[image: image2.wmf][image: image3.jpg][image: image4.png][image: image5.png]

[image: image6.png][image: image7.png][image: image8.png]Finding Real Interoperability Among
Simulators by Applying Communication Standards

[image: image9.png]Finding Real Interoperability Among
Simulators by Applying Communication Standards

Finding Real Interoperability Among Simulators
by Applying Communication Standards
Capt. Miguel Serna
Medical Brigade Headquarter

Pozuelo de Alarcon (Madrid)
Spain

mserca@Gmail.com
Dr. José Miguel Castillo
European Virtual Engineering, Tech. Center

C/ Orense, 18 – 4ºi, 28020 Madrid
Spain

jmcastillo@euve.org
Dr. Luis Pastor

Universidad Rey Juan Carlos

C/ Tulipán s/n 28933 Móstoles (Madrid)

Spain

luis.pastor@urjc.es
Abstract

Within NATO community the number of simulators has increased drastically in the last few years. Initially, the simulators were developed under a main objective, to train soldiers and units to improve their skills in a specific weapon system. Nowadays, the initial objective regarding simulation has a different scope. The aim is to simulate an environment similar to combat reality, so interactivity among simulators plays a very important role in this scenario.

High Level Architecture (HLA) looks for a solution for this recent objective. Theoretically, HLA allows simulators to work together, in order to create a real combat environment. As a matter of fact, there are some problems that prevent HLA to be a standard ‘de facto’ despite NATO efforts. There are some questions that we are going to study in this paper. Why real interoperability among simulators is not yet a reality? What is the problem?

In this paper we analyze in detail that any simulator has been developed to fulfill some specific requirements, so there are great diversity of operating systems and programming languages. To find interoperability among simulators is necessary to make a technical analysis of different operating systems and software architectures.

We have launched two research lines to try to solve this problem. The first research line is focus on finding the interoperability with simulators with different programming language. The second one deals with finding interoperability with simulators developed under different operating systems.

In the first research line, it is very important to study how many programming languages support the Run Time Infrastructure (RTI) as an important element of the HLA architecture. It is important to study the libraries that support HLA, and its compatibility with specific programming languages.

The second research line is perhaps more complicated than the first one. If we want to assure interoperability among different simulators supported by different operating systems, the first approach would be to choose a multiplatform programming language to develop any simulator. This can be a good solution for new simulators, but we couldn’t assure that a specific multiplatform programming language could fulfill future specific simulator requirements. So it is more realistic to assume that the real problem consists of interconnecting simulators that don’t have the same operating system and programming language.

In summary, we think that after a period of time in which HLA has been supported by NATO community as a standard, it is time to analyze the reasons why easy interoperability is not yet a fact. This analysis is what we are going to present in this paper.

In the short term, we want to achieve a ‘state of the art’ analysis about HLA standard and its interaction regarding operating systems and programming languages.

In the long term, we would like to develop an intelligent agent-based software tool useful for the NATO community to certify if simulators federations comply with HLA NATO standards.

1.
INTRODUCTION

Within NATO community the number of simulators has increased drastically in the last few years. Initially, the simulators were developed under a main objective, to train soldiers and Units to improve their skills in a specific weapon system.

Nowadays, the initial objective regarding simulation has a different scope. The aim is to simulate an environment similar to combat reality, so interactivity among simulators plays a very important role in this scenario. To achieve this new aim, developers are changing their old concept by this new one based in several points:

· To simulate an environment similar to combat reality, it is needed to play some different simulators at the same time.

· Synchronization among simulator is necessary to achieve an environment similar to combat reality.

· Iterations among simulators are necessary in order to achieve a real result for the simulation.

· Data exchange among simulators playing in the same environment is needed to achieve a combat reality.

In summary, it is indispensable to study new simulation architecture to achieve these new objectives, because there are no solutions based in the old concept to obtain fulfill results in this new scope.

 High Level Architecture has been created to find a solution for this new view. It is very important to remark that the simulators were created before than HLA was born. This last statement is obvious, but it is necessary to remark it, because this point helps us to understand a serious problem of this new architecture.

When HLA was created, NATO armies had a lot of simulators to resolve their first requirements. Nowadays the problem is to achieve that these different simulators work together. Every system has been developed in a specific operating system and programming language. To obtain these heterogeneous systems can work in the same simulation environment, is an important issue which scope is greater than the HLA architecture.

At the moment, there are some HLA implementations to develop simulators. NATO countries use some of these to develop theirs simulators. For this reason, when we use HLA to find interoperability among simulators, we can find two different situations:

· The first one: Two different simulators developed with the same HLA implementation. We will call this system “Reference System” from now on.

Figure 1: Reference System (HLA)

· The second one: Two different simulators develop with different HLA implementation. We will call this system “Usual System” from now on.

Figure 2: Usual System (HLA)
Usually, we find the second situation explained in the previous paragraph. The first situation is very restrictive, because every simulator in a same simulation exercise must be developed in the same HLA implementation.

To study how can influence different factors in these two situations, it is important to achieve a real interoperability among simulators. We divide this document in the following points:
· Physical layer to find real interoperability among simulators.

· Interoperability among simulators in different operating systems.

· Interoperability among simulators with different programming languages.

· Ways to resolve the interoperability problem.

In every point, we will study how every factor can influence to achieve real interoperability. These points try to find the real problems of simulators interoperability. This we lead us to resolve the problem in a big scope.
2.
PHYSICAL LAYER TO FIND REAL INTEROPERABILITY AMONG SIMULATORS
2.1
INTRODUCTION

To start our study about interoperability among simulators, we will analyze the communication protocols that take part in the HLA Standard. Analyze the protocols that achieve the communication of data exchange among simulators is fundamental if we want to achieve a real interoperability among simulators. If we forget this factor is not possible to give a first step to attain a group of simulators running together.

TCP/IP is a group of protocols very interesting to be studied because they are used in lot of computer nets around the world. So, they are used in a great number of operating systems. The communication, subscription and update of data in HLA are based in these protocols.

Achieving real interoperability is essential to study how we can exchange data among simulators. XML is a standard in the exchange of data, for this reason it is very important to study this standard and its repercussion in a HLA system.

2.2
TCP/IP PROTOCOLS TO ACHIEVE REAL INTEROPERATIBITY

TCP/IP protocols are important in every net around the world. These protocols are supported by the majority of operating systems, and they achieve connectivity among computers in the same net. To achieve that a group of simulators work together is necessary that these simulators are connected among them. For this reason, in HLA, the connection among the different parts of the elements of this architecture is made by using TCP/IP protocols. For example, to communicate a federate with the Rtiexec, we need its IP direction and an open port (normally 8989). That is why, knowing whether the operating system, when the simulator is running, supports TCP/IP, or these protocols are good configured is a feature considerable to be checked.

Figure 3: Use of XML in a System

To coordinate the TCP/IP configuration of the computer net which the simulators are running is very important if we do not want to be in trouble. There are several methods to coordinate this information, but it is necessary to check that every simulator connected have a TCP/IP configuration according to the directive made.
2.3
XML TO ACHIEVE REAL INTEROPERABILITY

XML is a standard to exchange data among system, for this reason it is fundamental to analyze how we can use it to get real interoperability among simulators.

Where do we need to exchange data using XML to achieve real interoperability among simulators? Why is necessary to use this standard? If we study the structure of FDD files, we conclude that it has a hierarchical structure, and then we can send this file in an XML format. To exchange this file is necessary that others federations can public the same data that our federation. Furthermore, it is essential to exchange these files to be checked by a Check tool.

The XML standard is not only necessary to exchange FDD files. It is necessary to exchange every kind of information among simulators. If you want to check a federate and send a group of information to another tool, may be a good way to exchange this information in XML. For this reason XML is very useful in this kind of systems.

If we study the use of XML in the scope of NATO, we can conclude that a great number of standard information exchanged among NATO countries are made in XML format. XML is used to exchange information based in the data modelling make in MIP which is the base of command and control systems in every country of NATO. For this reason, we can conclude that XML is a good standard to be used in our system. The future data exchange may be ensured with XML.
3.
INTEROPERABILITY AMONG SIMULATORS IN DIFFERENT OPERATING SYSTEMS

3.1
INTRODUCTION

When we talk about interoperability among simulators, it is inevitable to study the operating system factor. This factor is the base of every simulator and some simulator’s features are inherit from it. For this reason, it is important to examine how several simulators, in different operating system, can work together.

Nowadays, there are different kinds of operating systems in the world. The operating system family most used is Microsoft Windows. Another family is based in Linux system. In this family we can find a big number of distributions; we chose to study Ubuntu because it is a famous Linux distribution. Solaris family is very important for simulators too, because it is an extended operating system in simulators world.

The first step to study interoperability among simulators in different operating systems is to analyze how can influence every operating system family on the simulator interoperability features. To achieve this target, we can enumerate how can influence every operating system feature in the simulators. In the next points, we will study solutions to resolve the problems enumerated in the previous point.

In the first point, we will study the real problem among simulators in different operating systems. Defining the problem is significant to try to find an efficient solution. Later, we will examine how can influence the different features of every operating system and the way to find the interoperability among simulators in different operating system.

The second step is very important to achieve the final objective. Finding a solution for these interoperability problems is the target to obtain. We must evaluate if these interoperability problems have a real solution or not. In this case we will try to explain how to achieve this solution.

3.2
OPERATING SYSTEM FAMILY PROBLEMS TO OBTAIN REAL INTEROPERABILITY

What is the problem of obtaining real interoperability among simulators under the point of view of operating systems? In this point we are going to analyze how many problems there are with different simulators in different operating systems working together. The study is divided in several points. We will try to find the problems comparing the operating system between them.

3.2.1
MICROSOFT WINDOWS FAMILY Vs LINUX FAMILY

The most important programming languages in both operating systems are the same. Really the programming languages are similar but there are some important differences. The developing platform Java Virtual Machine is the same for both operating systems. There are not extreme differences. But in the .NET developing platform there are some differences. The developing tool is not the same in both cases. The tool for Microsoft Windows is Visual Studio. This tool has more functionality than Mono Developer (the tool for Linux operating system). .NET platform in Windows operating system has more functionality than .NET platform in Linux.

The communication protocol TCP/IP is supported for both systems. This point is very interesting because the HLA physical layer must be supported for every operating system that federates from the federation are running. The TCP/IP protocols are supported for both systems and these are the most extended protocols on Internet. In some cases may be necessary that a federation runs on Internet.
3.2.2
MICROSOFT WINDOWS FAMILY Vs SOLARIS FAMILY

The interoperability problems between these operating systems are bigger than the previous point. The develop platform Java virtual Machine does not have differences between the operating systems. It is logical that this platform is more optimized in Solaris operating system than in Windows because Sun developed both systems. The .NET platforms don’t exist in Solaris. That is why, it is not possible to develop .NET simulators on Solaris operating system.

The TCP/IP communication protocols are supported for both systems. For the same reason that the previous point, it is a very important subject.

3.2.3
LINUX FAMILY Vs SOLARIS FAMILY

The developing platform Java Virtual Machine is the same for both operating systems. There are not notable differences between them. The most important difference between both systems is that there is not .NET developing platform for Solaris operating system.

The TCP/IP communication protocols are supported by both systems.

3.2.4
FINAL PROBLEMS CONCLUSION

The developing platform is essential for an operating system. We can use the same programming language standard with different develop platform. These platforms give to the simulators a specific functionality. Now the question is: How can influence this factor in the interoperability among simulators? In a first view, we cannot see any problem because the HLA implementation gives the functionality to every simulator. This affirmation is true but we cannot conclude here our study. We need to examine a bigger scope, because if we ignore this factor we can find problems at future.

When we try to find interoperability among simulators, for different factors studied in this document, we need some tools to achieve the interoperability. These tools are based in a developing platform. One of this tool could have a functionality that a simulators based in another develop platform maybe does not have. For this reason, when we develop one of these tools, it is important to achieve the interoperability among develop platforms and operating systems. These two factors work together in most part of the cases.

It is fundamental too, that TCP /IP protocols are supported for every operating system. These protocols are essential to achieve the communication among components in a HLA system.

3.3
OPERATING SYSTEMS FAMILIES SOLUTIONS TO OBTAIN REAL INTEROPERABILITY

In this point we will try to give a good method to solve the problems enumerated in the previous ones. To improve our study, we will try to explain our solution based in figure 4.

Figure 4: System with different operating systems

If we develop a tool to find interoperability among simulators, we must consider the operating system factor. In figure 4, we can see an interoperability tool developed in .NET platform for a Windows operating system. The operating system and the developing platform make that this tool can employ some specific technology. This technology may not be supported by other operating systems because they do not support this platform or support it but they do not support all features. For these reasons when we deploy these tools we must study the scope of operating systems used and the common technology supported for them. If we do not make this study, we can find that our interoperability tools cannot integrate some simulators because they do not support their technologies.

In these cases, it is very important to use standard. For example the TCP/IP and XML are technologies that most technologies support and they are important to support.

	Operating System
	WINDOWS
	LINUX
	SOLARIS

	.NET
	YES (Native)
	YES (Low Functionality)
	_

	JAVA VM.
	YES
	YES
	YES

Table 1: Operating Systems and Develop Platforms

In this table we can see the developing platforms that have the different operating systems. When we want to develop an interoperability tool, it is a good idea to make a table and write down the technology used and supported for every operating system and developing platform.

In summary, we would like to remark the importance of the operating system if we want to achieve real interoperability among simulators. The operating system is the base for every system. When we speak about HLA simulators, we cannot consider only the HLA implementation functionality because, at the end, the operating system functionality influence in some features of the simulators. And if we did not consider this factor, the problems to achieve that ours simulators will be interoperable could be quite important.
4.
INTEROPERABILITY AMONG SIMULATORS DEVELOP IN DIFFERENT PROGRAMMING LANGUAGE

4.1
INTRODUCTION

There are a big number of programming languages around the world. The objective of this point is to analyze how this factor can influence in the simulator interoperability. Every programming language has its own features. Sometimes, one programming language standard has different features conditional upon its implementation. The main objective is to study how can influence these problems to achieve interoperability among simulators.

To obtain this objective, we are going to analyze the real differences among languages, where these differences start and how they can influence in the simulators interoperability. To understand how the differences among programming languages can influence to achieve real interoperability among simulators is fundamental to find a good solution based in a conceptual model.

In this point, we will study the problem decrypting before in two points. In the first point we will study how can influence the differences among languages to obtain real interoperability among simulators. In the second one, we will study how it is possible to find a solution to solve this problem. This point is a very important base to make a model to resolve the interoperability problem among simulators.

4.2
PROBLEMS WITH SIMULATORS IN DIFFERENT PROGRAMMING LANGUAGES TO OBTAIN REAL INTEROPERABILITY AMONG SIMULATORS

Frequently, we can find in a HLA implementation some associated libraries to develop simulators for this implementation. It is usual that every programming language needs its own kind of library to develop some functionality. But what is the influence of this factor in the interoperability among simulators?

The most used libraries, in the HLA implementations, are for Java and C++ languages. There are some HLA implementations that have libraries for C# programming language. For this reason we are going to study the differences among these programming languages to solve real interoperability problems among simulators developed in different programming languages.

Java and C++ have a lot of important differences, but, which of these differences are important to obtain real interoperability? To start we have a reference system (figure 1) where the HLA implementation has support for Java and C++ programming languages.
This reference system does not have any problem because every simulator has support for its own language features. In this case the only requirement to achieve interoperability among simulator A and simulator B is that the HLA implementation has libraries to support Java and C++ programming languages.
But this case is very restrictive. When a simulator is being developed a lot of factors can influence in its development. The programming language chosen depend on the features of the organization that wants to develop the simulators. When we choose a programming language we choose the HLA implementation. This implementation of HLA should support our language and its features must be good for our features. For these reason, every simulator developed has its own HLA implementation. In some cases we can find simulators with different HLA implementation in the same organization.

In the reference system, we do not have any problem to achieve real interoperability among simulators developed in different programming language. The only requirement is that every simulator of this system is developed in a programming language that supports the HLA implementation.

The principal problem occurs when we have a “Usual System” (Figure 2). This situation is the most common, but is the most unfavorable. The HLA implementation follow the IEEE1516 standard, but there are some small differences between them that make that simulators are not interoperable. If the simulators are developed in the same programming language, the differences among HLA implementation are easier to resolve than the simulators developed in different programming languages.

The most unfavorable case for this factor is to have a system with different implementation of HLA and simulators developed in different programming language, and it is the most usual case. That is why, we should find a solution for this most unfavorable case, and we have a big scope of interoperable simulators.

4.3
WAYS TO OBTAIN REAL INTEROPERABILITY AMONG SIMULATORS DEVELOP IN DIFFERENT PROGRAMMING LANGUAGES

In the previous point we studied how can influence the programming language to achieve real interoperability among simulators. We saw two extreme cases. The first consist of a system with simulators developed with the same HLA implementation. In this case, there is not any problem, the only requirement must be that the HLA implementation supports this programming languages.

This first case is very estrange to obtain, because there are different factors to make that different organizations have simulators developed in different programming languages with different HLA implementations. For this reason this last case must be studied, because the scope of simulators included in this case is bigger and we can obtain a global theory to resolve the interoperability problem if we study the programming language factor.

In this point, we will try to describe the way to resolve the problem. It is not easy because the scope of programming languages and HLA implementation is huge and trying to find a universal solution is not an easy work.

Figure 5: Interoperability Model Diagram

The problem in the system draw in figure 5 has been analyzed in the previous point. But, which is the solution? If we analyze it on more detail, we can see that the problems among HLA implementation are only small details. One problem may be the class method parameters. The same method can have some little differences of the parameters in every HLA implementation. For this reason a simulator can be interoperable with other HLA implementation. The result is two simulators that are not interoperable.

The solution for this problem is to make a tool that exchange information among different HLA implementation to achieve real interoperability. This tool makes that Rtiexec 1 and Rtiexec 2 (figure 5), have the same configuration. For example, Simulator A publics a parameter and Simulator B can´t subscribe it because is not interoperable with Rtiexec1. The interoperability tool can make two things to achieve that Simulator B can subscribe to this parameter:

· Translate the subscribe order from simulator B to Rtiexec 1. (Direct Translation)

· In a first step, when Simulator A publics the parameter, the interoperable tools publics this parameter in Rtiexec 2 too. Then Simulator B subscribe to this parameter in Rtiexec 2. When somebody updates this parameter in any Rtiexec the interoperable tool update this parameter in the other Rtiexec. (Indirect Translation).
In this solution, the kind of programming language used is essential. It is important to examine how many programming languages can be used in the system, because to translate the interoperability tool need to know the different operating system order if we use the direct translation. But if we use the indirect translation the programming language has not got any importance. But with this method the net charge and process velocity is slower.

For this reason, we must study every particular case and use the best method to solve our problem. We can think that the direct translation is the best, because is the fastest one but the simulators programming language is essential for that. Then it is very risky to use this method if the uncertainty is high.

5.
CONCLUSION: WAYS TO SOLVE THE INTEROPERABILITY PROBLEM

In the previous points, we studied the simulators interoperability problems analyzing different factors. In this part of the study we would like to explain a way to solve the interoperability problem among simulators. The first step to achieve this objective is to complete the diagram showed in figure 5. This new diagram is the start point to understand the proposal way to resolve the simulator interoperability problem.

Figure 6: Interoperability Model Proposal Diagram

In the diagram above, we can see a new element that did not appear in figure 5. Why this new element appears in this diagram and what it is its functionality? To answer the first question, we studied that there are some things that were not clear in the previous diagram. It is necessary to know some factors studied in previous points in order to make a good integration among the simulators. It is essential to know the simulators operating system, programming language and HLA implementation to make the integrations among simulators in a good way. For this reason, it is necessary to have in our model this new element. The HLA Check Agent is an intelligent agent which functionality is to study the simulators connected in our system and try to learn their features. This information learned by the HLA Check Agent is very important for the interoperability tool because this information is the enter data for this element.

The interoperability tool receives the input data from the HLA Check Agent and save this information. This input data can change in a system because a new simulator is connected in our system. The HLA Check Agent must recognize it and update the data in the interoperability tool. This procedure is the way to have the information updated in the simulators connected in our system.

Why is important to save this information, about the connected simulators in our system? If we would like to achieve interoperability among these simulators is important to know information about them. When we receive any information from a simulator and we want to transform them for another simulator, we need to know the features of this objective simulator. This information is necessary if we want to make a good integration. The objective simulator will receive the data in a format that it can understand. In this way we can achieve the interoperability among our simulators.

The process decrypted in the previous paragraph, has a problem. To know previously all kind of HLA implementations to make a good integration is not easy. For this reason these tools should be modular. If we have a new HLA implementation we can add a new plug-in to this tool in order to recognize it. These plug-ins must be synchronized with the HLA Check Agent.

6.
bibliography

· 1516.1-2000 IEEE Standard for Modelling and Simulation (M&S) High Level Architecture (HLA) Federate Interface Specification 2000. (ISBN: 9780738126210)

· Creating Computer Simulation Systems. (ISBN: 9780130225115)

· .NET Framework Standard Library reference. (ISBN: 9780321194459)
· The Art of Computer Systems Performance Analysis Techniques for Experimental Design, Measurement, Simulation, and Modelling. (ISBN: 9780471503361)
· Object Oriented Simulation with Hierarchical Modular Models. (ISBN: 9780127784526)

· ADO.Net and System.XML.Net v. 2.0. (ISBN: 9780321247124)

· High-Level Language Computer Architecture. (ISBN: 9780121741501)

· Standard IEEE1516.

· Libraries References implemented by ChronosCPP RTI, programming language Java y C++.

· Libraries References implemented DSMO RTI, programming language C++.

· Programming language Java and Java Platform Reference.

· Modules of HLA Publishes by the Chico University, California.
· Professional XML. (ISBN: 9780471777779)
· XML. (ISBN: 9780471933830)
· Web Services XML (ISBN: 84-415-1363-5)
[image: image1.emf]

RTO-MP-MSG-060
8 - 1
8 - 14
RTO-MP-MSG-060
RTO-MP-MSG-060
8 - 13

