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Chapter 30 – NUMERICAL SOLUTIONS FOR THE  
VFE-2 CONFIGURATION ON UNSTRUCTURED  

GRIDS AT KTH, SWEDEN 

by 

Simone Crippa 

30.1 INTRODUCTION 

The flow over a sharp and blunt leading edged, slender delta wing is considered in this chapter under subsonic 
and transonic conditions. The range of Mach number presented here extends from 0.2 to 0.85 and the range of 
Reynolds number form 2 to 120 million. This investigation was undertaken as part of the 2nd International 
Vortex Flow Experiment (VFE-2), a facet of the NATO RTO AVT-113 Task Group, which was set up to 
consider the flow behaviour both experimentally and computationally over a specified delta wing of 65° sweep.  

30.2 MODEL DESCRIPTION 

The geometry proposed by Hummel and Redeker [30-16] for the VFE-2 project is that of a delta wing with a 65° 
leading-edge sweep angle (Λ). The initial wind tunnel campaign on which the facet is based on was performed 
by Chu and Luckring [30-3] in the National Transonic Facility (NTF), NASA Langley Research Center (LaRC). 
A remarkable feature of the wind tunnel model is the possibility to interchange the leading-edge section  
which is attached to the flat-plate central wing section. Three blunt leading-edge radii (r) and a sharp leading 
edge were originally tested. But for the AVT-113/VFE-2 project, only the sharp (r/ c = 0) and medium radius 
(r/ c = 0.0015) leading edge geometries were selected for numerical and further experimental evaluations. 

30.3 COMPUTATIONAL METHOD 

30.3.1 Solver 

The flow solver Edge [30-7] is used throughout this study. Edge is an unstructured, edge-based, finite volume 
CFD code developed and maintained by the Swedish Defence Research Agency (FOI). KTH is one among 
several academic contributors to the development of the code. Time integration to steady state of the discretised 
Reynolds averaged Navier-Stokes (RANS) equations is achieved with an explicit three-stage Runge-Kutta 
scheme. For the spatial discretization, a second order accurate, central scheme with 4th order artificial dissipation 
set to 0.02 is used for all cases. To speed up convergence, implicit residual smoothing, local time stepping and 
four level agglomeration multigrid are used.  

The turbulence model used for the closure of the RANS equations is the two-equation k-ω model by Hellsten 
[30-14] coupled to the explicit algebraic Reynolds stress model (EARSM) by Wallin and Johansson [30-30].  
A strain-rate based (curvature corrected) modification to EARSM (CC-EARSM) coupled with the Hellsten k-
ω model is also evaluated for single cases. The calculations are performed with the assumption of fully 
turbulent flow, with a free-stream turbulence intensity of 0.1%. 
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For the unsteady computations, the original Detached Eddy Simulation (DES) [30-27] model as implemented 
in Edge is used. Time integration is achieved through “dual time stepping”, an implicit time marching 
technique with explicit sub-iterations. 

30.3.2 Numerical Model and Boundary Conditions 
The geometric description of the configuration is given analytically by Chu and Luckring [30-3]. A half-body, 
digital geometric definition is available through a Virtual Laboratory [30-20] set up and maintained by NASA 
LaRC. The origin of the right-handed, Cartesian coordinate system is at the apex of the delta wing with the  
x-coordinate pointing downstream (towards the sting), the z-coordinate being perpendicular to the flat plate 
section and the y-coordinate pointing in span-wise direction. The numerical geometry features a root chord (cr) 
of 1m resulting in a mean aerodynamic chord ( c ) of 2/3 m ≈ 0.667 m, which is hereafter used as reference 
length for the Reynolds number (Rmac). The numerical model for the various grids is the same, apart from the 
two different leading edge sections. The sting is represented exactly as in the wind tunnel model up to the 
position x/cr = 1.758, as recommended by Chu and Luckring [30-3]. After this location, the sting is closed out 
using an elliptical revolution surface, which is continuous through the curvature at cut-off. The total length of the 
closure surface is five times the diameter of the sting at the cut-off position (d/cr = 0.165), i.e. x/cr = 0.826,  
see Figure 30-1. The farfield boundary is located at approx. 11·cr from any wall, in all directions, resulting in a 
half-sphere farfield boundary with a radius of 12.5 m. 

 

Figure 30-1: Three-View Sketch of Numerical Model – Exact NASA-NTF [30-3]  
Geometry (in blue) and Sting Close-Off Surface (in red). 

A common unstructured grid for the blunt leading-edge geometry is not available, thus for this study it is 
generated using a combination of the commercially available ANSYS ICEM CFD meshing package and the 
FOI-internal advancing-front grid generator TRITET [30-28]. The latter is the tool of choice for generating 
grids for Edge, as it is transparently interfaced to the solution based re-meshing and h-adaptation programs 
available within the Edge distribution. Although a common unstructured grid is available for the sharp 
leading edge model, for this work a topologically similar grid as for the blunt leading edge model is used also 
for the sharp leading edge computations. 

Solution based adaptive grid refinement [30-29] is available in Edge and is used extensively throughout this 
study. Using a flow solution gained on a hybrid grid and a user-defined value for the selected adaptation 
sensor, the algorithm selects the cell edges to be subdivided and performs cell bisection for tetrahedral and 
prismatic elements. The prismatic cell elements are subdivided consistently in wall-normal direction to avoid 
hanging nodes and preserving the prismatic layer structure. This leads to further refinement of surface 
elements, whereby the additional points are projected to the interpolated location based on the neighbouring 
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original surface nodes. The algorithm can process only tetrahedral, pyramidal and prismatic volume elements. 
The available adaptation algorithm features three different vortex-capturing sensors [30-21] based on total 
pressure ratio, entropy loss or an eigenvalue analysis of the velocity gradient tensor, commonly called λ2. It is 
also possible to refine several prismatic layers parallel to the wall for achieving a desired wall-normal non-
dimensional cell spacing (y+). 

All grids feature a half-span representation of the delta wing model as described here, with a symmetric 
boundary condition applied on the symmetry plane. Furthermore, the boundary for the solid walls is of adiabatic, 
no-slip type for the viscous computations and of slip, wall-bounded type for the inviscid computations. On the 
farfield boundary a weak formulation characteristic condition is set. 

Additional details of the numerical grids for the specific cases are given in the respective section. 

30.4 SUBSONIC CASES 
The results presented and discussed in this section allow for a deeper and more precise characterization of the 
unique double vortex system, which develops on the blunt leading edge delta wing at subsonic speeds. 

Firstly, computational fluid dynamic (CFD) computations are presented for three Reynolds numbers (2, 6 and  
60 million) at two angles of attack (18.5° and 23.0°) for a fixed Mach number of 0.4. Hereby the focus is laid 
on examining the angle of attack (AOA) dependence of the vortex separation onsets at a given Reynolds 
number. Secondly, a detailed flow topological analysis at and around the specific case at M = 0.4, α = 13.3°, 
Rmac = 3 x 106 is presented. For the flow topological interpretation, solutions at different Mach and Reynolds 
numbers are employed along with an inviscid case. Comparisons between computational results and 
experiments are presented with regard to surface pressure coefficient and surface flow patterns for the suction 
side of the delta wing. 

30.4.1 Test Cases 
The VFE-2 task group defined a matrix of computational cases based on realistic application problems and 
CFD development and evaluation needs. Each of the two main geometry configurations (sharp and blunt 
leading edge) are mainly used to study distinct effects. The conditions for the blunt leading edge geometry 
were chosen for studying primarily the transition from attached flow to semi-separated vortical flow up to 
separated dead-water flow. On the other hand, the sharp leading edge conditions were chosen for studying 
unsteady phenomena such as vortex breakdown and transonic vortex-shock interactions. 

For the subsonic computations only the blunt leading edge cases are presented. With the initial case of interest 
being the M = 0.4, α = 18.5°, Rmac = 6 x 106 condition. From this condition, a lower and a higher Rmac are 
selected, respectively 2 and 60 million. The Rmac = 6 x 106 and Rmac = 60 x 106 wind tunnel data is available from 
the NTF campaign [30-3]. Unfortunately the Rmac = 2 x 106 data from the transonic wind tunnel in Göttingen 
(TWG) of the German-Dutch Wind tunnels (DNW) in Göttingen is not fully published yet, thus the data 
presented in Konrath et al. [30-17] is used for this comparison. The Rmac = 3 x 106 runs are available [30-17], 
[30-18],[30-19]; thus two additional conditions are chosen. One at Rmac = 3 x 106 for comparison to latest 
experimental data and another at Rmac = 120 x 106 to assess the effect of a further increase in Reynolds number. 

30.4.1.1 Mid to High Incidence 
To evaluate the coupling of angle of attack and Reynolds number, the initial condition are expanded to include 
also the α = 23.0° conditions. The cases for the AOA-Reynolds number dependency analysis are summarized 
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in Table 30-1. It is worth to note at this point that the initial VFE-2 test matrix is expanded here by the  
Rmac = 60 x 106 cases. 

Table 30-1: Test Cases for the AOA-Reynolds Number Dependency Analysis 

 

The free-stream conditions from the experimental campaign differ slightly from the VFE-2 computational 
matrix. The cases used for comparison are listed in Table 30-2.  

Table 30-2: Experimental Cases Selected for Comparison (from Chu and Luckring [30-3]) 

 

30.4.1.2 Low Incidence 
At the establishment of the VFE-2 task group, one of the main cases of interest was the α = 13.3°, Rmac = 6 x 106, 
M = 0.4 condition for the blunt leading-edge configuration. This condition was selected since it exhibits the most 
distinctive trace of the inner vortex from the complete initial dataset (Chu and Luckring [30-3]). The availability 
of further, more detailed data from other experimental campaigns is mainly limited to lower Reynolds numbers. 
To harvest the most from the new experimental data, a shift of the computational efforts to lower Reynolds 
numbers was necessary. Thus a second set of conditions was chosen to tackle the flow topological description of 
the dual, co-rotating vortex system. Additionally to the M = 0.4 conditions, a further case is chosen at M = 0.2,  
α = 13°, Rmac = 2 x 106. Further analysis based on the solution of the Euler equations for the nominal conditions 
of α = 13.3° and M = 0.4, is helpful to assess the development of the flowfield in the theoretical inviscid 
assumption. The cases presented for this evaluation are listed in Table 30-3. 

Table 30-3: Test Cases for the Flow Topology Study 

 

30.4.2 Numerical Grids 
Three similar numerical grids are employed within this study. Two hybrid grids consisting of tetrahedral volume 
elements and prismatic elements for the viscous layer resolution on an isotropic triangle-elements surface grid. 
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The main difference between the two hybrid grids is the targeted Reynolds number range (low or high) as well 
as the leading-edge resolution. The first hybrid grid is targeted for the cases with Reynolds number below and 
including 6 million (low Rmac), while the second hybrid grid for the 60 and 120 million cases (high Rmac).  
The third grid consists of purely tetrahedral elements in the volume and triangles on the surfaces. This grid is 
used for the inviscid computations and is generated by starting with the same surface mesh as the high Reynolds 
number mesh. 

30.4.2.1 Low Reynolds Number Cases 

The basic meshing strategy for these cases is to generate a suitable grid for the Rmac = 6 x 106 case, in terms of 
first prismatic layer cell height, that can be subsequently used also for the lower Reynolds number cases.  
The surface discretization is given by isotropic triangular elements over the complete wing and sting. The first 
prismatic cell height needed to achieve y+ target values around unity is found to be 1 x 10-6 m for the  
Rmac = 6 x 106 case. The viscous layer discretization is realized with up to 32 prismatic layers with a total 
normal distance to the wall of 0.015 m. An optimal resolution of the viscous sublayer is achieved by setting a 
non-uniform expansion ratio of 1.17 near to the wall increasing up to 1.3 at the edge of the prismatic layers. 
The tetrahedral volume discretization is chosen coarse enough to yield first acceptable results. Subsequently, 
solution based refinement is employed for each case to achieve optimal results. For further details on the 
initial grid, please refer to Crippa and Rizzi [30-4]. The initial surface grid is visible in Figure 30-2. 

 
 

 

(a) Isometric View (b) Side View of Apex (c) Side View of Symmetry Plane 

Figure 30-2: Initial Blunt Leading Edge Computational Grid for the Rmac = 2 x 106 and Rmac = 6 x 106 Cases.  

For the solution based mesh refinement at each reference condition, the basic grid is refined using the λ2 
adaptation sensor. The adaptation above the main wing is mainly constrained to the tetrahedral elements by 
specifying a minimum edge length to be considered for adaptation. An example of the resulting adapted grid 
is given for the case α = 13.3°, M = 0.4, Rmac = 3 x 106. The comparison between the initial surface grid and 
the adapted grid on the suction side of the wing is shown in Figure 30-3 (a) and Figure 30-3 (b), while the 
additional tetrahedral cells above the wing are visible in Figure 30-3 (c) and Figure 30-3 (d). 
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(a) Top View, Initial Grid (b) Top View, Twice Adapted Grid 

 
 

(c) Isometric View of Cp on Surface (d) Front-Upper View of Cp on Surface 

Figure 30-3: Comparison of Surface Elements on Suction Side and Additional Tetrahedral  
Elements after Second Solution-Based Adaptation for Case α = 13.3°, M = 0.4, Rmac = 3 x 106. 

The sensor threshold is set here to the minimum possible value, before several spurious regions are identified 
within the boundary layer. The additional elements as identified by the λ2 sensor cluster around four main 
regions of vortical flow. The largest region of refinement is given by the leading-edge primary vortex. 
Between the path of the primary vortex and the leading edge it is also possible to discern the adaptation due to 
the identification of the secondary vortex. Next to the sting it is further possible to see the refinement of the 
horseshoe-vortex generated by the sting-wing intersection. The fourth identified region is due to an additional 
inboard vortex, co-rotating with the primary leading-edge vortex, and extensively described by several 
researchers [30-2],[30-18]. For this study, the correct resolution of this inboard vortex is crucial, but the λ2 
sensor fails here to localize a confined vortical region and thus to refine around the inner vortex upstream of 
x/cr ≈ 0.49. This failure is not due to the specified minimum edge length or the threshold value for the sensor 
being too high. The vortical motion of the horse-shoe vortex upstream of x/cr ≈ 0.77 is also not strong enough 
to trigger the adaptation sensor. The sizes for the initial grid, as well as the increase in nodes and elements due 
to the solution based refinement are summarized for each case in Table 30-4. The distribution of refined cells 
is very similar between the cases. This is mainly due to the relatively high selected sensor threshold value, 
which resulted in the adaptation algorithm to select and split cell edges beyond the strict region of influence of 
the main vortical structures. This, coupled to the flow topology for this configuration being similar, resulted in 
analogue adapted grids for all the different cases. 
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Table 30-4: Computational Grid Size for the Low Rmac Cases – Increase in Comparison to  
the Initial Grid is Given in Brackets; k = 103, M = 106 in the Table (Pyramidal  

elements are included in the total volume nodes counts) 

 

30.4.2.2 High Reynolds Number Cases 

As for the numerical grid of the lower Reynolds number cases, the meshing program TRITET was used also 
here for producing the volume grid. The surface grid generation was performed again with ANSYS ICEM 
CFD. This meshing strategy allows for an optimal control of the main delta wing surface resolution. In this 
case it was modified to better resolve the region of primary separation, expected to shift downstream.  
This translates into a decrease of triangle density at the apex and an increase at the wing tip. The resolution of 
the leading edge downstream of x/cr = 0.7 is increased by approx. a factor of three in comparison to the lower 
Reynolds number grid. The first cell height is 1 x 10-7 m, with the total extent of the 36 prismatic layers of 
0.003 m, resulting in the non-uniform exponential expansion ratios normal to the wall of 1.21 near the wall 
and 1.35 at the edge of the prismatic layers.  

For the Rmac = 60 x 106 case, two λ2 sensor adaptation steps are performed, whereas the first solution-based 
adaptation for the 120 million Rmac case is aimed at achieving a satisfactory y+ distribution. For this case only 
one adaptation step was then performed using the λ2 sensor. See Table 30-5 for the grid size details. 

Table 30-5: Computational Grid Size for the High Rmac Cases at M = 0.4 – Increase in Comparison  
to the Initial Grid is Given in Brackets; k = 103, M = 106 in the Table (Pyramidal  

elements are included in the total volume nodes counts) 

 

30.4.2.3 Inviscid Case 

The same surface mesh as for the high Reynolds number case is used to generate a fully tetrahedral volume grid. 
The initial mesh is adapted twice using the same λ2 sensor as for the RANS grids. The sizes of the numerical 
grids used for the inviscid computations are listed in Table 30-6. 
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Table 30-6: Computational Grid Size for the Inviscid Case at M = 0.4 – Increase in  
Comparison to the Initial Grid is Given in Brackets; k = 103, M = 106 in the Table 

 

30.4.3 Results and Discussion 
The maximum and average y+ values over the delta wing for some relevant cases are presented in Table 30-7. 

Table 30-7: Wall-Normal Dimensionless Distance (y+)  
on the Delta Wing Surface for the M = 0.4 Cases 

 

30.4.3.1 Separation Onset Analysis 

Grid size sensitivity is presented here only for case α = 18.5°, M = 0.4, Rmac = 6 x 106. Furthermore only one 
set of results is presented in this section from the turbulence model selection runs, relative to the comparison 
between the CC-EARSM and EARSM models for case α = 18.5°, M = 0.4, Rmac = 6 x 106. 

30.4.3.1.1 18.5° Angle of Attack Cases 

The increased prediction accuracy of CC-EARSM over EARSM expected for this type of vortical flows could 
not be confirmed. Up to x/cr = 0.4, no difference between the two models could be observed in the pressure 
coefficient (Cp) plots, but after x/cr = 0.6 the suction peak associated with the primary vortex is underrepresented 
by CC-EARSM, see Figure 30-4.  
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(a) x/cr = 0.4 (b) x/cr = 0.6 (c) x/cr = 0.8 

Figure 30-4: Cp Plots for Different x/cr – Turbulence Model  
Comparison for Case α = 18.5°, M = 0.4, Rmac = 6 x 106. 
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This is disappointing as CC-EARSM should alleviate the need for specific modifications [30-1] to the 
standard k-ω models, which in the original formulation are known to over-predict the eddy viscosity within 
vortex cores [30-12]. This led to CC-EARSM not being selected for further computations, but EARSM. 

The typical residuals and force coefficients convergence behaviour shown in Figure 30-5 for case α = 18.5°, 
M = 0.4, Rmac = 6 x 106, did not differ substantially from the other cases. 

   

(a) Initial Grid (b) Once Adapted Grid (c) Twice Adapted Grid 

Figure 30-5: Convergence Behaviour for Case α = 18.5°, M = 0.4, Rmac = 6 x 106,  
Scaled Residuals (Logarithmic Scale) and Force Coefficients. 

In Figure 30-5 we identify a significantly improved convergence behaviour between the initial and once 
adapted grid, but no substantial residual convergence gain between the once adapted and twice adapted grid. 
The increase of lift coefficient (CL) from 0.7082 for the once adapted grid to 0.7104 for the twice adapted grid 
is attributed to the stronger primary vortex and thus lower pressure coefficient, see Figure 30-6. 

0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

η

−
c p

 

 
Initial

1st adapt.

2nd adapt.
Exp. data

 
0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

η

−
c p

 

 
Initial

1st adapt.

2nd adapt.
Exp. data

 
0.2 0.4 0.6 0.8 1

0

0.5

1

η

−
c p

 

 
Initial

1st adapt.

2nd adapt.
Exp. data

 

(a) x/cr = 0.2 (b) x/cr = 0.4 (c) x/cr = 0.8 

Figure 30-6: Cp Plots for Different x/cr – Comparison of the Solution on the  
Initial Grid to Two Further Levels of Refinement and Experimental Data. 

Since the main area of interest for this study is in the region of separation onset, the better resolution of the aft 
section given by the twice adapted grid does not justify the increased computational costs. Thus for the majority 
of the presented cases, only one adaptation step per case is applied to the initial mesh. If the presented results are 
achieved on a twice adapted mesh, then it is noted in the relative section. To better interpret the flow structures,  
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a detailed view of the apex region between approx. x/cr = 0.05 and 0.5 for case α = 18.5°, M = 0.4, Rmac = 6 x 106 
is shown in Figure 30-7. 

 

Figure 30-7: Surface Pressure Coefficient, x-Vorticity Iso-Contours  
and Skin Friction Lines for Case α = 18.5°, M = 0.4, Rmac = 6 x 106. 

In this figure the surface pressure coefficient is visualized on the left hand side and the skin friction lines on 
the right hand side. Furthermore, cuts through the flowfield, at constant x/cr sections, show iso-contours of 
constant x-component of the vorticity vector. On the right hand side, the same contour curves are colored by 
the x-vorticity, where positive values indicate a left-handed rotation and negative values a right-handed 
rotation (in the depicted view). This enables to identify the primary vortex, which is formed at x/cr = 0.11 and 
a co-rotating vortical structure located further inboard. This structure is dissipated quickly and according to 
the Cp footprint and the vorticity cuts, it is nearly vanished at x/cr = 0.4. 

For case α = 18.5°, M = 0.4, Rmac = 60 x 106 a similar phenomenon appears. For this case, the separation onset 
for both the outer primary vortex, as well as the inner primary vortex is shifted by x/cr ≈ 5% further downstream. 
Figure 30-8 depicts the same portion of the delta wing and is structured congruently to Figure 30-7. From this 
figure it is possible to further identify, based on the skin friction lines, the presence of an inner secondary vortex, 
developing at approx. x/cr = 0.32. 
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Figure 30-8: Surface Pressure Coefficient, x-Vorticity Iso-Contours  
and Skin Friction Lines for Case α = 18.5°, M = 0.4, Rmac = 60 x 106. 

The flow topology can be further characterized by identifying separation and attachment lines (SL, AL) of the 
primary and secondary vortices (PV, SV). The division into inner and outer vortical system (I, O) is added to the 
description nomenclature of Figure 30-9, e.g., OPVSL corresponds to the outer primary vortex separation line. 

 

Figure 30-9: Skin Friction Lines and Topological Interpretation – Case α = 18.5°, M = 0.4, Rmac = 60 x 106. 
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Note that the inner primary vortex attachment line (IPVAL) is not visible in Figure 30-9, but with the help of 
spanwise velocity vector cuts (data not shown), it is possible to locate the IPVAL on the symmetry plane.  

The pressure coefficient comparison between the computed case at Rmac = 60 x 106 and experimental data 
shows good agreement, see Figure 30-10. This is mainly due to the small discrepancy between computed and 
experimental separation onset of the primary and inner vortices. The computations seem to over-predict the 
vortex strength, as visible on the Cp plot for x/cr = 0.95, see Figure 30-10 (d). 

 

(a) x/cr = 0.4 (b) x/cr = 0.6 (c) x/cr = 0.8 (d) x/cr = 0.95 

Figure 30-10: Cp Plots for Different x/cr – Case α = 18.5°, M = 0.4, Rmac = 60 x 106. 

30.4.3.1.2 23.0° Angle of Attack Cases 

The sensitivity of the flowfield to the primary vortex separation location as shown for the α = 18.5° cases is 
expected to decrease when increasing the angle of attack. This is here the case, as visible in Figure 30-11,  
where for the α = 23.0° cases the outer primary vortex develops within a short distance from the apex, at about 
x/cr = 0.1. 

  

(a) Left Frame: Rmac = 6 x 106; Right Frame: Rmac = 2 x 106 (b) Left Frame: Rmac = 6 x 106; Right Frame: Rmac = 60 x 106 

Figure 30-11: Surface Pressure Coefficient – View on the Suction Side,  
Perpendicular above the Flat Delta Wing Central Part; α = 23.3°, M = 0.4. 
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The same viewpoint and visualization technique as for case α = 18.5°, M = 0.4, Rmac = 60 x 106 (Figure 30-8) 
can be used to identify a similar flow topology for case α = 23.0°, M = 0.4, Rmac = 60 x 106.  

 

Figure 30-12: Surface Pressure Coefficient, x-Vorticity Iso-Contours  
and Skin Friction Lines for Case α = 23.3°, M = 0.4, Rmac = 60 x 106. 

Again, the skin friction pattern, combined with the iso-contours of x-vorticity at specific cuts reveals  
the presence of an inner primary and secondary vortex system. In contrast to case α = 18.5°, M = 0.4,  
Rmac = 60 x 106, here this system is dissipated relatively quickly and as soon as x/cr = 0.3 the inner secondary 
attachment line detaches from the surface. This happens also for the inner secondary vortex separation line at 
x/cr = 0.34. These observations are summarized in Figure 30-13 (a), where separation and attachment lines for 
both inner and outer vortical system are sketched. 
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(a) Skin Friction Lines and Topological Interpretation (b) Zonal Subdivision 

Figure 30-13: Skin Friction Lines and Topological Interpretation – α = 23.3°, M = 0.4, Rmac = 60 x 106. 

For this AOA the CFD data is found to match best the experimental data, as can be seen in the Cp plots 
presented in Figure 30-14 for case α = 23.0°, M = 0.4, Rmac = 2 x 106, in Figure 30-15 for case α = 23.0°,  
M = 0.4, Rmac = 6 x 106 and in Figure 30-16 for case α = 23.0°, M = 0.4, Rmac = 60 x 106. At this incidence,  
as for the α = 18.5° case, the Rmac = 60 x 106 case matches best the experimental data. 

 

(a) x/cr = 0.2 (b) x/cr = 0.4 (c) x/cr = 0.6 (d) x/cr = 0.8 

Figure 30-14: Cp Plots for Different x/cr – Case α = 23.3°, M = 0.4, Rmac = 2 x 106. 
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Figure 30-15: Cp Plots for Different x/cr – Case α = 23.3°, M = 0.4, Rmac = 6 x 106. 
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Figure 30-16: Cp Plots for Different x/cr – Case α = 23.3°, M = 0.4, Rmac = 60 x 106. 

30.4.3.1.3 Conclusions 

The location of primary vortex separation onset can be determined in two ways. A simple, graphical method, 
when fine-grained leading edge pressure measurements are not available, is to geometrically extend the location 
of the primary vortex core path upstream, to intersect the leading edge and mark this intersection as the 
separation onset. Another, more accurate, possibility is to evaluate the skin friction lines in the vicinity of the 
leading edge to identify the position, where convergence of two skin friction lines occurs first. This position 
determines the so-called squeeze-off separation onset location. For comparison, both methods are used here to 
determine the separation onset. The error of the vortex core prolongation method is minimal. For all cases, both 
methods give similar results. These are compared with experimental data and summarized in Figure 30-17.  
At the lowest Reynolds number and lowest incidence the agreement is worst. Going from the Rmac = 6 x 106 to 
the Rmac = 60 x 106 cases, the agreement increases. With the Rmac = 60 x 106 cases fitting best by considering the 
percental difference between CFD and experimental data.  
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(a) Rmac = 2 x 106 (b) Rmac = 6 x 106 (c) Rmac = 60 x 106 

Figure 30-17: Outer Primary Vortex Separation Onset. 

Since the separation onset of the inner primary vortex is not as clear for the α = 13.3° and all Rmac = 2 million 
cases, only the results for Rmac = 60 million and for the cases at higher AOA at Rmac = 6 million are presented 
in Figure 30-18. Comparison between computed and measured results is not possible here, due to 
unavailability of experimental data. The relatively constant distance between outer and inner primary vortex 
separation onset is an indication that these vortical systems are closely coupled. 
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(a) Rmac = 6 x 106 (b) Rmac = 60 x 106 

Figure 30-18: Inner and Outer Primary Vortex Separation Onset. 

The predicted outer primary separation onset location is shown to match well the data from experimental 
investigations at high Reynolds numbers. This enables to gain certainty in the determination of the inner primary 
vortex separation, which is shown to correlate with the outer primary vortex separation and attachment. This is 
especially true for the high AOA, high Rmac case (case α = 23.0°, M = 0.4, Rmac = 60 x 106), where the coupling 
between outer primary vortex attachment line (onset and length) with the inner primary vortex separation line 
(onset and length) is clearly recognizable. The primary vortex attachment line (OPVAL in Figure 30-12) 
separates the diverging streamlines passing under the outer primary vortex on one side (pointing outboard, 
region “A” in Figure 30-13 (b)) and the streamlines being diverted towards the centreline on the other side 
(region “B” in Figure 30-13 (b)). The onset of the inner primary vortex (IPVSL in Figure 30-13 (a)) coincides 
where the streamlines diverted towards the centreline by the outer primary vortex hit for the first time the further 
upstream, inboard streamlines from the delta wing apex region (“C” in Figure 30-13 (b)). If the inner primary 
vortex strength is predicted well, the attached flow passing under the inner primary vortex core (coming from 
regions “D” and “E” in Figure 30-13 (b)) is accelerated sufficiently to trigger (inner) secondary separation. 
Where the outer primary vortex attachment on the surface is not present anymore (for case α = 23.0°, M = 0.4, 
Rmac = 60 x 106 at x/cr = 0.30), the inner vortex starts to decrease in strength and shortly after (for case α = 23.0°, 
M = 0.4, Rmac = 60 x 106 at x/cr = 0.34) the inner primary vortex separation stops.  

Although the numerical results for the Rmac = 6 x 106 cases do not match well the experimental data, the inner 
primary vortex separation mechanism described above can be recognized also here (e.g., case α = 18.5°,  
M = 0.4, Rmac = 6 x 106). Both the outer primary vortex strength and the outer primary vortex attachment line 
extent are under-predicted. In this case the diversion of the streamlines from the outer primary vortex 
attachment line towards the centreline is not as strong as it is in reality. Thus the coincidence between these 
streamlines and the further inboard streamlines (for case α = 18.5°, M = 0.4, Rmac = 6 x 106 at x/cr = 0.22) 
induces only a weak inner primary vortex, which does not trigger secondary separation. From the above 
discussion, it is clear that the numerical method used for this study is shown to perform best at the higher 
AOA of 23.0° and Rmac of 60 million for resolving the double vortex system. 
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30.4.3.2 Flow Topological Analysis 
This section contributes to the common effort to describe the flow phenomena for the co-rotating double-vortex 
system. This is done by highlighting the strengths and deficiencies encountered by steady CFD computations at 
low Reynolds numbers around the nominal angle of attack of 13.3°, and subsonic Mach number, M = 0.4. 

For these free-stream conditions, the leading-edge normal AOA and Mach number are αN = 29.22° and  
MN = 0.19. Even though the classification by Eberle et al. [30-6] does not account for the effects of Reynolds 
number, it differentiates between sharp and blunt leading-edged, slender delta wings. The flow pattern to be 
expected for the considered case can be extracted from the αN-MN classification [30-6]. For the conditions as 
given above, the data point lies in the middle of the region denominated “development of vortex system”.  
In this condition, a higher Reynolds number would shift the data point towards the fully attached flow region by 
delaying the separation onset; whereas a lower Reynolds number would eventually result in the appearance of 
fully developed vortices. The sensitivity of this case to small variations of Reynolds number, AOA and free-
stream Mach number makes it a challenging case for computational methods. Thus the numerical exploration of 
a wide range of Reynolds numbers and a topological flow analysis are the main topics of this study. 

30.4.3.2.1 Surface Pressure Coefficient 

A comparison of computed surface pressure data to experimental pressure sensitive paint (PSP) data from 
Konrath et al. [30-17] is here only possible for the Rmac = 3 x 106 case. This is presented in Figure 30-19 (to be 
compared against Figure 30-21(c)). The surface pressure coefficient plots of the delta wing suction side are 
presented in Figure 30-20 for the inviscid computation and in Figure 30-21 for the viscous computations. 

 

Figure 30-19: Experimental Pressure Coefficient Surface Plot for  
α = 13.3°, M = 0.4, Rmac = 3 x 106 Data Provided by DLR [30-17]. 

 

Figure 30-20: Surface Pressure Coefficient on Half-Span  
Suction Side – CFD Result for the Inviscid Case. 
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(a) M = 0.2, Rmac = 2 x 106 (b) M = 0.4, Rmac = 2 x 106 

  

(c) M = 0.4, Rmac = 3 x 106 (d) M = 0.4, Rmac = 6 x 106 

  

(e) M = 0.4, Rmac = 60 x 106 (f) M = 0.4, Rmac = 120 x 106 

Figure 30-21: Surface Pressure Coefficient on Half-Span  
Suction Side – CFD Results for the Viscous Cases. 

The trends as described by Luckring [30-23] in respect to Reynolds number and compressibility dependence 
are also found when examining the computational results. The effect of an increase of Mach number on the 
upstream movement of primary separation onset is shown here from M = 0.2 to M = 0.4 (Figure 30-21(a) to 
Figure 30-21(b)). The opposite effect for an increase of Reynolds number, i.e. delay of primary separation 
onset, is clear when comparing Figure 30-21(b) to Figure 30-21(f).  

The inviscid case features a substantially stronger primary vortex than the highest Reynolds number case. 
From analysis of the surface pressure data it forms at x/cr ≈ 0.6 and is located too far outboard. But the overall 
picture is as expected from an inviscid computation. 



NUMERICAL SOLUTIONS FOR THE VFE-2 
CONFIGURATION ON UNSTRUCTURED GRIDS AT KTH, SWEDEN 

RTO-TR-AVT-113 30 - 19 

 

 

30.4.3.2.2 Span-Wise Pressure Coefficient 

The half-span surface pressure coefficient graphs are presented here only for the cases with available 
experimental data and are normalized by the local semi-span to give the local non-dimensional semi-span (η). 
For all cases considered in this study, at x/cr = 0.2 the computations agree with the experimental data in 
predicting fully attached flow. Thus the foremost available location from the experimental datasets (x/cr  = 0.2)  
is not presented hereafter. 

The viscous computations are presented in Figure 30-22 to Figure 30-25, while the inviscid case is only 
compared to other viscous cases in Figure 30-26 and Figure 30-27. 

 

(a) x/cr = 0.4 (b) x/cr = 0.6 (c) x/cr = 0.8 (d) x/cr = 0.95 

Figure 30-22: Cp Plots for Different x/cr – Case α = 13°, M = 0.2, Rmac = 2 x 106  
– Comparison between CFD Results and Experimental Data [30-17]. 

 

(a) x/cr = 0.4 (b) x/cr = 0.6 (c) x/cr = 0.8 (d) x/cr = 0.95 

Figure 30-23: Cp Plots for Different x/cr – Case α = 13.3°, M = 0.4, Rmac = 6 x 106  
– Comparison between CFD Results and Experimental Data [30-3]. 

30.4.3.2.3 Effect of Turbulence Modelling 

The only results presented in this section for the turbulence model comparison are between the CC-EARSM 
and EARSM models for the case α = 13.3°, M = 0.4, Rmac = 3 x 106, as the observed behaviour is similar for 
the other cases. Other examined turbulence models affected the location of primary vortex separation onset;  
in some cases positively as for the one-equation Spalart-Allmaras model and in other cases negatively as for 
the standard Wilcox k-ω model. None of the evaluated models correctly resolves the initial formation of the 
inner vortex. A motivation for the assessment of curvature corrected models is that a better resolution of the 
inner vortex was hoped for. Up to x/cr = 0.2, no difference between the two models can be observed in the 
pressure coefficient (Cp) plots, but right after the formation of the primary vortex the main suction peak is 
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stronger, as expected from CC-EARSM, see Figure 30-24 (a) and Figure 30-24 (b). At x/cr = 0.8 CC-EARSM 
shows a weaker primary suction peak and at x/cr = 0.95 no major difference between the two models is seen in 
regards to primary suction peak. Although CC-EARSM initially performs as expected in regards to primary 
vortex strength, the inner vortex is under-predicted over the complete path. The difference to EARSM is only 
minor, but visible in Figure 30-24 (a), where at η ≈ 0.6, it is possible to recognize the weaker inner vortex 
suction peak for the CC-EARSM case. 

 

(a) x/cr = 0.4 (b) x/cr = 0.6 (c) x/cr = 0.8 (d) x/cr = 0.95 

Figure 30-24: Cp Plots for Different x/cr – Case α = 13.3°, M = 0.4, Rmac = 3 x 106  
– Comparison between CFD Results and Experimental Data [30-3]. 

30.4.3.2.4 Effect of Mesh Refinement 
The effect of solution-based mesh refinement on the solution accuracy is presented here only exemplary for 
the case Rmac = 60 x 106. As displayed in Figure 30-25, a substantial improvement is found through the first 
adaptation step. A second adaptation does not result in an equally pronounced improvement over the majority 
of the wing. Only at x/cr = 0.95 a difference is visible between the second and first adaptation step.  
This behaviour is found in all other evaluated cases, where a single adaptation step is sufficient. 

 

(a) x/cr = 0.4 (b) x/cr = 0.6 (c) x/cr  = 0.8 (d) x/cr = 0.95 

Figure 30-25: Cp Plots for Different x/cr – Case α = 13.3°, M = 0.4, Rmac = 60 x 106  
– Comparison between CFD Results and Experimental Data [30-17]. 

From the analysis of the available comparisons, it is obvious that the CFD computations consistently disagree 
with the experimental datasets in terms of separation onset of the primary leading-edge vortex. In all evaluated 
cases the separation onset of the primary vortex is predicted too far upstream, resulting in an inboard shift of 
the primary vortex suction peak in all sections downstream of separation onset. The typical over-prediction of 
secondary separation strength is also observed.  
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The inner vortical system is captured in all cases, but the location and strength are predicted wrongly. For the 
α = 13.3°, M = 0.4, Rmac = 2 x 106 case, the strength of the inner vortex is over-predicted in comparison to the 
experimental data (Figure 30-22). However, Figure 30-23 (a) to Figure 30-23 (c) and Figure 30-24 (a) to 
Figure 30-24 (c) present evidence of an under-prediction of inner vortex strength for the low Reynolds 
number, M = 0.4 cases. A feature that is missed consistently in all computational results is the span-wise 
extent of a low-pressure region just upstream of the primary leading-edge vortex separation onset, which 
extends from η ≈ 0.65 to η ≈ 0.85 (Figure 30-23 (a) and Figure 30-24 (a)). This difference is also discernible 
when comparing the experimental PSP data from Konrath et al. [30-17] in Figure 30-19 to the corresponding 
computed case in Figure 30-21 (c). None of the computed cases feature such an extended Cp plateau prior to 
leading-edge separation onset as experienced in the experimental campaigns. 

The delaying effect of Reynolds number on the primary vortex separation onset is appreciated in Figure 30-26. 
A coupling between the primary vortex separation onset and the growth of inner vortex strength, as described by 
Crippa and Rizzi [30-4] and presented in previous sections, is observed in Figure 30-27. It is also possible to 
discern the presence of a weak suction peak in Figure 30-27 (d) at η ≈ 0.55 for the inviscid case. 

 

(a) x/cr = 0.3 (b) x/cr = 0.5 (c) x/cr = 0.6 (d) x/cr = 0.8 

Figure 30-26: Cp Plots for Different x/cr – Case α = 13.3°, M = 0.4 – Comparison of  
CFD Results for Different Reynolds Numbers and Inviscid Computation. 

 

(a) x/cr = 0.3 (b) x/cr = 0.5 (c) x/cr = 0.6 (d) x/cr = 0.8 

Figure 30-27: Cp Plots for Different x/cr – Case α = 13.3°, M = 0.4 – Comparison of CFD Results for 
Different Reynolds Numbers and Inviscid Computation – Magnification on Inner Vortical Region. 

30.4.3.2.5 Flow Topology 

Despite the differences between the computational and the experimental results, the off-body vortical 
structures are analyzed to understand the formation of the inner vortex as well as its coupling to the primary 
leading-edge vortex formation. For this purpose the case at M = 0.2, Rmac = 2 x 106 is presented hereafter, 
since it features the strongest inner vortex.  
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All the skin friction lines from the symmetry plane to the leading-edge secondary attachment line can be 
traced upstream to a very confined region at the apex, highlighted in Figure 30-28 (a) and presented Figure 
30-28 (b). The attachment on the suction side from the symmetry plane at x/cr ≈ 0.01 at the half-saddle point C 
diverts the streamlines originating from the primary attachment line on the pressure side of the wing, see 
Figure 30-28 (b), where the centre-most skin friction line (St1) is parallel to the symmetry plane upstream of 
the attachment half-saddle point C. Downstream of the attachment half-saddle point C, St1 remains parallel to 
the streamlines emanating from C, see for example St2. This surface topology was found on all cases, 
whereby the location of C moves towards the apex as the Reynolds number increases. 

 
 

(a) Complete Wing with Magnification 
Region at Apex 

(b) Magnified Region, x/cr ≈ 0 – 0.01 

Figure 30-28: M = 0.2, Rmac = 2 x 106 – Color-Coded Skin Friction Lines on Suction Side. 

The isometric view presented in Figure 30-29 (a) gives further insight in the off-body flow topology. From the 
trajectories at x/cr = 0.2 it is possible to discern a weak vortical motion extending from the symmetry plane to 
η ≈ 0.5 (Figure 30-29 (b)). The attachment line of this vortex is shown on the symmetry plane by the iso-line 
of zero wall-normal velocity. This vortical structure extends for this case from x/cr ≈ 0.1 to x/cr ≈ 0.85, where 
it merges with the primary leading-edge vortex. For this case, the onset of squeeze-off separation that leads to 
the formation of the leading-edge primary vortex happens at x/cr ≈ 0.215. This is downstream of the formation 
of the vortical structure near the centreline, the formation of which coincides with the foremost position of the 
iso-line of zero wall-normal velocity. 

  

(a) Isometric View – Inner Vortex Attachment  
Line is Shown on the Symmetry Plane 

(b) Frontal View of Trajectories Projected on  
Plane x/cr = 0.2 and Surface Streamlines 

Figure 30-29: M = 0.2, Rmac = 2 x 106 – Skin Friction Lines and Field Lines of Force Projected on x/cr Planes. 
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The presence of a thin vortical structure upstream of primary leading-edge separation onset is documented 
experimentally by Konrath et al. [30-18]. The PIV data for case α = 13.3°, M = 0.4, Rmac = 3 x 106 at x/cr = 0.35 
is presented in Figure 30-30 (a) next to the computed case at the same conditions Figure 30-30 (b). Compared to 
the experimental data, the computations show a wider and flatter vortex. The span-wise extent of the computed 
vortex is approx. 75% of the local semi-span. A direct comparison to the experimental data is in this respect not 
possible since the PIV field does not reach the symmetry plane, but the vortex core location is visible. In the 
computations it is too far inboard by as much as 12% of the semi-span. However, the total surface-integrated 
vorticity is comparable between the computations and experiments. The observed discrepancy in location and 
extent of the apex vortex is believed to be the reason for the absence in the computations of the low-pressure 
plateau as presented in Section 30.4.3.2.2. A thicker, further outboard concentrated vortex could explain this Cp 
plateau. 

 

 

(a) Experimental Time-Averaged Vorticity Magnitude and 
Field Lines of Force – Data Provided by DLR [30-18] 

(b) Field Lines of Force for the CFD Results. 

Figure 30-30: α = 13.3°, M = 0.4, Rmac = 3 x 106 – Cut Plane at x/cr = 0.35. 

The skin friction lines on the suction side of the wing presented in Figure 30-28 reveal a distinct separation 
line inboard of the primary vortex attachment line. This separation line extends from x/cr ≈ 0.48 to x/cr ≈ 0.66 
and is difficult to classify without detailed off-body flow analysis. Through vorticity-colored cut-planes and 
interactive placement of streamlines, this separation line can be attributed to a secondary vortex.  
The formation of which is due to the very strong inner vortex. At higher incidences, this feature was already 
found numerically by Crippa and Rizzi [30-4], while at the lower incidences it is only documented 
experimentally at similar conditions by Furman and Breitsamter [30-11] (see Figure 30-31).  
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Figure 30-31: Oil-Flow Image of Blunt Leading-Edge Suction Side –  
α = 13°, M = 0.14, Rmac = 2 x 106 (Reproduced with permission [30-11]). 

In the experimental campaign, the extension of this inner separation line was coupled to an equally distinct inner 
attachment line, attributed to the inner vortex, originating in the apex region. The extent of the inner separation 
and attachment lines was found to span from x/cr ≈ 0.27 to the trailing edge and located inboard of η = 0.5.  
By further comparison of the oil-flow image data from Furman and Breitsamter [30-11] with the computed skin 
friction lines, it is apparent that the primary vortex separation onset is predicted computationally only \Delta  
x/cr ≈ 0.05 downstream of the experimental data. This good agreement is probably only due to the difference in 
freestream Mach number between 0.2 (CFD) and 0.14 (exp.) The higher Mach number for the computational 
case leads to an upstream shift of the primary vortex separation, and thus to a better agreement with the lower-
Mach number experiments. 

The inner vortical structure is not captured correctly, both in terms of the onset and of the downstream 
development. The first discrepancy can possibly be attributed to the assumption of fully turbulent flow in the 
computations and the second discrepancy to the dissipative effects on vortical structures of the chosen turbulence 
model. 

The problematic of laminar-turbulent transition can be alleviated by computing at higher Reynolds numbers, 
where transition should take place earlier and thus the fully-turbulent assumption is more accurate. A better 
correlation to experimental data at higher Reynolds numbers was shown by Crippa and Rizzi [30-4] and 
presented in the previous sections. This is especially true for higher incidences, whereas at the lowest 
incidence of 13.3°, the computations still showed major discrepancies. The use of rotational (or curvature) 
corrections to the basic turbulence model does not show substantial improvements in the vortex strength 
prediction, which further indicates that the computational methods fail to predict the formation stage of the 
inner vortex, not its development. 

To assess the importance of viscous effects, these can be numerically excluded by solving the Euler equations. 
With a proper choice of grid resolution and numerical dissipation, leading-edge separation can be achieved 
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even on the blunt geometry. Numerical simulations on this geometry using the Euler equations were last 
performed and published in the context of the International Vortex Flow Experiment on Euler Code 
Validation [30-8] (VFE-1). The main interest was then to study the application of Euler solvers also for the 
blunt leading-edge geometry, given appropriate corrections. 

It is now intriguing to notice that the computations performed within this study, show evidence of the inner 
vortical structure upstream of primary leading-edge separation as already shown in the Section 30.4.3.2.2.  
Due to the very late primary leading-edge separation attainable in this case it is easier to analyze the flow 
structure between the apex and primary separation onset, where the inner vortex develops. The inviscid case 
shows a similar flow topology as all other viscous cases with a thin vortical structure starting in the apex region, 
which then concentrates outboard near the primary leading-edge vortex and looses strength (Figure 30-32 and 
Figure 30-33).  

 

 

(a) Top View of Suction Side (b) Isometric View with Field Lines of Force Projected on 
x/cr Planes and Attachment Line on Symmetry Plane 

Figure 30-32: Inviscid Case – Skin Friction Lines. 

In a plane upstream of the formation of the inner vortex (at x/cr ≈ 0.1), the field trajectories reveal fully-attached 
flow, see Figure 30-33 (a). Between inner vortex formation and primary vortex separation onset (at x/cr ≈ 0.6)  
the inner vortex is comparable in semi-span extent and thickness to the other viscous cases. Since the primary 
separation is stronger in the inviscid case, the inner vortex is absorbed faster, which results in a different picture 
at x/cr = 0.85 than for the viscous cases. 

   

(a) x/cr = 0.15 (b) x/cr = 0.4 (c) x/cr = 0.85 

Figure 30-33: Inviscid Case – Isometric Views of Skin Friction  
Lines and Field Lines of Force Projected on x/cr Planes. 
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30.4.3.2.6 Conclusions 
Summarizing the results from all cases, the wide, thin inner vortex observed to form very early in the apex 
region is easily found to attach on the symmetry plane. This may not be true for the experiments, where by 
comparing with available PIV data it is possible to deduce that the inner vortex is not only located further 
outboard, but is also stronger and more compact than in the numerical results. If the correct strength and location 
would be captured correctly by the computations, this could potentially result in the attachment line being shifted 
from the symmetry plane onto the wing, as shown by the low-speed, low-Reynolds number experiments. 

Since the computations under-predict the strength of the inner vortex at its origin, the remaining development 
can’t be matched either. This is consistent with the detailed analysis of the skin friction lines from the 
computations, where it is not possible to find a distinct convergence of skin friction lines that leads to the inner 
vortical flow formation. The only squeeze-off type of separations recognizable from the skin friction line 
analysis are due to the primary and secondary leading-edge vortices. As described by Délery [30-5], this is a 
common problem also for experimentally obtained oil-flow images at low incidences. The ultimate convergence 
of streamlines to form a visible separation line can occur far downstream of the saddle point of origin, in the 
computations an evident convergence does not happen for the inner vortex over the entire wing. 

The inviscid case shows the potential to cast light from a different angle on the formation of the inner vortex.  
It has to be stressed here that due to the nature of inviscid vortical flow computations, it is possible to achieve a 
fully attached flow solution, or on the contrary a separation very near to the apex, depending on the resolution of 
the delta-wing surface or several numerical parameters. Given the same reference conditions, an inviscid 
computation can give very different results. This has been analysed and documented in the past years and the 
superiority of the RANS methods is proven. But nonetheless, through cautious and deliberate adjustment of the 
numerical parameters (on a given mesh) it is possible to trigger a pre-determined leading-edge separation 
position that emulates a desired flow structure. This has been done in this study and the results have to be 
analysed accordingly with caution, taking account of the restrictions. 

In contrast to the general difference in primary (and secondary) leading-edge separation between viscous and 
inviscid computations, the inner vortical structure is predicted with striking similarity. Due to its mere presence 
also in the inviscid computations, it is possible to assume that the formation of the inner vortex may be 
independent of any additional viscous process modelled by the RANS equations. It is possible that for resolving 
this problem time-accurate computations might be necessary, since it is clear that both inviscid and viscous 
computations show essentially the same level of discrepancy to the experimental data. Similarly complex multi-
vortex systems can be attributed by Gursul et al. [30-13] to the unsteady formation of vortical substructures 
growing from shear layer instabilities. In this case hybrid turbulence models, such as DES would fail to  
model the relevant flow physics and LES might be necessary. A detailed analysis of the PIV data by Konrath  
et al. [30-18],[30-19] reveals indeed also in the presented case the appearance of time-dependent sub-vortices 
upstream of primary separation onset, that after time-averaging form one vortex as presented  Figure 30-30 (a). 

30.5 TRANSONIC CASES 
Several experimental investigations, e.g., by Elsenaar and Hoeijmakers [30-10], have determined that slender 
delta wings at transonic freestream conditions can experience a substantial motion of the vortex breakdown 
location due to a minimal variation of the incidence. The abrupt topological flow rearrangement is due to a non-
linear shock-vortex interaction. The computational analysis and understanding of this phenomenon has been a 
major task within AVT-113/VFE-2, involving the combined efforts of several task group members [30-25].  
The following sections will address as much as possible the contribution by KTH to this topic, even though some 
duplication of data is unavoidable for the sake of clarity. 
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30.5.1 Introduction 
At transonic conditions, the occurrence of shock waves on delta wings at moderate to high angles of attack 
leads inevitably to shock-vortex interactions. For the majority of conditions, the shock waves are weak 
enough, or are located appropriately, to substantially have little influence on the vortex development. In these 
conditions a “classical” vortex breakdown is found at the trailing edge of the delta wing. These situation is 
found in the common VFE-2 cases of the sharp and blunt configuration at α = 18.5°, M = 0.85, Rmac = 6 x 106. 
Good correlation between computational and experimental results is not only found for this condition, but also 
for higher angles of attack, up to a certain critical value. 

30.5.2 Test Case 
The same numerical settings and physical modelling is used for the transonic cases as for other RANS 
computations. In this section, additionally to the RANS results, some unsteady results are presented, which are 
the results of a DES computation. For the only DES result presented in this section, 10760 time steps are 
performed with 100 explicit sub-iterations. The outer time step is set to 1.64 x 10-5s, which corresponds to the 
non-dimensional value of 0.0048. Time-averaged DES results presented here are the results of averaging 
between the outer time steps 9550 and 10465. 

The basic condition for the assessment of the transonic effects is α = 23.0°, M = 0.85, Rmac = 6 x 106 for the 
sharp leading edge configuration. At this condition, the experimental datasets show vortex breakdown to occur 
above the trailing edge, but several CFD investigations consistently predict vortex breakdown to occur at a 
chordwise position of approx. x/cr = 0.67. The vortex breakdown is induced by one or two strong shock waves 
placed in front of the sting/wing intersection (at x/cr ≈ 0.635). For more details on the results of several task 
members, please refer to Chapter 29 of this report. 

30.5.3 Numerical Grids 
The numerical grid used for the investigations by KTH is specifically adapted to the main reference 
conditions. This is achieved by generating a RANS solution on an initial grid, and then by re-meshing it using 
TRITET and the RANS solution. This approach differs from the previously presented adaptation approach,  
as it is possible to achieve an improved, case-specific discretization, without increasing the cell count. In the 
adaptation approach, it is only possible to add cells to the domain. With the re-meshing approach, the original 
mesh is used as a back-bone to generate a new, partly skewed and refined mesh. One disadvantage of this 
approach is that it is not possible to re-mesh the surface grid, as it was generated with ANSYS ICEM CFD 
and the re-meshing procedure is performed with TRITET. Thus the surface discretization is not changed.  
The initial grid is presented in Figure 30-34, and the re-meshed volume grid for the main case α = 23.0°,  
M = 0.85, Rmac = 6 x 106 is presented in Figure 30-35. 



NUMERICAL SOLUTIONS FOR THE VFE-2 
CONFIGURATION ON UNSTRUCTURED GRIDS AT KTH, SWEDEN 

30 - 28 RTO-TR-AVT-113 

 

 

 

Figure 30-34: Upper Surface of the Initial Numerical Grid of the Sharp Leading Edge Geometry. 

  

(a) Global Side View (b) Side View – x/cr ≈ -0.2 – 1.2 

Figure 30-35: Re-meshed Grid for Case α = 23.0°, M = 0.85,  
Rmac = 6 x 106 − Mid-Span Cut Through Volume (η = 0.5). 

Additionally to the sharp leading edge grids described above, two sting-less grids were produced for the sharp 
and blunt leading edge geometries. The walls of the sting-less grids are discretised exactly as the sting-fitted 
grids to ease a relative comparison. For a sideslip incidence analysis, the re-meshed grid is mirrored at the 
symmetry plane. The grid sizes are summarized in Table 30-8 and Table 30-9. 
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Table 30-8: Computational Grid Size for the Transonic, Sharp Leading Edge Cases −  
Increase in Comparison to the Initial Grid is Given in Brackets; k = 103, M = 106 in  

the Table (Pyramidal elements are included in the total volume nodes counts) 

 

Table 30-9: Computational Grid Size for the Transonic, Blunt Leading Edge Cases −  
Increase in Comparison to the Initial Grid is Given in Brackets; k = 103, M = 106 in  

the Table (Pyramidal elements are included in the total volume nodes counts) 

 

30.5.4 Comparison of Numerical Grids 
Here we present the comparison in terms of relative solution accuracy between the initial grid and the  
re-meshed grid for the sharp configuration. A field cut-plane through the vortex core reveals in Figure 30-36 
the improved resolution of flow details given by the re-meshed grid. Furthermore, the vortex core axial 
velocity and pressure ratio are presented in Figure 30-37. Here it is possible to recognize that the re-meshed 
grid, which is based on a RANS solution, shows the same solution accuracy also for another position of the 
shock/vortex interaction zone. The re-meshed grid was used also for the unsteady analysis. 
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Figure 30-36: Constrained Volume Cut of the RANS Solution for Case α = 23.0°, M = 0.85,  
Rmac = 6 x 106 − Upper Sub-Frame: Re-meshed Grid, Lower Sub-Frame: Initial Grid. 
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(a) Normalized Static Pressure in the Vortex Core (b) Normalized Vortex Core Axial Velocity 

Figure 30-37: Comparison between Re-meshed Grid and Initial Grid for Case α = 23.0°,  
M = 0.85, Rmac = 6 x 106 − “DES” refers to the solution at a single time step. 

30.5.5 Results 
As previously described, this section is mainly focussed on presenting the contribution of KTH to the common 
task of understanding the sudden motion of the breakdown location. Possible factors of influence on the 
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discrepancy between computations and experiments are presented hereafter. A full discussion and analysis of 
this condition is presented in Chapter 29 of this report. 

30.5.5.1 Sting Installation 

It has been suggested within this task group and e.g. by Schiavetta et al. [30-26] that the shock upstream of the 
sting is caused by the installation of the sting onto the upper surface of the delta wing. This is in line with 
common knowledge, but the result of the following study reveals that the sting/wing intersection is not necessary 
the only reason for the occurrence of a mid-chord shock wave.  

The RANS solutions for four different configurations at exactly the same conditions are presented here; sharp 
and blunt leading edge configuration, each with a sting-fitted and sting-less variant. The upper surface 
pressure coefficient plots are presented in Figure 30-38. Clearly in the case of the sharp leading edge 
geometry (Figure 30-38 (a)), the removal of the sting results only in a small difference in the location of the 
shock wave. The effect on the primary and secondary vortices is very similar. On the other hand, the removal 
of the sting on the blunt leading edge configuration (Figure 30-38 (b)) reveals a completely different picture. 
The shock wave is still present, but located approx. at x/cr = 0.72, i.e. 20% of cr further downstream than in 
presence of the sting. Since the shock wave is not only located further downstream, but it also is relatively 
weak, the vortex core can remain coherent up to approx. at x/cr = 0.72. The conjectured cross-flow shock 
wave, outboard of the suction peak of the vortex core after x/cr = 0.72 seems to join the trailing edge shock 
wave. The flow features and thus the surface pressure coefficient show a pattern which is very similar to the 
transonic, sharp leading edge experiments at this angle of attack. By considering the left-hand side of the 
Figure 30-38 (a) and Figure 30-38 (b), i.e. the difference being only the leading edge (sharp versus blunt), it is 
remarkable that the location, strength and effect on the vortex core are nearly identical.  

  

(a) Sharp Leading Edge; Left Sub-Frame: Without 
Sting, Right Sub-Frame: With Sting 

(b) Blunt Leading Edge; Left Sub-Frame: Without  
Sting, Right Sub-Frame: With Sting 

Figure 30-38: Comparison between Sting-Less and Sting-Fitted Solution for the Sharp  
and Blunt Geometries − RANS Solutions for Case α = 23.0°, M = 0.85, Rmac = 6 x 106. 
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To better study the difference between the four cases it is possible to derive from the CFD solution the Rossby 
number (Ro) by using a section-wise integration method by Robinson et al. [30-24]. The Rossby number can 
be used as a metric to determine the vortex intensity or strength. The Rossby number is computed as the ratio 
of the axial and circumferential momentum of a vortex. For further details on how to determine the Rossby 
number, refer to Robinson et al. [30-24]. A reduction in the Rossby number is equivalent to a weakening of 
the vortex core. Within a certain range the vortex becomes susceptible to further disturbances; this range is 
experimentally found by Robinson et al. [30-24] to lie between 0.9 and 1.4. A Rossby number below zero 
corresponds to flow reversal, but unrecoverable vortex breakdown happens below Ro = 0.9. The Rossby 
number between the apex and trailing edge of the four cases is presented in Figure 30-39. 
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(a) Sharp Leading Edge (b) Blunt Leading Edge 

Figure 30-39: Rossby Number Comparison between Sting-Less and Sting-Fitted Solution for  
the Sharp and Blunt Geometries − RANS Solutions for Case α = 23.0°, M = 0.85, Rmac = 6 x 106. 

In case of the sharp leading edge geometry (Figure 30-39 (a)), two local maxima are found around mid-chord. 
The location of the two peaks is virtually unchanged by the presence of the sting. The first peak corresponds 
to the first vortex core disturbance by the impinging shock wave, whereas the second peak corresponds to the 
start of full vortex breakdown. The Rossby number ahead of the first disturbance is similar, and thus also 
found to be independent of the presence of the sting. 

When considering also the Rossby plot of the blunt leading edge geometries (Figure 30-39 (b)), some 
similarities to the sharp cases appear, but also some striking differences. Two subsequent peaks of Rossby 
number are found for both blunt leading edge configurations as for both sharp leading edge configurations.  
In case of the sting-less, blunt leading edge configuration, the Rossby number of upstream of vortex 
breakdown is markedly higher for the sting-less configuration. The stronger vortex for the blunt, sting-less 
configuration is able to withstand an abrupt breakdown at x/cr = 0.72, and only at x/cr = 0.8 the Rossby 
number slowly decrease to result in full flow reversal at x/cr = 0.93. This smooth pattern in the Rossby number 
plot is only found for the blunt, sting-less configuration at these conditions, but it is very similar to the case  
α = 18.5°, M = 0.85, Rmac = 6 x 106 as shown in Chapter 29 and Schiavetta et al. [30-25]. 

By making a cross-figure comparison between Figure 30-39 (a) and Figure 30-39 (b) for the sting-fitted sharp 
and blunt configurations, it is possible to identify a similar location of the first disturbance, i.e. the location of 
the shock wave is similar. The Rossby number upstream of the shock wave is in the same range, thus the 
similarly strong shock wave reduces the strength of the vortex core by a similar amount. Indeed the lower 
peak of these two configurations is at Ro = 1.22 for the sharp leading edge case and Ro = 1.24 for the blunt 
leading edge case. 
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It has to be noted that Robinson et al. [30-24] derived the values for vortex core stability by using experimental 
data for subsonic conditions. Thus the breakdown mechanism follows the classical procedure and the Rossby 
number plots show a distinct, but gradual decrease at vortex breakdown. The presence of two local maxima in 
the Rossby plots is not documented by Robinson et al. [30-24] and is believed to be a unique feature of a shock-
induced vortex breakdown. 

30.5.5.2 Sideslip 

A possible problem in an experimental campaign is that of a minimal sideslip angle due to unavoidable 
tolerances in the model support system. This is a possible explanation for the asymmetric PSP data measured 
by Konrath et al. [30-19]. Numerically it is thus interesting to check for sideslip angle dependency and assess 
any possible effect on the flowfield. 

The pressure coefficient on the symmetry plane is presented in Figure 30-40 (a) for two symmetric (β = 0°) 
computations with different physical models, RANS and DES. It is interesting to note that the RANS solution 
for the symmetric condition agrees perfectly with the time-averaged DES solution in terms of shock location, 
but not in strength. Three additional results are presented for RANS computations of a full-body configuration 
at three different sideslip angles, β = 0.1°, 0.5°, 1°. The shock wave ahead of the sting/wing intersection is 
found to be very sensitive in respect to sideslip angle. An increase of the sideslip angle by a tenth degree 
results in an upstream movement of the shock wave of approx. x/cr = 8%. An additional increase to β = 1° 
changes only little in the location of the shock wave. But at this sideslip angle, a new shock wave is present 
just ahead of the sting/wing intersection. The critical pressure coefficient for the given free-stream conditions 
is -0.302. The minimum Cp value for the β = 1° case is located at x/cr ≈ 0.6 and reads -0.466. The upper 
surface pressure coefficient shown in Figure 30-40 (b) reveals the location and attitude of the two shock 
waves. With the clear presence of a sting-induced shock wave at x/cr ≈ 0.6, the further upstream located shock 
wave is conjectured not to be caused by the sting, but by a strong flow acceleration in the central part of the 
wing which is due to the starboard leading edge primary vortex. At a sideslip angle of 0°, these two shock-
inducing phenomena combine to induce only one shock wave located in between. 
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Figure 30-40: Effect of Sideslip Angle on Solution – CFD Solutions for  
Case α = 23.0°, M = 0.85, Rmac = 6 x 106 at Various Sideslip Angles (β). 

The computations by Glasgow presented in Chapter 29 reveal for the symmetric configuration at the same 
free-stream condition the presence of two shock waves upstream of the sting/wing intersection. In light of this 
sideslip analysis it is here suggested that this might be due to the specific turbulence model used for the 
Glasgow analysis, i.e. the Wilcox k-ω with Pω enhancer model [30-1]. The modification to the Wilcox k-ω 
model is specifically targeted to decrease the dissipative nature of the original Wilcox k-ω model. This leads 
to stronger vortices. If the conjecture described above is correct, then an increase in vortex strength would 
lead to an increase in mass flow in the central wing section. Thus causing, as in the case of a sideslip angle of 
1°, a split-up of the single shock wave seen in this study at β = 0° into two separate. 
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