

RTO-TR-AVT-036 C - 1

Annex C – COMPUTER PLATFORMS

C.1 COMPUTER PLATFORMS

The computer platform is the combination of the hardware and software needed for gas turbine
performance calculations. The hardware is the actual computer; the operating system represents the
software required to use the hardware. A specific gas turbine simulation application is implemented on the
platform using application development software. Together, they form the development environment.

Many varieties of development environments exist for gas turbine simulation. A gas turbine model type
can be characterized by three needs:

• Application;

• Model fidelity; and

• Computing performance requirements.

The level of model fidelity directly depends on the type of simulation application (see Chapter 2 –
Applications). Application types include:

• R&D (competitive, for product development);

• Fundamental R&D (often performed at research institutions and universities);

• Cycle decks (both for testing and customer cycle decks);

• Real-time simulation (flight simulators);

• Maintenance/diagnostics (models used to enhance maintenance procedures and diagnostics);

• Probabilistic effects simulations (e.g. Monte-Carlo simulations); and

• Integrated simulations (engine simulations integrated into other models such as aircraft models).

Currently, 2-D and 3-D simulations often focus on component R&D applications while 0-D models usually
simulate the whole engine for a large variety of purposes such as a customer cycle deck. 0-D models also
include parametric, non-thermodynamic or non-component based models, which may be considered the
simpler 0-D models.

Model fidelity directly relates to required computer performance. Full 3-D Navier-Stokes simulations still
require special high performance hardware while 0-D models can now be run on PCs. Consequently,
computing performance requirements strongly relate to the computer platform.

C.1.1 Hardware
Four major hardware categories can be identified:

• High performance computers (including parallel computing);

• Mainframes;

• UNIX workstations; and

• PCs.

High performance computers are generally used for high-fidelity simulation for R&D purposes, such as
2-D and 3-D CFD. Use of 0-D or 1-D engine models for integration within a larger system simulation or

ANNEX C – COMPUTER PLATFORMS

C - 2 RTO-TR-AVT-036

for probabilistic analysis may also require high performance computers. High-fidelity CFD has become
indispensable for gas turbine R&D and can be regarded as heading the (fidelity) frontier of the modeling
spectrum. The most important limitation for high fidelity computing is available computing power, both in
terms of memory and processing speed. Mainframe computers are rapidly being replaced by other systems
such as PC and workstation networks, but are still used for running older applications such as 0-D (cycle
decks) and 1-D models. UNIX workstations are widely applied and used for medium fidelity simulation or
visualization and data processing of high-performance computing results.

PCs are rapidly increasing their share of the entire computing market. Due to rapid increase in computer
power, PCs are now able to run medium fidelity 0-D and 1-D models and to a limited extent (coarse grid)
even 3-D CFD simulations (e.g. FLUENT). An important issue at this end of the spectrum is the efficient
use and development of new gas turbine simulation applications for the operational field (e.g. maintenance
and diagnostics tools). Powerful PCs may well be considered ‘workstations’ now, since they can easily be
configured to match the conventional UNIX workstations in performance but then require disk space and
memory beyond that of a typical office PC, even with the fastest CPU. Networked UNIX workstations or
PCs can be used in parallel for some problems with properly configured software. In some circumstances
performance can equal or exceed that of a supercomputer. Figure C.1 presents the relation between model
fidelity, computer platform hardware and application.

NUMBER OF
DIMENSIONS

(time and space)

SUPER/HIGH
PERFORMANCE

COMPUTING

MAINFRAME or
NETWORKED

WORKSTATIONS
SINGLE UNIX

WORKSTATION
SINGLE

PC

0 Cycle decks.
Probabilistic.
Multi-disciplinary.

Cycle decks.
Maintenance or
Diagnostics.
Probabilistic.
Multi-disciplinary.

Cycle decks.
Maintenance or
Diagnostics.
Probabilistic.
Multi-disciplinary.

Cycle decks.
Maintenance or
Diagnostics.
Probabilistic.

1 Cycle decks.
Probabilistic.
Multi-disciplinary.

Cycle decks.
Real-time.

Cycle decks.
Real-time.

Cycle decks.
Real-time.

2 Cycle match CFD. Cycle match CFD. Cycle match CFD. Component CFD.
3 Cycle match CFD. Component CFD. Component CFD. none1
4 Component CFD. Component CFD. Component CFD. none1

Figure C.1: Model Fidelity and Computing Platforms (Status Year 2005).

C.1.2 Operating Systems
With the retirement of the old mainframe systems, the number of different operating systems is reduced.
In general it can be stated that there are two main streams: UNIX which is commonly used from
workstations up to higher performance systems and Windows (Windows 95/98, NT 4.0, 2000 and XP)
for the PC based systems. The need to perform simulations on legacy platforms (such as old mainframe
systems) can become a barrier and must be identified early on.

Windows NT is also available on a number of high-performance 64-bit systems like the DEC-Alpha,
providing a combination of high-computing power with the ability to use the customary PC office
software suites.

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 3

C.1.3 Development Environments
A large number of development environments exist, both for the UNIX and the Windows systems.
Traditionally these environments consisted of 3rd Generation Languages (3GL), the most widely used
being FORTRAN in the scientific world. Newer 3GL languages include C and the object-oriented
languages C++ and ADA. More modern are the 4th Generation Languages (4GL). Often these are wrapped
around a 3GL language in order to reduce developer effort when building (graphical) user interfaces.
Many 4GL tools automatically generate most of the user interface parts of the application. Examples are
Visual Basic®, Delphi®, C++Builder®, JBuilder® and Visual C++®. There are also a number of
development environments dedicated to simulation in general or sometimes even to gas turbine simulation
(i.e. generic gas turbine simulation tools). Examples are MATLAB Simulink® and MathCad®. Examples
of turbo-machinery CFD tools are CFX-TASCflow® with Turbogrid®, NUMECA® Fine/Turbo®.

FORTRAN is still the standard programming language for gas turbine simulation. If FORTRAN is used
without platform specific code (such as user interface shells), it can be compiled and run on most
platforms. This will be the dominant advantage of FORTRAN until alternative standards become widely
accepted. Chapter 5 lists a number of simulation systems including descriptions of the development
environments.

C.2 TRENDS AND NEW TECHNOLOGIES

The Internet and the PC have dominated computer related technological development since the nineties.
Both technologies require ‘low cost platforms’ which offer great potential for gas turbine simulation by
offering distributed computing, a good user interface, and high power, especially at the lower fidelity end
(i.e. operational use) of the spectrum.

High performance computing technology may not have as much public attention, but is also developing at
a rapid pace and offering ever more power for high fidelity computing.

With distributed parallel computing technology improving, PC and high performance computer technologies
may well merge into a single type of environment or platform. High-speed networks have made remote
distribution common in simulations and remote computing is becoming a reality.

C.2.1 Computing Power
Since the introduction of the digital computer, computing power has increased at a rapid rate,
see Figure C.2. Interesting to note is that the low cost PC is increasing its share of the entire spectrum,
while high performance computing is maintaining the top high-fidelity part of it.

ANNEX C – COMPUTER PLATFORMS

C - 4 RTO-TR-AVT-036

1980

FL
O

PS
Multi-stage CFD

NS CFD

Euler CFD
3/4-D

2-D

1-D

0-D

High performance computers

Workstations, UNIX

Single PC

Computer performance, platform & application

Distributed parallel computing

15
10

10

10

10

10

12

9

6

3

Figure C.2: Trends in Computing Power.

As a consequence, computer power has ceased to be the bottleneck for all but the high-fidelity CFD gas
turbine simulations. For all types of simulations, implementation effort, user interface including
visualization and code maintenance have become critical for successful and efficient use of the models.

For high fidelity CFD simulations a bottleneck remains in the available computer power, especially when
the time domain is added as an extra dimension for dynamic simulations. Simultaneous simulation at
high spatial resolution and high time domain resolution for instance remains limited as indicated by
Figure C.3.

1

10

100

0 50 100
temporal resolution [%]

sp
at

ia
l r

es
ol

ut
io

n
[%

]

1-D

2-D

3-D

Figure C.3: Spatial versus Temporal Resolution for a Given Computing Power.

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 5

For a given amount of computer execution time, a trade-off must be made, between temporal and spatial
resolution, depending on the purposes and the requirements of the simulation in terms of accuracy. When
allowing unlimited computation time, temporal resolution requirements are no longer a restriction and
spatial resolution becomes limited by available computer memory. For high-resolution simulations over
larger flow areas in engine components, computer memory is critical. With limited computing memory,
certain problems cannot be simulated at all while limited processing power only affects computation time
without making the simulation totally impossible.

Simultaneous high-fidelity simulations of multiple compressor stages or even multiple components
remains impossible without compromises in terms of assumptions or application of the zooming concept
(see Section C.2.7). Multi-disciplinary modeling as in the NPSS program [C.1 and C.2] also requires
compromises to compensate for limited computing power.

C.2.2 Computing Costs
In general it can be stated that the cost/benefit ratio of using simulations for various purposes is decreasing
rapidly. This becomes evident from Figure C.1 and the fact that the prices of state-of-the-art PC systems
have not risen over the years. 1-D whole-engine thermodynamic performance calculations and simulations
can be run at costs many times lower than a few decades ago. This is demonstrated by the emerging PC
applications for gas turbine simulation, which allow 0-D simulations at very low cost.

At the other end of the spectrum, the increasing power of high-performance computers offers new
opportunities to optimize aero-thermodynamic designs with high-fidelity CFD. Especially when using
distributed parallel computing using clustered low cost workstations or PCs this can be done at relatively
low costs. Many large gas turbine R&D programs focus on greater CFD detail at limited costs, which is
critical to gas turbine technology progress.

As a consequence, established simulation technologies and tools move to lower cost platforms, yet retain
their speed and fidelity. High-performance computer technology benefits from low cost technology in the
form of distributed parallel computing (see Section C.2.3) to satisfy the ever-increasing hunger for CFD
calculation power. While computing power remains critical for the high fidelity CFD challenges,
the established simulation technology basically needs improvements in order to make their use more
efficient (i.e. at lower costs). This means greater attention to user interface, code portability and
maintainability aspects is needed.

C.2.3 Parallel and Distributed Computing
Symmetric Multi-Processor (SMP) technology is becoming common in servers. This technology uses
several processors in a single computer, and offers the ability to run several tasks in parallel, under the
control of the operating system. These tasks are usually distributed at task or thread level. A thread is a
small piece of a program that is capable of performing a task that is largely independent of other threads.
To distribute processing at thread level requires design effort from the programmers. Whether using an
SMP computer will provide worthwhile gains in speed depends on the amount of data that is used, and the
amount of processing that is done to it. If the application is data bound and the CPU is not highly loaded,
any investment may be better spent on a faster disk. Similarly, a processor that could run at twice normal
speed would not carry the operating system overheads associated with SMP and 2 normal speed
processors.

To share tasks between multiple processors:

• The CPUs must have SMP enabling features.

• The operating system must support SMP.

ANNEX C – COMPUTER PLATFORMS

C - 6 RTO-TR-AVT-036

Most new CPU’s now are SMP enabled. Different OS versions support different numbers of processors.
Windows NT has crept up from 2 to about 8; Windows2000 supports up to 64 processors! Other versions
of Windows do not support SMP. Linux 2.2 theoretically supports up to 16 processors on Pentium,
UltraSparc, SparcServer, Alpha and PowerPC machines.

Parallel computing is a new development, in which tasks are shared between several processors. Ideally little
effort is required from the programmer, with the effort being provided by the operating system. This has
great potential for high-performance computing. Such techniques are used internally in many current
processors. Optimally, parallel computing could offer a way to increase computing performance in direct
proportion to the number of processors used. In reality, the performance gain is less due to the problem of
how to distribute the computing tasks over the processors.

Early applications that exploited parallel computing had to include the computing task distribution
themselves, requiring large efforts in software development. Now, the trend is to have the operating
system or development environment handle that task with solutions like the Parallel Virtual Machine
(PVM) [C.3]. Although becoming easier to use, this still requires that special actions be taken in defining
the problem to facilitate parallel operation. Other examples are: Windows PVM and Bulk Synchronous
Parallelism (BSP) ‘A new programming model for parallel processing simplifies writing programs and
promises code portability’ [C.4].

C.2.3.1 Multi-Threading

Multi-threading is basically time slicing by the OS. The OS must make these features available to
compilers. The language and compiler must in turn make the necessary commands available to the
programmer. All 32-bit Windows platforms support multi-threading. This was necessary, so that memory
could be shared between related processes, and to prevent Windows applications from being slowed down
(frozen) by a single very intensive process. Multi-threading enables the processor to start another process
parallel to the slow process and also to be able to interrupt or control the slow process from another thread.

Whether the OS makes SMP available between applications and also between threads within an application,
is OS dependent.

With web servers, Windows based systems are typically thread based, usually via reference counted DLLs
(ISAPI, NSAPI), while Unix systems spawn new processes (CGI) that typically return data via files.
The target platform therefore affects the architecture of a new application, and the way in which efficient
code is ported between platforms. This means that multi-threading gas turbine simulation applications will
be difficult to port to other platforms.

All modern programming languages have features to use parallel computing and the modern development
environments like Delphi come with tools to facilitate multi-processor and parallel computing using multi-
threading. It is interesting to note that recent computing performance records have been set with parallel
computers using large numbers of cheap processors like the Intel 386.

Parallel computing is often applied in super-computers and high-performance workstations operating
multiple processors. A new trend is to apply parallel computing to multiple computers that are
interconnected over a network. This distributed parallel computing requires special software controlling
the distribution of different computing tasks in a simulation.

It is expected that eventually software will become available to control parallel distributed computing
using a large number of ordinary network environment PCs. This would allow simulations, which could
traditionally only be run on super-computers, to run at a fraction of the current cost. This is already being
done with networked UNIX workstations.

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 7

A critical new technology for distributed computing is object orientation (see Section C.2.5). Object
orientation offers modularity and common interface mechanisms required for distributed computing. Each
computer in a network is executing the simulation of an ‘object’ as part of the entire simulation session
across the network.

Most distributed computing has been limited to the same type of processor and operating system.
Computers networked over the Internet (or an Intranet) can be used to perform a distributed computation
task with Sun’s JAVA technology and the CORBA (Common Object Request Broker Architecture)
technology. The JAVA gas turbine simulator [C.5 and C.6] is an example of this new trend. Microsoft
Windows uses a similar technology called variously ActiveX or DCOM (Distributed Component Object
Model).

An example of a distributed-parallel computing project is the Visual Computing Environment (VCE)
project at NASA Glenn Research Center [C.1]. One of VCE’s objectives is ‘…to develop a visual
computing environment for controlling the execution of individual simulation codes that are running in
parallel and are distributed on heterogeneous host machines in a networked environment...’. VCE was
designed to provide a distributed, object-oriented environment including a parallel virtual machine (PVM)
for distributed processing. Users can interactively select and couple any set of codes that have been
modified to run in a parallel-distributed fashion on a cluster of heterogeneous workstations.

C.2.3.2 Distributed Computing and CORBA

Common Object Request Brokering Architecture (CORBA) is a standard for cross-platform and cross-
network communication. It uses an Object Request Broker (ORB) that resides on different computers
(either as part a web browser, a part of other analysis software or as an independent server application).
Once an application is registered with the ORB, any other CORBA based application with appropriate
permissions and access can utilize the services available from that application that have been registered
with the ORB. The DCOM standards for MS-Windows applications provide a similar functionality for
applications on MS-Windows computers and networks. A number of CORBA-DCOM interface packages
have been developed. Most are focused on facilitating CORBA based systems access to MS-Windows
DCOM applications.

In this way, simulations or portions of the simulation can be used and implemented in a way that is
somewhat independent of the local computing infrastructure. A user of a model at one location can easily
and transparently point to a model on a different computer platform and network. Even components within
an engine simulation may reside on different computers on different networks. As use of web
environments and data management systems grow in the future, the distinction of where (or even if)
a simulation is performed become less important to the user. If the requested simulation data is generated
and is returned in the desired form and location, then whether the simulation was run on a local computer,
a remote computer or pulled from previous results stored in a database can be a transparent detail to the
end user.

The main advantages of CORBA are that it is slightly easier to use than DCOM, and works on all platforms,
whereas DCOM works only on Windows platforms. However, DCOM is provided free by Microsoft and
requires no additional licenses for distribution, while CORBA ‘broker’ software must be purchased under
license from a variety of suppliers.

C.2.4 Interfaces

C.2.4.1 User Interfaces

Most modern computer applications have replaced the command line interface with the graphical user
interface (GUI). This offers significant benefits in terms of user friendliness. The older gas turbine modeling

ANNEX C – COMPUTER PLATFORMS

C - 8 RTO-TR-AVT-036

environments, especially the 3GL based ones such as FORTRAN, still use the command line interface.
Many of them have been updated and wrapped inside 4GL GUI structures.

To specify input-data for complex models, sophisticated user interfaces are required to prevent
unacceptable time-consuming data-entry tasks. Across the spectrum of modeling platforms, attempts are
made to accomplish this with advanced GUI’s. As an example, component maps for 0-D simulation are
usually presented to the program in tabular format. To use the tabular format for user data entry
(for specification of new or modified maps) is very time consuming and therefore graphical tools are used
to have the user edit the data using the graphical map representation to actually ‘draw’ the map. SmoothC
and SmoothT [C.7] are examples of stand-alone Windows applications able to do that task.

With the increase in computing power, the size and detail of the results increases drastically. Graphical
visualization and sometimes animation tools are required for their analysis, such as the VCE [C.1] for
example.

As a result the user-interface issue tends to become separated from the modeling issue. The modularization
of the simulation environments reflects this trend also. In programs like NPSS, sub-programs are defined to
address user-interface issues such as visualization of CFD results.

Needs of the expert user or the user with specific highly repetitive tasks can conflict with the needs of the
low-end user who needs easy access without being confused by the features and options which aren’t
relevant to simpler applications. Some GUIs (such as GasTurb, see Section 5.3, and GSP see Section 5.4)
are designed so those more advanced options are hidden or separated from the low-end user options.

C.2.4.2 External Interfaces

Interfaces with data acquisition systems and measurement databases are often platform specific.
The advantages of having these systems on the same platform as the simulation system are often the
reason for maintaining legacy systems.

C.2.4.3 Event Driven User Interfaces

Traditional coding techniques are known as procedural because when a program is started, it runs through
a predetermined sequence. At certain points the program may stop and wait for user input and then
proceed. A more modern Graphical User Interface (GUI) typically looks like a Windows or Apple screen.
It is usually event driven which means that code can be executed in any order, depending for example on
the order in which the user operates (clicks) buttons or other visual controls. When first introduced,
this created additional problems for the programmer, who had to take into account all of the ways in which
the user may wish to work. Nowadays, few programmers would welcome a return to the legacy thought
patterns, and most users prefer the clarity of function and ease of use of a GUI.

C.2.5 Object Orientation
Object orientation (OO) is an approach in software development that was defined during the seventies.
Before this, the program design was entirely up to the programmer, and the relationship between data and
the procedures that operated on it could be unnecessarily complicated and inconsistent. For instance
several procedures could operate on the same data, causing a problem if one procedure was changed and
another not. The basic idea of object-oriented design (OOD) is encapsulation. This means that everything
is described as an object, and that every object has methods, properties and data. For illustration, an object
called airplane might have methods called take-off, fly and land, properties called all-up-weight, number-
of-engines and maximum-number-of-passengers, and data called elapsed-flight-time, number-of-
passengers and current-speed. The key idea is that only the methods contained within the object can

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 9

change the properties and data, thus ensuring integrity. Depending on the programming language, objects
may be known as types or classes. Two additional principles of object orientation are:

Inheritance, which means that specific types of airplane may be defined by changing the properties of the
generic airplane object, and by adding new or subtracting existing methods, properties and data. In some
languages an object may inherit from more than one parent.

Polymorphism, which means that different methods may have the same name, but operate differently
depending on the context. For example take-off could apply to the start of flight or the removal of
equipment.

Inheritance and polymorphism offer significant extra benefits in terms of software design but are not fully
included in some development environments. Although OOD promised many benefits in terms of code
development effort and maintainability the OOD approach was widely adopted only during the nineties.
One of the reasons was that the requirement for software developer skills was underestimated.
Most popular object-oriented programming languages are traditional languages extended with object-
oriented features like C++ and OOPascal. ADA is an object-oriented language widely used by the US
military, but does not include all OOD features (such as inheritance and polymorphism).

Especially in 4GL languages, OOD is commonly applied for GUI development and OO code is generated
automatically.

It is up to the developer to decide the extent to which the actual functional (in this case simulation) code
will be object-oriented and event driven. For gas turbine simulation, there is great potential in object
orientation since in many cases the simulated process can be divided into objects directly. For example, in
a non-dimensional whole-engine simulation, engine components such as compressors, turbines, control
systems, etc. can easily be defined (encapsulated) as objects. With the OOD principles of inheritance and
polymorphism, code development effort, reusability, maintainability and flexibility can be significantly
enhanced. An example is the Visual Computing Environment VCE [C.1]. See Section 5.4 or 5.7 for an
example of an OO gas turbine modeling architecture.

C.2.6 PC Technology
Since the eighties, PC technology has drastically changed the IT world. With its continuing and rapid
increase in performance the PC is increasing its share in the overall computer market. With the increasing
need for computing power for gas turbine simulation, this development offers great potential. Also the PC
is becoming the platform on which most efforts to improve development and user environments are
focused. This means that all gas-turbine-simulation applications except the high-fidelity simulations
requiring high-performance computers will probably be most efficiently developed on PC platforms.
If distributed-parallel computing technology becomes mature for networked PCs (see Section C.2.3)
the high-performance simulation jobs may also benefit from PC technology.

The major corporate operating system used on PCs is Windows (W95/98/NT4.0/2000/XP). An interesting
development is the use of UNIX on PCs such as SCO-UNIX and Linux, the Free Software Foundation
open UNIX clone.

C.2.7 Zooming
The ‘Zooming’ concept allows high-fidelity simulation of local phenomena of interest in a gas turbine,
together with lower fidelity simulation of the rest of the engine system. This approach is necessary to
reduce computing power, development time and complexity where higher fidelity analysis is not required.
High-fidelity CFD simulation of the aero-thermodynamic processes throughout the entire engine would

ANNEX C – COMPUTER PLATFORMS

C - 10 RTO-TR-AVT-036

require computing power far beyond what is feasible. With the zooming concept, detailed CFD simulation
of flow around specific compressor blades, for example, can be performed while the rest of the engine is
simulated with lower detail.

An example of the application of the zooming concept is the NPSS program, described in Section 5.7.

C.2.8 Development Environments
There are trends towards using new developments like 4GL languages and C++ in the global IT world.
The scientific world still generally considers FORTRAN the standard, basically due to the lack of a new
clear standard for more modern environments. Only the 3rd generation (3GL) languages C, C++ and ADA
seem to be able to receive confidence enough to be adopted by some organizations as a standard for gas
turbine simulation. Even these can become a problem since they expose low-end computer users to details
beyond their level of interest.

On the lower fidelity end of the spectrum with PC simulations and applications, for engine operators and
maintenance (e.g. diagnostic tools), new 4GL tools are applied. In the Architectures section, C.2.9,
two examples are given of 0-D modeling environments using the Delphi 4GL tool based on Object Pascal.
C++Builder is another Borland product that uses the same back end compiler as Delphi. This also runs on
AS400 and Windows platforms. Linux (Unix) compatibility was launched in June 2001 with the Kylix
product. Cross-platform independence depends on programmers not using platform specific Application
Programming Interface calls in the code that they write. A graphical library called CLX (pronounced
‘clicks’) has been made available for both Windows and Linux to allow this. Other 4GL tools that could
be used for 0-D modeling are Microsoft Visual Basic and Visual C++, although Visual Basic is not an
object-oriented language. At the time of writing Microsoft have started to introduce a new language called
C# (C Sharp), which is designed to compete with Java, but only to run on WinTel platforms.

With the large amounts of existing and proven FORTRAN code, 4GL environments based on modern
languages are often applied to encapsulate FORTRAN sub-routines with a modern front end.

Generic simulation tools like MATLAB Simulink and MatrixX have become popular for 0-D modeling
for some types of performance analysis (e.g. real-time modeling and control system design). An important
advantage of these tools is that they usually employ ‘auto-solvers’, hiding the details of numerical
methods. The user only needs to specify the required accuracy. However, under some circumstances auto-
solvers may use inappropriate methods that produce instability due to rounding and other computational
errors and solvers specifically developed for gas turbine simulation may give better results by applying
plausibility checks.

In Section 5.5 an example is given of a Simulink real-time thermodynamic 0-D model. The figure only
shows the whole engine model level and hides the top level including the control system, and many sub-
levels as well as.

C.2.9 Architectures
The gas turbine model architecture represents the way the model is built up of sub-models, components,
finite elements, etc. Several types exist; ranging from non-component based parametric models where no gas
turbine components can be identified, to high-fidelity CFD models of flows in particular sub-components
like compressor blades. These may include large numbers of finite elements.

The model architecture is important both to the model developer and the model user.

For the developer, for example, a modular approach may be adopted for 0-D and 1-D models with sub-
modules representing typical components like compressors and turbines. Generic sub-modules may be

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 11

developed using object orientation offering significant benefits in terms of software development and
maintenance effort. This approach may also be used when using generic simulation tools like MATLAB-
Simulink.

In Chapter 5 the architectures of some simulation environments are described.

C.2.10 Configuration Management

Management of gas turbine model software and data requires specific attention, especially when large
numbers of different model versions are involved. Also when the number of people involved with using or
developing a model increases, configuration management becomes increasingly important. Often special
tasks need to be defined in order to maintain integrity of the model configurations. These tasks may well
be performed using special software tools.

Configuration and system management are general information technology issues and detailed information
is therefore considered beyond the scope of this report.

C.2.11 Windows versus UNIX

Currently, there is fierce competition between the UNIX and Windows operating systems. UNIX systems
originate from the expensive high end and lack tight standards. Windows (Microsoft) offers solutions at
lower costs for PCs and a number of other hardware systems, and currently is increasing its market share
at the cost of UNIX. Windows focuses on user friendliness for the consumer market and consequently
generates enormous (financial) momentum for further development.

Although Windows 95/98 offers significant potential for simple (0-D) gas turbine simulation, the more
powerful Windows NT4.0 (or Windows2000) is the environment to be compared with UNIX. Currently,
Windows NT and UNIX have no significant differences in performance for single workstation applications.

UNIX still has advantages when sharing data among many users (for large user-base engineering
applications) and security related issues are important. It is also considered slightly superior in terms of
stability. It has already been noted that UNIX is the platform most widely used for parallel computing, and
with clustered workstations.

Windows has advantages in user friendliness, commonality with the common desktop PC environment
and low (system maintenance and purchase) cost when used in simple networked configurations. For the
future, the expectation is that Windows will rapidly (within a few years) fix the remaining drawbacks
when compared to UNIX. Then, parallel computing with clustered Windows workstations, which already
has been demonstrated experimentally, may well become reality.

The unknown factor is the influence that Linux, the UNIX clone, may have. Competition against
Microsoft is fierce, and Corel have launched an easy to install and use version of Linux, together with a
complete office software suite. During the writing and compilation of this document, Linux achieved as
good a GUI interface as Windows, and Redhat and Suse also launched easy graphical installation
procedures for Linux. Because of the inherent client/server design of the graphical sub-systems in UNIX
like computers they can easily run applications on one computer, and view the graphical results on
another. The binding of the graphical subsystems in Windows to the OS kernel provides faster ‘in PC’
operation but brings severe penalties for ‘between platform’ operations. Web style client/server
applications do not completely overcome these limitations.

ANNEX C – COMPUTER PLATFORMS

C - 12 RTO-TR-AVT-036

C.3 CHALLENGES

C.3.1 General
In general it can be stated that with the rapid increase in available computing power and high bandwidth
networks at low cost, the challenge is to efficiently use that power for gas turbine simulation. The growth
rate of the PC’s performance/cost ratio indicates there are significant opportunities. Moore’s Law, reported
in 1965 predicted a doubling in the number of elements on a chip every 18 months. This was when the
largest chip contained 64 elements. From 1970 to 1990 Intel chips doubled their complexity every 2 years.
Since that time the doubling period for Intel has become 2.5 years (ref http://www.physics/udel/edu/
wwwusers/watson/scen103/intel.html), and 28 million elements are contained in a Pentium 3 cpu.
To benefit from these opportunities, new technologies for (gas turbine) simulation software development
and user-interfaces software maintenance and new standards must be developed.

C.3.2 Reducing Development Effort
Closely related to maintainability is the aspect of development effort. With increasing complexity,
advanced development environments are needed for automating many tasks previously performed with
line-by-line coding. This implies distribution of software development tasks, e.g. 4GL tools to develop GUI
and general software structure. Ideally, the line-by-line coding should be limited to the implementation of
the actual equations being used in the model, but this will not easily be accomplished. With the hand
written code being reduced to the actual equations, advanced development environments should also
enhance maintainability. However, this may be at the cost of code efficiency. This is illustrated by the fact
that some of the current 4GL systems, with automated code generation, carry significant ‘Safe practice’
coding overheads that are simply irrelevant to many applications.

Object-oriented technology (see Section C.2.5) offers reduction in development efforts with the
inheritance principle. This has the potential to allow the engineer to quickly do tasks that are currently
limited to Information Technology professionals or methodology experts.

C.3.3 Generic Tools
An approach to reduce gas turbine model development effort is to use generic gas turbine or turbo-
machinery specific tools. For the 0-D models several tools already exist for modeling performance of any
kind of gas turbine) (see Chapter 5). Also specific simulation tools like MATLAB Simulink may be
applied for certain simulation tasks (see Section 5.5).

For the entire spectrum, more attention can be expected to more intensive use of existing generic tools
instead of redeveloping code repeatedly. This may also be in the form of reusing generic objects in OO
environments.

C.3.4 Standardization
Standards for gas turbine modeling code and interfaces are critical for large, comprehensive multi-
disciplinary models, created by large numbers of developers. Portability is also enhanced when standards
for development environments, languages, etc. are observed. Current standards for gas turbine simulation
are SAE Aerospace Recommended Practice (ARP) 755 and 681 [C.8 and C.9]. These are based on shared
FORTRAN common blocks. These lowest common denominator standards severely limit simulation
options for future simulation development. A new ARP recognizing the needs of modern computer
systems, development environment and providing the option for an Application Programming Interface
(API) type interface is being developed as part of ARP 4868 (Draft) limitations.

http://www.physics/udel/edu/wwwusers/watson/scen103/intel.html
http://www.physics/udel/edu/wwwusers/watson/scen103/intel.html

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 13

Standards are indispensable to interface gas turbine models with other models (e.g. aircraft system
models) and to benefit from modern development environments, such as CORBA and DCOM
(see Section C.2.3). These will reduce development efforts, increase maintainability and improve user
interfaces. Without them the R&D gas turbine world will remain committed to FORTRAN, at least for
implementation of the fundamental algorithms. As has happened before, the market will probably define
the new standard. So for now it seems the technical community will have to wait and see what happens.

MATLAB Simulink and similar environments are becoming common for lower fidelity models, non-
component models, real-time models and even simplified 0-D models. For the higher fidelity models, new
standards may become available to wrap interfaces and objects around existing FORTRAN codes in order
to maintain backward compatibility. New standards for modern OO languages may then be used for
developing new codes.

So far, the lack of standards and legacy system compatibility needs have caused most model makers and
engine manufacturers to hesitate to move from FORTRAN to another modern development environment.
The development of new standards and the gradual disappearance of these legacy systems are causing this
change to begin.

C.3.5 User Interfaces
In general, the different tasks involved in developing and using engine performance models become
dispersed over a large variety of applications. When using engine-modeling tools in the operational area,
interface aspects are very important. For example, an engine diagnostic tool based on an engine
performance model must have a good user-interface, dedicated to a maintenance engineer instead of a
research engineer. Often the engine model is isolated from the user interface so that it can be tailored to
specific tasks such as trending, testing and data visualization.

C.3.6 Visualization
Visualization, both static and animated graphical representations, will become more and more important
for the presentation of gas turbine simulation results, especially for high fidelity CFD. With the increasing
fidelity of modeled flows, new visualization technologies will be necessary to present results from the
large amounts of data. For 0-D models visualization needs are often driven by the needs of the data system
and the application. Keeping the simulation tool independent of the visualization package should be a goal
for flexibility.

C.3.7 Maintainability
Maintainability is a big issue for the entire IT world. General trends trying to enhance maintainability are
new programming languages (object-oriented), CASE tools, documentation tools. Terms involved are:
modularity, OOD, portability, documentation, debugging tools.

Currently, much gas turbine code is still in the FORTRAN language. This allows maintenance by those
with low-end computer skills but often requires specialized knowledge of the simulation tool and
application, which are impractical. However, the need to exploit software technologies and move to new
development environments and languages or to complement FORTRAN models with new tools is
growing.

Object-oriented technology offers improvements in maintainability because the encapsulation principle
offers highly modular code. Used well this can capture the knowledge necessary for maintenance with the
tool and the application. Previously this only resided in the minds of those intimately familiar with the
development of the application.

ANNEX C – COMPUTER PLATFORMS

C - 14 RTO-TR-AVT-036

C.3.8 Grid Generation
For high fidelity simulations, grid generation software is used to specify hardware geometry and can
therefore benefit from direct coupling to a CAD system or geometry database. Developments in user
interface technology are required to improve the complex tasks of grid generation. However, it is usually
handled outside of the engine simulation and is therefore considered as a data input issue beyond the scope
of this report.

C.3.9 Distributed Parallel Computing
A big challenge lies in exploiting the large amount of cheap computing power becoming available with
PCs and PC processors. The development of software, for efficient distribution of computing tasks over a
large number of networked PCs, will be critical. This is a need across all engineering computing tasks and
is also being developed for more powerful stress analysis.

An important issue is how data is managed among distributed parallel computing tasks. Remote computers
have data sharing limitations due to limited network transfer speed. This is, in essence, no different from disk
accessing speed limitations on a fast singleton PC. With distributed processing, a workflow management
system is likely to be needed. Such systems are already commonly used to coordinate complex commercial
Customer Relationship Management, Credit Checking, Accounting, Service Provisioning, Trouble Ticketing
and Billing systems.

C.3.10 Probabilistic Analysis
It is becoming necessary for performance simulations to both predict an expected or mean performance
and to indicate the relative uncertainty of the predictions. For diagnostic models, 95% confidence level
bands may be used as indicators of real vs. random observations. In engine selection or design, the best
choice will often be the technology combination that balances the highest probability of meeting minimum
objectives and providing the best overall mission performance.

The most common method of generating these estimates is to assign uncertainty levels to key
requirements, technology assumptions or component performance characteristics and then run simulations
to estimate the resulting uncertainty in the performance parameters of interest. For simple 0-D models
with a small number of uncertainty values, a Monte-Carlo analysis may be practical on a PC or the same
computer system may used for single point analysis. With more complicated models, such as combined
engine-aircraft mission analysis models or with a large number of uncertainty variables, Monte-Carlo
evaluations become impractical without greater computing power (see Chapter 2).

In some cases, design of experiments (DOE), response surface methods or fast probabilistic integration
(FPI) may be used to reduce the computing requirements for probabilistic analysis. For high-fidelity
models, probabilistic evaluations are generally limited to small areas of the simulation where it improves
the accuracy of the basic prediction, an example being probabilistic kinetics models used for combustor
emission predictions.

Thus, detailed probabilistic analysis with multi-dimensional simulation requires high-performance
computers. Efficient approaches for these applications (see Chapter 2), require new developments. Although
a challenge, probabilistic analysis is naturally configured for parallel computing. It is particularly well suited
to off-hours use of PC or UNIX workstations since the computation requirements of the basic models are
fairly modest.

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 15

C.4 FUTURE
In general, developments in computer platform technologies will have a significant impact on the potential of
gas turbine simulations. The current rapid pace of developments like Internet technology, PC technology,
and distributed parallel computing indicate the importance of carefully monitoring these developments in
order to continuously exploit all possible benefits for gas turbine simulation. This however requires a
significant effort, and few new trends can be adopted with the certainty that they will become standards.

FORTRAN will probably remain the standard language for the higher fidelity R&D applications. C/C++
will continue to make inroads. Moreover, C++ and other object-oriented languages are used often in
conjunction with 4GL development environments, which offer significant benefits in terms of user
interface development, code maintainability, debugging and code documentation and readability. For the
lower fidelity modeling applications, especially for operational users, these newer environments will
continue to be adopted.

Distributed parallel computing will provide large potential to satisfy the increasing hunger for computing
power high-fidelity simulations for R&D purposes. With the rapid increase in available computing power,
the traditional bottleneck in computer power becomes replaced by implementation issues like development
effort, visualization, and software for (distributed) parallel computing.

Modern computer platforms and development environments will be applied for new types of model such
as those applied in operational areas like maintenance, diagnostic tools or even customer cycle decks.
The past decades have shown it is hard to predict very far into the future of information technology.
However, it is clear that we can expect significant progress in the following areas:

• Computing power: As is visualized in Figure C.2, there is no reason to assume the current rate of
progress in available computer power will not be maintained. This means there is a great challenge
in efficient use for even higher-fidelity simulation for gas turbine R&D. Also, increasing power
means the pressure to develop efficient code will decrease and the focus can be moved to reducing
development effort instead (see Section C.3.2).

• Costs: The increasing computing power will become available at lower cost. PCs will be able to
do higher fidelity simulations, meaning current simulation tasks will become cheaper.

• Distributed-parallel computing: High-performance computing will be done more and more, using
clustered or networked low-cost systems working in parallel. This will also lower the cost of high
fidelity simulations.

• Model development environment: Development environments for gas turbine simulation will move
from traditional 3GL languages to environments specific to simulation (CFD) or environments
including readily available user interface and visualization tools. This will enable research engineers
to concentrate on the actual modeling tasks when developing gas turbine models.

• Standards: Standards will evolve from those driven by legacy requirements to those consistent
with commercial software tools, databases and development environments.

C.5 CITED REFERENCES

[C.1] Claus, R.W. et al., “Multidisciplinary Propulsion Simulation Using NPSS”, AIAA-92-4709-CP.

[C.2] Evans, A.L. et al., “An Integrated Computed and Interdisciplinary Systems Approach to
Aeropropulsion Simulation”, ASME Paper # 97-GT-303.

ANNEX C – COMPUTER PLATFORMS

C - 16 RTO-TR-AVT-036

[C.3] Geist et al., “PVM: Parallel Virtual Machine, A Users’ Guide and Tutorial for Networked Parallel
Computing”, MIT Press, ISBN 0-262-57108 (on the WWW: http://www.netlib.org/pvm3/book/
pvm-book.html).

[C.4] Reed, J.A. and Afjeh, A.A., “Intelligent Visualization and Control System for Multidisciplinary
Numerical Propulsion System Simulation’, AIAA Paper # 96-4034, 6th AIAA/USAF/NASA/
ISSMO Multidisciplinary and Optimization Conference, Bellevue, WA, September 1996.

[C.5] Reed, J.A. and Afjeh, A.A., “Computational Simulation of Gas Turbines: Part I – Foundations of
Component-Based Models”, ASME Paper # 99-GT-346.

[C.6] Reed, J.A. and Afjeh, A.A., “Computational Simulation of Gas Turbines: Part II – Extensible
Domain Frameworks”, ASME Paper # 99-GT-347.

[C.7] Kurzke, J., “How to Get Component Maps for Aircraft Gas Turbine Performance Calculations”,
ASME Paper # 96-GT-164.

[C.8] SAE Aerospace Recommended Practice (ARP) 755.

[C.9] SAE Aerospace Recommended Practice (ARP) 681.

C.6 ADDITIONAL BIBLIOGRAPHY

Visser, W.P.J. and Broomhead, M.J., “GSP, A Generic Object-Oriented Gas Turbine Simulation
Environment”, ASME Paper # 2000-GT-2, May 2000.

Mathioudakis, K., Stamatis, A., Tsalavoutas, A. and Aretakis, N., “Performance Analysis of Industrial Gas
Turbines for Engine Condition Monitoring”, Presented at: First International Conference on Engineering
Thermophysics, Beijing, China, August 18-21, 1999 (ICET ‘99).

Mathioudakis, K., Stamatis, A., Tsalavoutas, A. and Aretakis, N., “Instructing the Principles of Gas Turbine
Performance Monitoring and Diagnostics by Means of Interactive Computer Models”, Paper # 2000-GT-
0584, The 45th ASME International Gas Turbine & Aeroengine Technical Congress, Munich, Germany,
8-11 May 2000.

Tsalavoutas, A., Aretakis, N., Stamatis, A. and Mathioudakis, K., “Combining Advanced Data Analysis
Methods for the Constitution of an Integrated Gas Turbine Condition Monitoring as Diagnostic System”,
Paper # 2000-GT-0034, The 45th ASME International Gas Turbine & Aeroengine Technical Congress,
Munich, Germany, 8-11 May 2000.

Visser, W.P.J., “Gas Turbine Simulation at NLR”, “Making it REAL”, CEAS Symposium on Simulation
Technology (Paper MOD05), Delft, The Netherlands, 1995.

Kurzke, J., “Advanced User-friendly Gas Turbine Performance Calculations on a Personal Computer”,
ASME Paper # 95-GT-147.

Sellers, J.J. and Daniels, C.J., “DYNGEN – A Program for Calculating Steady-State and Transient
Performance of Turbojet and Turbofan Engines”, NASA TN D-7901, 1975.

Visser, W.P.J. and Kluiters, S.C.M., “Modeling the Effects of Operating Conditions and Alternative Fuels
on Gas Turbine Performance and Emissions”, NLR Technical Publication NLR-TP-98629 or Research
and Technology Organisation, RTO-MP-14, 1999.

http://www.netlib.org/pvm3/book/pvm-book.html
http://www.netlib.org/pvm3/book/pvm-book.html

ANNEX C – COMPUTER PLATFORMS

RTO-TR-AVT-036 C - 17

Booch, G., “Object-Oriented Analysis and Design with Applications”, Addison-Wesley Object Technology
Series, 2nd edition (February 1994) Addison-Wesley Pub Co; ISBN: 0805353402.

Bush, R.H., Power, G.D. and Towne, C.E., “WIND: The Production Flow Solver of the NPARC Alliance”,
AIAA Paper # 98-0935.

Barber, T. et al., “Preliminary Findings in Certification of ADPAC”, AIAA Paper # 94-2240, June 1994.

Stewart, M., “Axisymmetric Aerodynamic Numerical Analysis of a Turbofan Engine”, ASME Paper
95-GT-338.

“WPVM: Parallel Computing for the People”, Proceedings of HPCN’95, High Performance Computing
and Networking Conference, in Springer Verlag Lecture Notes in Computer Science, pp. 582-587, Milan,
Italy, 1995. (on the WWW: http://winpar.iit.uni-miskolc.hu/onldoc/wpvm/kk.html)

“A New Multistage Axial Compressor Designed with APNASA Multistage CFD Code: Part 2”, Application
to a New Compressor Design”, Paper # 2001-GT-0350 (from IGTI 2001 paper list).

Hale, A., Chalk, J., Klepper, J. and Kneile, K., “3-D Technique to Calculate Total Temperature and Total
Pressure Inlet Distortion”, Sverdrup Technology, Inc., Arnold Engineering Development Center, Arnold
AFB, TN.

C.7 ACRONYMS

3GL 3rd Generation Language, conventional computer language for structured programming of
line-by-line code according to a specific syntax; requires a compiler for translation to
machine code. Examples are FORTRAN, C, ADA, PASCAL, ALGOL, BASIC.

4GL 4th Generation Language, employs code generation using a visual interface. Often generated
3rd GL code. Code generation is usually focused on the user interface, database structures or
other specific tasks. Examples are Visual Basic, Visual C++, Jbuilder, and Delphi, which are
focused on generating code for the interface. They are also designed to make working with a
wide variety of databases very easy. MATLAB Simulink may be regarded as a 4GL
environment for simulation (it generates C code for off-line and real-time simulation).

CAD Computer Aided Design

FLOPS FLoating point Operations Per Second (computer speed unit)

ICT Information and Communication Technology

IT Information Technology

PVM Parallel Virtual Machine

http://winpar.iit.uni-miskolc.hu/onldoc/wpvm/kk.html

ANNEX C – COMPUTER PLATFORMS

C - 18 RTO-TR-AVT-036

	Annex C – COMPUTER PLATFORMS
	C.1 COMPUTER PLATFORMS
	C.1.1 Hardware
	C.1.2 Operating Systems
	C.1.3 Development Environments

	C.2 TRENDS AND NEW TECHNOLOGIES
	C.2.1 Computing Power
	C.2.2 Computing Costs
	C.2.3 Parallel and Distributed Computing
	C.2.3.1 Multi-Threading
	C.2.3.2 Distributed Computing and CORBA

	C.2.4 Interfaces
	C.2.4.1 User Interfaces
	C.2.4.2 External Interfaces
	C.2.4.3 Event Driven User Interfaces

	C.2.5 Object Orientation
	C.2.6 PC Technology
	C.2.7 Zooming
	C.2.8 Development Environments
	C.2.9 Architectures
	C.2.10 Configuration Management
	C.2.11 Windows versus UNIX

	C.3 CHALLENGES
	C.3.1 General
	C.3.2 Reducing Development Effort
	C.3.3 Generic Tools
	C.3.4 Standardization
	C.3.5 User Interfaces
	C.3.6 Visualization
	C.3.7 Maintainability
	C.3.8 Grid Generation
	C.3.9 Distributed Parallel Computing
	C.3.10 Probabilistic Analysis

	C.4 FUTURE
	C.5 CITED REFERENCES
	C.6 ADDITIONAL BIBLIOGRAPHY
	C.7 ACRONYMS

