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1
Introduction

Ten years ago, Pew and Mavor (1998) published the findings of a distinguished panel’s eighteen month investigation into the state of the art of Human Behaviour Representation (HBR) in military modelling and simulation (M&S). The impetus for this investigation was the increasing use of simulation across the range of military Human-System Integration (HSI) activities, including training, analysis for acquisition and doctrine development, decision aiding, etc. Their conclusion was that the HBR state of the art was found wanting and in large measure, this situation persists to this day. The purpose of the current paper is to promote awareness of this state of affairs and to point towards some of the technologies available for modelling human performance based on human science knowledge, or Human Behaviour Representation. The aim is to improve the fidelity of military M&S of what is likely its greatest asset, the personnel, as well as those they interact with during the course of their duties.

Pew and Mavor (1998) did not state that current Semi-automated forces (SAF) and Computer Generated Forces (CGF) are without merit; these technologies obviously have a significant role to play in military M&S. They do note though, that the highly scripted nature of these technologies makes them brittle for free play simulations and limit their use, but all technologies are limited in their applicability. They go on to state that it is important to represent observable behaviours realistically in training and decision aiding; the observers need to have confidence that the outcomes are based on plausible models. Without an underlying support of sound, plausible decision models, the demonstrated behaviours are unlikely to be the result of a sound plan and hence will lack credibility with the user (Petty, in press 2008). 

Extending Pew and Mavor’s (1998) conclusion, if sound models of human behaviour are to be achieved, they must be based on plausible models from psychological, physiological, organizational and sociological theory, validated by sound methods. Models of individuals within a simulation need to incorporate relevant aspects from the human sciences to represent the processes of sensation, attention, reasoning, judgement, memory, workload et cetera, if the user expects to have a good chance of producing believable simulations that reflect the effects of individuals. This observation is all the more relevant as real military activities move away from the Lanchester (1916) assumptions of force on force towards the largely autonomous activities of small units operating in effects-based operations and three-block war scenarios (Krulak, 1999). 

RTO (Dompke & Scheckeler, 1999) conducted a review of the application of CGF in military simulation and concluded that they had considerable potential for representing forces in military simulations, attempting to model human behaviour and cognition across a broad range of military M&S applications. Such technologies hold promise not only for training but for tactics development and acquisition option analyses, both in traditional as well as emerging threat scenarios. The panel recognized that the state of the art for CGF at the time did not adequately represent cognitively inspired behaviour to provide flexibility and robustness beyond that available from simple scripted entities. A number of shortfalls were identified, some of which could be addresses by Artificial Intelligence approaches, such as for speech recognition and natural language process, but others, such as decision making and the consequent actions, were acknowledged as requiring human behaviour representation.

A subsequent RTO (2001) panel conducted a review of HBR and its potential for use by NATO. The panel acknowledged that limited availability of qualified personnel and operational equipment for training would affect readiness, and that new technologies such as HBR coupled with traditional simulators could provide an affordable alternative. Further, HBR provides a means to train for joint, coalition operations, reflecting differences in both procedures as well as culture in CONOPS. The RTO (2001) panel foresaw scenarios where CGF go beyond being simple drones, displaying credible behaviour based on plausible models of perception and cognition moderated by human capabilities and constraints, interacting in a natural manner with people networked into  the simulation. Indeed the panel felt that HBR was a critical emerging technology not only for representing combatants, but also for representing non-combatants, organizations, groups and crowds both for training and for analysis, leading to the development of new CONOPS to meet the evolving challenge of today’s military activities.

Reason for HBR 

The individual human factors and differences become increasingly important to successful simulation with the move away from aggregate effects to an increased focus on the individual, although many human factors have an effect at the aggregate level as well. Currently, these features are often supplied by role players or pucksters that control SAF/CGF entities, however, the high OpTempo experienced by the military is placing substantial demands on qualified personnel such that there is a growing shortage available for other duties such as role-playing to train and qualify new personnel or even recertification of their own qualifications.

Petty (in press 2008) observed that physical realism in synthetic environments is becoming quite advanced but there is a need to go beyond the physical representation. Petty stresses the need for simulations of both realistic opposing forces as well as for team mates for training in virtual environments that demonstrate appropriate tactics. Users tire of CGF that are predictable (Funge, 1999) but perhaps even worse, learn to game the simulation to make it work, acquiring inappropriate habits and negative transfer of training that could adversely affect performance in the field. The benefits of SAFs beyond being simply target drones will only be realized if the behaviours that are displayed are plausible and appropriate reactions occur in response to external stimuli and internal state. While SAFs need not incorporate all of the aspects of human factors and cognition in order to demonstrate plausible human behaviour, they must represent the relevant subset to match the objectives of the application while reflecting the range of observed behaviour under similar live conditions as well as an appropriate range of performance variability.

Dompke and Scheckeler (1999) suggest that the use of HBR in CGF will be important:

1. When the human significantly determines the outcome of the real system.

2. When individual differences are important and sensitivity analysis of technical parameters are not sufficient to highlight the differences.

3. Experimentation requiring faster than real time execution is required.

4. Cost or resource availability precludes use of qualified personnel.

Lloyd (1997) notes that operations research (OR) studies require consistency and repeatability to predict causal relationships using small samples of simulations, yet notes that human decisions can dominate the effect of the system variables and even small errors or differences in the human representation can have a substantial effect on the outcome. While the traditional focus on providing high-fidelity representations of the system and scenario are important, introduction of an operator to control the system or affect the scenario can introduce sufficient variability that swamps the uncertainty introduced by the physics based models. Incorporation of latent factors such as workload, emotion and motivation into operator models becomes more prominent since the actions of individuals are more apparent and substantial influence the outcome of each simulation. Introduction of human operators into real systems creates a chaotic system and, as uncomfortable as it may be for analysts or trainers, failure to consider such complex effects raises concerns about the generality of the results of the simulation.

It seems apparent that the use of HBR in military M&S will only continue to increase across the breadth of analysis, training and rehearsal. Further, it is likely that operator models will require greater fidelity based on human science knowledge to meet the increasing demands made on the simulations such as in non-kinetic warfare applications such as Effects Based Operations (Dompke, 2006). The HBR approaches described in this paper, and related approaches, may alleviate some of the looming shortfalls.

Support for HBR solutions

Human Performance Modelling is a developing field that has advanced considerably over the past 10 years. The distinct strands reflected in the development of cognitive modelling architectures, the engineering approach embodied in task network modelling and the development of models based on independent agents are converging in hybrid models that can include elements from more than one development stream. Examples are provided by the integration of features drawn from cognitive modelling architectures in task network models (Santamaria & Warwick, 2007; Warwick et al., 2008; Warwick & Hutchins, 2004), the development of CoJACK for the UK MOD (Ritter & Norling, 2004; Ritter et al., 2002) in which some of the features of the ACT-R
 cognitive modelling architecture have been incorporated in the JACK
 Beliefs, Desires and Intentions (BDI) agent architecture (Kinny, Georgeff & Rao, 1996), and the application of task network modelling to the representation of low- level cognitive behaviour as described by Belyavin and Farmer (2006). Validation of some of the key elements of human performance models, such as the impact of increasing workload on performance, has been undertaken in the Integrated Performance Modelling Environment (IPME: Belyavin & Farmer, 2006) and there have been successful studies in the US and UK applying human performance modelling to the assessment of crew size and task design for future systems (Maguire, Chapman & Appleyard, 2005; Mitchell, Samms, Henthorn & Wojciechowski, 2003).

NATO Research and Technology Organisation (RTO) supported a Human Factors and Medicine (HFM) panel to document some of the existing human factors knowledge applicable to constructive models of operators (Lotens et al., In press: 2009). This document focuses on some of the traditional Human Factors domains but does not delve deeply into the emotional, motivational or social literature. Nevertheless, this report provides a high level overview of some of the models and theories that can be applied in military simulations to improve the realism of entity behaviour. Silverman and colleagues (2004a; Silverman, 2004b; Silverman et al., 2001) have reviewed some of the human factors literature and while acknowledging that much of the data contained in journals is not ideally suited to modelling, there remains a wealth of untapped information that may be usefully employed in human models. Silverman has gone on to develop some models based on the literature and has created an application to explore their utility for explaining individual differences, particularly those relevant to military simulation (Silverman & Bharathy, 2005; Silverman, Cornwell & O’Brien, 2003; Silverman, Johns, Cornwell & O’Brien, 2006).

There are many human sciences journal spanning the fields relevant to HBR: Human Factors, Perception, IEEE journals, Cognition, Behaviour and Brain Science, et cetera. These journals explore the theoretical aspects underpinning human performance as well as development and application of models of human performance. There are also relevant conferences. Behaviour Representation In Modeling and Simulation (BRIMS)
 focuses on both theoretical and applied aspects of HBR modelling relevant to military simulation. The Cognitive Science Society (CogSci)
 has a broader mandate of understanding the human mind although CogSci publications often demonstrate models verified through specific applications to laboratory tasks that reflect many of the underlying processes entailed by military tasks. Rarely are there models available that are suitable “straight out of the box” and effort is required to tailor models to an application.

2
Augmenting CGF/SAF with HBR
HBR technologies have the potential to operate in simulations in an analogous fashion to a human-in-the-loop simulator. Although development of a Star Trek’s Commander Data remains the stuff of science fiction, existing and emerging HBR technologies can produce a number of advanced functions to increase the fidelity of CGF/SAF. Again, it is doubtful that HBR technologies would replace all SAFs but would target those CGF that need human characteristics that significantly affect scenario outcomes, when scripted CGF responses are too predictable, or when stochastic decision making leads to behaviours that are either implausible or insensitive to the factors that would affect human operators.

Pew and Mavor (1998) suggest that it is unlikely that any of the architectures they reviewed would adequately span the range of military simulations and that it would be advantageous to move towards hybrid architectures that integrate aspects of different approaches that are found useful. Petty (in press 2008) suggests approaches can be categorized into two broad classes of human modelling approaches: cognitive architectures and behaviour emulators. Cognitive modelling approaches generally employ a cognition inspired architecture as a starting point for representing behaviour. Examples of cognitive architectures are: ACT-R (Anderson & Lebiere, 1998; Anderson et al., 2004); SOAR (Wray & Jones, 2006); EPIC (Kieras, 2004; Kieras & Meyer, 1997); and COGNET/iGEN (Zachary, LeMentec, Miller, Read & Thomas-Meyers, 2005; Zachary, Santarelli, Ryder, Stokes & Scolaro, 2001). Each of these cognitive architectures brings a somewhat different approach to modelling human cognition, with differing approximations, assumptions and levels of representation.

Alternatively, behaviour emulators such as Finite State Machines (FSM) attempt to produce behaviour without representing the underlying cognition, decomposing complex behaviours into a finite set of patterns or states with discrete conditions controlling the transition from one state to the next. Behavioural realism with FSMs is difficult to achieve because of the complexity of human behaviour and the need to encode a wide array of patterns, rules and exceptions for more autonomous yet plausible behaviour. More advanced behaviour emulators such as IPME and IMPRINT task network modelling tools go beyond FSMs to provide a Human Factors or Ergonomics representation of human performance, sometimes incorporating performance models, but typically ignoring much that would be considered cognition.

A third approach, and one urged by Pew and Mavor (1998) takes the middle ground, integrating aspects from cognitive architectures and behaviour emulators, using human sciences knowledge and models to control task choice and execution. SimON is one such middle ground approach while the integration of ACT-R towards the behavioural emulator end of the spectrum with IMPRINT is another that lies towards the cognitive architecture end, both employing the strengths of task network modelling as well as cognitive models to some degree.

The following pages will briefly describe three of the above approaches and provide examples of how they have been used in simulations relevant to military M&S. ACT-R was selected from the list of cognitive architectures as it is readily available freeware and has a wide user base in academia; the other cognitive architectures have many merits and examples of applications as well. Two other approaches, the ACT-R/IMPRINT integration and SimON were selected because they seemed more similar to the SAF/CGF frame modelling approaches and because we feel that these approaches offer a degree of flexibility that may not be readily realized in the cognitive architectures.

Cognitive architectures: ACT-R

ACT-R
 is a theory of human cognition and an instantiation of that theory in code that has been tested in numerous experimental comparisons. ACT-R has gone through several iterations and it now includes models for sensation and motor actions to round out its agent capabilities. ACT-R attempts to integrate seemingly disparate models that produce specific cognitive phenomena into a coherent whole constrained by assumptions derived from psychological experimentation. Not only does ACT-R attempt to provide functionality based on cognitive psychology, attempts are made to match the functionality to related areas of the brain based on fMRI studies (Anderson et al., 2004)
. The following brief description is based on the ACT-R literature rather than first hand knowledge and the interested reader should consult the literature of Anderson and colleagues or the ACT-R web site for more complete descriptions (Anderson & Lebiere, 1998; Anderson et al., 2004).

ACT-R the program is a language for representing human tasks in which users model the tasks according to their assumptions of how operators perform the task within the constraints imposed by the ACT-R cognitive theory. A simplified layout of the ACT-R functional blocks derived from several sources is shown in Figure 1. ACT-R is written in LISP although partial implementations in other languages such as PYTHON
 and JAVA
 have been attempted. The perceptual-motor modules, derived from the EPIC architecture (Kieras & Meyer, 1997) provide an interface to the external world to emulate vision and manual control. The core of ACT-R and its historical roots lie in the Declarative and Procedural Memory Modules. 

Declarative memory comprises encoded facts that, in humans, are typically obtained through experience, although in models, they may be expressed explicitly or subject to observation. Examples of declarative memory are assigned values to variables, associations or classification of objects to categories and these fact “chunks” are activated based on experience and contextual relevance; updates to the base experience is also incorporated through learning by practice. Activation probability and latency relationships are parameterized with adjustable values, but the user is strongly encouraged to accept the default values derived from experimentation rather than adjust them and risk over fitting their model. 

Procedural memory is implemented as production systems that describe how things are done. ACT-R has a dual-process cognitive representation (Anderson, 1996; Halford, Ford, Busby & Andrews, 2006) with the symbolic, production system for procedural memory or encoding of transformations caused by actions and a sub-symbolic system that handles pattern matching. The productions are a collection of condition-action statements that is largely unstructured yet the rules may be interdependent. The procedural memory system uses the pattern matcher to search for productions with antecedents that match the state of the buffers, often a statement of an unsatisfied goal state. When matches are found, a single production is selected for execution using a utility calculation and the duration of each production execution is nominally set to represent 50 ms. Thus, the time to complete a task depends on the number of production rules involved to manipulate the available information. The consequence of firing of a production rule often updates the buffers to cause either a subsequent rule to fire or for some action taken by the input and output modules. The sub-symbolic system is also involved during retrieval of facts and learning of new facts or processes. 

Buffers are used to connect the various modules and restrict the flow of information among the modules. The contents of the buffers represent the cognitive state of the ACT-R operator at each instant. While the visual model may process the entire visual scene (with an associated duration), the visual buffer will only contain information about the current focus of attention and similarly the memory retrieval buffer will only contain a fact retrieved from memory rather than all long term memory facts (Anderson et al., 2004, p. 1036). Production rules are constrained by the state of knowledge contained within the buffers, producing bottlenecks in the flow of information that further limit the time required to perform a task. Goals are maintained in a module separate from the productions with its own buffer to manage which goal is active and to add new goals or sub-goals to the stack of goals to be managed.
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Figure 1. Conceptual layout of the ACT-R functional blocks.

The ACT-R web site provides a number of freely downloadable papers that describe how this cognitive framework has been used to analyze cognitive processes to provide hypotheses that fit observations both at the bench level and in the field. There are examples showing how stressors relevant to military simulation such as fatigue (Gunzelmann & Gluck, 2008), sleep deprivation (Gunzelmann, Gross, Gluck & Dinges, in press, 2008) and individual differences (Gunzelmann, Moore, Gluck, Van Dongen & Dinges, 2008) may be modelled to affect individual task performance in a cognitively plausible manner. This versatility does have an associated cost, however, and building complex models can be both time consuming and data intensive (Lebiere, Archer, Warwick & Schunk, 2005).

While the primary focus of ACT-R is to research human cognition, an underlying objective is to be able to create plausible, practical models of human task performance. ACT-R has been successfully used to model an abstract Air Traffic Control (ATC) task in the AMBR project (Agent-Based Modeling and Behavior Representation), a competitive validation exercise for Human Behaviour Representation sponsored by the U.S. Air Force Research Laboratory (Gluck & Pew, 2005). The AMBR agents were required to operate in a multi-task scenario (scanning displays, prioritizing and routing aircraft) and to be adaptive, encountering situations that were similar too but distinct from conditions that provided data for model development.

Gluck and colleagues (Gluck et al., 2006; Gluck, Ball & Krusmark, 2007) have also been developing a more challenging agent, simulating the pilot of an Uninhabited Air Vehicle (UAV). This pilot agent is capable of navigating in the synthetic space using spatial representations, controlling the UAV using the flight controls for take-off, in-flight transit and recovery, to meet the primary goal of manoeuvring into position to observe the target through the clouds. The task performance results obtained from the ACT-R agent models in both the ATC and UAV task compared very well with results obtained from human trials across a broad range of measures.

Hybrid cognitive architectures and task networks: ACT-R and IMPRINT

IMPRINT is a modelling tool developed by the Army Research Laboratory to provide a capability to analyse system performance early in the procurement process. It is a task network modelling tool in that it represents the sequence of events within the system, comprising both physical and crew components, as a series of tasks connected by flow logic. Each task is associated with a distribution of time to complete and a probability that it will be completed successfully. IMPRINT can apply version of the W/Index (North & Riley, 1989) workload algorithm to constrain concurrent task execution by invoking contingency branching to alternate strategies or selecting other operators who are less busy. While IMPRINT has other modelling capabilities, the focus here is on the representation of operator task performance through the task networks executed in the Micro Saint Sharp
 simulation engine.

As an engineering approach to modelling human performance in systems, task network modelling is well established as a pragmatic and effective method of analysing system performance. The hierarchical representations possible with modern task networking environments allow the user to quickly create models starting at a high, conceptual level task or function and decompose this into lower level tasks, a reductionist approach to modelling behaviour that may continue to as fine a resolution as is required by the application or as limited by the available data to support the model development. Typically, there is no explicit representation of cognition within task network frameworks such as the Micro Saint family including IMPRINT, but the task execution can be made sensitive to both internal and external state through a system of Performance Shaping Functions (PSF). In this way current understanding of how human performance varies with different conditions can be captured and represented in an engineering based approach. 

In an attempt to go beyond this relatively crude approach, a number of case studies have been undertaken connecting together IMPRINT, to supply the general pattern of the task flow and ACT-R to represent the details of cognition at particular points in the flow (Lebiere et al., 2005; Lebiere et al., 2002). This hybrid architecture exploits the convenience and economy of the task network modelling approach in controlling overall task flow, but employs the cognitive architecture to model specific phenomena where more detail is desired, and explicit cognitive models are required. 

Lebiere et al. (2005) explored three methods of creating this hybrid system with varying levels of integration. The first was a loose affiliation at the task level where IMPRINT was used to provide procedural knowledge representation as sequences of tasks and ACT-R was invoked when a task required a cognitive process representation. This approach maintained the strengths of each system and may be suitable where behaviours are very procedural but it places the load of solving complex problems on the task network representation, ignoring the flexibility of ACT-R in these ill-defined problem spaces. A second approach involved federating IMPRINT and ACT-R where IMPRINT modelling focused on only the representation of and interaction with the environment while ACT-R provided a cognitive representation of the tasks and procedures. This second approach seems to have few advantages over the first approach although it exploits more of the ACT-R flexibility at the cost of the intuitive IMPRINT representation of events. In both of these cases, two models must be maintained. The third approach was a more tightly coupled integration of the two technologies where tasks are decomposed to a fine level more typical of production rules so that the functional capabilities of ACT-R are re-implemented as a plug-in to the C3TRACE
 task network environment using C# (Warwick et al., 2008).

These approaches enable the interaction of the operator(s) between specific features in the environment and the tasks they have to fulfil to be represented in sufficient detail to capture complex cognitive phenomena that might cause human error or extended task execution time that cannot be represented through PSFs alone. It has proved difficult to encapsulate the effects of training and experience through the simple PSF framework, but the use of more sophisticated training models embodied in cognitive architectures have provided a potentially useful mechanism (Belyavin & Ryder, 2008). Various versions of the integration approaches have been applied to different problems but the principal demonstration is of the interactions between air crew and ATC during approach, landing and taxi to predict operator errors (Lebiere et al., 2002). 

Task networks augmented with human models: IPME and SimON

The Integrated Performance Modelling Environment (IPME)
 comes from the same task network family as IMPRINT, being based on the Micro Saint Sharp discrete event simulation engine, although details of its implementation differ. IPME uses the QinetiQ POP workload model (Belyavin & Farmer, 2006; Farmer, 2000) in conjunction with a variant of the DRDC Toronto IP task scheduler model (Hendy & Farrell, 1997) to control the flow of task execution according to the workload demands on the operator. Meta-models such as workload are often avoided by cognitive architectures, preferring instead to focus on first principle modelling, yet task control using workload has been found to be a useful approach for complex models that operate at higher levels, more typical of Human Factors studies and military simulations. Workload has also been incorporated successfully into finer-grained models of task performance to predict interference effects among contending tasks.

Standalone executable models can be constructed from IPME for both Windows and Linux operating systems and models may be linked with third party models through a TCP/IP client-server interface. This provides a mechanism to off-load computationally intensive sub-models to other computers or to protect intellectual property contained in external programs. IPME has a PSF functionality based on that in IMPRINT to moderate task duration and failures based on either external or internal stressors. 

IPME task expression fields may be populated with C# code to manipulate variables, establish initiating conditions, manipulate task duration or failure and specify ending effects as in IMPRINT. IPME has an additional expression field that provides a mechanism to manipulate variables at selected scheduler events during task execution, between the beginning and ending events. This provides more flexibility to manipulate variables at events such as task interruption, resumption or failure. In addition IPME includes a formal model of Crew states and traits designed to facilitate modelling the impact of external stressors on Crew performance and inter-agent variability. These features have been employed in modelling human performance for low level tracking and cognitive tasks, including representation of individual differences in behaviours and interfering tasks (Belyavin & Farmer, 2006). In addition an unpublished model of performance of the Visual Bakan task including representation of individual differences has been developed by Cain for use in an on-going validation study of predictive multi-task performance.

The Simulated Operator for Networks (SimON) human modelling approach for HBR is an engineering representation of procedural task execution using the IPME modelling environment. The approach is intended to support modelling the individual operator level or a collection of individuals, performing the role of teammates, adversaries or non combatants within military scenarios when personnel are unavailable to fill these roles. The vision is that SimON would network with synthetic environments to control entities and supplement CGF/SAF capability where detailed human models are desired. SimON is in the early stages of development at DRDC Toronto, but the decision to follow this route was made to leverage DRDC’s investment in human performance modelling software development IPME and capitalize on the experience our contractors have acquired using the software. SimON has a number of conceptual similarities with the IMPRINT/ACT-R/C3TRACE fully integrated environment (Warwick et al., 2008) although it takes a more engineering representation of how the cognitive elements interact with tasks.

The behaviour representation is at the task level, although the modelling approach advocated is based on Annett’s Hierarchical Task Analysis (Annett, 2003; Annett & Duncan, 1967; Annett, Duncan, Stammers & Gray, 1971), such that tasks can be defined at a high, abstract level, then broken down into subtasks that in turn may themselves be considered tasks that can be further decomposed to the level of detail required by the application. In this hierarchical process, higher level tasks often become supervisory tasks, integrating and evaluating lower level task outputs to assess the status of the higher level goal achievement. The lower level tasks provide the plans and methods for achieving the higher level goals and branching may be used at any level to incorporate different types of strategies and responses.

SimON is not a cognitive architecture in that it makes no strong statement of how all the elements of cognition interact in a general manner independent of the tasks. Nevertheless, SimON is intended to integrate models from various human science disciplines to provide a modular representation of the operator performing specific tasks. A conceptual layout of the framework is shown in Figure 2. Because SimON makes no strong rule about how the elements of cognition and behaviour interact, the user has the flexibility to adopt whatever appropriate models are available, including those that are merely a convenience and without HF support. While this is not a recommended approach, it may be an expeditious strategy for getting a model operational that can then be tailored to meet the application requirements. 

SimON makes use of IPME and while it represents procedural knowledge as sequences of tasks, the tasks can employ cognitive models, be interrupted by other tasks then resumed or abandoned, etc., going beyond a limited set of finite states. Development of task flows and procedures is graphical, using C# for expression fields to include detailed expressions required by the task. Additional clients can be connected through TCP/IP sockets to integrate existing models or offload computationally intensive models, such as the QinetiQ thermal physiology model. IPME provides embedded models for task scheduling based on estimates of workload and task interference. These are thought to be critical elements in operator models to ensure that the resultant behaviours accurately reflect human capabilities and limitations since IPME allows limited multitasking where tasks may be automatically or explicitly interrupted and resumed depending on demands or changing goals. IPME also provides many of the HOS functions provided with the MicroSaint Sharp simulation engine.
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Figure 2. Conceptual organization of the SimON HBR framework functional blocks.

It is proposed use, to the extent feasible, models with human science provenance to provide the logic affecting variable states embedded within the tasks. Experimental psychology and the human factors literature have a wealth of largely untapped knowledge as indicated by Silverman, but much of it is not in a ready form for modelling. Cognitive psychology, however, often integrates much of what is known about certain phenomena into formal models and that literature contains numerous cognitive models with verification studies. SimON will provide a framework for integrating these models, both as generalized engines for performing a family of functions as well as for specific instances that use calibrated parameters.

SimON is developing models of visual sensation and perception to process inputs, filtering ground truth according to what is known about human visual perception. This is analogous to what is often done for SAF/CGF, although the intent is to go beyond the basic probabilistic detection schemes to incorporate more detailed representations of perception. These models will be based on the visual perception literature but we do not intend to formulate and research new theories. SimON is also developing some models of cognition based on the Minerva2 instance based model (Kwantes & Cain, 2004; Kwantes, 2003; Kwantes & Neal, 2003). Minerva2 has the potential to add automated skill learning, forgetting and robustness in decision making to task execution. Minerva2 provides a formal mechanism for representing Recognition Primed Decision Making to reflect expert behaviour (Santamaria & Warwick, 2007; Warwick et al., 2008; Warwick & Hutchins, 2004). 

SimON is currently a demonstration project intended to show the potential of this technology to the Canadian Forces. Two examples were selected for demonstration: one, a model of a helicopter pilot controlling a CH124 Sea King during the approach and landing on the simulated deck of a Canadian Patrol Frigate (CFP) under way, intended to show the use of HBR for team training; the second, the crew of a hypothetical Multi Role Combat Vehicle (MRCV) in OneSAF OTB, intended to show the use in concept development and evaluation. In each of these demonstrations, the emphasis was on verbal interactions between the SimON entity and personnel to accomplish a task. Both cases were dynamic and neither was scripted to a fixed timeline.

In the SimON pilot demonstration, the HBR supplied inputs that mimicked control deflections that were then interpreted by the helicopter simulator but bypassed the physical control deflections. This was done to show the potential for minimal reconfiguration to the simulator and simulation when the HBR stood in for the usual pilot. The Landing Signals Officer (LSO), a human participant in a virtual/physical HOWDAH simulator, interacts with the SimON pilot verbally, granting permission to approach the ship, conning the helicopter into position over the deck, waving-off and resuming the conning, and finally, landing on the CPF. The simulation is largely real-time although there is some latency in the speech recognition software currently used for SimON. Formal evaluation of the usefulness of an HBR controlled simulation for training LSOs is being planned for next January with military personnel.

In the SimON MRCV crew, two constructive vehicle crew control a OneSAF vehicle in an advance to contact, interacting verbally with a troop commander in an MRCV simulator and engaging enemy entities as required. The MRCV crew provide SITREPs
 as requested and request information back, although tasks may be interrupted and forgotten if more urgent tasks arise, such as having to deal with the detection of enemy CGF.

3
Discussion
The science of representing the human in Military Modelling and Simulation has advanced significantly since the review of the field by Pew and Mavor in (1998) although the challenge of developing reliable general purpose agents has yet to be met in full. Recent developments in the field of HBR suggest that the path that will deliver most benefit over the next few years is to develop hybrid architectures exploiting the ease of use of the engineering approach embodied in the Task Network modelling architectures or the AI agent architectures with cognitive models drawn from sources such as ACT-R. This approach is embodied in the SimON and CoJACK developments of prototype agents and current work suggests that this approach will provide the most effective way of incorporating effective and validated models of human performance in future models. An area that has proved intractable to date but is important for the development of effective models of individuals for use in broadly based training simulations is that of motivation and general emotion on individual behaviour. There have been some serious attempts to model the impact of emotion on individual behaviour – notably those by Silverman (Silverman, 2004b; Silverman et al., 2003; Silverman et al., 2006; Silverman et al., 2001) and the University of Southern California (Miller, Wu, Funk, Johnson & Vilhjalmsson, 2007). While the approach is in its infancy, frameworks have been devised that can provide realistic human response to complex situations – at least in a limited range of scenarios. 

It is well known from human experimentation and observation that human performance and behaviour is fundamentally stochastic. Individuals do not necessarily reproduce exactly the same behaviour in terms of choice of a course of action, or performance in terms of time to complete a task and likelihood of an error, even under very similar conditions. Strict representation of human performance should capture plausible stochastic intra-individual performance as well as representing the appropriate distribution of inter-individual traits. Appropriate representation of the stochastic component of HBR should reproduce the pattern of variability that is observed in real data. The analysis of experiments involving human participants is an important component of statistical analysis and may require the making deductions from a set of simulations should be approached in the same way as the analysis of a set of data from human trials. It should be noted that even Subject Matter Experts (SME) may not have experienced or observed the range of behaviours or variability in performance necessary to determine the plausibility of a model. Knowledge obtained from both SME expertise and the underlying human performance characteristics presents a more robust representation of what could be observed in practice.

The demands of a complete model of human performance and behaviour under the full range of environmental conditions inevitably requires representation of a wide range of different phenomena including models of physiological and physical processes such as fatigue and thermal effects as well as models of the impact of emotion and personality on human performance and behaviour for different tasks and contexts. Any fully general human FOM is complex because it is obliged to encompass all these phenomena and any model that includes all the phenomena is also likely to be complex. The pragmatic way to manage this complexity is to model human performance and behaviour using a modular approach. At the heart of the approach there should be an engineering architecture that can accommodate representation of key states, traits and tasks. The components that represent the many features of human behaviour can then be developed as distinct modules that can be incorporated if required. These modules can include elements such as emotions, physiological response to stressful conditions, behavioural elements relating to specific external requirements (e.g. driving or flying tasks). In this way the task of verifying and validating an intrinsically complex model can be managed and a development path can be constructed that moves steadily from the relatively simple to the complex in simple steps that restrict the challenging task of validation to interactions between already validated components.

Incorporating HBR in any external framework is a complex undertaking since a substantial number of parameters are required to describe all aspects of the external environment and their impact on the human operator(s). The simple scenario used in the SimON helicopter control involves exchanges of about 100 variables between the helicopter, ship and pilot simulations; the QinetiQ thermal model alone requires more than 140 variables to be exchanged, although the number of dynamic variables routinely exchanged during a simulation is considerably less. It would undoubtedly be very constructive to have a Human Federation Object Model (FOM) available for incorporation in any application, although it is not surprising that no FOM has been forthcoming to date despite some attempts in this direction (Pratt, Barham, Fullford & Koeching, 2005) since, as noted above, even relatively simple phenomena such as the impact of the thermal environment on an operator may need a substantial number of parameters to encompass all possible applications.

NATO RTO panel HFM 128 is currently documenting some of the existing models of human performance that might be suitable for HBR and the HFM 143 workshop discusses some of the issues of human modelling relevant to military simulation. The emphasis on small teams working under greater autonomy and in close proximity with both non-combatants and opponents presents many new challenges. Modelling military activity such as Effects Based Operations will likely require new solutions that entail greater fidelity in the representation of people. While current SAF/CGF are useful tools for training, doctrine development and acquisition studies, more elaborate representations of personnel on all sides will be required. Such representations will need to consider incorporating difficult areas such as motivation and emotion, error and uncertainty, individual and aggregate phenomena. While these areas are not in the mainstream of current military modelling, the M&S community is positioning itself to be able to address these issues in applied simulation. Support over the near term for exploratory studies with practical relevance would be useful both to establish the adequacy of the current state of development of HBR and to advance the field to develop reusable components that will serve the military M&S needs out to 2015 and beyond.
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