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ABSTRACT 
In this contribution, we give an overview on the military multi-agent simulation environment ITSimBw, 
which is developed at Fraunhofer IAIS/ART under contract for the department A5 of the IT office of the 
German Armed Forces (ITAmtBw), where the project is overseen by Captain Thomas Doll.    

Due to the growing importance of network centric capabilities in military operations, one of the main 
focus points for the development of ITSimBw is the faithful modelling of IT and communication aspects. 
This goal is achieved essentially by two means: 

1. A message format for simulated communication acts between agents is provided which 
allows the detailed specification of communication channel, medium, and range.  

2. A voxel-space representation is used to model the extension of all objects belonging to 
the simulated environment. This allows for the application of high performance ray 
tracing algorithms to precisely determine the impact of effects like radio-pockets (e.g. 
caused by mountains) as well as jamming by opposing forces.   

These two features in conjunction allow for a detailed and realistic modeling of communication chains for 
reporting and command both inside and across different echelons.   

Clearly, the modelling of communication aspects can only reasonably be carried out in an environment 
which is rich enough to support the simulation of a broad variety of scenarios. ITSimBw addresses this 
point by strictly adhering to an agent-oriented paradigm which allows for the specification of 
autonomous, situation-based behaviour for all entities. This extended agent concept includes environment, 
weather, bridges, obstacles, and the like as active elements. This means that all effects and events are 
handled as actions of agents. 

Another important issue for any simulation system is the precise and comprehensive description of the 
scenarios which are to be examined. To this end, ITSimBw encompasses its own LAMPS description 
language. Being based on high-level Petri-Nets, it can be represented graphically and by rule-sets. 
Moreover, due to its generality, it is equally well suited for the description of complete scenarios as for the 
specification of agent behaviour.  An important area of ongoing research and development is the 
capability of LAMPS to record events. This feature enables the creation of a scenario data-base 
containing mission graphs from simulation runs as well as real-world manoeuvres or even actual military 
missions. This data-base can then form the core component of a decision support system for the military 
commander. Like a chess player comparing a current board position with memorized games to determine 
the next move, a graph-metric can be used to liken the LAMPS graph of an ongoing mission with those in 
the data-base. We thus envisage LAMPS to be a core factor for the application of data-mining-techniques 
in mission evaluation.  
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1.0 INTRODUCTION 

In this contribution, we present the military multi-agent simulation environment ITSimBw and its 
description language LAMPS, which is used for the specification of agent behaviours as well as complete 
scenarios. 

One of the main challenges of simulations is the optimal choice concerning the degree of model detail. 
Coarse models commonly yield very broad and abstract results with little value for the military 
practitioner. Overly detailed models on the other hand produce outcomes that are too dependant on minute 
situational details thus preventing their applicability to other scenarios even if they are highly similar. 
Therefore, scaling aspects play a major role in the design of simulation tools.  

Another important issue for any simulation system is the precise and comprehensive description of the 
scenarios which are to be examined. To this end, ITSimBw [1] encompasses its own LAMPS description 
language. Being based on high-level Petri-Nets, it can be represented graphically and by rule-sets. 
Moreover, due to its generality, it is equally well suited for the description of complete scenarios as for the 
specification of agent behavior.   

In our view, the unique combination of features outlined in the preceding paragraphs distinguishes 
ITSimBw from other commonly used military simulation tools such as MANA [2] or Pythagoras [3]. 

LAMPS can be used to document and analyze processes and to directly implement corresponding 
simulations. LAMPS is designed to have a broad application scope, so that a wide range of processes can 
be modelled, including business processes, warfare scenarios [1], critical infrastructures[4], or physical 
simulations. This wide applicability is due to LAMPS' generic approach which uses agents to represent all 
active entities. All entities in the system, including environment objects, IT-systems, or classic agents, can 
be modelled in the same way as agents. All effects and events are modelled as actions of agents. 

In the next section we give a broad overview of related work. In Section 3 the key concepts of ITSimBw, 
which have already been touched upon in this introduction, are explained in more detail. Section 4 
describes the concept of voxelspaces that are used to represent the spatial extent of agents. Section 5 then 
gives an exposition of the underlying architecture and the way communication is dealt with in the 
environment, followed by a presentation of the main concepts of the LAMPS description languageused for 
simulation and decision support, in section 6.  Finally, section 7 concludes. 

2.0 RELATED WORK 

While languages for the specification of simulation models abound, LAMPS is to our knowledge the only 
one that supports both the description of scenarios and the executable specification of agent behaviour for 
compound agent groups down to individual agents. Existing simulation models are usually extensions of 
programming languages such as C/C++ (e.g. Maisie  [5] or the SPaDES environment[6]) or Java (e.g. 
SILK[7], the SSJ package [8]). In contrast, LAMPS is based on high-level Petri nets [9]. Thus, LAMPS 
inherently supports parallel simulation, and is not an extension of sequential simulation languages like 
Maisie or SIMSCRIPT III [10]. Like other modern simulation languages [8], LAMPS can be displayed 
both graphically and as a rule-set. 

LAMPS is based on hierarchical Petri Nets [9] and Colored Petri-Nets (cf. [11]). The former introduced 
the idea to structure so-called places (states) and actions hierarchically; the latter introduced the idea of 
typed tokens. LAMPS  extends Petri-nets by the concept of agents. 

ITSimBW extends classical agent-based simulation [12] by rigorously modelling all effects and events as 
actions of agents. Furthermore, ITSimBw handles scheduling by grouping agents on to different 
tagboards. A tagboard handles all messages for a group of agents. 
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3.0  THE AGENT PARADIGM 

In contrast to other multi-agent systems, where a few  complex agents interact in a feature-rich 
environment, ITSimBw is designed from the ground up with an agent-oriented paradigm in mind. 
Consequently, virtually every part of a simulation can be modelled as an autonomous agent. This includes 
humans, software, the landscape, weather phenomena like clouds or rain, and inanimate objects such as 
bridges and other buildings.  Although many of these agents are usually passive, they can be activated at 
any time if required by the investigated scenario.  

Since the principles of autonomous agents do not allow manipulating agents from the outside, all  
influences are communicated via messages to which the receiving agent is free to comply. Each agent 
consists of a set of attributes and an interface. The interface is used to communicate with the other agents. 
Effects like weapon fire, weather influences, and the like, are communicated via specialized messages 
which carry the effect type. The concrete impacts of effects, however, are stored in a central data structure, 
the effect table. Thus, the ITSimBw user has a single reference point for changing the impact of effects 
which can be influenced by non-programmers.     

4.0  VOXELSPACE 

Since scenarios in military operations are often heavily influenced by terrain, weather, the exact position 
of all objects, etc., an exact 3D representation of all physical entities is important for a realistic result of a 
military simulation. We use voxels to represent physical agents in our environment. A voxel is a 
portmanteau of the words volumetric and pixel. Each voxel represents a regular volume of space. Contrary 
to the commonly used approach we organize voxels inside an octree. Octrees are usually used to subdivide 
a scene into elements (in this example boxes), so that each element ideally contains one object of the 
scene. So in a regular octree, a box is divided into 8 equally sized subboxes, which than again can be 
divided into 8 subsubboxes and so on.   

Since we have not a static scene, where all objects stay in their boxes, we use a voxelspace for each 
individual object. This is also used in modern computer games like Delta Force or Command & Conquer. 
We use octrees, because insertion and deletion of objects are cheap (O(1), if one knows the size of the new 
object), there are efficient algorithms to intersect cubes and lines ( the use will be shown in the next 
section) , and voxelspaces can be efficiently used for occlusion culling. In addition each voxel may 
contain additional attributes like density, weight, and so on. There are also different densities for different 
effects, which may be influenced by a voxel, e.g. for radio transmissions, vision, and physical density (if  
one can move through an object).    

5.0  THE FTA ARCHITECTURE  

5.1 Core Concepts 
The ITSimBw simulation environment is based on the Flip-Tick-Architecture (FTA) [13], which has its 
roots in the JANUS project developed at the Gesellschaft für Mathematik und Datenverarbeitung (GMD) 
[14]. At its core, FTA is a design paradigm for scalable distributed systems that exhibit unknown dynamic 
characteristics as well as disturbances and inaccuracies which are difficult, if not impossible, to model in a 
closed-form mathematical approach. As every multi-agent system, FTA is based on the concept of a 
society of agents [15]. It comprises four classes of entities: actors (i.e. agents), assemblies, tags, and tag-
boards.   

The aforementioned society of agents A is formed by a set of individual agents aj, which are called actors 
in FTA terminology:   
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 }.,...,...,{ 1 kj aaaA =  (1) 

Each actor aj is composed of a set of typed attributes Uj, whose value assignment determines the agent’s 
state, together with an action function, which entails all operations that can be performed by the actor.  

 ).),,...,(( ,,1 jjmjjj fuuUa ==  (2) 

Structural information concerning agents, i.e. names and types of attributes, is described via agent types. 
Formally, we have type(aj) = t, if and only if agent aj is of type t.  The system supports agent templates 
that can be used to store prototypical value assignments. Thus, an individual agent can be created either by 
instantiation of its type, or by copying from a pre-defined template.  

The principle of autonomy of agents forbids the direct manipulation of internal data structures and 
behaviors of other agents. Consequently, all interactions between agents are handled via messages. 
Formally, a message Nν is comprised of a number of attributes: 

 ( )vlvv uuN ,,...,,1= . (3) 

As agents, messages are typed entities. The set of all message types is given by  

 { }hNNN ,...,1= . (4) 

Upon receiving a request, the agent is able to analyze its content and to decide whether it wants to comply. 
The basic unit of execution is called a cycle. During one cycle, the agent reads its messages and triggers 
the appropriate actions, which might consist of writing messages to other actors.  

An assembly is a set of agents sharing a common pace, i.e. all elements of an assembly have the same time 
resolution dt. This in turn implies that their cycles are synchronized and that the assembly switches from 
cycle to cycle as regularly as the tick of a clock. Hence the term Tick in FTA. It is important to note, that 
different agents do not necessarily share the same time resolution. Instead, the architecture supports 
individual running speeds for every actor. Moreover, time steps can vary from cycle to cycle. Thus, 
adaptive control of time increments can be realized (see below). This is particularly valuable for 
increasing the time resolution in the computation of dynamics equations for fast moving objects.  

The messages used for inter-agent communication are called tags in FTA. We distinguish between three 
different categories of tags:  

• Message tags are the carriers of communication between agents. Orders are embedded in message 
tags using XML syntax. 

• Position tags contain the current position of agents. They are sent when actors change their 
position. 

• Effect tags are used to mediate effects like weather influences, weapon impact, and the like. 

Instead of setting up a direct communication with other actors, agents register with one ore more tag-
boards, to which they send their messages. Thus, tag-boards serve as the functional units for handling 
messages in the FTA system. In formal terms, a tag-board forms a medium Mn for message exchange, 
while a FTA system is capable of supporting multiple media: 

 { }.,...,1 mMMM =  (5) 
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A tag-board consists of two sides. One is write-only and contains all tags sent to the board in time step t, 
whereas the other side is read-only and encompasses all tags written in time-step t-1.  Analogously to 
agents, each tag-board has its own time resolution and thus its own cycle time. During a board cycle, the 
write-only side is flipped over. Thereby, the read-only part mirrors the tag content of the write part from 
the previous time-step. The write-only side is deleted after flipping. In this way, the lifetime of tags is 
effectively controlled by the time-scale of the pertaining board. These interrelations are depicted 
graphically in figure 2. 

With this approach, fully synchronized (all agents and tag-boards share the same time resolution) as well 
as completely asynchronous systems (every agent and every board has its own time-scale) can be modeled 
in terms of the FTA.  

 

 

Figure 1: Inter-agent communication via tag-board. 

The mathematical model of this agent architecture is a system of flexibly coupled inhomogeneous 
difference equations 

 ),,...,( 1 kDDD =         (6) 

where each agent computes an equation from D. In this setting, the attribute list of an actor corresponds to 
the variable vector of the pertaining difference equation. Thus, equation Di of  agent ai computes  

 ),( t
ii

dtt
i UfU i =+

  (7) 

where dti denotes the time step size of agent ai. During the iteration of  D, the society of agents runs 
through a set of states Z = {Zt}, where each of these system states is the union of attribute sets from all 
participating agents: 

 ).,...,,...,( 1
t
k

t
i

tt UUUZ =  (8) 
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Since the Di are computed using potentially different dti , the involved agent  attribute sets Ut
i  might be 

undefined for certain t. In this case, either the Ui from the last time step of Di  is used, or Ui is explicitly 
recomputed. We thus have 

 
ett ZZZZZ ji ,...,,,...,0=  

 where 
.

1
k

k

h
ij dttt Min

=
=−

 (9) 

A graphical visualization of FTA (omitting the discrimination of different tag-board sides) is shown in 
figure 3: 

 

Figure 2: The Flip-Tick-Architecture. Arrows denote read() and write() operations. The colors specify types of 
agents and tags. It is depicted that agents can subscribe to more than one tag-board. 

5.2 Communication 
Although ITSimBw does not force its users to model IT and communication equipment as individual 
agents, this procedure is highly encouraged by the pervasive agent-based modeling paradigm. 

The simulation system supports communication modeling essentially by two means: 

• A message format for simulated communication acts between agents is provided which allows the 
detailed specification of communication channel, medium, and range.  

• The voxel-space mentioned in the previous subsection is used to determine environmental effects 
on communication, e.g. mountains causing radio pockets, as well as jamming by opposing forces. 

These two features in conjunction allow for a detailed and realistic modeling of communication chains 
both inside and across different echelons.  

  

Figure 3: The model of a Message send from Sender to Receiver through a Voxelspace 
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6.0  LAMPS 

6.1    Basic Constructs 
LAMPS uses the following concepts from hierarchical and coloured Petri nets: 

• Places hold states, i.e. in LAMPSSys they contain subsets of the agent attributes. The content of a 
place is called token and can be of an arbitrarily complex structured type. Places can contain several 
tokens of different or identical types. 

• Actions describe the effects that agents apply to themselves or to other agents. 

• Relations denote the links between places, actions, and agents. Relations correspond to the arcs in 
the Petri net model. 

LAMPS introduces the additional concept of agents in the following way: 

• Agents correspond to the conditions of Petri nets. An agent in LAMPS observes the set of places 
that have relations to the agent's actions. Based on these places the agent decides which actions are 
executed and which parameters should be used. 

Agents extend guard functions (Esser 1997) and enabling functions (Schoef 1995). These serve as 
preconditions that are checked before an action is executed. Figure 4 depicts a simple example using the 
four basic concepts. 

 

Figure 4: A LAMPS fragment using the four basic concepts. The agent Inf A observes the place 
Enemy spotted. If the place contains a token, the agent executes action Combat, which sends a 

token into the place Resistance broken. 

LAMPS is inherently parallel due to its core of high-level Petri nets. Agents live in parallel, and each 
agent can execute several parallel actions. All actions whose conditions are true in a given cycle are 
executed. This is also the main difference to flow-charts, because there are several tokens per place, and 
several places can be filled simultaneously. 

All basic constructs can be recursively encapsulated. For example, places can be combined to so-called 
superplaces. An action can be recursively defined as a LAMPS process (with places and other actions), as 
long as the interface (i. e. the incoming and outgoing places) of the action and the process are identical. 
This way, a process can be modelled and viewed on different detail levels. 

Since LAMPS introduced agents, also agents can be recursively encapsulated. A group of agents can be 
aggregated into an agent (say, a group of soldiers into an infantry unit). The level of detail can be 
modulated even at runtime (see section below). 
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6.2 Features 
While LAMPS is not restricted to a time model, LAMPSSys is discrete-time and thus discrete-event. 

Time-modelling is not trivial in high-level Petri-nets (cf. [11]). Thus, in the LAMPSSys framework the 
execution is cycle-based with a global clock. In each cycle all agents can execute one or more actions. 
Long actions are modelled as a series of consecutive actions of duration dt. Synchronisation is achieved 
via places and conditions. 

In the approach, time scaling is possible. In each cycle, each agent proposes a duration for its action. The 
simulation engine selects the minimum of the proposed durations and sets dt accordingly. To illustrate 
this, assume that an agent is about to execute an action that needs a coarse granularity. This could be for 
example an action that moves a soldier from one position to a distant position, proposing dt = 5min. 
Assume that another agent is about to execute a more detailled action in the time-cycle, for example, 
shooting at an enemy, proposing dt = 0.01sec. In this case, the simulation will set the general dt to 0.01sec, 
so that every action in this time cycle is executed in this granularity. 

6.3 Graph-Metric 
In a simulation the time is run in disc cycles. Time is therefore a series’ of timestamps: 
 

mttt →→→ ...21    
 
 
A state S in a point in time t is described by the states of all the individual agents s1 to sn.    
 
 

},...,,{ 21 nt sssS =  

 
Figure 5:  The state of each agent is transformed from Time t -> t’ by actions performed on these 

states. 
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A simulation run is fully described by the set of all states S in all time steps t. Repeatedly running a 
simulation with varying parameters leads to a set of results:   
 

},...,,{ 21 hrrrR =  
 
Our target is to find out typical situations over several runs. Since all states of all agents in all time steps 
result in an overwhelming amount of information, certain attributes that are considered relevant are chosen 
beforehand.  For military simulations these are usually: 
 

- The position (in the 3D space) 
- The loss of own troops 
- The time to accomplish the mission goal 
- The amount of effects to act upon the opponent 

 
With these four constraints and the time at which a certain state is reached, we then build equivalence 
classes over different runs. This can be accomplished by k-means clustering.  
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Figure 6: Equivalence classes over time and runs. 

With these generated clusters we can build a Markov chain that has the probability that a certain state can 
be reached from the actual state out of the cluster.   
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Figure 7: Markov chain describing the probabilities of transformation   

 

7.0  CONCLUSION 

In this paper we have given a broad overview over our architecture. We have shown the basics of 
LampsSys and how we gain information about our simulated task by multistarting our simulation and then 
cluster over the resulting runs.  
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