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Annex C – COMPUTER PLATFORMS 

C.1 COMPUTER PLATFORMS 

The computer platform is the combination of the hardware and software needed for gas turbine 
performance calculations. The hardware is the actual computer; the operating system represents the 
software required to use the hardware. A specific gas turbine simulation application is implemented on the 
platform using application development software. Together, they form the development environment. 

Many varieties of development environments exist for gas turbine simulation. A gas turbine model type 
can be characterized by three needs: 

• Application; 

• Model fidelity; and 

• Computing performance requirements. 

The level of model fidelity directly depends on the type of simulation application (see Chapter 2 – 
Applications). Application types include: 

• R&D (competitive, for product development); 

• Fundamental R&D (often performed at research institutions and universities); 

• Cycle decks (both for testing and customer cycle decks); 

• Real-time simulation (flight simulators); 

• Maintenance/diagnostics (models used to enhance maintenance procedures and diagnostics); 

• Probabilistic effects simulations (e.g. Monte-Carlo simulations); and 

• Integrated simulations (engine simulations integrated into other models such as aircraft models). 

Currently, 2-D and 3-D simulations often focus on component R&D applications while 0-D models usually 
simulate the whole engine for a large variety of purposes such as a customer cycle deck. 0-D models also 
include parametric, non-thermodynamic or non-component based models, which may be considered the 
simpler 0-D models. 

Model fidelity directly relates to required computer performance. Full 3-D Navier-Stokes simulations still 
require special high performance hardware while 0-D models can now be run on PCs. Consequently, 
computing performance requirements strongly relate to the computer platform. 

C.1.1 Hardware 
Four major hardware categories can be identified: 

• High performance computers (including parallel computing); 

• Mainframes; 

• UNIX workstations; and 

• PCs. 

High performance computers are generally used for high-fidelity simulation for R&D purposes, such as  
2-D and 3-D CFD. Use of 0-D or 1-D engine models for integration within a larger system simulation or 
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for probabilistic analysis may also require high performance computers. High-fidelity CFD has become 
indispensable for gas turbine R&D and can be regarded as heading the (fidelity) frontier of the modeling 
spectrum. The most important limitation for high fidelity computing is available computing power, both in 
terms of memory and processing speed. Mainframe computers are rapidly being replaced by other systems 
such as PC and workstation networks, but are still used for running older applications such as 0-D (cycle 
decks) and 1-D models. UNIX workstations are widely applied and used for medium fidelity simulation or 
visualization and data processing of high-performance computing results. 

PCs are rapidly increasing their share of the entire computing market. Due to rapid increase in computer 
power, PCs are now able to run medium fidelity 0-D and 1-D models and to a limited extent (coarse grid) 
even 3-D CFD simulations (e.g. FLUENT). An important issue at this end of the spectrum is the efficient 
use and development of new gas turbine simulation applications for the operational field (e.g. maintenance 
and diagnostics tools). Powerful PCs may well be considered ‘workstations’ now, since they can easily be 
configured to match the conventional UNIX workstations in performance but then require disk space and 
memory beyond that of a typical office PC, even with the fastest CPU. Networked UNIX workstations or 
PCs can be used in parallel for some problems with properly configured software. In some circumstances 
performance can equal or exceed that of a supercomputer. Figure C.1 presents the relation between model 
fidelity, computer platform hardware and application. 

NUMBER OF 
DIMENSIONS 

(time and space) 

SUPER/HIGH 
PERFORMANCE 

COMPUTING 

MAINFRAME or 
NETWORKED 

WORKSTATIONS 
SINGLE UNIX 

WORKSTATION 
SINGLE 

PC 

0 Cycle decks. 
Probabilistic. 
Multi-disciplinary. 

Cycle decks. 
Maintenance or 
Diagnostics. 
Probabilistic. 
Multi-disciplinary. 

Cycle decks. 
Maintenance or 
Diagnostics. 
Probabilistic. 
Multi-disciplinary. 

Cycle decks. 
Maintenance or 
Diagnostics. 
Probabilistic. 

1 Cycle decks. 
Probabilistic. 
Multi-disciplinary. 

Cycle decks. 
Real-time. 

Cycle decks. 
Real-time. 

Cycle decks. 
Real-time. 

2 Cycle match CFD. Cycle match CFD. Cycle match CFD. Component CFD. 
3 Cycle match CFD. Component CFD. Component CFD. none1 
4 Component CFD. Component CFD. Component CFD. none1 

Figure C.1: Model Fidelity and Computing Platforms (Status Year 2005). 

C.1.2 Operating Systems 
With the retirement of the old mainframe systems, the number of different operating systems is reduced. 
In general it can be stated that there are two main streams: UNIX which is commonly used from 
workstations up to higher performance systems and Windows (Windows 95/98, NT 4.0, 2000 and XP)  
for the PC based systems. The need to perform simulations on legacy platforms (such as old mainframe 
systems) can become a barrier and must be identified early on. 

Windows NT is also available on a number of high-performance 64-bit systems like the DEC-Alpha, 
providing a combination of high-computing power with the ability to use the customary PC office 
software suites. 
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C.1.3 Development Environments 
A large number of development environments exist, both for the UNIX and the Windows systems. 
Traditionally these environments consisted of 3rd Generation Languages (3GL), the most widely used 
being FORTRAN in the scientific world. Newer 3GL languages include C and the object-oriented 
languages C++ and ADA. More modern are the 4th Generation Languages (4GL). Often these are wrapped 
around a 3GL language in order to reduce developer effort when building (graphical) user interfaces. 
Many 4GL tools automatically generate most of the user interface parts of the application. Examples are 
Visual Basic®, Delphi®, C++Builder®, JBuilder® and Visual C++®. There are also a number of 
development environments dedicated to simulation in general or sometimes even to gas turbine simulation 
(i.e. generic gas turbine simulation tools). Examples are MATLAB Simulink® and MathCad®. Examples 
of turbo-machinery CFD tools are CFX-TASCflow® with Turbogrid®, NUMECA® Fine/Turbo®. 

FORTRAN is still the standard programming language for gas turbine simulation. If FORTRAN is used 
without platform specific code (such as user interface shells), it can be compiled and run on most 
platforms. This will be the dominant advantage of FORTRAN until alternative standards become widely 
accepted. Chapter 5 lists a number of simulation systems including descriptions of the development 
environments. 

C.2 TRENDS AND NEW TECHNOLOGIES 

The Internet and the PC have dominated computer related technological development since the nineties. 
Both technologies require ‘low cost platforms’ which offer great potential for gas turbine simulation by 
offering distributed computing, a good user interface, and high power, especially at the lower fidelity end 
(i.e. operational use) of the spectrum. 

High performance computing technology may not have as much public attention, but is also developing at 
a rapid pace and offering ever more power for high fidelity computing. 

With distributed parallel computing technology improving, PC and high performance computer technologies 
may well merge into a single type of environment or platform. High-speed networks have made remote 
distribution common in simulations and remote computing is becoming a reality. 

C.2.1 Computing Power 
Since the introduction of the digital computer, computing power has increased at a rapid rate,  
see Figure C.2. Interesting to note is that the low cost PC is increasing its share of the entire spectrum, 
while high performance computing is maintaining the top high-fidelity part of it. 
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Figure C.2: Trends in Computing Power. 

As a consequence, computer power has ceased to be the bottleneck for all but the high-fidelity CFD gas 
turbine simulations. For all types of simulations, implementation effort, user interface including 
visualization and code maintenance have become critical for successful and efficient use of the models. 

For high fidelity CFD simulations a bottleneck remains in the available computer power, especially when 
the time domain is added as an extra dimension for dynamic simulations. Simultaneous simulation at  
high spatial resolution and high time domain resolution for instance remains limited as indicated by 
Figure C.3. 
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Figure C.3: Spatial versus Temporal Resolution for a Given Computing Power. 
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For a given amount of computer execution time, a trade-off must be made, between temporal and spatial 
resolution, depending on the purposes and the requirements of the simulation in terms of accuracy. When 
allowing unlimited computation time, temporal resolution requirements are no longer a restriction and 
spatial resolution becomes limited by available computer memory. For high-resolution simulations over 
larger flow areas in engine components, computer memory is critical. With limited computing memory, 
certain problems cannot be simulated at all while limited processing power only affects computation time 
without making the simulation totally impossible. 

Simultaneous high-fidelity simulations of multiple compressor stages or even multiple components  
remains impossible without compromises in terms of assumptions or application of the zooming concept  
(see Section C.2.7). Multi-disciplinary modeling as in the NPSS program [C.1 and C.2] also requires 
compromises to compensate for limited computing power. 

C.2.2 Computing Costs 
In general it can be stated that the cost/benefit ratio of using simulations for various purposes is decreasing 
rapidly. This becomes evident from Figure C.1 and the fact that the prices of state-of-the-art PC systems 
have not risen over the years. 1-D whole-engine thermodynamic performance calculations and simulations 
can be run at costs many times lower than a few decades ago. This is demonstrated by the emerging PC 
applications for gas turbine simulation, which allow 0-D simulations at very low cost. 

At the other end of the spectrum, the increasing power of high-performance computers offers new 
opportunities to optimize aero-thermodynamic designs with high-fidelity CFD. Especially when using 
distributed parallel computing using clustered low cost workstations or PCs this can be done at relatively 
low costs. Many large gas turbine R&D programs focus on greater CFD detail at limited costs, which is 
critical to gas turbine technology progress. 

As a consequence, established simulation technologies and tools move to lower cost platforms, yet retain 
their speed and fidelity. High-performance computer technology benefits from low cost technology in the 
form of distributed parallel computing (see Section C.2.3) to satisfy the ever-increasing hunger for CFD 
calculation power. While computing power remains critical for the high fidelity CFD challenges,  
the established simulation technology basically needs improvements in order to make their use more 
efficient (i.e. at lower costs). This means greater attention to user interface, code portability and 
maintainability aspects is needed. 

C.2.3 Parallel and Distributed Computing 
Symmetric Multi-Processor (SMP) technology is becoming common in servers. This technology uses 
several processors in a single computer, and offers the ability to run several tasks in parallel, under the 
control of the operating system. These tasks are usually distributed at task or thread level. A thread is a 
small piece of a program that is capable of performing a task that is largely independent of other threads. 
To distribute processing at thread level requires design effort from the programmers. Whether using an 
SMP computer will provide worthwhile gains in speed depends on the amount of data that is used, and the 
amount of processing that is done to it. If the application is data bound and the CPU is not highly loaded, 
any investment may be better spent on a faster disk. Similarly, a processor that could run at twice normal 
speed would not carry the operating system overheads associated with SMP and 2 normal speed 
processors. 

To share tasks between multiple processors: 

• The CPUs must have SMP enabling features. 

• The operating system must support SMP. 
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Most new CPU’s now are SMP enabled. Different OS versions support different numbers of processors. 
Windows NT has crept up from 2 to about 8; Windows2000 supports up to 64 processors! Other versions 
of Windows do not support SMP. Linux 2.2 theoretically supports up to 16 processors on Pentium, 
UltraSparc, SparcServer, Alpha and PowerPC machines. 

Parallel computing is a new development, in which tasks are shared between several processors. Ideally little 
effort is required from the programmer, with the effort being provided by the operating system. This has 
great potential for high-performance computing. Such techniques are used internally in many current 
processors. Optimally, parallel computing could offer a way to increase computing performance in direct 
proportion to the number of processors used. In reality, the performance gain is less due to the problem of 
how to distribute the computing tasks over the processors. 

Early applications that exploited parallel computing had to include the computing task distribution 
themselves, requiring large efforts in software development. Now, the trend is to have the operating 
system or development environment handle that task with solutions like the Parallel Virtual Machine 
(PVM) [C.3]. Although becoming easier to use, this still requires that special actions be taken in defining 
the problem to facilitate parallel operation. Other examples are: Windows PVM and Bulk Synchronous 
Parallelism (BSP) ‘A new programming model for parallel processing simplifies writing programs and 
promises code portability’ [C.4]. 

C.2.3.1 Multi-Threading  

Multi-threading is basically time slicing by the OS. The OS must make these features available to 
compilers. The language and compiler must in turn make the necessary commands available to the 
programmer. All 32-bit Windows platforms support multi-threading. This was necessary, so that memory 
could be shared between related processes, and to prevent Windows applications from being slowed down 
(frozen) by a single very intensive process. Multi-threading enables the processor to start another process 
parallel to the slow process and also to be able to interrupt or control the slow process from another thread. 

Whether the OS makes SMP available between applications and also between threads within an application, 
is OS dependent. 

With web servers, Windows based systems are typically thread based, usually via reference counted DLLs 
(ISAPI, NSAPI), while Unix systems spawn new processes (CGI) that typically return data via files.  
The target platform therefore affects the architecture of a new application, and the way in which efficient 
code is ported between platforms. This means that multi-threading gas turbine simulation applications will 
be difficult to port to other platforms. 

All modern programming languages have features to use parallel computing and the modern development 
environments like Delphi come with tools to facilitate multi-processor and parallel computing using multi-
threading. It is interesting to note that recent computing performance records have been set with parallel 
computers using large numbers of cheap processors like the Intel 386. 

Parallel computing is often applied in super-computers and high-performance workstations operating 
multiple processors. A new trend is to apply parallel computing to multiple computers that are 
interconnected over a network. This distributed parallel computing requires special software controlling 
the distribution of different computing tasks in a simulation. 

It is expected that eventually software will become available to control parallel distributed computing 
using a large number of ordinary network environment PCs. This would allow simulations, which could 
traditionally only be run on super-computers, to run at a fraction of the current cost. This is already being 
done with networked UNIX workstations. 
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A critical new technology for distributed computing is object orientation (see Section C.2.5). Object 
orientation offers modularity and common interface mechanisms required for distributed computing. Each 
computer in a network is executing the simulation of an ‘object’ as part of the entire simulation session 
across the network. 

Most distributed computing has been limited to the same type of processor and operating system. 
Computers networked over the Internet (or an Intranet) can be used to perform a distributed computation 
task with Sun’s JAVA technology and the CORBA (Common Object Request Broker Architecture) 
technology. The JAVA gas turbine simulator [C.5 and C.6] is an example of this new trend. Microsoft 
Windows uses a similar technology called variously ActiveX or DCOM (Distributed Component Object 
Model).  

An example of a distributed-parallel computing project is the Visual Computing Environment (VCE) 
project at NASA Glenn Research Center [C.1]. One of VCE’s objectives is ‘…to develop a visual 
computing environment for controlling the execution of individual simulation codes that are running in 
parallel and are distributed on heterogeneous host machines in a networked environment...’. VCE was 
designed to provide a distributed, object-oriented environment including a parallel virtual machine (PVM) 
for distributed processing. Users can interactively select and couple any set of codes that have been 
modified to run in a parallel-distributed fashion on a cluster of heterogeneous workstations. 

C.2.3.2 Distributed Computing and CORBA 

Common Object Request Brokering Architecture (CORBA) is a standard for cross-platform and cross-
network communication. It uses an Object Request Broker (ORB) that resides on different computers 
(either as part a web browser, a part of other analysis software or as an independent server application). 
Once an application is registered with the ORB, any other CORBA based application with appropriate 
permissions and access can utilize the services available from that application that have been registered 
with the ORB. The DCOM standards for MS-Windows applications provide a similar functionality for 
applications on MS-Windows computers and networks. A number of CORBA-DCOM interface packages 
have been developed. Most are focused on facilitating CORBA based systems access to MS-Windows 
DCOM applications. 

In this way, simulations or portions of the simulation can be used and implemented in a way that is 
somewhat independent of the local computing infrastructure. A user of a model at one location can easily 
and transparently point to a model on a different computer platform and network. Even components within 
an engine simulation may reside on different computers on different networks. As use of web 
environments and data management systems grow in the future, the distinction of where (or even if)  
a simulation is performed become less important to the user. If the requested simulation data is generated 
and is returned in the desired form and location, then whether the simulation was run on a local computer, 
a remote computer or pulled from previous results stored in a database can be a transparent detail to the 
end user. 

The main advantages of CORBA are that it is slightly easier to use than DCOM, and works on all platforms, 
whereas DCOM works only on Windows platforms. However, DCOM is provided free by Microsoft and 
requires no additional licenses for distribution, while CORBA ‘broker’ software must be purchased under 
license from a variety of suppliers. 

C.2.4 Interfaces 

C.2.4.1 User Interfaces 

Most modern computer applications have replaced the command line interface with the graphical user 
interface (GUI). This offers significant benefits in terms of user friendliness. The older gas turbine modeling 
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environments, especially the 3GL based ones such as FORTRAN, still use the command line interface. 
Many of them have been updated and wrapped inside 4GL GUI structures. 

To specify input-data for complex models, sophisticated user interfaces are required to prevent 
unacceptable time-consuming data-entry tasks. Across the spectrum of modeling platforms, attempts are 
made to accomplish this with advanced GUI’s. As an example, component maps for 0-D simulation are 
usually presented to the program in tabular format. To use the tabular format for user data entry  
(for specification of new or modified maps) is very time consuming and therefore graphical tools are used 
to have the user edit the data using the graphical map representation to actually ‘draw’ the map. SmoothC 
and SmoothT [C.7] are examples of stand-alone Windows applications able to do that task. 

With the increase in computing power, the size and detail of the results increases drastically. Graphical 
visualization and sometimes animation tools are required for their analysis, such as the VCE [C.1] for 
example. 

As a result the user-interface issue tends to become separated from the modeling issue. The modularization 
of the simulation environments reflects this trend also. In programs like NPSS, sub-programs are defined to 
address user-interface issues such as visualization of CFD results. 

Needs of the expert user or the user with specific highly repetitive tasks can conflict with the needs of the 
low-end user who needs easy access without being confused by the features and options which aren’t 
relevant to simpler applications. Some GUIs (such as GasTurb, see Section 5.3, and GSP see Section 5.4) 
are designed so those more advanced options are hidden or separated from the low-end user options. 

C.2.4.2 External Interfaces 

Interfaces with data acquisition systems and measurement databases are often platform specific.  
The advantages of having these systems on the same platform as the simulation system are often the 
reason for maintaining legacy systems. 

C.2.4.3 Event Driven User Interfaces 

Traditional coding techniques are known as procedural because when a program is started, it runs through 
a predetermined sequence. At certain points the program may stop and wait for user input and then 
proceed. A more modern Graphical User Interface (GUI) typically looks like a Windows or Apple screen. 
It is usually event driven which means that code can be executed in any order, depending for example on 
the order in which the user operates (clicks) buttons or other visual controls. When first introduced,  
this created additional problems for the programmer, who had to take into account all of the ways in which 
the user may wish to work. Nowadays, few programmers would welcome a return to the legacy thought 
patterns, and most users prefer the clarity of function and ease of use of a GUI. 

C.2.5 Object Orientation 
Object orientation (OO) is an approach in software development that was defined during the seventies. 
Before this, the program design was entirely up to the programmer, and the relationship between data and 
the procedures that operated on it could be unnecessarily complicated and inconsistent. For instance 
several procedures could operate on the same data, causing a problem if one procedure was changed and 
another not. The basic idea of object-oriented design (OOD) is encapsulation. This means that everything 
is described as an object, and that every object has methods, properties and data. For illustration, an object 
called airplane might have methods called take-off, fly and land, properties called all-up-weight, number-
of-engines and maximum-number-of-passengers, and data called elapsed-flight-time, number-of-
passengers and current-speed. The key idea is that only the methods contained within the object can 
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change the properties and data, thus ensuring integrity. Depending on the programming language, objects 
may be known as types or classes. Two additional principles of object orientation are: 

Inheritance, which means that specific types of airplane may be defined by changing the properties of the 
generic airplane object, and by adding new or subtracting existing methods, properties and data. In some 
languages an object may inherit from more than one parent. 

Polymorphism, which means that different methods may have the same name, but operate differently 
depending on the context. For example take-off could apply to the start of flight or the removal of 
equipment. 

Inheritance and polymorphism offer significant extra benefits in terms of software design but are not fully 
included in some development environments. Although OOD promised many benefits in terms of code 
development effort and maintainability the OOD approach was widely adopted only during the nineties. 
One of the reasons was that the requirement for software developer skills was underestimated.  
Most popular object-oriented programming languages are traditional languages extended with object-
oriented features like C++ and OOPascal. ADA is an object-oriented language widely used by the US 
military, but does not include all OOD features (such as inheritance and polymorphism). 

Especially in 4GL languages, OOD is commonly applied for GUI development and OO code is generated 
automatically. 

It is up to the developer to decide the extent to which the actual functional (in this case simulation) code 
will be object-oriented and event driven. For gas turbine simulation, there is great potential in object 
orientation since in many cases the simulated process can be divided into objects directly. For example, in 
a non-dimensional whole-engine simulation, engine components such as compressors, turbines, control 
systems, etc. can easily be defined (encapsulated) as objects. With the OOD principles of inheritance and 
polymorphism, code development effort, reusability, maintainability and flexibility can be significantly 
enhanced. An example is the Visual Computing Environment VCE [C.1]. See Section 5.4 or 5.7 for an 
example of an OO gas turbine modeling architecture. 

C.2.6 PC Technology 
Since the eighties, PC technology has drastically changed the IT world. With its continuing and rapid 
increase in performance the PC is increasing its share in the overall computer market. With the increasing 
need for computing power for gas turbine simulation, this development offers great potential. Also the PC 
is becoming the platform on which most efforts to improve development and user environments are 
focused. This means that all gas-turbine-simulation applications except the high-fidelity simulations 
requiring high-performance computers will probably be most efficiently developed on PC platforms.  
If distributed-parallel computing technology becomes mature for networked PCs (see Section C.2.3)  
the high-performance simulation jobs may also benefit from PC technology. 

The major corporate operating system used on PCs is Windows (W95/98/NT4.0/2000/XP). An interesting 
development is the use of UNIX on PCs such as SCO-UNIX and Linux, the Free Software Foundation 
open UNIX clone. 

C.2.7 Zooming 
The ‘Zooming’ concept allows high-fidelity simulation of local phenomena of interest in a gas turbine, 
together with lower fidelity simulation of the rest of the engine system. This approach is necessary to 
reduce computing power, development time and complexity where higher fidelity analysis is not required. 
High-fidelity CFD simulation of the aero-thermodynamic processes throughout the entire engine would 
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require computing power far beyond what is feasible. With the zooming concept, detailed CFD simulation 
of flow around specific compressor blades, for example, can be performed while the rest of the engine is 
simulated with lower detail. 

An example of the application of the zooming concept is the NPSS program, described in Section 5.7. 

C.2.8 Development Environments 
There are trends towards using new developments like 4GL languages and C++ in the global IT world. 
The scientific world still generally considers FORTRAN the standard, basically due to the lack of a new 
clear standard for more modern environments. Only the 3rd generation (3GL) languages C, C++ and ADA 
seem to be able to receive confidence enough to be adopted by some organizations as a standard for gas 
turbine simulation. Even these can become a problem since they expose low-end computer users to details 
beyond their level of interest. 

On the lower fidelity end of the spectrum with PC simulations and applications, for engine operators and 
maintenance (e.g. diagnostic tools), new 4GL tools are applied. In the Architectures section, C.2.9,  
two examples are given of 0-D modeling environments using the Delphi 4GL tool based on Object Pascal. 
C++Builder is another Borland product that uses the same back end compiler as Delphi. This also runs on 
AS400 and Windows platforms. Linux (Unix) compatibility was launched in June 2001 with the Kylix 
product. Cross-platform independence depends on programmers not using platform specific Application 
Programming Interface calls in the code that they write. A graphical library called CLX (pronounced 
‘clicks’) has been made available for both Windows and Linux to allow this. Other 4GL tools that could 
be used for 0-D modeling are Microsoft Visual Basic and Visual C++, although Visual Basic is not an 
object-oriented language. At the time of writing Microsoft have started to introduce a new language called 
C# (C Sharp), which is designed to compete with Java, but only to run on WinTel platforms. 

With the large amounts of existing and proven FORTRAN code, 4GL environments based on modern 
languages are often applied to encapsulate FORTRAN sub-routines with a modern front end. 

Generic simulation tools like MATLAB Simulink and MatrixX have become popular for 0-D modeling 
for some types of performance analysis (e.g. real-time modeling and control system design). An important 
advantage of these tools is that they usually employ ‘auto-solvers’, hiding the details of numerical 
methods. The user only needs to specify the required accuracy. However, under some circumstances auto-
solvers may use inappropriate methods that produce instability due to rounding and other computational 
errors and solvers specifically developed for gas turbine simulation may give better results by applying 
plausibility checks. 

In Section 5.5 an example is given of a Simulink real-time thermodynamic 0-D model. The figure only 
shows the whole engine model level and hides the top level including the control system, and many sub-
levels as well as. 

C.2.9 Architectures 
The gas turbine model architecture represents the way the model is built up of sub-models, components, 
finite elements, etc. Several types exist; ranging from non-component based parametric models where no gas 
turbine components can be identified, to high-fidelity CFD models of flows in particular sub-components 
like compressor blades. These may include large numbers of finite elements. 

The model architecture is important both to the model developer and the model user. 

For the developer, for example, a modular approach may be adopted for 0-D and 1-D models with sub-
modules representing typical components like compressors and turbines. Generic sub-modules may be 
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developed using object orientation offering significant benefits in terms of software development and 
maintenance effort. This approach may also be used when using generic simulation tools like MATLAB-
Simulink. 

In Chapter 5 the architectures of some simulation environments are described. 

C.2.10 Configuration Management 

Management of gas turbine model software and data requires specific attention, especially when large 
numbers of different model versions are involved. Also when the number of people involved with using or 
developing a model increases, configuration management becomes increasingly important. Often special 
tasks need to be defined in order to maintain integrity of the model configurations. These tasks may well 
be performed using special software tools. 

Configuration and system management are general information technology issues and detailed information 
is therefore considered beyond the scope of this report. 

C.2.11 Windows versus UNIX 

Currently, there is fierce competition between the UNIX and Windows operating systems. UNIX systems 
originate from the expensive high end and lack tight standards. Windows (Microsoft) offers solutions at 
lower costs for PCs and a number of other hardware systems, and currently is increasing its market share 
at the cost of UNIX. Windows focuses on user friendliness for the consumer market and consequently 
generates enormous (financial) momentum for further development. 

Although Windows 95/98 offers significant potential for simple (0-D) gas turbine simulation, the more 
powerful Windows NT4.0 (or Windows2000) is the environment to be compared with UNIX. Currently, 
Windows NT and UNIX have no significant differences in performance for single workstation applications. 

UNIX still has advantages when sharing data among many users (for large user-base engineering 
applications) and security related issues are important. It is also considered slightly superior in terms of 
stability. It has already been noted that UNIX is the platform most widely used for parallel computing, and 
with clustered workstations. 

Windows has advantages in user friendliness, commonality with the common desktop PC environment 
and low (system maintenance and purchase) cost when used in simple networked configurations. For the 
future, the expectation is that Windows will rapidly (within a few years) fix the remaining drawbacks 
when compared to UNIX. Then, parallel computing with clustered Windows workstations, which already 
has been demonstrated experimentally, may well become reality. 

The unknown factor is the influence that Linux, the UNIX clone, may have. Competition against 
Microsoft is fierce, and Corel have launched an easy to install and use version of Linux, together with a 
complete office software suite. During the writing and compilation of this document, Linux achieved as 
good a GUI interface as Windows, and Redhat and Suse also launched easy graphical installation 
procedures for Linux. Because of the inherent client/server design of the graphical sub-systems in UNIX 
like computers they can easily run applications on one computer, and view the graphical results on 
another. The binding of the graphical subsystems in Windows to the OS kernel provides faster ‘in PC’ 
operation but brings severe penalties for ‘between platform’ operations. Web style client/server 
applications do not completely overcome these limitations. 
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C.3 CHALLENGES 

C.3.1 General 
In general it can be stated that with the rapid increase in available computing power and high bandwidth 
networks at low cost, the challenge is to efficiently use that power for gas turbine simulation. The growth 
rate of the PC’s performance/cost ratio indicates there are significant opportunities. Moore’s Law, reported 
in 1965 predicted a doubling in the number of elements on a chip every 18 months. This was when the 
largest chip contained 64 elements. From 1970 to 1990 Intel chips doubled their complexity every 2 years. 
Since that time the doubling period for Intel has become 2.5 years (ref http://www.physics/udel/edu/ 
wwwusers/watson/scen103/intel.html), and 28 million elements are contained in a Pentium 3 cpu.  
To benefit from these opportunities, new technologies for (gas turbine) simulation software development 
and user-interfaces software maintenance and new standards must be developed. 

C.3.2 Reducing Development Effort 
Closely related to maintainability is the aspect of development effort. With increasing complexity, 
advanced development environments are needed for automating many tasks previously performed with 
line-by-line coding. This implies distribution of software development tasks, e.g. 4GL tools to develop GUI 
and general software structure. Ideally, the line-by-line coding should be limited to the implementation of 
the actual equations being used in the model, but this will not easily be accomplished. With the hand 
written code being reduced to the actual equations, advanced development environments should also 
enhance maintainability. However, this may be at the cost of code efficiency. This is illustrated by the fact 
that some of the current 4GL systems, with automated code generation, carry significant ‘Safe practice’ 
coding overheads that are simply irrelevant to many applications. 

Object-oriented technology (see Section C.2.5) offers reduction in development efforts with the 
inheritance principle. This has the potential to allow the engineer to quickly do tasks that are currently 
limited to Information Technology professionals or methodology experts. 

C.3.3 Generic Tools 
An approach to reduce gas turbine model development effort is to use generic gas turbine or turbo-
machinery specific tools. For the 0-D models several tools already exist for modeling performance of any 
kind of gas turbine) (see Chapter 5). Also specific simulation tools like MATLAB Simulink may be 
applied for certain simulation tasks (see Section 5.5). 

For the entire spectrum, more attention can be expected to more intensive use of existing generic tools 
instead of redeveloping code repeatedly. This may also be in the form of reusing generic objects in OO 
environments. 

C.3.4 Standardization 
Standards for gas turbine modeling code and interfaces are critical for large, comprehensive multi-
disciplinary models, created by large numbers of developers. Portability is also enhanced when standards 
for development environments, languages, etc. are observed. Current standards for gas turbine simulation 
are SAE Aerospace Recommended Practice (ARP) 755 and 681 [C.8 and C.9]. These are based on shared 
FORTRAN common blocks. These lowest common denominator standards severely limit simulation 
options for future simulation development. A new ARP recognizing the needs of modern computer 
systems, development environment and providing the option for an Application Programming Interface 
(API) type interface is being developed as part of ARP 4868 (Draft) limitations. 

http://www.physics/udel/edu/wwwusers/watson/scen103/intel.html
http://www.physics/udel/edu/wwwusers/watson/scen103/intel.html
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Standards are indispensable to interface gas turbine models with other models (e.g. aircraft system 
models) and to benefit from modern development environments, such as CORBA and DCOM  
(see Section C.2.3). These will reduce development efforts, increase maintainability and improve user 
interfaces. Without them the R&D gas turbine world will remain committed to FORTRAN, at least for 
implementation of the fundamental algorithms. As has happened before, the market will probably define 
the new standard. So for now it seems the technical community will have to wait and see what happens. 

MATLAB Simulink and similar environments are becoming common for lower fidelity models, non-
component models, real-time models and even simplified 0-D models. For the higher fidelity models, new 
standards may become available to wrap interfaces and objects around existing FORTRAN codes in order 
to maintain backward compatibility. New standards for modern OO languages may then be used for 
developing new codes. 

So far, the lack of standards and legacy system compatibility needs have caused most model makers and 
engine manufacturers to hesitate to move from FORTRAN to another modern development environment. 
The development of new standards and the gradual disappearance of these legacy systems are causing this 
change to begin. 

C.3.5 User Interfaces 
In general, the different tasks involved in developing and using engine performance models become 
dispersed over a large variety of applications. When using engine-modeling tools in the operational area, 
interface aspects are very important. For example, an engine diagnostic tool based on an engine 
performance model must have a good user-interface, dedicated to a maintenance engineer instead of a 
research engineer. Often the engine model is isolated from the user interface so that it can be tailored to 
specific tasks such as trending, testing and data visualization. 

C.3.6 Visualization 
Visualization, both static and animated graphical representations, will become more and more important 
for the presentation of gas turbine simulation results, especially for high fidelity CFD. With the increasing 
fidelity of modeled flows, new visualization technologies will be necessary to present results from the 
large amounts of data. For 0-D models visualization needs are often driven by the needs of the data system 
and the application. Keeping the simulation tool independent of the visualization package should be a goal 
for flexibility. 

C.3.7 Maintainability 
Maintainability is a big issue for the entire IT world. General trends trying to enhance maintainability are 
new programming languages (object-oriented), CASE tools, documentation tools. Terms involved are: 
modularity, OOD, portability, documentation, debugging tools. 

Currently, much gas turbine code is still in the FORTRAN language. This allows maintenance by those 
with low-end computer skills but often requires specialized knowledge of the simulation tool and 
application, which are impractical. However, the need to exploit software technologies and move to new 
development environments and languages or to complement FORTRAN models with new tools is 
growing. 

Object-oriented technology offers improvements in maintainability because the encapsulation principle 
offers highly modular code. Used well this can capture the knowledge necessary for maintenance with the 
tool and the application. Previously this only resided in the minds of those intimately familiar with the 
development of the application. 
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C.3.8 Grid Generation 
For high fidelity simulations, grid generation software is used to specify hardware geometry and can 
therefore benefit from direct coupling to a CAD system or geometry database. Developments in user 
interface technology are required to improve the complex tasks of grid generation. However, it is usually 
handled outside of the engine simulation and is therefore considered as a data input issue beyond the scope 
of this report. 

C.3.9 Distributed Parallel Computing 
A big challenge lies in exploiting the large amount of cheap computing power becoming available with 
PCs and PC processors. The development of software, for efficient distribution of computing tasks over a 
large number of networked PCs, will be critical. This is a need across all engineering computing tasks and 
is also being developed for more powerful stress analysis. 

An important issue is how data is managed among distributed parallel computing tasks. Remote computers 
have data sharing limitations due to limited network transfer speed. This is, in essence, no different from disk 
accessing speed limitations on a fast singleton PC. With distributed processing, a workflow management 
system is likely to be needed. Such systems are already commonly used to coordinate complex commercial 
Customer Relationship Management, Credit Checking, Accounting, Service Provisioning, Trouble Ticketing 
and Billing systems. 

C.3.10 Probabilistic Analysis 
It is becoming necessary for performance simulations to both predict an expected or mean performance 
and to indicate the relative uncertainty of the predictions. For diagnostic models, 95% confidence level 
bands may be used as indicators of real vs. random observations. In engine selection or design, the best 
choice will often be the technology combination that balances the highest probability of meeting minimum 
objectives and providing the best overall mission performance. 

The most common method of generating these estimates is to assign uncertainty levels to key 
requirements, technology assumptions or component performance characteristics and then run simulations 
to estimate the resulting uncertainty in the performance parameters of interest. For simple 0-D models 
with a small number of uncertainty values, a Monte-Carlo analysis may be practical on a PC or the same 
computer system may used for single point analysis. With more complicated models, such as combined 
engine-aircraft mission analysis models or with a large number of uncertainty variables, Monte-Carlo 
evaluations become impractical without greater computing power (see Chapter 2). 

In some cases, design of experiments (DOE), response surface methods or fast probabilistic integration 
(FPI) may be used to reduce the computing requirements for probabilistic analysis. For high-fidelity 
models, probabilistic evaluations are generally limited to small areas of the simulation where it improves 
the accuracy of the basic prediction, an example being probabilistic kinetics models used for combustor 
emission predictions. 

Thus, detailed probabilistic analysis with multi-dimensional simulation requires high-performance 
computers. Efficient approaches for these applications (see Chapter 2), require new developments. Although 
a challenge, probabilistic analysis is naturally configured for parallel computing. It is particularly well suited 
to off-hours use of PC or UNIX workstations since the computation requirements of the basic models are 
fairly modest. 
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C.4 FUTURE 
In general, developments in computer platform technologies will have a significant impact on the potential of 
gas turbine simulations. The current rapid pace of developments like Internet technology, PC technology, 
and distributed parallel computing indicate the importance of carefully monitoring these developments in 
order to continuously exploit all possible benefits for gas turbine simulation. This however requires a 
significant effort, and few new trends can be adopted with the certainty that they will become standards. 

FORTRAN will probably remain the standard language for the higher fidelity R&D applications. C/C++ 
will continue to make inroads. Moreover, C++ and other object-oriented languages are used often in 
conjunction with 4GL development environments, which offer significant benefits in terms of user 
interface development, code maintainability, debugging and code documentation and readability. For the 
lower fidelity modeling applications, especially for operational users, these newer environments will 
continue to be adopted. 

Distributed parallel computing will provide large potential to satisfy the increasing hunger for computing 
power high-fidelity simulations for R&D purposes. With the rapid increase in available computing power, 
the traditional bottleneck in computer power becomes replaced by implementation issues like development 
effort, visualization, and software for (distributed) parallel computing. 

Modern computer platforms and development environments will be applied for new types of model such 
as those applied in operational areas like maintenance, diagnostic tools or even customer cycle decks.  
The past decades have shown it is hard to predict very far into the future of information technology. 
However, it is clear that we can expect significant progress in the following areas: 

• Computing power: As is visualized in Figure C.2, there is no reason to assume the current rate of 
progress in available computer power will not be maintained. This means there is a great challenge 
in efficient use for even higher-fidelity simulation for gas turbine R&D. Also, increasing power 
means the pressure to develop efficient code will decrease and the focus can be moved to reducing 
development effort instead (see Section C.3.2). 

• Costs: The increasing computing power will become available at lower cost. PCs will be able to 
do higher fidelity simulations, meaning current simulation tasks will become cheaper. 

• Distributed-parallel computing: High-performance computing will be done more and more, using 
clustered or networked low-cost systems working in parallel. This will also lower the cost of high 
fidelity simulations. 

• Model development environment: Development environments for gas turbine simulation will move 
from traditional 3GL languages to environments specific to simulation (CFD) or environments 
including readily available user interface and visualization tools. This will enable research engineers 
to concentrate on the actual modeling tasks when developing gas turbine models. 

• Standards: Standards will evolve from those driven by legacy requirements to those consistent 
with commercial software tools, databases and development environments. 
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C.7 ACRONYMS 

3GL 3rd Generation Language, conventional computer language for structured programming of 
line-by-line code according to a specific syntax; requires a compiler for translation to 
machine code. Examples are FORTRAN, C, ADA, PASCAL, ALGOL, BASIC. 

4GL 4th Generation Language, employs code generation using a visual interface. Often generated 
3rd GL code. Code generation is usually focused on the user interface, database structures or 
other specific tasks. Examples are Visual Basic, Visual C++, Jbuilder, and Delphi, which are 
focused on generating code for the interface. They are also designed to make working with a 
wide variety of databases very easy. MATLAB Simulink may be regarded as a 4GL 
environment for simulation (it generates C code for off-line and real-time simulation). 

CAD Computer Aided Design 

FLOPS FLoating point Operations Per Second (computer speed unit) 

ICT Information and Communication Technology 

IT Information Technology 

PVM Parallel Virtual Machine  
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