger example is required to demonstrate the utility of the optimization algorithms and the
efficiency of the greedy algorithm. Consider the small business network shown in Figure4, based upon an
actual business network. It is protected by a firewall configured to permit only traffic deemed necessary for
business activities. The firewall also hosts a VPN server to permit secure connections for employees working
off-site. The machines in the DMZ host services such as HTTP,DNS, and sendmail; in the Corporate subnet
is an internal mail server and web application server, alongwith several workstation templates (together rep-
resenting dozens of similarly configured computers) running various operating systems; the Secure subnet is
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protected by an additional firewall and contains machines running important services: Porky is a Citrix server
for remote application hosting and also hosts the company’sfinancial information; Elmer hosts a file server,
source repository, and SQL database containing sensitive data.

Figure 4: Example 2 network. The attacker is located on the in ternet. The defender’s primary concern is safeguarding the six
servers.

All of the servers in the network have been hardened according to NIST security configuration guidelines
[21]. Nonetheless, the network is vulnerable to attack becauseof the presence of several software vulnerabili-
ties.

An attack graph for this network is shown in Figure5. The graph is complex and, unaided, it is difficult
for a human to grasp the security implications of COA decisions without considerable effort. When examined
closely, it shows that an attacker could gain root access on four of the servers: Sylvester, Tweety, Foghorn, or
Elmer. The fourexecCodeSINK vertices corresponding to root access on the servers form the goal set for the
algorithms, and the attacker vertex forms the attacker set.Details about network connectivity, vulnerabilities,
and costs are contained in Figure5 (which may be magnified in the electronic version of this document) but a
discussion of them is omitted since our intent in this example is to show the range of possible COA solutions
and compare the algorithm performance.

We study the greedy and optimal solutions for this attack graph at several different budget levels. Table2
presents the budget, the actual cost of the COA found within the budget, the percentage of rank eliminated
from the graph, the COA vertices, and the CPU time required tocompute the solution using a Python 2.5.1
implementation on a 2.4 GHz dual core processor.

Here, the greedy algorithm does not always produce the optimal solution, but it does find nearly optimal
solutions efficiently. The rank removed from the graph by thegreedy solution is at least90% of the optimal
value for each budget, and the greedy solution is found in a small, and decreasing, fraction of the time to find
the optimal solution. As the budget increases – or, more generally, as the number of SINK vertices under
consideration increases – the long execution times for optimal algorithms make them impractical for real-world
application. At a budget of 4,000, there are 34 SINK verticesto consider resulting in 1,585,000 combinations
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Figure 5: Attack graph for Example 2 network: As configured, a n attacker beginning on the internet can obtain root privile ges
on Sylvester, Tweety, Foghorn, or Elmer. Note: The figures in the electronic version of this document can be magnified in or der
to read the vertex contents.

Table 2: Course-of-action recommendations by Algorithm 3 BFSCOA. Italicized vertices are redundant vertices that ar e removed
by applying OptimumCOA to the BFSCOA output. CPU times are fo r a 2.4 GHz dual core processor and Python 2.5.1.

Rank CPU Time
Budget COA Cost Eliminated COA Vertices (seconds)
1000 600 30.9% 119, 105, 51 0.222
2000 1800 48.9% 119, 105, 73, 42 0.367
3000 2900 62.4% 119, 105, 73, 96, 98 0.470
4000 3700 82.4% 119,105, 73, 96, 123 0.514
5000 3700 82.4% 119,105, 73, 96, 123 0.566
6000 3700 82.4% 119,105, 73, 96, 123 0.636
7000 3700 82.4% 119,105, 73, 96, 123 0.668
8000 7700 100% 119,105, 73, 96,123, 81 0.673

within budget for OptimumCOA to consider. Thus, the fast execution time and quality recommendations of the
greedy algorithm make it an attractive and practical alternative.

Note that a large proportion of the graph rank can be removed by intelligent deletion of a relatively small
set of SINK vertices. This illustrates the supermodular non-linear aspect of the optimization. Consider the
Budget= 2000 case as an example. The attack graph in Figure5 has fifty SINK vertices, yet removal of just
three or four judiciously chosen vertices (the COA sets fromthe optimal and greedy algorithms, respectively)
is sufficient to remove roughly half the rank in the graph, thereby significantly limiting the attacker’s range of
action. Similarly, the sum of the (non-infinite) costs of allSINK vertices is 101,600, yet 82% of the rank can
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Table 3: Course-of-action recommendations by Algorithm 2 OptimumCOA. The CPU times are for a 2.4 GHz dual core processo r
and Python 2.5.1.

Rank CPU Time
Budget COA Cost Eliminated COA Vertices (seconds)
1000 1000 31.2% 62, 105, 119 2.814
2000 2000 55.0% 73, 96, 119 139.147
3000 2800 67.4% 96, 119, 123 2238.819
4000 3600 82.4% 73, 96, 119, 123 17711.524

be eliminated with a cost of just 3,600, if the SINK removals are optimal.
To illustrate the suitability of Return on Investment as an evaluation function for the best first search heuris-

tic, consider Figure6. The solutions generated by Algorithm2 (OptimumCOA) with up to three vertices in the
COA set are plotted with the cost against the ROI. The dot colour reflects the rank sum of the COA closure
with the highest rank sums in red and the lowest in blue. The four 3-vertex COAs given in Tables2 and3 can
be picked out in the figure by identifying the highest ROI dot for each of the costs: 600, 1000, 2000, and 2800.
Those COAs optimally remove the attackers’ capabilities onthe network to reach the defender’s priorities.

Figure 6: COAs for the Example 2 network: 1-vertex, 2-vertex , and 3-vertex COAs costing less than 8,000. The dot colour re flects
the rank sum of the COA closure with the highest rank sums in re d and the lowest in blue. (Jitter has been applied to differen tiate
stacked data points.) The figure illustrates the large numbe r of COA combinations, the fact that cost without considerin g rank is
not a good measure of solution effectiveness.

1- 14 RTO-MP-IST-091

nato-rto_logo.eps
Scatter_Cost_ROI_Colour-RankSum.eps


Metrics-based Computer Network Defence Decision Support

4.3 Scalability and accuracy

In this section we demonstrate the scalability and efficacy of the Best First Search algorithm, compared to the
brute force algorithm. To do this, we randomly generate networks comprised of 10, 100, and 1000 unique
configurations. One may think of each configuration as a subnet which contains multiple hosts but all hosts
in the subnet share a common baseline configuration. For the purpose of generating a MulVAL attack graph,
this format is sufficient since it isn’t concerned with the actual number of hosts, only the number of different
configurations.

A scale-free network is a network in which the vertex degree distribution follows a power law. The following
equation gives the expected percentage of nodes of degreek in a graph following a power law distribution.

Pout(k) ≈ k−γout andPin(k) ≈ k−γin (4)

The world wide web (WWW) and inter-domain networking have been shown to be well-modeled as scale-
free networks [22, 23]. Researchers have modelled inter-domain networking using undirected graphs because
it accurately models routing. In our case, our concern is notwhether the physical infrastructure allows a
connection but whether the network access control lists (ACLs) allow a connection.

If a domain allows outbound session initialization to another domain it does not imply it allows inbound
session initialization. The most important factor in attack propagation is whether or not a communication
session may be stood up. For example, a domain likely allows any host to initiate a communication session
with Google; however, the converse would rarely be true.

Preferential attachment is used by Bollobaset al. [24] to generate scale-free directed graphs. Conceptually,
preferential attachment is the idea that vertices with manyin-neighbours are more likely to receive new con-
nections than vertices with few in-neighbours. Likewise, vertices with many out-neighbours are more likely
to make a new connection than vertices with few out-neighbours. For the WWW, we see this reflects reality.
Network connectivity follows the same pattern. A server that already allows many inbound connections (for
example, a DNS server) is likely to allow connections from newly added hosts. Similarly, a server that is al-
lowed to access many other hosts (for example, a patch deployment server) will likely be allowed to access new
hosts as well.

In the absence of published data giving experimentally verified power-law exponents, we use the values
that Bollobaset al. [24] suggest for web graphs. Empirical evidence shows that enterprise network subnets are
more likely to initiate outbound connections than to receive them, and this is also the behaviour of web graphs.
The values given for web graphs (and used by us) areγout = 2.7, γin = 2.1.

4.3.1 Graph generation

First, a directed scale free graph is generated where each vertex of the graph represents a host baseline config-
uration. Each configuration contains a remotely exploitable vulnerability. Since the network is formed using
preferential attachment, a large number of host configurations do not offer connectivity for incoming con-
nections. Hosts sharing a baseline configuration are assumed to be in the same subnet and have unrestricted
connectivity to other hosts in the subnet.

Next, an attack graph is generated for the computer network.The attacker’s starting location is chosen
randomly. Most often, the attacker will have no incoming connections but occasionally it will be a host config-
uration with dense connections.
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Table 4: Distribution of inbound connectivity

Number of inbound con-
nections

Vertex list

0 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29

1 15, 16
2 6
4 2
8 0
25 1

The number of attack targets varies from 1 to 10% of the numberof host configurations. The targets are
selected by choosing the hosts with the highest in-degree (most incoming connections). Since the attacker
starting location is chosen randomly, care is taken to avoidchoosing the attacker’s location as a target.

For display purposes, a 100 host configuration network is toolarge and a 10 host configuration network is
too small to be very interesting so Figure7 shows a randomly generated 30 host configuration network. The
network has three attack targets. Tables4 and5 give the distribution of inbound and outbound connectivityfor
the network.

Figure 7: Randomly generated 30 host configuration network w ith three attack targets (vertices 0, 1, and 2). The attacker ’s
starting location is vertex 23.

4.3.2 Course of action parameters

A loss function cost is associated with each course-of-action as follows:

• Removing a network connection from host A to B costs the number of in-neighbours of A. The rationale
is that host A depends on host B for functionality. Removing the connection between A and B will
adversely affect all of the hosts connecting to A.

• Shutting down a service on host A costs the number of in-neighbours of A. The same rationale is applied
here as was applied for network connections.
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Table 5: Distribution of outbound connectivity

Number of outbound
connections

Vertex list

0 16
1 3, 5, 6, 8, 10, 11, 12, 13, 14, 17, 19, 20, 21, 23, 24, 25, 26, 27,28,

29
2 2, 4, 7, 9, 15, 18, 22
3 1
4 0

• Patching a vulnerability costs 1/4 of the number of hosts that have the vulnerability. The cost of deploying
a patch is proportional to the number of hosts that have the vulnerability.

For each attack graph, the COA budget is incremented from 1 to0.25(numhosts) in increments of⌈0.25(numhosts)/10⌉
to give up to 10 steps.

4.3.3 Scalability and efficacy

Since the brute force algorithm (OptimumCOA) is too slow to be applied to networks with 1,000 hosts, it was
only applied to networks with 10 and 100 hosts. The Best FirstSearch (BFS) algorithm was applied to all three
sizes of networks over various combinations of random networks, number of goals, and budget levels. The BFS
algorithm gives the same answer as the brute force algorithm99% of the time in networks with 10 and 100
hosts, but with a much shorter computation time. Table6 presents the results.

Table 6: Comparison of the Best First Search algorithm versu s the brute force algorithm over various combinations of ran dom
networks, number of goals, and budget levels.

Property 10 Hosts 100 Hosts 1000 Hosts

Combinations (network, goals, budget) 1504 2622 108
BFS computing time range (sec) 0.00 – 0.16 0.00 – 1.95 0.01 – 85.67
Brute force computing time range (sec) 1.08 – 87.87 1.14 – 50,652.95 N/A
Cases with different COA total rank 14 (0.9%) 28 (1.1%) N/A

5.0 RELATED WORK

A number of previous papers have studied the problem of security metrics in IT networks. Some have advocated
an economics-driven approach to the problem. Gordon and Loeb [25] study how much money should be
invested in order to protect information of a certain value but they do not specify how the money can be spent
effectively to secure the information. The same generalityis a feature of other cost-benefit analyses from an
economic perspective [26].

Previous work has used game theory to model the interactionsof attackers and defenders in order to develop
quantitative risk measures and security strategies. Liuet al. model the attacker’s incentives in order to infer
his intent, objectives, and strategies [27]. Cavusogluet al. model network traffic patterns, attacker intent,
monitoring effectiveness, expected damage, and other factors [28]. While such approaches can effectively
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parametrize various aspects of network security, the largenumber of parameters with uncertain or unknown
values makes their quantitative predictions very subjective.

Numerous groups have proposed security metrics in the context of attack graphs or trees. One strategy
has been to introduce measures of Return-On-Investment (ROI) [29] and Return-On-Attack (ROA) [30]. In
this scheme, ROI is a function of monetary damage resulting from attacks, estimates of risk mitigation, and
the costs of security investments, while ROA measures the degree to which an attacker’s gain is reduced by
security investments. These measures are applied to qualitative attack trees. Wanget al. [31] use attacker and
exploit modeling in the context of attack graphs to estimatethe probability of particular network assets being
compromised.

Closer to our approach is the work of Jhaet al. [32] in which attack graphs are used to deduce a minimal set
of security measures that will ensure security. Our work differs insofar as we maximize the value of privileges
denied to the attacker, but within a fixed budget. We are interested in solutions that will maximally improve, but
not necessarily ensure, the security of the system for a given cost. Ingolset al. [2] build “multiple prerequisite”
attack graphs, and generate single-action recommendations based on the number of hosts secured by deleting
vulnerability instances. Our work extends their work by considering costs and combinations of actions, as well
as the relative value of privileges to the defender. Jajodiaet al. [33] propose a “weakest-adversary” metric
in which the security of a network is stated in terms of the weakest adversary that can successfully attack
it. A benefit of this approach is that it permits comparison ofthe relative security of two different network
configurations.

Dewri et al. also study the problem of how to select a set of security hardening measures that satisfy a
budgetary constraint [34]. They use genetic algorithms to search for a solution to a multi-objective optimization
problem that balances security improvements against cost and potential damage. Their work deals with attack
trees while our work deals with the more general case of attack graphs. Recall that any two vertices in a tree
are connected by exactly one path, while in a graph they may beconnected by multiple and cyclic paths.

Directed graph theory defines an(x, y)-vertex cut set as a set of vertices whose removal disconnects ver-
ticesx andy (for example, representing an attacker and goal). Directedgraph cut set research is not directly
applicable to the problem addressed in this paper for two reasons. The first, and most important reason, is we
do not assume it is possible to remove all connectivity between attackers and goals. Second, logic attack graphs
are not properly represented by directed graphs but are in fact a species of directed hypergraphs. We are not
aware of any published theory on vertex cuts in directed hypergraphs.

Homer and Ou [35] combine MulVAL-generated attack graphs with usability requirements, and use Boolean
Satisfiability Solving to find network configurations that provide security while retaining usability. They com-
pute the minimal cost cut-set that will completely protect aset of identified vertices while respecting specified
usability requirements. If a solution exists, their methodprovably finds the optimal (lowest cost) configuration.
The attempt to find solutions that simultaneously address security problems and preserve usability is admirable.
The advantage of our work is that it can provide an effective course of action even when absolute protection of
the goal vertices is not possible.

The previous work that most resembles our approach is that ofWanget al. [17], in which a minimum-
cost algorithm is used to identify sets of network properties that enable successful attacks. They associate a
propositional logic formula with each attack graph vertex that states its truth condition as a function of the truth
values of network configuration facts, and they search for minimal-cost sets of facts which can invalidate the
attack.

Our work extends existing approaches by employing rank weights, which permit strategic defence of net-
work assets that are most valuable to the attacker. We also produce partial solutions when mitigation costs of a
complete solution are too high. If each vertex is assumed to be of equal value to the attacker and the budget is
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infinite, our exponential complexity solution is similar toprevious exponential approaches.

6.0 CONCLUSION

We introduced theclosureof a course of action (COA) in the context of attack graphs andpresented a poly-
nomial time algorithm that leverages prior attack graph andmetrics research to compute multi-action COA
recommendations that maximally disrupt attackers, withina specified budget. Our experiments demonstrate
that practical solutions can be found by the polynomial-time best first search greedy algorithm in less than a
second for a representative single site corporate network.We generated thousands of network configurations
with the results showing that computing COAs for enterprisenetworks can be done in a reasonable time period,
usually with optimal solutions. Our algorithm makes effective recommendations for improving security even
when practical considerations prevent the network from being completely secured.

It is possible to use the greedy and optimal algorithms cooperatively in order to achieve better results. The
greedy algorithm, because it removes the single most effective SINK vertex in each iteration, can sometimes
expend part of the budget removing a vertex that will itself be indirectly removed in a later iteration. This results
in a COA set that is a superset of an equivalently good solution. (For example, comparing the Budget= 4000
results in Tables2 and3 shows that the greedy algorithm includes vertex 105, which is unnecessary because
it is contained in the closure of the remaining vertices.) Such supersets can be compressed by applying the
optimal algorithm to them. These sets are usually small so the optimal algorithm can execute quickly, and
when it succeeds in reducing the COA set (and its associated cost) the greedy algorithm can resume searching
with a larger remaining budget. This optimization can be computed very quickly and we recommend the hybrid
approach.

Our approach is flexible due to the use of rank and cost weights. Rank weights may reflect whatever the
defender wants to deny the attacker, and cost weights may reflect whatever the defender wishes to change.
For example, in place of the expressive rank and loss function cost values we presented, the defender could
uniformly rank the network services and set all other vertexranks to zero. The defender could assign a cost of 1
to each vulnerability vertex and set the remaining SINK vertices to an infinite cost. The computed COA would
then maximally deny the attacker access to network servicesby patching as few vulnerabilities as possible. The
flexibility and efficiency of our approach should be very useful in practice.

Our technique can be applied in both proactive and reactive scenarios. The difference between the two
situations is the range of actions, and the cost of implementing the actions. Our future work in progress includes
integrating the algorithms into an automated computer network defence system.
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