

RTO-TR-AVT-036 5 - 1

Chapter 5 – EXAMPLES OF 0-D NUMERICAL SIMULATIONS

INTRODUCTORY COMMENTS

In the following sections, examples are given of engine simulation environments:

• A conventional FORTRAN based modeling system architecture;

• The MOPS and MOPED modeling systems;

• The GasTurb modeling architecture;

• The GSP object-oriented modeling architecture;

• TERTS, a thermodynamic real-time gas turbine modeling environment;

• Simulation models for engine diagnostics; and

• Other 0-D modeling systems.

5.1 A FORTRAN-BASED MODELING SYSTEM

In this modeling system, the engine is viewed as a set of interconnected gas flow passages, while engine
component models are represented by subroutines. The major part of the definition of the engine
performance is obtained from knowledge of the conditions pertaining at a number of engine stations in the
gas flow. At each station, an array of gas conditions in terms of fuel-air ratio, mass flow, pressure,
temperature, etc. is defined and used to pass information from one component to the next. The architecture
is modular and provides a flexible tool to model a variety of gas turbine configurations. However,
the FORTRAN language has limited capabilities to apply modern software development methodologies
such as object orientation, modern data organization, databases and graphical user interface features.

The advantage of FORTRAN is that it is still the standard and, if no platform specific code such as user-
interface shells are included (which often is the case for a command line interface), may be compiled and
run on most platforms.

5.1.1 Architecture
Figure 5.1 shows the elements of the modeling system. The subroutine containing the definition of the
engine is a small part of the total infrastructure. Each element is discussed below.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 2 RTO-TR-AVT-036

D
A
T
A
B
A
S
E

BLOCK
DATA
basic data

default options

READ
DATA

PROGRAM
CONTROL

OUTPUT
CONTROL

USER
INTERFACE

ENGINE ROUTINE
COMPONENTS

other routines
& functions

UTILITIES

Figure 5.1: FORTRAN Modeling Procedure.

5.1.2 Database
This is not strictly part of the modeling system but a fundamental part of the Information Technology (IT)
electronic infrastructure. It holds functional engine data, which is used for model definition, and also
receives and stores data generated by the model. It also holds engine test data, which is required as
program input for model-based analysis. Security features are essential on any database for model input or
output data.

5.1.3 Utilities
Common utilities include data visualization (plotting, tabulation), data maintenance (deletion, addition,
grouping, security), data manipulation (creation, formatting of graphical functions, etc.) and output definition
(creation and storage of instruction sets for standard output formats).

5.1.4 Block Data
Associated with an engine-modeling program is a set of data which underpins the basic program structure,
and which is independent of the standard of engine being modeled. Default options (controlled by data
switches) can be set up in this dataset which is compiled with the engine routine (see below).

5.1.5 User Interface
The user communicates with the engine program via standard AS681 [5.1] interfaces and – if working
in-house – by lower-level program input stores for greater flexibility. The user supplies the following
information:

• Engine model (i.e. what particular standard of engine is required to be run);

• Additions to default thermodynamic definitions;

• Enabling/disabling of user options within the program or modeling system;

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 3

• Definition of points/maneuvers to be modeled (at a particular flight case or flight profile);

• Definition of output format (may include post-processing); and

• Definition of interfaces to other sub-system models (e.g. control-system) – if required.

Some of these options may not be available to some users, especially if the model is issued externally
(i.e. as a customer ‘deck’).

5.1.6 Read Data
The data is pulled in from the various sources: database, user, block data and presented to the program.

5.1.7 Program Control
The call is made here to the engine subroutine.

5.1.8 Engine Routine
This is the heart of the system. Here, the structure of the engine is defined in terms of its flow path, which
is modeled at whatever detail is appropriate for the program’s application. The engineer-programmer is
provided with a data structure built around the station and component subroutine structure. The engine is
viewed as a set of interconnected gas flow passages, and a major part of the definition of the engine
performance is obtained from knowledge of the conditions pertaining at a number of stations in the gas
flow. Each station is defined in terms of fuel-air ratio, mass flow, pressure, temperature, velocity, area,
flow function, etc.

Some stations may be defined as total stations in which case velocity and area terms are zero. Other
stations, e.g. associated with pressure losses or mixing, may be defined as static stations in which case the
pressure and temperature terms will be static values associated with the specified area or velocity.
Calculations of other parameter values can be added as required.

Thus stations are handled as vectors of information. AS755, [5.2] is an internationally recognized standard
for station numbering. Whereas this nomenclature appears on the program standard output, the programmer
is given flexibility within his own program to use whatever definition is convenient.

Several FORTRAN arrays are available to the programmer. These can be used for internal working and
program interfaces. The system makes use of COMMON blocks for ease of communication between
different subroutines. The program structure is largely constructed to reflect the physical layout of the
engine. Standard subroutines are used, with customizing being required to handle data transfer and
different user options.

5.1.9 Components
Component subroutines are grouped into classes such as intakes, compressors, combustors, turbines and
nozzles. Although not strictly components, the following are treated as such because they follow a similar
‘control volume’ construct:

• Pressure changes;

• Multi-stream mixing; and

• Bleed network (secondary air-system).

For each class of component, several options exist within each subroutine. For example, a pressure loss may
be defined in many ways. The component-subroutines model the steady-state performance of the feature.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 4 RTO-TR-AVT-036

The dynamics associated with heat-transfer (to and from the blades and casings), shafts (conservation of
angular momentum) and gas dynamics (conservation of gas steam mass, energy and momentum) are handled
in separate subroutines.

5.1.10 Other Routines and Functions
Performance programs are required to generate steady-state solutions. Dynamic/transient simulation
(i.e. over a time base) is a fairly straightforward extension of the steady-state modeling principle, and so
the level of thermodynamic detail is consistent with the steady-state solutions. A suite of routines, which
uses an enhanced Newton-Raphson method, controls the iteration. Limits on certain parameters can be
defined and the condition requested (by the user) may be overridden. In such a case, the limiting is flagged
to the user. Where a control-system model is run alongside the engine model, this internal limiting action
is muted.

Iteration also gives the flexibility to specify the engine operating level in an abundance of ways. Rather
than specifying just the level of the ‘true’ engine input parameters such as fuel and nozzle area, the power
level can be defined as a level of thrust with a specified fan surge-margin (for example). Iteration is also
used in a wider sense – around the whole engine model – to vary selected component assumptions
(efficiencies, flow capacities, pressure losses, etc.) to match selected model outputs to measured engine
data. This process is known as AnSyn, Analysis by Synthesis, (see Chapter 3, Section 3.2.7.3).

Other subroutines include:

• Local, single variable iteration;

• Graph read; and

• Obtain gas or fluid properties.

The above are used within or without the component modules.

5.1.11 Output Control
Figure 5.2 shows the standard output, which may generated per point. When all that may be needed is a
plot of thrust vs. SFC for a series of points up a running range, such a comprehensive output may be too
cumbersome. In such cases, selected parameters can be identified and extracted to the database for plotting
later. Some customization of the full output is possible. Each section of the output is mutable, or may be
embellished with station descriptors in plain (perhaps project-specific) nomenclature. To display a small
subset of the data, an expert user may configure a summary section. Special diagnostics may be required
for problem tracing, and these can either be appended to the basic output or diverted to a separate output
channel.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 5

confirmation of input data

confirmation of user input data

status flags

engine station output

component summary

customer interface listing

program internal working

summary output

additional information

•optional

•user reference

•e.g. limiting, invalid solution

•FAR, W, P, T etc.

•alternative presentation of above

•AS681 interfaces (FIXIN, VARIN etc.)

•for info (problem tracing)

•as defined by user

•data destination, special diagnostics etc.

Figure 5.2: Standard Output Format.

Of particular importance are the status flags, which are generated to alert the user of particular program
operations. These flags could indicate an invalid solution (for example if the iteration failed to converge),
limiting to a condition, exceeding a limit (internal to the engine, or at a flight case level, e.g. outside
normal flight envelope), invalid program input, etc. Such status flags (numerical status indicators),
are generated at system level or at engine subroutine level by the engineer-programmer.

5.1.12 Future Developments
FORTRAN is an old computing language with limited capability especially in I/O and data organization
areas. The system described above is easily envisaged in a more modern language such as C++.
This would allow a true object-oriented approach and compatibility with modern computing platforms
featuring graphical user-interfaces (GUIs). This said, C++ appears to have limited advantage over
FORTRAN as far as the mathematical constructs required to model gas-turbine engines are concerned.
A hybrid approach is feasible, and is inevitable in the short-to-medium term.

5.2 MOPS (MODULAR PERFORMANCE SYNTHESIS PROGRAM)
OR MOPEDS

Another example with a focus on flexibility is MTU’s in-house performance program MOPS (Modular
Performance Synthesis Program), [5.3]. Its development started in the early 80’s, and the program is
presently extended to be a multi-disciplinary pre-design tool. In the beginning FORTRAN IV was used,
and later FORTRAN 77. Recently added options make use of the new data structures offered by
FORTRAN 90. MOPS architecture is schematically presented in Figure 5.3.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 6 RTO-TR-AVT-036

Diagrammtitel

Design
Off Design
Test Analysis
Transient
Inlet Distortion

Define Iteration

Atmosphere Inlet Compressor Burner Spool Turbine Nozzle Control System

Gas Properties Isentropic Flow Table Reading

Utilities

Engine Model

MOPS

Figure 5.3: MOPS Architecture.

MOPS is used for a wide variety of tasks, including engine test analysis, cycle design studies, off-design
and transient simulations. Moreover, MOPS is the basis for all computer decks issued by MTU.

Before actually using the program, the engine configuration must be defined with the help of a special pre-
processing program. In this pre-processing the user composes his engine from modules that can be
connected in any sequence. In most cases, a module is directly representing an engine-module like a
compressor or a turbine. Besides the turbo-machine modules there are also other modules like ducts,
shafts, control units, etc.

The primary connection between the modules is the main gas stream, and secondary connections are the
shaft power transfer between modules, internal air system paths, heat transfer, control sensor signals and
position commands.

The program modules are strictly isolated from each other. Normally, they can only communicate via their
primary and secondary connections. The program internal nomenclature follows the ARP 755 standard
and all calculations are done in SI units. There is a sophisticated error message system built into the
program, and in most cases standardized diagnostic methods allow the reason for any problem that may
arise to be found rapidly.

The user has to set up an iteration scheme, which is specific for his engine configuration and the task to be
performed. There are variables to be selected and errors to be defined. For example, in a mixed flow
turbofan design task, the bypass ratio may be used as a variable and the difference in static pressure
between core and bypass flow may be treated as the corresponding error.

Typical turbofan simulations for cycle design tasks employ iteration schemes with only a few variables,
while test analysis by synthesis tasks can require over 50 variables.

Setting up the iteration scheme requires a thorough background of gas turbine theory. This is a certain
disadvantage, but on the other hand, with MOPS, gas turbines of arbitrary complexity can be simulated.

MOPEDS is an extension of the in-house performance program, MOPS, and shares its program structure.
Performance programs deal with all-engine effects so that their program structure generally is well suited

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 7

for such a task and the thermodynamic performance is always the backbone for any preliminary design.
It was therefore obvious to base MOPEDS on MOPS. A description of MOPEDS is offered below [5.4].

Description of the Application

During the preliminary design phase the main parameters of the engine are set. The decisions made at that
time determine most of the risks and financial resources associated with the development, manufacturing
and operation of the gas turbine under concern. The preliminary design process must be carried out very
quickly so that engine suppliers are able to evaluate numerous concepts with respect to the market
requirements in a short time.

The preliminary design of a new engine starts with the evaluation of various thermodynamic cycles.
Finally the cycle is fixed in such a way that all requirements are met at the relevant operating points of the
flight mission of an aircraft, for example. Subsequently all engine components are designed
aerodynamically and mechanically with respect to a good matching of the components, well behaved off-
design characteristics over the whole mission, low cost, ease of manufacture, reliability, noise legislation,
emission regulation, etc.

Modeling Techniques Utilized

This preliminary design task has led to the main features of MOPEDS (MOdular Performance and Engine
Design System), MTU Aero Engines’ software package for the preliminary design:

• All major engine components and their interrelations are assessed;

• The most relevant disciplines are considered;

• Component design is may be done at various operating points; and

• Model fidelity zooming for selected components is feasible.

The program structure forms a matrix whose columns represent the engine components, whose rows
represent the disciplines, and whose elements are defined to be modules (see Figure 5.4). Effectively,
each module is a subroutine with a standardised interface that contains all the information about the
physics associated with its position in the matrix. Somewhat outside the matrix the so-called overall-
modules reside which are responsible for data that can not be related to a single discipline or engine
component as for example thrust and SFC evaluation.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 8 RTO-TR-AVT-036

Figure 5.4: Program Structure of MOPEDS.

For each operating point an inner loop is required for finding a valid solution for the thermodynamic cycle
and the other disciplines. An outer loop over all the operating points completes the process. Each module’s
variables are uniquely defined at each operating point and are treated as independent or dependent
variables, constraints, or figures of merit depending on the problem under concern. There is no maximum
value for the number of operating points, variables or constraints to be considered apart from the user’s
choice to limit the complexity of the problem.

Zooming is implemented in such a way that the methods that are used in the specialist’s departments are
called by MOPEDS. Specialists from any discipline are able to add even more detail to the design and –
by running MOPEDS in parallel – may see how their changes affect the performance of other components
and the overall engine.

Potential Benefits

The overall system simulation employing the component specialists tools guarantees a smooth transfer of
the pre-design results to the detailed design and vice versa. The latter is important for building a consistent
data base of lessons learnt during the early phases of any new gas turbine design and also in engine growth
studies.

The integration of the most important disciplines into one tool has the benefit that much more criteria can
be considered simultaneously than with the conventional approach of iterating between specialists from
different departments.

Cited Example
• Jeschke, P., Kurzke, J., Schaber, R. and Riegler, C., “Preliminary Gas Turbine Design Using the

Multidisciplinary Design System MOPEDS”, Journal of Engineering for Gas Turbine and Power, Vol.
126, April 2004, pp. 258-264. [5.4]

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 9

What makes the preliminary design task so challenging are the many design variables and constraints to be
considered at several operating points of the flight mission. The strong coupling of the effects of all
disciplines as well as the strong interrelation of all engine components puts up the need to consider many
variables and constraints simultaneously. For example, the constraints for the turbine metal temperatures
at Take-Off rating are a direct function of the cycle variables and the component efficiencies at the cycle
design point which coincides with the Max Climb rating. Moreover, the component efficiencies are a
direct function of the aero design variables set at the aerodynamic design point which is usually the Cruise
condition at high altitude. Thus there is a direct correlation between several design variables of different
disciplines at the three operating points Take-Off, Max Climb and Cruise.

The paper describes first the multi-disciplinary tool MOPEDS which has been developed for use by a gas
turbine manufacturer. As an application example the optimisation of the high pressure compressor for a
conventional turbofan with respect to exit radius ratio, spool speed and stage number is used. Numerical
optimisation is employed for finding the best solution and parametric studies are done to explore the
surroundings of the optimum found.

The example described in the paper illustrates the value of the tool. Even though the investigated problem
is somehow ‘academic’, it comprises a truly multi-disciplinary, multi-operating-point investigation of the
complete gas turbine engine. A preliminary designer could by no means produce results like these – not to
speak of a more realistic problem with more variables – in such a short time without an integral tool like
MOPEDS.

Limitations of Chosen Modeling Technique

There obviously can be several pitfalls when numerically investigating a problem of high complexity.
Especially the physical accuracy of the models used must always be checked carefully. This is even more
true if numerical optimisation is employed which finds the optimum of the model only as opposed to the
optimum in the real world. The numerically best solution might be outside of the design space for which
the model is validated.

Another limitation of this modelling approach is the lack of detail available during the preliminary phase.
Moreover, the results are strongly dependent on the constraints applied to the design task and the choice of
the figure of merit.

Last but not least one needs very capable engineers who can make reasonable use of any highly complex
multi-disciplinary tool. It is not adequate to simply accept what the computer presents as the optimum
solution of a complex design problem – each result must be scrutinized carefully before accepting it.

5.3 GASTURB

The big programs used within industry for performance simulations all have one common problem. They
require an experienced engineer to operate them. Mostly there is no user-friendly interface and the user
has to deal with the sometimes-complex component matching issues.

When predefined engine configurations are employed, it is possible to hide all the mathematics from the
user of the program. This makes the program applicable for a much wider audience than the traditional gas
turbine performance programs.

An example of a 0-D model with predefined gas turbine configurations is GasTurb [5.5], see Figure 5.5.
GasTurb was originally developed as a Turbo Pascal program and was later transferred to Delphi. It has a
traditional Pascal program structure (i.e. a main program with subroutines and data blocks) where each
engine configuration is implemented as a program unit.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 10 RTO-TR-AVT-036

GasTurb 10
www.gasturb.de

Figure 5.5: GasTurb Model Selection Window.

GasTurb is run on common desktop PCs with the Microsoft Windows operating system (Windows 95/98
or Windows NT4.0/2000/XP). The development environment is Borland Delphi®, which is based on the
Object-Oriented Pascal programming (‘OOPascal’) language.

Apart from the user interface, GasTurb does not make use of the object-oriented features that are offered
by Delphi.

The majority of the GasTurb code is devoted to the user interface. As a Windows program it is an event
driven program in contrary to the traditional FORTRAN codes that are typically run using a command line
interface or in batch mode.

Event driven programs pose a new challenge to the programmer because the user may click the buttons in
any sequence. The user can be provided with much more powerful control (he can perform his tasks in
different orders). However, the program must then also prevent unreasonable actions and provide hints
and error messages when it cannot perform an action for some reason.

Figure 5.6 shows the architecture of GasTurb where the different engine configurations are all
(non-visible) sub-items of the box marked ‘Gas Turbine Physics’. All parts of the schematic above this
box deal with the hidden mathematics and with many task specific user interfaces.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 11

Select Configuration

Single Point
Parameter Study
Design Effects
Monte Carlo

Select a Task Optimization

Cycle
Design

Design
Iteration

Design

Single Point
Parameter Study
Operating Line
Off-Design Effects
Flight Envelope
Mission
Inlet Distortion
Monte Carlo

Select a Task

Bleed
T5 = f(T2,Mach)
NH = f(T2,P2)
etc.

Steady State
Schedule

Off-Design
Iteration

Inlet
Iteration

Off-Design

Steady State

Manual Control
Fuel Step
Use a Schedule

Select a Task

NL=f(Time)
NH=f(Time)
Power=f(Time)

Transient
Schedule

Transient

Transient
Iteration

Transient

Off Design

Main

Gas Properties Atmosphere Compressor
Maps

Turbine
Maps

Table
Reading

Nozzle

Gas Turbine Physics

Figure 5.6: GasTurb Architecture.

A simplified version of GasTurb can be downloaded for evaluation purposes from the following website:
http://www.gasturb.de.

5.4 THE GSP OBJECT-ORIENTED MODELING ENVIRONMENT

NLR’s ‘Gas Turbine Simulation Program’ [5.6] is a component based modeling environment for gas
turbines and related systems. Both steady-state and transient simulation of any kind of gas turbine
configuration can be performed by establishing a specific arrangement of component models in a model
window as displayed in Figure 5.7.

http://www.gasturb.de/

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 12 RTO-TR-AVT-036

Figure 5.7: GSP Model Window with Simple Turbofan Model.

GSP is run on common desktop PCs with the Microsoft Windows platform (Windows 95/98/ME or
Windows NT4.0/2000). The development environment is Borland Delphi®, which is based on the Object-
Oriented Pascal programming ‘OOPascal’ language.

GSP is a highly flexible tool for analysis of operating condition effects on steady-state and transient
performance. Typical effects are:

• Ambient and flight conditions;

• Installation losses;

• Deterioration; and

• Malfunctions of control and other subsystems.

Both the flexibility and user-friendly interface are owed to GSP’s object-oriented architecture, which has
been designed with primarily these two qualities in mind.

The flexibility is to a large extent reflected in the component modeling approach. With efficient ways to
develop or adapt component models, simulations of new gas turbine configurations and models with
different levels of (local) detail or fidelity can easily be realized. For this approach a solver is required that
is able to handle any configuration of components (and thus states) in a model. In effect, a generic solver
is needed for a virtual set of abstract components with an undefined number of states. This also implies a
specific approach for the user-interface, i.e. an interface focused on the component level.

Object orientation offers an excellent mechanism for this problem. Inheritance is used to concentrate code
common to multiple component types (e.g. both compressor and turbines have some similarities)
in ‘abstract’ component object types or “classes”. From these abstract classes, component classes are
derived and ‘instantiated’ as real gas turbine components in an engine model. See Figure 5.8 for the GSP
component class hierarchy.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 13

Figure 5.8: Standard Component Architecture.

Many publications on object-oriented software designs (and also on object-oriented gas turbine simulation
tools exist and show the three basic principles of object orientation: encapsulation, inheritance and
polymorphism. These principles offer significant potential to efficient gas turbine simulation software
development.

Encapsulation enhances code maintainability and readability by concentrating both the routine code
(representing behavior) and data block code (representing the properties and state of operation) of a
particular component in a single component object class. Contrary to conventional software design
practice (i.e. FORTRAN), all data declarations and procedures (in OOD terminology methods, both for
interface and simulation calculations) are concentrated in a single code unit.

Inheritance facilitates concentration of code common to multiple component classes in one or more
abstract ancestor classes. This is to eliminate code duplication. The turbo-machinery component class in
Figure 5.8 for example represents all functionality common to compressors, fans and turbines. Code
maintainability is also enhanced because single code adaptations in ancestor classes are effected in all
descendant classes. Polymorphism is the ability of abstract parameters to represent different object classes.
This principle is extensively applied in GSP. Every component class for example has a ‘Calc’ method for
running the simulation code. The system model code has an abstract (polymorphic) component object
identifier able to represent any real component object instance in the model. During simulation, the system
model subsequently lets the abstract identifier point to successive components, calling their ‘Calc’
methods. The abstract component object has an abstract ‘Calc’ method that is a token representation of the
real simulation code. During runtime a mechanism called late binding replaces this abstract ‘Calc’ code
with the actual ‘Calc’ code of the component it is representing.

Using inheritance, code development effort and maintainability can be drastically reduced. Many gas
turbine components have similarities in the model and user interface code. Common or generic code
elements can be concentrated in (and inherited from) a single abstract ancestor class (an abstract class
cannot be instantiated, i.e. cannot represent an actual component model). Also, when a new component

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 14 RTO-TR-AVT-036

model is needed, or needs a small adaptation (for example a ‘customized compressor model’), a child class
may be derived and only the new code needs to be implemented. Any type of custom component model
may be derived and stored in additional ‘custom component libraries’ to be provided to specific GSP users
in the form of separate Dynamically Linked Libraries (DLL’s, or if intended for use only with Delphi
applications, BPL files). This has the advantage that GSP’s core code for the standard components does
not need adaptation.

In GSP, similar inheritance structures are used for modeling of secondary airflows, control sub-systems
models, etc. Component models for external systems interfacing with the gas turbine can be developed for
simulation of gas turbine integrated thermal systems. Examples are:

• Turbine Powered Simulator engine models. These are compressed air driven wind tunnel engine
models, including a pressure vessel and control valve;

• Models of Power Generating Systems with a bio-mass gasifier delivering low calorific value fuel
to a gas turbine;

• Aircraft Environmental Control Systems, employing turbo-machinery and heat exchangers;

• STOVL propulsion systems including lift fans or swiveling vertical thrust nozzles; and

• Systems with heat exchangers for extra steam cycles, heating systems, etc.

Naturally, a separate mechanism is needed to link component models into a whole engine model. GSP
employs dynamic instantiation and linking of component models to set up models of any gas turbine
configuration. Also multiple gas turbine installations, such as two interconnected helicopter engines,
can be simulated simultaneously. Figure 5.9 shows the model level architecture. To the user a whole
engine model is represented by a window such as shown in Figure 5.7.

Figure 5.9: Engine System Model Architecture.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 15

GSP’s graphical user interface fully reflects the object-oriented architecture for the component models.
It is also fully event driven, which allows the user to perform his tasks in any order.

A gas turbine system model is represented by a window that incorporates general model I/O features
(such as ambient/flight conditions, options, etc.) and a work bench sheet on which a number of component
icons are arranged to form a valid gas turbine configuration. Another example of a typical representation is
shown in Figure 5.10. A component icon represents a gas turbine component model including the
component user interface. Double-clicking the icon opens the component user interface: see Figure 5.11
for an example of a simple compressor component window. Figure 5.12 shows component performance
results in a map window, also accessed through the component window. The drag and drop interface allows
the copying of multiple instances of components between models, enabling the user to build his own specific
component repositories and save them as a generic model.

Figure 5.10: GSP Model Window with Recuperated Turbo-Shaft Engine Model.

Figure 5.11: Compressor Component Window.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 16 RTO-TR-AVT-036

Figure 5.12: Component Performance Output Results.

When deriving a new component from an existing one (not a user but rather a developer task), the user-
interface is also inherited and often only a few elements need to be added to the component interface
window. See Figure 5.13 for the interface architecture.

Figure 5.13: GSP Interface Architecture.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 17

5.5 TERTS (TURBINE ENGINE REAL TIME SIMULATOR)

TERTS [5.7] is an example of a real-time 0-D component stacking model. TERTS is built with MATLAB
Simulink, and offers a component-based predefined configuration. In order to comply with the
requirement of limited computation time per time step (for real-time simulation), the ‘one iteration per
time step’ method was applied, which offers good accuracy with high update frequencies (time steps
smaller than 0.02 s). Figure 5.14 displays the TERTS thermodynamic engine model level.

MixerLP TurbineGasgeneratorFan

errors

Old States

NGc_

State_Change

Duct

3
mf

States

4
Ps0

S_NG

 S_N1

 S_MLcpr

 S_PRgt

 S_m2c

 S_MLfan

 S_PRlp

 S_BR
State

Extractor

*
FDrag

O U T P U T Output

7 h45t

10
m2

out

Afterburner

7
mfAB

11 T41

8 EGT/FTIT

6 Ts_throat

9 NGc

12
S_N113

S_ML 14
S_PRgt15

S_m2c 16
S_mfanc17

S_PRlp 18
S_BR

Fdrag
To Workspace4

1
S_NG

6
ENP

nozzle pos.

Nozzle

2 p41t
(Pb)

Mux

Mux3
f(u)

Pt6/Pt2

21 FAR6
20 m6

5 PRnozzle

4
FG

22
Fdrag

3
EPR

1
Pt0

5
Vt [m/s]

Vtchk
To Workspace3

2
Tt0

Inlet

8
mach

19
dS_N1/dt

23
TQreact

24
AngMtum

Figure 5.14: NLR TERTS Thermodynamic Engine-Model, with Sub-Levels.

TERTS uses MATLAB Simulink. This is a multiple-level architecture with which a large number of
subsequent sub-model levels can be specified. More than 10 levels are used in TERTS, and the
compressor for example includes a number of sub-models for the various thermodynamic processes and
also reading of the maps. With the Simulink interface, the user easily gets into sub-level detail by clicking
a sub-component model icon. Simulink’s component-oriented architecture has the object-oriented
encapsulation feature but lacks inheritance and polymorphism (see Section 5.4).

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 18 RTO-TR-AVT-036

5.6 SIMULATION MODELS FOR ENGINE DIAGNOSTICS
Models offering the possibility of use for gas turbine engine fault diagnosis have been developed by the
Diagnostics Group of the Lab of Thermal Turbo-machines and the National Technical University of
Athens [5.8, 5.9 and 5.10]. The TEACHES model has been built with VISUAL BASIC ™ programming
language for a building a shell and a Graphic User’s Interface (GUI), operating in a MS Windows 98
environment. An engine performance calculation module performs the key aero-thermodynamic
calculations. This is a dynamic link library (DLL) written in FORTRAN. Information is passed between
the Visual Basic shell and the performance calculation module whenever performance calculations are
requested, as shown schematically in Figure 5.15.

VISUAL BASIC SHELL
• Manage program

operation
• Manage Input Data
• Manage Output Data

Adaptive Engine

Model

(FORTRAN)

Operating point definition data

Measurement data

(Diagnostic Mode)

Outputs

Figure 5.15: The Structure of a Modeling Environment Offering the Possibility of Fault Diagnosis.

The FORTRAN code forms the core of the modeling system. It employs the Adaptive Modeling technique
(described in Chapter 2) to perform fault diagnosis. By appropriate selection of input data it can perform
either direct simulation of engine operation at any desired operating point (‘Simulation mode’) or a diagnosis
of the condition of the engine components, once a set of measurement data is available (‘Diagnostic mode’).

The GUI interface Figure 5.16, allows the user to choose between different modes of operation and to
perform various tasks with input and output information. The interactive main window is used to control
the most common actions and to get the most significant information from the calculations. Less common
functions are available via a menu system. The two modes of program operation – Simulation and
Diagnostic – are selected from this window.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 19

Figure 5.16: Main User Interface of TEACHES Package.

The architecture of the interface is shown in Figure 5.17. It is to be noticed that the role of different
sections of the interface is different for different mode of operation. Operating point data are always
inputs. They include ambient conditions and a set point variable chosen from a menu offering different
possibilities as shown in Figure 5.18. The values of measured quantities are outputs in the ‘Simulation’
mode, while they are inputs for the ‘Diagnostic’ mode, when measurement data are used to produce a
diagnosis. Component parameters are inputs when component malfunctions are simulated and outputs
when a diagnostic run has been performed with measured input data.

Figure 5.17: Interface Architecture Schematic.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 20 RTO-TR-AVT-036

Figure 5.18: The Operational Parameters Input Section of the Visual Interface.

The overall structure of this modeling package is characterized by modularity in three levels:

• The code for the GUI is modular, so different engines can be modeled by supplying a different
DLL.

• The code of the DLL is built by using individual subroutines for each type of component, so that
the engine layout can be easily modified.

• For a DLL built for a certain gas turbine configuration (single-shaft, twin-shaft, etc.), engine data
and component map data can be provided to represent different individual engines of this type.

5.6.1 Examples of Results

5.6.1.1 Examining the Effects of Component Malfunctions

Modifying the performance characteristics of the components simulates different faults. The engine
performance for these modified characteristics is then calculated. The deviations from nominal component
performance are introduced as percentages in the corresponding section of the main window, and using
scalars, multiplying the component performance-parameter effects map modifications. The modification
factors are explained in Chapter 4. For example, setting the value of modification factor f1 to a value
of 0.98 represents a reduction in pumping capacity of the compressor by 2%. The modified component
characteristics can be visualized, in comparison to the initial intact ones, as for example shown in
Figure 5.19.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 21

Figure 5.19: Output from a Compressor Model.

When such a calculation is performed in addition to all the cycle variables, ‘fault signatures’ are also
calculated and displayed. A picture of a fault signature in the form of measurement deviations from
reference values provided by the model is shown in Figure 5.20.

Figure 5.20: Examples of Graphic Information Related to Diagnostics.

5.6.2 Direct Component Condition Diagnosis
When a set of measurement data is available from an engine with a suspected fault, it is fed to the model
in ‘Diagnostic’ mode. The model then calculates the corresponding values of health indices (MF).
Changes in MF values indicate the occurrence of a fault. The pattern of change of MFs can then be
used to help identify the fault itself. A display of the model output for diagnostic application is shown in

(a) Fault Signature (b) component modification factors

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 22 RTO-TR-AVT-036

Figure 5.20. The results of this figure come from an engine with a turbine suffering a deterioration, which
led to a 3% reduction in swallowing capacity and 1% efficiency reduction.

5.7 NUMERICAL PROPULSION SYSTEM SIMULATION (NPSS)

5.7.1 Overview
The Numerical Propulsion System Simulation, NPSS, [5.11 and 5.12] is a concerted effort by NASA
Glenn Research Center, the aerospace industry and academia to develop an advanced engineering
environment – or integrated collection of software programs – for the analysis and design of aircraft
engines and, eventually, space transportation components1. Its purpose is to dramatically reduce the time,
effort and expense necessary to design and test jet engines. It accomplishes that by generating
sophisticated computer simulations of an aerospace object or system, thus permitting an engineer to “test”
various design options without having to conduct costly and time-consuming real-life tests. A schematic
of the NPSS concept is illustrated in Figure 5.21. The ultimate goal of NPSS is to create a “numerical test
cell” that enables engineers to create complete engine simulations overnight on cost-effective computing
platforms. Using NPSS, engine designers will be able to:

• Analyze different parts of the engine simultaneously;

• Perform different types of analysis simultaneously (e.g. aerodynamic and structural); and

• Perform analysis faster, better and cheaper.

NPSS
Work Breakdown Structure

• National Cycle Program
• Axisymmetric Engine
• 3-D Subsystems/System

Engineering
Applications

Simulation
Environment

High-performance
Affordable Computing

• Clustered Workstations
• High-Speed Networks
• Parallel System
• Software
• Code Parallelization

• 0-D Engine/
 1-D Inlet
• 0-D Core/3-D LP
 Subsystem
• 2-D Combustor/3-D
 Engine

• Coupled Aero-Thermal-
 Structural (CATS)
• CFD/Controls
• Spectrum
• VCE
• MSAT

Computing and Interdisciplinary Systems Office
Lewis Research Center

• Modular Architecture
 - National Cycle Program
• Toolkits
 - SSCD
 - CM Manager
• Library/Utilities
 - NURBS
 - PEV
 - Data Standards

Figure 5.21: Overview of NPSS.

1 Parts of this section were copied from (see for further information): http://hpcc.grc.nasa.gov/npssintro.shtml.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 23

All of which is consistent with the CAS goal of accelerating the development and availability of high-
performance computing hardware and software to the United States aerospace community.

NPSS attempts to create a propulsion system simulation system covering a wide range of disciplines and
levels of fidelity. It is unlikely that a simulation including all disciplines and all components at the highest
level of fidelity will be possible (or even desired) in the near future. However, the potential to use higher
fidelity representations for key portions of a propulsion simulation, ‘Zooming’, for better accuracy or
extended insight into important behavior is of interest and well within current computational capabilities.
Zooming has been limited to technology demonstration efforts because of the difficulty and complexity in
creating these simulations in a consistent manner, while still providing effective access to the required
high performance computing capability. Reducing the complexity of multi-disciplinary analysis at varying
levels of fidelity is being addressed by creating standard APIs. Computing availability is being addressed
by allowing for distributed computing using CORBA.

5.7.2 NPSS Architecture and Object-Oriented Software Design
The underlying framework of NPSS – the architecture that links together the different computer codes –
is already in use. Several aerospace companies and NASA Glenn Research Center, using an object-
oriented approach to software design, built the framework for NPSS.

Object-oriented software design is a way of organizing data and procedures in a computer program into
manageable packages called “objects.” The object-oriented approach was chosen for NPSS because it
allows new codes to be introduced into the system quickly and easily. In other words, if a company
develops a powerful new code for one engine component – such as a compressor, combustor, turbine or
shaft - the object-oriented framework permits use of that code with all the other codes in NPSS – even if
that new code runs on a different type of computer.

NPSS provides another important capability to engine developers called zooming. As in photography,
zooming or magnifying allows an engine developer to analyze the performance of an engine component
by zooming in on that component to evaluate its performance in great detail. This is a major step forward
because engineers can now analyze engine components within a system (the entire engine) rather than in
isolation.

5.7.3 NPSS and Conceptual Design
NPSS is advancing the process of conceptual design – the initial stage of engine development when
engineers are making educated guesses about an engine’s performance, size, and weight. During the
conceptual design phase, engine developers provide a computer code called a cycle deck to airplane
developers, who have their own computer models. Since the engine and aircraft manufacturers make many
changes during the design phase, they must be able to exchange information and design changes quickly
and accurately in order to ensure that the final product performs effectively and safely. NASA and
industry are developing a common model that engine and airframe companies will use to collaborate on
the design of engines. The common model facilitates collaboration by establishing a standard set of data
that all partners share, understand and can readily implement in their individual design tools.

NPSS, although still being improved, is being used by aircraft and aircraft engine developers to create
better cycle deck codes. For example, it has been used to model the turbofan engine for a supersonic
passenger aircraft. And, in the future, NPSS will be applied to the extremely difficult task of simulating jet
engine combustion systems (i.e. the part of the engine that bums the fuel to produce high-energy air for
turning the engine’s turbine).

NASA, the Department of Defense, the Department of Energy, and industry are developing the National
Combustion Code (NCC) – a system that integrates the entire set of computer codes needed for the design

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 24 RTO-TR-AVT-036

and analysis of combustion systems. The National Combustion Code will be used in the design of current
engine technology as well as in future combustion technologies that will yield cleaner, more powerful
engines.

5.7.4 Standards and Zooming
As part of the NPSS system development, standard application interfaces for engine components have
been developed, as well as standards for links between the components at varying levels of fidelity. Within
the component are standard sub-element representations that can capture different methods for representing
portions of the component behavior. A key benefit of this object-oriented approach is that components and
component sub-elements can be developed, tested and shared with minimal coordination between users
and minimal limitations in user applications. The functional behaviors of low and high fidelity components
are the same. The complexity of the conversion of boundary conditions among different levels of fidelity
and component modeling issues are available to the system modeler, but do not require the same level of
expertise from the user. At the system level, these standards are captured in the SAE ARP4868 standard
[5.13] developed by the SAE S-15 committee.

5.7.5 Examples
Shown here is output from a software tool called ENG10, [5.14], (see Figure 5.22) which was developed
through the Numerical Propulsion System Simulation (NPSS) Project at NASA Glenn Research Center.
The ENG10 code is used to analyze the airflow through modern jet engines. One of the strengths of this
code is its ability to use the results of studies of individual components of an engine to model how the
overall engine system behaves and how various components influence each other.

Figure 5.22: Output from ENG10 Modeling Tool.

Some codes developed through NPSS analyze individual engine components. Shown in Figure 5.23 is a
simulation of the Energy Efficient Engine’s combustor using ALLSPD-3D [5.15 and 5.16], a Glenn –
developed combustor code. Component design teams use simulation codes such as ALLSPD-3D to
simulate and design engine components in detail.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 25

Figure 5.23: ALLSPD Simulation of a Combustor.

5.8 OTHER 0-D MODELING SYSTEMS

There are a number of proprietary or limited distribution programs used in the industry:

• SOAPP (P&W);

• CWS/ICS (GE);

• GECAT/NEPP (SRS Technologies) [5.17];

• TERMAP (Allison/USAF) [5.18];

• RRAP (Rolls Royce);

• JANUS (Snecma);

• ON-X/OFF-X (Jack Mattingly) [5.19];

• PYTHIA (Cranfield) [5.20];

• TURBOMATCH (Cranfield) [5.21];

• FAST (Honeywell Allied Signal);

• TESS (Univ. Toledo) [5.22]; and

• ATEST (AEDC) [5.23].

MOPS and TESS are similar to GSP in that they provide a configurable modeling system with a suite of
components. These systems typically include other features to allow productive use in the engine design
and analysis process. Examples are communication to test data systems, provisions for matching models to
test data and configuration management for the various component and engine models for multiple users
of multiple engine models. NPSS (see Section 5.7) is also a configurable modeling system for both 0-D
and multi-dimensional modeling.

5.9 REFERENCES

[5.1] SAE Standard, AS681: Gas Turbine Engine Steady-State and Transient Performance Presentation
for Digital Computer Programs, March 1999.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 26 RTO-TR-AVT-036

[5.2] SAE Standard, AS755: Aircraft Propulsion System Performance Station Designation and
Nomenclature, August 2004.

[5.3] Kurzke, J., “Calculation of Installation Effects within Performance Computer Programs”, AGARD-
LS-183, 1992.

[5.4 Jeschke, P., Kurzke, J., Schaber, R. and Riegler, C., “Preliminary Gas Turbine Design Using the
Multidisciplinary Design System MOPEDS”, Journal of Engineering for Gas Turbine and Power,
Vol. 126, April 2004, pp. 258-264.

[5.5] Kurzke, J., “Gas Turbine Performance Simulation with GasTurb”, www.gasturb.de/.

[5.6] Visser, W.P.J. and Broomhead, M.J., “GSP, A Generic Object-Oriented Gas Turbine Simulation
Environment”, ASME Paper # 2000-GT-0002, ASME Conference Munich, June 2000.

[5.7] Visser, W.P.J. et al., “TERTS: A Generic Real-Time Gas Turbine Simulation Environment”,
ASME Paper # 2001-GT-446, June 2001.

[5.8] Mathioudakis, K., Stamatis, A., Tsalavoutas, A. and Aretakis, N., “Performance Analysis of
Industrial Gas Turbines for Engine Condition Monitoring”, Presented at: First International
Conference on Engineering Thermophysics”, Beijing, China, August 18-21, 1999 (ICET ‘99).

[5.9] Mathioudakis, K., Stamatis, A., Tsalavoutas, A. and Aretakis N., “Instructing the Principles of Gas
Turbine Performance Monitoring and Diagnostics by Means of Interactive Computer Models”,
Paper # 2000-GT-0584, May 2000.

[5.10] Tsalavoutas, A., Aretakis, N., Stamatis, A. and Mathioudakis, K., “Combining Advanced Data
Analysis Methods for the Constitution of an Integrated Gas Turbine Condition Monitoring as
Diagnostic System”, Paper # 2000-GT-0034, May 2000.

[5.11] Claus, R.W. et al., “Multidisciplinary Propulsion Simulation Using NPSS”, AIAA-92-4709-CP.

[5.12] Evans, A.L. et al., “An Integrated Computed and Interdisciplinary Systems Approach to
Aeropropulsion Simulation”, ASME Paper # 97-GT-303.

[5.13] SAE Standard, ARP4868: Application Programming Interface Requirements for the Presentation
of Gas Turbine Engine Performance on Digital Computers, October 2001.

[5.14] Stewart, M., “Axisymmetric Aerodynamic Numerical Analysis of a Turbofan Engine”, ASME
Paper # 95-GT-338.

[5.15] Chen, K.H. et al., “Three-Dimensional Coupled Implicit Methods for Spray Combustion at All
Speeds”, AIAA-94-3047, June 1994.

[5.16] Fricker, D.M., “Parallel ALLSPD-3D: Speeding Up Combustor Analysis via Parallel Processing”,
AIAA-97-3295, July 1997.

[5.17] “Graphical Engine Cycle Analysis Tool, GECAT”, SRS Technologies, www.stg.srs.com.

[5.18] “Innovative Visual Modeling Environment for Turbine Engine Reverse Modeling Aid Program
(TERMAP)”, January 2000, SRS Technologies, www.stg.srs.com.

http://www.gasturb.de/
http://www.grc.nasa.gov/WWW/IFMD/allspd/AIAA-97-3295/AIAA-97-3295.html
http://www.stg.srs.com/
http://www.stg.srs.com/

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

RTO-TR-AVT-036 5 - 27

[5.19] Mattingly, J.D., “Elements of Gas Turbine Propulsion”, 1996, McGraw-Hill.

[5.20] Pachidis, V., “Gas Turbine Simulation – PYTHIA Workshop Guide”, ASME/IGTI Aero Engine
Life Management Conference, London, March 2004.

[5.21] Palmer, J.R., “The TURBOMATCH Scheme for Aero/Industrial Gas Turbine Engine Design
Point/Off Design Performance Calculation” SME, Thermal Power Group, Cranfield University,
1990.

[5.22] Reed, J.A. and Afjeh, A.A., “Development of an Interactive Graphical Propulsion System
Simulator”, AIAA-94-3216, June 1994.

[5.23] Chappell, M.A. and McLaughlin, P.W., “Approach to Modeling Continuous Turbine Engine
Operation from Startup to Shutdown”, Journal of Propulsion and Power, Vol. 9, No. 3, May-June
1993, pp. 466-471.

EXAMPLES OF 0-D NUMERICAL SIMULATIONS

5 - 28 RTO-TR-AVT-036

	Chapter 5 – EXAMPLES OF 0-D NUMERICAL SIMULATIONS
	INTRODUCTORY COMMENTS
	5.1 A FORTRAN-BASED MODELING SYSTEM
	5.1.1 Architecture
	5.1.2 Database
	5.1.3 Utilities
	5.1.4 Block Data
	5.1.5 User Interface
	5.1.6 Read Data
	5.1.7 Program Control
	5.1.8 Engine Routine
	5.1.9 Components
	5.1.10 Other Routines and Functions
	5.1.11 Output Control
	5.1.12 Future Developments

	5.2 MOPS (MODULAR PERFORMANCE SYNTHESIS PROGRAM) OR MOPEDS
	5.3 GasTurb
	5.4 THE GSP OBJECT-ORIENTED MODELING ENVIRONMENT
	5.5 TERTS (Turbine Engine Real Time Simulator)
	5.6 SIMULATION MODELS FOR ENGINE DIAGNOSTICS
	5.6.1 Examples of Results
	5.6.1.1 Examining the Effects of Component Malfunctions

	5.6.2 Direct Component Condition Diagnosis

	5.7 NUMERICAL PROPULSION SYSTEM SIMULATION (NPSS)
	5.7.1 Overview
	5.7.2 NPSS Architecture and Object-Oriented Software Design
	5.7.3 NPSS and Conceptual Design
	5.7.4 Standards and Zooming
	5.7.5 Examples

	5.8 OTHER 0-D MODELING SYSTEMS
	5.9 REFERENCES

