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Abstract 
Schema matching is aimed at identifying semantic correspondences between elements of two database schemas. It is one of the key challenges in many database applications such as data integration and data warehousing. Before any data can be integrated, table columns in the two databases should be matched. It is a strenuous and time consuming process. To cope with this problem, many automated/semi-automated solutions have been proposed. Most of the existing solutions mainly rely on textual similarity of the data to be matched. While these approaches are valuable in many cases, they are not enough, and there exist instances of the schema matching problem for which they do not even apply. Such problem instances typically arise when the column names in the schemas and the data in the columns are opaque or difficult to interpret. Our research scope is focused on the uninterpreted matching. In this paper, we propose a five-step schema matching technique. In the first step, we find dependencies between attributes in each table. In the second step, we compute pairwise mutual information between dependent attributes only and construct a dependency graph using the mutual information as weights on arcs between attributes. In the third step, if the number of attributes in each table is different we add dummy nodes in order to complete to the same number of attributes. In the fourth stage, we find matching node pairs in the dependency graphs by running a graph-matching algorithm. In the fifth stage, we remove all attributes which are mapped to the dummies and present the results to the user. We validate our approach with experiments which show that this approach can be a useful addition to a set of existing automatic/semi- automatic schema matching techniques.
1.0
Introduction

Manual solutions to schema matching problems produce errors, limit the scalability of matching, and often are too slow to satisfy the requirement of quick information integration. Automatic and semi-automatic schema matching techniques have been recognized to play a central role in several database applications like schema integration, data warehousing, etc.
The instance-based schema matching approach [2] identifies the semantic correspondence of schema attributes by the analysis of instance data without any schema-level information. Therefore, a deep insight into the content of schema elements such as data range, data domain and statistics is very helpful for uncovering the semantic correspondence. Traditional instance-based matching is not always successful. Instance-based mapping often fails due to its inability to distinguish different columns over the same data domain and, similarly, its inability to find matching columns over different encodings of logically similar domains. For example, “Employee ID” and “Customer ID” columns in a table are unlikely to be distinguished if both the columns are of numeric data types and the ranges of the IDs are identical. However, if one company uses numeric values for the “Employee ID” while the other company uses a formatted text for what is logically the same column, the traditional instance-based approach will fail to identify the correspondence between the two “Employee ID” columns. The technique proposed in this paper is also instance-based, but it is important to emphasize that rather than outperforming existing techniques it applies to cases where other techniques fail. Therefore this approach can be a useful addition to a set of existing automatic/semi- automatic schema matching techniques.  

In order to demonstrate the limitations of existing techniques, consider the example in Figure 1, which shows two schemas, (a) and (b).  Assume that these schemas belong to two different automotive companies or two different divisions in the same company. Imagine that the column names of Table (b) and the data values in columns B and C have some specific semantics that is comprehensible only to someone with access to the semantic description or the specific knowledge. Therefore this semantics will not be utilized by existing schema matching tools. Conventional instance-based schema matching tools may be able to find correspondences between attribute values "Model" and "A" due to syntactic or lexical similarities between the values in the "Model" and the "A" columns. However, no structural match can be found in schema (a) for the columns "A" and "B" in schema (b) because these columns cannot be interpreted and both of them have the same statistical characteristics such as the number of distinct values and the frequency distribution.
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Figure 1: Two schemas, (a) and (b), from an automotive database.

In order to handle these situations the proposed technique uses the inter-attribute dependencies in each table. For example in Table (a) if car's type is determined by its model then there would be some degree of dependency between Model and Type attributes. In contrast, there could be very little dependency between the Model and the Colour attributes. Additionally by computing dependencies between attributes A and B and attributes A and C, in Table (b), we can compare them with the dependencies computed in Table (a) and to infer appropriate correspondences between these two tables.

As shown by the example above, no data interpretation is necessary even if the encoding done between two tables is different. Schema matching techniques, which do not depend on column names and values interpretation, are called uninterpreted matching techniques and they are the focus of this paper. A formal definition is provided below.

Definition 1.1 Interpreted vs. Un-interpreted Matching [9],[11]: " Let [image: image4.png] and
[image: image6.png] where [image: image8.png] is a match result, match is a schema matching algorithm, [image: image10.png] is a source schema of size [image: image12.png] [image: image14.png] is a target schema of size [image: image16.png], and finally [image: image18.png] is an arbitrary one-to-one function applied to the values of columns [image: image20.png] in the target schema. We call the given matching algorithm, match, an un-interpreted matching algorithm if and only if the two match results [image: image22.png] and [image: image24.png] are identical regardless of function [image: image26.png]. Conversely, it is called an interpreted matching if the two results are different".
Another useful definition is the difference between matching that considers data elements as individual ones or with relation to other data elements. 
Definition 1.2 Elements vs. Structure matching [29]: Element matching can be performed for individual schema elements such as attributes.  On the other hand, structure matching takes into account combinations of elements, such as complex schema structures.

The primary contributions of this paper are:

· We introduce a five-step uninterpreted structure matching technique that uses Bayesian Network in order to find dependent discrete attributes in each table and Pearson's correlation in order to find dependent continuous attributes in each table.

· Expanding the one-to-one mapping algorithm ([1, 1]-[1, 1]) in order to handle Onto schema matching ([0, 1]-[1, 1]).  It means that each attribute in table 1 has a unique match in table 2 while each attribute in table 2 either has a unique match in table 2 or remains unmatched.  In other words, enable schema matching between tables with a different number of attributes.

· Demonstrate the computational effectiveness of the proposed approach in an experimental study, where we compare our results to Kang and Naughton [9] [11] . 

The rest of this paper is organized as follows: Section 2 covers the related work. Section 3 describes proposed approach. Section 4 presents initial results. Section 5 concludes the paper.

2.0
Related work

Schema matching can be applied to different data representations, whether they are relational, object oriented, or XML based. Many different methods for matching database schema elements have been proposed (see reviews in [15] , [29] and [30]).  The limited success of the existing methods shows that the problem is not yet completely solved.  Most of these techniques rely on data interpretation and therefore are not applicable to the uninterpreted matching domain.

Column dependency approach. Kang and Naughton [9] ,[11] proposed two-step schema matching algorithm using inter-attribute dependencies. In the first step, they measure dependencies by calculating mutual information between all attributes. In the second step, they find matching node pairs in the dependency graphs by running a graph matching algorithm. In the first article [9], they execute graph matching using naïve exhaustive search, which is impractical for schemas with large number of attributes. In the second article [11],  they proposed several heuristic algorithms but the sub-problem they discuss is schema matching between tables with the same number of attributes where each attribute in table 1 has a unique match in table 2 and vice versa. Another disadvantage is that they calculate mutual information between the Cartesian product of all attributes.
Machine learning approach. Some techniques employ machine learning. Li and Clifton proposed a neural network-based schema matching prototype called SemInt [13],[14].  Its input: metadata (schema information and data content statistics). The Self-Organizing Map algorithm is used to cluster attributes into categories in a single database (A).  The resulting cluster centroids are used to train the neural network algorithm. The trained network can compute the similarity between each attribute of another database (B) and each category of the original database (A). Yang, et al [1] propose another neural based algorithm. Their schema matching algorithm is based on data content, which has two-step process. The first step is, training a set of neural networks for calculating candidate matching pairs. The second step is, applying a rule-based algorithm to filter the candidate pairs and get correct matching result. The back-propagation neural network, which can learn and store a mass of mappings between input and output, is very suitable for schema matching in heterogeneous database integration.

Berlin and Motro proposed the Automatch, a technique based on machine learning with feature selection [5]. It acquires probabilistic knowledge from examples, which have been provided by domain experts. This knowledge is stored in a knowledge base called the attribute dictionary. Attribute dictionary characterizes different attributes by means of their possible values and the probability estimates of these values. An attribute such as Customer Name could assume thousands of values, thus imposing considerable space and processing requirements. For the optimal selection of attribute dictionary, they are using feature selection strategies (Mutual Information, Information Gain, and Likelihood Ratio) in order to keep only the relevant features. 

Holistic schema-matching approach. Sinha et al.[6] introduced a holistic schema-matching technique for discovering complex matches. The holistic approach to improve the effectiveness of schema matching integrates and generalizes techniques based on structural and syntactic comparisons, as well as probability distribution and mutual information. Multiple aspects are integrated using a weighted average.

Clio system. Miller et al. introduced Clio [4] that creates a mapping between two input schemas in an interactive fashion using the user feedback. Creation of mappings between heterogeneous schemas and use them later for the data exchange. The mapping algorithm first use algorithm for finding natural associations within a schema. Afterward use another algorithm that given a set of correspondences and set of association, between source and target schemas, creates the schema mappings. Clio uses algorithm for discovering queries over the source, queries over the target, and a precise specification of their relationship. Clio uses schema mapping queries in order to capture the relationship between data in two heterogeneous schemas.

Hernandez, et al.  [12] proposed  semi-automatic schema integration system which is built in conjunction with Clio, a schema mapping system that produces a mapping relationship between a source and a target schema, based on a set of correspondences between their attributes. Their system is constructed using three main steps. In the first step, each source schema is converted into the corresponding concept hierarchy. In the second step, matching concepts in different hierarchies are identified, based on correspondences between their attributes. The final step of the integration methodology is to interactively assist the user in choosing the final target schema. The users can browse and search through the generated schemas based on several criteria. Furthermore, the users can enter constraints on the merging process itself, based on their domain knowledge, as well as the integrated schemas they have already seen. For instance, the users may specify that two or more source concepts should never appear merged in the integrated schema.

Naïve Bayes approach. Nuhmann, et al. [16] introduced method which is using Naive Bayes classification techniques based on domain-independent feature selection. For numerical data, they use a quantile-based classification method, discovering characteristic distributions of the data. Determining the similarity of two vectors, provides possibility to classify attributes using signatures, and hence, make suggestions about which attributes might correspond to each other: a strong similarity between the two signatures suggests a correspondence. 

Cluster and match approach. Another interesting approach proposed by Chua, et al. [7]. This method examines the schema and attributes values to identify appropriate functions for measuring correspondence between the attribute groups. The correspondence scores are then used to identify matching attribute groups. One-to-one matching between attribute groups is established to avoid inferring redundant attributes. By applying the proposed method, the database integration specialist plays a supporting role for attribute identification, mainly in validating the results of each step. In the first step, attributes are classified into domain classes and combined to make attribute groups. In the second step, the correspondence scores of candidate pairs of attribute groups for integration are then measured. In the last step, based on the correspondence scores, the process matches attribute groups for integration.
Quickmig tool.  Drumm, et al. [10] developed Quickmig tool , which  uses integrated  approach for schema matching and mapping discovery to support migration and transformation of data between heterogeneous sources. QuickMig employs several techniques to identify mapping expressions and complex matches. First, sample instance data makes it possible to identify string split and concatenation using simple string comparison. Second, sample instance data combined with domain knowledge, such as standard formats and structures for modelling date, time, address, phone, fax data, enables the detection of complex matches between these formats and structures. Finally, mapping categories are associated with these correspondences. These mapping categories can be used to create parts of the necessary mapping expressions automatically or at least to provide a mapping expression template that can easily be completed by a developer.
Ontological approach. Another interesting approach is using ontological methods for schema matching. Xue, et al. [8],[19] proposed instance-based domain ontological  method which discovers semantic correspondences between schema elements. The main idea is using the schemas and data instances of the information repositories to discover semantic correspondences between the schema elements and build a domain ontological view. A hierarchical clustering technique is applied to the data instances and the clusters are used in the further analysis to reduce the cost of processing a large amount of data. The matching of schema elements is based on the probability distribution of the data instances.

3.0
The Proposed approach

The technique proposed in this paper is based on uninterpreted structure matching. We propose a five-step technique. In the first step, we identify discrete and continuous attributes in the database.   Then we find dependencies between the discrete attributes using Bayesian networks and denote as dependent only directly connected attribute pairs.  Dependencies between continuous attributes are found using Pearson's correlation and only attribute pairs with the correlation coefficient higher than a pre-defined threshold are denoted as dependent. In the second step, we compute pairwise mutual information [26] between dependent attributes only and construct a dependency graph using the mutual information as weights on arcs between attributes. In the third step, if the number of attributes is different between the two tables we will add dummy nodes in order to complete to the same number of attributes. In the fourth stage, we find matching node pairs in the dependency graphs by running a graph-matching algorithm with the random-restart hill climbing approach [23]. In the fifth stage, we score the matching results and present them to the user. Additionally, we propose an extension to our algorithm that enables partially uninterpreted matching. 
Our approach can be a useful addition to a set of existing automatic/semi- automatic schema matching techniques.  Its important advantage is data privacy preservation, since Steps 4 and 5 are dependent only on the local models, which were created in the earlier steps for each database separately.  Therefore no data exchange between different organizations is necessary. One organization can simply transfer the induced models to another organization without revealing any sensitive information.   
3.1
Matching Strategies
Kang and Naughton [9] examined three types of cardinality constraints that should be considered in schema matching:

· One-to-one mapping ([1,1] – [1,1], in UML notation): Each attribute in A has a unique match in B, and vice versa. This corresponds to a case where we know that the tables that we are trying to map have the same number of attributes, so the problem is just finding a correspondence between the attributes.
· Onto mapping ([0,1] – [1,1]): Each attribute in A has a unique match in B while each attribute in B either has a unique match in A or remains unmatched. This corresponds to a case where we know that table A’s attributes are a subset of table B’s, so we have to discover this subset and then decide how to map attributes within this subset.

· Partial mapping ([0,1] – [0,1]): Each attribute in A either has a unique match in B or remains unmatched, and vice versa. This corresponds to the most general and difficult case where we do not know which attributes of A map to B, nor we do even know how many attributes of A map to B. In this case we need to find the best subset of attributes of A to map to B, and also need to find how this subset of A should be mapped.
In order to evaluate the quality of matching we use a distance metric. In this paper we use the Normal distance metric that Kang and Naughton [9],[11] presented. The Normal distance metric is suitable for all three types of cardinality constraints that are mentioned above. 

Definition 3.4 (Normal Distance Metric[9]
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3.2       The Five Phase Algorithm
Step1.0: Identify Discrete and Continuous attributes.
Step1.1: Detect dependencies between all continuous attributes using Pearson's correlation.  Only attribute pairs with a correlation coefficient higher than a user-defined threshold are considered dependent.

Step 1.2: Detect dependencies between all discrete attributes, using Bayesian Network learning algorithm. Only the directly connected pairs are considered dependent.  We are using the greedy search algorithm with random restarts [18] [22] to construct the Bayesian network.
Step 2: Calculate Mutual Information between pairs of dependent continuous and dependent discrete attributes only, in each table. Then calculate Mutual Information between each discrete and each continuous attribute. Store the results in square matrix of the Mutual Information, which represents the dependency graph.
Step 3: In order to have the same number of attributes in both tables we add dummy nodes.  Each arc's weight between dummy nodes is zero.  Dummy nodes have two main roles:  allow using most of the existing one-to-one mapping infrastructure and filtering all the unsuitable mapping.  For example: if dummy node "D" in table 1 is mapped to node "5" in table 2 it means that node "5" has no suitable match in table 1. 
Step 4:  We execute graph matching between the two graphs constructed in Steps 2 and 3 using the random restart Hill Climbing approach[23].  We have made several modifications in the hill climbing's search mechanism.  Instead of limiting the number of iterations, the algorithm performs iterations as long as they improve the global score. When the score stops improving, the algorithm continues the search for an additional fixed number of iterations. The reason is that schema matching using the Hill Climbing approach is based on initial random mappings and our modifications should increase the chances of finding a better scored match. Another modification we made to the Hill Climbing's mechanism is "remembering" each random mapping created, so that it is not repeated in the subsequent restarts.    

Step 5:  Remove all attributes, which are mapped to dummies, and present the recommended matching results to the user. 
4.0    Validating the framework
In this section, we present the results of our algorithm for the following two cases: One to one mapping and Onto mapping. We have compared our algorithm to Kang and Naughton [9], [11]. The accuracy of matching results was measured using precision and recall metrics, Eq. (1) and Eq. (2). Another comparison metric is execution time. 

Performance Metrics
· [image: image41.png]        (1) [9],[11]                             
· [image: image43.png]          (2) [9],[11]
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Note: Precision and recall in the one-to-one and onto mapping are actually identical because the number of returned matches and correct matches should be always the same due to the cardinality constraints. 

Experimental Data

We ran our experiments over a real-world dataset, IPUMS census database: Los Angeles - Long Beach 1980 small version [27], which contains 7,500 instances with 22 continuous and 39 discrete attributes.

· We partition the original table horizontally into two random sub-tables so that each instance is randomly inserted into only one sub-table. 

· These sub-tables simulate two different tables that we need to match, providing us the “ground truth” for the correct mappings.

Implementation
We implemented our five phase matching algorithm using C# with the data stored on SQL Server 2008.  In order to create two random sub-tables we used stored procedures on SQL Server. The core of our Bayesian Networks structure learning implementation is based on the SMILE reasoning engine for graphical probabilistic model contributed to the community by the Decision Systems Laboratory, University of Pittsburgh (http://dsl.sis.pitt.edu). 
We implemented Kang and Naughton one-to-one mapping sub problem using Hill climbing approach [11], as improvement to the one-to-one mapping presented in [9].  This graph matching algorithm was selected for comparison because the Hill climbing approach showed the most promising results. In order to compare our algorithm with Onto sub-problems as well, we implemented the Kang and Naughton's Naïve exhaustive search with filter [9], which consider as candidate attributes only these that within the three closest entropy values.
Bayesian Networks Structure Learning Algorithm's Parameters 
Link Probability is used for randomly generating a starting network for the search procedure. It sets the probability for an edge to be created between two nodes. Setting it very high and the random restarts will have very dense networks, setting it low and the networks will be very sparse. 
Prior Link Probability allows setting a prior probability of a link between any two nodes. In our case it is a general prior that applies to all edges. A high prior probability will make the algorithm favor more dense networks and a low probability will make the algorithm favor more sparse networks.
Prior sample size, measures the importance of our past experience. Larger values assign higher importance to the 'a priori' probabilities.

Iterations, number of random restarts that the greedy search algorithm performs in order not to be stuck in local maximum.
Our goal is to achieve the best scored network that is dependent more on the data and less on the randomly generated network. Therefore we set the "Link Probability" to a relatively high value and the "Prior Link Probability" to a value very close to zero. Intuitively, this configuration should increase the number of examined dependencies between attributes in the absence of any prior knowledge.  The exact probability settings are presented below.

General Experiment Setup
· In each table split, we are forcing the same number of continuous and discrete columns.

· In each table split, the number of attributes in both tables is forced to be even.

· The  [image: image47.png] control parameter (def 3.4.) is set to the value of 4, based on our experimental results.   
· The correlation threshold is set to the value of 0.5 (Step 1.1 in the five-phase algorithm).

One-to-One Mapping
Here we present comparison results between our algorithm and Kang and Naughton's Hill climbing search approach [11]. We ran the experiment while increasing the number of attributes in the two input tables to be matched. For each table size, from four to 24 attributes, we repeat the measurement 50 times with randomly chosen subsets of attributes and average the results. We set the link probability=0.5, prior link probability=0.001, prior sample size=100 and iteration to 50 based on our experimental results and execution time constraints. 

Figure 2 shows precision and execution time of schema matching obtained for the census: Los Angeles - Long Beach 1970.We can see that both algorithms provided very high and similar precision scores for any number of attributes. However Kang and Naughton's execution time outperforms our algorithm as the number of attributes grows. 
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IPUMS census database: Los Angeles - Long Beach 1980 small version
Figure 2: One-to-one mapping results.

Onto Mapping
Here we present comparison results between our algorithm and Kang and Naughton's naïve exhaustive search [9]. We ran the experiment while we keep the target schema size constant at 14 attributes while increasing the source schema size from four to 10 attributes. In each step we repeat the measurement 50 times with randomly chosen subsets of attributes and average the results. We ran the Onto experiments only up to 14 attributes due  to computational time constrains of executing Kang and Naughton's naïve exhaustive search [9]. We set the link probability=0.75, prior link probability=0.001, prior sample size=100 and iteration to 50 based on our experimental results and execution time constraints. 
Figure 3 shows precision and execution time of schema matching obtained for the census: Los Angeles - Long Beach 1980.We can see that Kang and Naughton's presented better precision scores particularly for a small number of attributes in the source table. However our algorithm's execution time outperforms the Kang and Naughton's algorithm drastically with execution time not exceeding one minute while the Kang and Naughton's algorithm requires almost 90 minutes on average for the source table size of 10 attributes.
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IPUMS census database: Los Angeles - Long Beach 1980 small version
Figure 3: Onto mapping results.
One reasonable explanation for the relatively low precision with small source tables is that it is easier to find more matches when the number of correct matches is higher. If we divide the matching process into two main procedures, then the first one is selecting a subset of attributes from the target table and in the second one, we search for the best permutation for this subset. As we saw in the one-to-one mapping results, the second procedure performs with very good results while the first procedure is not needed because the number of attributes is the same. Therefore we can assume that the second procedure returns the correct permutation in the Onto mapping sub-problem. Now let us consider the first procedure, for example finding ten out of 14 attributes. If the maximum number of wrong mismatches is 4, it will give 60% precision/recall. While finding 4 out of 14 attributes, with the maximum number of wrong mismatches is 4, it will give 0% precision/recall. Considering this small example it is understandable why the precision improves as the number of attributes in the source table grows. Additionally, it must be considered that our algorithm uses a heuristic search algorithm unlike the Kang and Naughton's naïve exhaustive search [9].  Therefore their precision results were relatively better.
5.0    Conclusions
In this paper, we presented the five-phase uninterpreted schema matching algorithm that relies on inter attribute dependencies, which are recognized by Bayesian networks structure learning and Pearson's correlation. One advantage of this algorithm that it can be used for three matching sub-problems: one-to-one, Onto, and partial mapping. Another important advantage of this approach is preserving data confidentiality because no information exchange between different organizations is necessary except for the locally induced models. We have applied our approach to one-to-one and Onto mapping in a real-world dataset where it has produced relatively high precision/recall scores in reasonable execution time contrary to the exhaustive naïve search approach [9], which is simply impractical for real-world datasets with a large number of attributes.
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