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The Research and Technology  
Organisation (RTO) of NATO 

RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote 
co-operative research and information exchange. The objective is to support the development and effective use of 
national defence research and technology and to meet the military needs of the Alliance, to maintain a technological 
lead, and to provide advice to NATO and national decision makers. The RTO performs its mission with the support of an 
extensive network of national experts. It also ensures effective co-ordination with other NATO bodies involved in R&T 
activities. 

RTO reports both to the Military Committee of NATO and to the Conference of National Armament Directors.  
It comprises a Research and Technology Board (RTB) as the highest level of national representation and the Research 
and Technology Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to 
facilitate contacts with the military users and other NATO activities, a small part of the RTA staff is located in NATO 
Headquarters in Brussels. The Brussels staff also co-ordinates RTO’s co-operation with nations in Middle and Eastern 
Europe, to which RTO attaches particular importance especially as working together in the field of research is one of the 
more promising areas of co-operation. 

The total spectrum of R&T activities is covered by the following 7 bodies: 
• AVT Applied Vehicle Technology Panel  
• HFM Human Factors and Medicine Panel  
• IST Information Systems Technology Panel  
• NMSG NATO Modelling and Simulation Group  
• SAS System Analysis and Studies Panel  
• SCI Systems Concepts and Integration Panel  

• SET Sensors and Electronics Technology Panel  

These bodies are made up of national representatives as well as generally recognised ‘world class’ scientists. They also 
provide a communication link to military users and other NATO bodies. RTO’s scientific and technological work is 
carried out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams can 
organise workshops, symposia, field trials, lecture series and training courses. An important function of these Technical 
Teams is to ensure the continuity of the expert networks.  

RTO builds upon earlier co-operation in defence research and technology as set-up under the Advisory Group for 
Aerospace Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share 
common roots in that they were both established at the initiative of Dr Theodore von Kármán, a leading aerospace 
scientist, who early on recognised the importance of scientific support for the Allied Armed Forces. RTO is capitalising 
on these common roots in order to provide the Alliance and the NATO nations with a strong scientific and technological 
basis that will guarantee a solid base for the future. 
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Common Notations 

Abbreviations 
AVT Applied Vehicle Technology (one of seven technical panels within the RTO) 

BART Basic Aerodynamic Research Tunnel 

BL butt line on airplane, in., positive on right wing (See Chapter 3 – Figure 3-2) 

CAWAP Cranked Arrow Wing Aerodynamics Project 

CAWAPI Cranked Arrow Wing Aerodynamics Project International 

CFD  Computational Fluid Dynamics 

EFD Experimental Fluid Dynamics 

ESP Electronic Scanning Pressure 

ET Exploratory Team 

FC Flight Condition 

FS fuselage station on airplane, in., positive aft (See Chapter 3 – Figure 3-2) 

HUD heads-up display 

HSCT High Speed Civil Transport 

HSR High Speed Research 

HWA Hot Wire Anemometry 

IR Infra Red (technique) 

ITAR International Traffic in Arms Regulations 

LaRC Langley Research Center  

LE leading edge 

NASA National Aeronautics and Space Administration 

NATO North Atlantic Treaty Organisation 

PIV Particle Image Velocimetry 

PSF Performance, Stability & Control and Fluid Physics – one of the standing Technical 

   Committees of the AVT Panel 

PSP Pressure Sensitive Paint 

RTB Research and Technology Board 

RTO Research and Technology Organisation – Scientific Arm of NATO 

TSP Temperature Sensitive Paint 

VFE-2 Vortex Flow Experiment-2 

VL Virtual Laboratory 

WL waterline on airplane, in., positive up (See Chapter 3 – Figure 3-2) 
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CAWAPI Chapters (3 – 16) Nomenclature 
CFL3D name of structured grid flow solver developed at NASA Langley 

Cp surface static pressure coefficient 

cf local skin friction coefficient 

F-16XL-1  an extensively modified version of the single-seat F-16A aircraft which is longer and has a 
cranked arrow wing instead of a trapezoidal wing with leading-edge strake 

h airplane altitude, ft 

iges Initial Graphics Exchange Specifications –> geometry descriptor 

i,j,k grid indices 

M∞ free-stream Mach number 

Rn Reynolds number, based on aircraft reference chord of 24.7 ft 

V/VRE ratio of velocity magnitude in boundary layer to that at the Rake Extreme total-pressure tube 

T absolute temperature, °R 

x/c fractional distance along the local chord, positive aft 

y normal distance above the surface at a rake location, in. 

y+ Reynolds number like term for flat-plate turbulent boundary layer (See Chapter 3 – Ref. [3-1]) 

α angle of attack, deg 

β angle of sideslip, deg 

2y/bl;η fractional distance along the wing local semispan, positive toward the right wing tip 
 
Subscripts 
avg average value 

l, loc local 

nom nominal value 
 

VFE-2 Chapters (17 – 35) Nomenclature 
A  wing aspect ratio 

b  wing span 

bloc local span 

c  root chord 

c   mean aerodynamic chord 

Cm  pitching moment coefficient, reference point at 2c/3; = M/q∞S c  

CN  normal force coefficient; = N/q∞S 

CT  tangential force coefficient; = T/q∞S 

Cp  pressure coefficient; = (p - p∞)/q∞ 

q∞ free stream dynamic pressure 
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r  streamwise leading edge radius 

R  free stream Reynolds number, based on root chord 

Rmac  free stream Reynolds number, based on mean aerodynamic chord 

S  wing area 

x, y, z wing apex fixed coordinates (x downstream, y spanwise, z upwards) 

Λ  leading edge sweep angle 

ξ, η, ζ  wing apex fixed dimensionless coordinates; ξ = x/c, η = 2y/bloc, ζ = 2z/bloc 
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